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Introduction

Quantum field theory (QFT), is a powerful framework to study diverse phenomena in physics.
The range of topics includes the interactions of elementary particles, the continuum limit of
condensed matter systems defined on a lattice, models of the expanding universe, as well
as quantum gravity. Despite its enormous breadth of applications, it is still quite poorly
understood. From a pragmatic point of view, a generic QFT is well understood in the per-
turbative regime, where one has a small expansion parameter or coupling constant. That we
have a satisfactory understanding of QFTs in the weakly coupled regime, is highlighted by
the fact that we have a single formalism, namely feynman diagrams, that can be applied to
any weakly coupled theory. Conversely, there is no universal framework to understand non-
perturbative and strong coupling phenomena. Instead, we have a distinct set of tools, which
apply to distinct sets of very special theories, such as those with supersymmetry or topolog-
ical theories. From this perspective, to understand the strong coupling dynamics of a QFT, is
to develop a unique formalism that can be applied to solve a generic strongly coupled QFT.
The reader should be warned that this thesis will not achieve such an ambitious goal. How-
ever, it is good to keep this general philosophy in mind, as a broader motivation for some of
the work presented. We will provide, instead, a collection of data points for particular sec-
tors of strongly coupled QFTs that are under analytic control. One can hope that some day,
these data points can provide the foundations for a more systematic and universal approach.
From a more formal viewpoint, quantum field theory, as of yet, has no rigorous mathemati-
cal basis. This is particularly bothersome, given the deep interconnections between ideas in
modern mathematics and those of QFT [1]. The goal of this thesis is to introduce its reader
to a few notable examples, where the former issue can be overcome. The unifying theme
of all these examples is their relation to brane dynamics in string theory [2]. We will make
extensive use of the string theory embedding of the QFTs under consideration, in order to
illuminate their strong coupling dynamics.

A useful gadget in our endeavour, is the notion of duality, broadly defined as an equiv-
alence between two naively inequivalent quantum field theories. The simplest example is
electric-magnetic duality; Maxwell’s theory in 3 ≤ d ≤ 5 spacetime dimensions is dual to a
theory of free (d − 3)-form fields, where the equations of motion and Bianchi identity are
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mapped to one another under this duality. More interesting are dualities between interact-
ing theories, where two different QFTs flow to the same conformal manifold. Indeed, the
two QFTs in question may even start life in different spacetime dimensions. One concrete
example of field theory dualities, which will show up repeatedly in this thesis, is 3d mirror
symmetry[3]. We will review salient features of this intriguing duality symmetry in section
3.4. It is worth remarking, that string theory is deeply aware of field theory dualities. Indeed,
mirror symmetry is a consequence of S-duality of type IIB string theory[4]. Perhaps the most
remarkable instance of duality, is that of the AdS/CFT correspondence [5], which posits an
equivalence between string theory on anti de Sitter space, times a compact manifold M, and
a conformal field theory living on its boundary[5]. The relevance of duality in understand-
ing non-perturbative phenomena, is rooted in the fact that often dualities map the strong
coupling dynamics of one theory to the weak coupling dynamics of the dual theory. This is
indeed true of both mirror symmetry and the AdS/CFT correspondence.

One of the unifying themes of this thesis, is brane dynamics in string theory, and their
interplay with gauge theories. In particular, throughout this work, we will use the string
embeddings of various QFTs, to illuminate their strong coupling dynamics. The examples
provided here are very rare, in that they lie at the intersection of theories, that are highly
non-trivial interacting theories, yet we have them under good analytic control. In particular,
in chapter 1 we consider a non-supersymmetric Hanany-Witten-like setup in type-0 string
theory that flows to three-dimensional Quantum Chromodynamics (QCD3) at low energies.
The recent developments in understanding the quantum phases of QCD3 [6], together with
some intuitive knowledge of the supersymmetric cousins of this brane setup allow us to
identify the string theory origin of the various phases of QCD3. The stringy interpretation
geometrises many aspects of the QFT.

One of the most remarkable predictions of string theory is the existence of UV complete
quantum field theories in 5 (and 6) spacetime dimensions. Their mere existence, forces us
to expand our view of quantum field theories, as these fixed points cannot be reached by
traditional means of perturbing around free field Lagrangians. Yet, by now, there is over-
whelming evidence to support their existence, mostly due to stringy constructions starting
with the seminal papers [7–10]. Broadly speaking, there are three independent, yet com-
plementary points of view for studying these SCFTs, namely their embedding into type IIB
brane webs [11–30], geometric engineering [8, 31–39] and holography [40–46].

Many 5d SCFTs, admit supersymmetry preserving mass deformations, which trigger an
RG flow, whose low energy dynamics is effectively captured by anN = 1 gauge theory. Such
deformations, preserve the SU(2)R symmetry, while breaking the flavour symmetry. An im-
portant dynamical question is therefore to determine the full global symmetry of the parent
SCFT of a given 5d gauge theory. 5d SCFTs and gauge theories, can possess a Higgs branch
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of their moduli space of vacua, which in the gauge theory regime can be constructed as the
hyperKähler quotient [47, 48]. In the SCFT limit, the hyperKähler quotient, is no longer ac-
cessible, due to the lack of a Lagrangian description, making the study of the Higgs branch
in this limit more challenging. There are, by now, a plethora of techniques to determine the
enhanced global symmetry of the SCFT parent of a given 5d gauge theory, such as 7-brane
analysis [49–51], superconformal indices [52], as well as geometric approaches [53]. One par-
ticularly elegant approach to determine the SCFT flavour symmetries as well as the Higgs
branch of the SCFT, pioneered in [54], is to consider their magnetic quivers. The magnetic
quiver (MQ), of a given 5d theory, is a 3dN = 4 quiver gauge theory, whose Coulomb branch
is isomorphic to the Higgs branch of the 5d theory in question. In many cases, though not
always, one can show that the magnetic quiver of a given 5d theory, is the 3d mirror of its
torus compactification. This leads to an interesting interplay between 5d N = 1 theories and
3d N = 4 theories, and has prompted many recent studies [54–70].

We present two separate studies of magnetic quivers for 5d SCFTs in chapter 2. The
difficulty in analysing 5d SCFTs, is partially due to their inherently strongly coupled nature,
and hence the absence of a Lagrangian description. The magnetic quiver perspective, ele-
gantly overcomes this difficulty by encoding the Higgs branch spectrum of a given 5d SCFT,
in the Coulomb branch of its magnetic quiver. On the other hand, knowledge of 5d physics
can lead to non-trivial predictions for 3d physics, as exemplified by the plethora of examples
of factorised orthosymplectic quivers in chapter 2.2. Other surprising results from the per-
spective of 3d gauge theories is the equality of moduli spaces of orthosymplectic magnetic
quivers with unitary non-simply-laced magnetic quivers.

We now provide a breakdown of the content of the main chapters in this thesis. In chap-
ter 1 we discuss brane configurations similar to those constructed by Hanany and Witten [4]
in type IIB, but we work in type 0 string theory. The latter is a non-supersymmetric cousin of
type IIB. The Hanany-Witten-like set-up we consider allows us to construct a UV-completion
of three-dimensional Quantum Chromodynamics (QCD3). We then use the brane configura-
tion and standard brane moves [71], to construct a Giveon-Kutasov [72] dual of this theory.
Using the original brane system and its dual, we recover all the recently proposed quantum
phases of QCD3 [6]. The contents of this chapter were published in [73]. Chapter 2 contains
two closely related but independent studies. In section 2.2, we provide sequences of 3dN = 4
quiver gauge theories whose moduli space of vacua factorises into two decoupled sectors.
This is highly suggestive, that the infra-red fixed points of these theories are the direct sum
of two decoupled SCFTs. The main evidence to support these claims are Hilbert series com-
putations of both the Higgs and Coulomb branches of the moduli space. In light of keeping
the physical results front and centre, we have omitted many technical details of the compu-
tations. The interested reader can consult the paper [56], where this work was published, for
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a more thorough technical treatment. Similarly, many of the results summarised in section
2.2, rest on brane web techniques developed by the author in [55]. The exclusion of these
techniques from this thesis is rooted in their technical nature, as well as the author’s desire
for brevity. Section 2.3 is dedicated to the study of brane webs with O7+-planes. We focus on
the Higgs branch of the SCFT parents of 5dN = 1 SO(N) gauge theory with hypermultiplets
on the vector representation of the gauge group. We provide a prescription to read off the
magnetic quivers for these theories directly from their brane webs. We then compute the
Coulomb branch Hilbert series for the magnetic quivers in order to verify them. The results
of this chapter were published in [57]. Chapter 3 is dedicated to the holographic duals of
the infra-red fixed points of 3d N = 4 linear quiver gauge theories. The results of this study
were published in [74]. As with the other chapters, many technicalities are omitted, and the
interested reader is directed to reference [74].
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Chapter 1

Phases of QCD3 from type 0 strings
and Seiberg duality

String theory has long been a source of insight for investigations in strong coupling dy-
namics of quantum field theory. In particular, dualities in field theories often follow from
properties of the corresponding brane configuration in string theory. Having independent
evidence from field theory and string theory is a step in verifying dualities. Most of the effort
so far has been largely focused on supersymmetric theories in various dimensions, owing to
the fact that non-perturbative phenomena in both string theory and field theory are better
understood in that setting.

One may naturally ponder the ubiquity of dualities in generic QFTs, and their relation-
ship to string theory. Indeed, recent years have seen progress made on the field theory
front for non-supersymmetric gauge theories in three dimensions. There has been signif-
icant progress in the understanding of the phase diagram of QCD3 with a Chern-Simons
term.

Consider a U(Nc) theory with N f massless Dirac fermions and a level K Chern-Simons
term. It was argued [75–78] (see also [79, 80]) that for N f /2 ≤ K the theory admits a dual
description in terms of a gauge theory coupled to scalars as follows

U(Nc)K,K±Nc ⊕N f fermions←→ U(K +
N f

2
)
−Nc,−Nc∓(K+N f /2)

⊕N f scalars . (1.0.1)

However, one may wonder whether something changes for N f /2 > K. In the case of
SU(Nc) gauge symmetry, it was conjectured in [6] that when N⋆ > N f /2 > K, for some



Chapter 1. Phases of QCD3 from type 0 strings and Seiberg duality 6

unknown valueN∗1 the theory admits a flavour symmetry breaking phase where

U(N f )→ U(N f /2−K)×U(N f /2+K) . (1.0.2)

A similar picture was developed in [6] also for SO(N) and Sp(N) gauge theories. For N f ≥
N⋆ the theory is expected to flow to a CFT2.

Following [83] which concerned the symplectic gauge group, we propose that the in-
frared phase diagram of U(Nc) QCD3 can be understood in terms of a non-SUSY Seiberg
duality. Our proposal involves a modification of the UV theory, i.e. we start with a UV
theory, which we refer to as the electric theory, whose Lagrangian is more complicated than
QCD3. This theory flows in the IR to QCD3. The electric theory also admits a Seiberg dual
description, which we refer to as the magnetic theory. The various IR phases of the electric
theory (and so of QCD3) can then be identified with the phases of the magnetic dual. In
particular both the bosonized phase and the symmetry breaking phase, which will be our
main focus, can be understood in terms of the condensation of a scalar field, namely the dual
"squark", in the magnetic theory.

Our proposal of Seiberg duality is motivated by string theory3. In order to realise U(Nc)
QCD3 we embed the gauge theory in a Hanany-Witten brane configuration of type 0B string
theory. The brane configuration consists of Nc D3 branes suspended between an NS5 branes
and a (1, k) fivebrane. In addition, there exits N f flavour branes and an O′3 orientifold
plane. It is similar to the corresponding supersymmetric brane configuration of Giveon and
Kutasov in type IIB [72].

By swapping the fivebranes we obtain the brane configuration that realises the mag-
netic Seiberg dual. The relation between field theory and string theory phenomena teaches
us about non-supersymmetric brane dynamics. The aforementioned squark condensation
translate into a reconnection of colour and flavour branes.

Our Seiberg duality proposal passes several non-trivial checks: as in the symplectic case
[83] it satisfies global anomaly matching and RG flows after mass deformations. It is also
supported by planar equivalence [88, 89]: when Nc, N f , k are taken to infinity the electric
theory becomes equivalent to a supersymmetric theory and the magnetic theory becomes
equivalent to a supersymmetric theory. The electric and magnetic theories form an N = 2

1That there should be an upper bound on the number of flavours, for which a symmetry breaking phase
appears is supported by large N f studies of QCD3[81], which suggest a second order phase transition at leading
order.

2In the ’t Hooft limit, when Nc → ∞ and K, N f are kept fixed, the theory exhibits rich vacua [82]. The
discussion of this limit is beyond the scope of this paper.

3Other approaches to obtain 3d duality with relation to string theory are given in [84, 85], while the possi-
bility of relating these dualities to supersymmetric dualities were explored in [86, 87]
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supersymmetric Giveon-Kutasov dual pair. Therefore, there exists a limit in which our non-
supersymmetric dual pair becomes a known supersymmetric dual pair.

Another method of obtaining Seiberg duality in string theory is by using non-critical
strings [90]. The method relies on the embedding of SQCD in non-critical string theory,
pioneered in [91]. Instead of swapping the fivebranes, the duality is obtained by replacing
the sign of the coefficient in front of the Liouville term in the string worldsheet action, µ →
−µ. The advantage of using this method is that the non-critical type 0 string does not contain
a closed string tachyon in the bulk [92, 93]. The field theory that lives on the branes is the
same in both the critical and the non-critical approaches.

In the following we will always denote the bare CS level by k, with k ≥ 0. In addition,
we define the frequently occurring combination

κ ≡ k −Nc + 2 , K ≡ κ −
N f

2
(1.0.3)

The rest of this chapter is organised as follows: in section 2 we review the essential
properties of type 0B string theory and its brane configurations. In section 3 we consider
a certain brane configuration and propose a Seiberg duality. In section 4 we show how the
phase diagram of the electric theory manifest itself in the magnetic and in section 5 we focus
on QED3. Section 6 is devoted to conclusions.

1.1 Overview of type 0B

In this section we review aspects of D3 branes and O′3 planes in type 0 string theory. For
the relevant background we refer the reader to [94].

Type 0B string theory can be obtained by a Z2 orbifold of type IIB, with the Z2 action
generated by (−1)Fs , the mod 2 spacetime fermion number operator. The untwisted sector
is therefore identical to the bosonic sector of the parent type IIB theory. The twisted sector
is composed of a tachyon in the NS-NS sector as well as a new full set of R-R fields. The
tachyon will eventually be projected out by the orientifold action. The doubled set of R-R
fields lead in effect to a doubling of the D-brane spectrum. In particular there are now two
types of threebranes which we denote by D3 and D3′ respectively.

The worldvolume theory on a stack of n D3 and m D3′ branes was worked out in [95, 96].
It is a U(n)×U(m) gauge theory with 3 complex scalars in the adjoint representation, and a
pair of bifundamental Weyl fermions.

In order to project out the closed string tachyon we make use of the Ω(−1) fR projection
[97, 98]. Here, Ω is worldsheet parity and (−1) fR is the operator that counts the number
of right moving worldsheet fermions mod 2. Combining this with reflection in 6 spatial
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directions I6 we get an O′3± orientifold, the (3+1) dimensional fixed hyperplane with respect
to the Ω(−1) fR I6 action. The existence of two types of orientifold planes follows from the fact
that the NS-NS two form can have a non-trivial Wilson surface exp (i ∫ B) and the signs are
chosen to reflect the R-R charge of the orientifold plane. Note that unlike the O3-planes of
type IIB we do not have the additional possibilities associated with the R-R discrete torsion.
Under the action of Ω, D3 turns into D3′, thus requiring an equal number of each type of
brane. In fact Ω projects out half of the doubled set of R-R fields in the closed string sector.

We are interested in stacks of N D3 branes (together with their image N D3′s) on top of
O′3±, with the worldvolume directions of D3 and D3′ parallel to that of the O′3±-plane (see
table 1.2). The worldvolume theory of such a configuration was worked out in [96]. In both
cases one has a U(N) gauge field and 6 adjoint scalars parameterising the directions trans-
verse to the worldvolume. There are also a pair of Weyl fermions which transform in the
2-index symmetric or antisymmetric representation of U(N) in the configuration with O′3+

and O′3− respectively. We will denote these theories by Y+ ( ), Y− ( ) respectively, high-
lighting the orientifold type on which they live as well as the representation of the world-
volume fermions (the two features relevant for our purposes). We summarise this in table
1.1. The Lagrangian for these theories can be obtained by subjecting the component fields of
N = 4 SYM, collectively denoted by φ, to the constraints

JφJT = (−1)F φ , (1.1.1)

where (−1)F is the mod 2 fermion number operator and J is the symplectic form

J =
⎛
⎝

0 1N

−1N 0

⎞
⎠

. (1.1.2)

The choice of gauge group for the N = 4 theory descends to the choice of fermion represen-
tation (figure 1.1); starting from the parent theory with SO(2N) gauge group one lands on
Y− ( ), and the supersymmetric Sp(N) theory leads to Y+ ( ) [99].

SO(2N) N = 4 SYM

J(−1)F

Y− ( )

Sp(N) N = 4 SYM

J(−1)F

Y+ ( )

Figure 1.1. The “orientifold" daughters of N = 4 SYM.

The Möbius amplitude for a single D3 and its image D3′ separated by a distance 2∣X±∣
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Table 1.1. The field content of the world volume theory of N D3 branes on top of an O′3± plane.

Y− ( ) U(N) SO(6)
B−µ Adj ⋅
X− Adj 6v

ξ− ⊕ 4s ⊕ 4c

Y+ ( ) U(N) SO(6)
B+µ Adj ⋅
X+ Adj 6v
ξ+ ⊕ 4s ⊕ 4c

across the O′3± is [96]

AM = ±
V4

(8π2α′)2 ∫
∞

0

dt
2t3

f 8
2 (iq)

f 8
1 (iq)

exp(
−2tX2

±
πα′

) , (1.1.3)

where q = e−πt and the fi(q) are defined as in [100]. We would like to extract the charge of
the orientifold plane as well as the brane-orientifold potential. We note that the integrand
in (1.1.3) is, up to a sign, identical to the case analysed in [101]. We will state the relevant
results in the following. For large separation X±, the leading order term as t Ð→ 0 is given by

AM ∼ ±πV4G6(X2
±) , (1.1.4)

where G6(X2
±) = (4π3)−1∣X±∣−4Γ(2) is the 6d scalar propagator. We see that the long range

potential between the branes and O′3− (O′3+) is attractive (repulsive). For small X±, (1.1.4)
is no longer a valid approximation, instead one can expand the exponential in (1.1.3) around
X± = 0

AM = ± [Λ −MX2
± +O (X4

±)] , (1.1.5)

where the coefficients Λ, M are both positive, with the explicit form given in [101]. From
this, it follows that there is a short range attractive (repulsive) force between the branes
and O′3− (O′3+) plane. The nature of the interaction at short and long distances from the
orientifold is similar. Therefore, the theory with fermions in the antisymmetric (symmetric)
representation is perturbatively stable (unstable). Note that instabilities of non-perturbative
nature may still arise, but are less straightforward to detect in string theory. Instead, we may
rely on the field theory analysis and try to revert some lessons back to the brane setup (as in
section 1.3.2).

Notice that the (in)stability of the brane configuration translates in the worldvolume
field theory to statements about the vev of the scalars X±. This is obvious from the second
term in (1.1.5), where the sign of the mass term for the scalars is positive (negative) for the
theory with anti-symmetric (symmetric) fermions. In the Field theory, this is encoded in the
1-loop Coleman-Weinberg potential, which gets unequal contributions from the bosons and
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fermions in each theory.
As observed in [102], the threebranes in type 0 carry the following charge and tension

QD3 =
√

π, TD3 =
√

π
√

2κ0
. (1.1.6)

It is then a matter of comparing (1.1.4) with 4V4G6(X2
±)TO′3±TD3κ2

0 to see that the orientifold
charge and tension are

QO′3± = ±
QD3

2
, TO′3± = ±

TD3

2
. (1.1.7)

This is clearly different from the situation in type II theories where an Op± plane carries
±2p−5 units of Dp brane charge. The charges (1.1.7) of the O′3± relative to the D3 will be
crucial in constructing seiberg dual pairs in the next section.

1.1.1 A pseudo-moduli space

The discussion in the previous section shows that the Y+ ( ) theory is unstable, namely
the D3s are repelled away from the orientifold. But the analysis tells us nothing about where
the stable vacuum of the theory lies. In a non-SUSY setup, the scalar vevs, or correspond-
ingly the coordinates of the branes are not to be viewed as moduli but are rather dictated by
the dynamics of the theory. Generically one expects a scalar potential V(X+) to be induced
via loop corrections. It is however useful to have a completely kinematical discussion of the
possible pseudo-moduli of the brane system before imposing the dynamical constraints. We
will examine the situation both in string theory and field theory.

Using the U(N) matrices, the most generic vev for the scalars X+ takes the diagonal
form

⟨X+⟩ = diag (a1, a2,⋯ , aN) ; ai ∈ R . (1.1.8)

From a field theoretic point of view, depending on the specific values of the eigenvalues ai

we encounter 3 possibilities:

(i) The ai are all distinct. In this case the gauge group is broken to its U(1)N maximal torus
and the worldvolume fermions all become massive. There are also adjoint (charge 0)
scalars for each U(1) factor in U(1)N

(ii) When n of the N eigenvalues become exactly degenerate there is an enhanced U(n)
symmetry. The breaking pattern in this case takes the form

U(N)→ U(n)×U(1)N−n . (1.1.9)
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All worldvolume fermions are massive but there are scalars in the adjoint of the un-
broken gauge group. A special case of this type is when all the eigenvalues coincide
and the entire gauge symmetry is unbroken.

(iii) There is a more exotic possibility. Consider the situation where n eigenvalues take the
opposite sign of an exactly degenerate set of m eigenvalues, i.e.

⟨X+⟩ = diag (
n

³¹¹¹¹¹¹·¹¹¹¹¹¹µ
v,⋯ , v,

m
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
−v,⋯ ,−v, a1,⋯ , aN−(n+m)) . (1.1.10)

The unbroken gauge symmetry is now U(n)×U(m)×U(1)N−(n+m). As in the cases (i),
(ii) above there are scalars transforming in the adjoint of the unbroken gauge symme-
try. Unlike those cases, there are now also massless fermions thanks to the cancellation
between the positive and negative eigenvalues of equal magnitude. These fermions
transform in the bi-fundamental of the non-abelian U(n) ×U(m) factor of the unbro-
ken gauge group.

From the string theory perspective, case (i) corresponds to a configuration where all
branes are at distinct points away from the orientifold, that is, none of the D3s coincide. Case
(ii) corresponds to n D3 branes coinciding in the bulk (away from the orientifold). Case (iii) is
more interesting. Suppose that v > 0, then in the brane picture v denotes the coordinates of n
D3 branes in the transverse space. On the other hand giving negative vevs to m of the scalars
corresponds to separating m D3s from the orientifold in the negative direction. But only the
quotient space, i.e. the positive direction is physical. When we send m D3s to a negative
point in the transverse space, their image D3’s are given positive coordinates and appear in
the physical space. So we see that case (iii) corresponds to n D3s and m D3’s coinciding at
coordinate v in the bulk. The worldvolume theory of this configuration beautifully matches
what one would expect from field theory discussed in (iii).

1.1.2 Hanany-Witten setup

We are interested in Hanany-Witten setups to study 3d theories, which requires the intro-
duction of NS5 branes. Our construction is the non-SUSY analogue of the 3d N = 2 setup
in type IIB (see e.g. [2]). In particular, we have NS5 branes which are non-parallel in two of
their spatial coordinates as in table 1.2, we distinguish them by referring to one as an NS5′.
The orientifold charge is switched from O′3+ to O′3− and vice versa on either side of an NS5
or NS5′ which intersects the orientifold. We will only consider configurations where the ori-
entifold is asymptotically O′3+ and label only the asymptotic charge of the orientifold plane
in our diagrams (see figure 1.2).
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Table 1.2. The various extended objects and their orientation in R1,9. All objects extend along the
shared x0,1,2 directions as well as those indicated below.

NS5 3 4 5
NS5′ 3 8 9
D3 ∣6∣
O′3 6
D5 7 8 9
(1, k) [37]θ 8 9

NS5

NS5′
O′3+

NS5

NS5′

(a) (b)

O′3+

Figure 1.2. The Hanany-Witten effect. In passing from the configuration (a) to (b) a pair of D3s are
created between the non-parallel NS5s.

Seiberg duality has a standard string theory derivation [71] which follows from a rear-
rangement of non-parallel NS5 branes in the Hanany-Witten setup. In constructions with-
out an orientifold, it is possible to achieve this rearrangement without the need for the NS5
branes to intersect. This is done by using the freedom to separate them in a direction mutu-
ally transverse to the NS5 and NS5′. In the presence of an orientifold, the NS5s are bound to
the orientifold plane and this is no longer possible. The NS5 branes will inevitably intersect
as we try to move them past one another [103].

The result of moving non-parallel fivebranes through one another in the presence of an
orientifold is well understood. This is the so called Hanany-Witten transition [4]. In type IIB
constructions with an orientifold this amounts to the creation/annihilation of a D3 between
the NS5 and NS5′ depending on the orientifold type, a fact that follows from imposing the
conservation of linking number. In the absence of D5 branes the linking number of an NS5
is proportional to the difference of the net D3 brane charges ending on it from the left and
right respectively. Following the discussion around (1.1.7) it is easy to see that for the type 0
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configuration of figure 1.2 the linking number of the NS5 and NS5′ are conserved provided
a pair of D3s are created in between them as we go from (a) to (b). This is twice the cor-
responding situation in type IIB as one would expect from the fact that the charge of O′3±

relative to the type 0 D3 is a factor of two greater than the type IIB analogue.
In the next section we discuss the Hanany-Witten setup that leads to the non-SUSY

gauge theories of interest with and without flavours.

1.2 3d dualities from non-supersymmetric brane configurations

In this section we consider Hanany-Witten setups that lead to three-dimensional CS theories.
See figure 1.3 and 1.4. The construction is analogous to [2]. The difference here, besides being
in type 0B, is the presence of the O′3 orientifold discussed previously.

In section 1.2.1 we consider the setup of figure 1.3. The low-energy theory of such a con-
figuration is that of non-SUSY analogue of N = 2 CS theories without flavours of (s)quarks.
Such a setup turns out to be meaningful for the discussion of 3d dualities without matter.
These dualities are also known in the literature as level-rank dualities.

In section 1.2.2 we consider the addition of N f flavour D5-branes, see figure 1.4. The
low-energy theory emerging from such a brane configuration includes quarks and squarks
in the fundamental representation of the gauge group.

1.2.1 Level-rank duality

We begin by discussing how level-rank duality is realised in our setup. The discussion
follows that of [104], and we provide a more refined account. In particular, we will be more
careful about the CS level of the U(1) factor of the gauge group.

The starting point is the brane configuration (a) of figure 1.3 with Nc D3 branes stretched
between an NS5 brane and a (1, k) 5-brane. We will refer to this as the electric theory. The
worldvolume theory is the dimensional reduction of the Y− ( ) subject to suitable boundary
conditions. There is a U(Nc) gauge field Aµ with a YM term and level k CS interactions,
as well as a real scalar σ in the adjoint of U(Nc) and two antisymmetric (complex) Dirac
fermions in the and the of U(Nc), respectively. The Lagrangian takes the following
form4

L
(E)
N f=0 =

1
g2

e
Tr [−1

2
(Fµν)2 + (Dµσ)2 + iλ̄ /Dλ + i ¯̃λ /Dλ̃ − iλ̄σλ − i ¯̃λσλ̃ +D2]

+ k
4π

Tr [ϵµνρ (Aµ∂ν Aρ −
2i
3

Aµ Aν Aρ)+ 2Dσ − λ̄λ − ¯̃λλ̃] .
(1.2.1)

4Such a Lagrangian is understood as descending from its parent N = 2 counterpart. In the large N limit we

expect to recover a supersymmetric YM-CS theory. The following rule is expected to hold: ⊕ → Adj.
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NS5

(1, k)

Nc D3O′3+

NS5

κ D3

(1, k)

O′3+

(a) (b)

Figure 1.3. The brane setup for the (a) electric and (b) magnetic theory which give rise to level-rank
duality.

Here Fµν is the gauge field strength and Dµ ≡ ∂µ − iAµ is the covariant derivative. The covari-
ant derivative is understood to act on the various fields in the representations of U(Nc) they
belong to. D is the auxiliary field of the vector multiplet borrowed from the supersymmetric
parent theory. It belongs to the adjoint representation of the gauge group just like the gauge
field and scalar gaugino.

Table 1.3. The field content of the worldvolume theories of the brane constructions in figure 1.3

U(Nc)k
Aµ Adj
σ Adj

λ

λ̃

U(κ)−k

aµ Adj
s Adj

l

l̃

It is straightforward to obtain the Seiberg dual of this theory following e.g. [2, 103] with a
slight modification that takes into account the effect discussed in figure 1.2. After reshuffling
the NS5 and (1, k) fivebrane we arrive at the configuration (b) in figure 1.3, where the number
of colour D3s is now κ ≡ k −Nc + 2. We refer to this as the magnetic theory. The worldvolume
theory is now that of a gauge field aµ with YM term and level −k CS interactions as well as a
real adjoint scalar s and antisymmetric Dirac fermions l and l̃. The Lagrangian is

L
(M)
N f=0 =

1
g2

m
Tr [−1

2
( fµν)2 + (Dµs)2 + il̄ /Dl + i ¯̃l /Dl̃ − il̄sl − i ¯̃lsl̃ +D2]

+ k
4π

Tr [ϵµνρ (aµ∂νaρ −
2i
3

aµaνaρ)+ 2Ds − l̄l − ¯̃ll̃] .
(1.2.2)
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We are interested in the IR dynamics of these theories. In the absence of supersymmetry,
the scalars on the two sides are expected to acquire a 1-loop mass of the order of the cutoff
[104]

m2
σ ∼ g2

e Λ, m2
s ∼ g2

mΛ . (1.2.3)

As in the discussion following (1.1.5) this translates to an attractive force between the branes
and the orientifolds, signalling perturbative stability of the configuration. At energies well
below the cutoff scales, the scalars are decoupled and do not play a role. Note that the scalars
also have tree level CS masses, but we expect them to be subleading due to the stringy nature
of the masses in (1.2.3). After integrating out the scalars we are left with gauge fields and
antisymmetric fermions, both of which have tree-level CS masses MCS = ±g2k where the sign
of the mass follows from the sign of the bare CS levels in (1.2.1) and (1.2.2). Due to the lack
of supersymmetry, also the gauginos (the antisymmetric fermions) get a mass at one-loop
and can be integrated out. Integrating out the antisymmetric fermions shift the levels of the
U(1) and SU(Nc) (resp. SU(κ)) factors of the gauge group by disproportionate amounts. As
a result the IR of the electric theory is a U(Nc)K1,K2 CS TQFT where

K1 = k −Nc + 2 ≡ κ, K2 = k − 2Nc + 2 ≡ κ −Nc . (1.2.4)

While the IR of the magnetic theory is described by a U(κ)L1,L2 CS TQFT with

L1 = −k + κ − 2 = −Nc , L2 = −k + 2κ − 2 = −Nc + κ . (1.2.5)

Putting everything together we end up with the TQFTs U(Nc)κ,κ−Nc and U(κ)−Nc,−Nc+κ, In
fact, these theories are dual to each other. Therefore, in the IR, we recover the following
level-rank duality

U(Nc)κ,κ−Nc ←→ U(κ)−Nc,−Nc+κ . (1.2.6)

1.2.2 Including flavours

We can include flavours in the discussion by adding D5 branes to the setup, the world-
volume directions spanned by the flavour D5 branes are as in table 1.2. The IR phases of
the electric theory turn out to be richer than the cases studied above and are nicely encoded
in terms of the dual magnetic theory. We begin by analysing each theory separately semi-
classically before mapping out the phase diagram.

Electric theory

The flavoured electric theory is realised on the brane configuration (a) of figure 1.4. The
worldvolume theory on the D3 branes now includes N f complex scalars Φ and N f Dirac
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NS5

(1, k)Nc D3

N f D5

O′3+

NS5

N f D5 Ñc D3

(1, k)

O′3+

(a) (b)

Figure 1.4. The brane setup for the (a) electric and (b) magnetic theory of our proposal. Here Ñc =
N f + k + 2−Nc

Table 1.4. The field content of the electric and magnetic theory.

Electric Theory

U(Nc)k SU(N f )
Aµ Adj ⋅
σ Adj ⋅
λ ⋅
λ̃ ⋅
Φ
Ψ

Magnetic Theory

U(Ñc)−k SU(N f )
aµ Adj ⋅
s Adj ⋅
l ⋅
l̃ ⋅
ϕ
ψ

M ⋅ Adj
χ ⋅
χ̃ ⋅

fermions Ψ. The relevant flavour symmetry emerging from the branes is an SU(N f ) group.
The representations of the scalars and fermions with respect to the gauge and flavour groups
are listed in table 1.4. These are essentially determined by their coupling to the antisymmet-
ric gauginos, see later (1.2.8).

The tree level Lagrangian is given by

L (E) =L
(E)
N f=0 +Lmatter , (1.2.7)
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where L
(E)
N f=0 is, as before, given by (1.2.1). The additional flavour terms are described by

Lmatter =∣DµΦa
i ∣

2 + iΨ̄ai( /DΨ)ai − Φ̄i
a(σ2)abΦb

i + Φ̄i
a(D2)abΦb

i

−Ψaiσ
a
b Ψ̄bi − (iλ[ab]Φ

a
i Ψ̄bi + iλ̃[ab]Φ̄i

aΨbi +h.c.) .
(1.2.8)

Here a, b = 1,⋯ , Nc are colour indices and i, j = 1,⋯ , N f are flavour indices. The interactions
with the gauginos fix the representations of the (s)quark fields to be as in table 1.4.

The fate of the scalar σ of the gauge multiplet of the electric theory is similar to the
flavourless case. The one-loop corrections to the scalar propagator get positive contribu-
tions from its coupling to itself and to the gauge field and negative contributions from its
coupling to the gaugino λ. Since there are more bosonic than fermionic degrees of freedom,
the vacuum ⟨σ⟩ = 0 is stable; σ does not play a role in the IR dynamics of the theory and can
be integrated out.

A similar story pans out for the squark Φ. Indeed, the squark couples to the gauge field
Aµ, the scalar σ and the gaugino λ. Since there are more bosonic than fermionic degrees of
freedom, one expects the squark to acquire a positive mass M2

Φ > 0 and decouple from the
IR physics.

For a non-zero level k ≠ 0, the gauge field and the gaugino acquire a Chern-Simons mass
MCS = g2k. We therefore expect the IR physics to be dominated by the topological CS theory
coupled to N f fundamental quarks, i.e. QCD3 with N f quark flavours.5 The IR levels of the
electric theory are shifted by the gaugino as in (1.2.4), as well as the fundamental quarks. In
summary, using the dictionary (1.0.3) we have

electric IR: U(Nc)K,K−Nc ⊕N f fermions , (1.2.9)

which is nothing but the left hand side of (1.0.1).
On the other hand, when k = 0, the IR theory is that of YM theory coupled to the gaugino

and the fundamental quarks. It is less straightforward to say anything concrete about the IR
dynamics of this theory.

Magnetic theory

The flavoured magnetic theory lives on the configuration (b) of figure 1.4. It is obtained
from the flavoured electric theory by the standard Giveon-Kutasov move [2, 103] modified
so as to account for the brane creation described in figure 1.2. One can easily verify that the

5Integrating out the gauge sector is somewhat more natural in the semiclassical regime k ≫ 1. We expect
this to remain true also at finite k, unless something drastic happens.
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resulting number of colour branes between the NS5 and the (1, k) fivebrane is

Ñc = N f + k −Nc + 2 ≡ N f + κ . (1.2.10)

The magnetic field content is given in table 1.4. This can be obtained in a similar fashion
to the electric theory, i.e. by subjecting the theory on the D3 branes in table 1.1 to the ap-
propriate boundary conditions. We have a gauge multiplet identical to the magnetic theory
of the N f = 0 case. The matter multiplet consists of a complex scalar ϕ and a Dirac fermion
ψ. Their representations with respect to the gauge and flavour groups are given in table 1.4.
There are in addition new degrees of freedom, which have no analogue on the electric side,
corresponding to the motion of the flavour D3 branes along the x8,9 directions. These give
rise to two gauge singlets; the meson M which is an SU(N f ) adjoint and its fermionic part-
ners, the “mesinos" χ transforming as of SU(N f ) and χ̃ transforming as of SU(N f ).

The tree level Lagrangian for this theory is

L (M) =L
(M)
N f=0 +Lmatter , (1.2.11)

where L
(M)
N f=0 is as in (1.2.2). The matter Lagrangian is

Lmatter =∣Dµϕi
a∣2 + iψ̄( /Dψ)ai − ϕ̄a

i (s
2)baϕi

b + ϕ̄a
i Db

aϕbi −ψai(s)baψ̄bi

− (il̃[ab]ϕi
aψ̄bi + il[ab]ϕ̄

a
i ψbi +h.c.)+ ∣∂µ Mi

j∣
2 + iχ̄{ij} /∂χ{ij}

− y2ϕ̄a
i ϕi

aϕ̄b
j ϕ

j
b
− y2ϕi

a M̄j
i Mk

j ϕ̄a
k − y(χ{ij}ϕi

aψaj + χ̃{ij}ϕ̄a
i ψ̄aj +h.c.)

− y (ψai Mj
i ψ̄aj +h.c.) .

(1.2.12)

Note that in addition to the magnetic gauge coupling gm, we now have another coupling
constant y which controls interactions between the (s)quarks and the meson multiplet.

The scalar s of the magnetic gauge multiplet gets a positive mass and decouples, just as it
did in the flavourless case. This signals the stability of the colour branes near the orientifold.

The squark ϕ couples to the gauge multiplet as well as the meson multiplet. There are
more bosonic than fermionic degrees of freedom in the gauge multiplet, and more fermionic
than bosonic degrees of freedom in the meson multiplet. Therefore, the squark aquires a
1-loop mass of the form

M2
ϕ ∼ (−y2 + g2

m)Λ . (1.2.13)

The two effects compete and the squark may become massive or tachyonic. Since at large k
the gauge field becomes heavy and decouples we operate under the assumption that in this
limit the squark is tachyonic.
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The matter Lagrangian (1.2.12) for the magnetic theory includes a coupling between the
meson field and the scalar quarks

y2ϕi
a M̄j

i Mk
j ϕ̄a

k . (1.2.14)

If the meson acquires a vev of the form ⟨M̄j
i Mk

j ⟩ = u2δk
i the squark ϕ becomes massive. If

the squark acquires a vev ⟨ϕi
a⟩ = vδi

a, and flavour symmetry is unbroken, the mesons become
massive. Therefore, the most likely scenario is that in all phases [83]

M2
ϕ M2

M < 0 . (1.2.15)

In the following we will always work with this assumption in mind. This will be crucial in
obtaining the phase diagram of QCD3.

1.3 Phase diagram

As we saw in (1.2.9), the IR theory on the electric brane configuration is precisely QCD3.
In this section we argue that the conjectured phase diagram of QCD3 can be understood in
terms of the dual magnetic description. Many of the features are similar to the symplectic
case analysed in [83]. For this reason we will be somewhat brief and focus only on the details
which are new to the unitary theory.

1.3.1 Region I: Bosonization

We start with the region of the parameter space where κ ≡ k+2−Nc ≥ N f . This corresponds
to region I in the phase diagram of figure 1.5. In this region the rank of the magnetic gauge
group Ñc = N f + κ is automatically positive. Following the discussion around (1.2.13), the
N f squarks are assumed to be tachyonic throughout this region. This is reasonable as one
can go to arbitrarily large values of k while keeping N f fixed. In this regime the gauge sector
becomes heavy and decouples from the dynamics. The main contribution to the mass of
the squark (ϕ) comes from the meson multiplet, which is indeed negative. Thus, our main
assumption is that this remains true as we move to finite k.

Let us then assume that the magnetic squarks condense. In the brane configuration, this
corresponds to Higgsing N f colour D3 branes via reconnection to N f flavour D3 branes. This
is the Higgs mechanism in the string theory language. The world-volume of the N f Higgsed
D3 branes no longer supports a gauge multiplet as they end on D5s from one side and end
on the NS5 brane from the other. However, we still have κ colour D3 branes which support
a U(κ)−k gauge theory with massive gauge field and massive gauginos. The CS mass is still
proportional to k, and we can integrate out the gauge field and gauginos at energies below
g2k. The reconnection preserves the original U(N f ) global symmetry. We will shortly argue,
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κ

N f

N f = ∣κ∣

N∗

I

IIII′

No seiberg duality

IIIIII′

Figure 1.5. Phase diagram of QCD3.

from the field theory side, that there are N f scalars in the fundamental after the Higgsing. In
the brane set-up these can only come from open strings stretched between the colour branes
and N f Higgsed D3 branes.

Let us try to understand the phenomenon described in the last paragraph in terms of the
field theory description of the magnetic theory. Indeed, the Higgsing corresponds to giving
a colour-flavour locking vev to the magnetic squark without breaking the global U(N f ). The
gauge symmetry breaking pattern is given by

U(κ +N f )→ U(κ) , (1.3.1)

leaving the gauginos in the and of the Higgsed gauge group as well as N f fundamen-
tal squarks. The N f magnetic quarks become massive due to Yukawa terms. In addition,
the meson and the mesino all become massive due to interactions like (1.2.14) and can be
integrated out.

The IR levels get shifted after integrating out the gaugino according to (1.2.5) so that, using
the dictionary (1.0.3), the IR of the magnetic theory in this region of the parameter space is
described by

magnetic IR: U(K +
N f

2
)
−Nc,−Nc+K+

Nf
2

⊕N f scalars . (1.3.2)

Such a bosonic dual is described in the IR by a Lagrangian that contains, in addition to a
CS term with appropriate levels and coupling between the scalars and gauge field, also self-
interactions for the squarks. These correspond to mass terms of the form ϕ̄a

i ϕi
a as well as

quartic interaction of the form (single-trace) (ϕ̄a
i ϕ

j
a)(ϕ̄b

j ϕk
b) and (double-trace) (ϕ̄a

i ϕi
a)2. These
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terms can be generated, if not already present, by the RG flow consistently with global sym-
metries.

As a final step, tuning the mass terms both in the electric IR theory in (1.2.9) and in the
magnetic IR theory in (1.3.2), we recover a well-established duality. This is nothing but the
duality (1.0.1).

1.3.2 Symmetry breaking

When N⋆ > N f > κ, which corresponds to region II and II′ in the phase diagram of fig-
ure 1.5, we expect rather different dynamics for the system and we anticipate breaking of
the flavour symmetry. As we shall see, the physics in these regions is still captured by a
tachyonic squark, colour-flavour locking and brane reconnection, but the implications and
the resulting physics will be different with respect to region I. Note that the electric theory
we discuss is a U(Nc) gauge theory, while the result in ref.[6] is for SU(Nc).

Region II′

Let us begin with region II’ in the phase diagram of figure 1.5. In this region κ < 0.
Therefore, on the magnetic side, there are less colour D3 branes than flavour D3 branes:
Ñc = N f + κ < N f . We will assume that the squarks condense also in this case. Nonetheless,
squark condensation leads in this case to a fully Higgsed gauge group. Once again this is
realised in string theory by reconnecting N f + κ colour and flavour D3 branes (we stress that
κ < 0 here). After the Higgsing, we are left with ∣κ∣ flavour D3 branes stretched between the
D5 brane and the (1, k) fivebrane, as well as the N f + κ connected D3 branes. The latter no
longer support a gauge multiplet and therefore gauge symmetry is fully broken.

The global symmetry now consists of a U(N f + κ) factor corresponding to the symmetry
on the N f + κ reconnected branes as well as a U(κ) factor from the remaining flavour D3
branes. Using the dictionary (1.0.3) we have that in this region the global symmetry breaking
pattern is

SU(N f )→ S [U(
N f

2
+K)×U(

N f

2
−K)] . (1.3.3)

This symmetry breaking pattern is the one anticipated in [6]. As a consequence, the IR
physics of this phase is described in terms of the Grassmannian

M(K +
N f

2
, N f) =

SU(N f )

S [U (N f

2 +K)×U (N f

2 −K)]
(1.3.4)

corresponding to the symmetry breaking pattern given in (1.3.3). Such a Grassmannian will
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be essentially parametrised by6

N2
f − 1− [(N f + κ)2 + κ2 − 1] = 2∣κ∣(N f − ∣κ∣) = 2(

N f

2
+K)(

N f

2
−K) (1.3.5)

massless Nambu-Goldstone bosons. We identify the Nambu-Goldstone bosons as the mass-
less modes of open strings stretched between the two stacks of flavour branes.

Region II

When 0 < κ < N f < N⋆ (or 0 < K + N f

2 < N f < N⋆), after reconnection the theory in the IR is

U(K +
N f

2
)
−Nc,−Nc+K+

Nf
2

⊕N f ϕ . (1.3.6)

Naively, we seem to have a puzzle: instead of obtaining a theory of massless Nambu-
Goldstone bosons we obtain bosonization. The NG theory we are seeking is nothing but
the effective description of (1.3.6) for large negative masses of the squarks ϕ. According to
the field theory analysis of Komargodski and Seiberg [6] upon condensation of the squarks
we land on the symmetry breaking phase.

Indeed, after reconnection, the scalars in the bosonic dual (1.3.6) correspond to scalar
modes of the open strings in the brane configuration. Therefore our proposal is that these
scalars are tachyonic and are to be stabilised via open string tachyon condensation. We do
not know whether a nice geometric picture emerges after this condensation. Regardless, in
the field theory limit one eventually lands on the GrassmannianM(N f , κ). This picture is
consistent with the mass deformations of the brane setup, already discussed in [83].

1.4 Comments about QED3

The discussion of the phase diagram in the preceding sections holds for a general number
of colours Nc. However, “accidents” happen when Nc = 1, 2 that modify parts of the discus-
sion. In the case of Nc = 2 the electric gaugino is a singlet of the SU(2) factor of the gauge
group, but it carries charge 2 under the abelian factor. Because of this, some intermediate
steps taken to arrive at the general phase diagram in figure 1.5 are slightly modified, the end
result is however unaffected and the phase diagram of figure 1.5 is the correct picture for
Nc ≥ 2.

On the other hand, we start to see deviations from the general picture of figure 1.5 for
Nc = 1 i.e. QED3. In particular, as we shall see momentarily, when k = 0 there is no symmetry

6In order to be consistent with the UV symmetries one must also include CS terms in the effective descrip-
tion. The required modification is discussed in detail in [6].
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breaking phase. This in turn suggests that no symmetry breaking can occur for non-zero k
since the window for which a Grassmannian phase exists in the IR is maximised for k = 0 [6].

1.4.1 QED3 with vanishing CS-term

When the electric gauge group is U(1), there is no electric gaugino. Therefore, the IR of
the electric theory is U(1)0 theory coupled to N f fermions. The magnetic dual has a gauge
group U(N f + 1)with vanishing CS level at tree-level. Previously, squark condensation lead
to masses being generated for the quarks, meson and the mesino, due to the presence of
Yukawa interactions. However, in this case after reconnection we have a U(1) gauge theory
with no CS term and N f massless Dirac fermions. The reason that in this specific case the
fermions do not acquire a mass is that there is no gluino when the gauge group is U(1) and
no Yukawa term. In the absence of supersymmetry and without fine-tuning the squarks
acquire a mass. So we end up with a magnetic theory that admits the same matter content
as the electric theory, namely a dual U(1) theory with N f dual quarks.

The brane setup is such that the flavour branes coincide and hence flavour symmetry
remains unbroken. Thus, our magnetic theory predicts no spontaneous breaking of U(N f ).
This is consistent with existing conjectures about the IR behaviour of QED3 [105].
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Chapter 2

Magnetic quivers for 5d SCFTs

The program to study Higgs branches of 5d theories via their magnetic quivers, was initiated
in [54, 106], following earlier work [107, 108] observing similar connections. 5-brane webs
also play an important role in constructing the 3d quiver gauge theories associated to the
Higgs branch. A set of rules were established in [69, 109] to derive the magnetic quivers
directly from the 5-brane web. In particular, stable intersection number from substructure of
5-brane web at Higgs branch, captures the multiplicity of edges connecting nodes of the 3d
quiver [109]. This was later extended to brane webs with O5-planes in [55, 55, 63].

It will be convenient for us to make a distinction between quivers which are made en-
tirely of unitary gauge nodes, and those which can also have orthogonal and/or symplectic
gauge nodes in addition. We will refer to the former as unitary and the latter as orthosym-
plectic (OSp) quivers respectively. The primary focus of this paper is orthosymplectic mag-
netic quivers.

A convenient tool to study the moduli space of 3d N = 4 theories is the Hilbert series,
which enumerates gauge invariant operators graded by their conformal dimension. The
Coulomb branch Hilbert series can be computed using the monopole formula [110], while
the Higgs branch Hilbert series can be evaluated using the Molien-Weyl formula [47]. The
Coulomb branch Hilbert series is sensitive to the pattern of symmetry enhancement dis-
cussed above, so long as one finds a way to refine the computation. This is a longstanding
challenge in the case of OSp quivers due to a current lack of understanding of such com-
putations.1 One of the main results of this paper is the refined Hilbert series, and therefore
the enhanced magnetic symmetry of the OSp quivers under our study. Together with the
other tools of the Plethystic programme [112, 113], the Hilbert series can be used to give an
algebraic description of the moduli space as a variety. We will in particular make use of
the notion of highest weight generators (HWGs) developed in [114] in order to write down
closed form expressions for the Coulomb branch Hilbert series of the OSp magnetic quivers
under our consideration.

1This difficulty is related to the notion of hidden FI parameters in OSp quivers, see e.g. [111].
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We uncover an interesting phenomenon which is common to all models under our con-
sideration; the moduli space of the OSp quivers that we study generically factorizes into
two decoupled sectors, each of which has an alternative description, in terms of the moduli
space of a single connected unitary quiver. An upshot of this result is that we can write exact
highest weight generating functions (HWGs) encoding the Coulomb branch Hilbert series of
several families of orthosymplectic quivers using known results for the individual factors.
This result ultimately follows from fact that the OSp quivers that we study serve as mag-
netic quivers to 5dN = 1 SCFTs which are the UV fixed point of a 5d IR gauge theory whose
gauge group is a product of SO(4) factors, and with matter representations transforming as
either spinors or conjugate spinors of each SO(4) factor. Since SO(4) is locally isomorphic
to SU(2)×SU(2), and a spinor and conjugate spinor transform under different SU(2) factors,
each such theory can be reformulated as a product of two decoupled theories, each of which
has a gauge group that is a product of SU(2)s. The theories containing SO(4) factors can
be engineered using a single type IIB brane web with the inclusion of O5-planes, which can
then be used to obtain an OSp magnetic quiver [55, 63]. On the other hand the formulation in
terms of the product of theories with SU(2) factors is engineered by two independent brane
webs, giving rise to two magnetic quivers, which will be unitary by construction [109].

We note that an analogous factorization phenomenon happens for 4d N=2 theories of
class-S of D-type. In this context, it is well known that there are cases in which a single
three-punctured sphere describes the direct sum of 2 SCFTS, each of which also admits a
realization in A-type class-S [115–118]. Indeed, we identify some 4d N=2 theories of D-type
class-S which exhibit this factorization, and for which the orthosymplectic 3d mirror theories
correspond to the magnetic quiver derived from the 5-brane webs with O5-plane. Likewise,
the 3d mirror of the two A-type factors also corresponds to the unitary magnetic quiver
derived from the 5-brane web without O5-plane.

In this paper we initiate a study of the Higgs branch of 5d SCFTs engineered using brane
webs with O7+-planes. The relevance of this study is the following. The usual brane web
description of 5d SCFTs [11] can be enriched with the inclusion of orientifold planes. There
are two types of orientifold planes whose inclusion in the brane web leads to consistent 5d
SCFTs, namely O5-planes [17, 21] and O7-planes [16]. Magnetic quivers for 5-brane webs
with O5-planes have already been explored in [55, 56, 63], but an analogous study of brane
webs with O7-planes is so far missing from the literature. There are two variants of the O7-
plane, namely the O7+ and O7−. The latter of these is non-perturbatively resolved into a pair
of (p, q) 7-branes at strong string coupling [119, 120], leading therefore to an ordinary brane
web. On the other hand the O7+ plane is an exact configuration and so will give rise to novel
magnetic quivers.

The strategy for proposing the magnetic quivers is the following. We focus on SO(N)
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gauge theories with Nv hypermultiplets in the vector representation. This is a natural set
of theories to study, as they admit a realization with a brane-web involving an O7+ plane,
and also another realization with a brane-web involving O5−/Õ5

−
-planes. Since the mag-

netic quivers for the latter can be obtained using the techniques of [55, 63] they serve as a
consistency check for our proposal for the magnetic quivers obtained from the web with
O7+-plane.

As a main result, we find that the magnetic quivers for the webs with O7+-planes are
always framed non-simply-laced quivers. The derivation of the magnetic quivers was per-
formed with some educated guesswork loosely motivated by intuition stemming from S-
duality of type IIB, and some existing results on non-simply laced quivers and brane sys-
tems [106]. What gives these conjectural magnetic quivers a firm basis is the agreement of
their CB Hilbert series with that computed from the magnetic quivers for the same theory,
derived from an O5-plane construction.

2.1 Tools from the plethystic programme

In this section we review the material we need for the computation of the Hilbert series. The
discussion will be minimal and will cover only those aspects necessary for the subsequent
section. For more details the reader can consult the original papers. The literature on this
material is vast, but we will mostly follow [47, 65, 110, 112, 114]. In the following subsec-
tions we consider a 3d N = 4 theory with gauge group G of rank r and nH hypermultiplets
transforming under the representation Ri of G (i = 1,⋯, nH).

2.1.1 What is a Hilbert series?

The primary object of interest in algebraic geometry is an algebraic variety X, defined as the
set of zeros of a system of polynomial equations

X ∶= {Fi(x1,⋯, xk) = 0} ⊂ Ck , i ∈ {1,⋯, codim (X)} . (2.1.1)

To a variety X, one associates its coordinate ring, the ring of polynomials holomorphic in
the coordinates of X. The strategy is then to learn about properties of X, by studying its
coordinate ring. In an abuse of notation, we denote both the variety and its coordinate
ring by X, and it should be clear from context, which object is being referred to in a given
computation. If a ring X admits a graded decomposition of the sort

X =⊕
A∈I

XA , (2.1.2)
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then we can define the Hilbert series of X as

HSX(t) =∑
A

dim (XA) tA , ∣t∣ < 1 (2.1.3)

Let us demonstrate this by examples. Consider, perhaps trivially, the space C2. The
coordinate ring of this space is C[x, y], i.e. the ring of polynomials in two variables with
complex coefficients. The coordinate ring C[x, y], has a natural decomposition, graded by
homogeneous degree

C[x, y] = C⊕C(x + y)⊕C(x2 + y2 + xy)⊕⋯ . (2.1.4)

The Hilbert series in this case is straightforward to compute

HSC2(t) = 1+ 2t + 3t2 +⋯ =
∞
∑
n=1

ntn−1 = 1
(1− t)2

(2.1.5)

Now consider C2/Z2, where we quotient out by the Z2 action which inverts the coordinates
Z2 ∶ (x, y) → (−x,−y). Clearly, any monomial of odd homogeneous degree will not be
invariant under such a symmetry. Therefore, the coordinate ring is given by

C[x, y]
Z2

= C⊕C (x2 + y2 + xy)⊕C (x4 + y4 + x3y + x2y2 + xy3)⊕⋯ , (2.1.6)

ands so the Hilbert series takes the following form

HSC2/Z2
(t) =

∞
∑
n=0
(2n + 1)t2n =

(1− t4)
(1− t2)3

(2.1.7)

2.1.2 Coulomb branches

The bosonic fields in a 3d N = 4 vector multiplet consist of a gauge field and 3 real scalars.
Upon dualising the gauge field to a scalar we have 4 scalars at our disposal, which can be
pairwise complexified. These are the coordinates on the Coulomb branch at large vevs. Each
of these complex scalars forms the scalar component of anN = 2 chiral superfield. For small
vevs one needs to replace the complex scalar containing the dual photon by a BPS monopole
operator [121], which can again be thought of as the bottom component of an N = 2 chiral
multiplet. The quantum coordinates of the Coulomb branch are therefore the BPS monopole
Vm of magnetic charge m and the adjoint scalar ϕ. The Hilbert series (HS) for the Coulomb
branch of a good or ugly (in the sense of [121]) 3d N = 4 theory is then computed by the
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monopole formula [110]

HS(t, z) = ∑
m∈ΛG∨

m /WG∨

zJ(m)t2∆(m)PG(t, m) , (2.1.8)

where the sum is over the magnetic lattice of the gauge group G, we refer to [65] for a
detailed account. ∆(m) is the conformal dimension of the monopole operator with magnetic
charge m, and is given by

∆(m) = − ∑
α∈∆+
∣α(m)∣+ 1

2

nH

∑
i=1
∑

ρi∈Ri

∣ρi(m)∣ , (2.1.9)

where ∆+ is the set of positive roots and ρi are the weights of the representation Ri. The
classical dressing factor PG(t, m) counts invariants built out of the adjoint scalars ϕ

PG(t, m) =
r
∏
i=1

1
1− t2d(i)

, (2.1.10)

where d(i) are the degrees of the Casimir invariants of the gauge symmetry H ⊂ G which is
the unbroken part of the original gauge symmetry in the presence of a monopole operator
Vm of charge m. Finally z denote the fugacities of the topological symmetry whose exponent
J(m) denotes the topological current.

When the quiver consists only of unitary nodes, without the addition of flavors, there
is typically an overall U(1) which is decoupled. At the level of the HS computation, the
decoupling of the overall U(1) can be implemented in two ways. One can either treat one
U(N) gauge node as SU(N) since the beginning, or one can treat it as U(N)when computing
the monopole dimension formula, and then set to zero one of the magnetic charges of such
U(N) at the moment of computing the Hilbert Series. Furthermore, the choice of the specific
node at which the overall U(1) decouples is immaterial. We will see that both these features
cease to be true if we relax the original hypothesis that the quiver is simply-laced.

Coulomb branch Hilbert series for non-simply laced quivers

Let us consider now a case in which the quiver itself is unitary and non-simply laced. With
this we mean that two nodes can be connected by n oriented lines. In the usual non-simply
laced case, a straight line between two gauge nodes is interpreted as a bifundamental hy-
permultiplet. In the non-simply laced case, there is up to date no clear interpretation of the
oriented multiple-line, at the field theory level. Despite this, it was proposed in [106] that
one can still compute the Coulomb Branch Hilbert series of such a quiver. First of all, the
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matter contribution to the dimension formula must be modified as follows2:

∆hyp =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1
2 ∑

M
i=1∑

N
j=1∣2mi − nj∣

M N

1
2 ∑

M
i=1∑

N
j=1∣mi − nj∣

M N
. (2.1.11)

Secondly, it turns out that for a unitary non-simply laced quiver with no flavor nodes
there is still an overall U(1) that needs to be decoupled. However, now the choice of where to
decouple the overall U(1) is crucial. Decoupling it at different nodes will result in different
CB Hilbert series. Therefore one denotes with the squircle the location at which the overall
U(1) has to be decoupled. See [122] for more details on this point.

Not just the node at which the decoupling is done, but also how this procedure is done
is important. In the simply-laced case we could have decoupled the overall U(1) both by
treating a U(N) node as an SU(N) when writing the monopole dimension formula, or at
a later stage. In this second option, one writes the monopole dimension formula as if all
nodes are unitary, and then simply does not sum over one of the magnetic charges when
computing (2.1.8), namely, one sets mi = 0 for a given fugacity mi. We argue that the two
prescriptions are not in general equivalent, and in particular when the quiver is non-simply
laced, the second option is the correct one.

The reason for this is very evident working in the fugacity base of U(1) × SU(N). For
simplicity, let us consider N = 2. Let q be the fugacity associated to U(1) and p that associated
to SU(2). The change of base that connects these fugacities to the usual ones is [123]:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

m1 = p + q

m2 = p − q
. (2.1.12)

From this we see that setting to zero m1 means forcing p = q. This means decoupling a
U(1)diag which is not the U(1) factor in the product U(1)× SU(2), but rather it is a diagonal
U(1)diag between the U(1) factor of U(1)× SU(2) and the Cartan U(1)car of SU(2). On the
other hand, treating the U(2) node as SU(2) from the beginning would correspond to set
to zero p when writing the monopole dimension formula. The two operations are clearly
different. In the simply laced case the end result of the HS computation will not depend on
which option is chosen, however this is just an accident. In the simply-laced case the result
will depend on this choice, and throughout this paper we find consistent results if and only
if the diagonal U(1) is the one to be ungauged.

2In case of multiplicity n, we replace the number 2 in ∣2mi − nj∣with the number n.
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2.1.3 Higgs branches

The Higgs branch of a 3d N = 4 theory is parametrised by vevs of the scalar components
of the hypermultiplets. When dealing with a gauge theory, each such operator will be in
an irrep of G. The Higgs branch operators are therefore those constructed by considering
all symmetrised tensor powers of these irreps. The symmetrisation is done in order to be
consistent with Pauli statistics. To avoid overcounting, the relations among these scalar
operators due to the superpotential need to be imposed. One will then need to project onto
the gauge singlet states in order for the resulting operators to be well defined gauge invariant
operators. The Higgs branch Hilbert series is therefore computed using the Molien-Weyl
formula [47]

HSH(t) = ∫
G

dµG

PE [∑nH
i=1

χRi(x)t]

PE [χAdj(x)t2]
, (2.1.13)

where χRi(x) is the character of the representation Ri of G under which the scalars in the
i-th hypermultiplet transform, χAdj is the character of the adjoint representation of G, the
representation carried by the relations. The function PE [⋅] is the plethystic exponential,
defined via

PE [ f (z1,⋯, zr)] = exp(
∞
∑
k=1

1
k

f (zk
1,⋯, zk

r)) , (2.1.14)

it is a symmetrising function that generates the characters of the symmetrised tensor powers
of χRi . Finally the projection onto gauge invariant operators is achieved by integrating over
the group manifold using the Haar measure. In a suitable basis, the Haar measure can be
taken to be

∫
G

dµG =
1

(2πi)r
r
∏
i=1
∮∣xi ∣=1

dxi

xi
∏

α∈∆+
(1−

r
∏
k=1

xαk
k
) . (2.1.15)

2.1.4 Highest weight generating functions

The refined Hilbert series for a given theory can be generically expanded as Taylor series in
t such that the coefficients are sum of the characters of representations of global symmetry
of the theory. In general, given a global symmetry of rank r, the refined Hilbert series can be
expanded as:

∞
∑

n1=0

∞
∑

n2=0
⋯
∞
∑

nr=0
χ[ f1, f2,⋯, fr] tη , (2.1.16)

where each of f1, . . . , fr and η can be some polynomial function in variables n1, . . . , nr. The
notation χ[ f1,⋯, fr] is the character of the irrep of the global symmetry whose highest weight
is f1Λ1 + . . . + frΛr, where fi are the Dynkin labels of the irrep and Λi are the fundamental
weights of the global symmetry group. A convenient way to repackage the same information
is in terms of highest weight generating functions or HWGs [114]. One introduces a set



Chapter 2. Magnetic quivers for 5d SCFTs 31

of fugacities {µ1, . . . , µr}, called highest weight fugacities, and one writes the characters in
terms of µi according to the map

χ[ f1,..., fr] ↔ µ
f1

1 . . . µ
fr
r . (2.1.17)

With this map, the Hilbert series becomes a formal power series which can be resummed,
the corresponding generating function is termed as its HWG:

HWG =
∞
∑

n1=0
⋯
∞
∑

nr=0
µ

f1

1 . . . µ
fr
r tη . (2.1.18)

Notation. To avoid the cluttering of the quiver diagrams, in what follows, we will use a
color coding to represent the unitary and orthosymplectic nodes as given below:

Node type U(n) SO(m) USp(2k)

Gauge n m 2k

Flavor n m 2k

. (2.1.19)

In the above, the circular nodes denote the gauge group while the square nodes represent a
global (rather than gauge) symmetry group. In this work, we will have three kinds of links
connecting the nodes: solid line, dashed line and wavy line. These links transform under
the representations of the nodes it connects with the following dictionary.

Link type Interpretation

hypermultiplet transforming in the bifundamental representation
hypermultiplet transforming in the bifundamental representation
hypermultiplet transforming in the bifundamental representation
half-hypermultiplet transforming in the bifundamental representation
hypermultiplet in the fundamental-fundamental representation
charge 2 hypermultiplet

(2.1.20)

In order to avoid confusion, we will denote 5d (electric) quivers as ⋅ ⋅ ⋅ −G −Gj − ⋅ ⋅ ⋅ and use
square braces [F] to denote flavor nodes.

2.2 Factorised 3d N = 4 orthosymplectic quivers

In this section we present sequences of orthosymplectic magnetic quivers whose moduli
space is the product of two decoupled sectors, each of which enjoys a description as the
moduli space of a unitary quiver. Each sequence is parameterised by an integer N which is
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the sequence number, and labelled Em × En, in accordance with the Coulomb branch isome-
try of the N = 1 case. For N = 1, some of the theories become particularly simple such that
we can prove the equivalence of the orthosymplectic quiver with the two unitary quivers.
The Em × En orthosymplectic quiver with sequence number 1 corresponds to the magnetic
quiver for infinite coupling limit of 5d N = 1 SO(4) gauge theory with m − 1 hypermulti-
plets in the spinor representation denoted by s and n − 1 hypermultiplets in the conjugate
spinor representation of SO(4) denoted by c. Correspondingly the dual unitary quivers with
sequence number 1 correspond to magnetic quivers for infinite coupling limit of 5d N = 1
SU(2)×SU(2) gauge theory with m − 1 hypermultiplets in the (F,1) and n − 1 hypermultiplets
in the (1,F) representation of SU(2)×SU(2), where we denote by F the fundamental represen-
tation of associated gauge group. One can engineer these theories using 5-brane webs with
O5-planes [17], as well as using ordinary brane webs [11]. This pattern generalizes for higher
sequence numbers, namely one can provide an intuition for the reason that the orthosym-
plectic quivers factorise into two decoupled sectors by viewing them as magnetic quivers of
a 5d theory. We will therefore employ this perspective in the following. We will use EQm,n

to denote the 5d OSp electric quivers for the Em × En sequence, while we use the notation
EQm to denote the 5d unitary electric quivers to which the former factorise. Similarly, we
will denote the OSp magnetic quivers of the Em × En sequence by MQm,n, while we denote
the unitary components to which they factorise by MQm. Occasionally there will be more
than one generalisation of a given sequence for higher sequence numbers, in which case we
will distinguish the different sequences by a prime.

2.2.1 The E1 × E1 sequence

Consider the 5-brane web constructed by collapsing 2N NS5 branes on top of an O5-plane
that is asymptotically O5+ as in figure 2.1. By resolving this web to go on the Coulomb
branch one can identify the following low energy quiver description,

EQ1,1 = SO(4)−USp(0)− SO(4)−⋯−USp(0)− SO(4)

2N − 1
. (2.2.1)

One can recast this theory, by using the accidental Lie algebra isomorphism so(4) ≅ su(2)×
su(2) as a product of two decoupled 5d quiver gauge theories:

EQ1,1 = (EQ1)2 =
⎛
⎜⎜
⎝ SU(2)− SU(2)− SU(2)−⋯− SU(2)

N ⎞
⎟⎟
⎠

2

. (2.2.2)
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O5+ O5+

1

2

2N − 1

2N

⋮

(1, 1)

(1, 1)

(1,−1)

(1,−1)

⋰

⋰

1

2

N − 1

N

1

2

N − 1

N

Figure 2.1. Brane webs engineering EQ1,1 (left) and EQ1 (right). The numbers near each 5-brane
denote the number of coincident 5-branes in the stack in that segment. Black dots denote 7-branes of
charge (p, q).

Since this description involves only special unitary gauge groups, we should be able to en-
gineer it using (two copies of) ordinary brane webs, i.e. without using O5-planes. It turns
out there are a few possible candidates as there are distinct webs for SU(2) gauge theory
with discrete theta angles θ = 0 and θ = π. In order to identify the correct web diagram,
we scanned through all the possibilities and eliminated inconsistent choices by trial and er-
ror, by counting the Higgs branch dimension of the different candidate web diagrams and
requiring the answer to match with the result of the same computation performed on the
brane web with O5-plane. We found that, modulo SL(2, Z) and Hanany-Witten moves, the
unitary web diagram in figure 2.1 is the unique choice satisfying the aforementioned crite-
rion.

At this point we need to clarify which aspect of the two theories (2.2.1) and (2.2.2) are
expected to be the same. This is because we used an isomorphism at the level of Lie algebra,
ignoring any issues related to the global structure of the gauge group (with the exception of
the choice of discrete theta angle mentioned above). In particular, any information related
to local operators in the two theories is likely to agree, while questions about e.g. line and
surface operators in general will be sensitive to the global structure of the gauge group. Our
primary interest in these theories is in their Higgs branch, which is parameterised by local
operators, and thus should agree regardless of any subtle differences such as those alluded
to above.

Having constructed web diagrams for EQ1,1 and EQ1 in figure 2.1, we can now proceed
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to derive their magnetic quivers, following the rules introduced in [55, 63, 109]. From the
orientifold web in figure 2.1 we obtain the OSp magnetic quiver 3

MQ1,1 =

1
⋯

2N − 1 2N

4

, (2.2.3)

while taking two copies of the unitary web in figure 2.1 leads us to conjecture

MQ1,1 = (MQ1)2 =

⎛
⎜⎜⎜⎜⎜
⎝ 1

⋯
N

⋯
1

1 ⎞
⎟⎟⎟⎟⎟
⎠

2

, (2.2.4)

where the first equality above is to be understood as an equality of moduli spaces. We will
use this notation throughout. Note that the set of balanced nodes in the unitary quiver
implies an SU(2N) × SU(2N) symmetry, with each factor coming from the balanced nodes
in one of the unitary quivers (2.2.4). This is consistent with the claim of Gaiotto and Witten
[121], that whenever a chain of balanced unitary nodes terminate on a balanced symplectic
node, the isometry of the Coulomb branch is doubled. A second consistency check, is that
for N = 1, the two theories are obviously identical, the OSp quiver in this case is the so called
T(SO(4)), while the unitary side is two copies of T(SU(2)). In other words for N = 1 we
recover the statement

T(SO(4))↔ T(SU(2)× SU(2))↔ T(SU(2))× T(SU(2)) . (2.2.5)

One upshot is that the HWG for the unitary quiver is straightforward to extract, given that
its refined Hilbert series can be computed. Indeed the unitary quiver has already appeared
in previous studies, for instance in [61]. Therefore our conjecture implies that the HWG of
the OSp quiver (2.2.3) is simply given by doubling the known result for (2.2.4), namely:

HWG1,1 = PE [
N
∑
k=1
(µkµ2N−k + νkν2N−k) t2k] , (2.2.6)

where µ and ν are highest weight fugacities for SU(2N) × SU(2N). This proposal was con-
firmed explicitly by computing the unrefined Hilbert Series for the OSp quiver (2.2.3) for
small values of N.

3The flavor SO(4) node appearing in the quiver MQ1,1 was argued [55] to arise from the intersection between
(0,1) 5-brane and O5+-plane. This is based on the intuition that an O5+ carries the same charge as an O5− and
two (immobile) D5 branes.
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Even more remarkable, is that the agreement between the quivers (2.2.3) and (2.2.4) is
also valid on the Higgs branch. From the 5d perspective there is no a priori reason why this
should be so, but it can be confirmed by an explicit calculation of the unrefined Hilbert series

2N
∏
q=2
(1− t2q)∫ dµCN PE [χ[0,1,0,⋯,0]CN

t2 + 4χ[1,0,⋯,0]CN
t] . (2.2.7)

Let us evaluate this integral for N = 2. The measure over the USp(4) group can be taken to
be

∫ dµC2 = ∮∣x1∣=1

dx1

2πix1
∮∣x2∣=1

dx2

2πix2
(1− x2

1)(1− x2)(1−
x2

1

x2
)(1−

x2
2

x2
1

) , (2.2.8)

while the characters for the fundamental and second rank antisymmetric representation of
USp(4) are given respectively by4

χ[1,0]C2
= x1 +

x2

x1
+ x1

x2
+ 1

x1
,

χ[0,1]C2
= x2 +

x2
1

x2
+ 1+ x2

x2
1

+ 1
x2

,
(2.2.9)

Thus the expression we need to evaluate is

4

∏
q=2
(1− t2q)∮∣x1∣=1

dx1

2πix1
∮∣x2∣=1

dx2

2πix2
(1− x2

1)(1− x2)(1−
x2

1

x2
)(1−

x2
2

x2
1

)×

× 1

(1− x2t2)(1− x2
1

x2
t2)(1− t2)(1− x2

x2
1
t2)(1− t2

x2
)(1− x1t)4(1− x2

x1
t)4(1− x1

x2
t)4(1− t

x1
)4

.
(2.2.10)

This integral can now be evaluated using residues to arrive at the following Hilbert series

HSH1,1∣N=2 =
(1− t6)2(1− t8)2

(1− t4)6(1− t2)6
. (2.2.11)

We recognise this as the Coulomb branch Hilbert series of two copies of U(2) with 4 funda-
mental hypermultiplets [110], which is the mirror of the N = 2 quiver of (2.2.4). Therefore
we see that the agreement between the OSp quiver (2.2.3) and unitary quiver (2.2.4) holds
also on the Higgs branch.

4These characters are computed as follows. For a weight w = [w1, w2] ≡ w1Λ1 + w2Λ2 appearing
in the weight system of a representation R of C2, the corresponding monomial in the character will be
xw1

1
xw2

2
. For example, the weights appearing in the weight system of fundamental representation of C2 are

{[1, 0], [−1, 1], [1,−1], [−1, 0]} where each weight is written in the fundamental weight basis. Thus the character
for fundamental representation will be simply x1

1x0
2 + x−1

1 x1
2 + x1

1x−1
2 + x−1

1 x0
2.
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2.2.2 The E1 × E3 sequence

In the previous subsection, we saw that the Higgs branch of the fixed point limit of 5d SO(4)
gauge theory, factorises to two copies of the Higgs branch of the 5d pure SU(2) gauge the-
ory. It is natural to ask whether this pattern holds if we include matter transforming under
SO(4). The two matter representations which are straightforward to obtain from the brane
web are the vector of SO(4) and the two spinor representations of opposite chirality. Since
the vector of SO(4) corresponds to bifundamental of SU(2)×SU(2), this will not lead to the
desired factorised theory. However, each of the two spinor representations, denoted by s
and c respectively, will only transform under one of the two SU(2) factors in SO(4). In this
and subsequent subsections, we will exploit this well-known fact.

Consider the orientifold web diagram presented in figure 2.2. The corresponding IR
quiver gauge theory description is given by the electric quiver

EQ1,3 = [1 s]− SO(4)−USp(0)− SO(4)−⋯−USp(0)− SO(4)− [1 s]

2N − 1
. (2.2.12)

By using the isomorphism so(4) ≅ su(2) × su(2), we can rewrite this theory as a product of

O5+ O5+

1

2

2N − 1

2N (2,1)(2,-1)

⋮

(1, 1)

(1, 1)

⋰

⋰

1

2

N − 1

N

1

2

N − 1

N

Figure 2.2. Brane webs engineering EQ1,3 (left) and EQ3 (right). For the unitary brane web engineer-
ing EQ1, see figure 2.1.
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the following electric quivers.

EQ1,3 = EQ1 ×EQ3 =
SU(2)− SU(2)−⋯− SU(2)

N
× SU(2)

∣
[1F]

− SU(2)−⋯− SU(2)
∣
[1F]

N

(2.2.13)

The unitary brane web for EQ1 is given in figure 2.1, while the unitary brane web for EQ3 is
presented in figure 2.2. The orientifold web in figure 2.2 admits two maximal subdivisions.
Accordingly the Higgs branch of this theory is the union of two cones, given by the two
OSp magnetic quivers in table 2.1. On the other hand, we expect these magnetic quivers to
be equivalent to the product MQ1 × (MQ(I)3 ∪MQ(II)3 ), with the latter factor obtained from
the unitary web for EQ3 in figure 2.2. As a further non-trivial check, we can compute the
Coulomb branch Hilbert series of the unitary and OSp quivers. The unitary quivers MQ1

along with MQ(I)3 and MQ(II)3 have known HWGs [61].
We are now in a position to write down the HWGs for the OSp magnetic quivers in table

2.1. The final result for the first cone reads

MS OSp Unitary

MQ(I)1,3

1
⋯

2N − 1 2N 1

1

1

⋰
N

⋱

1

1

1

⋰
N

⋱

1

1 1

MQ(II)1,3

1
⋯

2N − 1

2N − 2

1

2

1

⋰
N

⋱

1

1

1

⋮

N − 1
N − 1

N − 1

⋮

1

1 1

Table 2.1. OSp and unitary representation of the two cones on the Higgs branch of EQ1,3. The unitary

quivers appearing in the extreme right of the two rows of the table are respectively MQ(I)3 and MQ(II)3 .

HWG(I)
1,3 = PE [

N
∑
k=1

µkµ2N−kt2k]PE [t2 + (q + q−1) νNtN+1 +
N
∑
k=1

νkν2N−kt2k − ν2
Nt2N+2] , (2.2.14)
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where µ and ν are the highest weight fugacities for SU(2N)×SU(2N) while q keeps track of
the U(1) charge. The HWG for the second cone reads

HWG(II)
1,3 = PE [

N
∑
k=1

µkµ2N−kt2k]

×PE [t2 + (νN+1q + νN−1q−1) tN+1 +
N−1

∑
k=1

νkν2N−kt2k − νN+1νN−1t2N+2] . (2.2.15)

This was verified upon comparison with the result of an unrefined Hilbert series computa-
tion on the OSp side.

We can also compute the Higgs branch HS for MQ(I)1,3 for N = 2 exactly. The computation
is very similar to that of the Higgs branch of MQ1,1 discussed around (2.2.7). We need to
evaluate the following integral

4

∏
q=1
(1− t2q)∫ dµC2 ∫ dµU(1) PE [χC2

[0,1]t
2 + 2χC2

[1,0](q + q−1)t + (q2 + q−2)t] (2.2.16)

Evaluating this integral by finding the residues one arrives at the following

HSH1,3,(I) =
(1− t + t2)(1+ t4)(1+ t3 + t4 + t5 + t6 + t7 + t10)
(1− t)8(1+ t)6(1+ t2)3(1+ t + t2 + t3 + t4)

. (2.2.17)

This is to be compared with the product of the Higgs branch HS of the two unitary quivers
appearing in the first row of table 2.1. We already know the result for one of these, which is
identical to MQ1 of (2.2.4). Its Higgs branch HS was discussed in the previous section and
is given by the square root of the expression in (2.2.11). The Higgs branch HS of the other
quiver in the first row of table, 2.1, which we dub MQ(I)3 is straightforward to compute.
Specialising to the case N = 2, we need to evaluate the following integral

∫ dµU(2)(x, qx)∫ dµU(1)(u)H2
T[SU(2)](x)H

U(2)
glue
(x, qx)×

×H[2]−[1](x, qx)H[2]−[1](x, qx, u)H[1]−[1](u)H
U(1)
glue
(u)

= ∮∣x∣=1

dx
2πix

(1− x2)∮∣qx ∣=1

dqx

2πiqx
∮∣u∣=1

du
2πiu

(1− t2)2(1− t4)2×

×PE [(x2 + 1+ x−2)t2 + (x + x−1)(qx + q−1
x )(u + u−1)t + (u + u−1)t + (x + x−1)(qx + q−1

x )t] .
(2.2.18)

Evaluating this integral by computing its residues results in

HSH3,(I) =
(1+ t3 + t4 + t5 + t6 + t7 + t10)

(1− t)4(1+ t)2(1+ t2)(1+ t + t2)(1+ t + t2 + t3 + t4)
. (2.2.19)
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Together with the result for the HB of MQ1, this precisely reproduces the computation on
the OSp side (2.2.17).

2.2.3 The E3 × E3 sequence

O5− O5−

1

2

2N − 1

2N (1,1)(1,-1)

⋮

1
2

11
2

1

Figure 2.3. Orientifold web for EQ3,3.

The E3 × E3 sequence corresponds to the fixed point limit of the electric quiver

EQ3,3 = (EQ3)2 = SO(4)
∣

[1s+ 1c]

−USp(0)− SO(4)−⋯−USp(0)− SO(4)
∣

[1s+ 1c]

2N − 1

. (2.2.20)

The orientifold web which engineers this theory is given in figure 2.3. This brane web admits
three maximal subdivisions leading to the three OSp magnetic quivers in table 2.2. It can be
understood as a limiting case of the Y1,1

N theory in [55]. One can provide a purely unitary
description of this theory in terms of the following electric quiver:

EQ3,3 = EQ2
3 =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

SU(2)
∣
[1F]

− SU(2)−⋯− SU(2)
∣
[1F]

N ⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

2

, (2.2.21)

which can be engineered by taking two copies of the unitary web shown in figure 2.2. This
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brane web admits two maximal subdivisions whose magnetic quivers were discussed in the
previous subsection. Since we are taking two copies, a third cone arises when we take a
different maximal subdivision for each web diagram. This leads us to the unitary magnetic
quivers in table 2.2.

MS OSp Unitary

MQ(I)3,3 1
⋯

2N − 1 2N

2

1

⎛
⎜⎜⎜
⎝ 1

⋯
N

⋯
1

1 1 ⎞
⎟⎟⎟
⎠

2

MQ(II)3,3

1
⋯

2N − 2 2N − 2 2N − 2

21 ⎛
⎜⎜⎜⎜⎜
⎝ 1

⋯
N − 1 N − 1 N − 1

⋯
1

1 1 ⎞
⎟⎟⎟⎟⎟
⎠

2

MQ(III)3,3 1
⋯

2N − 1 2N − 2

1

1

1

⋰
N

⋱

1

1 1

1

⋮

N − 1
N − 1

N − 1

⋮

1

1 1

Table 2.2. Unitary and OSp magnetic quivers for the E3 × E3 sequence.

We can now infer the HWG for the OSp quivers in table 2.2 by taking those of the corre-
sponding unitary magnetic quivers as building blocks. This reasoning leads us to conjecture
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the following HWG for the three cones in table 2.2

HWG(I)
3,3(t

2) = PE [t2 + (µNq1 + µNq−1
1 )t

N+1 +
N
∑
k=1
(µkµ2N−kt2k)− µ2

Nt2N+2]

×PE [t2 + (νNq2 + νNq−1
2 )t

N+1 +
N
∑
k=1
(νkν2N−kt2k)− ν2

Nt2N+2]

HWG(II)
3,3(t

2) = PE [t2 + (µN+1 p + µN−1 p−1) tN+1 +
N−1

∑
k=1

µkµ2N−kt2k − µN+1µN−1t2N+2]

×PE [t2 + (νN+1q + νN−1q−1) tN+1 +
N−1

∑
k=1

νkν2N−kt2k − νN+1νN−1t2N+2]

HWG(III)
3,3 (t

2) = PE [t2 + (µN+1 p + µN−1 p−1) tN+1 +
N−1

∑
k=1

µkµ2N−kt2k − µN+1µN−1t2N+2]

×PE [t2 + (q + q−1) νNtN+1 +
N
∑
k=1

νkν2N−kt2k − ν2
Nt2N+2] . (2.2.22)

Here µ and ν are the fuagicites for the two SU(2N) groups and p and q are the U(1) charges.

2.2.4 The E′3 × E′3 sequence

O5+ O5−

1

2

2N

2N + 1

⋮

1
2

13
2

2

(1, 1)

(1, 1)

1

⋰

⋰

1

2

N − 1

N

1

2

N

N + 1 12

Figure 2.4. Brane webs for EQ3′,3′ (left) and EQ3′ (right).

There is another sequence whose first member has an E3 × E3 symmetry. We will refer to
this as the E′3 × E′3 sequence. In figure 2.4 we present the orientifold web that engineers the
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5d electric quivers in this sequence, the IR quiver description is given by

EQ3′,3′ = SO(4)−USp(0)− SO(4)−⋯−USp(0)− SO(4)
∣

[2s+ 2c]

2N − 1

(2.2.23)

It can also be given a unitary web description, once rewritten as a quiver theory with SU(2)
nodes:

EQ3′,3′ = EQ2
3′ =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

SU(2)− SU(2)−⋯− SU(2)
∣
[2F]

N ⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

2

. (2.2.24)

We present the unitary web engineering each EQ′3 factor in figure 2.4. Now we can use the
unitary and orientifold webs in figure 2.4 to obtain unitary and OSp magnetic quivers for the
E′3 × E′3 sequence, which appear in table 2.3. These MQs can be obtained by considering the
maximal subdivisions appearing in figure 2.5. The first subdivision was already discussed in
[55], while the second and third were overlooked. It was noticed in [58] that there should be
2 additional OSp cones to match the analysis on the unitary side. We claim that the missing
cones in this case correspond to the two new maximal subdivisions appearing in figure 2.5.

O5+ O5−

2N

2N 1

⋮

1
2

1
2

1
2

1
2

1

1
2

3
2

O5+ O5−

2N − 2

2N − 2

2N − 2

2

1

2N − 2 3

⋮

1
2

13
2

1
2

3
2

O5+ O5−

2N − 1

2N − 1

2N − 2

1

2N − 2 3

⋮

1
2

11
2

1

1
2

3
2

Figure 2.5. Maximal subdivisions of the Higgs branch of EQ3′,3′ at the superconformal limit. The
subweb coloured in red is frozen and contributes only as flavour nodes to the magnetic quivers in
table 2.3.

Notice that for N = 1, the relation between the unitary and OSp quivers in the first row
of table 2.3 was already suggested in [124], our result generalises this to higher N. The HWG
for the unitary quiver is known and appears in [61]. Given the correspondence between the
unitary and OSp magnetic quivers in table 2.3, we can use the results for the HWGs of the
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MS OSp Unitary

MQ(I)3′,3′

1
⋯

2N 2N

21
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1

N N
⋱⋰

1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

2

MQ(II)3′,3′

1
⋯

2N − 2 2N − 2 2N − 2 2N − 2

1 2

2

2

4

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
N − 1 N − 1

N − 1 N − 1

1

⋰

1

⋱

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

2

MQ(III)3′,3′

1
⋯

2N − 2 2N − 1 2N − 1 2N − 2

1 1

2

2

1

N N

⋮⋮

1 1

1
N − 1 N − 1

N − 1 N − 1

1

⋮

1

⋮

1

Table 2.3. Magnetic quivers for the E′3 × E′3 sequence

unitary quivers to obtain the HWGs for the OSp quivers. In order to do this, let us point out
the following useful fact; one of the unitary quivers appearing in the second and third row
of table 2.4, is itself a product of two unitary quivers:

1
N − 1 N − 1

N − 1 N − 1

1

⋰

1

⋱

1

= 1
N − 1 N − 1

N − 1 N − 1

⋰

1

⋱

1

×

1

1

, (2.2.25)

where the right hand side of the above is obtained after ungauging the overall decoupled
U(1) in the original quiver. The first quiver in the right hand side of the above is a height
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2 nilpotent orbit, whose HWG is presented in [61], while the second quiver is just N = 4
QED with 2 electrons. Turning to the second and third row, we again see that for N = 1 the
correspondence between the unitary and OSp quivers is obvious, which one may view as a
further robustness of our proposal.

Now we have all the necessary ingredients to write down HWGs for the OSp quivers

HWG(I)3′,3′ = PE [
N
∑
k=1
(µkµ2N+1−k + νkν2N+1−k) t2k] ,

HWG(II)3′,3′ = PE [
N−1

∑
k=1
(µkµ2N+1−k + νkν2N+1−k) t2k + (ρ2 + λ2) t2] ,

HWG(III)3′,3′ = PE
⎡⎢⎢⎢⎢⎣

N
∑
k=1

µkµ2N+1−kt2k +
N−1

∑
j=1

νjν2N+1−jt2j + ρ2t2
⎤⎥⎥⎥⎥⎦

.

(2.2.26)

This proposal has been checked by a direct computation of the unrefined Hilbert series of
the OSp quiver.

2.2.5 The E′3 × E4 sequence

The E′3 × E4 sequence is the magnetic quiver for the fixed point limit of the 5d IR electric
quiver

EQ3′,4 = SO(4)
∣
[1s]

−USp(0)− SO(4)−⋯−USp(0)− SO(4)
∣

[2s+ 2c]

2N − 1

. (2.2.27)

It can be engineered by the orientifold web diagram presented in figure 2.6. Alternatively
we may reformulate the electric theory EQ3,4 as a product of two unitary electric quivers

EQ3′,4 = EQ3′ ×EQ4 = SU(2)− SU(2)−⋯− SU(2)
∣
[2F]

N

× SU(2)
∣
[1F]

− SU(2)−⋯− SU(2)
∣
[2F]

N

, (2.2.28)

where EQ3′ is engineered by the unitary web in figure 2.4, while the unitary web engineering
EQ4 is the one in figure 2.7. Given these webs, the magnetic quivers can be extracted using
the rules in [55]. The Higgs branch of EQ3′,4 at the fixed point is the union of two cones,
whose magnetic quivers are given in table 2.4. The HWG that we propose for the OSp
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O5− O5−

1

2

2N

2N + 1 (2,1)

⋮

1
2

1 3
2

2

Figure 2.6. Orientifold web for EQ3′,4.

quivers are

HWG(I)3′,4 = PE [
N
∑
i=1

µiµ2N+1−it2i + (ν2 + 1)t2 + ν(µNq + µN+1q−1)tN+1 − ν2µNµN+1t2N+2]

×PE [
N
∑
k=1

ρkρ2N+1−kt2k]

HWG(II)3′,4 = PE [
N
∑
i=1

µiµ2N+1−it2i + (ν2 + 1)t2 + ν(µNq + µN+1q−1)tN+1 − ν2µNµN+1t2N+2]

×PE [
N
∑
k=1

λkλ2N+1−kt2k]PE [η2t2]

(2.2.29)

These expressions are consistent with the unrefined Hilbert series for low values of N.

2.2.6 The E4 × E4 sequence

The E4 × E4 sequence are the magnetic quivers for the fixed point limit of the 5d electric
quiver

EQ4,4 = [1s+ 1c]− SO(4)−USp(0)− SO(4)−⋯−USp(0)− SO(4)− [2s+ 2c]

2N − 1
. (2.2.30)
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MS OSp Unitary

MQ(I)3′,4

1

⋮

2N

2N12

1

1 1

N N

⋮⋮

1 1

1

N N
⋱⋰

1 1

MQ(II)3′,4

1

⋮

2N − 1

2N − 1

2N − 2

122

1

1 1

N N

⋮⋮

1 1

1
N − 1 N − 1

N − 1 N − 1

1

⋰

1

⋱

1

Table 2.4. Magnetic quivers for the two cones of the Higgs branch of EQ3′,4.

O5− O5−

1

2

2N

2N + 1(1,-1)

⋮

1
2

13
2

21
2

1

(1, 1)

(1, 1)

⋰

⋰

1

2

N

N + 1

1

2

N − 1

N

1 2

1
1

Figure 2.7. Brane webs for EQ4,4 (left) and EQ4 (right).

We present the orientifold web that engineers this theory in figure 2.7. Alternatively we can
write EQ4,4 as the product of two unitary electric quivers

EQ4,4 = EQ2
4 =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

SU(2)
∣
[1F]

− SU(2)−⋯− SU(2)
∣
[2F]

N ⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

2

, (2.2.31)
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where each copy of EQ4 can be engineered by the unitary web depicted in figure 2.7. Given
the brane webs in figure 2.7, one can derive an OSp and a pair of unitary magnetic quiv-
ers whose Coulomb branches are expected to describe the same unique 5d Higgs branch,
leading us to conjecture that

MQ4,4 = 2 2

2

1

2N

2N
⋯

1

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1

1 1

N N
⋯⋯

1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

2

(2.2.32)

The HWG for the unitary quiver appearing here was evaluated in [54]. We can use this result
to obtain an exact HWG for the OSp quiver by simply taking its square. Our claim is

HWG4,4 = PE [
N
∑
i=1

µiµ2N+1−it2i + (ν2 + 1)t2 + ν(µNq + µN+1q−1)tN+1 − ν2µNµN+1t2N+2]

×PE [
N
∑
i=1

ηiη2N+1−it2i + (λ2 + 1)t2 + λ(ηNr + ηN+1r−1)tN+1 − λ2ηNηN+1t2N+2] . (2.2.33)

2.2.7 The E5 × E5 sequence

The E5 × E5 sequence is obtained by taking the fixed point limit of the electric quiver given
by

EQ5,5 = [2s+ 2c]− SO(4)−USp(0)− SO(4)−⋯−USp(0)− SO(4)− [2s+ 2c]

2N − 1
, (2.2.34)

which can be engineered using the following orientifold web:

⋮

O5− O5−1
2

1 3
2

2 1
2

13
2

2

1

2

2N + 2

2N + 1
. (2.2.35)
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Alternatively, we can rewrite EQ5,5 as the product of two unitary electric quivers

EQ5,5 = EQ2
5 =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

SU(2)
∣
[2F]

− SU(2)−⋯− SU(2)
∣
[2F]

N ⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

2

, (2.2.36)

each of which is engineered by taking one copy of the following unitary brane web

(1, 1)

(1, 1)

⋰

⋰

1

2

N

N + 1

1

2

N

N + 1

1 2

2 1
. (2.2.37)

From the brane webs in (2.2.35) and (2.2.37), we obtain the two corresponding magnetic
quivers which then imply

MQ5,5 =MQ2
5 =

1

⋮

2N + 1

2N + 2

4 22 22

=

⎛
⎜⎜⎜⎜⎜
⎝ 1

⋯
N + 1

⋯
1

2 11 ⎞
⎟⎟⎟⎟⎟
⎠

2

. (2.2.38)

The unitary quiver appearing here has been studied previously, and its HWG was given in
[54]. We can now obtain the HWG for the OSp quiver by simply squaring that expression to
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obtain

HWG5,5 = PE [
N+1

∑
i=1

µiµ2N+2−it2i + (ν2
1 + ν2

2)t
2 + t4 + ν1ν2µN+1(tN+1 + tN+3)− ν2

1ν2
2µ2

N+1t2N+6]

×PE [
N+1

∑
i=1

λiλ2N+2−it2i + (ρ2
1 + ρ2

2)t
2 + t4 + ρ1ρ2λN+1(tN+1 + tN+3)− ρ2

1ρ2
2λ2

N+1t2N+6] .

(2.2.39)

2.2.8 The E′5 × E′5 sequence

The E5′ × E5′ sequence is obtained by considering the fixed point limit of the following 5d
electric quiver:

EQ5′,5′ = SO(4)−USp(0)− SO(4)−⋯−USp(0)− SO(4)− [4s+ 4c]

2N − 1
, (2.2.40)

which can be engineered using the orientifold web:

⋯
2N 2N + 2 4N+3

2 2N + 1 1 1
2N

2N + 1

O5−O5+

. (2.2.41)

Alternatively we may rewrite EQ5′,5′ as two copies of a single electric quiver with SU(2)
gauge nodes, namely

EQ2
5′ =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

SU(2)− SU(2)−⋯− SU(2)
∣
[4F]

N ⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

2

, (2.2.42)
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each copy of which can now be engineered using an ordinary brane web:

⋰

1

2

2N

2N + 1 N + 12N + 2

1

N

2N

. (2.2.43)

This leads us to conjecture the equivalence of the following 3d magnetic quivers

MQ5′,5′ =

1 2N 4N + 1 4N 4N + 1 4N 4N
⋯

2 2

1
2N

1

=MQ2
5′ =

⎛
⎜⎜⎜⎜⎜
⎝ 1

⋯
2N2NN

N 1 ⎞
⎟⎟⎟⎟⎟
⎠

2

.

(2.2.44)

We now want to write down the HWG for the Coulomb branch Hilbert series of MQ5′,5′ , via
the conjectured relation to the unitary quiver. The HWG for the unitary quiver MQ5′ can be
found in [125] (also see table 18 of [126]). Consequently, the HWG for MQ5′,5′ is obtained by
squaring this result, namely

HWG5′,5′ = PE [
N
∑
k=1
(µ2k + ν2k) t2k] . (2.2.45)
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2.2.9 The E5′ × E6 sequence

The E5′ × E6 sequence is obtained by taking the fixed point limit of the 5d electric quiver
given by

EQ5′,6 = [1s]− SO(4)−USp(0)− SO(4)−⋯−USp(0)− SO(4)− [4s+ 4c]

2N − 1
, (2.2.46)

which can be engineered by the following orientifold web diagram

O5− O5−

1

2

2N

2N + 1(1,-1)

⋮

1
2

14N+3
2

2N + 22N+1
2

2N + 1

. (2.2.47)

Alternatively we may reformulate EQ5′,6 as the product of two unitary electric quivers

EQ5′,6 = EQ5′ ×EQ6 = SU(2)− SU(2)−⋯− SU(2)
∣
[4F]

N

× SU(2)
∣
[1F]

− SU(2)−⋯− SU(2)
∣
[4F]

N

, (2.2.48)
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where EQ5′ is engineered by the unitary web in (2.2.43), and EQ6 is the IR quiver description
of the web diagram given by

⋰

1

2

2N

2N + 1 N + 12N + 2

1

N + 1

1

2N + 1

. (2.2.49)

Reading off the OSp magnetic quiver from (2.2.47) and the unitary quivers from (2.2.43),
(2.2.49), we arrive at the conjecture

MQ5′,6 =

22
⋯

4N + 24N + 24N + 2

2N

2N

1

=

=MQ5′ ×MQ6 =

1
⋯

2N2NN

N 1

×

1
⋯

2N + 1N + 1

N + 1

1

1 (2.2.50)

Obtaining the HWG for the Coulomb branch of MQ5′,6 is now straightforward, given the
above relation. The HWG for MQ′5 was worked out in [125] and the HWG for MQ6 appears
in [54]. For the OSp quiver MQ5′,6 in (2.2.50) we simply take the product of these two results

HWG5′,6 = PE [
N
∑
i=1
(µ2i + ν2i) t2i + t2 + (µ2N+2q + µ2N+3q−1) tN+1] . (2.2.51)
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2.2.10 The E6 × E6 sequence

The electric quiver for the IR limit of the E6 × E6 sequence reads

EQ6,6 = [1s+ 1c]− SO(4)−USp(0)− SO(4)−⋯−USp(0)− SO(4)− [4s+ 4c]

2N − 1
. (2.2.52)

It can be engineered using the following orientifold web

⋯
2N + 2 2N + 2 4N+3

2 2N + 1 1 1
2

2N+3
211

2

2N + 2

1

O5−O5−

. (2.2.53)

Alternatively we may present the electric quiver as a product of two unitary quivers:

EQ6,6 = EQ2
6 =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

SU(2)
∣
[1F]

− SU(2)−⋯− SU(2)
∣
[4F]

N ⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

2

, (2.2.54)

where each copy is engineered by the web diagram in (2.2.49). We can then obtain the mag-
netic quivers from the brane webs in (2.2.53) and (2.2.49), that lead us to the conjecture that

MQ6,6 =MQ2
6 =

2 2N + 2 4N + 4 4N + 2 4N + 2
⋯

2 2

2N + 2

1

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝ 1

⋯
2N + 1N + 1

N + 1

1

1 ⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

2

.

(2.2.55)
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This has an immediate corollary which allows us to extract the HWG for the OSp quiver
appearing above by squaring the known result [54] for the unitary quiver:

HWG6,6 = PE [
N
∑
i=1

µ2it2i + t2 + (µ2N+2q1 + µ2N+3q−1
1 ) tN+1]

×PE [
N
∑
i=1

ν2it2i + t2 + (ν2N+2q2 + ν2N+3q−1
2 ) tN+1] . (2.2.56)

Indeed the unrefined Hilbert series for the OSp quiver for N = 1 was computed in [65], and
is in agreement with our claim. For higher values of N we were not able to perform an
explicit computation due to the high rank of the OSp quiver. This is one instance in which
our conjecture proves powerful, as it gives an exact expression for the Hilbert series of a
quiver which would otherwise be very challenging to compute.

We further point out an interesting fact about this theory, namely the existence of a 4d
N = 2 theory with very similar properties. As noticed in [115], there is one class-S theory
of D4 type in which a single three-punctured sphere realizes a product SCFT, where both
factors are the E6 Minahan-Nemeschansky (MN) theory [127]. We recall that the E6 Minahan-
Nemeschansky theory is a 4d N = 2 SCFT of rank 1, with flavor symmetry group E6, and
central charges

aE6 =
41
24

, cE6 =
13
6

, (2.2.57)

We report the partitions labeling the punctures in table 2.5, together with their contribu-
tion to the effective number of hypermutiplets and vector multiplets.

Nahm partition (δnh, δnv)
[18] (112, 100)
[32, 12] (72, 69)
[32, 12] (72, 69)

Table 2.5. Table containing the data defining the punctures for the 4d E6 × E6 theory.

From this data it is easy to compute the central charges a and c of this theory, finding

aE6×E6 =
41
12

, cE6×E6 =
13
3

(2.2.58)

as it should be for two copies of the E6 MN theory. By applying the procedure to write the
3d mirror for this theory we find that the full puncture [18] is associated to the quiver tail
(2.2.59) while the puncture [32, 12] is associated to the quiver tail (2.2.60),



Chapter 2. Magnetic quivers for 5d SCFTs 55

2 2 4 4 6 6 8 (2.2.59)

2 4 8 . (2.2.60)

Gluing the three tails together results in the magnetic quiver for the 5d E6 × E6 depicted
in (2.2.55). Therefore the magnetic quiver of the 5d E6 × E6 theory is the 3d mirror theory
of the 4d E6 × E6 theory above described. It is then tempting to conjecture that the 5d E6 ×
E6 theory reduces to 4d to this D4 type class-S theory, giving two copies of E6 Minahan-
Nemeschansky.

Having derived the magnetic quiver for the E6×E6 sequence from the brane web, for any
N ∈N, we can use the same argument as the paragraphs above to conjecture that all class-S
theories of D2N+2 type given by a three punctured sphere with regular punctures given by
[14N+4], [2N +1, 2N+1, 1, 1], [2N+1, 2N+1, 1, 1]will be a factorized SCFT. We conjecture that
it will decompose into two copies of three punctured A2N spheres, with regular punctures
given by [12N+1], [N2, 1], [N2, 1]. It will be interesting to further check this proposal.

2.2.11 The E7 × E7 sequence

The E7 × E7 sequence corresponds to the fixed point limit of the following IR quiver

EQ7,7 = [2s+ 2c]− SO(4)−USp(0)− SO(4)−⋯−USp(0)− SO(4)− [4s+ 4c]

2N − 1
. (2.2.61)

It can be engineered using the orientifold web given by

⋯
2N + 3 2N + 3 4N+5

2 2N + 4 1 1
2

2N+5
223

211
2

2N + 2

O5−O5−

(2.2.62)
This web can be converted to a magnetic quiver following [55], which results in

MQ7,7 =

2 2 4 2N + 4 4N + 6 4N + 4 4N + 4
⋯

2 2

2N + 2

. (2.2.63)
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Now we use the alternative description of the EQ7,7 as a product of a pair of linear quivers
with SU(2) nodes, namely

EQ7,7 = EQ2
7 =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

SU(2)
∣
[2F]

− SU(2)−⋯− SU(2)
∣
[4F]

N ⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

2

. (2.2.64)

Each individual factor can be engineered using the following unitary 5-brane web

⋰

1

2

2N + 1

2N + 2

N + 22N + 421

N + 1

2N + 2

. (2.2.65)

The magnetic quiver one obtains from this unitary web leads us to the following conjecture

MQ7,7 =MQ2
7 =

⎛
⎜⎜⎜⎜⎜
⎝ 1 2 N + 2 2N + 2

N + 1

2N + 1
⋯

1

⎞
⎟⎟⎟⎟⎟
⎠

2

. (2.2.66)

The HWG for the unitary quiver appearing above was conjectured in [54]. We will use this
result and square it to obtain the HWG for the OSp quiver MQ7,7 (2.2.63):

HWG7,7 = PE [
N+1

∑
i=1

µ2it2i + t4 + ν2t2 + νµ2N+4(tN+1 + tN+3)+ µ2
2N+4t2N+4 − ν2µ2N+4t2N+6]

×PE [
N+1

∑
i=1

λ2it2i + t4 + ρ2t2 + ρλ2N+4(tN+1 + tN+3)+ λ2
2N+4t2N+4 − ρ2λ2N+4t2N+6] .

(2.2.67)
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We further point out an interesting fact about this theory, namely the existence of a 4dN = 2
theory with very similar properties. As noticed in [115], there is one class-S theory of D5 type
in which a single three-punctured sphere realizes a product SCFT, where both factors are
the E7 Minahan-Nemeschansky theory [128]. We recall that the E7 Minahan-Nemeschansky
theory is a 4d N = 2 SCFT of rank 1, with flavor symmetry group E7, and central charges

aE7 =
59
24

, cE7 =
19
6

. (2.2.68)

We report the partitions labeling the punctures in table 2.6, together with their contribu-
tion to the effective number of hypermutiplets and vector multiplets.

Nahm partition (δnh, δnv)
[110] (240, 220)
[52] (104, 102)
[32, 14] (184, 177)

Table 2.6. Table containing the data defining the punctures for the 4d E7 × E7 theory.

From this data it is easy to compute the central charges a and c of this theory, finding

aE7×E7 =
59
12

, cE7×E7 =
19
3

(2.2.69)

as it should be for two copies of the E7 MN theory.
By applying the procedure to write the 3d mirror for this theory we find that the full

puncture [110] is associated to the quiver tail (2.2.70), the puncture [32, 14] is associated to
the quiver tail (2.2.71), and the puncture [52] is associated to the quiver tail (2.2.72),

2 2 4 4 6 6 8 8 10 (2.2.70)

2 2 4 8 10 (2.2.71)

4 10 . (2.2.72)

Gluing the three tails together results in the magnetic quiver for the 5d E7 × E7 depicted
in (2.2.63) for N = 1. Therefore the magnetic quiver of the 5d E7 × E7 theory is the 3d mirror
theory of the 4d E7 × E7 theory above described. It is then tempting to conjecture that the 5d
E7 × E7 theory reduces to 4d to this D5 type class-S theory, giving two copies of E7 Minahan-
Nemeschansky.
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Having derived the magnetic quiver for the E7 × E7 sequence from the brane web, for
any N ∈ N, we can use the same argument as the paragraphs above to conjecture that all
class-S theories of D2N+3 type given by a three punctured sphere with regular punctures
given by [14N+6], [2N +1, 2N +1, 14], [2N +3, 2N +3]will be a factorized SCFT. We conjecture
that it will decompose into two copies of three punctured A2N+1 spheres, with regular punc-
tures given by [12N+2], [N + 1, N + 1], [N, N, 1, 1]. It will be interesting to further check this
proposal.

2.2.12 An outlier: the E8 × E8 theory

While not explicitly written5 in [115], it is easy to use the methods of such paper to find a
choice of punctures in the D6 theory, such that we realize the product of two copies of the E8

Minahan-Nemeschansky theory [128]. We recall that the E8 Minahan-Nemeschansky theory
is a 4d N = 2 SCFT of rank 1, with flavor symmetry group E8, and central charges

aE8 =
95
24

, cE8 =
31
6

. (2.2.73)

We report the partitions labeling the punctures which we believe engineer this product
SCFT in table 2.7, together with their contribution to the effective number of hypermutiplets
and vector multiplets.

Nahm partition (δnh, δnv)
[112] (440, 410)
[3, 19] (400, 380)
[9, 13] (120, 118)

Table 2.7. Table containing the data defining the punctures for the 4d E8 × E8 theory.

As a check that such 4d theory is really the product of two copies of the E8 Minahan-
Nemeschansky theory, we compute the central charges from the data defining the punctures.
We get

aE8×E8 =
95
12

, cE8×E8 =
31
3

(2.2.74)

as it should be for two copies of the E8 MN theory. We also check that there exist no other
choice of three punctures, in the D6 theory, that realizes these correct central charges.

By applying the procedure to write the 3d mirror for this theory we find that the full
puncture [112] is associated to the quiver tail (2.2.75), the puncture [3, 19] is associated to the

5But surely noticed by the authors of such paper. See for example [116] and [117] for discussions about
product SCFTs in class-S.
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quiver tail (2.2.76), and the puncture [9, 13] is associated to the quiver tail (2.2.77),

2 2 4 4 6 6 8 8 10 10 12 (2.2.75)

2 2 4 4 6 6 8 8 12 (2.2.76)

2 2 12 . (2.2.77)

Gluing the three tails together results in the quiver depicted in (2.2.78). Given the simi-
larity of this case to the previous cases of E6 × E6 and E7 × E7 theory, discussed respectively
in sections 2.2.10 and 2.2.11, it is natural to pose the question whether there exist a 5d E8 ×E8

theory, whose magnetic quiver coincides with the one of (2.2.78), which we derived here
from 3d mirror symmetry applied to the class-S construction of the 4d E8 × E8 theory,

2 2
⋯

10 10 12 8 8
⋯

2 2

2

2

. (2.2.78)

We would like to mention that we were not able to compute the Coulomb branch Hilbert
series of this quiver. It would be interesting to verify the matching of the Hilbert series with
that of the unitary quiver as in the other cases.

2.3 Magnetic quivers from brane webs with O7+-planes

In this section we discuss how one can read off the Higgs branch directions from brane webs
with O7+-planes. We then combine this knowledge with known facts about the Higgs branch
of SO(N) gauge theories at infinite coupling, as well as existing results on non-simply laced
quivers and brane constructions to fix the structure of the corresponding magnetic quivers.
We then provide consistency checks by computing the HS of the proposed magnetic quivers
and matching with the corresponding computation on OSp magnetic quivers derived from
brane webs with O5-planes.

2.3.1 Pure SO(N) theory

The brane web for pure SO(N) gauge theory at the infinite gauge coupling limit using an
O7-plane was first proposed in [16] and is shown in figure 2.8. The integer k labels the
choice of SL(2, Z) frame, and in particular under the generator T, each of the web diagrams



Chapter 2. Magnetic quivers for 5d SCFTs 60

O7+

(r − k − 2,−1) (r + k − 2, 1)

O7+

(r − k − 1,−1) (r + k − 2, 1)

Figure 2.8. Brane webs for pure SO(N) gauge theory at the infinite gauge coupling limit for the case
where N = 2r (left) and N = 2r + 1 (right).

in figure 2.8 is mapped to itself with k → k + 1. Note that the brane web looks slightly
different depending on whether the gauge algebra is of B-type or D-type. We would first
like to understand how to read off the Higgs branch directions from these web diagrams.
For the SO(2r) theory in figure 2.8, one can separate the (r − k − 2,−1) and the (r + k − 2, 1) 5-
branes along the Higgs branch directions giving rise to a Higgs branch of unit quaternionic
dimension. That this is a one-dimensional space rather than a two dimensional one is due to
the fact that the moduli correspond to the relative positions of the two independent subwebs.
Equivalently one has the freedom to fix the position of one of the subwebs to the origin of
the transverse space. This is unlike the situation one would encounter when dealing with
brane webs with O5-planes due to the fact that the O5-plane provides a refrence point, and
the number of available directions is equal to the number of independent subwebs. But
since an O7-plane spans all the directions transverse to the plane in which the web is drawn,
i.e. it is not localised to any point along the Higgs branch directions it cannot serve as a
refrence point and the total available Higgs branch directions are one less than the number
of independent subwebs. For the SO(2r + 1) theory a similar statement holds for the (r − k −
1,−1) and the (r+ k−2, 1) 5-branes. The naive prescription for obtaining the magnetic quiver,
had the O7+-plane not been present, would be [109] to assign a U(1) gauge node to each
subweb and connect them together by as many hypermultiplets as the Schwinger product,
or bare stable intersection6 of the (p, q) charges of the independent subwebs in figure 2.8,
with the knowledge that an overall U(1) acts trivially, corresponding to the freedom to fix
the position of one independent subweb to the origin. On the other hand, it is known [129]
that the Higgs branch of the infinite gauge coupling limit of a 5d N = 1 super Yang-Mills
theory with gauge group G should be given by the orbifold C2/Zh∨G

, where h∨G denotes the
dual Coxeter number of the group G. Moreover, the Coulomb branch of 3dN = 4 QED with
n1 charge one hypermultiplets and n2 charge 2 hypermultiplets is C2/Zn1+2n2 . If we further
require the Higgs branch dimension of the magnetic quiver to be equal to the rank of the 5d

6We refer the reader to [109] for the precise definition



Chapter 2. Magnetic quivers for 5d SCFTs 61

theory, then the magnetic quiver is uniquely determined to be

H∞ (SO(N)) = C2/Zh∨SO(N)
= C3d

⎛
⎜⎜⎜⎜⎜⎜
⎝ 1

⌈ N−6
2 ⌉

4− ⌈ N
2 ⌉+ ⌊

N
2 ⌋ ⎞

⎟⎟⎟⎟⎟⎟
⎠

, (2.3.1)

where ⌊x⌋, ⌈x⌉ denote the floor and ceiling function respectively, and are defined by

⌊x⌋ =max{n ∈Z ∣ n ≤ x} , ⌈x⌉ =min{n ∈Z ∣ n ≥ x} . (2.3.2)

Our task now is to recover (2.3.1) from the data in the brane webs of figure 2.8. Let us first
take the Schwinger product of the (p, q) charges of the two independent subwebs in each of
the webs in figure 2.8 to find

RRRRRRRRRRR
det
⎛
⎝
(r − k − 2) −1
(r + k − 2) 1

⎞
⎠

RRRRRRRRRRR
= 2r − 4

RRRRRRRRRRR
det
⎛
⎝
(r − k − 1) −1
(r + k − 2) 1

⎞
⎠

RRRRRRRRRRR
= 2r − 3

(2.3.3)

Upon comparison with (2.3.1) we propose that the number of charge 2 hypermultiplets be
given by the formula

ncharge 2 = ⌈
SI0 − 2

2
⌉ , (2.3.4)

where SI0 refers to the bare stable intersection number, i.e. those computed in (2.3.3). The
number of charge one hypermultiplets, is fixed to be 4 in the case of N = 2r and 3 in the
case when N = 2r + 1. We do not currently have a good microscopic understanding of these
hypermultiplets, but this should not stop us from proposing the magnetic quivers. At this
point the reader might question our assumption that only charge 1 or charge 2 hypers could
appear in the magnetic quiver. However, in the next section we provide examples where
an OSp dual is known and comparison of the HS of the non-simply-laced and OSp quivers
leads to a justification of this assumption.

2.3.2 SO(N) with Nv ≤ N − 5

Having gained some intuition about the Higgs branch of pure SO(N) theory at infinite cou-
pling, we can now proceed with more involved cases. We can add matter in the vector repre-
sentation of SO(N) by adding D7 branes to the brane configuration as in figure 2.9. To read
off the magnetic quiver, we first perform a few Hanany-Witten moves [130] by moving all
flavour D7s, say, to the left of the (r− k−2,−1) (resp. (r− k−1,−1)) 5-brane in figure 2.9. This
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O7+

(r − k − 2,−1) (r + k − 2, 1)
Nv D7

O7+

(r − k − 1,−1) (r + k − 2, 1)
Nv D7

Figure 2.9. Brane webs for pure SO(N) gauge theory with Nv hypermultiplets in the vector represen-
tation at the infinite gauge coupling limit for the case where N = 2r (left) and N = 2r + 1 (right).

(r + k − 2, 1)
(r − k − 2−Nv,−1)

O7+
⋯

1 2 Nv − 1 Nv

1 1

(r + k − 2, 1)
(r − k − 1−Nv,−1)

O7+
⋯

1 2 Nv − 1 Nv

1 1

Figure 2.10. Brane webs for SO(N)+Nv hypermultiplets in the vector representation at infinite gauge
coupling after taking all mass parameters to zero for N = 2r (left) and N = 2r + 1 (right). From here
onwards we will not indicate the monodromy cut associated with the 7-brane explicitly for ease of
presentation.

creates Nv D5 branes and further changes the charge of the (r− k− 2,−1) (resp. (r− k− 1,−1))
7-brane to (r − k− 2−Nv,−1) (resp. (r − k− 1−Nv,−1)) for N = 2r (resp. N = 2r + 1). As a final
step we set all the mass parameters in the web to zero and separate the D7 branes along the
horizontal direction in the web diagram. The end result of this process is depicted in fig-
ure 2.10. We immediately identify the independent subwebs to be the D5 branes extended
between the adjacent pairs of D7 branes, D5 branes extended between the O7+-plane and
the D7 closest to it in addition to the (r + k − 2, 1) 5-brane and the (r − k − 2 − Nv,−1) (resp.
(r − k − 1−Nv,−1)) for N = 2r (resp. N = 2r + 1). Each of the aforementioned subwebs corre-
sponds to a unitary gauge node whose rank is determined by the number of 5-branes in the
stack. We need to decouple an overall U(1) to reflect the fact that the Higgs branch directions
only care about the relative positions of the aforementioned independent subwebs and we
are free to fix the position of one of the subwebs to be at the origin. We will decouple the U(1)
node corresponding to the (r+ k−2, 1) node. There is a single link connecting any two nodes
corresponding to subwebs which end on the same 7-brane from the opposite side, except for
those lying on either side of the 7-brane immediately to the left of the O7+-plane in figure
2.10, which are connected by a double bond. This is essentially the T-dual of the brane sys-
tem and magnetic quiver in [106]. There are charge 1 and charge 2 hypermultiplets attached
to nodes corresponding to subwebs that end on the O7+. The number of charge 2 hypers is
given by the formula (2.3.4), where we take their SI with the subweb which we have frozen
to the origin. The number of charge 1 hypers are fixed by requiring the HS to agree with
dual OSp quivers, to be mentioned momentarily. The magnetic quiver that we propose in
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this case is slightly different depending on whether the number Nv of hypermultiplets is
even or odd. We propose that for Nv even the magnetic quiver is given by

1 2
⋯

Nv − 1 Nv 1

1 4− ⌈ N
2 ⌉+ ⌊

N
2 ⌋

⌈ N−Nv−6
2 ⌉ ; Nv ∈ 2Z (2.3.5)

while for odd Nv it should be given by

1 2
⋯

Nv − 1 Nv 1

1 3

⌈ N−Nv−6
2 ⌉

; Nv ∈ 2Z+ 1 . (2.3.6)

Note that except for the rightmost U(1) node, all other nodes in these quivers are balanced.
This suggests that the Coulomb branch isometry of this quiver is usp(2Nv) ⊕ u(1). From
the 5d point of view this would suggest no enhancement of the global symmetry at the UV
fixed point. For future comparison, with orthosymplectic quivers, we compute the Coulomb
branch Hilbert series for this quiver for Nv = 2, 4 and various values of N. For Nv = 2 the
results are as follows

N HSNv=2

7 1+ 11t2 + 60t4 + 10t5 + 225t6 + 80t7 + 665t8 + 350t9 + 1694t10 +O(t11)
8 1+ 11t2 + 60t4 + 10t5 + 225t6 + 80t7 + 665t8 + 350t9 + 1694t10 +O(t11)
9 1+ 11t2 + 60t4 + 225t6 + 10t7 + 665t8 + 80t9 + 1666t10 +O(t11)
10 1+ 11t2 + 60t4 + 225t6 + 10t7 + 665t8 + 80t9 + 1666t10 +O(t11)

. (2.3.7)

For Nv = 4 the Hilbert series reads

N HSNv=4

9 1+ 37t2 + 675t4 + 8130t6 + 84t7 + 73047t8 +O(t9)
10 1+ 37t2 + 675t4 + 8130t6 + 73131t8 + 526815t10 +O(t11)
11 1+ 37t2 + 675t4 + 8130t6 + 73047t8 +O(t9)
12 1+ 37t2 + 675t4 + 8130t6 + 73047t8 + 524505t10 +O(t11)

(2.3.8)
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N = 2r

An immediate consistency check to see whether our conjectured magnetic quiver for SO(N)
with Nv ≤ N − 5 (2.3.5), (2.3.6) is to compare its Coulomb branch Hilbert series with the or-
thosymplectic magnetic quiver for the same theory obtained from an O5-plane construction.
Let us focus on N = 2r as this is the best understood case. The brane web for SO(2r) gauge
theory with Nv ≤ N − 5 takes on a slightly different form depending on whether Nv is odd or
even. In the case when Nv ∈ 2Z the brane web is given by

(r − 2− Nv
2 ,−1) (r − 2− Nv

2 , 1)

⋯ ⋯
O5+ O5+1 1 Nv

2
Nv
2

Nv
2

Nv
2

1 1

. (2.3.9)

The magnetic quiver that one reads off from this brane web using the methods of [55, 56] is

1 2 3
⋯

Nv Nv + 1 Nv

⋯
3 2 1

1

3 r − Nv
2 − 3

(2.3.10)

Let us compute its Coulomb branch Hilbert series for Nv = 2. Following the Hall-Littlewood
and gluing technique developed in [131, 132], the expression we need to evaluate is the
following

∞
∑
m=0

PSU(2)(m, t)HS2
T[SO(3)](m, t)(

−m
∑
−∞
+

0

∑
−m+1

+
m
∑
1
+
∞
∑
m+1
) t∆(m,n,N)

1− t
, (2.3.11)

where PSU(2) is the dressing factor for the central SO(3) gauge group, the factor 1
1−t is the

dressing factor for the U(1) gauge group. The Hilbert series for each T[SO(3)] leg in the
presence of a background magnetic charge is given by

HST[SO(3)](m, t) =
t

m
2 (1+m + t −mt)
(1− t)2

. (2.3.12)
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Finally, the conformal dimension, for generic values of N = 2r takes the form

∆(m, n, N) = −∣m∣+ 1
2
(∣n −m∣+ ∣n +m∣+ ∣n∣+ (N − 5)∣n∣) (2.3.13)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−m − nN
2 + n −∞ < n ≤ −m

−(N − 4)n
2 m < n ≤ 0

(N − 4)n
2 0 < n ≤ m

(N − 2)n
2 −m m < n <∞

(2.3.14)

Putting all of this together and evaluating the summations in (2.3.11) we obtain the follow-
ing:

HSNv=2(t, N) = 1
(1− t2)7(1− tN−2)4

[1+ 4t2 + 4t4 + t6 + 6tN−2 − 16tN+2 − 4tN+4

−6t2N−4 − 22t2N−2 − 6tN + 22t2N − 6t3N + 6t2N+2

+4t3N−6 + 16t3N−4 + 6t3N−2 − t4N−8 − 4t4N−6 − 4t4N−4 − t4N−2] .

(2.3.15)

A similar computation for the Nv = 4 case leads to

HS∣N=10 = 1+ 37t2 + 675t4 + 8130t6 + 73131t8 + 526815t10 + 3179939t12 +O(t13)
HS∣N=12 = 1+ 37t2 + 675t4 + 8130t6 + 73047t8 + 524505t10 + 3147881t12 +O(t13)
HS∣N=14 = 1+ 37t2 + 675t4 + 8130t6 + 73047t8 + 524421t10 + 3145571t12 +O(t13)

(2.3.16)

We note that these results are in agreement with (2.3.7), (2.3.8).
The brane web for SO(2r) gauge theory with Nv ≤ N − 5 and Nv ∈ 2Z+ 1 is given by

(r − 2− Nv+1
2 ,−1) (r − 2− Nv−1

2 ,−1)

⋯ ⋯
O5+ O5+1 1 Nv−1

2
Nv−1

2
Nv+1

2
Nv+1

2
1 1

. (2.3.17)

The corresponding magnetic quiver, obtained following the methods of [55, 56] is

1 2 3
⋯

Nv Nv + 1 Nv

⋯
3 2 1

1

3 r − Nv−1
2 − 3

. (2.3.18)

Notice that the central USp(Nv + 1) node appearing in this magnetic quiver is bad in the
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sense of Gaiotto and Witten [121]. Due to this technical reason we are not able to perform an
explicit computation of its Coulomb branch Hilbert series. There is however an alternative
consistency check one could perform for Nv = 1, by comparing the Higgs branch Hilbert
series. Note that in this limit, the non-simply-laced edge in (2.3.6) disappears and such a
computation is accessible. Concretely, one has to compare the Molien-Weyl formula for the
N = 2r, Nv = 1 limit of (2.3.6)

∮∣p∣=1

dp
2πip ∮∣q∣=1

dq
2πiq

PE [( p
q +

q
p) t + (p + p−1)t + (r − 3)(q2 + q−2)t + 3(q + q−1)t]

PE [2t2]
, (2.3.19)

with the Molien-Weyl formula for the Nv = 1 limit of (2.3.18)

∑
p∈{1,−1}

∮∣q∣=1

dq
2πiq ∮∣u∣=1

du
2πiu

(1− u2)×

×
PE [(q + q−1)[1]ut + (r − 3)(q2 + q−2)t + 3(q + q−1)t + (2+ p + p−1)[1]ut]

PE [(1+ [2]u) t2]

. (2.3.20)

Indeed, evaluating these integrals by computing their residues one finds an exact agreement.
We collect the results for several values of N in table 2.8.

N HSH(t)
6 1+t+6t2+9t3+15t4+12t5+15t6+9t7+6t8+t9+t10

(1−t)6(1+t)4(1+t+t2)3

8 1+t+7t2+21t3+39t4+58t5+90t6+110t7+118t8+110t9+90t10+58t11+39t12+21t13+7t14+t15+t16

(1−t)8(1+2t+2t2+t3)4(1+t+t2+t3+t4)

10 1+t+10t2+35t3+82t4+171t5+324t6+517t7+740t8+961t9+1113t10+1158t11+1113t12+⋯palindrome⋯+t22

(1−t)10(1+t)4(1+t+t2)5(1+t+t2+t3+t4)2

Table 2.8. Higgs branch Hilbert series of (2.3.6) and (2.3.18) for Nv = 1 and various values of N.

Finally, let us mention that for the SO(6)+1v, namely for the case when N = 6 and Nv = 1,
there is also a unitary web description, that of SU(4)0+1 AS, depicted in figure 2.11. Indeed
the magnetic quiver one obtains from this ordinary web diagram at infinite coupling is

1

1 1

←→

1 1

3 1

, (2.3.21)

where the two quivers above are related by decoupling an overall U(1), and furthermore the
quiver on the right matches our proposed magnetic quiver for SO(6)+1v (2.3.6) on the nose.
This provides us with yet another consistency check.
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(1,−1) (1, 1)

(3, 1)

(1,−1)

(1,−1)

Figure 2.11. Brane web for SU(4)0+1AS.

2.3.3 SO(N) with Nv = N − 4 flavours

Let us now consider SO(N) gauge theories with Nv = N − 4 hypermultiplets in the vector
representation. The starting configurations are the web diagrams in figure 2.9 with Nv =
N −4 flavour D7 branes. The Higgs branch directions are most easily read off, by performing
a few Hanany-Witten moves which we now describe. One first moves all flavour D7 branes
through, say, the left 5-brane, creating Nv D5 branes in the process and changing the charge
of the 5 brane which crosses their monodromy cut. In the SO(2r) (resp. SO(2r + 1)) web
in figure 2.9 this results in the (r − k − 2,−1) (resp. (r − k − 1,−1)) being converted into an
(r + k − 2, 1) leading, after tuning all mass parameters to zero, to the following web diagram

(r + k − 2, 1)

O7+
⋯

1 2 N − 5 N − 4

1

2
, (2.3.22)

from here, following a similar logic that led us to the magnetic quiver (2.3.6) from the brane
web in figure 2.10, we obtain the following magnetic quiver

1 2
⋯

N − 5 N − 4 2 1

2

. (2.3.23)

Notice that generically the only unbalanced node is the squircle, which suggests the Coulomb
branch isometry in the generic case to be usp(2N −8)⊕ su(2). The only exception to this hap-
pens for N = 4. As we will describe in more detail below, in this case the moduli space is
actually two copies of C2/Z2 and hence one has an su(2)⊕ su(2)Coulomb branch symmetry.
Note that the number of flavours attached to the squircle is due to the O7+-plane. The reason
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that this is 2, rather than 4 as in the previous cases, is purely fixed by trial and error and by
the requirement to match the computation on the OSp side as outlined below. For now let
us conjecture this quiver and slowly build up the evidence in its support.

We can compare the Coulomb branch of (2.3.23) for N = 2r, with the OSp magnetic
quiver for SO(2r) with Nv = 2r − 4, obtained from the brane web of this theory which uses
O5+-planes:

⋯ ⋯

1

2

O5+ O5+1 1 r − 2 r − 2 r − 2 r − 2 1 1

. (2.3.24)

The magnetic quiver one obtains from this web diagram is given by

1 2 3
⋯

2r − 4 2r − 3 2r − 4
⋯

3 2 1

2 3

1

. (2.3.25)

We computed the Coulomb branch HS for the two quivers in (2.3.23) and (2.3.25) and found
agreement. We provide the results for small values of N below.

N=4

For N = 4 this theory is the pure SO(4) so it can be engineered as two copies of pure SU(2)
without the need of an O7 plane. From this an analysis the ordinary magnetic quiver ex-
pected, gives two copies of C2/Z2 [56]. The CB HS that we expect is then

HS∣N=4 =
1+ 2t2 + t4

(1− t2)4
(2.3.26)

Indeed, we computed the CB HS of (2.3.23) for N = 4 and we find a match.

N=5

When N = 5, the 5d theory in question is SO(5)+1v, which is the same as USp(4)+1AS. The
latter theory can be engineered using an ordinary brane web which we depict in figure 2.12.
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(1,-1) (1,1)

(1,1) (1,-1)

(1,-1) (1,1)

2

2
2

2

Figure 2.12. Brane web for USp(4)+1 AS

The magnetic quiver that one reads from the brane web at infinite coupling is

2 2 . (2.3.27)

Note that this quiver is bad in the sense of Gaiotto and Witten and so we cannot compute
its Coulomb branch. However, we can make a prediction about what its Coulomb branch
Hilbert series would be, utilising the non-simply-laced description. There is actually a third
quiver, which should also have the same CB HS, as first discussed in [55]. This is the OSp
magnetic quiver for SO(5)+1v, obtained from the brane web using Õ5+-plane. In particular,
we claim the following three quivers to have identical Coulomb branch HS

1 2 1

2

←→

1 2 3

3

←→

2

2

(2.3.28)

The HS one computes for the non-simply-laced quiver in (2.3.28) is

HS∣N=5 =
1+ t + 3t2 + 6t3 + 8t4 + 6t5 + 8t6 + 6t7 + 3t8 + t9 + t10

(1− t)6(1+ t)4(1+ t + t2)3
. (2.3.29)

We recognise this as the HS for the reduced moduli space of two-SU(2) instantons on C2

[133].

N=6

This theory is SO(6)with 2 vectors. Since this theory is isomorphic to SU(4)0+ 2 AS, we can
extract a unitary magnetic quiver from a brane system that doesn’t involve O7 planes. The
brane web for SU(4)0 + 2 AS is depicted in figure 2.13. From this brane web one can readily
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(1,-1)

(1,-1) (1,1)

(1,-1)

(1,-1)(1,1)

(1,-1)

(1,-1)

(1,1)

(1,1)

2

1

2

1

2

2

Figure 2.13. Brane web for SU(4)0+2 AS

obtain the following magnetic quiver

1 2 1

2

(2.3.30)

We therefore claim that the following three quivers should have the same Coulomb branch

1 2 2 1

2

←→

1 2 3 2 1

2 3

1

←→

1 2 1

2

. (2.3.31)

The expected CB HS for the magnetic quiver is then

HS∣N=6 =
1+ 8t2 + 40t4 + 107t6 + 199t8 + 234t10 + 199t12 +⋯palindrome⋯+ t20

(1− t2)10(1+ t2)5
(2.3.32)

We computed the CB HS of (2.3.23) for N = 6 and we find a match.

2.3.4 SO(N) with Nv = N − 3

We now analyse the final possible family of theories, SO(N) gauge theories with Nv = N − 3
hypermultiplets in the vector representation. This is the highest possible number of vector
matter that has a UV completion in 5d. The web diagram for the fixed point limit can be
obtained by adding D7 branes to the pure gauge theory cases as in figure 2.9. To read off the
Higgs branch directions we first perform the following sequence of Hanany-Witten moves.
First, one has to move all 2r − 3 (resp. 2r − 2) D7s to, say, the left of the (r − k − 2,−1) (resp.
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(r − k − 1,−1)) 5-brane in the web for the SO(2r) (resp. SO(2r + 1)) theory in figure 2.9. In
doing so, the (r− k− 2,−1) and (r− k− 1,−1) 5-branes are both converted into an (r+ k− 1, 1).
Next we pull the (r + k − 1, 1) 5-brane through the (r + k − 2, 1) 5-brane, which creates an
additional (r + k − 1, 1) 5-brane ending on the (r + k − 1, 1) 7-brane in addition to converting
the (r+ k−2, 1) 5-brane into a D5. Setting all mass parameters to zero and separating the D7s
to make the Higgs branch directions manifest, we arrive at

(r + k − 1, 1)

O7+
⋯

1 2 N − 3 N − 2

2

. (2.3.33)

The magnetic quiver we propose in this case is given by

1 2
⋯

N − 3 N − 2 2

2

, (2.3.34)

where all the gauge nodes and hypermultiplet contributions are read off following a discus-
sion analogous to that outlined in the previous cases. We stress that the rank of the flavour
node attached to the squircle is fixed by the requirement that the CB HS matches that of
the OSp quiver below. It would be interesting to understand the number of flavours more
clearly. Except for the squircle, all other nodes in this quiver all balanced, with the balanced
subquiver forming the Dynkin diagram of CN−2, implying that the Coulomb branch isome-
try is generically usp(2N − 4).

Since SO(N) theory with Nv = N − 3 hypers in the vector representation can also be
engineered using an O5-plane, we can provide a consistency check of the magnetic quiver
(2.3.34). The infinite coupling limit of the web with O5-plane in the case where N = 2r is
given by

⋯ ⋯
2

O5+ O5+1 1 r − 1 r − 1 r − 1 r − 1 1 1

, (2.3.35)
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from which one can obtain the following OSp magnetic quiver

1 2 3
⋯

2r − 2 2r − 1 2r − 2
⋯

3 2 1

2

3

. (2.3.36)

The computation of the CB HS of this OSp quiver is a close analog of (2.3.11), so let us skip
the details and quote the final results

HS∣r=3 = 1+ 36t2 + 681t4 + 8688t6 + 83376t8 + 640695t10 + 4110730t12 +O (t13) (2.3.37)

N = 4

For the N = 4 case this theory is SO(4) with one vector, which can be realized without an
orientifold plane as SU(2)0× SU(2)0 with a bifundamental. The magnetic quiver for this
theory is

1 2 1

1

(2.3.38)

Which leads us to claim that the following three quivers should have identical Coulomb
branches

1 2 2

2

←→

1 2 3 2 1

2

3

←→

1 2 1

1

. (2.3.39)

The unitary simply-laced quiver (2.3.38) is the 3d mirror dual of U(2) with N f = 4 funda-
mental hypermultiplets. The refined Hilbert series for the CB of (2.3.38) reads

HS(t; x) = ∑
n1,n2

χ[n1,2n2,n1](x)t
n1+2n2 . (2.3.40)

We computed the unrefined HS for the CB of the non-simply laced quiver of (2.3.34) finding
agreement of the results. In fact both the CB HS and the HB HS of the OSp quiver in (2.3.39)
and the unitary simply-laced quiver (2.3.38) were computed and found to agree in [55]. We
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see that there is actually a third description of the Coulomb branch of these theories in terms
of a non-simply-laced quiver.



74

Chapter 3

Electrostatic description of 3d SCFTs

The conjunction of conformal symmetry and supersymmetry proved to be a very powerful
tool to analyse the existence and dynamics of fixed points for field theories in dimension
d + 1 (with d = 0, ...., 5). In this line, Maldacena’s AdS/CFT conjecture [5] played a central
role motivating the construction of AdSD backgrounds in consistent theories of gravity.
For the particular case of half-BPS backgrounds with isometries SO(2, D − 1)× SU(2), great
progress was achieved. In fact, infinite classes of backgrounds of the form AdSD × S2 ×Σ8−D

have been constructed for the cases D = 2, ...., 7. For some values of D, these backgrounds are
described in terms of a potential function. This potential satisfies a Laplace equation, which
needs initial and boundary conditions to be well-defined.

It is in these initial or boundary conditions that the healthy character of the background
is encoded and where the connection with the dual CFT is made concrete. Indeed, the pres-
ence of a ‘rank’ function (so called as it encodes the ranks of the colour and flavour groups
of the field theory) turns out to be the initial condition of the Laplace equation. For the cases
D = 2, 3, 5, 7 the formalism, backgrounds and dual field theories are respectively described
in the papers [134]-[135] (for AdS2), [136]-[137] (for AdS3), [138]-[139] (for AdS5) and [140]-
[141] (for AdS7). The cases D = 4 and D = 6 corresponding with SCFTs in dimension three
and five have a very elegant formulation in terms of holomorphic functions, but the connec-
tion with the dual SCFT is a bit more laborious. See [142]-[143] (for AdS4) and [144]-[145] (for
AdS6) respectively. The case D = 6 was recently written in the ‘electrostatic’ context (Laplace
equation and boundary-initial conditions) in [45].

A first goal of this chapter is to complete the picture and write the case of AdS4 in this
electrostatic formalism. In fact, we present a holographic dual formulation of N = 4, d=3
superconformal field theories (linear quivers), involving AdS4 × S2 × S2 backgrounds in type
IIB, which are obtained by reformulating the solution in [142]. The case we deal with in this
chapter is that of balanced linear quivers, that is for each gauge node the number of fields
transforming in the (bi)fundamental is twice the rank of the gauge group (or N f = 2Nc).
The contents of this chapter are distributed across the coming sections as follows.
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In Section 3.1 we study the background, the defining Laplace PDE, its initial and bound-
ary conditions. Possible singular behaviours in the spacetime are discussed.

In Section 3.2 we study the Page charges. Imposing their quantisation determines the
range of some coordinates and the character of the rank function (the initial condition for
the Laplace equation), that we determine to be a piecewise, continuous, linear function.
We study the associated Hanany–Witten set-up and linking numbers, giving a holographic
expression for them. We algorithmically associate a balanced linear quiver with a given
supergravity solution. We also find a generic expression for the holographic central charge.
This is a purely geometric quantity that counts the number of degrees of freedom of the
dual CFT. Usually, this is also identified as proportional to the Free Energy of the CFT when
formulated on a three-sphere.

In Section 3.3 we discuss generic examples of linear quivers and study all the quantities
defined in Section 3.2: charges, Hanany–Witten set-ups, linking numbers, central charge. We
discuss special limits of our examples and compare them with previously found results.

Section 3.4 summarises some known field theoretical aspects of the dual 3dN = 4 SCFTs,
dwelling in particular with Mirror symmetry. We present a purely geometric version of
Mirror symmetry, mapping balanced quivers into balanced quivers. This geometric cor-
respondence exchanges between NS5 and D5 branes and the dimensions of the Higgs and
Coulomb branches of the theories, all being nicely realised as a simple operation in the string
description. As a spin-off, we present a (not-mirror) transformation that maps a balanced
linear quiver into a different one (still balanced and linear), both sharing the same central
charge. Some of the content of this section might illuminate future work and this, together
with other possible lines of investigation, are presented in Section 3.5, with a summary of
the main results obtained in the paper [74] and some concluding remarks.

3.1 Geometry

We start this section by writing explicitly the infinite family of type IIB supergravity back-
grounds we work with.

We are after solutions dual to 3d N = 4 super-conformal field theories. This implies
that the background must have isometries SO(2, 3) × SU(2)C × SU(2)H and preserve eight
Poincaré supercharges to match the global symmetries of the field theory. Hence, our ge-
ometries must contain an AdS4 factor and a couple of two spheres S2

1(θ1, φ1) and S2
2(θ2, φ2).

There are two extra directions labelled by (σ, η). The presence of SO(2, 3)×SU(2)C ×SU(2)H

isometries allow for warp factors that depend only on (σ, η). The background must have the
form AdS4 ×S2

1 ×S2
2 ×Σ2(σ, η). The Ramond and Neveu-Schwarz fields must also respect the

above mentioned isometries.
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The preservation of four Poincaré supersymmetries implies that the generic type IIB
background can be casted in terms of a function V(σ, η). In string frame the solution reads

ds2
10,st = f1(σ, η)[ds2(AdS4)+ f2(σ, η)ds2(S2

1)+ f3(σ, η)ds2(S2
2)+ f4(σ, η)(dσ2 + dη2)],

e−2Φ = f5(σ, η), B2 = f6(σ, η)Vol(S2
1), C2 = f7(σ, η)Vol(S2

2), C̃4 = f8(σ, η)Vol(AdS4),

f1 =
π

2

¿
ÁÁÁÀ

σ3∂2
ησV

∂σ(σ∂ηV)
, f2 = −

∂ηV∂σ(σ∂ηV)
σΛ

, f3 =
∂σ(σ∂ηV)

σ∂2
ησV

, f4 = −
∂σ(σ∂ηV)

σ2∂ηV
,

f5 = −16
Λ∂ηV

∂2
ησV

, f6 =
π

2
⎛
⎝

η −
σ∂ηV∂2

ηV

Λ
⎞
⎠

, f7 = −2π
⎛
⎝

∂σ(σV)−
σ∂ηV∂2

ηV

∂2
ησV

⎞
⎠

,

f8 = −π2σ2 ⎛
⎝

3∂σV +
σ∂ηV∂2

ηV

∂σ(σ∂ηV)
⎞
⎠

, Λ = ∂ηV∂2
ησV + σ ((∂2

ησV)2 + (∂2
ηV)2) . (3.1.1)

Where the fluxes are defined from the potentials as follows,

F1 = 0, H3 = dB2 F3 = dC2, F5 = dC̃4 +∗dC̃4. (3.1.2)

Using Mathematica, we have checked that the configuration in eq.(3.1.1) is solution to the
Type IIB equations of motion, if the function V(σ, η) satisfies,

∂σ (σ2∂σV)+ σ2∂2
ηV = 0. (3.1.3)

This infinite family of solutions is equivalent to the backgrounds described by D’Hoker,
Estes and Gutperle in [142].

For the backgrounds in eq.(3.1.1) to be well defined, e2Φ and the metric warping func-
tions must be real and positive. For the class of solutions we analyse in the next sections, we
assume the symmetry V(−σ, η) = −V(σ, η). Under the ‘parity’ change σ → −σ, the quantity
Λ(−σ, η) = −Λ(σ, η). The reader can check that the functions f1, . . . , f5 are invariant under
this ‘parity’ transformation. Hence, the solution for negative σ is well defined as long as
the one with positive σ is. The required positivity condition for the dilaton and warping
functions is

− σ
∂2

ησV

∂ηV
≥ 1 . (3.1.4)
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As a direct result of the above condition we have

σΛ = σ∂ηV∂2
ησV + (∣σ∂2

ησV∣2 + (σ∂2
ηV)2) ≥ σ∂ηV∂2

ησV + ∣σ∂ηV∂2
ησV∣+ (σ∂2

ηV)2 ≥ 0 ,

σ
∂σ(σ∂ηV)

σ∂2
ησV

= 1+
∂ηV

σ∂2
ησV

≥ 0 . (3.1.5)

The positivity of f1, f2, f3, f4, f5 is derived as a consequence of σΛ ≥ 0 and eq.(3.1.4).

3.1.1 Study of the partial differential equation

Let us now study the partial differential equation (3.1.3). Define V(σ, η) = V̂(σ,η)
σ and V̂(σ, η) =

∂ηŴ(σ, η). Consider the coordinates to range in 0 ≤ η ≤ P, where P is a real number, and
−∞ < σ <∞. The differential equation (3.1.3) must be supplemented by boundary and initial
conditions. In terms of Ŵ(σ, η) the problem reads

∂2
σŴ(σ, η)+ ∂2

ηŴ(σ, η) = 0, (almost everywhere) (3.1.6)

Ŵ(σ, η = 0) = 0, Ŵ(σ, η = P) = 0,

∂σŴ(σ = 0+, η)− ∂σŴ(σ = 0−, η) = −R(η).

As we discuss in the following sections, the function R(η) is the input determined by the
dual quiver field theory. Notice that, since Ŵ is an harmonic function, we have that also V̂
is harmonic, which in turn implies (3.1.3).

To solve the problem in eq.(3.1.6), we separate variables and impose the boundary con-
ditions to find,

V̂(σ, η) =
∞
∑
k=1

ak cos(
kπη

P
) e−

kπ∣σ∣
P , Ŵ(σ, η) =

∞
∑
k=1

ak (
P

kπ
) sin(

kπη

P
) e−

kπ∣σ∣
P . (3.1.7)

We have used that the functionR(η) has a Fourier decomposition,

R(η) =
∞
∑
k=1

2ak sin(
kπη

P
) , ak =

1
P ∫

P

0
R(η) sin(

kπη

P
) . (3.1.8)
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3.1.2 Asymptotic behaviour

Let us briefly study the asymptotic behaviour of our backgrounds. We start with the region
σ → ±∞. Using the solutions in eq.(3.1.7), for ∣σ∣→∞, we find,

ds2
st∣

σ→±∞
∼

π∣σ∣
2

ds2(AdS4)+
dη2

2P
+ P

2a1
sin2 (

πη

P
) ds2(S2

1)+
π∣σ∣

2
ds2(S2

2)+
1

2P
dσ2,

e−2Φ ∼ e−
2π∣σ∣

P

∣σ∣
. (3.1.9)

Performing a change of coordinates ∣σ∣ → − log r, with r small, one can notice that the metric
and the dilaton highlights the presence of a (p, q) five brane [144] with support on AdS4 ×S2

2.
Let’s now consider the asymptotic behaviour at the physical boundary η ∼ 0, P. We will

explicitly deal with the case η → 0 since the discussion for the other boundary is identical.
The expressions for fi(σ, 0) can be found in [74]; schematically, we have

ds2
st∣(0,0)

∼ ds2(AdS4)+ dη2 + η2ds2(S2
1)+ dσ2 + ds2(S2

2) , e−2Φ ∼ 1 , (3.1.10)

where we have omitted functions of σ which are not singular at least for σ ≠ 0. Thus near to
η ∼ 0 we have a regular AdS4 × S2 ×R4 geometry.

The behaviour in the corner (σ, η) = (0, 0) requires some more analysis, since in that case
the functions fi(0, 0) can lead to a singular metric. Notice that, however, the dilaton is always
finite, so if these singularities are present it would be hard to give them an interpretation in
terms of branes. One possibility is to restrict our analysis to theR(η)which leads to a regular
metric. We can do that by choosingR(η) to be linear near to η = 0, so that we have

∂2
ηR∣η∼0 = ∂2

ησV̂∣(σ,η)∼(0,0) = 0 ⇐⇒ ∑
k

k3ak = 0 . (3.1.11)

With this ansatz, the metric has the following asymptotic behavior

ds2
st∣(0,0)

∼ ds2(AdS4)+ dη2 + η2ds2(S2
1)+ dσ2 + σ2ds2(S2

2), e−2Φ ∼ 1, (3.1.12)

which is a regular AdS4 ×R6 geometry. It is particularly interesting to notice that requiring
R(η) to be linear in (σ, η) = (0, 0) is not actually a restriction but a necessary condition for
having the Page charges properly quantised, as we are going to see in the next section.
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3.2 Charges and other important quantities

To start, we write the expressions of the Page fluxes F̂p = Fp ∧ e−B2 . For the Ramond and NS5
fields in our configuration of eq.(3.1.1), we have

F̂3 = F3, F̂5 = F5 − (B2 −
π∆
2

Vol(S2
1))∧ F3. (3.2.1)

Note that we have performed a large gauge transformation B2 → (B2 − π∆
2 Vol(S2

1)), that will
be useful below. The Page charges are defined as

QDp/NS5 =
1

(2π)7−pα′
∫

Σ8−p
F̂8−p. (3.2.2)

In the following, we will set α′ = 1. Let us study the charges associated with H3, F̂5, F̂3.

NS5 branes charge
First, we analyse the charge of NS5 branes. We choose a three-cycle to perform the integra-
tion of H3,

Σ3 = [η, S2
1(θ1, φ1)]σ=±∞. (3.2.3)

We then find,

QNS5 =
1

4π2 ∫Σ3
H3 =

1
π ∫

P

0
∂η f6(σ → ±∞, η) = P −

σ∂ηV∂2
ηV

2Λ
]

σ→±∞,P

σ→±∞,0
= P. (3.2.4)

In the last two steps we have summed up the contributions at σ = ±∞. In conclusion, the
total number of NS5 branes is proportional to the length of the η-interval.

D3 branes charge
To calculate the number of D3 branes we integrate the expression for the Page flux F̂5 in
eq.(3.2.1). The five manifold on which we integrate F̂5 is defined as

Σ5 = [S2
1, S2

2, σ]η=fixed. (3.2.5)

We implemented a large gauge transformation as in (3.2.1), below we determine the param-
eter ∆ to have a quantised number of D3 branes in each interval of the η-coordinate.
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Using the potential Ŵ defined above eq.(3.1.6) we are able to compactly write the rele-
vant component of F̂5 as,

F̂5∣
Σ5
= F5 − (B2 −

π

2
∆Vol(S2

1))∧ F3∣
Σ5
= π2∂σ (M1 +M2) Vol(S2

1)∧Vol(S2
1)∧ dσ.

M1 =
ησ(∂2

ηV)(∂ηV)− σ(∂ηV)2

∂2
ησV

, M2 = ∂σ (Ŵ − (η −∆)∂ηŴ) . (3.2.6)

Then, we compute

ND3 =
1

(2π)4α′
∫

Σ5
F̂5 =

π2 × (4π)2

(2π)4 ∫ dσ∂σ (M1 +M2) = 2 (M1 +M2) ]
σ→∞,η

σ=0+,η
. (3.2.7)

SinceMi are even, we have considered twice the contribution for σ > 0.
The reader can check that the contribution of M1 is vanishing at σ → ∞ and at σ = 0.

Inspecting the expression forM2 shows that it vanishes for σ →∞. In summary, the charge
of D3 branes is given byM2 evaluated at σ = 0, and using the definition ofR in eq.(3.1.8) we
get

ND3 = 2∂σ (Ŵ − (η −∆)∂ηŴ) ∣
σ=0+
=R(η)− (η −∆)R′(η). (3.2.8)

This expression indicates that the rank function used as input for the partial differential
equation must be piecewise linear. In fact, consider a piecewise linear and continuous func-
tion defined in intervals

R(η) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

N1η 0 ≤ η ≤ 1

Nl + (Nl+1 −Nl)(η − l) l ≤ η ≤ l + 1, l ∶= 1, ...., P − 2

NP−1(P − η) (P − 1) ≤ η ≤ P.

The expression in eq.(3.2.8) indicates that, after choosing ∆ = k in the interval [k, k + 1] there
are Nk D3 branes.

D5 brane charge
To calculate the charge of D5 branes, we use

ND5 =
1

4π2 ∫Σ̂3
F3, Σ̂3 = [η, S2

2(θ2, φ2)]σ=0+ . (3.2.9)

We find,

ND5 = −
1
π ∫

η f

ηi

dη∂η f7(σ = 0+, η) = − 1
π
( f7(0, η f )− f7(0, ηi)) .
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t x1 x2 r θ1 φ1 θ2 φ2 σ η

NS5 − − − ⋅ ⋅ ⋅ − − − ⋅
D5 − − − − − − ⋅ ⋅ ⋅ ⋅
D3 − − − ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −

Table 3.1. The Hanany–Witten set up, indicating the directions over which each brane extends.

The reader can check that
ND5 =R′(ηi)−R′(η f ). (3.2.10)

This result is expressing the number of D5s between the points ηi and η f as computed by
the differences in slope of the rank function at those two points. For a piece-wise continuous
and linear rank function as the one obtained in quantising the charge of D3 branes, we find
that the charge of D5 branes is also quantised.

In summary, the rank-function is the input for the PDE problem in eq.(3.1.6). To have
quantised charges for Neveu-Schwarz five branes, we need the size of the interval P to be an
integer–consistently with the boundary conditions in eq.(3.1.6). To have quantised numbers
of D3 and D5 branes, the rank function must be a piece-wise linear and continuous function
of the form

R(η) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

N1η 0 ≤ η ≤ 1

Nl + (Nl+1 −Nl)(η − l) l ≤ η ≤ l + 1, l ∶= 1, ...., P − 2

NP−1(P − η) (P − 1) ≤ η ≤ P.

The number of D3 (colour) branes and D5 (flavour) branes in the interval [k, k + 1] and the
total number of branes are given by,

ND3[k, k + 1] = Nk, ND5[k, k + 1] = 2Nk −Nk+1 −Nk−1, (3.2.11)

Ntotal
D3 = ∫

P

0
R(η)dη, Ntotal

D5 =R
′(0)−R′(P), Ntotal

NS5 = P.

3.2.1 Hanany–Witten set-up and linking numbers

The counting of branes described above encodes in the rank function R(η) the ‘kinematic
data’ of the dual conformal field theory. The presence of P NS5 branes along the η-direction
suggest that we should place one NS5 at each integer value of η. In between the kth and (k +
1)th NS5-branes, we have Nk D3 branes and NFk = 2Nk −Nk+1 −Nk−1 D5 branes as indicated
in eq.(3.2.11). Analysing the Ramond fields F̂5 and F̂3 suggests that the branes extend along
the directions of space time as indicated in Table 3.1.

In this Hanany–Witten set-up [146], the field theory is realised on the t, x1, x2 directions.
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(a)

NS51

F2 D5 FP−1 D5F1 D5

NS52 NS53 NS5P−1 NS5P

⋯

N1 D3 N2 D3 Np−1 D3

N1

F1

N2

F2

⋯
NP−1

FP−1

(b)

Figure 3.1. The Hanany–Witten brane set up, showing the Nk (colour) D3 branes, the Fk (flavour) D5
branes and the NS5 branes. The associated quiver field theory is also shown.

The D3 branes have one compact direction leading to an effective (2 + 1)-dimensional dy-
namics, for each stack of Nk branes, that give rise to an U(Nk) gauge group. The D5 branes
are effectively realising an SU(Fk) global symmetry, hence correspond to flavour branes. The
NS5 branes provide the boundary conditions necessary for the D3 to end on them. We rep-
resent the system as in Figure 3.1. One interesting quantity associated with these Hanany–
Witten set-ups are the linking numbers. These are topological quantities (invariant under
Hanany–Witten moves) associated with Neveu-Scharz and Ramond five branes. For the ith

NS5 brane and the jth D5 brane they are defined in terms of the number of branes to the left
and right of a given one,

L̂NS5i = (nright
D3 − nleft

D3)+ nleft
D5 , LD5j = (nright

D3 − nleft
D3)+ nright

NS5 . (3.2.12)

For the systems described above, the linking numbers can be seen to have the values,

L̂1 = L̂2 = .... = L̂P =R′(0), LD5,j = P − j. (3.2.13)

These satisfy
NNS5

∑
i=1

L̂i =
ND5

∑
j=1

LD5,j = N̂. (3.2.14)

Therefore with each quiver we associate two partitions of the integer N̂. The partitions are
made out of the linking numbers of NS5 and D5 branes,

ρ̂ = (L̂NS1, L̂NS2, ...., L̂NSP), ρ = (LD51, LD52, ...., LD5). (3.2.15)

The associated quiver field theories are referred to as Tρ̂
ρ [SU(N̂)]. Gaiotto and Witten [121]

proposed that these field theories flow to an interacting conformal point at low energies if a
relation between partitions ρ̂T ≥ ρ is satisfied. The authors of the work [147] translated this
condition into ND5,k ≥ 2ND3,k −ND3,k+1 −ND3,k−1. The formulation we presented in terms of
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a rank functions constrains us to the balanced quiver for which the equality is satisfied. We
leave for future study the unbalanced situation.

3.2.2 Holographic central charge

Let us discuss now the holographic central charge. This is a quantity, instrumental in the
tests of the duality between the backgrounds in (3.1.1) and the conformal field theories de-
scribed in the previous section. The holographic central charge is defined as a weighted
version of the volume of the internal manifold (the part of the space that is not AdS4). The
definition of this quantity is carefully discussed in [148]-[149], we refer the reader to those
references for the general definitions. The application to our particular case is discussed
below.

We use coordinates for AdS4 such that

ds2
AdS4
= e2ρdx2

1,2 + dρ2. (3.2.16)

We quote the relevant quantities that can be read from the metric and dilaton in eq.(3.1.1)

a = f1(σ, η)e2ρ, b = e−2ρ, d = 2,

ds2
int = f1(σ, η)[ f2(σ, η)ds2(S2

1)+ f3(σ, η)ds2(S2
2)+ f4(σ, η)(dσ2 + dη2)],

det[gint]= f 6
1 f 2

2 f 2
3 f 2

4 sin2 θ1 sin2 θ2,

Vint = ∫
Mint

√
det{gint}e−4Φad = [16π2∫ dσdη f 4

1 f2 f3 f4 f5] e2ρ = N e2ρ,

H = V2
int = N

2e4ρ, H′ = 4H,

chol =
dd

GN
bd/2 H

2d+1
2

(H′)d
= N

4GN
= N

32π6
. (3.2.17)

We have used GN = 8π6α′4g2
s = 8π6 (in units where α′ = gs = 1). Using the definitions for the

dilaton and the warp factors given in eq.(3.1.1), we have

N = −16π6∫ dσdη(σ2∂ηV)∂σ(σ∂ηV) = −16π6∫ dσdη σ(∂ηV̂)(∂2
σηV̂). (3.2.18)

Performing explicitly the integral over η and after that the σ-integral1. We find,

N = 4π7
∞
∑
k=1

ka2
k , chol =

π

8

∞
∑
k=1

ka2
k . (3.2.19)

1Using that ∫
P

0 sin ( kπη

P ) sin ( lπη

P ) dη = P
2 δk,l .
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Let us now evaluate explicitly this formula for a generic balanced quiver, characterised by a
generic rank function.

Generic balanced quiver

In this section we derive an analytic expression for the holographic central charge in eq.(3.2.19)
in the case of a generic quiver field theory. Consider a generic balanced 3d N = 4 linear
quiver and its associated rank function

N1

F1

N2

F2

⋯
NP−1

FP−1

; R(η) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N1η η ∈ [0, 1]
⋮

Nk + (Nk+1 −Nk)(η − k) η ∈ [k, k + 1]
⋮

NP−1(P − η) η ∈ [P − 1, P]

(3.2.20)

From the rank function we can compute the Fourier coefficients as defined in eq.(3.1.8)

ak =
1
P

P−1

∑
j=0
∫

j+1

j
[Nj + (Nj+1 −Nj)(η − j)] sin(

kπη

P
) dη , with N0 = NP = 0 ,

ak =
1

π2k2

P−1

∑
j=0

kπ [Nj cos(
kπ j
P
)−Nj+1 cos(

kπ(j + 1)
P

)]+

P(Nj+1 −Nj) [sin(
kπ(j + 1)

P
)− sin(

kπ j
P
)] . (3.2.21)

The first line of ak sums to zero. The second line, can be rewritten as

ak =
P

π2k2

P−1

∑
j=0

Fj sin(
kπ j
P
) , (3.2.22)

where Fj = 2Nj −Nj+1 −Nj−1–here we used the balanced character of the quiver. Plugging this
into (3.2.19) we obtain our general formula for the holographic central charge to be

chol =
P2

8π3

∞
∑
k=1

P−1

∑
j,l=0

FjFl

k3
sin(

kπ j
P
) sin(kπl

P
)

= − P2

32π3

∞
∑
k=1

P−1

∑
j,l=0

FjFl

k3
(e

iπk
P (j+l) + e−

iπk
P (j+l) − e

iπk
P (j−l) − e−

iπk
P (j−l))

= − P2

16π3

P−1

∑
j,l=0

FjFlRe [Li3 (e
iπk
P (j+l))−Li3 (e

iπk
P (j−l))] .

(3.2.23)
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This expression should be compared with equation (70) in the work [143], see also [150].
The authors of [143] derived a generic expression for the Free Energy on a three-sphere of a
balanced quiver using localisation and matrix model methods. Just like it occurs in different
dimensions, the holographic central charge is proportional to the Free Energy of the CFT on
a sphere.

In what follows, we will discuss some illustrative examples of balanced quivers. We
will start giving the rank function, compute the Fourier coefficients, the brane charges and
the linking numbers of the brane system. We will precisely calculate the holographic central
charge emphasising the scaling with the various parameters of the CFT.

3.3 Some examples

The explicit discussion of examples gives the interested reader a better understanding of the
formalism we developed. Also, it allows a more intuitive comprehension of the field theory
kinematic and dynamical aspects. Below, we compute the various quantities for which we
derived generic expressions in the previous sections. We discuss these quantities in exam-
ples of increasing level of sophistication.

3.3.1 Generic triangular rank function

Our first example is described by the rank function

R(η) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Nη 0 ≤ η ≤ S
NS
(P−S)(P − η) S ≤ η ≤ P,

where we require N/(P − S) to be integer, this condition will be needed to have properly
quantised Page charges. The first derivative of the rank function is

R′(η) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

N 0 ≤ η ≤ S

− NS
(P−S) S ≤ η ≤ P,

and R′′ = NP
(P−S)δ(η − S). The quiver and Hanany–Witten set-up associated with the rank

function are given in Figure 3.2.
The charge of D3 and D5 in each interval can be read from the rank function and its
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NS51

NP
P−S D5

NS52 NS53 NS5S−1 NS5S NS5S+1 NS5P−1 NS5P

⋯

N 2N SN SN(P−S−1)
P−S

⋯
SN
P−S

N 2N
⋯

SN

SN(P−S−1)
P−S

SN(P−S−2)
P−S

⋯
SN
P−S

NP
P−S

Figure 3.2. The Hanany–Witten and quiver associated with a generic triangular rank function. As
usual, vertical lines represent NS-five branes. Horizontal lines and circular nodes denote D3 branes
and crosses and square nodes indicate D5 branes.

second derivative. The total number of branes follows from eq.(3.2.11)

Qtotal
D3 = ∫

P

0
R(η)dη =

S
∑
j=1

jN +
P−S
∑
j=1

NS
(P − S)

(P − S − j) = NPS
2

, (3.3.1)

Qtotal
D5 =R

′(0)−R′(P) = PN
(P − S)

, Qtotal
NS5 = P .

For this family of quivers we calculate the Fourier coefficient of the rank function using
eqs.(3.1.8), (3.2.21). We find,

ak =
NP2

(P − S)π2k2
sin(kπS

P
) . (3.3.2)

The linking numbers can be computed using the definitions in eq.(3.2.12), the Hanany–
Witten set-up of Figure 3.2, and the holographic expressions in eq.(3.2.13),

L̂NS51 = L̂NS52 = .... = L̂NS5P =R
′(0) = N, (3.3.3)

LD51 = LD52 = .... = LD5PN/(P−S) = P − i = P − S.

These values satisfy the relation in eq.(3.2.14),∑NS5 L̂i = ∑D5 Lj = NP. These numbers define
two partitions of N̂ = NP,

ρ̂ = (N, N, N, N...., N) = ([N]P), ρ = (P − S, P − S, ...., P − S) = ([P − S]
PN
(P−S)) , (3.3.4)

and the quiver in Figure 3.2 represents the theory Tρ̂
ρ [SU(NP)].
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We can compute the holographic central charge using eq.(3.2.19) and the Fourier coeffi-
cient in eq.(3.3.2),

chol =
N2P4

32π3(P − S)2
[2ζ(3)− 2Re Li3(e

2πiS
P )] . (3.3.5)

This family of quivers have some interesting special cases. Indeed, consider the case S = (P−
1), the expressions derived in eqs.(3.3.1)-(3.3.5) are valid. Interestingly, in the holographic
limit (P being very large), we find

lim
P→∞

chol =
N2P2

8π
log P. (3.3.6)

Another interesting case is the ‘symmetric quiver’ for which 2S = P. In this case we find,

lim
P→∞

chol =
7N2P2

16π3
ζ(3). (3.3.7)

It is also interesting the case in which S is some fixed integer, not scaling with P. The holo-
graphic limit for this situation gives,

lim
P→∞

chol =
N2S2

8π
log (P) . (3.3.8)

The expression of the holographic central charge and its limiting cases clearly display the
non-perturbative character of the result. Let us analyse a more elaborated example.

3.3.2 Generic trapezoidal rank function

The rank function corresponding to this more sophisticated example is,

R(η) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Nη 0 ≤ η ≤ M

NM M ≤ η ≤ M + S
MN

Q (M + S +Q − η) M + S ≤ η ≤ M + S +Q.

In this case P = M + S +Q and we also require that MN is a even multiple of Q. The second
derivative of the rank function is

R′′ = Nδ(η −M)+ MN
Q

δ(η − S −M). (3.3.9)

The quiver and Hanany–Witten set-up associated with the rank function are given in Figure
3.3. The reader can check that for both examples the balanced-quiver condition is satisfied.
Let us perform the same calculations we did in the previous example.
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1

N D5
MN

Q D5

2 3 M − 1 M M + 1 M + S − 1 M + S M + S + 1

M + S +Q − 1

M + S +Q

⋯
N 2N MN MN

⋯
MN MN(Q−1)

Q

⋯
MN

Q

N 2N
⋯

MN MN
⋯

MN

MN(Q−1)
Q

MN(Q−2)
Q

⋯
MN

Q

N
MN

Q

S nodes

Figure 3.3. The Hanany–Witten set-up and the associated quiver for the trapezoidal rank function.
The conventions are those described previously.

The charges of D3 and D5 in each interval can be read from the rank function and its
second derivative. The total number of branes follow from eq.(3.2.11)

Qtotal
D3 = ∫

P

0
R(η)dη =

M
∑
j=1

jN +NMS +
Q−1

∑
j=1

NM
Q
(Q − j) = NM

2
(P + S)

Qtotal
D5 =R

′(0)−R′(P) = N + MN
Q

, Qtotal
NS55

= P = M + S +Q. (3.3.10)

We calculate the Fourier coefficient of the rank function using eq.(3.2.21). We find,

ak =
NP

Qπ2k2
[Q sin(kπM

P
)+M sin(

kπ(M + S)
P

)] . (3.3.11)

The linking numbers can be computed using the definitions in eq.(3.2.12), the Hanany–
Witten set-up of Figure 3.3, and the holographic expressions in eq.(3.2.13),

L̂NS51 = L̂NS52 = .... = L̂NS5P =R
′(0) = N, (3.3.12)

LD51 = LD52 = ....LD5N = P − i = (S +Q),
LD51′ = LD52′ = .... = LD5′MN/Q

= P − i = Q.

We have two stacks of D5 branes (distinguished by a ′-symbol). These are located at i =
M and i′ = M + S. These values for the linking numbers satisfy the relation in eq.(3.2.14),
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∑NS5 L̂i = ∑D5 Lj = N(M + S +Q) = PN. These numbers define two partitions of N̂ = NP,

ρ̂ = (N, N, N, N...., N) = ([N]P) ,

ρ = (S +Q, S +Q, ...., S +Q; Q, Q, ....Q) = ([S +Q]N ; [Q]
MN

Q ) ,

and the quiver in Figure 3.3 represents the theory Tρ̂
ρ [SU(N(M + S +Q))].

We can compute the holographic central charge using eq.(3.2.19) and the Fourier coeffi-
cient in eq.(3.3.11),

chol =
N2(M +Q + S)2

16π3Q2
Re[(M2 +Q2)ζ(3)−Q2 Li3(e

2πiM
P )−M2 Li3(e

2iπ(M+S)
P )

−2MQ Li3(e
iπ(2M+S)

P )+ 2MQLi3(e
iπS

P )]. (3.3.13)

The holographic limit (P = M +Q + S being very large) is more subtle than in the previous
example as we can take M very large, keeping fixed Q, S and the other two combinations.
We find

lim
M→∞

chol =
N2M2

8π
log (M) , Q, S are fixed.

lim
S→∞

chol =
N2M2

8π
log (S2) , Q, M are fixed.

lim
Q→∞

chol =
N2M2

8π
log (Q) , M, S are fixed.

Another interesting situation is the ‘symmetric quiver’ for which Q = M and P = 2Q + S. In
this case we find,

chol =
N2(2Q + S)2

32π3
Re[7ζ(3)− 2Li3(e

2πiQ
P )− 2Li3(e

2iπ(Q+S)
P )+ 4Li3(e

iπS
P )].

lim
Q→∞

chol =
7

4π3
Q2N2ζ(3), S is fixed.

lim
S→∞

chol =
N2Q2

4π
log (S) , Q is fixed. (3.3.14)

As a consistency check, notice that the second result in eq.(3.3.14) is the same as that in
eq.(3.3.7) for Q = P

2 and S = 0.
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3.4 Mirror Symmetry

Many 3d N = 4 gauge theories enjoy a duality known as mirror symmetry [3, 151]. Our
goal in this section is to provide a holographic perspective on mirror symmetry through
some of the machinery introduced in the previous sections. In order to keep the discussion
self-contained, we will proceed by recalling relevant aspects of 3d N = 4 supersymmetry
and introduce the notion of mirror symmetry. We will then go over how mirror symmetry
is derived from the Hanany–Witten setup by studying a specific example and provide con-
sistency checks from holography, by matching the holographic central charges of the mirror
pair.

The 3dN = 4 supersymmetry algebra admits two short representations known as vector
multiplets and hypermultiplets respectively. The bosonic components of a vector multiplet
include a gauge field and 3 real scalars, while the bosonic fields in a hypermultiplet are com-
prised of two complex (or four real) scalars. Under the SU(2)C×SU(2)H R-symmetry, the
scalars in the vector multiplet form a (3, 1), while the hypermultiplet scalars form a (1, 2).
A 3d N = 4 gauge theory is specified by a choice of gauge group G, to which one associates
a vector multiplet in the adjoint representation of G, as well as choice of matter content,
specified by hypermultiplets transforming in representation ρ of G. Since Maxwell’s the-
ory in 3d is dual to a periodic scalar, one can trade out the gauge field component of a free
vector multiplet with another scalar field. Upon doing so, the field content of a vector mul-
tiplet and hypermultiplet now become almost indistinguishable.2 The only way one can tell
them apart is by their transformation under the R-symmetry group, and the dualised vector
multiplet is referred to as a twisted hypermultiplet. This may be viewed as a precursor, or
hint of mirror symmetry; mirror symmetry is a non-trivial generalisation of this curious ob-
servation about free vector multiplets and hypermultiplets, but now applied to interacting
quantum field theories. The moduli space of vacua of a 3d N = 4 theory is generically com-
prised of a Coulomb branchMC, a Higgs branchMH and a mixed branchMmix. The Higgs
branch, parameterised by VEVs of scalars in the hypermultiplet, is protected by a holo-
morphic non-renormalisation theorem [152], and as such is classically exact. The Coulomb
branch is classically parameterised by VEVs of scalars in the twisted hypermultiplet, which
are the coordinates of the Coulomb branch at large VEVs. However in the quantum theory
one has to replace the complex scalar built out of one of the 3 scalars and the dual photon by
a BPS monopole operator. Denoting by nh and nv the number of hypermultiplets and vector
multiplets respectively, the quaternionic dimension of the Higgs and Coulomb branches for

2One might be worried about the fact that the dual scalar is a compact scalar. Indeed the dual photon is an
S1-valued scalar, where the radius of the S1 is proportional to the gauge coupling g2. However, in the infra-red
limit g2 →∞ this scalar decompactifies and one has 4 real-valued scalars in the vectormultiplet.
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a generic linear quiver (3.2.20) are given by

dim (MC) = nv =
P−1

∑
i=1

N2
i ;

dim (MH) = nh − nv =
P−1

∑
i=1

NiFi +
P−2

∑
i=1

NiNi+1 −
P−1

∑
i=1

N2
i ,

(3.4.1)

where in the second line, the first sum is the contribution of fundamental hypers attached to
each node, whereas the second sum counts bi-fundamental hypers between neighbouring
gauge nodes. Gauge theories in 3d enjoy a topological or magnetic symmetry associated
with the current

Jtop = ⋆ tr(F) , (3.4.2)

whose conservation follows from the Bianchi identity. For quiver theories of the type we
are interested in (3.2.20), there is one such conserved current for each gauge group factor
and so the magnetic symmetry is classically Gcl

C =U(1)
P−1, while the flavour symmetry is

given by GH = S [∏P−1
i=1 U (Fi)], together with the R-symmetry the full classical 0-form global

symmetry of quiver theories of the type (3.2.20) is

U(1)P−1 × S [
P−1

∏
i=1

U (Fi)]× SU(2)C × SU(2)H . (3.4.3)

In the quantum theory, the magnetic symmetry can be enhanced to a non-abelian symmetry.
In [121] Gaiotto and Witten conjectured the pattern of enhancement of the magnetic symme-
try by analysing the monopole spectrum. Their conjecture states that for a quiver of the type
in eq.(3.2.20), whenever a chain of ni adjacent nodes are balanced, there is an enhancement
of the form U(1)nI ⊂ SU(nI + 1). Hence the full quantum 0-form symmetry of such quivers
takes the form

U(1)P−1−∑I∈B nI ×∏
I∈B

SU(nI + 1)× S [
P−1

∏
i=1

U (Fi)]× SU(2)C × SU(2)H , (3.4.4)

where the index I takes values in the set B of chains of balanced nodes. Mirror symmetry
then relates pairs of 3dN = 4 theories where the flavour symmetry on one side is manifest as
the magnetic or topological symmetry on the magnetic side. Moreover the two R-symmetry
factors as well as the Coulomb and Higgs branches are also exchanged under mirror sym-
metry.

From the type IIB perspective, mirror symmetry is a consequence of S-duality [146]. The
flavour symmetry of the low energy 3d theory is given by the gauge symmetry on the D5s,
while its topological symmetry in the string embedding corresponds to the gauge symmetry
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on the NS5 worldvolume. Indeed, this is consistent with the field theory expectation since
S-duality exchanges D5s and NS5s, while leaving D3 branes invariant. Note that in the type
IIB embedding the R-symmetry is realised as the SO(3)C×SO(3)H rotational symmetry of
the three coordinates along the NS5 (respectively D5) worldvolume which are transverse
to the worldvolume directions of the D3 brane. Holographically this corresponds to the
isometry of the two S2 factors in the background. Hence we see that in order to realise
mirror symmetry, one needs to accompany S-duality with a spacetime rotation.

Let us see how one can derive the mirror of the balanced quiver with a generic triangular
rank function from its Hanany–Witten configuration in Figure 3.2. In order to read off the
mirror, we first perform a series of Hanany–Witten transitions on the brane system in Figure
3.2. In particular, we first move all D5 branes to the right of all the NS5 branes, keeping in
mind that whenever a D5 crosses an NS5, a D3 brane suspended between them is created

NS51 NS52 NS53 NS5P−1 NS5P

⋯

N 2N (P − 1)N PN P(N − 1)+ S 2(P − S) (P − S)
⋯

.

(3.4.5)
Next, we perform S-duality, together with a spacetime rotation which exchanges D5s and
NS5s from the above configuration to arrive at

NS51NS52NS53NS5 NP
P−S −1NS5 NP

P−S

⋯
N 2N (P − 1)N PN P(N − 1)+ S 2(P − S) (P − S)

⋯
.

(3.4.6)
In order to read off a gauge theory from this mirror Hanany–Witten setup, we recall the s-
rule, which states that there can be at most 1 D3 brane suspended between a D5 and an
NS5 brane, or else supersymmetry is broken. Since each of the D5 branes in the above
configurations has N D3 branes ending on it, the only way to satisfy the s-rule would be
to have one of the N D3s ending on NS5 NP

P−S
, one D3 ending on NS5 NP

P−S−1 and so on, such
that the last D3 brane ends on NS5 NP

P−S−N+1. We can move all P D5 branes to the segment in
between NS5 NP

P−S−N+1 and NS5 NP
P−S−N , keeping in mind that in doing so, one annihilates all D3

branes suspended between the D5 branes and the NS5 branes. The resulting configuration
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is

⋯ ⋯

NS51

NS52

NS53

NS5 NP
P−S −N

NS5 NP
P−S −N+1

NS5 NP
P−S −2

NS5 NP
P−S −1

NS5 NP
P−S

S 2S NS 2(P − S) (P − S)

P

. (3.4.7)

From here one can immediately read off the mirror quiver

S 2S
⋯

NS
⋯

2(P − S)

(P − S)

P

. (3.4.8)

Note that this quiver has an SU(P) flavour symmetry, while its magnetic symmetry is SU( NP
P−S),

due to the fact that there are NP
P−S − 1 balanced gauge nodes. On the other hand, the quiver

in Figure 3.2 has an SU( NP
P−S) flavour symmetry, while its magnetic symmetry is SU(P) since

there are P − 1 balanced gauge nodes. We see that the flavour and magnetic symmetries are
exchanged under the mirror map, as expected.

It would be natural to explore mirror symmetry for more involved quivers, for instance
those with more than a single flavour node. However with a little thought, one immediately
comes across the following observation.

Observation 1. The mirror of a quiver with more than one flavour node is necessarily unbalanced.

This is an immediate corollary of Gaiotto and Witten’s global symmetry conjecture re-
viewed above. Recall that, under the mirror map, flavour symmetry is mapped to the mag-
netic symmetry of the dual theory. Thus the flavour symmetry of the electric theory, which
is a product due to the fact that there are multiple flavour nodes, must be realised as the
magnetic symmetry of the magnetic theory. The magnetic symmetry can only take a prod-
uct form if there are distinct sets of balanced chains of gauge nodes. Under the assumption
that the mirror theory is not a product of decoupled quivers,3 the only way to have such a
situation is if there is at least one unbalanced node in between any two distinct chains of
balanced nodes.

3That this can be a possibility is motivated by [56], where several families of quiver gauge theories were
studied and found to have a factorised structure on their moduli space.
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3.4.1 Geometry and Mirror Symmetry

In other formulations of holographic duals to N = 4 three dimensional SCFTs, mirror sym-
metry manifests itself as S-duality. This is the case for the formulation of [142], [147], based
on two holomorphic functions A1,A2. Our formulations corresponds to the choice A2 ∼ z,
and it is in this choice that the connection between S-duality and mirror symmetry fades
away in our formulation. Indeed, one can check that by choosing A1 ∼ z, one obtains the
background S-dual to A2 ∼ z. The goal of this section is to discuss how mirror symmetry is
geometrically realised in the formulation presented in Section 3.1.

As in the rest of this work, we restrict to balanced quivers. Indeed, we discuss only
the situation in which both the electric and the dual magnetic quivers are balanced. As we
saw, this is possible only if there is only one flavour group, equivalently, only one stack of
D5 branes, that have all the same linking numbers. These conditions imply that the rank
function of the electric and mirror magnetic quivers are ‘triangular’.

Consider then, the (electric) quiver field theory described by a generic rank function
studied in Section 3.3.1. We summarise it in eq.(3.4.9) to ease the reading.

η

Re(η)

SN

S P

; Re(η) =
⎧⎪⎪⎨⎪⎪⎩

Nη η ∈ [0, S]
SN
P−S(P − η) η ∈ [S, P]

(3.4.9)

Let us summarise some numbers (number of branes, vectors, hypers and dimension of the
Higgs branch) characterising the electric description of this quiver (see also figure 3.2).

N(e)NS5 = P, N(e)D5 =R
′
e(0)−R′(P) =

PN
P − S

, N(e)D3 = ∫
P

0
Redη = NPS

2
. (3.4.10)

n(e)v =
S
∑
k=1
(Nk)2 +

P−S−1

∑
k=1
( SN

P − S
(P − S − k))

2
= N2PS

6P − 6S
(1+ 2SP − 2S2),

n(e)
h
=

S−1

∑
k=1

N2k(k + 1)+
P−S−1

∑
k=0
( SN

P − S
)

2
(P − S − k)(P − S − k − 1)+ SPN2

(P − S)
=

N2PS
3P − 3S

(2+ SP − 2S2),

dimM(e)
H = n(e)

h
− n(e)v =

N2PS
2P − 2S

.
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Following the usual rules to construct the mirror dual, we exchange the linking numbers
calculated in eq.(3.3.3). The mirror system has,

L̂NS51 = L̂NS52 = .... = L̂NS5 PN
P−S
= P − S, ρ̂ = [(P − S)

PN
P−S ].

LD51 = LD52 = .... = LD5P = N, ρ = ([N]P).

The mirror system is encoded in the rank function and quiver in eq.(3.4.11).

P − S

2(P − S)
⋯

S(N + 1)− P

SN

S(N − 1)
⋯

S

P

; Rm(η) =
⎧⎪⎪⎨⎪⎪⎩

(P − S)η η ∈ [0, SN
P−S ]

S ( NP
P−S − η) η ∈ [ SN

P−S , NP
P−S ]

(3.4.11)
These electric and magnetic rank functions are generic under the restriction that both quiv-
ers are balanced. Let us now calculate the same numbers, using the magnetic quiver in
eq.(3.4.11)

N(m)NS5 =
PN

P − S
, N(m)D5 = P, N(m)D3 = ∫

PN
P−S

0
Rm(η)dη = N2PS

2(P − S)
. (3.4.12)

n(m)v =
SN
P−S

∑
k=1
(P − S)2k2 +

N−1

∑
k=1
(S(N − k))2 = NPS

6P − 6S
(P − S + 2SN2),

n(m)
h
=

SN
P−S−1

∑
k=1
(P − S)2k(k + 1)+

N−2

∑
k=0

S2(N − k)(N − k − 1)+NSP =

NPS
3P − 3S

(2P − 2S + 3N2),

dimM(m)
H = n(m)

h
− n(m)v = NPS

2
.

As expected, the number of D5 and NS-five branes is exchanged. Interestingly, the dimen-
sion of the Higgs branch of the electric theory is calculated by the number of D3 branes in
the magnetic theory, and viceversa.

We calculate the Fourier coefficient of the magnetic rank functions and compare this
with the same quantity for the electric rank function in eq.(3.3.2). We find,

a(m)
k
=
(P − S)

NP ∫
NP
P−S

0
Rm(η) sin(

kπ(P − S)η
NP

) dη = NP2

(P − S)π2k2
sin(kπS

P
) . (3.4.13)

In other words,
a(e)

k
= a(m)

k
.
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This should not surprise us, as the holographic central charge (or the Free Energy) should
coincide in both descriptions, namely

c(e)
hol
= π

8

∞
∑
k=1

k (a(e)
k
)

2
= π

8

∞
∑
k=1

k (a(m)
k
)

2
= c(m)

hol
.

Notice that, this also implies the equality of Ŵe(σ, η) and of V̂e(σ, η) with their magnetic
counterparts. We summarise these findings in eq.(3.4.14).

Ne
NS5 ←→ Nm

D5
Ne

D5 ←→ Nm
NS5

Ne
D3 ←→ dimMm

H
dimMe

H ←→ Nm
D3

ae
k ; ce

hol ←→ am
k ; cm

hol

(3.4.14)

3.4.2 A purely geometric formulation of mirror symmetry

With the restriction of having balanced quivers, both in the electric and the magnetic de-
scriptions, we can formulate mirror symmetry purely in geometrical terms by observing an
interesting scaling on the electric rank function. In fact, we scale the coordinate η and the
intervals [a, b] according to,

η↔ NNS5

ND5
η̂, [a, b]↔ [ ND5

NNS5
a,

ND5

NNS5
b]. (3.4.15)

Analysing this scaling for the electric rank function written in eq.(3.4.9), we find the magnetic
rank function in eq.(3.4.11). Similarly, we can check that a(e)

k
↔ a(m)

k
.

In other words, we could ‘ignore’ the existence of mirror symmetry, consider the electric
rank function and perform the scaling in eq.(3.4.15). We recover the rank function and quiver
for the second field theory. The D5 and NS5 branes get exchanged and the dimension of the
Higgs branch is calculated by the number of D3 branes of the transformed theory. As a
bonus, it is easy to see that both quiver field theories have the same V(σ, η) and holographic
central charge. The scaling in eq.(3.4.15) is simple and could be applied to other systems
with similar description.

3.4.3 The scaling for generic rank functions

Let us study an interesting by-product of our picture of mirror symmetry.
Consider a generic rank function and apply the scaling in eq.(3.4.15). This will generi-

cally not produce the mirror dual. In fact, generically the mirror of a quiver is an unbalanced
quiver, which is not described with the formalism we developed in this work. In other
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words, for generic balanced quivers with ‘polygonal’ (rather than triangular) rank function,
the scaling in eq.(3.4.15) generates another balanced quiver. This corresponds to a new CFT
in which the role of NS5 and D5 branes is exchanged. The dimension of the Higgs branch of
one theory is not calculated by the number of D3 branes in the transformed theory. Interest-
ingly, both CFTs will share the same holographic central charge. Of course, this result might
be a peculiarity of the holographic description and fail when 1/N corrections are taken into
account. Let us consider an example to illustrate this point.

Consider a particular case of the second example of quivers discussed in Section 3.3.2.
Choose M = Q = 1, S = P − 2. We have the quiver and rank function in eq.(3.4.16).

N N
⋯

N

N N

P − 1 nodes

; R(η) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Nη η ∈ [0, 1]
N η ∈ [1, P − 1]

N(P − η) η ∈ [P − 1, P]
(3.4.16)

This implies the numbers,

QNS5 = P, QD5 = 2N, QD3 = N(P − 1). (3.4.17)

nv = N2(P − 1), nh = N2P, dimMH = nh − nv = N2.

ak =
NP

k2π2
[sin(kπ

P
)+ sin(

kπ(P − 1)
P

)] ,

chol =
N2P2

32π2
Re (7ζ(3)− 4Li3(e

2πi
P )+ 4Li3(−e

2πi
P )) .

We perform the rescaling,

η → P
2N

η̂, [a, b]→ [2N
P

a,
2N
P

b].

This generates a rank function and quiver depicted in eq.(3.4.18).
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P
2

P
⋯

N − P
2

N N
⋯

N N − P
2

⋯
P
2

P
2

P
2

P − 1 nodes

;

R̂ (η̂) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

P
2 η̂ η̂ ∈ [0, 2N

P ]
N η̂ ∈ [ 2N

P , 2N
P (P − 1)]

P
2 (2N − η̂) η̂ ∈ [ 2N

P (P − 1), 2N]

(3.4.18)

In this theory we calculate,

Q̂NS5 = 2N, Q̂D5 = P, N̂D3 =
2N2

P
(P − 1),

n̂v = 2
2N/P−1

∑
k=1

(N − kP
2
)

2

+N2 (1+ 2N (1− 2
P
)) = N

6P
(P2 + 4N2(3P − 4)),

n̂h = 2
2N/P−2

∑
k=0

(N − kP
2
)(N − (k + 1)P

2
)+NP = 2N

3P
(P2 + 2N2),

dim M̂H = N3 ( 4
P
− 2)+ NP

2
,

âk =
NP

k2π2
[sin(kπ

P
)+ sin(

kπ(P − 1)
P

)] ,

ĉhol =
N2P2

32π2
Re (7ζ(3)− 4Li3(e

2πi
P )+ 4Li3(−e

2πi
P )) .

Hence, we have two different theories, with the same central charge. In the case P = 2 both
theories discussed above are mirror pair.

3.5 Summary

Let us start with a brief summary of the contents of this chapter.
In Section 3.1, we present a holographic formulation of N = 4 d = 3 SCFTs describing

the IR fixed point of balanced linear quivers of gauge group ΠP−1
i=1 U(Ni) and flavour group

ΠP−1
j=1 SU(Fj). The type IIB configuration in eq.(3.1.1) include the presence of NS, D3 and D5

branes. Importantly, it is written in terms of a Potential function V(σ, η) or equivalently
Ŵ(σ, η). This function solves a Laplace partial differential equation. This PDE should be
supplemented with boundary and initial conditions, hence defining an electrostatic prob-
lem.
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It is in these initial conditions that the ‘kinematical’ data of the dual CFT is encoded.
In the case we focused here, the quivers are balanced and the initial condition can be easily
given in terms of a ‘rank function’ R(η). By quantising Page charges, we learn in Section
3.2 that the rank function must be a piecewise continuous and linear function. The values
of R(η) at integer values of the coordinate must also be integer, as it is associated with the
number of branes in the corresponding Hanany–Witten set-up.

Given a balanced linear quiver, we present a clear procedure to automatically write the
dual Type IIB configuration. In this way, this work moves forward the project of giving an
electrostatic description of all half-BPS AdSD × S2 spaces in dimensions D = 2, 3, 4, 5, 6, 7. In
some dimensions D = 4 (the case of interest in this work) and in D = 6, there is a pre-existent
formulation in the bibliography, based on a coupled of holomorphic functions [142], [144].
We have clarified the map between our formulation and that of [142] in the original work
which this chapter is based on [74].

Also in Section 3.2, we defined a quantity that counts the number of degrees of freedom
of the QFT. This quantity is proportional to the Free Energy of the field theory on S3. We
refer to it as holographic central charge. In Section 3.3, we worked out a set of examples
and analysed the behaviour of the holographic central charge of these examples and special
limits thereof. We make clear the non-perturbative character of the result, typically involving
Polylogarithmic functions of order three in the parameters of the field theory.

In Section 3.4, we pedagogically presented various aspects of the QFTs with emphasis on
Mirror symmetry. The way in which our holographic backgrounds display Mirror symmetry
is discussed. We presented the mirror mapping between two holographic field theories and
display the exchange of NS5 and D5 branes, the exchange of the dimensions of the Higgs and
Coulomb branches (represented by the number of D3 branes in the system), the equality of
the central charge and background for both descriptions, etc. As a byproduct of this analysis
we discuss an operation that given a balanced quiver produces a different balanced one with
the same holographic central charge as the original one.
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Conclusions

In this thesis, we presented three independent, yet closely related lines of enquiry. In chapter
1, we explored the relationship between string theory and non-supersymmetric QFTs. We
explored the world of magnetic quivers and 5d SCFTs in chapter 2. Finally, we presented
the holographic duals to 3d N = 4 linear quivers in chapter 3. Here we wish to discuss
some potential future directions for research, prompted by these studies. Some of these are
currently under investigation by the author.

It would be desirable to come up with a systematic algorithm to determine the magnetic
quivers for brane webs which use an orientifold plane, similar to [69]. One might then
hope to implement this algorithm into a computer program similar to what was done in
[59]. In verifying the dualities between OSp and unitary quivers, it would be interesting
to gether more evidence by matching quantities such as the sphere partition function or
the superconformal index, similar to what was done in [153]. There is still no satisfactory
path integral interpretation of non-simply-laced edges in 3d N = 4 quivers. However, the
ubiquity of these theories by now makes such an attempt a well motivated direction for
future studies.

The electrostatic description of the holographic duals to 3d N = 4 theories presented in
chapter 3 opens new and interesting avenues for research, here is a non-exhaustive list:

• It seems natural to attempt to understand how our formalism can be extended/adapted
to non-balanced quivers.

• Exploring other observables, for example Wilson loops in different representations and
their behaviour under Mirror symmetry.

• It would be interesting to present a holographic description of the QFT with special-
unitary (rather than unitary) gauge groups. This may follow the ideas of [154], proba-
bly using recent developments in higher form symmetries.

• Developing an analog description for circular quivers, following the work of [155].

• This work furthers the project of finding electrostatic description for holographic duals
to linear quivers that flow to SCFTsd, with d = 1, 2, 3, 4, 5, 6. It seems natural to study
the relations among moduli spaces of these different SCFTsd along the lines of [55–57].
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• The program of relating half-BPS AdS-solutions and SCFTs needs more work, particu-
larly in the cases of AdS3 and AdS2. The methods developed here suggest new AdS2

backgrounds that would be nice to study.
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