

Hypoxia alters posterior cingulate cortex metabolism during a memory task: a 1H fMRS study

Rogan, Matthew; Friend, Alex; Rossetti, Gabriella M. K.; Edden, Richard A E; Mikkelsen, Mark; Oliver, Sam; Macdonald, Jamie; Mullins, Paul

Neuroimage

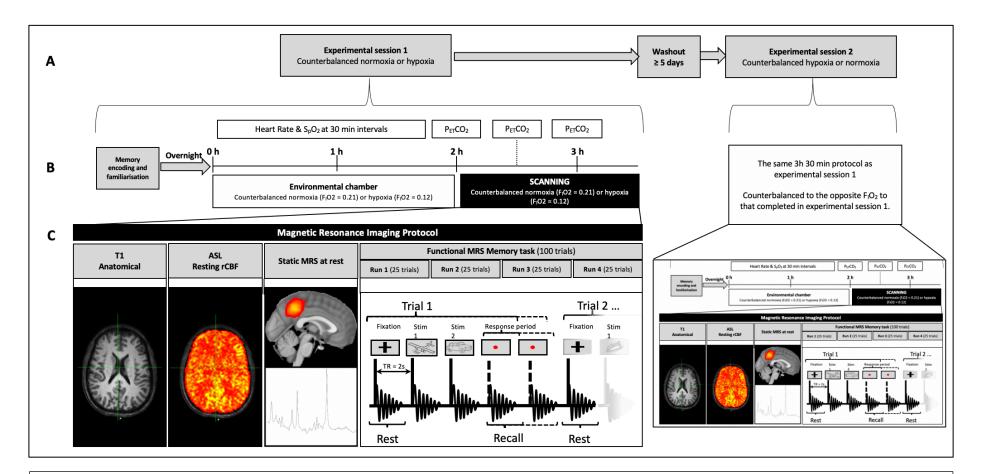
E-pub ahead of print: 23/06/2022

Peer reviewed version

Cyswllt i'r cyhoeddiad / Link to publication

Dyfyniad o'r fersiwn a gyhoeddwyd / Citation for published version (APA): Rogan, M., Friend, A., Rossetti, G. M. K., Edden, R. A. E., Mikkelsen, M., Oliver, S., Macdonald, J., & Mullins, P. (2022). Hypoxia alters posterior cingulate cortex metabolism during a memory task: a 1H fMRS study. *Neuroimage*, [119397]. https://doi.org/10.1016/j.neuroimage.2022.119397

Hawliau Cyffredinol / General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.


• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal ?

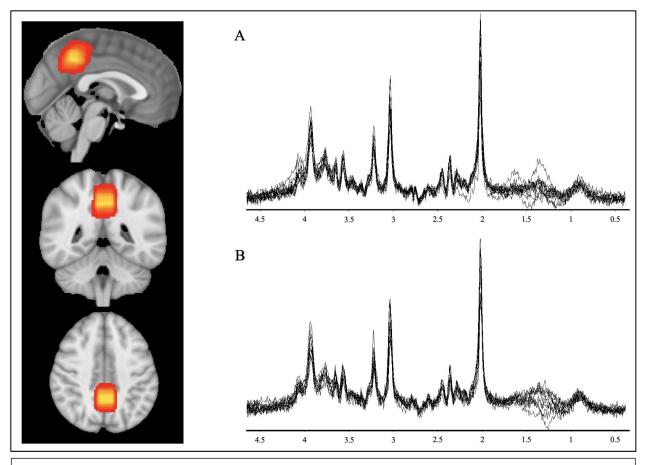
Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Supplementary Materials:

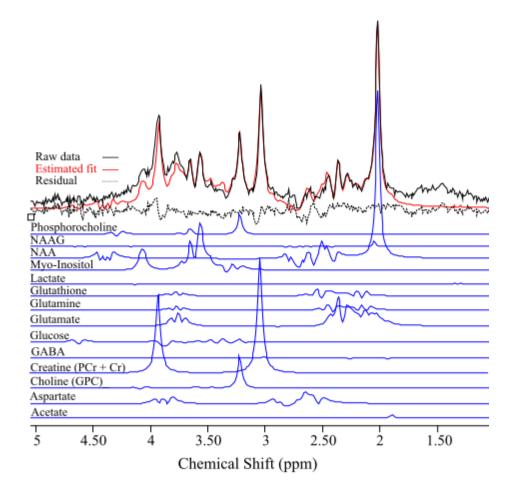
Hypoxia alters posterior cingulate cortex metabolism during a memory task: a 1H fMRS study

Supplementary figure S1. Study design and procedure schematic. Section A displays the counterbalancing of the experimental sessions. Section B displays the within session timeline of events, duration of hypoxic stimulus and the occurrence of data acquisition, both physiological monitoring and MRI scanning. Section C displays the MRI protocol with an example of how spectra acquisition was locked to individual FID acquisition in the functional MRS task.

	2 h		2.15 h		2.30 h		3 h	
	Normoxia	Нурохіа	Normoxia	Hypoxia	Normoxia	Нурохіа	Normoxia	Нурохіа
SpO_2	99	84	-	-	-	-	-	-
	(1)	(7)						
HR	68	74	-	-	-	-	-	-
	(8)	(9)						
$P_{ET}CO_2$	-	-	35	33	36	31	35	30
			(5)	(6)	(8)	(7)	(7)	(3)


Supplementary table S1. Physiologic data for each condition

Note. Condition comparison of physiology data. Peripheral arterial oxygen saturation (SpO₂), Heart Rate (HR) and Partial pressure of end tidal carbon dioxide ($P_{ET}CO_2$). Values in () represent the standard deviation of the above mean value.


Participant		Normoxia			Нурохіа			
Number	SpO_2	Haematocrit	T1 Blood	SpO_2	Haematocrit	T1 Blood		
1	100	47.7	1.70	85	43.0	1.64		
2	98	44.3	1.73	87	47.7	1.58		
3	100	37.3	1.83	87	36.0	1.76		
4	99	43.0	1.75	96	40.3	1.73		
5	100	37.7	1.83	76	40.3	1.65		
6	98	48.3	1.68	91	46.7	1.62		
7	100	38.7	1.81	89	37.7	1.74		
8	97	46.3	1.70	88	42.3	1.67		
9	100	46.7	1.71	78	46.7	1.56		
10	100	40.3	1.79	92	40	1.72		
11	100	48.0	1.70	92	48.7	1.60		
12	99	47.0	1.70	83	44.0	1.62		
13	100	43.3	1.75	79	44.0	1.60		

Supplementary table S2. Physiologic data and calculated blood T1 values for ASL analysis

Note. SpO_2 is peripheral arterial oxygen saturations measured using pulse oximetry at the 2 h time point in each condition. Haematocrit was estimated using a capillary finger-tip blood sample taken at the start of each session. Both of these values were then used in the model suggested by Hales et al., 2016 to estimated individual T1 values for each participant.

Supplementary figure 2. The average location of the MRS acquisition voxel is shown on the left. Yellow reflects greater overlap in positioning across participants and conditions. Acquired spectra across all participants in each condition are shown for visual assessment of quality.

Supplementary Figure S3. Estimated fit (in red) residual (Black dashed line) and estimated components of fit (in Blue) from one participant during the "rest" period of the fMRS task in normoxia.

Supplmentary Table S3: MRSinMRS checklist

Site (Name or Number) Bangor	
University	
1. Hardware	
a. Field strength [T]	3T
b. Manufacturer	Philips
c. Model (software version if	Acheiva
available)	
d. RF coils: nuclei (transmit/	Body coil transmit, 32 channel head coil recieve
receive), number of channels, type,	
body part	
e. Additional hardware	
2. Acquisition	
a. Pulse sequence	PRESS (using a patch which allows a TTL pulse)
b. Volume of Interest (VOI)	Posterior Cingulate Cortex
locations	
c. Nominal VOI size [cm ³ , mm ³]	20 x 20 x 20 mm ³
d. Repetition Time (TR), Echo Time	Tr = 2000 ms
(TE) [ms, s]	TE = 40 ms
e. Total number of Excitations or	Static MRS acquisition was collected as a single average of 64 single shots.
acquisitions per spectrum	fMRS acquisition was collected as a single shot per timepoint/event, across 4
In time series for kinetic studies	runs of 128 shots. Shots were then "binned" and averaged according to
i. Number of Averaged spectra	condition (across runs), producing a single FID for each condition of interest.
(NA) per time-point	
ii. Averaging method (e.g. block-	
wise or moving average)	
iii. Total number of spectra	
(acquired / in time-series)	
f. Additional sequence parameters	Spectral Width = 2000 Hz, 2048 spectral points.
(spectral width in Hz, number of	Planned using a voxel depicting the NAA voxel.
spectral points, frequency offsets)	
If STEAM:, Mixing Time (TM)	
If MRSI: 2D or 3D, FOV in all	
directions, matrix size, acceleration	
factors, sampling method	
g. Water Suppression Method	CHESS
h. Shimming Method, reference	Shimmed using the unsuppressed water peak. Threshold for acceptable shim
peak, and thresholds for	set at 12 Hz as reported by the system.
"acceptance of shim" chosen	, ,,
i. Triggering or motion correction	No triggering used for acquisition
method	
(respiratory, peripheral, cardiac	
triggering, incl. device used and	
delays)	
3. Data analysis methods and	
outputs	
a. Analysis software	jMRUI
b. Processing steps deviating from	J
quoted reference or product	

c. Output measure	Reported as absolute concentration (in millimolar units)
(e.g. absolute concentration,	
institutional units, ratio)Processing	
steps deviating from quoted	
reference or product	
d. Quantification references and	Using the QUEST algorithm in jMRUI
assumptions, fitting model	
assumptions	
4. Data Quality	
a. Reported variables	The full width at half maximum (FWHM) for the NAA peak (Hz) in normoxia for
(SNR, Linewidth (with reference	rest (mean ± SD; 4.74±2.33) and response (4.60±2.64) did not significantly differ
peaks))	(P=0.464) nor did it for rest (5.67±2.71) and response (5.74±2.63) in hypoxia
	(P=0.609).
	The slightly larger linewidth in Hypoxia is expected due to the effect of
	increased de-oxyhemoglobin in this condition.
b. Data exclusion criteria	None applied, but strength of result was weighted by level of SD, with those
	results for metabolites with SD > 10% considered tentative only.
c. Quality measures of	Across all participants, metabolite estimation for Glutamate, Myo-Inositol,
postprocessing Model fitting (e.g.	Creatine, N-Acetyl Aspartate, and Choline, had a standard deviation lower than
CRLB, goodness of fit, SD of	10%. Glutamine, Glucose and Glutathione had a SD lower than 40%. Lactate
residual)	and Gamma-Aminobutyric Acid had a SD greater than 40%.
d. Sample Spectrum	Included in paper (figure 1) and supplementary material (supplementary figure S3)