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Abstract: Given the challenges in reducing greenhouse gases (GHG), one of the sectors that have at-
tracted the most attention in the Sustainable Development Agenda 2030 (SDA-2030) is the agricultural
sector. In this context, one of the crops that has had the most remarkable development worldwide has
been oil-palm cultivation, thanks to its high productive potential and being one of the most efficient
sources of palmitic acid production. However, despite the significant presence of oil palm in the food
sector, oil-palm crops have not been exempt from criticism, as its cultivation has developed mainly in
areas of ecological conservation around the world. This criticism has been extended to other crops in
the context of the Sustainable Development Goals (SDG) due to insecticides and fertilisers required
to treat phytosanitary events in the field. To reduce this problem, researchers have used unmanned
aerial vehicles (UAVs) to capture multi-spectral aerial images (MAIs) to assess fields’ plant vigour and
detect phytosanitary events early using vegetation indices (VIs). However, detecting phytosanitary
events in the early stages still suggests a technological challenge. Thus, to improve the environmental
and financial sustainability of oil-palm crops, this paper proposes a hybrid deep-learning model
(stacked–convolutional) for risk characterisation derived from a phytosanitary event, as suggested by
lethal wilt (LW). For this purpose, the proposed model integrates a Lagrangian dispersion model of
the backward-Gaussian-puff-tracking type into its convolutional structure, which allows describing
the evolution of LW in the field for stages before a temporal reference scenario. The results show
that the proposed model allowed the characterisation of the risk derived from a phytosanitary event,
(PE) such as lethal wilt (LW), in the field, promoting improvement in agricultural environmental and
financial sustainability activities through the integration of financial-risk concepts. This improved
risk management will lead to lower projected losses due to a natural reduction in insecticides and
fertilisers, allowing a balance between development and sustainability for this type of crop from the
RSPO standards.

Keywords: oil-palm market; machine learning; deep learning; vegetation index; lethal wilt;
unmanned aerial vehicles; sustainability

1. Introduction

The adoption of Sustainable Development Agenda 2030 (SDA) by the United Nations
in September 2015 led this organisation to raise several concerns about the effects of
climate change on the planet. One sector that has generated significant attention for its
greenhouse gas emissions (GHG) to the atmosphere has been the agricultural sector. For this
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reason, several governmental and non-governmental entities such as FAO (UN Food and
Agricultural Organization) have begun to promote a series of initiatives to achieve a balance
between agricultural development and sustainability in the context of the planet’s food
security [1]. In recent years, oil palm has had a more significant development worldwide [2],
thanks to its nutritional qualities that make it a strong presence in food production (as
an enriched source of palmitic acid) [3]. Estimations show that one hectare of planted
oil-palm crops produces six to eight times more oil than other types of oilseed, which is
only outperformed by soybean oil [4]. However, its cultivation has raised several concerns,
as its development has taken place in areas of high ecological conservation in different
locations worldwide. This concern has also extended to other types of crops [1,5]. In oil-
palm cultivation, lethal wilt (LW) is a phytosanitary event that significantly affects the
crop, generating the necrosis of the palm leaves left and drying the palm. LW is caused
in oil-palm crops by an unbalance of three elements: weather, oil palms, and a pathogen
(Haplaxius crudus). The latter is a vector that spreads the disease to healthy palms. When a
palm is diagnosed with LW, insecticides are necessary to eradicate the affected unit and
fencing it (1 Ha. approx.–144 oil palm units) to prevent the progression of the disease,
generating the emission of large quantities of GHGs into the atmosphere. Re-seeding in the
non-productive stages of oil palm has led to significant economic losses due to the use of
fertilisers for soil treatment [4,6,7]. One way to balance development and sustainability in
oil-palm cultivation focuses on identifying and characterising phytosanitary events early,
suggesting a technological challenge.

Operational risk (OR) is one of the critical concepts to achieve organizations’ envi-
ronmental and financial sustainability. According to the Basel II agreement, operational
risk (OR) is defined as “...the possibility of incurring in losses due to deficiencies, failures or
inadequacies in human resources, processes, technologies, infrastructure or by the occurrence of
external events. . ." [8]. OR has emerged as a key concept for characterising risks arising
from phytosanitary and climatic events in agricultural crops and is described by aggregate
loss distribution (ALD). ALD groups phytosanitary risk events, such as the suggested
LW, into three-loss categories (parametric risks): expected losses (EL-C1 Risk Category),
derived from the identification of healthy palms; unexpected losses (UL-C2 Risk Category),
derived from the identification of apparently healthy palms; and stress losses (SL-C3 Risk
Category), derived from the misidentification of oil palms units with LW in advanced
stages. These risk categories make it possible to establish a differentiated treatment of
crop units according to LW-affectation (risk parameters), leading to a natural reduction
in insecticides and fertilizers. In general, ALD is characterised by slender distributions
(log-normal, log-logistic, Weibull, Pareto) [9], where the difference between the EL and
SL values represents the sustainability GAP (S − GAP). Expanded S − GAPs indicate
improved sustainability due to better crop management. The concepts mentioned above
were included by the RSPO Standards (Round-table for Sustainable Palm Oil), which aim
to improve the environmental sustainability of oil-palm cultivation worldwide [4,10].

This paper proposes a Lagrangian deep-learning model (LG-HDLM) for the spatio-
temporal characterisation of early-stage phytosanitary events suggested by LW in oil-
palm crops. The LG-HDLM model integrates two sub-structures, a first substructure
(Substructure 1) defined by a stacked deep-learning model (SDLM) for identifying and
labelling of morphologically complete oil-palm units (MCOPs). The MCOPs were obtained
from a segmentation process (cropped images-CIs) carried out on each reflectance band
that defines a multi-spectral aerial image (MAI) (green, red, red edge, near infrared) and on
three vegetation indices commonly used to assess plant vigour in crops: NDVI (normalized
difference vegetation index), GNDVI (green NDVI), and NRVI (normalized red vegetation
index) [11]. The MAIs were captured over a study zone using a UAV (unmanned aerial
vehicle). A second substructure (Substructure 2) integrates a Convolutional deep-learning
model (CDLM) for the spatial characterisation of phytosanitary events (PEs) based on
the risk categories that define the ALD. For the report of PEs at an early stage, this layer
integrates an inverse Lagrangian Gaussian dispersion model (I-LGPTM) [12] to describe the
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evolution of LW in the field, creating the structure of a forecast map (dynamic vegetation
index).

For the classification of oil-palm crops by risk categories, the LG-HDLM (Substructure 2)
integrates a novel Softmax function defined by a generalised Log-logistic activation function.
For its analysis and evaluation, two risk scenarios were defined. A first risk scenario
(Reference Scenario—Scenario 1) shows the structure of losses for a natural evolution of LW
in the field for a period of 6-months. For Scenario 1, the MCOPs were randomly selected
and classified by LW-affectation (Scenario 1: EL:744, UL:106, SL:150, month 6). According
to the Basel II agreements, this scenario was set up at a reliability of 99.9% (1000 crop units).
A second risk scenario shows a projected starting point of disease onset, composed of ten
(10) random points of disease dispersion (Scenario 2: EL:840, UL:150, SL:10, month 0—focus
of disease). The latter shows the LW evolution in the field for stages before Scenario 1,
using an inverse Lagrangian Gaussian puff-tracking model (I-LGPTM) integrated into the
convolutional layer that defines Substructure 2. A third risk scenario shows the evaluation
metrics based on a spatial LW-affectation (Scenario 3: ELM:855,ULM:144, SLM:1, Metric
Scenario), where 855 (ELM) represents the number of oil palms correctly identified by a
model in the three risk categories aforementioned (EL–UL–SL), 144 (ULM) crop units in
which a model fails to decide, and 1 (SLM) crop unit in which the model fails to detect LW
in advanced stages. For this scenario, the sustainability S − GAP of reference is set at a
value of S − GAP:854 (e.g., ELM − SLM).

For the analysis and validation of LG-HLDM in a first stage, LG-HDLM was evaluated
against the identification and labelling of MCOPs (Substructure 1) using the CIs per MAI
and per VI obtained from the segmentation process aforementioned. This evaluation
identifies the reflectance band (Spectral image) or vegetation index (VI) that allows better
identification of MCOPs by LW-affectation. In the first phase within a second stage, the LG-
HDLM was evaluated against the reconstruction of the loss structure defined by Scenario
1 and was validated against two generalised deep-learning models commonly used for
pattern classification and labelling: a deep-learning model with Stochastic stacked structure
(SSDL) [13], and a deep-learning model with convolutional structure (CDLM) [14]. In a
second phase within the same stage, the LG-HDLM (Substructure 2) was evaluated against
three temporal risk scenarios showing the evolution of LW in a study zone for a period of
6 months before reference Scenario (Scenario 2—month 0, Scenario 2.1—month 1, Scenario
2.2—month 2).

In general, LG-HDLM reached performance rates close to 85% on average against the
characterisation of MCOPs by LW-affectation for Scenario 1 (ELM:858. ULM:113,SLM:29).
This performance was above the performance rates achieved by the SSDL model with
74.4% (ELM:744,UL:106,EL:150) on average and above the performance rates achieved by
the CDLM model with 79.4% model (ELM:794,ULM:74,SLM:133) on average for the same
scenario. A previous labelling of MCOPs promoted this good performance carried out by
Substructure 1 (Stage 1). In this first stage, Substructure 1 achieved values above 90% for
an ACC-w index (Accuracy weighted index) against the classification of MCOPs by risk
category using the CIs obtained from NDVI and GNDVI Indices, which corroborated the
importance of these indices for assessing the plant vigour in the field. In a second stage
(Substructure 2), the proposed model achieved performance rates close to 80% against the
risk characterisation for each temporal scenario defined for this study. This suitable perfor-
mance resulted in the evolution of ALDs toward lighter losses, widening the sustainability
GAP (S − GAP) based on Scenario 3 [15]. By its conception, the LG-HDLM model set up
a reference model for modelling parametric risks. Due to its capacity for adaption and
learning, the LG-HDLM can be extended to characterise different phytosanitary events
in oil-palm crops and in other crops, a critical element in achieving the balance between
development and sustainability in the framework of the SDA-2030.

This paper is structured as follows. Section 1 presents the main development trends
identified in the scientific literature. Section 2 presents the methodology for the analysis and
validation of the proposed model will be detailed, while Section 3 presents the results’ anal-
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ysis and discussion according to the parameters and metrics that define the OR. Section 4
concludes and indicates further studies to balance sustainability and development in the
SDA-2030 context, integrating financial-risk and computational-intelligence techniques.

2. Literature Review

Researchers have used different technologies to achieve crops’ financial and environ-
mental sustainability. These include spectral and satellite images [16], and unmanned aerial
vehicles (UAVs) for automatic fumigation and fertilization systems [17,18]. Additionally,
IoT-IoB (Internet of Things and Beings) platforms for real-time monitoring have performed
an essential role [19]. Some authors have applied machine-learning models (ML) combined
with the techniques mentioned above to assess risk parameters in agricultural operations.
To achieve a balance between sustainability and development in oil-palm crops based on
the SDA-2030, four development trends can be identified in the scientific literature [20]:

• A first development trend focuses on the use of multi (MIs) and hyper-spectral (HIs)
images for the non-destructive phytosanitary diagnosis of crops in situ [21]. A first
group of papers shows how MAIs have helped detect phytosanitary events. As proof
of this, ref. [22] identified the impact of Mildiu on leaves in tomato cultivation, and
ref. [23] characterised the yellow striation on maize crops. Finally, ref. [24] determined
the biochemical characteristics and physiological features of PEs in wheat crops. In this
same group, ref. [25] showed how MAIs have been used to assess the productivity
of macadamia trees. A second group of papers focuses on MAIs to improve risk
management in oil-palm crops. In this way, ref. [26] described the relevance of MAIs
and VIs for precision farming in oil-palm crops, ref. [27] described the use of advanced
classifiers for the diagnosis of healthy oil-palm units from MAIs. Finally, ref. [28]
showed a methodology for the use of MAIs to characterise PEs in different crops. This
development trend shows how recent advances in optical remote sensing, including
camera systems and spectral data analysis, allow the non-destructive diagnosis of
phytosanitary events (PEs), improving the process of detecting diseases in crops.
Although satellite images (Sis) are an excellent alternative for the monitoring and
characterisation of PEs in oil-palm crops located over large areas of land, the frequency
for capturing, the required resolution, and the associated costs for processing these
images is a barrier to decision makers [29].

• A second development trend focuses on designing vegetation indices (VIs) using multi-
spectral images (MIs). The NDVI (Normalised difference vegetation index) is one of
the most cited, e.g., in the area of evaluating the plant vigour in areas of considerable
agricultural coverage [30]. This index is also used in combination with others, such as
GNDVI (green normalised difference) and SAVI (soil adjusted), to determine plant
vigour in vineyards and tomato crops [26]. While some authors have discussed the
applicability of MIs for the diagnosis of vegetation states in different agriculture
crops [22], others have developed VIs by using just MIs, obtaining satisfactory results.
Some researchers have developed VIs based on multi-spectral aerial images (MAIs)
taken with unmanned aerial vehicles (UAVs), e.g., for the spatial characterisation of
oil-palm crops [27], and for the detection and diagnosis of phytosanitary states in
different crops [28]. In addition, these MAIs have been used for the identification
of fruits in coffee crops [23], for the treatment of weeds [31] and for the control of
deforestation processes [32]. It is essential to highlight the preponderance achieved by
the MAIs for diagnosing crop health, overcoming the limitations of SIs in monitoring
units for different crops. It is also necessary to highlight the technological development
of hyperspectral images (HIs); however, the creation of VIs for the diagnosis of PEs
using this technology is still at a very early stage of development [18].

• A third development trend focuses on creating augmented-intelligence platforms
(AIPs) to improve the real-time characterisation of crops. These platforms aim to
integrate different technologies for the diagnosis of PEs, among which RGB (red-green-
blue) and MI images, and ML and DL models, stand out [33–35]. Other researchers
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have pushed these platforms by integrating IoT (Internet of Things) devices, such
as optical and multi-spectral sensors and technologies for communication (LORA,
Zigbee). In this way, ref. [36] mapped arctic vegetation, ref. [19] showed the ecological
monitoring of open-space species, and ref. [37] improved the autonomy of unmanned
aerial vehicles (UAVs), identifying disease hot spots located over large areas of crops,
supported by ML and DL models. Within ML and DL modelling to support AIPs in
monitoring crops, ref. [38] presented a convolutional neural model (CNN) to detect
pine trees affected by wilt using MAIs, and ref. [39] presented a set of ML algorithms
to improve irrigation process in vineyards also using MAIs. Finally, ref. [40] presented
a preliminary analysis of pathology detection in oil-palm crops using convolutional
neural networks (CNN) integrating MAIs and VIs. Finally, ref. [40] presents a prelim-
inary analysis of pathology detection in oil-palm crops using convolutional neural
networks (CNN) integrating MAIs and VIs. This development trend shows how AIPs
have enabled efficient real-time crop management by integrating IOT technologies.
However, it can be observed that there is an absence of AIPs that integrate models for
adaptation and learning to identify the dispersion dynamics or for the characterisation
of risks derived from a PE in crops.

• A fourth development trend focuses on the design of parametric insurances based on
the characterisation of operational risk (OR) for different management scenarios [41].
Within this trend, the first group of studies shows how the ML concepts have been
used to model OR [42]. Some researchers have defined fuzzy-inference models for the
qualitative description of scenarios for OR management [8] or to determine the inher-
ent risk as a result of implementing different management scenarios when mitigating
OR [43]. In addition, the estimation of this risk through the integration of multi-
dimensional databases is available in [9]. Within this trend, a second group of studies
focuses on the configuration of parametric insurances in developing countries [44].
The first study presents a series of recommendations to achieve the sustainability of
oil-palm crops through the characterisation and identification of operational and repu-
tational risks [45]. In contrast, a second study shows the configuration of parametric
insurances concerning risk related to changing weather conditions [46]. Furthermore,
it has been demonstrated how insurance contracts can be designed based on a farmer
satisfaction index by integrating statistical analysis of agro-climatic data and by ap-
plying optimisation techniques for improving the coverage for catastrophic risks [47].
Ref. [48] shows how neural networks have been used for credit-risk modelling by
analysing the relationship between access to credit and productivity in the agricultural
sector for a large set of countries. Due to the importance of OR in the design of
insurance products for the protection of farming activities, in this development trend,
as in the case of the previous trend, it is observed that there is an absence of models
integrating ML and financial-risk concepts for the improvement of the environmental
and financial sustainability of crops [20].

The development trends described above generally aim to improve the environmental
and financial sustainability of global agricultural activities through the integration of
technologies. It is essential to note that financial risk has emerged as a critical element
in improving organisations’ environmental and economic sustainability in recent years,
becoming one of the most promising concepts for improving the sustainability of crops.
The literature review also shows the absence of models to characterise the dynamic of a PE
in the field and risk models to reduce the impact of a PE integrating financial indicators.
In this context, the integration of technologies for the efficient management of risks derived
from a phytosanitary or agro-climatic event (PAE) could have a direct effect on a natural
reduction in insecticides and fertilisers, helping, in a decisive way, to achieve the balance
between development and sustainability pursued by the SDA-2030 [1].
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2.1. Theory and Definitions
2.1.1. Operational Risk

According to the Basel II agreement, operational risk (OR) is defined as: “. . .the
possibility of incurring in losses due to deficiencies, failures or inadequacies, in human resources,
processes, technologies, infrastructure by the occurrence of external events. . .". OR groups all
risks associated with an organisation’s business activities and is described by the aggregate
distribution of losses (ALD) [8,9,43].

OR is a concept that has been widely used to characterise the risks associated with an
organisation’s business operations. In recent years, this concept has been extended to the
improvement of financial and environmental sustainability of farming activities, giving rise
to the concept of parametric risks, which are the basis for the coverage of crops through the
use of index insurance policies [47].

2.1.2. Aggregate Loss Distribution (ALD):

Aggregate loss distribution (ALD) groups the risks associated with an organisation’s
business activities into three loss categories (Figure 1) [49]:

• Expected losses (EL): EL losses are known as predictable losses and represent the group of
losses that an organisation can assume. The mean of the ALD establishes the upper
limit for this type of losses.

• Stress losses (SL): SL refers to the group of losses that generate a significant deterioration
of the assets of an organisation (catastrophic or restorative losses). The operational value
at Risk (OpVar) represents these losses, which is located at the 99.9% percentile of the
ALD. The OpVar represents the insurable value to protect the assets of an organisation.

• Unexpected losses (UL): UL refers to the group of losses that are located between the EL
limit and the OpVar value. These losses are known as manageable losses.

Figure 1. Aggregate loss distribution.

The ALD distribution has the following characteristics:
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• In general, the ALD is represented by long-tailed probability distributions, among which
the most prominent are: log-logistic, log-normal, Weibull or generalised Pareto [9,43].

• In the context of oil-palm crops, an event risk is quantified as the convolution between
the frequency (number of crops affected by LW) and the severity (cost of eradication
and treatment of oil palm units, e.g., insecticides) in a period (usually one day).

• The difference between EL and SL losses leads to evaluating the environmental and
financial sustainability of crops affected by a phytosanitary or an agro-climate event
(sustainability GAP (S − GAP)).

• Under the Basel III agreement, the ALD distribution is known as the loss component
(LC) [50].

2.1.3. Log-Logistic Distribution

The log-logistic distribution (known as the Fisher distribution) is a continuous proba-
bility distribution for modelling a non-negative random variables. The flexibility of this
distribution, makes it ideal for the classification of loss events using adaptive and learn-
ing models according to the ALD structure. The log-logistic distribution can be handled
as an activation function of the Softmax class [51,52], and can be expressed as shown in
(Equation (1)).

zjc =
1

1 +
( ysjc−a

α

)−β
(1)

where:

zjc represents the cumulative probability distribution (CDF) for a risk category jc.
α: dimensional factor (dcale parameter).
β: structural factor (shape parameter).
a: stability factor (lower limit for the mean).

The log-logistic function is widely used for characterising risks derived from an
organisation’s business operations. For the particular case of this study, the log-logistic
function will be used as an activation function, which will allow the classification of PEs
(phytosanitary events), taking as a reference the structure of the ALD. It is essential to
mention that this activation function will evaluate the LG-HDLM stability (structural,
dimensional) against the configuration by adaptation and learning of the risk structure
generated by the evolution of a PE in the field, maintaining at all times the loss structure
that defines the OR.

3. Materials And Methods

Operational risk (OR) has become one of the most promising concepts for configuring
risk parameters in crops affected by a PAE. The different loss categories that define the
ALD make it possible to establish differentiated insurance coverages to protect farming
activities. Despite the development of precision agriculture, widening the environmental
and financial sustainability (S − GAP) of crops affected by a PAE is still a challenge from a
technological perspective. Thus, we propose the following methodology.

3.1. Experimental Study Design

For the characterisation of OR in oil-palm crops affected by lethal wilt (LW-affectation),
an oil palm crop that comprises a total of 3500 ha was used (study zone). Two types of oil palms
stand out: the African palm (Elaeis guinensis) and the American palm (Elaeis oleifera-OxG) [53].
To describe the behaviour of LW in the field, a series of multi-spectral images using an
unmanned aerial vehicle (UAV) of DJI Phantom 4 series [54] equipped with a Sequoia Parrot
multi-spectral camera were captured [55]. The latter device captures multi-spectral aerial
images (MAIs) at low heights using four reflectance bands: green (550 nm± 40 nm), red
(660 nm± 40 nm), red edge (735 nm± 40 nm), and near infrared (790 nm± 40 nm), for a
resolution of 13 cm/px at maximum height of 120 m. According to the structure of an oil-
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palm crop (1 ha-144 cultivation units-tres-bolillo arrangement) [56], the MAIs were obtained
at a height of 50 m (height of reference) to keep the balance between UAV autonomy and
MAIs resolution. Each MAI achieved a coverage of 4200 m2, for a resolution of 1.2 Mpx
(1280 px× 960 px) per band, grouping approximately 60 crop units (Figure 2).

Figure 2. Red edge multispectral band (Height: 10 m).

For this study, eight (8) flights were carried out in the study zone with the presence of
oil-palm units in an adulthood stage of the species Elaeis guinensis. For each flight, a total of
80 MAIs were captured, reaching a total of 640 MAIs (8 f lights × 80 MAIS). To assess the
prevalence of a PE in the field, as suggested by the LW, we proceeded to construct three
vegetation indexes commonly used to evaluate the plant vigour of crops in general, based
on the reflectance bands that define a MAI: NDVI (normalised difference vegetation index—
Figure 3), GNDVI (green NDVI), and NRVI (normalised red vegetation index) [11]. Each
MAI and VI was subjected to a segmentation process, taking as a reference a mesh size of
300 px× 300 px (standard size for an MCOP at the height of 50 m), with an overlap of 50 px
per dimension. For each MAI or VI, a total of approximately 400 cropped images (CIs) were
obtained, where approximately 100 CIs were classified as MCOPs, and the remaining ones
(300) correspond to partial oil-palm crops (non-MCOPs) (Figure 3). The total number of
MCOPs amounts to 16,000 per month (80 MAIs × 100 CIs × 2 f lights ). Finally, and based
on phytosanitary censuses carried out in the field for the period covered by this study,
the set of MCOPs were grouped into healthy palms (EL), apparently healthy palms (UL),
and oil palm units affected by LW (SL) [26,28,30].

For the analysis and validation of LG-HDLM, a risk scenario by random sampling of
the total of MCOPs available for month six was created (Reference Scenario—Scenario 1).
This sampling process was performed at reliability of 99.9% according to Basell II agree-
ments, and where each of the MCOPs was classified by LW-affectation in each loss category
that defines the ALD distribution (Table 1). Table 1 also shows a reference scenario that
groups a series of metrics for the evaluation of a LG-HDLM against the characterisation of
risks derived from a PE, such as suggested by LW in the field (Metric Scenario—Scenario 3).
This scenario indicates that the misclassification of a MCOP affected by LW (SLM-1) can
eradicate approximately one hectare of the crop (ULM-144). In contrast, the ELM metric in-
dicates that a model used for risk characterisation must achieve, at minimum, effectiveness
in the classification of MCOPs by loss category close to 85% on average (ELM-855).



Sustainability 2022, 14, 6668 9 of 28

Figure 3. Normalised difference vegetation index (MCOP patterns).

Table 1. Structure of losses for the reference scenarios.

Scenario 3 Scenario 1

Scenarios Metric Reference

Hectares (Ha-Oil Palm Units) 6.9 (1000) 6.9 (1000)
Structure of losses EL-UL-(SL) 856-143-(1) 744-106-(150)

Category 1 (SL-USD) 5580 4136
Category 2 (UL-USD) 3053 5849
Category 3 (EL-USD) 301 45,135
Sustainability GAP 855 594

3.2. Adaptive Inverse Lagrangian Gaussian Model

To describe the spatio-temporal behaviour of early-stage LW, a dispersal model in-
spired by an Inverse Lagrangian Gaussing puff-tracking dispersion model (I-LGPTM),
widely used for the dispersal of pollutants in the atmosphere, is proposed. The I-LGPTM
integrates two dynamics: a first dynamic establishes the dispersion patterns of LW in
the field from a focus on disease dispersal, while a second dynamic shows the degree of
LW-affectation of each of the palm cultivation units affected by this pattern [12,27,57,58].

3.3. Dispersion Pattern (Dynamic 1)

According to the first dynamic, the dispersion pattern is denoted and defined:

Qmx,y =
1

(2.π)
3
2 σ2

xy

Exp

(
−1

2

( x f − x
σxy

)2
− 1

2

(y f − y
σxy

)2
)

(2)

where:

Qmx,y indicates the intensity of LW at the point (x, y) (m).
x f , y f indicates the location of the focus within the pattern of dispersion (m).
σxy: dispersion coefficient that indicates the area of influence of LW in the field from a

focus of the disease
(

x f , y f

)
(m).

To describe the normalised disease evolution in the field, this coefficient is denoted
and defined in the context of a Lagrangian dispersion model as follows:
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σxy = e−
(

1
a.x−b

)
(3)

where:

x: diameter measured from the point of location of the dispersion pattern (xp, yp)
taking as reference one hectare (ha) of crop (m).
a, b: dispersion parameters that describe the evolution of LW in the study zone (LW-
affectation). Figure 4 shows the upward curves of LW dispersion for different dynamics.

According to the scientific literature, this dispersion coefficient was standardised by
taking into account the following parameters [4,59]:

• To achieve reliability of 99.9% in the characterisation of LW-affectation in the field,
a total of 6.9 ha (144 un/ha × 6.9 ha = 1000 un) were taken as reference. Based on
a circular dispersion pattern, the linear radius of coverage will be close to 150 m
(70,685.82 m2 = π.(150 m)2).

• For the configuration of the disease focus, a canopy ring consisting of 12 crop units
was taken as a reference. This canopy ring has an approximate linear radius coverage
of 10 m (x (m)).

• For stability of the model against the identification and characterisation of LW in the
field, this dispersion coefficient performs an automatic normalisation process against
disease progress (upward curves).

• To model the dispersion of LW in the field, a disease development rate of 0.0833 un/year
(r) was taken as reference for an approximate lot size of 25 ha (144 un/ha × 25 un =
3600 un).

• To achieve a theoretical lot coverage for LW, a period of (6) months was taken. For this
period, the rate of disease (r) development resulted in approximately 150 un affected
crop units, as described in the reference (Scenario 1).

Figure 4. Lethal wilt dispersion coefficients.

3.4. LW-Affectation (Dynamic 2)

A second dynamic integrates an inverse dispersion mechanism to model the LW-
affectation of MCOPs given a dispersion pattern (Dynamic 1). The LW-affectation for each
MCOP is modelled through the use of Gaussian functions, where the downward curves
(Figure 4) show the compression of MCOPs due to an unusual concentration of energy by
leaflet necrosis. According to the morphological structure of each crop unit (MCOP unit),
this dispersion factor is denoted and defined:
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MCOPx,y =
Qmx,y

(2.π)
3
2 .σ2

xy,p

Exp

(
−1

2

(
xp − x
σxy,p

)2
− 1

2

(
yp − y
σxy,p

)2
)

(4)

where:

MCOPx,y: LW-affectation of the point (x, y) given a dispersion pattern Qmx,y.
σxy,p: Compression coefficient (inverse dispersion) for an MCOP located at the point(

xp, yp
)
. This compression coefficient is denoted and defined as follows:

σxy,p = −ks.
(

1
a.x−b

)
(5)

where:

ks indicates the size of an MCOP in the standardised space (Study Zone). According
to the initial size of the dispersion pattern (Qmx,y), an MCOP will have a length
approximately of 10% (ks = 0.4 × 10%) of the spatial coverage by this pattern.

Figure 5 shows the behaviour of the Gaussian-MCOP functions for different LW-
affectation levels (compression curves). Here, the MCOPs that have slender Gaussian
structures (Figure 5c) and present a higher LW-affectation than those MCOPs that have
Gaussian functions with more extended structures (Figure 5a). This higher compression
generates higher LW-affectation, as specified by the negativity reached by the dispersion
coefficient b.

Figure 5. NDVI oil-palm crops affected by a phytosanitary event (a = 1) (a) healthy palm (EL,
b = −0.25), (b) apparently healthy palm (UL, b = −0.5), (c) palm affected by LW (SL, b = −0.75).

According to risk scenarios defined by this study, Figure 6 shows the normalised
spatial behaviour of LW for a risk scenario before the reference scenario. The dispersion
pattern affecting the MCOPs present in the study area can be observed in the lower-left part.
It is essential to mention that the Gaussian-MCOP functions close to the focus of dispersion
present more slender structures (upper-right figure) due to compression, which causes
necrosis of the palm leaflets. The lower-right figure shows the structure of the forecasting
map describing the evolution of LW in the field, based on the dispositioning (tres-bolillo
arrangement) of cultivation units shown in Figure 2.
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Figure 6. LW pattern dispersion in the field.

3.5. Lagrangian Hybrid Deep-Learning Model (Lg-Hdlm)

For the characterisation of the risk arising from the phytosanitary and agro-climatic
event (PAE) in agreeing to the structure of losses defined by ALD, a Lagrangian hybrid
deep-learning model (LG-HDLM) is proposed. Two substructures describe the structure
of the model: The first one integrates a stacked deep-learning model for the identification
and labelling of MCOPs (Substructure 1) from MAIs and VIs. In contrast, the second one
integrates a convolutional Lagrangian Gaussian deep-learning model to characterise the
risks derived from the spatio-temporal evolution of LW in the field (Substructure 2).

3.5.1. Stacked Deep-Learning Structure (Substructure 1)

For the identification and labelling of MCOPs (Figure 3), the first substructure is
inspired by a neural network with a stacked deep-learning structure [60], which is denoted
and defined (Equation (2)):

hjn ,k =

(
non

∑
jn=1

wjn ,jn−1,k...

(
no2

∑
j2=1

wj1,j2,k

(
no1

∑
j1=1

no0

∑
j0=1

(
wj1,j0,k.xj0,k

))))
(6)

where:

xj0 represents the input vector or k cropped image (CI) (k = 1, 2, . . . , ND). Each of the
CIs has a size of (300 px × 300 px) per MAI or VI.
ND represents the number of CIs available for the configuration of the model.
wjn ,jn−1 represents the neural connections between the jn and the jn−1 layer.
non indicates the number of hidden elements or neurons that make up the n layer.
hjn represents each of the jn outputs of the non neurons that make up a hidden n layer.

The number of neurons that make up each stacked layer can be estimated [61]:

non = nomax − ni
(nomax

nl

)
(7)

where:

non: number of hidden neurons for the n layer.
nl: number of stacked layers (cardinality) (n = 1, 2, . . . , nl).
nomax: maximum number of neurons for the 1st layer (compression ratio).

For the configuration of stacked-layers structure, the following set-up metrics are proposed:
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• Cardinality: Indicates the number of stacked layers that make up a deep-learning
neural model of the stacked type. Higher cardinality leads to greater flexibility in
modelling complex systems, bringing higher computational costs.

• Compression Ratio: Indicates the compression capacity of each layer that makes up a
neural deep-learning model by stacked layers when configured using auto-encoder
strategies. The compression ratios performed by the first stacked layer for these
models determine its behaviour in modelling complex systems.

According to an autoencoder learning strategy, each of the layers that make up this
substructure can be expressed as follows [60]:

xjnl−2,k =

nonl

∑
jnl=1

wjnl jnl−1.k.

 nonl−1

∑
jnl−1=1

nonl−2

∑
jnl−2=1

(
wjnl−1 jnl−2,k.xjnl−2,k

) (8)

The autoencoder learning strategy can be expressed in terms of the generalised delta
rule as follows (3) [62]:

wjnl jnl−1,k = wjnl jnl−1,k−1 − α.
∂e2

jnl−1,k

∂wjnl jnl−1

(9)

where:

e2
k represents the mean square error (e.g., mse), which is expressed as:

e2
jnl−1,k =

1
ND

ND

∑
j=1

(
xjnl−1,k − xjnl−1,k

)2
(10)

where:

xjnl−2,k: Represents the input and output values used as a reference for the configura-
tion of the nl hidden layers that build the stacked structure of the proposed model.

The fully connected layer (FCL) can be expressed as follows:

zjc =

nnl

∑
jnl=1

cjc ,jnl
.hjnl

(11)

where:

cjc ,jnl
represents the FCL connections.

For the identification and labelling of MCOPs, the Softmax function can be expressed [63]:

Sm =
nc

∑
jc=1

ezjc (12)

σ
(
zjc
)
=

ezjc

Sm
(13)

where:

jc: labelling categories (MCOP, non-MCOP) jc : 1, 2, . . . , kc.
zjc : probability associated with a jc category.

3.5.2. Convolutional Lagrangian Gaussian Deep-Learning Model (Substructure 2)

For the spatio-temporal characterisation of phytosanitary events in crops in general, we
propose Substructure 2 inspired by a convolutional deep-learning model. This substructure
integrates an I-LGPTM to describe the evolution of a phytosanitary event (LW-affectation)
in stages before a temporal reference scenario (forecasting maps—Equations (2) and (4)).
The convolutional layer can be described as follows:
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FCM
(

xj, yj, k
)
=

1

(2.π)
3
2 σx,k.σy,k

.e

(
− 1

2 .
(

XCj,x−xj,k
σx,k

)2
− 1

2

(
XCj,y−yj

σy,k

)2
)

(14)

where:

XCj,x, XCj,y: relative position for a j crop unit in the field.
xj,k, yj,k indicates the spatio-temporal spread of LW from a j crop unit and a k instant
time.
σj,x,k, σj,y,k: Dispersion coefficients that determine the dynamic of LW-affectation from a
XCj,x,k, XCj,y,k spatial point. These coefficients can be modelled based on phytosanitary
censuses for LW-affectation carried out in the field for the period defined for this study.

Substructure 2 integrates a convolutional mechanism, where MCOP-Gaussian func-
tions define the convolutional patterns. In this way, this convolutional mechanism can be
defined as a functional macro-convolutional mechanism as follows:

Φ
(

xj,k, yj,k, l
)
=

[
φ
(

FCMxj ,yj ,l,k.MCOPxjr ,yjr ,l,jc ,k

)
jic

]
(15)

where:

Φ
(

xj,k, yj,k, l
)

: Vector of agreement indices between a Gaussian-MCOP pattern (jc
risk category) for each of the points (xj,k, yj,k) that make up a l convolutional layer
(IC-fingerprint).
MCOPxjr ,yjr ,l,jc ,k: Convolutional Gaussian-MCOP pattern for a l MAI or l VI, a jc risk
category for a k instant time. The convolutional Gaussian-MCOP patterns will be
selected from Scenario 1 by LW-affectation.
jic represents the jic agreement index. For the characterisation of oil-palm units by LW-
affectation based on Gaussian-MCOP patterns, we propose the following agreement
indices [64]:

IOAl,k: Index of agreement between a spatial oil palm and a MCOPxjr ,yjr ,l,jc ,k convolutional
pattern.

MGl,k: Geometric mean bias between a spatial oil palm and a MCOPxjr ,yjr ,l,jc ,k convolu-
tional pattern.

VGl,k: Geometric variance bias between a spatial oil palm and a MCOPxjr ,yjr ,l,jc ,k convolu-
tional pattern.

According to Equation (15), Figure 6 exhibits the spatial analytical structure of a
set of oil-palm units that are located in the study zone. Here, we can observe that the
Gaussian-MCOPs, with smaller diameters, show a higher energy concentration in the
centre (low spatial variance) due to the necrosis of the plant’s leaflets. This fact generates
an unusual concentration of the greatest plant vigour points. However, the Gaussian bells
with a larger diameter (high spatial variance) present a greater energy dispersion due to
the homogeneous spatial dispersion of plant vigour in healthy oil-palm units.

For the classification of palm cultivation units in each of the loss categories defined by
ALD (EL,UL,SL), the fully connected layer (FCL) can be defined as follows:

zjc =
ni

∑
jic=1

cjc ,jic .Φ
(

xj,k, yj,k, l
)

jic
(16)

σLLG
(
zjc
)
==

1

1 + e−
α.(x−a)

β

(17)

σLLG
(
zjc
)
= So f tmax

(
zjc
)

(18)

where:



Sustainability 2022, 14, 6668 15 of 28

σLLG
(
zjc
)
: log-logistic Softmax function for the classification of crop units in the jc risk

category (Equation (13)).
cjc ,jic : Represents the FCL connections for a jc risk category and jic index of agreement.

3.6. Metrics

For the analysis and validation of LG-HDLM against the identification and characteri-
zation of the risk derived from a phytosanitary event (PE) such as that suggested by LW,
we propose the following metrics in agreement with ALD loss structure:

3.6.1. Accuracy Weighted Index (Acc-w)

Accuracy weighted index shows the general behaviour of a model against the classifi-
cation of patterns:

Accw =

jc
∑

i=1
wjc ,pTPjc +

jc
∑

i=1
wjcnTNjc

jc
∑

i=1

(
TPjc + TNjc

) (19)

where:

wjc represents the weighted effect of the number of data that belongs to a category jc.
TPjc : true positive number of data that are correctly identified by a model for a
jc category.
TNjc : true negative number of data that are erroneously identified by a model for
category jc.

According to the set of CIs available for the configuration of Substructure 1, this
index will allow evaluating the performance of LG-HDLM against the classification and
labelling of CIs based on the ratio defined for the categories of MCOPs and non-MCOPs by
reflectance band and VI.

3.6.2. Categorical Cross Entropy (CCE)

Categorical cross-entropy is a loss function that compares the probability distribution
of the predictions (ŷk) with the probability distribution that represents the data of reference
(ydk), as we have two classes (EL (healthy palms), SL (LW-affected palms)). CCE can be
defined as follows:

L = − 1
ND

ND

∑
k=1

[ydk log(ŷk) + (1 − ydk) log(1 − ŷk)] (20)

where:

ŷk: Represents the value predicted by the model for observation k.
ydk: Value of reference or desired value for observation k.
ND: Total of samples of data or MCOPs available (k = 1, 2, 3, . . . , ND).

According to the substructures that make up the LG-HDLM, this metric will evaluate
the model’s performance against the following criteria:

• For classification and labelling, this metric will allow evaluating the performance of
the LG-HDLM (Substructure 1) against the classification and labelling of CIs in the
categories of MCOPs and non-MCOPs reflectance band and VI.

• For the discrete-risk classification, this metric will allow evaluating the performance
of LG-HDLM (Substructure 2) against the classification of MCOPs by loss category,
according to the loss structure defined by ALD.

• For the continuous-risk characterisation, this metric will assess the stability of LG-
HDLM against the characterisation of ALD structure by risk scenario, according to the
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probabilities assigned by the Softmax function for each of the MCOPs classified by risk
category.

3.7. Dimensional and Structural Stability

To analyse the stability in models by adaption and learning about the characterisation
of loss structure that defines the ALD for a PE, such as the one suggested by LW, four
statistical indices were taken as reference [64]: index of agreement (IOA), which quantifies
the intensity of the linear relationship between the reference losses and the estimated losses
for EL category; the variance (VC), which allows assessing the impact of UL about the mean
of ALD; the skewness coefficient (SK), which shows the evolution of the ALD distribution
towards lighter losses; and the kurtosis coefficient (KC), which assess the evolution of
losses towards the EL category.

Concerning learning stability, structural Stability (SS) indicates the ability of a model by
adaption and learning to reconstruct the loss structure that defines the ALD for Scenario 1 [20].
To achieve this stability, LG-HLDM is expected to reach IOA values close to 95% on average
and similar values in terms of VC, SK, and KC. Regarding dimensional stability, it shows
the stability of a model to the magnitude of losses for a baseline scenario (Scenario 1).
To achieve this stability, the SK and KC indices are expected to increase. At the same time,
for the variance, losses will increasingly cluster in the EL category, as the ALD groups
losses with a smaller magnitude due to better risk management. This will result in lean
probability distributions with increasingly lighter loss structures and extended GAPs.

3.8. Mean Square Error (mse)

The mean square error (mse) measures the average of the squared errors of the esti-
mated values ŷjc ,k and the desired values ˆydjc ,k of a model.

mse =
1

ND

ND

∑
k=1

(
ydjc ,k − ŷjc ,k

)2
(21)

where:

ydjc ,k: indicates the reference values to set-up and adaptive models for k record and jc
category.
ŷjc ,k: indicates the value estimated by an adaptive model for k record and jc category.

For the classification of MCOPs, the mse emerges as a measure showing the risk of
loss of sensitivity of the LG-HDLM.

3.9. Experimental Validation

For the experimental validation of LG-HDLM, two stages were considered. In the
first stage, the model was evaluated against the identification and labelling of MCOPs
(Substructure 1): a total of 640 MAIs (four reflectance bands) (8 f lights × 80 MAIS) and
1920 VIs grouped in three categories: GNDVI (640 un), NDVI (640 un), and NRVI (640 un)
were available (7) databases. Each of these databases represents the natural evolution of
LW in the field for a period of time of 6 months. Each MAI and each VI were subjected
to a segmentation process, taking as a reference a mesh size of 300 px × 300 px (cropped
image size (CI)—MCOP at a height of 50 m), with an overlap of 50 px per dimension. This
process yielded a total of 400 CIs per reflectance band and per VI (100 MCOPs 300 non −
MCOPs), which were classified into MCOPs (64,000 un) and non-MCOPs (192,000 un).
Substructure 1 was configured at a reliability of 99, 9% under the Basel II Agreements [61],
so it was necessary to define a total of 1000 learning cycles, and a random sampling
per cycle of 1000 CIs on the classification categories (MCOP, non-MCOP) per database.
For each learning cycle, the data were grouped into training (70%) and validation data (30%).
In contrast, for the learning generalisation (in the absence of a learning process), a total
of 1000 additional random CIs were used. Substructure 1 was set-up sequentially using
aautoencoder strategy to a maximum cardinality of ten (10) stacked layers. In this stage,
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it is expected that LG-HDLM will achieve a balance between the compression ratios and
the cardinality in the identification and labelling of MCOPs. Likewise, this configuration is
expected to achieve ACC-w performance values close to 90% on average, as well as values
close to zero (0) for mse and CCE metrics.

Two phases were considered for the experimental validation of LG-HDLM against the
risk characterisation (Stage 2). In the first phase, the proposed LG-HDLM was evaluated
against the risk characterisation for the reference scenario (Scenario 1), whereby the LG-
HDLM was expected to yield probability distributions with slender structures, similar
to the reference probability distributions used for ALD modelling such as log-normal,
log-logistic, Weibull or Generalised Pareto (structural stability in learning) [9]. The stability
of the model against the characterisation of the loss structure was performed using the IOA
index and the negative log-likelihood (CCE Continuous-NLogL). Here, Substructure 2 is
expected to yield IOAs close to 100% regarding the loss structure defined for each Scenario.
At the same time, the selection of the distribution will be carried out against the goodness of
fit, taking as reference the lowest NlogL. In this same stage, two generalised neural models
with deep-learning structures, which had been widely used for pattern identification and
classification, were used to validate the model: a stochastic neural model with a stacked
deep learning structure (SSDL) [14] and a convolutional deep-learning neural network
(CDLM) with stochastic computing [13]. In the validation stage, LG-HDLM was expected
to yield probability distributions with extended S-GAPs, and performance indices higher
than 75% on average (ELM-750 un.) against the classification of MCOPs by risk category
and for each of the scenarios. The ALDs were also expected to have slender structures with
lighter losses, to ensure the structural and dimensional stability of LG-HDLM against the
risk characterisation. The loss structure was financially assessed based on the costs related
to the management, treatment and eradication of MCOPs affected by LW in nonproductive
stages of oil palms (year 1–year 2) [4,7].

In a second phase (within Stage 2), three temporal risk scenarios describing the evolu-
tion of LW in the field for a previous period of 6 months before Scenario 1 were created
(Table 2). These risk scenarios were obtained by inverse spatio-temporal modelling, us-
ing the I-LGPTM that integrates the convolutional mechanism defined by Substructure 2.
The patterns (MCOP-patterns) that trigger the convolutional mechanism against the classi-
fication of MCOPs by LW-affectation were randomly selected from the MCOPs grouped in
Scenario 1. This random selection was set at 5% of the total of MCOPs available per risk cat-
egory. For the evaluation of LG-HDLM (Substructure 2) against the risk characterisation by
LW-affectation, an IC fingerprint composed of three agreement indices related to each risk
category is proposed: IOA (index of agreement), MG (geometric mean bias), and VG (geo-
metric variance bias) [64]. Regarding the IC fingerprint, LG-HDLM is expected to achieve
agreement values above 90% on average to ensure that the classified MCOPs possess the
same structural characteristics as the convolutional MCOP patterns used. Regarding the
risk characterisation, LG-HDLM is also expected to achieve performance indices above
85%(ELM) on average against the classification of MCOPs in the risk categories defined
by each temporal scenario (structural stability). Sustainability S-GAPs are expected to be
above 80% on average to ensure the environmental and financial sustainability of oil-palm
crops from the configuration of risk parameters (dimensional stability) in the early stages
of the onset of LW based on SDA-2030 criteria.
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Table 2. Structure of losses for the reference scenarios.

Scenario 3 Scenario 1 Scenario 2.2 Scenario 2.1 Scenario 2

Scenarios Metric Reference Month 4 Month 2 Month 0
Hectares

(Ha-Oil Palm
Units)

6.9 (1000) 6.9 (1000) 6.9 (1000) 6.9 (1000) 6.9 (1000)

Structure of
Losses

EL-UL-(SL)
856-143-(1) 744-106-(150) 792-130-(78) 801-165-(34) 840-150-(10)

Probability
Distribution log-logistic log-logistic log-logistic log-logistic log-logistic

4. Results

Tables 3 and 4 show the performance achieved by LG-HLDM (Substructure 1) against
the identification and labelling of MCOPs for three near-infrared reflectance bands (red, red
edge, near infrared) and three VIs (NDVI,GNDVI,NRVI) commonly used to assess plant
vigour in agricultural crops. The results show that Substructure 1 performed values above
90% on average for ACC-w index in the phases of training, validation and generalisation
in the identification and labelling of CIs obtained from NDVI and GNDVI indices. These
values were above the values performed by the proposed model for CIs obtained from the
NIR band for these same stages (0.667%). Regarding the learning processes, Substructure 1
also reached greater stability against the NDVI index, as evidenced by the mse (0.0056) and
CCE (0.00398) indices, which are located close to zero (0%) for the generalisation phase.
These values were much lower than those given by Substructure 1 against the identification
and labelling of CIs using the GNDVI index, demonstrating that the NDVI can also be used
to characterise MCOPs (NDVI-MCOPs) affected by a PE such as that caused by LW. Figure 7
shows the different crop images (CIs) identified and labelled in MCOPs and non-MCOPs
categories based on the NDVI index. Concerning the characterisation of MCOPs using
MAIs, the results show that LG-HDLM (Substructure 1) achieved performance values
that were above those reported by [65] for the detection of Ganoderma in oil-palm crops
(ELM:44.4%) using VIs. Performance values were similar to those by [27] for the detection
of MCOPs from multi-spectral images (ELM:91%), as well as to the results reported by [66]
for the detection of MCOPs using high-resolution satellite images (ELM:90%). It is essential
to highlight that Substructure 2 includes many of the recommendations made by these
authors regarding the detection of PEs in crops through the use of MAIs.

Table 3. Behaviour of Substructure 1 in the identification and labelling of MCOPs based on re-
flectance bands.

NIR REG RED

Train Val. Gen. Train Val. Gen. Train Val. Gen.

ACC/-
w 0.6667 0.5333 0.5012 0.4667 0.3333 0.54126 0.4253 0.3333 0.5526

CCE 5.3727 7.5218 8.1253 8.5963 10.7454 11.2356 8.8563 10.7636 11.2556
MSE 0.4667 0.3333 0.4512 0.5333 0.6667 0.5443 0.5512 0.8667 0.9264

Table 4. Behaviour of Substructure 1 in the identification and labelling of MCOPs based on VIs.

NDVI GNDVI NRVI

Train Val. Gen. Train Val. Gen. Train Val. Gen.

ACC-
w 0.9933 0.9188 0.9933 0.9733 0.7667 0.9933 0.4667 0.3333 0.4666

CCE 0.0665 0.0140 0.0398 0.1030 0.8506 0.0643 8.9563 10.7454 8.59631
mse 0.0140 0.2198 0.0056 0.0206 0.2596 0.0086 0.5333 0.6667 0.5333
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Figure 7. NDVI-CIs classified by Substructure 1: (a) NDVI-MCOP (Height: 10 m), (b) NDVI non-
MCOP, (c) Forrest NDVI non-MCOP

Figure 8 shows the behaviour of Substructure 1 against the identification and labelling
of CIs using three MAIS (NIR, REG,RED) and three VIs (NDVI, GNDVI, NRVI). Here, it can
be seen how the cardinality was increased when the compression ratios were much higher
(first layer). Figure 8 also shows that the Substructure 1 managed to stabilise learning
(ACC-w = 0.9933(NDVI)) when the cardinality reached 60% (six Stacked Layers) for a
compression index that was close to 40% (lower computational cost). It is essential to
mention that the learning factor (alpha) increased as the model became less flexible due
to a higher compression of CIs. Overall, Substructure 1 evidenced superior performance
levels against the identification and labelling of CIs using the NDVI and GNDVI indices.
However, Substructure 1 was able to stabilise learning much more quickly for the NDVI
index, as evidenced in Figure 8.

Figure 8. Stacked deep-learning configuration (Substructure 1).

Table 5 shows the results performed by LG-HDLM (Substructure 2) against the risk
characterisation defined by the reference scenario (Scenario 1). Performance rates achieved
by Substructure 2 show values close to 85% on average (ELM:858) against the classification
of NDVI-MCOPs by risk category (LW-affectation), which were above the performance rates
achieved by the CDLM 80.1% (ELM:801) and the SSDLM 79.2% (ELM:792), on average,
against this same classification. The ALDs showed lean structures with lighter losses due to
better risk characterisation (e.g., log-logistic, generalised Pareto, generalised extreme value),
and where the projected SL losses given by LG-HDLM were much lower (SL:USD 6748.40)
than SL projected losses achieved by CDLM (CDLM (SL:USD 12, 788.29) and SSDLM
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(SL:USD 26, 684.02) (Figure 9). In this process, the lean distributions were promoted by the
goodness of fit against the log-logistic distribution of reference (negative log-likelihood
NlogL = 2069.35), a value much lower than those obtained by the other models when
fitting the losses to the log-logistic distribution function representing the activation function
for Substructure 2. The above shows the ability of LG-HDLM to identify extended S-GAPs
that guarantee environmental and financial sustainability for crops affected by PEs, such
as the one suggested by LW for oil-palm crops, ensuring its structural stability against the
ALD used for modelling the operational risk.

Table 5 also shows that the models selected by the validation of LG-HDLM were
correct, since they had similar behaviours in terms of dimensional stability and structural
stability against the ALD of reference, as shown by the IOA indices, which were above
95% on average, and similar values for VC (148.14748), SK (3.46650), and KC (16.44628)
indices of the reference scenario (Scenario 1). It is essential to mention that, although LG-
HDLM did not show performance values significantly different from those achieved by the
validation models, this analysis allowed the demonstration of the fact that the dynamics
integrated by LG-HDLM do not distort its ability to characterise the loss structure based on
lean ALDs. Regarding stability, Table 5 shows that LG-HDLM reached a similar behaviour
concerning the characterisation of losses to the work reported by [20] on the estimation of
credibility in the integration of databases for the estimation of operational risk, or with the
outcome of [67,68], who offered a broad characterisation of the probability distributions
used for the modelling of operational risk (e.g., log-logistic, Weibull, Generalized Pareto).

Table 5. Analysis of performance—Substructure 2.

Scenarios Scenario 3 LG-HDLM Convolutional DL Stacked DL Scenario 1

Hectares (un) 6.9 ha.-1000 un. 6.9 ha.-1000 un. 6.9 ha.-1000 un. 6.9 ha.-1000 un. 6.9 ha.-1000 un.

ELM-ULM-(SLM) 856-143-(1) 858-113-(29) 801-165-(34) 792-130-(78) 744-106-(150)
Distribution Log-logistic G.Extrem.V. Gen.Pareto G.Extrem.V. log-logistic

NLogL 1629.45 2054.93 2069.75 2561.85 4206.46

Distribution Log-normal Log-logistic Birnbaum-
Saunders Gen.Pareto Log-normal

NLogL 1667.76 2069.35 2208.84 2591.12 3488.32

Distribution Gen.Pareto Gen.Pareto Log-logistic Log-logistic Birnbaum-
Saunders

NLogL 1554.43 2314.51 2314.65 2745.63 3522.90
IOA 1.0000 0.99939 0.99760 0.99067 1.00000
VC 50.78660 148.14748 148.45348 144.14446 148.54747
SK 4.40983 3.46650 3.48849 3.36668 3.45794
KC 30.04629 16.44628 16.77861 15.36103 16.25025

LC (USD) 300.90 6748.40 12,788.25 26,684.02 88,775.88
EL (USD) 5580.69 8726.14 4675.51 4622.98 20,869.56
UL (USD) 6732.67 4409.92 10,470.26 7747.17 4795.67

S-GAP 855 829 767 714 594

Table 6 shows the behaviour exhibited by LG-HDLM against risk characterisation for
three temporal risk scenarios describing the evolution of LW in the field for a period of
6 months (Month 0, Month 2, Month 4) before to reference scenario (Scenario 1). Table 6
shows that LG-HDLM performed rates close to 80% on average (Scenario 2-ELM:792)
against the classification of NDVI-MCOPs by risk category, despite the limitation im-
posed by the temporal observability of phytosanitary events in stages before to Scenario 1.
The probability distributions provided by LG-HDLM for each risk scenario showed slen-
der distributions with light losses and NLogLs that led to a better fit, as the temporal
observability concerning the reference scenario was much lower. The latter guarantees the
structural stability of LG-HDLM when faced with the characterisation of a risk scenario. It
is essential to mention the evolution experienced by ALD distributions, due to the effect
of the theoretical development of LW in the field, can be evidenced through dimensional



Sustainability 2022, 14, 6668 21 of 28

stability characterised by much lower variances and increasingly higher values of skew-
ness (SK) and kurtosis (KC). The suitable performance achieved in general by LG-HDLM
was promoted by the novel convolutional mechanism defined by Substructure 2, which
integrates an inverse Lagrangian Gaussian dispersion model (I-LGPTM) to describe the
spatio-temporal evolution of a PE analytically in the field, giving rise to the concept of
dynamic vegetation index (forecasting maps). Concerning the characterisation of losses
for each of the risk scenarios, LG-HDLM (Substructure 2) yielded probability distributions
that evolved towards lower losses, maintaining at all times the loss structure that defines
operational risk, which is in line with the work developed by [9,69] on the modelling and
evolution of operational risk.

Figure 9. Aggregate Loss Distributions ALD-Validation Process.

Table 6. Temporal risk scenarios.

Scenario 3 Scenario 1 Scenario 2.2 Scenario 2.1 Scenario 2

Metric Baseline Month 4 Month 2 Month 0

Hectares 6.9 (1000) 6.9 (1000) 6.9 (1000) 6.9 (1000) 6.9 (1000)
EL-UL-(SL) 856-143-(1) 744-106-(150) 768-126-(106) 798-144-(58) 840-150-(10)
Distribution log-logistic log-logistic log-logistic log-logistic log-logistic

NLogL 1390.20 2314.53 2826.96 3802.20 4206.46
IOA 1.0000 1.00000 0.89820 0.89436 0.089290
VC 50.78660 148.54747 183.55119 212.81653 232.21621
SK 4.40983 3.45794 2.74280 2.47480 2.41750
KC 30.04629 16.25052 12.22450 8.36881 6.09664

ELM 856 858 853 829 792
ULM 143 113 116 136 150
SLM 1 29 30 36 58

EL (USD) 5580.69 8726.14 8122.91 7970.72 7268.19
UL (USD) 6732.67 4409.92 4494.69 5155.76 5506.25
SL (USD) 300 6748.40 6791.23 8193.63 13,554.40

S-GAP 855 829 823 793 733

Table 7 shows the results performed by the fully connected layer (IC fingerprint—
Substructure 2) against the classification of NDVI-MCOPs by LW-affectation for each
temporal risk scenario. Here, it can be observed that the IC fingerprint indices achieved
agreement values close to 80% (XC) on average, with variations that were around 5% (σ)
against the NDVI-MCOP convolutional patterns selected from Scenario 1. Once again,
the aforementioned shows the ability of LG-HDLM to characterise risk for a temporal
scenario (6 months) before the reference scenario (Scenario 1) that shows the natural
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evolution of a PE in the field. In the context of Lagrangian dispersion models, Table 7
shows that NDVI-MCOP Gaussian functions with wider bases yielded higher values
for dispersion parameters (σx, σy), indicating the presence of NDVI-MCOPs in healthy
(EL) and apparently healthy (UL) categories; while the Gaussian functions that presented
more slender structures showed, on average, the lowest dispersion parameters, which
indicates the presence of NDVI-MCOP Gaussian functions affected by LW. The inverse
Lagrangian dynamics integrate the convolutional layer, transforming the LG-HDLM into a
semi-physical model by adaption, making it ideal for characterising PEs at an early stage,
as suggested by LW in the field.

According to Gaussian functions represented by the LW-affectation for MCOPs in the
study zone, the spatial structure of the convolutional layer for NDVI index (Substructure 2)
can be observed in Figure 10. The figure corroborates that the Gaussian functions with
more extended bases indicate the presence of MCOPs in the categories of healthy units (EL)
and apparently healthy units (UL), while the Gaussian functions with slender structures
indicate the presence of MCOPs affected by LW, which is in-line with the principles of
the Lagrangian model presented in Section 3.2. The spatio-temporal evolution of the
convolutional layer due to the effect of the semiphysical dispersion dynamics established
by the proposed Lagrangian model makes the structure of this layer a forecasting map
(dynamic vegetation index) for the characterisation of phytosanitary events at an early stage.

Table 7. IC-Fingerprint fuzzy forecasting analysis.

EL UL SL

IOA-MG-VG IOA-MG-VG IOA-MG-VG Centroid
(xc)

Base
(σ)

Scenario 2 0.813129 0.850005 0.893388 0.852174 0.080259
Scenario 2.1 0.874696 0.824770 0.830176 0.843214 0.049926
Scenario 2.2 0.896491 0.899339 0.931133 0.908988 0.034642
Scenario 1 0.965450 0.993173 0.996007 0.984877 0.030557

σx 0.521340 0.456368 0.201632 0.393113 0.319707
σy 0.482561 0.389754 0.185324 0.352546 0.297237

Figure 10. Convolutional forecasting map.

To assess the performance of FCL (fully connected layer) against the risk characterisa-
tion, Figure 11 shows the CDFs (cumulative distribution function) for the normalised weights
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representing the IC fingerprint–FCL relationship by risk category. According to the proba-
bility distribution defined by the softmax function (log-logistic distribution Equation (1)),
the behaviour of LG-HDLM (Substructure 2) was evaluated based on three parameters:
structural factor (β), stability factor (a), and dimensional factor (α) (Equation (17)). Regard-
ing the dimensional factor, Table 8 shows that this factor remained close to unity against the
NDVI-MCOPs classification in each of the risk categories defined by a temporal scenario,
indicating that the model maintains its stability despite the temporal evolution of a phy-
tosanitary event in the field. Regarding the CDFs for the EL risk category, these showed
more extended CDFs, as a result of the increase in the structural factor (β) due to the effect
of the better classification of NDVI-MCOPs. This effect was the opposite for the SL cate-
gory, which groups the misclassifications of NDVI-MCOPs affected by LW. The dimensional
factor (α), on the other hand, reached negative values, which shows the tendency of FCL
to yield slender distributions in line with the loss structure for ALD. The above clearly
shows the ability of LG-HDLM to characterise phytosanitary events in the early stages
and to characterise risk parameters (ELM-ULM-SLM) to improve the environmental and
financial sustainability (extended S-GAPs) of oil-palm crops affected by a PE, as suggested
on the LW.

Table 8. Log-logistic structure—normalised weights.

Scenarios Scenario 2.1 Scenario 2.2 Scenario 2.3

Parameters EL UL SL EL UL SL EL UL SL

a −0.83 −1.53 −1.38 −0.90 −1.77 −1.38 −0.82 −1.74 −1.36
α 1.04 0.82 0.99 1.15 1.17 0.99 1.12 0.87 1.02
β 1.95 6.47 14.45 3.32 11.16 14.45 7.12 8.11 9.32

(a) (b)

(c)

Figure 11. Neural connections between the IC fingerprint and the FCL layer. (a) Scenario 2.1;
(b) Scenario 2.2; (c) Scenario 2.3.
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5. Conclusions and Further Studies

LG-HDLM allowed the spatio-temporal characterisation of risks in oil-palm crops
affected by a PE, such as LW. The model integrated two deep-learning models into a single
structure for this process. A first deep-learning model (Substructure 1: stacked deep-
learning structure) for automatic classification of MCOPs from a series of MAIs obtained
in the field, and a second deep-learning model (Substructure 2: dynamic convolutional
structure) to identify the LW-affectation in MCOPs. To describe the spatio-temporal be-
haviour of LW in the field, LG-HDLM integrated into Substructure 2 an inverse Lagrangian
Gaussian dispersion model. Due to the semiphysical structure by adaptation to phytosani-
tary risk modelling, LG-HDLM was validated using a novel methodology that integrates
financial and environmental metrics according to Basel II agreements and RSPO criteria.
The results show the ability of LG-HDLM to identify the evolution of LW for different
temporal risk scenarios.

The stability achieved by LG-HDLM against the characterisation of losses generated
by LW could be evidenced by the evolution of the ALD structure. In general, LG-HDLM
yielded ALDs characteristic of probability distributions with lean structures (structural
stability) according to Basel II agreements in operational risk modelling (e.g., log-logistic,
log-normal, generalized extreme value), despite the evolution of the ALDs towards lighter
loss structures (dimensional stability) as a result of better identification of LW evolution in
the field. This stability shows the ability of LG-HDLM to reconstruct a particular structure of
losses for different temporary risk scenarios that evolve according to a dispersion Gaussian
pattern for LW.

The results yielded by LG-HDLM showed performance rates above 80% on average
against loss characterisation for different temporal risk scenarios. This good performance
was promoted by similar ALDs structures as shown by the IOA index against losses, which
reach values close to 100% with S-GAPs evolving into more extended S-GAPS, despite the
temporal observability of identifying early-stage lethal wilt. The stability of these S-GAPs
shows the ability of the model to theoretically improve the environmental and financial
sustainability of oil-palm crops affected by LW as a result of improved risk management,
and to contribute to achieving a balance between development and sustainability in oil-
palm crops in the context of the SDA-2030.

Thanks to its adaptive ability and stability in learning against the characterisation of
losses for an ALD of reference (Scenario 1), LG-HDLM could be extended to characterise
the risk derived from PAEs for other types of crops. In this way, methodologies to iden-
tify the dynamic evolution for a particular PAE should be incorporated, converting the
convolutional layer (Substructure 2) into a semi-physical dynamic vegetation index (DVI).
These DVIs will have the objective of efficient crop management from the phytosanitary
point of view, establishing strategies for localised monitoring of PAEs in the field through
UAVs. This will lead the model to become a tool for the automatic characterisation of
risk parameters in the field as an input for the configuration of index insurances aimed at
the differentiated protection of crop units affected by an PAE. It is essential to highlight
that index insurances aim to extend S-GAPs, establishing the proposed model as a natural
alternative to achieve a balance between development and sustainability for different crops
from risk modelling.

It is essential to highlight that the palm sector in the world will require the certification
of around 7,000,000 ha of cultivation and around 31,000,000 tonnes of crude oil under RSPO
standards by 2025. This makes it necessary to create technologies that aim to effectively
characterise the risks derived from PAEs for this type of crop. It is important to mention
that the development of technologies to achieve RSPO certification should include aspects
related to: the optimisation and efficiency of productivity; the protection, conservation
and improvement of the environment; and sustainable livelihoods, poverty reduction and
social inclusion, in line with the planet’s sustainable development goals (SDGs). In this
sense, LG-HDLM aims to improve production efficiency by integrating financial criteria to
protect, conserve and improve the environment.
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For effective risk management in crops, the authors propose the creation of an aug-
mented intelligence platform for the real-time monitoring of PAEs. This platform will
integrate into a single structure a series of DVIs using hyperspectral technologies to expand
the reflectance spectrum in the characterisation of crop units affected by a particular PAE;
and IOT-IOB networks (Internet of Things and Beings) using different communication
technologies (e.g., LORA, Zigbee) with the objective of monitoring in the field the balance
between climate, host (unit) and vectors. Accordingly, this platform will result in a series of
forecasting maps to identify emerging risks, enabling the management of risk of PEs at an
early stage. The above will bring about a natural reduction in insecticides and fertilisers
and, consequently, a reduction in the emission of GHGs from agricultural activities.
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