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Abstract
Fault diagnosis plays a vital role in assessing the health management of industrial robots and improving
maintenance schedules. In recent decades, artificial intelligence-based data-driven approaches have made
significant progress in machine fault diagnosis using monitoring data. However, current methods pay less attention
to correlations and internal differences in monitoring data, resulting in limited diagnostic performance. In this paper,
a data-driven method is proposed for the fault diagnosis of industrial robot reducers, that is, a dual-module attention
convolutional neural network (DMA-CNN). This method aims to diagnose the fault state of industrial robot reducer. It
establishes two parallel convolutional neural networks with two different attentions to capture the different features
related to the fault. Finally, the features are fused to obtain the fault diagnosis results (normal or abnormal). The fault
diagnosis effect of the DMA-CNN method and other attention models are compared and analyzed. The effectiveness
of the method is verified on a dataset of real industrial robots.
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1 Introduction
With the development of intelligent manufacturing, in-
dustrial robots are widely used in automobile manufactur-
ing, welding, handling, assembly and various types of me-
chanical processing and manufacturing because of their
high flexibility, low cost and high work efficiency [1]. In
the production line, if an industrial robot fails, it will af-
fect the operation of the entire production line. Therefore,
it is very important and meaningful to identify and pre-
dict the failure of industrial robots [2]. In recent decades,
many researches have been carried out in this direction.
Wang et al. [3] proposed a new multi-sensor information
fusion technology, which takes the signals of multiple sen-
sors as the input of one-dimensional convolution neural
network (DCNN), and realized the fault diagnosis of the
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industrial robot through the improved convolution neural
network. Hong et al. [4] collected the attitude data set of
the last joint of the multi-joint robot and trained the depth
sparse automatic coding network to establish an intelligent
fault recognition model, which diagnoses the fault state
of the multi-joint robot. Industrial robots had different
structures such as Cartesian coordinates, and parallel and
multi-joints. Among them, the multi-joint robot had the
characteristics of compact structure and flexible operation
[5]. For multi-joint robots, kinematics [6], joint clearance
[7] and friction model [8] had been well studied. These re-
search results showed that the reducer was an important
part of the multi-joint robot. When the transmission ac-
curacy of the robot decreases, its work efficiency and out-
put product quality would decline. And once the reducer
failed, it would cause great losses to production [9]. There-
fore, developing an effective fault diagnosis method to de-
tect the state of the industrial robot reducer is an impor-
tant measure to ensure the working performance of multi-
joint industrial robots.
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Fault diagnosis refers to the processing and analysis of
measurement signals by detecting the status information
of mechanical equipment under relatively static condi-
tions or in operation. It predicts the operation status of
the equipment before the equipment fails, and predicts the
abnormality or failure; after the failure occurs, it makes a
timely judgment on the location, cause and extent of the
failure to determine the maintenance plan. In the existing
studies, the fault diagnosis approaches that used mecha-
nism analysis and manual feature extraction are prevailing
[10]. However, traditional methods such as wavelet trans-
form [11] were limited by computational capability and
manual feature extraction, which required large time con-
sumption and professional expertise. Also, the efficiency
and accuracy of the fault diagnosis were not satisfactory
[12]. With the development of information communica-
tion technology, a large amount of data can be collected
from industrial production processes, and data-driven
methods had become popular in industry and academia
[13]. Data-driven methods such as back-propagation neu-
ral networks [14], support vector machines [15], and arti-
ficial neural networks [16] had been widely used in fault
diagnosis. Classifiers based on general machine learning
methods such as artificial neural networks and support
vector machines are shallow learning models that can-
not yet fully reveal the complex internal relationships be-
tween faults and signal features [17]. In recent years, deep
learning had been widely used in the field of fault diagno-
sis with its strong learning ability and feature extraction
ability [18]. Deep autoencoder [19], deep belief network
[20], convolutional neural network (CNN) [21], recurrent
neural network [22] and other deep learning methods had
been applied to fault diagnosis and achieved satisfactory
performance.

CNNs had attracted the attention of many researchers
due to the developability and adjustability of the network
[23]. CNN used multiple convolution operations to cap-
ture the characteristics of the image from the global sens-
ing field for image description [23]. As the core of the
CNN, the convolution kernel is usually regarded as an in-
formation aggregate that aggregates the spatial informa-
tion and the channel-wise information on the local re-
ceptive field. However, training a decent network requires
a lot of effort, and the challenges come from many as-
pects. Recently, many studies had been proposed to im-
prove the performance of the network, such as directly
transferring the shallow layers of the trained offline CNNs
to the online CNN [24]; embedding multi-scale informa-
tion in the Inception structure [25], aggregating features
on a variety of different sensing fields to obtain perfor-
mance gains. Although these works achieved good per-
formance, they were still not enough to fully utilize the
CNN model to mine the fault-related information in the
data. These methods generally extracted features from

raw sensor data directly and performed fault diagnosis.
However, some handcrafted features or auxiliary data with
domain knowledge also can provide valued information
that can reflect degradation trends. Therefore, design-
ing a data transformation method to obtain feature data
and establishing a network structure to fuse the features
extracted in different ways can enhance fault diagnosis
performance. Such as considering space and channel re-
gions separately in Depth-Wise convolutional networks
[26], and build two different CNN branches in parallel
to extract time-domain and time-frequency domain fea-
tures respectively [27]. These methods proved that min-
ing more features from monitoring data through differ-
ent technologies was an effective way to improve predic-
tion accuracy. However, most methods ignored the differ-
ences within the monitoring data when acquiring auxiliary
data, which would limit the performance of some diag-
nostic models. Thus, giving more attention to the fault-
related features in the data can reduce the negative impact
of individual differences and further promote diagnostic
performance. Specifically, Yu et al. [28] used the wavelet
transform method to preprocess data of multi-channel in-
formation and proposed an MC1-DCNN method com-
bining multi-channel CNN and one-dimensional convo-
lution kernel to investigate feature learning from high-
dimensional process signals. Jiang et al. [29] proposed a
new multi-scale convolutional neural network architec-
ture to simultaneously extract and classify multi-scale fea-
tures. Ling et al. [30] proposed an improved CNN using
the transfer learning method. The network trained sev-
eral sub-convolutional neural networks to form a con-
volutional neural network group for different faults, and
then connected with the multilayer fully connected neu-
ral network. Although the above work achieved good per-
formance, they all improved CNN in terms of data pre-
processing and the structure of CNN itself. On the other
hand, trying to add some modules to CNN may contribute
to better performance.

Due to the introduction of attention mechanisms, many
scholars added attention modules to CNN for fault diag-
nosis. Since CNN ignored the inter-channel connections
of the features and limited the feature extraction capabil-
ities of the CNN, from Squeeze-and-Excitation Networks
to Selective Kernel Networks [31, 32], CNN had been op-
timized to varying degrees. In addition, Hao et al. [33] pro-
posed a multi-scale convolution neural network based on
an attention mechanism to enhance fault-related multi-
scale features and suppress ineffective multi-scale features.
Ye et al. [34] proposed a convolution-based self-attention
mechanism (CSAM) module, which effectively integrated
the powerful feature processing ability of CNN and the lo-
cal feature processing ability of the self-attention mech-
anism. The performance of the original model had been
effectively improved by adding this module to CNNs and
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RNNs. However, these attention models only pay atten-
tion to the channel information or the spatial information
of the feature map, which still limit the feature extraction
ability of the models in some aspects. Zeng et al. [35] pro-
posed a lightweight and efficient Dual Attention Module
based on the self-attention mechanism to extract atten-
tion in both channel and spatial dimensions. And adding
this module to CNN achieved good performance. Liu et
al. [36] proposed a novel general deep architecture named
dual attention based Temporal Convolutional Network, in
which a Temporal Convolutional Network equipped with a
dual attention mechanism was developed, which used two
parallel attentions to enhance the feature representation of
raw temporal data. Although these attention models pay
attention to the local features of feature maps from both
channel and space, these works were still insufficient. If the
information from both distinct attention mechanisms can
be jointly used, a better fault diagnosis results can be ob-
tained.

Based on the above analysis, a fault diagnosis method
based on a dual-module attention convolutional neural
network (DMA-CNN) for industrial robot reducers is pro-
posed. This method establishes two parallel convolutional
neural networks with two different attentions. It pays at-
tention to the spatial dimension and channel dimension of
the feature map from different aspects at the same time,
which can comprehensively extract fault-related features.
Subsequently, the features are fused through the multilayer
perceptron to obtain fault diagnosis results. A case study
was revealed by using an industrial robotics database to
validate the results. The main contributions of this study
are shown as follows:

1) A two-module CNN based on the attention mecha-
nism is proposed to comprehensively capture the failure
relevant features of the monitoring data from the indus-
trial robot.

2) Dual Attention Model is introduced to adaptively in-
tegrate local features with global dependencies horizon-
tally from spatial and channel dimensions. Dual Attention
Model constructs parallel spatial attention and channel at-
tention based on the self-attention mechanism, so it can
capture the internal relationship between data and fea-
tures.

3) Convolutional Block Attention Module (CBAM) is in-
troduced to emphasize meaningful features along channel
and spatial. CBAM is based on convolution operation to
make feature graph pass-through channel attention and
spatial attention successively.

The remainder of this article is organized as follows:
Sect. 2 introduces the DMA-CNN model proposed by this
research. The experimental steps are given in Sect. 3; The
experimental results and discussion are given in Sect. 4;
The conclusions of this paper are given in Sect. 5.

2 Methodology
The whole proposed fault diagnosis process is shown in
Fig. 1. The whole framework is divided into two parts: data
pre-process and fault diagnosis. Then fault diagnosis is di-
vided into two parts: model training and state evaluation
(normal or abnormal).

In the data pre-processing stage, the key features in the
monitoring data of industrial robot are first extracted. In
this paper, three types of prevailing time-domain features,
which are mean value, standard deviation and kurtosis are
extracted for fault diagnosis. Mean, standard deviation and
kurtosis are calculated as follows:

mean =
data1 + data2 + · · · + datan

n
, (1)

Figure 1 Flow chart of the DMA-CNN based robotic fault diagnosis
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std =
1
n

√
√
√
√

n
∑

i=1

(datai – mean)2, (2)

Kurtosis =
[
∫ +∞

–∞ x(t) – mean]4p(x) dx
std4 . (3)

Subsequently, data is normalized. Data normalization
converts original data into data bounded in a specific range
by using the maximum and minimum of variable values,
so as to eliminate dimensionality and order of magnitude
effects and improve the computational efficiency of the al-
gorithm. Data normalization is as follows:

xi,j
norm =

2(xi,j – xj
min)

xj
max – xj

min

– 1, ∀i, j, (4)

where xi,j denotes the original ith data point of the jth fea-
ture, and xi,j

norm is the normalized value of xi,j, xj
max and xj

min
denote the maximum and minimum values of the original
measurement data from the jth feature, respectively.

Then, since the dataset is time-series data, Sliding Win-
dows are used to generate samples for capturing more
useful sequential information. Let s3 denote the size of
the time window. At each time step, all the past feature
data within the time window are collected to form a high-
dimensional feature vector and used as the inputs for the
network.

Finally, since the entire fault diagnosis model is a binary
classification task, the processed data samples are labeled
as the normal state (1) and faulty state (0) respectively, and
then the scrambled data set is divided into the training set
and validation set.

In the fault diagnosis stage, the model is firstly con-
structed and the CNN is used to extract features. As shown
in Fig. 2, in order to make the model pay more attention to
fault information, dual attention and CBAM are added to
the two parallel networks, and the features extracted by the
two convolutional neural networks are fused at the end,
then the fused features are input into a fully connected
layer to obtain fault diagnosis results. After training the

model with the training set, the validation set is used to
verify the accuracy of the model.

2.1 Convolutional neural networks
CNN is a deep learning-based supervised algorithm that
combines feature extraction and feature classification
methods. It is originally used in image processing. CNNs
are a very effective technique in large-scale applications
due to CNNs’ ability to automatically learn high-dimen-
sional features and solve the overfitting problem of the
machine learning method [37]. CNNs consist of an input
layer, multiple convolutional layers, pooled layers, a fully
connected layer, and an output layer. Input data of CNN
is typically two-dimensional (2D) data that learn abstract
spatial features by alternating overlays of convolutional
kernels and pooling operations. Optimization parameters,
dropout layers, and batch normalization are also included
to help CNNs rely less on training data.

In this paper, the processed data is 2-dimensional, the
first dimension is the number of features, and the other
dimension is the time series data associated with the fea-
ture. Because the relationship between the three features
extracted from the data set is not obvious [38] in the data
processing stage. Therefore, although the input and cor-
responding feature maps are 2-dimensional, the convolu-
tion kernel in the proposed network is one-dimensional
(1D) (Fig. 3) in practice. The processed data samples are
fed from the input layer to the convolutional layer, and
when generating a set of feature maps, the largest compu-
tational task occurs in the convolutional layer. In each con-
volutional layer, the input data is convolved using a kernel
with a local receive domain. Then, a bias term is added to
generate an output feature map by a nonlinear activation
function, such as Tanh, which is fed into subsequent con-
volutional layers. Convolution operations can be defined
as Eq. (5):

zi = Tanh
(

W T xi,j+Fl–1 + b
)

, (5)

Figure 2 The Model Architecture of DMA-CNN
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Figure 3 Illustration for 1D CNN operation

where, the Tanh activation function is shown in the follow-
ing Eq. (6):

y = Tanh(x) =
ex – e–x

ex + e–x , (6)

where w ∈ RFL represents the convolutional kernel, b rep-
resents the bias term, xi,j+Fl–1 represents a subsequence of
x with the length Fl from the point i, and zi represents the
learned feature.

After the convolutional layer, the Dropout layer is added
to the network. Dropout is a technique that can help re-
duce data overfitting when training neural networks, es-
pecially if the training dataset is small [39]. Overfitting of
the training data often results in better network perfor-
mance of the training dataset and poorer network per-
formance of the test dataset. Dropout provides a simple
and effective way to solve this problem. In this study, the
dropout technique is applied to the proposed network to
prevent complex collaborative adaptation of the training
data and to avoid repeated extraction of the same features.
In fact, dropout is achieved by setting the activation output
of some hidden neurons to zero so that those neurons are
not included in the forward propagation training process.
However, dropout is turned off during the test, suggest-
ing that all hidden neurons are involved in the test. In this

way, the robustness of the network is enhanced. Dropout
can also be thought of as a simple method of model inte-
gration within a network, helping to improve the feature
extraction capabilities of a network.

2.2 Attention mechanism
The attention mechanism is originally used for machine
translation and has now become an important concept in
the field of neural networks. The attention mechanism in
deep learning is essentially similar to the selective visual
attention mechanism of humans, and the core goal is to
select the information that is more critical to the current
mission from a large amount of information. The atten-
tion mechanism can be divided into spatial domains, chan-
nel domains, layer domains, mixed domains and time do-
mains according to the domains of concern. Since convo-
lution operations extract informative features by fusing the
cross-channel and spatial information, the attention model
based on the channel domain and space domain is suitable
for CNN and the effect is obvious [40], both the dual at-
tention model and CBAM used in this paper is based on
this.

The Dual Attention Model introduces a self-attention
mechanism to capture feature dependencies in the spatial
and channel dimensions respectively [41]. Specifically, it
contains two parallel attention parts, one is position at-
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Figure 4 The structure of the Dual Attention model

tention and the other is channel attention. The process-
ing methods of the two attentions are similar (Fig. 4). First,
the convolution layer is used to obtain the dimensionality
reduction feature map A. These features are then fed into
the Location Attention module to generate new spatial fea-
tures through the following three steps. The first step is to
generate a spatial attention matrix that simulates the spa-
tial relationship between any two pixels of a feature. Next,
matrix multiplication is performed between the attention
matrix and the original feature. Third, element-wise sum-
mation of the above multiplied matrix and original fea-
tures is performed to obtain the final representation. At
the same time, the channel attention module is used to
capture contextual information on the channel dimension.
The process of obtaining channel relationships is similar
to the position attention module, but the first step is to
calculate the channel attention matrix on the channel di-
mension. Finally, the outputs of the two attention modules
are aggregated to obtain better feature representations for
pixel-level predictions.

For positional attention, feeding the feature map A ∈
R

C×H×W to a convolutional layer produces two feature
maps B and C, where {B, C} ∈ R

C×H×W , and then reshap-
ing B and C to {B, C} ∈ R

C×N , where N = H × W , after
which do matrix multiplication with the transpose of B and

C, applying a SoftMax layer computing spatial attention
map S ∈R

C×H×W , as follows:

sji =
eBiCj

∑N
i=1 eBiCj

, (7)

where sji measures the ith position’s impact on jth posi-
tion. The more similar feature representations of the two
position contribute to greater correlation between them.

At the same time, feeding feature map A into another
convolutional layer to produce feature map D ∈ R

C×H×W ,
and reshape D to D ∈R

C×N , then do matrix multiplication
of D and S, reshape the result to R

C×H×W . Finally, multiply
the result by a parameter α and do the element summation
operations in the original feature map A to get the final
output E ∈R

C×H×W , the formula is as follows:

Ej = α

N
∑

i=1

(sjiDi) + Aj, (8)

where α is initialized as 0 and gradually learns to assign
more weight. The resulting feature E at each position is a
weighted sum of the features across all positions and origi-
nal features. Therefore, it has a global contextual view and
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selectively aggregates contexts according to the spatial at-
tention map.

For channel attention, calculate the channel attention
map X ∈ R

C×C directly by A, reshape A to R
C×N , with it-

self to do matrix multiplication, apply a SoftMax layer to
calculate the channel attention map X ∈R

C×C , as follows:

xji =
eAiAj

∑C
i=1 eAiAj

, (9)

where xji measures the ith channel’s impact on the jth
channel.

After that X and A do matrix multiplication, and the re-
sult is reshaped toR

C×H×W . Finally, the result by a parame-
ter β and do the element summation operation in the orig-
inal feature graph A are multiplied to get the final output
E ∈R

C×H×W , the formula is as follows:

Ej = β

C
∑

i=1

(xjiAi) + Aj, (10)

where β gradually learns a weight from 0. Equation (10)
shows that the final feature of each channel is a weighted
sum of the features of all channels and original features,
which models the long-range semantic dependencies be-
tween feature maps. It helps to boost feature discriminabil-
ity.

CBAM: Convolutional Block Attention Module based
on the convolution operation [42]. As shown in Fig. 5,

CBAM contains two concatenated attentions, one is chan-
nel attention and the other is spatial attention, for chan-
nel attention, average pooling and maximum pooling are
first used to aggregate the spatial information of feature
maps, generating two different spatial feature maps: Fc

avg
and Fc

max, which represent the average pooling feature and
the maximum pooling feature, respectively. This feature
map is then forwarded to a shared network, generating our
channel attention Mc ∈ R

C×1×1. A shared network con-
sists of a multilayer perceptron and a hidden layer. To re-
duce parameter overhead, the hidden activation size is set
to R

C/r×1×1 where r is the reduction ratio. After applying
a shared network to each feature map, an output feature
vector is generated using element summation. In short, the
channel attention diagram is calculated as:

Mc(F) = σ
(

MLP
(

Fc
avg

)

+ MLP
(

Fc
max

))

, (11)

where σ the sigmoid function is represented.
For spatial attention, two pooling operations are used to

aggregate the channel information of the feature map, gen-
erating two two-dimensional feature maps: Fs

avg ∈R
1×H×W

and Fs1×H×W
max . Represents the average pooling characteris-

tic and the maximum pooling characteristic on the chan-
nel, respectively. Then connect the two feature maps into
a convolutional layer to produce our 2D spatial attention
map. In short, spatial attention is calculated as:

Ms(F) = σ
(

f 7×7([Fs
avg; Fs

max

]))

, (12)

Figure 5 The structure of the CBAMmodel
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where σ represents the sigmoid function. f 7×7 represents
a convolution 7 × 7 operation for which the convolution
kernel.

2.3 Fault classification performance evaluation indicators
Since the proposed method judges bearing faults from cur-
rent signals, evaluation parameters such as accuracy, re-
call rate, F1 and accuracy are used to evaluate classifica-
tion problems. These parameters can be obtained from
Eqs. (13)–(16):

Precision
TP

TP + FP
, (13)

Recall =
TP

TP + FN
, (14)

F1 =
2 × Precision × Recall

Precision + Recall
, (15)

Accuracy =
TP + TN

TP + FP + TN + FN
. (16)

3 Experimental setup
3.1 Data pre-processing
The data used in the experiment in this paper are from the
six-axis industrial robot, which has the advantages of high
precision, strong acceleration ability and good rigidity. Be-
cause failure is rare in the operation, failure data is often
difficult to collect. The data used in this paper were ob-
tained by fault injection experiments. Specifically, a faulty
reducer was mounted on the sixth axis of an industrial
robot to generate the failure data. After the faulty reducer
was injected, the robot was used to perform some daily
tasks to generate relevant monitoring data. In this case, the
current signal was successfully collected and used for fur-
ther modelling. Therefore, this paper uses the current data
of the industrial robot to diagnose the fault state of the re-
ducer.

Firstly, feature extraction was carried out on the data set,
sliding s1 step each time, mean, standard deviation and
kurtosis were extracted from the data interval with a step
length of s2, and they were normalized. The normalization
formula was shown in Eq. (4). Then, the newly constructed
data set was processed with a sliding window step of s3 so
each sample shape was 1×3× s3. These were used as input
to the model.

3.2 Prognostic procedure
As shown in Fig. 2, the proposed model consisted of two
parallel modules, one for the CNN with Dual Attention
and another for the deep convolutional neural network
with CBAM, the entire model contained 6 layers, of which
each module contained 4 layers of convolution, the first
two layers of convolution had the same configuration, each
layer convolution was used Fn kernels, each kernel size was

Fl × 1, attention was added after the first layer of convolu-
tion, in the last layer of convolution, a convolutional layer
with a convolutional kernel was used to aggregate the fea-
ture map of each module output, the convolutional ker-
nel size was 3 × 1, so that each module was obtained an
advanced feature map from the original feature separately.
Subsequently, the feature maps outputs of the two modules
are fused and flattened, and then passed through two lin-
ear layers and finally the binary classification results were
output by SoftMax.

All convolutional layers used the Tanh function as the
activation function, the Xavier normal initializer was used
to initialize the network weights, in order to further im-
prove the prediction performance, backpropagation algo-
rithm was used for fine-tuning. The parameters of the pro-
posed model were updated by the cross-entropy loss func-
tion, and the Adam was used as the optimizer of the small-
batch update. The cross-entropy loss function was as fol-
lows:

loss
(

y, y∧)

= –
q

∑

j=1

yj log y∧
j , (17)

where yj represents the actual label, y∧
j represents the

model prediction.
80% of the data samples were used as training samples

and the remaining 20% of the data samples were used as
test samples. For each training epoch, the samples were
randomly divided into multiple small batches, each con-
taining 512 samples, and entered into the training system.
Based on the cross-entropy loss function of each small
batch, the weights of each layer were optimized. It should
be noted that the choice of batch size affects the train-
ing performance of the network. On the basis of experi-
ments, this paper found a suitable batch size of 512 samples
and adopted different learning rates, the maximum train-
ing epoch was 150, in the first 100 epochs, the learning rate
was set to 0.001 for rapid optimization, and in the last 50
epochs, the learning rate was set to 0.0001 for smooth con-
vergence.

Finally, the test samples were fed into the trained net-
work to predict the failure state. The parameters of the
proposed model were shown in Table 1.

Table 1 The DMA-DCNN model parameters

Parameter Value

s1 2
s2 5
s3 5
Batch size 512
Neurons in fully-connected layer 256
Epoch number 150



Lu et al. Autonomous Intelligent Systems            (2022) 2:12 Page 9 of 12

3.3 Benchmarking experiment
In order to verify the performance of the proposed method,
the results were compared with other similar methods.

DCNN: It is composed of 1D-CNN layers. Compared
with the proposed method, there was only one module,
and the attention layer is replaced by a convolutional
layer; DA-CNN: There is only one Dual Attention mod-
ule compared to the proposed method; CBAM-CNN:
There is only one CBAM module compared to the pro-
posed method; DA-DA-CNN: There are two Dual Atten-
tion modules compared to the proposed method; CBAM-
CBAM-CNN: There are two CBAM modules compared
to the proposed method;

For the above 5 methods, the input layer and output layer
were the same as the model proposed in this article, and
both used the cross-entropy function as the loss function,
and the backpropagation algorithm was used to update the
parameters, and the Adam algorithm was used as the opti-
mizer. In order to evaluate the performance of the model,
the Precision, Recall, F1 and Accuracy of the results were
respectively calculated by running each algorithm 5 times,
and their mean values and standard deviations were calcu-
lated.

4 Experimental results and discussion
4.1 Experimental results
The experimental results are shown in Fig. 6, DMA-CNN
has achieved the best results, and the standard deviation
is relatively small, indicating that the results obtained are
stable. Specifically, the proposed model achieved an accu-
racy of 93.5% on the test set, which is not much differ-
ent from the accuracy rate of 93.1% in the DA-DA-CNN.
Compared with the DCNN, the accuracy of the proposed
model is improved by 17%. The proposed model achieved
92.2% precession on the test set, which is only a slight ad-
vantage over other models that add attention, but the pro-
posed model yields the most stable results in the standard
deviation, which had a 20% increase in progress compared
to the original DCNN. Moreover, the DMA-CNN reached
94% in recall, which is significantly better than other mod-
els and 10% higher than the original DCNN. Finally, on
F1_score, it was an improvement of nearly 16% compared
to the original DCNN, and it was better than other cases.
In summary, compared with the DCNN without attention,
the evaluation indicators of the proposed model have been
significantly improved, and the experimental results are
relatively stable, compared with other DCNNs with atten-
tion. The proposed dual-module DMA-CNN performed
the best.

Figure 6 Experimental Results
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Figure 7 Visualization of experimental results

To present the performance of the proposed model more
clearly, the T-SNE technique was used to visualize the dis-
tribution of features learned by different models. The visu-
alization results are shown in Fig. 7. It can be seen that the
original DCNN classification effect is not satisfactory. The
addition of attention mechanism makes the classification
boundary clear. In addition, DMA-CNN proposed in this
paper has achieved the best classification effect. Compared
with other models, the classification plane of this method
is the most obvious.

4.2 Discussion
The proposed model extracts the fault-related features
in the data sample through two different attention mod-
ules. Compared with the traditional attention-based CNN,
this model adds two attention modules to their respective
CNN to improve the feature extraction ability and adapt-
ability of CNN. Among them, the dual attention model de-
signs parallel channel attention and spatial attention based
on the self-attention mechanism, while CBAM designs a
series of channel attention and spatial attention based on
convolution operation. The two attention modules con-
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sider the relationship between features in space and chan-
nels from different aspects, in order to pay as much atten-
tion to the fault-related features as possible. The network
not only reduces the loss of fault-related information but
also suppresses unnecessary features to help the flow of in-
formation in the network.

Although the proposed fault diagnosis model has
achieved good performance, there are still some short-
comings. The model proposed in this paper can only dis-
tinguish whether the robot joint is in the faulty stage, but
does not judge the type of fault, In the future, the model
can be improved for multi-classification problems. Sec-
ondly, from the experimental results, the evaluation indi-
cators of the proposed model can only reach about 93%
and compared with DA-DA-CNN, the advantages are not
obvious. In the future, we can try to further study dual-
attention to obtain a better feature map. Meanwhile, in
the data preprocessing stage, feature extraction and slid-
ing window processing data with different lengths to ob-
tain better performance needs to be studied. In addition,
how to reduce the steps of data preprocessing while main-
taining the performance of the model is also the focus of
future research. Finally, Industrial robot failures are rare,
so it is not easy to collect failure data. And in future work,
we will further study the direction of transfer learning.

In addition, since the step length of feature extraction
is 5, the length of sliding window is also 5, which means
that if the model is applied to online data. Only 25 data
are needed to diagnose the equipment once in the practi-
cal implications. So as to timely maintain the equipment,
we reduce losses and improve industrial production effi-
ciency.

5 Conclusions
Aiming at the problem of fault diagnosis of industrial
robots, a DMA-CNN model is proposed, which can lo-
cate fault characteristics from different aspects in the data
through different attention mechanisms, and improves the
characteristics of convolutional neural networks extrac-
tion capacity. First, a sample dataset is obtained by data
preprocessing, then a DMA-CNN is constructed for fea-
ture extraction. Finally, the test set is used for fault diag-
nosis. The experimental study on the real industrial robot
data shows that this model can effectively detect the ab-
normal state of the industrial robot reducer, and compared
with other fault diagnosis models, this method is superior
to other models in terms of accuracy, F1_score, precession,
recall, which provides a new and effective method for fault
diagnosis of industrial robot reducer.
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