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Abstract

This thesis aims to innovate knowledge on nonlinear flight control algorithms with
reduced model dependency by resolving the research gaps for practical applications.
Two control schemes with different principles on reducing model dependency are
considered in this thesis; incremental control scheme and adaptive control scheme.
In incremental control scheme, state derivative and control surface deflection an-
gle measurements are additionally utilized to substitute required model information
except control effectiveness. In adaptive control scheme, uncertain model param-
eters are estimated online via adaptation law and these estimates are utilized in
control input command calculation. Discussions in this thesis are based on incre-
mental backstepping control (IBKS) and composite adaptive backstepping control
(C-ABKS) which are obtained by applying those control schemes to backstepping
control (BKS). Contributions of this thesis with each algorithm are detailed as fol-
lows.

This thesis provides critical understandings on IBKS in a systematic way via the-
oretical analysis under various defects. As a starting point, closed-loop analyses
under the model uncertainties are conducted with IBKS and BKS for theoretical
interpretations on reduced model dependency in IBKS. Stability and performance
of the closed-loop system with IBKS are shown to be not affected by the model
uncertainties, while they significantly influence the closed-loop characteristics with
BKS. One interesting observation is that the uncertainty on control effectiveness
information, which is still required to implement IBKS, does not have any impact
on the closed-loop system with IBKS if a control input is calculated, transmitted
and reflected fast enough to an actual control surface. The next two analyses are
conducted to identify how the defects on the additional measurements together with
the model uncertainties affect stability and performance of the closed-loop system
with IBKS. First, the closed-loop characteristics with IBKS is analyzed under biases
on the additional measurements and the model uncertainties. The measurement bi-
ases result in a steady state error while not affecting the closed-loop system stability
with IBKS. Unlike the analysis results only with the model uncertainties, the uncer-
tainty in control effectiveness information has an impact on the steady-state error
of the closed-loop system. Second, the closed-loop system with IBKS under de-
lays on the additional measurements and the model uncertainties is examined with
the analysis framework proposed in this thesis. New analysis framework with opti-
mization concept is proposed to systematically and efficiently test the closed-loop
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system stability under measurement delays. The key finding is that the delays on
the additional measurements should satisfy a specific relationship for the closed-loop
stability with IBKS. Besides, it is identified that this stability condition is affected
by the uncertainty on control effectiveness information.

A new C-ABKS is designed by resolving research gaps of the composite adaptive
control for a practical application as follows. First, parameter convergence under
finite excitation (FE) is guaranteed with a new paradigm for the information matrix
design which is suggested by developing a modulation-based approach. It is proven
that the new information matrix is positive definite for all the time from the begin-
ning under FE, while the accumulation-based approach in previous studies requires
uncertain amount of time to populate the information matrix to be full rank. The
closed-loop system with the C-ABKS utilizing the new information matrix is guar-
anteed to be globally exponentially stable for all the time under FE. Comparing
to the accumulation-based approach, the new modulation-based approach provides
advantages in adaptation speed and system robustness since the information ma-
trix is designed to have all eigenvalues with moderate level of magnitudes. Second,
the adaptation speed is improved without excessive increase of the adaptation gains
in the new logarithmic regression-based composite adaptive control system. The
parameter convergence speed is enhanced by slowing down the adaptation speed
degeneration at the later stage where the estimation error is small; a concave and
monotonically increasing characteristics of a logarithmic function is utilized for the
regression term design in this research. The closed-loop system with the proposed
logarithmic regression-based C-ABKS is shown to be asymptotically stable under
FE by applying Lyapunov theory. Within the system boundary, the new logarithmic
regression-based algorithm is proven to be always faster than the well-known linear
regression-based algorithm under the same adaptation gain if its design parameters
satisfy the suggested condition. In order to make the linear regression-based ap-
proach to become faster than the logarithmic regression-based approach with the
design parameters satisfying this condition, the adaptation gain of the linear regres-
sion term should be increased and this can result in reduced robustness.

Important findings for IBKS and C-ABKS are suggested and verified with simula-
tions throughout the thesis. A comparative study is additionally conducted to show
different properties of IBKS and C-ABKS under model uncertainties and measure-
ment delays via numerical simulations.
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2.6 Closed-loop System Response with IBKS under the uncertainty in M̂∗
δ 41

2.7 Aerodynamic Derivatives for Simulation . . . . . . . . . . . . . . . . 46

3.1 Closed-loop System Response with bq̇0 . . . . . . . . . . . . . . . . . 61

3.2 Closed-loop System Response with bδ0 . . . . . . . . . . . . . . . . . 62

4.1 Relationships between τq̇ and τδ for system stability under ∆M̂∗δ
. . . 79

4.2 Time response graphs for Aircraft A . . . . . . . . . . . . . . . . . . 81

4.3 Gain margin(GM) for stable closed-loop system under τq̇ and τδ to-
gether with ∆M̂∗δ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4 Rising time(tr) for the stable points . . . . . . . . . . . . . . . . . . . 83

4.5 Time response graphs for the representative cases . . . . . . . . . . . 84

5.1 α Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2 Tracking and Estimation Error . . . . . . . . . . . . . . . . . . . . . 104

6.1 State Response and Control Input . . . . . . . . . . . . . . . . . . . . 126



xii LIST OF FIGURES

6.2 Tracking and Estimation Error . . . . . . . . . . . . . . . . . . . . . 126

6.3 Eigenvalues of Information Matrix (Outer Loop) . . . . . . . . . . . . 127

6.4 Eigenvalues of Information Matrix (Inner Loop) . . . . . . . . . . . . 127

7.1 Tracking and Estimation Error under Nominal Circumstance . . . . . 150

7.2 Tracking and Estimation Error with Measurement Delay . . . . . . . 151

8.1 System Response with ∆M∗α and ∆M∗q . . . . . . . . . . . . . . . . . 160

8.2 System Response with ∆M∗δ
. . . . . . . . . . . . . . . . . . . . . . . 160

8.3 System Response with τδ and τq̇ under ∆M∗δ
= −0.2 . . . . . . . . . . 161

8.4 System Response with τδ and τq̇ (∆M∗δ
= 0) . . . . . . . . . . . . . . . 161

8.5 System Response with τδ and τq̇ under ∆M∗δ
= 0.5 . . . . . . . . . . . 162

8.6 Block Diagram of Control System . . . . . . . . . . . . . . . . . . . . 165

8.7 System Response with ∆(?) . . . . . . . . . . . . . . . . . . . . . . . . 168

8.8 System Response with τ(·) and τ(∗) under ∆(?) = −0.2 . . . . . . . . . 169

8.9 System Response with τ(·) and τ(∗) under ∆(?) = 0 . . . . . . . . . . . 170

8.10 System Response with τ(·) and τ(∗) under ∆(?) = 0.5 . . . . . . . . . . 171



List of Tables

2.1 Case Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2 Case Study : Parameters for Transfer Function with BKS . . . . . . . 32

2.3 Case Study : Parameters for Stability Conditions with BKS . . . . . 33

2.4 Case Study : Parameters for Steady State Error with BKS . . . . . . 33

2.5 Simulation Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.6 Steady State Error for system with BKS, ess,1 . . . . . . . . . . . . . 40

3.1 Simulation Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2 Predicted Steady State Error ess by (3.25) with bq̇0 . . . . . . . . . . 61

3.3 Predicted Steady State Error ess by (3.25) with bδ0 . . . . . . . . . . 62

4.1 Stability Test Algorithm for Nonlinear Characteristic Equations . . . 77

4.2 Framework Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.3 kmax for each ∆M̂∗δ
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.4 Aerodynamic Derivatives of Aircraft . . . . . . . . . . . . . . . . . . . 87

5.1 Simulation parameters for ABKS . . . . . . . . . . . . . . . . . . . . 103

6.1 Common Design Parameters . . . . . . . . . . . . . . . . . . . . . . . 125

6.2 Design Parameters for Information Matrix . . . . . . . . . . . . . . . 125

7.1 Design Parameters for Adaptation Laws . . . . . . . . . . . . . . . . 150

8.1 Simulation Cases under τδ, τq̇ and ∆M∗δ
. . . . . . . . . . . . . . . . . 159



xiv LIST OF TABLES

8.2 Simulation Cases under τ(·), τ(∗) and ∆(?) . . . . . . . . . . . . . . . 168

8.3 Summary of Comparative Study . . . . . . . . . . . . . . . . . . . . . 172



LIST OF TABLES xv



Chapter 1

Introduction

1.1 Background and Motivation

There have been extensive and valuable researches on nonlinear flight control al-

gorithms [1–15] which have advantages comparing to linear controllers as follows.

First, time-consuming tasks for gain scheduling are not required. Second, nonlinear

controllers can show improved performance especially for flight envelope with signif-

icant nonlinearities. One of the biggest limitations in nonlinear flight controllers is

that they are highly dependent on aircraft model information identified off-line. By

utilizing the model information to cancel out undesired nonlinearities in dynamics,

most nonlinear controllers make error dynamics of a closed-loop system to achieve

desired behaviors.

Since it is difficult to obtain accurate model information from aero-prediction or

wind tunnel test in reality, model uncertainties are inevitable. Besides, there exist

possibilities of accidents in flight which significantly change original characteristics

of an airplane in unpredictable manner. Hence, it is important to reduce model

dependency of nonlinear flight control algorithms.

Backstepping(BKS) control [16] is one of the most widely and successfully applied

nonlinear flight control algorithms [1–10]. BKS is sensitive to model uncertainties

like other nonlinear controllers, but it has additional merits as follows. Since BKS

has a cascade control structure, a control law design for a system with large dimen-

sion can be split into recursive design for several subsystems with smaller dimensions.

Besides, the closed-loop system with BKS fulfills desired response with known sta-

bility and convergence properties, as it is designed under Lyapunov framework. This
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thesis focuses on BKS among nonlinear flight control algorithms and mainly consid-

ers two sensor dependent approaches to reduce its model dependency as follows.

Incremental backstepping(IBKS) controller is proposed in previous studies [17–20]

to reduce model dependency of BKS with supplementary measurements. Compar-

ing to BKS, IBKS additionally utilizes state derivative and control surface deflection

angle measurements which replace required knowledge about a model except con-

trol effectiveness information for its implementation. It is evident that stability and

performance with IBKS are strongly influenced by quality of these additional mea-

surements, but measurement defects are inevitable in practical applications. Hence,

it is essential to have critical understandings on the impacts of defects in these ad-

ditional measurements and uncertainty in control effectiveness information to the

system with IBKS.

Adaptive control [21–45] can be considered as another sensor dependent approach

for reduced model dependency of BKS. Note that adaptive control algorithm can

be designed to estimate uncertain model information on-line via an adaptation law

with existing measurements and utilize these estimates in control command calcu-

lation. This thesis focuses on composite adaptive backstepping(C-ABKS) control

for improved estimation and tracking performance with enhanced system robustness.

There are practical issues with this parameter estimation-based control scheme; per-

sistent excitation(PE) is required for parameter convergence and high adaptation

gain is utilized to enhance convergence speed. PE results in persistent oscillations

of state and control input signals, which is unrealistic. Fast convergence is essential

for online adaptation, but excessively large adaptation gain amplifies noise.

To this end, it is important to reduce model dependency of BKS while respond-

ing research gaps for practical applications in considered methodologies mentioned

above.

1.2 Research Aim and Objective

The overall scientific aim of this thesis is to innovate knowledge on nonlinear flight

control algorithms with reduced model dependency by resolving research gaps for

practical applications in considered methodologies.

This thesis considers BKS among nonlinear flight control algorithms and focuses

on incremental and adaptive control schemes to reduce its model dependency. The



Introduction 3

individual objectives against the overall aim are addressed as follows, considering

technical issues to be tackled in each considered approach i.e. IBKS and C-ABKS.

� O1. Analysis with IBKS under Model Uncertainty: Suggest critical

understandings obtained from theoretical closed-loop analysis under model

uncertainty with IBKS comparing to one with BKS.

O2. Analysis with IBKS under Measurement Bias and Model Un-

certainty: Suggest critical understandings on closed loop system characteris-

tics with IBKS under measurement bias and model uncertainty obtained from

theoretical analysis.

O3. Analysis with IBKS under Measurement Delay and Model Un-

certainty: Propose new stability analysis framework and suggest critical un-

derstandings about closed-loop characteristics with IBKS under measurement

delay and model uncertainty.

� O4. Design of C-ABKS: Propose C-ABKS which reduces model depen-

dency of BKS and design an adaptation law with less computational complex-

ity which takes advantage of cascade control structure of BKS.

O5. Design of C-ABKS with new information matrix: Propose C-

ABKS with new information matrix, which achieves parameter convergence

without PE.

O6. New C-ABKS Design for adaptation speed enhancement: Pro-

pose new C-ABKS which enhances adaptation speed without high gains.

� O7. Comparative study between IBKS and New C-ABKS: Compare

pros and cons of IBKS and New C-ABKS under various defect circumstances

e.g. model uncertainty and measurement delay, demonstrating their advan-

tages from reduced model dependency comparing to BKS.

1.3 Thesis Overview and Contribution

This thesis is written in a paper-format; each chapter from 2 to 7 is based on the

corresponding paper published or submitted. Accordingly, each chapter becomes

a self-contained description of all aspects of the research, which provides introduc-

tion with research context and relevant literature review, methodologies, results,

discussions, conclusions and references.
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Connections between research objectives, chapters and papers are illustrated in Fig

1.1.

Figure 1.1: Thesis Outline

Chapter 2, 3 and 4 deal with incremental control scheme to reduce model dependency

of BKS, providing knowledge on IBKS under various critical defects in a system-

atic way. Note that IBKS additionally utilizes state derivative and control surface

deflection angle measurements to replace required knowledge about a model except

control effectiveness information, comparing to BKS. Chapter 2 suggests theoretical

closed-loop analysis results under the model uncertainties with IBKS comparing to

the ones with BKS. Chapter 3 provides closed loop characteristics with IBKS con-

sidering biases in the additional measurements and the model uncertainty in control

effectiveness information via theoretical analysis. In Chapter 4, delays in the ad-

ditional measurements together with the model uncertainty in control effectiveness

information are considered for the analysis of the closed-loop system with IBKS.

For this delayed system with the model uncertainty, new stability analysis frame-

work is proposed and critical understandings about the closed-loop characteristics

are investigated.

Chapter 5, 6 and 7 deal with composite adaptive control scheme to reduce model

dependency of BKS, providing new C-ABKS where research gaps for practical ap-

plications in the considered scheme are resolved step by step. Chapter 5 corresponds

to a basis for Chapter 6 and 7 where new C-ABKS is proposed. In Chapter 5, model

dependency of BKS is reduced via parameter estimation in the composite adapta-

tion law which has less computational complexity by taking advantage of cascade
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control structure of BKS. Note that linear regression based approach and accumu-

lation based information matrix design method in previous studies are utilized in

Chapter 5. In Chapter 6, a new paradigm in the information matrix design for pa-

rameter convergence without PE is proposed, which resolves issues arising from the

existing accumulation based design method. In Chapter 7, a novel idea to enhance

adaptation speed without an excessive increase in gains is proposed, resulting in

logarithmic regression based approach. Finally, new C-ABKS is proposed in Chap-

ter 7 with new information matrix in Chapter 6 and logarithmic regression based

composite adaptation law in Chapter 7.

Comparative study between IBKS in Chapter 2-4 and new C-ABKS in Chapter 7 is

conducted for general discussions in Chapter 8. Their pros and cons under various

defect circumstances are investigated from the simulation results with a short period

mode dynamics of an aircraft under the model uncertainty and the measurement

delay. Note that Chapter 2-4 with IBKS are based on short period mode dynamics

due to its importance in flight control and simplicity in theoretical analysis, but

more general and complicated dynamics are considered especially in Chapter 6-7 for

verification of newly proposed algorithms.

Each chapter from 2 to 7 which corresponds to each block in Fig 1 is overviewed in

detailed way as below, underpinning its contributions.

� Chapter 2. Incremental Backstepping Control under Model Uncer-

tainty

C1. B.-J. Jeon, M.-G. Seo, H.-S. Shin, and A. Tsourdos, “Understandings of

the Incremental Backstepping Control through Theoretical analysis under the

Model Uncertainties,” in 2018 IEEE Conference on Control Technology and

Applications (CCTA). IEEE, 2018, pp. 318-323. (Published)

J1. B.-J. Jeon, M.-G. Seo, H.-S. Shin, and A. Tsourdos, “Understandings

of Classical and Incremental Backstepping Controllers with Model Uncertain-

ties,” IEEE Transactions on Aerospace and Electronic Systems, 2019. (Online

published)

Chapter 2 suggests theoretical closed-loop analysis results with BKS and IBKS

under model uncertainties. Note that both BKS and IBKS are designed to

achieve asymptotic stability of the system for the nominal case. For the case

with and without model uncertainties, closed-loop analyses with BKS and

IBKS are conducted under a piecewise approach, whose results are system-

atically assessed as follows. First, transfer functions with BKS and IBKS
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under the model uncertainties are compared with the ones for the nominal

case. This shows important changes on the transfer functions due to consider

model uncertainties, resulting in conditions to maintain stability and perfor-

mance metrics under the model uncertainties. Second, distinctions between

the transfer functions with two algorithms are investigated to clarified how

the effect of the model uncertainties to the closed-loop system becomes dif-

ferent depending on the applied control algorithm. The key finding can be

summarized as follows; unlike the system with BKS, the closed-loop system

with IBKS is not affected by the uncertainties on any model information in-

cluding control effectiveness which is still required for IBKS implementation,

if the control input is calculated, transmitted, and reflected fast enough to

the actual control surface. To have more insight from simplified situations,

case studies are conducted for BKS and IBKS under the assumption that the

uncertainty exists only in one aerodynamic derivative estimate while the other

estimates have true values. This facilitates systematic interpretations on the

impacts of the uncertainty on the specific aerodynamic derivative estimate to

the closed-loop system, which is represented as weight factors derived for each

case. Simulation is performed to verify properties obtained from the analysis.

� Chapter 3. Incremental Backstepping Control under Measurement

Bias and Model Uncertainty

C2. B.-J. Jeon, M.-G. Seo, H.-S. Shin, and A. Tsourdos, “Closed-loop Analysis

with Incremental Backstepping Controller considering Measurement Bias,” in

the 21st IFAC Symposium on Automatic Control in Aerospace, vol. 52, no.

12, pp. 405-410, 2019. (Published, One of six finalist papers for the young

author award)

In Chapter 3, closed loop characteristics with IBKS obtained from theoretical

analysis when both measurement bias and model uncertainty exist, are exam-

ined. Comparing to BKS, measurements about state derivatives and control

surface deflection angles are additionally required to implement IBKS, so bi-

ases on them are mainly considered in this analysis. Considering measurement

biases and model uncertainty, a transfer function with IBKS is derived under

a piecewise approach and following properties are suggested from the analysis.

First, the measurement biases cause a steady state error, but they do not have

any impact to the characteristic equation. Second, a model uncertainty in con-

trol effectiveness information has an impact to this steady state error, which

is the key difference between properties provided in Chapter 2 and 3. Note
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that in Chapter 2 where the closed-loop characteristics with IBKS considering

only model uncertainties are investigated, it is shown that system stability

and performance are not affected by any model uncertainty even in control

effectiveness information if a control command is calculated, transmitted and

reflected fast enough to a real control surface deflection. Properties obtained

from the theoretical analysis are verified through simulations.

� Chapter 4. Incremental Backstepping Control under Measurement

Delay and Model Uncertainty

J2. B.-J. Jeon, M.-G. Seo, H.-S. Shin, and A. Tsourdos, “Understandings

of Incremental Backstepping Controller considering Measurement Delay with

Model Uncertainty,” Aerospace Science and Technology, 2020. (In revision to

submit)

Chapter 4 suggests closed loop characteristics with IBKS under measurement

delay along with model uncertainty, obtained from a proposed analysis frame-

work. Delays on state derivative and control surface deflection angle measure-

ments which are additionally utilized in IBKS comparing to BKS are mainly

considered in this closed loop analysis. To judge absolute stability for the

system with IBKS under measurement delays and model uncertainty, new nu-

merical framework with an optimization concept is proposed. Note that a

transfer function can be derived under a piecewise approach but it is diffi-

cult to find analytic solutions of the characteristic equation because of the

exponential terms generated from considered delays. The proposed numerical

framework utilizes an optimization concept to search unstable poles in efficient

and systematic manner even for a metric function with high nonlinearity due

to the considered measurement delays. By applying the suggested numerical

framework, critical system characteristics with IBKS under measurement de-

lays and model uncertainty are obtained in absolute stability point of view as

follows. First, a stability condition is found as a relationship between delays on

state derivative and control surface deflection angle measurements. Second,

this stability condition is shown to be affected by the model uncertainty in

control effectiveness information, which is the main difference with the anal-

ysis results in Chapter 2 and 3. Verification and validation of the obtained

properties about the absolute stability are performed through simulations.

From simulation results, robustness and performance under the measurement

delays together with the model uncertainty are additionally investigated for

better understandings. Comparative study provides valuable insights about
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individual and integrated effects of the measurement delays and the model

uncertainty to the closed loop system with IBKS.

� Chapter 5. Composite Adaptive Backstepping Control

C3. B.-J. Jeon, H.-S. Shin, and A. Tsourdos, “Composite Adaptive Back-

stepping Control considering Computational Complexity and Relaxation of

Persistent Excitation,” in the 21st IFAC World Congress, 2020. (Accepted)

In Chapter 5, adaptive control is examined as another sensor dependent ap-

proach for reduced model dependency of BKS. Note that composite adaptive

control is considered for improved estimation and tracking performance with

enhanced system robustness. The adaptation law for C-ABKS is designed to

estimate model parameters in each loop separately by taking an advantage

from a cascade control structure of BKS. Comparing to the adaptation laws

in previous studies which estimate whole model parameters of the dynamic

system at once, the designed adaptation law deals with smaller estimation

problems, resulting in reduced computational complexity. Relaxation of PE

requirement for parameter convergence has not been discussed for C-ABKS,

which is one of main technical issues to be tackled in adaptive control. In

Chapter 5, PE requirement is relaxed to FE condition by utilizing the infor-

mation matrix design method in previous studies. Note that new paradigm in

the information matrix design for parameter convergence without PE will be

proposed in Chapter 6.

� Chapter 6. Composite Adaptive Backstepping Control with New

Information Matrix

J3. B.-J. Jeon, H.-S. Shin, and A. Tsourdos, “Composite Adaptive Control

with New Information matrix for Parameter Convergence without Persistent

Excitation,” Automatica, 2020. (Submitted)

Chapter 6 proposes a composite adaptive control algorithm with new infor-

mation matrix, which aims to achieve parameter convergence without PE.

If parameter estimates do not converge to their true values, parameter drift

can occur especially under the existence of non-parametric uncertainties such

as noise and unmodeled dynamics, resulting in instability phenomena with

sudden bursting. Hence, the convergence of the parameter estimation should

be guaranteed, but PE requirement is unrealistic for practical applications

since this leads to continuous oscillations of state and control input signals.

In Chapter 6, a new paradigm for the information matrix design is proposed
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to accomplish full rank under FE for parameter convergence by developing a

modulation-based approach. This novel approach has substantially different

design principle from the accumulation based approaches in previous studies;

the proposed design framework is based on linear independency between the

signals via multiple filters with different modulation effects. Multiple filtered

regressor vectors are modified to be orthogonal with each other while main-

taining their magnitudes, and the information matrix is constructed with these

modified filtered regressor vectors. The new information matrix is shown to

be positive definite for all the time from the beginning and it is proven to

be bounded. The new information matrix has moderate level of eigenvalues,

which is beneficial for adaptation speed and system robustness. The closed-

loop system with the proposed composite adaptive control utilizing the new

information matrix is shown to be globally exponentially stable based on Lya-

punov stability theory. Numerical simulations are conducted for verification

of the theoretical findings and demonstration of advantages over the existing

information matrix design approaches.

� Chapter 7. Logarithmic Regression based Composite Adaptive Back-

stepping Control

J4. B.-J. Jeon, H.-S. Shin, and A. Tsourdos, “Composite Adaptive Control

with Logarithmic Regression for Fast Adaptation,” IEEE Transactions on Au-

tomatic Control, 2020. (In revision to submit)

In Chapter 7, new logarithmic regression-based composite adaptive control is

proposed to accomplish fast parameter convergence without excessive increase

of the adaptation gain. In order to achieve this aim, Chapter 7 suggests a

new paradigm for composite adaptation law design with regression pattern

shaping. Comparing to linear regression-based approach in previous studies,

logarithmic function with concave and monotonically increasing characteris-

tics is introduced for the regression term of the proposed approach to enhance

parameter convergence speed by relaxing the adaptation speed degeneration

at the later stage. With the proposed logarithmic regression-based composite

adaptation law, the asymptotic stability of the closed-loop system is guaran-

teed and this is proven under the Lyapunov theory. The condition on the de-

sign parameters of the logarithmic regression-based composite adaptation law

to make it always faster than the linear regression-based composite adapta-

tion law for the same adaptation gain is provided within the system boundary.

When this condition is satisfied, the adaptation gain of the linear regression-
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based approach is required to be increased to make this approach always faster

than the new logarithmic regression-based approach, which can result in lack

of system robustness. Numerical simulations are performed for demonstration

of advantages over the existing linear regression-based composite adaptation

law and verification of the theoretical findings. Note that new information

matrix in Chapter 6 is utilized to the logarithmic regression based composite

adaptation law in Chapter 7, resulting in the final new C-ABKS which achieves

both parameter convergence under FE and fast adaptation without excessive

increase of the adaptation gain.

1.4 List of Publications

List of journal and conference papers submitted or published is addressed below,

which are related to this PhD research.

Journal Papers

J1. B.-J. Jeon, M.-G. Seo, H.-S. Shin, and A. Tsourdos, “Understandings of Clas-

sical and Incremental Backstepping Controllers with Model Uncertainties,” IEEE

Transactions on Aerospace and Electronic Systems, 2019. (Online published)

J2. B.-J. Jeon, M.-G. Seo, H.-S. Shin, and A. Tsourdos, “Understandings of Incre-

mental Backstepping Controller considering Measurement Delay with Model Uncer-

tainty,” Aerospace Science and Technology, 2020. (In revision to submit)

J3. B.-J. Jeon, H.-S. Shin, and A. Tsourdos, “Composite Adaptive Control with

New Information matrix for Parameter Convergence without Persistent Excitation,”

Automatica, 2020. (Submitted)

J4. B.-J. Jeon, H.-S. Shin, and A. Tsourdos, “Composite Adaptive Control with

Logarithmic Regression for Fast Adaptation,” IEEE Transactions on Automatic

Control, 2020. (In revision to submit)
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Conference Papers

C1. B.-J. Jeon, M.-G. Seo, H.-S. Shin, and A. Tsourdos, “Understandings of the

Incremental Backstepping Control through Theoretical analysis under the Model

Uncertainties,” in 2018 IEEE Conference on Control Technology and Applications

(CCTA). IEEE, 2018, pp. 318-323. (Published)

C2. B.-J. Jeon, M.-G. Seo, H.-S. Shin, and A. Tsourdos, “Closed-loop Analysis

with Incremental Backstepping Controller considering Measurement Bias,” in the

21st IFAC Symposium on Automatic Control in Aerospace, vol. 52, no. 12, pp.

405-410, 2019. (Published, One of six finalist papers for the young author award)

C3. B.-J. Jeon, H.-S. Shin, and A. Tsourdos, “Composite Adaptive Backstepping

Control considering Computational Complexity and Relaxation of Persistent Exci-

tation,” in the 21st IFAC World Congress, 2020. (Accepted)
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Chapter 2

Incremental Backstepping Control

under Model Uncertainty

2.1 Introduction

Backstepping algorithm [1] is one of the most widely and successfully applied non-

linear flight control methods [2–11]. The backstepping(BKS) controller design starts

from dynamics farthest from a control input and then steps back through integra-

tors by considering augmented Lyapunov functions, to obtain the controller which

fulfils desired motions with known stability and convergence properties. Since BKS

requires explicit model information to implement the algorithm, it can be regarded

as a model based approach. The issue is that a model based control strategy is

normally sensitive to model uncertainties, but it could be hard to obtain accurate

model information.

Incremental backstepping(IBKS) method [12–15] is suggested to reduce model de-

pendency of BKS. This incremental controller utilizes additional measurements such

as state derivatives and control surface deflection angles, replacing a part of required

model information. This algorithm becomes implicit, not totally residing in explicit

model to be cancelled. Because IBKS still requires knowledge about control effec-

tiveness for its implementation, it lies in between model based and sensor based

approach.

Not only for BKS but also for IBKS, it is essential to identify and understand the

effects of the model uncertainties on each closed-loop system. There have been some
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studies [12–15] that investigated their closed-loop characteristics under the model

uncertainties, but only by numerical simulations or experiments. Since results ob-

tained from simulations or experiments are valid for particular plants under specific

conditions, theoretical analysis is necessary for general interpretations on the ef-

fects of the model uncertainties to the closed-loop systems with BKS and IBKS.

To the best of our knowledge, it is difficult to find existing studies that successfully

provide theoretical analysis on BKS and IBKS considering the model uncertainties.

Hence, Chapter 2 aims to suggest the closed-loop analysis results on BKS and IBKS,

especially in consideration of the model uncertainties.

Unlike BKS and IBKS, there have been several researches [16–20] in which closed-

loop analysis under the model uncertainties was carried out for nonlinear dynamic in-

version(NDI) and incremental nonlinear dynamic inversion(INDI). Note that NDI[21]

is another representative nonlinear control approach, most widely developed and

applied[22–25]. NDI explicitly cancels out undesired nonlinearities in system using

inverse dynamics, and INDI is its incremental version, similar to IBKS. BKS and

NDI have some similarities, since both nonlinear controllers ultimately try to make

error dynamics of a closed-loop system to achieve desired behaviors by cancelling

undesired nonlinearities in dynamics. Therefore, it would be worth to examine pre-

vious analyses on NDI / INDI and investigate possibility to extend them to the

analysis of BKS / IBKS.

In [16], each of NDI and INDI was applied to an inner-loop of 6-DoF nonlinear

dynamics for an unmanned aerial vehicle. Under model uncertainties, a transfer

function with INDI was suggested, but closed-loop analysis with NDI was difficult

to proceed further due to remaining nonlinearities. For the closed-loop analysis with

INDI, incremental dynamics utilized in control law derivation process was applied

instead of true system dynamics. This makes difficult to comprehend the effects

of the control surface deflection measurement to the system. Besides, it is hard to

find comparative study between INDI and NDI in closed-loop characteristics under

the model uncertainties. [18] performed analysis with NDI and INDI under a gen-

eral type of nonlinear dynamics based on Lyapunov stability theory. Consequently,

proof of bounded stability for the closed-loop systems and conditions to achieve it

were provided. This Lyapunov-based analysis was mathematically rigorous, but it

had limitations to get physical understandings for applications on real systems. Ad-

ditionally, analysis considering the model uncertainties was conducted, addressing

rough understandings about their effects. It is difficult to investigate detailed effects

of the model uncertainties on stability and performance.
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The review on analysis of NDI and INDI suggests that they could shed some lights

on potential direction of our analysis. However, they cannot be direct references

for our research with BKS and IBKS, due to the following difference between BKS

and NDI. NDI disregards interconnections between the loops under the time-scale

separation assumption. On the contrary, BKS intermediately adopts the time-scale

separation assumption, but it considers the transient responses in the end. This

difference can make the analysis with BKS and IBKS more challenging than the one

with NDI and INDI.

To this end, Chapter 2 suggests theoretical closed-loop analysis with BKS and IBKS

under the model uncertainties. This analysis enables critical understandings on sys-

tem characteristics related to the model uncertainties. Note that short period mode

dynamics for an aircraft is utilized for simplicity of the analysis. BKS and IBKS are

designed to achieve asymptotic stability of the system for the nominal case. Con-

sidering the model uncertainties, closed-loop analysis is conducted with a piece-wise

approach. Transfer functions with BKS and IBKS under the model uncertainties, are

compared with the ones for the nominal case. This shows important changes on the

transfer functions due to the model uncertainties, resulting in conditions to maintain

stability and performance metrics under the model uncertainties. By investigating

distinctions between the transfer functions with two algorithms, it is clarified how

the effect of the model uncertainties to the closed-loop system becomes different

depending on the applied control algorithm. This comparative study also enriches

understandings about the effect of additional measurements in IBKS. To have more

insights from simplified situations, case studies are conducted under the assumption

that the uncertainty exists only in one aerodynamic derivative estimate while the

other estimates have true values. This facilitates systematic interpretations on the

impacts of the uncertainty on the specific aerodynamic derivative estimate to the

closed-loop system. Simulation is performed to verify properties obtained from the

analysis.

2.2 Preliminaries : Dynamics

From Newton’s law of motion about conservation of linear and angular momentum,

6-DoF nonlinear coupled dynamics for an aircraft can be derived. Taylor series ex-

pansion provides the first order approximation in the neighborhood of trim points.

Then, longitudinal and lateral motions can be decoupled under several flight con-

ditions like a level flight. Short period mode is one of the longitudinal oscillation
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modes with high natural frequency. This mode is of paramount importance in flight

control, because one of the main purposes of a stability augmentation system for an

aircraft is to improve short period mode characteristics. Since the oscillation lasts

for relatively short time, velocity change is assumed to be negligible. This results

in the dynamics (2.1) below [26], and in Chapter 2, it is applied for control law

derivation and closed-loop analysis.

α̇ = Z∗α (M,α)α + q + Z∗δ (M,α) δ

q̇ = M∗
α (M,α)α +M∗

q (M,α) q +M∗
δ (M,α) δ

where

Z∗α (M,α) =
q̄S

m
CZα (M,α)

1

U0

Z∗δ (M,α) =
q̄S

m
CZδ (M,α)

1

U0

M∗
α (M,α) =

q̄Sc̄

Iy
CMα (M,α)

+
q̄Sc̄2

2IyU0

CMα̇
(M,α)

q̄S

m
CZα (M,α)

1

U0

M∗
q (M,α) =

q̄Sc̄2

2IyU0

CMq (M,α) +
q̄Sc̄2

2IyU0

CMα̇
(M,α)

M∗
δ (M,α) =

q̄Sc̄

Iy
CMδ

(M,α)

+
q̄Sc̄2

2IyU0
2CMα̇

(M,α)
q̄S

m
CZδ (M,α)

(2.1)

State variables α and q represent an angle of attack and a pitch rate. Control input δ

corresponds to a deflection of an elevator. q̄ indicates a dynamic pressure, U0 means

a constant velocity of an aircraft, and M stands for Mach number. For notational

convenience, aerodynamic derivatives will be expressed in shorthand form as Z∗α, Z∗δ ,

M∗
α, M∗

q and M∗
δ , but they are still functions of M and α. C(·) denotes dimensionless

aerodynamic coefficients. S, c̄, m and Iy are reference area, reference length, mass

and moment of inertia in y-axis of an aircraft.

Dynamics (2.1) represents a linear parameter-varying(LPV) system, i.e., a nonlinear

system which can be described as a parameterized linear system whose parameters

change with the states. This simplified version of dynamics, not full 6-DoF dynamics,

is utilized for simplicity of the analysis, because complex dynamics can make analysis

with model uncertainties more complicated. Since the main objective in this study is

to have critical understandings about the closed-loop characteristics with BKS and

IBKS under the model uncertainties, dynamics (2.1) is reasonable for this purpose.
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As a future work, this research can be extended to the analysis with full 6-DoF

dynamics.

2.3 Derivation of Control Laws

Before derivation of BKS and IBKS, following modification and assumption widely

accepted in controller design phase, are applied to dynamics (2.1).

First, aerodynamic derivatives estimates (̂·) are utilized instead of real Z∗α, Z∗δ , M∗
α,

M∗
q and M∗

δ , as only estimated values are available in controller design phase. Those

derivatives are calculated from the dimensionless aerodynamic coefficients C(·) iden-

tified from wind tunnel test or aeroprediction, and the aircraft parameters S, c̄,

m and Iy measured before flight. Hence, the aerodynamic derivatives estimates (̂·)
are most likely to contain uncertainties which make them different with their true

values. Nevertheless, in Section 2.3, both controllers are designed to accomplish

asymptotic stability assuming that the estimates are the same as their true values.

The effects of the model uncertainties, which can make aimed performance and sta-

bility characteristics in this design phase difficult to be achieved, will be investigated

in the closed-loop analysis part IV.

Second, Ẑ∗δ δ related to non-minimum phase is neglected, to make the system in

lower-triangular form. Both control laws are based on the backstepping method,

which requires that the dynamics should be in strict feedback form. Therefore, it is

assumed that a fin surface is a pure moment generator. This is a valid assumption

for most of aircrafts, often made in flight control systems design, because CZδ is

usually small enough [26].

Under these modification and assumption, the dynamics (2.2) below is utilized for

the control law derivations.

α̇ = Ẑ∗αα + q

q̇ = M̂∗
αα + M̂∗

q q + M̂∗
δ δ

(2.2)
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State errors are defined as follows.

z1 = α− αc
z2 = q − qc

(2.3)

where subscript c represents a command.

2.3.1 Backstepping Control

If Lyapunov function candidate becomes positive definite and its derivative becomes

negative definite, asymptotic stability can be guaranteed for the system. To derive

BKS control command which satisfies asymptotic stability, 2 cascaded steps are

performed as follows.

First, Lyapunov function candidate V1 considering only z1 is selected as

V1 =
1

2
z2

1 (2.4)

which is positive definite. It’s for the outer-loop related to the force equation, and

the time-scale separation assumption is intermediately adopted here. In this step,

it is assumed that the fast state has already achieved its desired value, without any

considerations about its transient response (i.e. z2 is zero).

Derivative of Lyapunov function candidate V1 becomes

V̇1 = z1ż1

= z1

(
Ẑ∗αα + q − α̇c

) (2.5)

In order to satisfy Lyapunov stability condition, a pseudo-command qc is derived as

qc = −C1z1 − Ẑ∗αα + α̇c (2.6)

which makes negative definite V̇1 = −C1z
2
1 where C1 is a positive design parameter.

The state of the fast dynamics is regarded as a control input for the state of the

slow dynamics.

Second, Lyapunov function candidate V2 considering both z1 and z2 is selected as

V2 =
1

2
z2

1 +
1

2
z2

2 (2.7)
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which is positive definite. V2 can be interpreted as an augmented V1 with the

additional term to penalize z2, considering the transient response of the fast state.

Another explanation about V2 is also possible. For the inner-loop related to the

moment equation, it’s hard to assume that the slow state has already achieved its

desired value (i.e. z1 can’t be assumed to be zero here). Hence, not only z2, but

also z1 is considered in the inner-loop controller design. Regardless how this step is

explained, the time-scale separation assumption is significantly relaxed, as a result.

Derivative of V2 can be calculated as below.

V̇2 = z1ż1 + z2ż2

= z1

(
Ẑ∗αα + q − α̇c

)
+ z2

(
M̂∗

αα + M̂∗
q q + M̂∗

δ δ − q̇c
) (2.8)

By using the pseudo-command (2.6), V̇2 becomes

V̇2 = z1 (−C1z1 + z2) + z2

(
M̂∗

αα + M̂∗
q q + M̂∗

δ δ − q̇c
)

(2.9)

To satisfy Lyapunov stability condition, the control command δ is derived as

δ =
1

M̂∗
δ

(
−C2z2 − z1 − M̂∗

αα− M̂∗
q q + q̇c

)
(2.10)

which makes negative definite V̇2 = −C1z
2
1 − C2z

2
2 where C1 and C2 are positive

design parameters.

The final form of BKS controller derived in Section 2.3.1 can be suggested as follows.

qc = −C1z1 − Ẑ∗αα + α̇c

δ =
1

M̂∗
δ

(
−C2z2 − z1 − M̂∗

αα− M̂∗
q q + q̇c

) (2.11)

The pseudo-command qc to make the angle of attack α achieve its desired value αc,

is derived. q goes to qc by the derived control input δ. The model information about

Ẑ∗α, M̂
∗
δ , M̂

∗
α and M̂∗

q is required to implement the control algorithm.

2.3.2 Incremental Backstepping Control

For the outer-loop controller design, BKS, not IBKS, is utilized in Section 2.3.2.

If IBKS is applied here, it additionally requires measurements about current state

derivative and control in the outer-loop (i.e. α̇0 and q0). Instead of using those
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measurements hard to be obtained, more practical ways exist to compensate the

model information Ẑ∗α. For example, more general measurements like a normal force

and a velocity can directly substitute for Ẑ∗αα. For this reason, the incremental law is

not normally used for the outer-loop, and it can be seen in other papers [12] [14] [17]

which just applied BKS or PID for it. In Chapter 2, BKS is utilized for the outer-

loop, to make the comparison easier with a pure BKS proposed in Section 2.3.1.

Therefore, the first step is identically applied, so the pseudo-command becomes the

same with (2.6).

For the inner-loop controller design, q dynamics in (2.2) is modified assuming that

the states α, q and the control input δ can be expressed as combinations of refer-

ence points (·)0 and disturbances ∆(·) around them. This assumption is reasonable

especially with a sufficiently high sampling rate.

q̇ = M̂∗
α (α0 + ∆α) + M̂∗

q (q0 + ∆q) + M̂∗
δ (δ0 + ∆δ)

= q̇0 + M̂∗
α∆α + M̂∗

q ∆q + M̂∗
δ ∆δ

(2.12)

As in [12], [16], [19] and [20], the increments in states, ∆α and ∆q, can be ignored,

since they have much smaller effects than the increment in input, ∆δ. This becomes

acceptable as the control surface deflection directly and instantly affects the pitch

moment, whereas the effect of ∆α and ∆q on the pitch moment is not direct. Note

that α and q first create lift force and this force then induces the pitch moment.

This implies that the effect of α and q on the pitch moment is slower than that of

δ. Hence, comparing to the increment on control input, the effect of increments on

state variables becomes negligible, especially when a sampling time is small enough.

Then, q dynamics for the inner-loop controller design with IBKS becomes

q̇ ' q̇0 + M̂∗
δ ∆δ (2.13)

In the second step, Lyapunov function candidate V2 considering both z1 and z2 is

selected as

V2 =
1

2
z2

1 +
1

2
z2

2 (2.14)

which is positive definite. It can be interpreted in the same way with Section 2.3.1.
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Derivative of V2 can be calculated as below.

V̇2 = z1ż1 + z2ż2

= z1

(
Ẑ∗αα + q − α̇c

)
+ z2

(
q̇0 + M̂∗

δ ∆δ − q̇c
) (2.15)

The only difference with (2.8) is that the dynamics (2.13) which is expressed into

an incremental form is applied. By using the pseudo-command which is the same

as (2.6), V̇2 becomes

V̇2 = z1 (−C1z1 + z2) + z2

(
q̇0 + M̂∗

δ ∆δ − q̇c
)

(2.16)

To satisfy Lyapunov stability condition, the control command ∆δ is derived as

∆δ =
1

M̂δ

(−C2z2 − z1 − q̇0 + q̇c) (2.17)

which makes negative definite V̇2 = −C1z
2
1 − C2z

2
2 where C1 and C2 are positive

design parameters.

The final form of IBKS controller derived in Section 2.3.2 can be suggested as follows.

qc = −C1z1 − Ẑ∗αα + α̇c

δ = δ0 + ∆δ

=
1

M̂∗
δ

(−C2z2 − z1 − q̇0 + q̇c) + δ0

(2.18)

Like BKS, q goes to qc by δ, and α goes to αc by qc. Comparing to pure BKS control

command in Section 2.3.1, M̂∗
α and M̂∗

q related terms are disappeared, because

∆α and ∆q are neglected in q dynamics (2.13) during the control law derivation.

Only Ẑ∗α and M̂∗
δ are necessary for the implementation of the algorithm, so less

model information is required. Instead of reduced model dependency, additional

measurements δ0 and q̇0, current control surface deflection and state derivative, are

required to implement the control algorithm.

2.4 Closed-loop Analysis

Closed-loop analysis is performed by substituting each control input (2.11) and

(2.18) to the dynamics (2.1) with Z∗δ = 0. In general, CZδ is small enough to

be neglected, especially for large aircrafts [26]. Comparing to the dynamics (2.2)
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utilized for the control law derivation, the main difference in the dynamics for the

analysis is that the real aerodynamic derivatives, not the estimates, are considered.

As in [22], analysis is performed in piece-wise way in order to easily utilize the

existing analysis framework for linear time-invariant(LTI) system.

In Section 2.4, analysis starts with the nominal case, where transfer functions with

both algorithms are derived assuming that the uncertainties do not exist in the aero-

dynamic derivative estimates. The next step is to consider the model uncertainties

in the closed-loop analysis, so their effects to the systems with each controller can

be investigated in stability and performance point of view. Under the model un-

certainties, a condition to maintain stability and a steady state error are suggested

for each closed-loop system. Although the control laws are designed to always en-

sure asymptotic stability with the positive design parameters in the nominal case,

it cannot be guaranteed if real model information is different with the estimates

utilized in the controller design phase due to the model uncertainties. Closed-loop

characteristics with BKS and IBKS under the model uncertainties can be directly

compared using derived common metrics, which reinforces critical understandings

about the algorithms. To have more insights from simplified situations, case stud-

ies are carried out, assuming that the uncertainty exists only in one aerodynamic

derivative estimate and the other estimates have true values.

2.4.1 Nominal Case

Under the assumption of perfect model information without any uncertainties, ideal

measurements without any delays, and constant αc (i.e. α̇c = α̈c = 0), transfer

functions with BKS and IBKS are derived for the nominal case. Their detailed

derivation processes are addressed in Appendix A and B, and the results are sug-

gested as (2.19).
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α(s)

αc(s)
=

TN
s2 + 2ζ

N
ωn

N
s+ ω2

n
N

where

TN = C1C2 + 1

2ζ
N
ωn

N
= C1 + C2

ω2
n
N

= C1C2 + 1

(2.19)

ζ
N

and ωn
N

represent a damping ratio and a natural frequency for the closed-loop

systems with BKS and IBKS in the nominal case.

Poles with BKS and IBKS for the nominal case, pN,1 and pN,2, are given from (2.19)

as follows.

pN,1 = pN,2 =
− (C1 + C2)±

√
(C1 − C2)2 − 4

2
(2.20)

From the equation (2.20) above, following properties can be identified. First, with

the positive design parameters, poles are always located in left half plane, which

means that the systems always become stable with BKS and IBKS. Second, poles

can be expressed as a function of the design parameters only. This implies that the

system characteristics become uniform in the entire flight envelope.

Steady state error, ess, can be calculated using following relationships.

ess = αc − lim
t→∞

α(t) = αc − lim
s→0

sα(s) (2.21)

A step input αc = K in time-domain is expressed in the frequency-domain as below.

αc(s) =
K

s
(2.22)

By applying (2.19) and (2.22) to (2.21), steady state errors with BKS and IBKS for

the nominal case, ess
N
,1 and ess

N
,2, can be calculated, resulting in zero values.

ess
N
,1 = ess

N
,2 = 0 (2.23)

Because the transfer functions with both algorithms are suggested, various perfor-

mance metrics can be discussed further. For instance, a settling time, when the

magnitude of the state error is reduced within 5%, can be calculated by the approx-
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imated equation (2.24) suggested below [27].

ts
N

=



3.2

ζ
N
ωn

N

if 0 < ζ
N
< 0.69

4.5

ωn
N

ζ
N

if ζ
N
> 0.69

(2.24)

where

ωn
N

=
√
C1C2 + 1

ζ
N

=
C1 + C2

2
√
C1C2 + 1

(2.25)

This performance metric ts
N

, related to fast response, is also determined only by

the design parameters C1 and C2.

For the nominal case, asymptotic stability is achieved in both closed-loop systems,

which is expected in the design stage of the controllers. Although the incremental

dynamics (2.13) is applied in the IBKS controller derivation process, the closed-

loop analysis shows that the desired characteristics are accomplished, because the

sampling rate is assumed to be fast enough for this sensor based approach.

2.4.2 Closed-loop Analysis under the Model Uncertainties

If the model uncertainties are considered, asymptotic stability cannot be achieved

only with the positive design parameters, and performance cannot be uniform in

whole flight envelope, unlike the nominal case. In Section 2.4.2, for each closed-

loop system, a condition to maintain stability under the model uncertainties is

investigated, along with performance metrics like a steady state error. To have more

insights from simplified situations, case studies are carried out for each closed-loop

system, assuming that the uncertainty exists only in one aerodynamic derivative

estimate and the others have true values. Detailed description for each case is

suggested in Table 2.1, where ∆
(·) denotes the uncertainty in the estimate for real

aerodynamic derivative (·).
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Table 2.1: Case Description

M̂∗
α M̂∗

q Ẑ∗α M̂∗
δ

Case 1 M∗
α(1 + ∆

M∗α
) M∗

q Z∗α M∗
δ

Case 2 M∗
α M∗

q (1 + ∆
M∗q

) Z∗α M∗
δ

Case 3 M∗
α M∗

q Z∗α(1 + ∆
Z∗α

) M∗
δ

Case 4 M∗
α M∗

q Z∗α M∗
δ (1 + ∆

M∗
δ
)

2.4.2.1 Backstepping Control

If there exist the uncertainties in the aerodynamic derivative estimates, a transfer

function with BKS can be derived as (2.26), under the assumption of perfect mea-

surements without any delays and constant αc. Detailed derivation process is listed

in Appendix A.

α(s)

αc(s)
=

T∆,1

s2 + 2ζ
∆,1
ωn

∆,1
s+ ω2

n
∆,1

where

T∆,1 =
M∗

δ

M̂∗
δ

(C1C2 + 1)

2ζ
∆,1
ωn

∆,1
= −

{
Z∗α +M∗

q −
M∗

δ

M̂∗
δ

(
C1 + C2 + M̂∗

q + Ẑ∗α

)}

ω2
n

∆,1
=

{(
Z∗αM

∗
q −M∗

α

)
− M∗

δ

M̂∗
δ

(
Z∗αM̂

∗
q − M̂∗

α

)}

+
M∗

δ

M̂∗
δ

{
C2

(
Ẑ∗α − Z∗α

)
+ (C1C2 + 1)

}

(2.26)

ζ
∆,1

and ωn
∆,1

represent a damping ratio and a natural frequency for the system with

BKS under the model uncertainties. Because the model uncertainties are considered,

not only C1 and C2, but also the aerodynamic derivatives and their estimates with

the uncertainties, have impacts on the closed-loop system and explicitly appear in

the transfer function as (2.26), unlike (2.19) for the nominal case.

For a damped system, stability is normally guaranteed. Hence, a condition G∆,1 to

maintain stability for the system with BKS under the model uncertainties can be

obtained from 2ζ
∆,1
ωn

∆,1
> 0 (Cond.1) under ω2

n
∆,1

> 0 (Cond.2) as below.
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G∆,1 =
{
C1, C2 ∈ R>0| Cond. 1 & Cond. 2

}
Cond. 1 : C1 + C2 >

(
M̂∗

δ

M∗
δ

Z∗α − Ẑ∗α

)
+

(
M̂∗

δ

M∗
δ

M∗
q − M̂∗

q

)

Cond. 2 :
(
C1 + Ẑ∗α − Z∗α

)
C2 > −

M̂∗
δ

M∗
δ

(
Z∗αM

∗
q −M∗

α

)
+
(
Z∗αM̂

∗
q − M̂∗

α

)
− 1

(2.27)

if M∗
δ and M̂∗

δ have the same sign. This stability condition can be interpreted into

constraints on the design parameters for BKS under the model uncertainties.

A steady state error ess
∆
,1 with BKS controller can be obtained from (2.21), (2.22)

and (2.26).

ess
∆
,1 = K

η2 +
M̂∗δ
M∗δ
η3

η1 + η2 +
M̂∗δ
M∗δ
η3

(2.28)

η1, η2 and η3 in (2.28) can be written as follows.

η1 = C1C2 + 1

η2 = C2

(
Ẑ∗α − Z∗α

)
η3 =

{(
Z∗αM

∗
q −M∗

α

)
− M∗

δ

M̂∗
δ

(
Z∗αM̂

∗
q − M̂∗

α

)} (2.29)

η1, the only difference between the numerator and the denominator in the derived

steady state error equation (2.28), is dependent only upon the design parameters. η2

is a function of the model information for the outer-loop and the design parameter

for the inner-loop. η3 is highly related to the model information for the inner-loop.

Unlike the nominal case, ess
∆
,1 cannot be zero due to the model uncertainties. It can

be reduced with high C1, since η1 increases as C1 go up. It is difficult to generalize

this property with the design parameter for the inner-loop C2, because η2 which is

also affected by C2, becomes effective to ess
∆
,1 when the uncertainty exists in Ẑ∗α.

The steady state error becomes
(Ẑ∗α−Z∗α)

C1+(Ẑ∗α−Z∗α)
if C2 goes to infinity, while ess

∆
,1 goes

to zero as C1 goes to infinity.

To have better understandings about the effects of the uncertainty in each aerody-

namic derivative estimate to the system with BKS, case studies are performed as
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below. Depending on where the uncertainty exists, even with the same level of the

uncertainty, its impact to the closed-loop system can be different.

For each case, a transfer function with BKS (2.26) can be simplified into (2.30) with

perturbed parameters T ′∆,1, 2ζ ′
∆,1
ω′n

∆,1
and ω′2n

∆,1
from the nominal TN , 2ζ

N
ωn

N
,

and ω2
n
N

. These parameters are addressed in Table 2.2.

α(s)

αc(s)
=

T ′∆,1
s2 + 2ζ ′

∆,1
ω′n

∆,1
s+ ω′2n

∆,1

(2.30)

Table 2.2: Case Study : Parameters for Transfer Function with BKS

Case T ′∆,1 2ζ ′
∆,1
ω′n

∆,1
ω′2n

∆,1

1 TN 2ζ
N
ωn

N
ω2
n
N

+M∗
α∆

M∗α

2 TN 2ζ
N
ωn

N
+M∗

q ∆
M∗q

ω2
n
N
− Z∗αM∗

q ∆
M∗q

3 TN 2ζ
N
ωn

N
+ Z∗α∆

Z∗α
ω2
n
N

+ C2Z
∗
α∆

Z∗α

4 TN
1+∆

M∗
δ

2ζ
N
ωn

N

1 + ∆
M∗
δ

−

(
Z∗α +M∗

q

)
∆
M∗
δ

1 + ∆
M∗
δ

ω2
n
N

1 + ∆
M∗
δ

+

(
Z∗αM

∗
q −M∗

α

)
∆
M∗
δ

1 + ∆
M∗
δ

Note that, except the case 4, T ′∆,1 becomes the same as the nominal one, and

the additive perturbation term appears in the parameters 2ζ ′
∆,1
ω′n

∆,1
and ω′2n

∆,1

respectively. This perturbation term can be described as a product of the weight

factor and the uncertainty ∆
(·) . The parameters for the case 4 show similar forms

with the others, but they are additionally divided by
(

1 + ∆
M∗
δ

)
.

For each case, using the parameters 2ζ ′
∆,1
ω′n

∆,1
and ω′2n

∆,1
in Table 2.1, a stability

condition can be simplified into (2.31) with Table 2.3.

G ′∆,1 =
{
C1, C2 ∈ R>0| Cond. 1 & Cond. 2

}
Cond. 1 : C1 + C2 > κ1,1

Cond. 2 : C1C2 + 1 > κ2,1

(2.31)

κ1,1 and κ2,1, which are related to the feasible boundary of the design parameters,

appear to be the perturbation term of 2ζ ′
∆,1
ω′n

∆,1
and ω′2n

∆,1
with the opposite sign.

Depending on where the uncertainty exists, the boundary value of each ∆
(·) for the

stable closed-loop system can be different. It becomes small if the corresponding
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Table 2.3: Case Study : Parameters for Stability Conditions with BKS

Case κ1,1 κ2,1

1 0 −M∗
α∆M∗α

2 −M∗
q ∆M∗q Z∗αM

∗
q ∆M∗q

3 −Z∗α∆Z∗α −C2Z
∗
α∆Z∗α

4
(
Z∗α +M∗

q

)
∆M∗δ

−
(
Z∗αM

∗
q −M∗

α

)
∆M∗δ

weight factor is large. It is observed from Table 2.3 that, for the case 1, Cond.1 is

always satisfied with the positive design parameters, so only Cond.2 is effective.

By comparing the cases, more simplified structure for the steady state error equation

can be found as (2.32). η1 in (2.32) is identical with the one in (2.28), defined only

by the design parameters. For each case, the weight factor to the model uncertainty

η′2,1 only changes, and it is listed in Table 2.4.

e′ss
∆
,1 = K

η′2,1∆
(·)

η1 + η′2,1∆
(·)

(2.32)

Table 2.4: Case Study : Parameters for Steady State Error with BKS

Case η′2,1

1 M∗
α

2 −Z∗αM∗
q

3 C2Z
∗
α

4 Z∗αM
∗
q −M∗

α

As can be seen in Table 2.3 and 2.4, κ2,1 = −η′2,1∆
(·) . Depending on where the

uncertainty exists, even with the same level of the uncertainty, |ess
∆
,1| gets larger for

the case with greater weight factor. Additionally, |ess
∆
,1| goes up as |∆

(·)| increases.

2.4.2.2 Incremental Backstepping Control

For successful analysis with IBKS, it is necessary to decide how to deal with the

additional measurements q̇0 and δ0. In Chapter 2, they are suggested as follows.

q̇0 = M∗
αα +M∗

q q +M∗
δ δ0

δ0 = δ(t− τ)
(2.33)
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The model for the current state derivative measurement q̇0 comes from the piece-

wise version of (2.1). For an ideal actuator, a control surface deflection directly

follows a generated control command. Then, the current control surface deflection

measurement δ0 can be regarded as a control command generated in the previous

step, where τ indicates a step size.

If the uncertainties exist in the aerodynamic derivative estimates, a transfer function

with IBKS can be obtained as (2.34), under the assumption of perfect measurements

without any delays and constant αc. Detailed derivation process is addressed in

Appendix B.

α(s)

αc(s)
=

D∆,2(s)

s2 +N∆,2(s)s+N ′∆,2(s)

where

D∆,2(s) =
M∗

δ

φ(s)
(C1C2 + 1)

N∆,2(s) = −
{
Z∗α +M∗

q −
M∗

δ

φ(s)

(
C1 + C2 +M∗

q + Ẑ∗α

)}
N ′∆,2(s) =

(
1− M∗

δ

φ(s)

)(
Z∗αM

∗
q −M∗

α

)
+
M∗

δ

φ(s)

{
C2

(
Ẑ∗α − Z∗α

)
+ (C1C2 + 1)

}

(2.34)

φ(s) is defined as below.

φ(s) = M̂∗
δ

(
1− e−τs

)
+M∗

δ e
−τs (2.35)

Since the model uncertainties are considered, not only C1 and C2, but also the

aerodynamic derivatives and their estimates with the uncertainties, have impacts

on the closed-loop system and explicitly appear in the transfer function as (2.34),

unlike (2.19) for the nominal case. Comparing to (2.26) with BKS, there are the

two main differences in the transfer function (2.34). First, the true values for the

stability derivatives in the inner-loop, not the estimated ones, appear in (2.34).

Second, the effect of the control derivative estimate M̂∗
δ resides in φ(s).

The transfer function with IBKS can be simplified as (2.36) with τ ' 0 assumption

for the analysis purpose.
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α(s)

αc(s)
=

T∆,2

s2 + 2ζ
∆,2
ωn

∆,2
s+ ω2

n
∆,2

where

T∆,2 = C1C2 + 1

2ζ
∆,2
ωn

∆,2
= (C1 + C2) +

(
Ẑ∗α − Z∗α

)
ω2
n

∆,2
= (C1C2 + 1) + C2

(
Ẑ∗α − Z∗α

)
(2.36)

ζ
∆,2

and ωn
∆,2

denote a damping ratio and a natural frequency for the system with

IBKS under the model uncertainties. An interesting observation from (2.36) is that,

under the τ ' 0 assumption, the effects of M∗
δ and its estimate with the uncertainty

are vanished in the closed-loop system with IBKS, while they still remain in the sys-

tem with BKS. This implies that, if the control command is calculated, transmitted

and reflected fast enough to the real control surface deflection, the closed-loop system

with IBKS becomes insensitive to the uncertainty in M̂∗
δ , although this information

is still required to implement the control algorithm.

The differences in the analysis results with IBKS to the ones with BKS, can be

explained as follows. The incremental controller for the inner-loop utilizes the addi-

tional measurements q̇0 and δ0. In q̇0 measurement obtained in flight, the effects of

true M∗
α and M∗

q are included in implicit way. Hence, model information about M∗
α

and M∗
q is not required for IBKS, unlike BKS. Not only these stability derivatives,

but also the control derivative M∗
δ are involved in this q̇0 measurement. If there

is no uncertainty in M̂∗
δ utilized to implement the algorithm, the effect of M∗

δ in

the q̇0 measurement can be totally compensated with the δ0 measurement, in the

suggested control law (2.18). Generally, they cannot be fully cancelled out due to

the uncertainty, resulting in φ(s) for the closed-loop system with IBKS. However, if

τ ' 0, φ(s) becomes just M∗
δ , even if M̂∗

δ has uncertainty. Hence, the closed-loop

system with IBKS becomes robust with respect to the uncertainty in M̂∗
δ utilized

to implement the algorithm, if the control command is calculated, transmitted and

reflected fast enough to the real control surface deflection. To sum up, all model un-

certainties do not affect the system with IBKS when computation and transmission

of the control command are fast enough. This is the key difference in the system

behaviors with IBKS, comparing to the ones with BKS.

For the same reason in Section 2.4.2.1 above with BKS, a condition G∆,2 to maintain

stability for the system with IBKS under the model uncertainties can be obtained
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from 2ζ
∆,2
ωn

∆,2
> 0 (Cond.1) under ω2

n
∆,2

> 0 (Cond.2) as below.

G∆,2 =
{
C1, C2 ∈ R>0| Cond. 1 & Cond. 2

}
Cond. 1 : C1 + C2 > −

(
Ẑ∗α − Z∗α

)
Cond. 2 :

(
C1 + Ẑ∗α − Z∗α

)
C2 > −1

(2.37)

This stability condition can be interpreted into constraints on the design parameters

for IBKS under the model uncertainties. Note that the stability condition is affected

only by the uncertainty on Ẑ∗α utilized for the outer-loop controller design with BKS.

Through the same process above using (2.21), (2.22) and (2.36), a steady state error

ess
∆
,2 with IBKS controller can be suggested as follows.

ess
∆
,2 = K

η2

η1 + η2
(2.38)

where

η1 = C1C2 + 1

η2 = C2

(
Ẑ∗α − Z∗α

) (2.39)

Unlike the nominal case, the steady state error exist as (2.38) with (2.39) due to

the model uncertainties. Comparing to (2.28) with (2.29) for pure BKS, there exist

the same η1 and η2 in (2.38) with (2.39) for IBKS. However, there is no η3 which is

mainly related to the model information for the inner-loop, unlike pure BKS. The

steady state error occurs only when there exists uncertainty on Ẑ∗α utilized for the

outer-loop controller design with BKS. In both (2.28) and (2.38), the denominator

is bigger than the numerator by η1 which increases as the design parameters go

up. It indicates that high C1 can also reduce ess
∆
,2. For the same reason in Section

2.4.2.1 above with pure BKS, it is difficult to generalize this property with the design

parameter for the inner-loop C2.

Case studies are conducted to clearly show the effects of the uncertainty in each aero-

dynamic derivative estimate to the system with IBKS. Since M̂∗
α and M̂∗

q are not

required to implement IBKS thanks to the additional q̇0 measurement, the closed-

loop system with IBKS is not affected by ∆
M∗α

and ∆
M∗q

. Hence, the analysis results

with IBKS for the case 1 and 2 are the same with the ones for the nominal case.

In addition, under the τ ' 0 assumption, the analysis results with IBKS for the

case 4 also become identical to the ones for the nominal case. It is shown that the
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closed-loop system with IBKS becomes robust with respect to ∆
M∗
δ
, if the control

command is calculated, transmitted and reflected fast enough to the real control

surface deflection. For the case 3 where the model uncertainty only exists in dy-

namics for the outer-loop, the analysis results with IBKS appear to be the same

with the corresponding case study results with pure BKS in Section 2.4.2.1. This

can be explained from the fact that each outer-loop controller is designed with BKS

in common, and inner-loop controllers with BKS and IBKS become the same when

there are no model uncertainties in dynamics for the inner-loop, which is the case 3.

2.5 Simulation

In Section 2.5, simulations are performed to verify the proposed theoretical analysis

results. Since a piece-wise approach is considered to handle the LPV system as in

[22], several points assigned to each grid were simulated. The aerodynamic deriva-

tives shown in Fig. 2.7 of Appendix C and zero Z∗δ are utilized for the simulations.

As an example, simulation results when altitude is 7.6200km and U0 = 185.9280m/s

are suggested in Chapter 2.

Simulation parameters about the angle of attack command, the design parameters,

and the level of the model uncertainties are suggested in Table 2.5. The simulation

parameter ∆
(·) which represents the level of the model uncertainty, indicates how

much percentage of error exists in the aerodynamic derivative estimate utilized in

the control system design, comparing to the actual aerodynamic derivative (·). For

example, ∆
(·) = −0.75 means that an aerodynamic derivative estimate used in the

flight controller is 75% smaller than its real value for (·). ∆
(·) = 1 implies that the

flight controller utilizes an aerodynamic derivative estimate twice larger than its real

value for (·). Initial values for the state variables α and q are set to be 0◦ and 0◦/s.

Small enough τ is applied as 0.001sec for the simulation. With BKS, simulations are

carried out for case 1, 2, 3 and 4 respectively. With IBKS, simulations are performed

for each case 3 and 4.

Table 2.5: Simulation Parameters

Parameter Value

αc 1.5◦

C1, C2 1.5

∆
(·) [−0.75, −0.5, −0.25, 0, 0.25, 0.5, 0.75, 1]
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The stability condition and the performance metric like ess predicted by the analysis,

can be examined in pole trajectories and time response graphs. Besides, simulation

results show which model uncertainty has much influence in stability and perfor-

mance for this aircraft.

2.5.1 Simulation results with BKS
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Figure 2.1: Closed-loop System Response with BKS under the uncertainty in M̂∗
α
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Figure 2.2: Closed-loop System Response with BKS under the uncertainty in M̂∗
q

Fig. 2.1 shows that the system becomes unstable when ∆
M∗α

= 0.75 and 1. From

Fig. 2.2, it is observed that ∆
M∗q

= 0.5, 0.75 and 1 can result in unstable behaviors

of the system. Fig. 2.3 indicates that the closed-loop system is stable with every

∆
Z∗α

. It can be seen from Fig. 2.4 that ∆
M∗
δ

= −0.5 and −0.75 can make the system

unstable.

These observations can be clearly explained by the stability condition (2.31) with

Table 2.3. Under this simulation environment, the Cond. 2 in (2.31) is appeared to

be a dominant condition for stability. The Cond. 2 implies that, for larger |η′2,1|
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Figure 2.3: Closed-loop System Response with BKS under the uncertainty in Ẑ∗α
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Figure 2.4: Closed-loop System Response with BKS under the uncertainty in M̂∗
δ

case, the closed-loop system becomes unstable with smaller |∆
(·) |. η′2,1 = −4.7488,

−7.7182, −2.9439 and 12.4670 for Case 1, 2, 3 and 4, respectively. Thus, |∆
(·) |

resulting in unstable behavior to the system is predicted to be smaller for the Case

4 than for the Case 2, 1 and 3 where it becomes the largest. This coincides with the

observations above obtained from Fig. 2.1 to 2.4.

By rewriting the stability condition (2.31), a minimum C1 to guarantee stability for

each case under fixed C2 and every |∆
(·)| in this simulation, can be predicted. It is

expected that, in the stability point of view, C1 > 2.4992 for the Case 1, C1 > 4.4788

for the Case 2, C1 > 1.2960 for the Case 3, and C1 > 5.5668 for the Case 4, under

this simulation environment. Thus, all simulations with the BKS in Chapter 2 for

every case will show stable results, by increasing C1 larger than 5.5668, which is the

minimum C1 for the Case 4 where |η′2,1| is the largest.

Steady state errors ess,1 are given in Table 2.6 for stable instances. It is interpreted

from (2.32) that, |ess,1| is larger for the case with greater |η′2,1|, under the same

|∆
(·)|. The comparison should be carefully carried out between the cases with the
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Table 2.6: Steady State Error for system with BKS, ess,1

PPPPPPPPPCase

∆
(·) −0.75 −0.5 −0.25 0 0.25 0.5 0.75 1

1 0.7843 0.6332 0.4013 0 −0.8632 −3.8281 - -

2 0.9606 0.8143 0.5588 0 −2.1919 - - -

3 0.6068 0.4676 0.2770 0 −0.4391 −1.2418 −3.1749 −14.4279

4 - - −35.0820 0 0.7343 0.9859 1.1131 1.1898

same sign of η′2,1∆
(·) . η

′
2,1 = −4.7488, −7.7182, −2.9439 and 12.4670 for the Case

1, 2, 3 and 4, respectively. Thus, |η′2,1| is predicted to be smaller for the Case 3 than

for the Case 1, 2 and 4 where it becomes the largest. The sign of η′2,1 is positive

only for the Case 4 and it is negative for the other three cases. Thus, the Case 1,

2 and 3 with ∆
(·) and the Case 4 with −∆

(·) should be compared with each other.

By applying this comparison scheme to Table 2.6, the interpretation from (2.32) is

shown to agree with the simulation results.

Additionally, it is observed from Table 2.6 that |ess,1| becomes larger as |∆
(·) | grows,

which coincides with the analysis result.

2.5.2 Simulation results with IBKS
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Figure 2.5: Closed-loop System Response with IBKS under the uncertainty in Ẑ∗α

Fig. 2.5 shows the identical results with Fig. 2.3. For case 3, the system behav-

iors with IBKS and BKS become the same, which has been already predicted and

explained in the analysis part. Under this simulation environment, the closed-loop

system is stable with every ∆
Z∗α

. |ess,1| increases as |∆
Z∗α
| gets larger, and the system
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Figure 2.6: Closed-loop System Response with IBKS under the uncertainty in M̂∗
δ

response becomes slower as ∆
Z∗α

rises.

Fig. 2.6 shows that the closed-loop system is insensitive to the model uncertainty

∆
M∗
δ

in M̂∗
δ , with τ = 0.001 which is set to be small enough for the simulation. Poles

are always in the left half plane, so the system is stable all the time. There is no

change in the location of poles depending on the variation of ∆
M∗
δ
. Consequently,

ωn, ζ and ts remain the same, and ess,2 doesn’t exist. These simulation results

coincide with the prediction from the analysis under the assumption that the control

command is calculated, transmitted and reflected fast enough to the real control

surface deflection.

2.6 Conclusion

Chapter 2 suggests closed-loop analysis results with BKS and IBKS methods un-

der model uncertainties. The proposed analysis enables critical understandings and

insights about system characteristics under the model uncertainties. Transfer func-

tions with BKS and IBKS under the model uncertainties are compared with the ones

for the nominal case. The effects of the model uncertainties on the closed-loop sys-

tems are figured out, resulting in the condition to maintain stability and the steady

state error. The closed-loop characteristics with BKS and IBKS under the model

uncertainties are directly compared using derived common metrics, which clarifies

how the effects of the model uncertainties to the closed-loop system become different

depending on the applied control algorithm. Unlike BKS, IBKS is not affected by

the uncertainties on any model parameters, including control effectiveness which is

still required for IBKS implementation, when the control input is calculated, trans-
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mitted and reflected fast enough to the actual control surface. Under the assumption

that the uncertainty exists only in one aerodynamic derivative estimate while the

other estimates have true values, case studies are conducted to find the impact of

the uncertainty on the specific aerodynamic derivative estimate to the closed-loop

system. Depending on where the uncertainty exists, even with the same level of

the uncertainty, its impact to the closed-loop system becomes different, and this is

explained with the weight factors for each case. As a future work, the short period

mode dynamics can be extended to full 6-DoF dynamics.

Appendix

A Derivation of Transfer Function with BKS

Dynamics (2.1) with Z∗δ = 0 can be expressed as a state space equation below.

ẋ = Ax + Bu y = Cx

x =
[
α q

]T
u = δ

A =

[
Z∗α 1

M∗
α M∗

q

]
B =

[
0

M∗
δ

]
C =

[
1 0

] (2.40)

Using (2.11) with (2.1) and (2.3) under the assumption of constant αc and zero Z∗δ ,

δ can be rearranged as follows.

δ =
[
− 1

M̂∗δ
ν1,α − 1

M̂∗δ
ν1,q

]
x +

1

M̂∗
δ

(C1C2 + 1)αc

where

ν1,α =

{(
C1 + Ẑ∗α

)
(C2 + Z∗α) + M̂∗

α + 1

}
ν1,q =

(
C1 + C2 + M̂∗

q + Ẑ∗α

)
(2.41)

Closed-loop system with BKS can be derived by substituting (2.41) into (2.40).
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ẋ = A1x + B1αc y = Cx

A1 =

[
a1,11 a1,12

a1,21 a1,22

]

=

 Z∗α 1

M∗
α −

M∗δ
M̂∗δ
ν1,α M∗

q −
M∗δ
M̂∗δ
ν1,q


B1 =

 0
M∗δ
M̂∗δ

(C1C2 + 1)


C =

[
1 0

]

(2.42)

Transfer function for the closed-loop system with BKS can be derived as below.

α(s)

αc(s)
= C(s)

(
sI−A1(s)

)−1
B1(s)

=
a1,12

M∗δ
M̂∗δ

(C1C2 + 1)

s2 −
(
a1,11 + a1,22

)
s+

(
a1,11a1,22 − a1,12a1,21

) =
T (s)

s2 + 2ζωns+ ω2
n

where

T (s) = a1,12
M∗

δ

M̂∗
δ

(C1C2 + 1) =
M∗

δ

M̂∗
δ

(C1C2 + 1)

2ζωn = −
(
a1,11 + a1,22

)
= −

{
Z∗α +M∗

q −
M∗

δ

M̂∗
δ

(
C1 + C2 + M̂∗

q + Ẑ∗α

)}

ω2
n = a1,11a1,22 − a1,12a1,21 =

{(
Z∗αM

∗
q −M∗

α

)
− M∗

δ

M̂∗
δ

(
Z∗αM̂

∗
q − M̂∗

α

)}

+
M∗

δ

M̂∗
δ

{
C2

(
Ẑ∗α − Z∗α

)
+ (C1C2 + 1)

}

(2.43)

When the uncertainties in every aerodynamic derivative estimate are neglected in

(2.43), the closed-loop transfer function with BKS for the nominal case can be

obtained as (2.19).
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B Derivation of Transfer Function with IBKS

Using (2.18) with (2.1), (2.3) and (2.33) under the assumption of constant αc and

zero Z∗δ , δ can be rearranged as follows.

δ = − 1

M̂∗
δ

ν2,αα−
1

M̂∗
δ

ν2,qq +
1

M̂∗
δ

(C1C2 + 1)αc

+

(
1− M∗

δ

M̂∗
δ

)
δ (t− τ)

where

ν2,α =

{(
C1 + Ẑ∗α

)
(C2 + Z∗α) +M∗

α + 1

}
ν2,q =

(
C1 + C2 +M∗

q + Ẑ∗α

)
(2.44)

Applying Laplace transform to (2.44) and arranging the equation with respect to δ,

δ(s) =
[
− 1
φ(s)

ν2,α(s) − 1
φ(s)

ν2,q(s)
]

X(s)

+
1

φ(s)
(C1C2 + 1)αc(s)

where

φ(s) = M̂∗
δ

(
1− e−τs

)
+M∗

δ e
−τs

(2.45)

Dynamics for closed-loop analysis with IBKS is the same with (2.40) mentioned in

the closed-loop analysis with BKS. If Laplace transform is applied to (2.40) and δ(s)

in (2.45) is substituted into that equation, the closed-loop system with the IBKS

can be derived, as follows.

sX(s) = A2(s)X(s) + B2(s)αc(s) Y = C(s)X(s)

A2(s) =

[
a2,11(s) a2,12(s)

a2,21(s) a2,22(s)

]

=

 Z∗α 1

M∗
α −

M∗δ
φ(s)

ν2,α(s) M∗
q −

M∗δ
φ(s)

ν2,q(s)


B2(s) =

 0
M∗δ
φ(s)

(C1C2 + 1)


C(s) =

[
1 0

]

(2.46)
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Transfer function for the closed-loop system with IBKS can be derived as below.

α(s)

αc(s)
= C(s)

(
sI−A2(s)

)−1
B2(s)

=
a2,12

M∗δ
φ(s)

(C1C2 + 1)

s2 −
(
a2,11 + a2,22

)
s+

(
a2,11a2,22 − a2,12a2,21

) =
T (s)

s2 + 2ζωns+ ω2
n

where

T (s) = a2,12(s)
M∗

δ

φ(s)
(C1C2 + 1) =

M∗
δ

φ(s)
(C1C2 + 1)

2ζωn = −
(
a2,11(s) + a2,22(s)

)
= −

{
Z∗α +M∗

q −
M∗

δ

φ(s)

(
C1 + C2 +M∗

q + Ẑ∗α

)}
ω2
n = a2,11(s)a2,22(s)− a2,12(s)a2,21(s)

=

(
1− M∗

δ

φ(s)

)(
Z∗αM

∗
q −M∗

α

)
+

Mδ

φ(s)

{
C2

(
Ẑ∗α − Z∗α

)
+ (C1C2 + 1)

}

(2.47)

When the uncertainties do not exist in any aerodynamic derivative estimates, (2.47)

becomes identical to (2.19), which is the closed-loop transfer function with IBKS for

the nominal case.
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Chapter 3

Incremental Backstepping Control

under Measurement Bias and

Model Uncertainty

3.1 Introduction

Backstepping(BKS) method has been widely applied as one of nonlinear flight con-

trollers. Nevertheless, it has a crucial drawback to be sensitive to model uncertainties

because it requires explicit model information for its implementation. In reality, it

is difficult to get an accurate model, so incremental backstepping(IBKS) algorithm

is proposed to reduce model dependency of BKS. Thanks to additional measure-

ments about state derivatives and control surface deflection angles, only control

effectiveness information is required to implement IBKS.

There have been several researches [1–4] where closed loop characteristics with IBKS

under model uncertainties can be found from numerical simulations or experiments.

[5] suggested theoretical closed loop analysis results to have critical understandings

about them. Previous studies indicate that IBKS has a strong advantage when model

uncertainties exist; one of important characteristics obtained from the analysis in [5]

is that a system is robust with respect to an uncertainty even in control effectiveness

information if a control command is calculated, transmitted and reflected fast enough

to a real control surface deflection. However, there is a limitation in previous works

that measurements are assumed to be ideal, which is hard to be achieved in practical

applications. If measurement related issues like a bias, a noise and a delay are
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additionally considered, IBKS which lies in between model based and sensor based

approach, might show worse performance than BKS.

In Chapter 3, closed loop analysis with IBKS considering both measurement biases

and model uncertainties, is performed. The main purpose of this research is to

have critical understandings about the effects of biases to system characteristics

with IBKS, which can make aimed performance and stability characteristics difficult

to be achieved. As previously mentioned, measurements about state derivatives

and control surface deflection angles are additionally required to implement IBKS

comparing to BKS, so biases on them are mainly considered in this analysis. Besides,

in Chapter 3, it will be investigated whether closed loop system with IBKS is still

robust with respect to model uncertainties although those biases are additionally

considered.

In Section 3.2, dynamics for control law derivation will be suggested as a preliminary.

In Section 3.3, a control algorithm using IBKS will be derived and proposed. In

Section 3.4, closed loop analysis with IBKS considering both measurement biases

and model uncertainties, is performed to have critical understandings especially

about the effects of biases to a system. To verify properties obtained from Section

3.4, simulations will be carried out and following results will be suggested in Section

3.5.

3.2 Preliminary : Dynamics

For control law derivation and closed loop analysis, short period mode dynamics

(3.1), one of the longitudinal oscillation modes with a high natural frequency, is

applied. This simplified version of dynamics, not full 6-DoF dynamics, is utilized for

simplicity of analysis. This short period mode is of paramount importance in flight

control, because one of the main purposes of a stability augmentation system for an

airplane is to improve characteristics about this mode. Since the main objective of

Chapter 3 is to have critical understandings about closed loop characteristics with

IBKS especially considering measurement biases, dynamics (3.1) is reasonable for

this purpose.

α̇ =Z∗α (M,α)α + q + Z∗δ (M,α) δ

q̇ =M∗
α (M,α)α +M∗

q (M,α) q +M∗
δ (M,α) δ

(3.1)
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The state variables α and q indicate angle of attack and pitch rate. The control input

δ represents elevator deflection angle. Z∗α, Z∗δ , M∗
α, M∗

q and M∗
δ denote aerodynamic

derivatives where M corresponds to Mach number. Dynamics (3.1) can be regarded

as a linear parameter-varying(LPV) system i.e., a nonlinear system which can be

expressed into a parameterized linear system whose parameters change with the

states.

3.3 Control Law Derivation

Before derivation of a control algorithm, dynamics (3.1) is modified as follows. First,

aerodynamic derivatives estimates (̂·) are utilized instead of real aerodynamic deriva-

tives (·), because only estimated values are available in a controller design phase.

Second, Ẑ∗δ δ related to non-minimum phase is neglected. IBKS control law is also

based on backstepping method, so a system is required to be in strictly feedback

form. This is valid for most of aircraft, often made in flight control systems’ design

process, because Ẑ∗δ δ is usually small enough comparing to the other terms in α̇

equation.

α̇ = Ẑ∗αα + q

q̇ = M̂∗
αα + M̂∗

q q + M̂∗
δ δ

(3.2)

The state errors are defined as follows.

z1 = α− αc
z2 = q − qc

(3.3)

where subscript c represents a command.

If Lyapunov candidate function becomes positive definite and its derivative becomes

negative definite, asymptotic stability for a nonlinear system can be guaranteed. To

derive a control command which satisfies asymptotic stability assuming that (̂·) have

their true values, following 2 cascaded steps are performed.

First, Lyapunov function candidate V1 considering only z1 for an outer-loop con-

troller design is selected as

V1 =
1

2
z2

1 (3.4)



54 IBKS under Measurement Bias and Model Uncertainty

which is positive definite. The derivative of V1 becomes

V̇1 = z1ż1

= z1

(
Ẑ∗αα + q − α̇c

) (3.5)

In order to satisfy Lyapunov stability condition, a pseudo-command qc is derived as

qc , −C1z1 − Ẑ∗αα + α̇c (3.6)

which makes negative definite V̇1 = −C1z
2
1 where C1 is a positive design parameter.

For the outer-loop controller design, classical BKS, not IBKS, is applied in Chapter

3. If IBKS is applied here for the outer loop control, α̇0 measurement is additionally

required instead of model information Ẑ∗α. There exist more practical ways to replace

Ẑ∗α information, so an incremental algorithm is not normally used for an outer loop

control. This can be seen also in other papers [1] [3] [6] [7] which just applied BKS

or PID for it.

For the second step to design an inner-loop controller, q dynamics in (3.2) is modified

assuming that the states α, q and the control input δ can be expressed as combi-

nation of reference points (·)0 and perturbations ∆(·) around them. This is a valid

assumption especially with a sufficiently high sampling rate.

q̇ = M̂∗
α (α0 + ∆α) + M̂∗

q (q0 + ∆q) + M̂∗
δ (δ0 + ∆δ)

= q̇0 + M̂∗
α∆α + M̂∗

q ∆q + M̂∗
δ ∆δ

(3.7)

The increments in states, ∆α and ∆q, are negligible comparing to the increment

in input, ∆u, since a control surface deflection directly affects pitch moment, while

integrations are required first for states. Then, final incremental q dynamics for the

inner loop controller design with IBKS is given as below.

q̇ ' q̇0 + M̂∗
δ ∆δ (3.8)

In the second step, Lyapunov function candidate V2 considering both z1 and z2 is

selected as

V2 =
1

2
z2

1 +
1

2
z2

2 (3.9)
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which is positive definite. The derivative of V2 becomes

V̇2 = z1ż1 + z2ż2

= z1

(
Ẑ∗αα + q − α̇c

)
+ z2

(
q̇0 + M̂∗

δ ∆δ − q̇c
) (3.10)

Using the pseudo-command (3.6), V̇2 becomes

V̇2 = z1 (−C1z1 + z2) + z2

(
q̇0 + M̂∗

δ ∆δ − q̇c
)

(3.11)

To satisfy Lyapunov stability condition, ∆δ is derived as

∆δ ,
1

M̂∗
δ

(−C2z2 − z1 − q̇0 + q̇c) (3.12)

which makes negative definite V̇2 = −C1z
2
1 − C2z

2
2 where C1 and C2 are positive

design parameters.

Final form of the control law can be suggested as follows.

qc = −C1z1 − Ẑ∗αα + α̇c

δ = δ0 + ∆δ

=
1

M̂∗
δ

(−C2z2 − z1 − q̇0 + q̇c) + δ0

(3.13)

δ makes q to achieve qc, and α goes to its desired value αc by qc. For implementa-

tion of a control algorithm, only Ẑ∗α and M̂∗
δ are required, and M̂∗

α and M̂∗
q are not

necessary because the incremental dynamics about q is utilized for a derivation pro-

cess of IBKS as an inner loop controller. Hence, comparing to BKS only controller,

model information is less required and a system becomes robust with respect to the

uncertainties in M̂∗
α and M̂∗

q . Instead, the additional measurements δ0 and q̇0 are

required to compensate them.

3.4 Closed-loop Analysis

Closed-loop analysis considering both biases on additional measurements and model

uncertainties, is performed. As in [8], analysis is carried out in piece-wise way to

easily apply existing analysis framework for a linear time-invariant(LTI) system.

The effects of measurement biases, which can make aimed performance and stability
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characteristics in a controller design phase difficult to be achieved, are investigated.

Dynamics (3.1) with Z∗δ = 0 can be expressed as a state space equation (3.14) below.

In general, Ẑ∗δ is small enough to be neglected, especially for large airplanes.

ẋ = Ax + Bu y = Cx

where

x =
[
α q

]T
u = δ

A =

[
Z∗α 1

M∗
α M∗

q

]
B =

[
0

M∗
δ

]
C =

[
1 0

] (3.14)

Comparing to the dynamics (3.2) for the control law derivation, real aerodynamic

derivatives, not estimates, are considered in this dynamics (3.14) for the analysis.

In (3.13), δ can be rewritten as follows by substituting qc, under the assumption of

constant αc (i.e. α̇c = α̈c = 0).

δ =
1

M̂∗
δ

{
−
(
C1 + Ẑ∗α

)
(C2 + Z∗α)α−

(
C1 + C2 + Ẑ∗α

)
q

+C1C2αc − z1} −
1

M̂∗
δ

q̇0 + δ0

(3.15)

As mentioned in Section 3.3, measurements δ0 and q̇0 are additionally required to

implement IBKS. Hence, if there exist biases on these additional measurement, as

an innerloop controller, IBKS might show worse performance than BKS. In Chapter

3, biases on δ0 and q̇0 measurements, bq̇0 and bδ0 , are considered in closed loop

analysis as follows, to have critical understandings about the effects of them to

system characteristics with IBKS.

q̇0 = q̇0,true + bq̇0

δ0 = δ0,true + bδ0

where

q̇0,true = M∗
αα +M∗

q q +M∗
δ δ0,true

δ0,true = δ(t− τ)

(3.16)

From a piece-wise version of (3.1), the model for q̇0,true in (3.16) is suggested. Under

the assumption of an ideal actuator, a control surface deflection becomes the same as

a generated control command. Then, δ0,true can be regarded as a control command

generated in previous step, where τ indicates a step size.
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By substituting (3.16) to (3.15), δ can be rearranged as below.

δ = − 1

M̂∗
δ

ν2,αα−
1

M̂∗
δ

ν2,qq +
1

M̂∗
δ

(C1C2 + 1)αc

+

(
1− M∗

δ

M̂∗
δ

)
δ (t− τ)− 1

M̂∗
δ

bq̇0 + bδ0

where

να =

{(
C1 + Ẑ∗α

)
(C2 + Z∗α) +M∗

α + 1

}
νq =

(
C1 + C2 +M∗

q + Ẑ∗α

)
(3.17)

Applying Laplace transform to (3.17) and arranging this equation with respect to

δ,

δ(s) =
[
− 1
φ(s)

να(s) − 1
φ(s)

νq(s)
]

X(s)

+
1

φ(s)
(C1C2 + 1)αc(s)−

1

φ(s)
bq̇0 +

M̂∗
δ

φ(s)
bδ0

where

φ(s) = M̂∗
δ

(
1− e−τs

)
+M∗

δ e
−τs

(3.18)

If Laplace transform is applied to (3.14) and δ(s) in (3.18) is substituted into that

equation, a closed loop system can be suggested, as follows.
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sX(s) = A(s)X(s) + B(s)αc(s) + D(s)b(s)

Y = C(s)X(s)

where

A(s) =

[
a2,11(s) a2,12(s)

a2,21(s) a2,22(s)

]

=

 Z∗α 1

M∗
α −

M∗δ
φ(s)

ν2,α(s) M∗
q −

M∗δ
φ(s)

ν2,q(s)


B(s) =

 0
M∗δ
φ(s)

(C1C2 + 1)


C(s) =

[
1 0

]
D(s) =

 0 0

−M∗δ
φ(s)

M∗δ M̂
∗
δ

φ(s)


b(s) =

[
bq̇0(s)

bδ0(s)

]

(3.19)

Then α(s) can be derived as below.

α(s) = C(s)
{
sI−A(s)

}−1 {
B(s)αc(s) + D(s)b(s)

}
=

1

s2 −
(
a2,11 + a2,22

)
s+

(
a2,11a2,22 − a2,12a2,21

){
M∗

δ

φ(s)
(C1C2 + 1)αc(s)−

M∗
δ

φ(s)
bq̇0(s) +

M∗
δ M̂

∗
δ

φ(s)
bδ0(s)

} (3.20)

(3.20) can be simplified as (3.21) assuming τ ' 0 for analysis purpose.

α(s) =
T (s)

s2 + 2ζωns+ ω2
n

where

T (s) = (C1C2 + 1)αc(s)− bq̇0(s) + M̂∗
δ bδ0(s)

2ζωn = (C1 + C2) +
(
Ẑ∗α − Z∗α

)
ω2
n = (C1C2 + 1) + C2

(
Ẑ∗α − Z∗α

)
(3.21)
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ζ and ωn represent a damping ratio and a natural frequency for the closed loop

system.

Absolute stability is normally guaranteed for a damped system, so a condition G

to maintain stability under measurement biases and model uncertainties can be

proposed from 2ζωn > 0 (Cond.1) under ω2
n > 0 (Cond.2) as follows.

G =
{
C1, C2 ∈ R>0|Cond. 1 & Cond. 2

}
Cond. 1 : C1 + C2 > −Z∗α∆Z∗α

Cond. 2 : C1C2 + C2Z
∗
α∆Z∗α > −1

(3.22)

∆(·) indicates an uncertainty in aerodynamic derivative estimates (̂·) = (·)
{

1 + ∆(·)
}

.

αc(s) = αc
s

, bq̇0(s) =
bq̇0
s

, and bδ0(s) =
bδ0
s

for a step input and constant biases. Then,

α(s) becomes

α(s) =
(C1C2 + 1)αc − bq̇0 + M̂∗

δ bδ0
s2 + 2ζωns+ ω2

n

1

s
(3.23)

Steady state error ess can be derived from

ess = αc − lim
t→∞

α(t) = αc − lim
s→0

sα(s) (3.24)

Then, ess can be suggested as below.

ess =
η2

η1 + η2

αc +
1

η1 + η2

bq̇0 +
η3

η1 + η2

bδ0

where

η1 = C1C2 + 1

η2 = C2

(
Ẑα − Zα

)
η3 = −M̂∗

δ

(3.25)

From the closed loop analysis above, following two main observations can be found,

and they can be further understood by comparing to [5] where closed-loop analysis

with the same control structure was carried out only considering model uncertainties

under the assumption of perfect measurements.

First, bq̇0 and bδ0 do not affect the characteristic equation which is the same as the

one in [5] without considering biases. Hence, the condition for absolute stability

(3.22) becomes the same with the one in [5] to maintain stability just under the

model uncertainties. Unlike ∆Z∗α from BKS for the outerloop, ∆M∗δ
from IBKS for
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the innerloop doesn’t have any impact.

Second, bq̇0 and bδ0 additionally cause the second and the third terms in steady state

error (3.24) where the first term is identical to the one in [5]. One of important

characteristics obtained from the analysis in [5] is that the system is robust with

respect to ∆M∗δ
if a control command is calculated, transmitted and reflected fast

enough to a real control surface deflection, even though M∗
δ information is required

for implementation of IBKS. However, if bq̇0 and bδ0 are considered, ∆M∗δ
starts to

have an impact to the steady state error, as it can be seen especially in bδ0 related

term of (3.25).

3.5 Simulation

Simulations are carried out to verify theoretical analysis results suggested in Section

3.4. With a piece-wise approach as in [8], several points for each grid were simulated,

and as an example, results when altitude is 7.6200km and U0 = 185.9280m/s are sug-

gested in Chapter 3. The corresponding aerodynamic derivatives are Z∗α = −1.963,

Z∗δ = 0, M∗
α = −4.749, M∗

q = −3.933 and M∗
δ = −26.68.

Simulation parameters such as an angle of attack command, design parameters, level

of a model uncertainty in control effectiveness information, and biases on additional

measurements are suggested in table 1. The initial values for α and q are 0◦ and

0◦/s. Small enough τ = 0.001sec is applied for the simulation. The effects of

∆Z∗α to this closed loop system comes from BKS for the outerloop. Since the main

objective of this research is to have critical understandings with IBKS, it is assumed

in this simulation that there is no model uncertainty in Ẑ∗α. As suggested in Section

3.4, the condition to guarantee absolute stability for the system is only affected by

∆Z∗α . Without ∆Z∗α , absolute stability can be accomplished just with positive design

parameters, as intended in previous controller design process. Theoretical analysis

results indicate that a primary effect of biases on additional measurements is in a

steady state error, so stable cases with ∆Z∗α = 0 are examined in this simulation.

Closed loop system responses obtained from simulations considering only bq̇0 are

suggested in Fig.3.1, and ess values predicted by (3.25) for corresponding cases

are summarized in Table 3.2. When bδ0 is only considered, simulation results are

proposed in Fig.3.2 and predicted steady state errors by (3.25) are suggested in

Table 3.3. Since Ẑ∗α information is assumed not to have any uncertainty in this
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Table 3.1: Simulation Parameters

Parameter Value

αc 1.5◦

C1, C2 1.5

∆M̂∗δ
[−0.25, 0, 0.25]

bq̇0 , bδ0 [−0.1, 0.1]

Table 3.2: Predicted Steady State Error ess by (3.25) with bq̇0

PPPPPPPPP∆M∗δ

bq̇0 −0.1◦/s 0.1◦/s

−0.25 −0.0308◦ 0.0308◦

0 −0.0308◦ 0.0308◦

0.25 −0.0308◦ 0.0308◦
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(a) Time response when bq̇0 = −0.1
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(b) Time response when bq̇0 = 0.1

Figure 3.1: Closed-loop System Response with bq̇0

simulation, ζ and ωn of the system doesn’t change depending on cases as expected,

resulting in the same rising and settling time for Fig.3.1 and Fig.3.2. Steady state

errors identified from simulations and predicted from the analysis result (3.25) are

shown to be the same for every cases. Additionally, following phenomena observed in

Fig.3.1 and Fig.3.2 can be also understood from (3.25). While ∆M∗δ
has an impact

on steady state errors induced by bδ0 , steady state errors induced by bq̇0 are not

affected by ∆M∗δ
. Besides, the effect of bδ0 is appeared to be bigger than of bq̇0 in

steady state error point of view, because |M̂∗
δ | > 1 in this simulation.
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Table 3.3: Predicted Steady State Error ess by (3.25) with bδ0

PPPPPPPPP∆M∗δ

bδ0 −0.1◦ 0.1◦

−0.25 −0.6158◦ 0.6158◦

0 −0.8211◦ 0.8211◦

0.25 −1.0263◦ 1.0263◦
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(a) Time response when bδ0 = −0.1
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(b) Time response when bδ0 = 0.1

Figure 3.2: Closed-loop System Response with bδ0

3.6 Conclusion

In Chapter 3, closed loop analysis with IBKS considering both measurement biases

and model uncertainties, is performed to have critical understandings especially

about measurement bias effects. In previous study where closed loop characteristics

with IBKS considering only model uncertainties are investigated, it is shown that a

system is robust with respect to an uncertainty even in control effectiveness infor-

mation if a control command is calculated, transmitted and reflected fast enough to

a real control surface deflection. However, if measurement biases are additionally

considered, the analysis results in Chapter 3 indicate that a model uncertainty in

control effectiveness information starts to have an impact to a steady state error.

These biases on additional measurements cause a steady state error, but they do

not have any impact to the characteristic equation. These properties obtained from

the analysis are verified through simulations.
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Chapter 4

Incremental Backstepping Control

under Measurement Delay and

Model Uncertainty

4.1 Introduction

Backstepping control [1] is one of the most widely and successfully applied nonlinear

methodologies for a flight control system design [2–10]. One of the issues about a

classical backstepping(BKS) controller is that it is sensitive to model uncertainties,

because full model information is explicitly required for its implementation. Note

that it is difficult to get an accurate model from a wind tunnel test or an aero-

prediction in general. To reduce model dependency of BKS, incremental backstep-

ping(IBKS) controller [11–19] is proposed. Comparing to BKS, IBKS additionally

utilizes state derivative and control surface deflection angle measurements which

replace required knowledge about a model except control effectiveness information.

This algorithm becomes implicit, not totally relying on explicit model information

for its implementation.

Since IBKS lies in between sensor based and model based approaches, it is essen-

tial to understand the effects of measurement defects such as bias, noise, and delay

along with model uncertainties to the closed loop system. There have been some re-

searches investigating closed loop characteristics with IBKS only considering model

uncertainties [11–16]. One of the key findings from theoretical analyses in [15] and

[16] is that the system is robust with respect to any model uncertainties even in con-
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trol effectiveness information if a control command is calculated, transmitted and

reflected fast enough to a real control surface deflection. The limitation of analyses

in previous studies is that measurements are assumed to be ideal, which is impos-

sible in practical applications. If measurement defects are additionally considered,

IBKS might show worse performance than BKS. [17] suggested closed loop analysis

results with consideration of measurement biases together with model uncertainties.

This study indicates that measurement biases only cause additional steady state

error. One of the interesting observations is that a model uncertainty in control

effectiveness information starts to have an impact to the closed loop system when

these measurement biases are additionally considered. To the best of our knowledge,

there are no existing researches about IBKS analysis considering measurement de-

lays along with model uncertainties.

Unlike IBKS, there have been some studies [20–22] about incremental nonlinear

dynamic inversion(INDI) with consideration of measurement delays. INDI[20–25] is

an incremental version of NDI[26], as IBKS to BKS. Relevant studies with INDI can

shed some lights on our analysis with IBKS, but they also have limitations as follows.

[20] and [21] only consider delay in the state derivative measurement induced by a

filter to attenuate noise which is amplified during state differentiation process. In

[22], induced delay from a filter on the state derivative measurement path for noise

attenuation together with sensor delays are considered during a flight test. [20–22]

briefly mention that measurement delays have critical impacts on the closed loop

system with the incremental algorithm. [22] indicates that synchronization between

state derivative and control surface deflection angle measurements is essential for a

successful flight test with INDI. However, [20–22] just focused on algorithm designs

to avoid delay issues without systematic analysis or sufficient interpretations on the

effects of measurement delays to the system.

Despite their limitation in detailed analysis, there is a valuable lesson to be learned

from the previous studies with INDI [20–22] that it is important to have critical un-

derstandings and insights about the effects of measurement delays to the closed loop

system with the incremental algorithm. Besides, the literature review about IBKS

[17] shows possibility that the model uncertainty in control effectiveness informa-

tion starts to have an impact on the closed loop system when measurement defects

like delays are additionally considered. Hence, analysis framework and results con-

sidering both measurement delays and model uncertainties which are inevitable in

reality, should be beneficial in designing and applying IBKS algorithm to actual

aircraft systems.
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To this end, Chapter 4 aims to suggest a closed loop analysis framework and system

characteristics for IBKS, especially with consideration of measurement delays along

with model uncertainties. One of the biggest challenges to achieve this research goal

is that it is difficult to judge even absolute stability of the system in an analytic

way due to exponential terms in a characteristic equation generated from measure-

ment delays. There have been several studies [27–33] about analysis for delayed

systems. For the analysis, [27, 28, 30] approximate the exponential term using Tay-

lor series expansion, assuming that delay is small enough. One of the limitations

in this approach is that it is difficult to judge whether the existing delay is within

an acceptable range so that this assumption holds. Besides, with a simple example,

[29] shows that stability conditions obtained with Taylor series expansion are too

sensitive to the order of the approximation and they do not even match well with

those of the actual system. Rekasius substitution and Routh-Hurwitz criterion are

applied in [31] for stability analysis of time-delayed LTI systems, which is applicable

only when magnitudes of delays are identical for all the delayed signals. [33] utilizes

Euler’s formula to handle the exponential terms, and finds poles by defining a posi-

tive semi-definite metric function to become zero only at the poles. The pole search

is conducted in a heuristic way as discretizing a complex plane and figuring out

grid points in the right half plane where each metric function value becomes smaller

than a threshold value. This implies that performance of the algorithm is highly

dependent on grid settings, so it might be difficult to guarantee system stability

even when no grid point was found in the right half plane with the metric function

value under the threshold. If a grid size is reduced, probability of having grid points

right on the poles could be increased. Still, it does not guarantee an accurate search

while elevating the computation load.

To tackle the main technical issue mentioned above which makes difficult to suggest

the aimed research results, Chapter 4 proposes analysis framework with an opti-

mization concept to efficiently and systematically examine the existence of the poles

in the right half plane. Proposed framework successfully works, even for a highly

nonlinear metric function with a complex shape due to the considered measurement

delays. By applying the suggested numerical framework, closed loop characteristics

under measurement delays and model uncertainties especially in stability point of

view are investigated. A stability condition for the closed-loop system with IBKS

about the relationship between delays on state derivative and control surface deflec-

tion angle measurements is provided, and it is shown that this condition is affected by

the model uncertainty. A comparative study which enables critical understandings

about individual and integrated effects of the measurement delays and the model
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uncertainties to the closed loop system with IBKS is suggested.

The rest of Chapter 4 is organized as follows. In Section 4.2, dynamics and de-

rived control algorithm with IBKS are provided as preliminaries. Section 4.3 per-

forms closed loop analysis with IBKS when both measurement delays and model

uncertainties are considered. Numerical analysis framework is proposed and system

characteristics obtained from the framework are suggested. A comparative study is

performed to have critical understandings about individual and integrated effects of

these defects to the system. Simulations are carried out for verification and valida-

tion of the analysis results obtained from the proposed framework. From simulation

results, properties about robustness and performance are additionally investigated.

4.2 Preliminaries

For the closed loop analysis in Section 4.3, dynamics and control algorithm are sug-

gested in Section 4.2. Short period mode dynamics and derived control law with

IBKS are given in Section 4.2.1 and 4.2.2 respectively. Note that Chapter 4 utilizes

IBKS for the inner controller design and BKS for the outer loop controller design.

As can be seen in [11, 13, 16, 20] and [21], the incremental control algorithm is not

generally applied for the outer loop, because more practical ways are available to

compensate the required model information without utilizing additional measure-

ments in the outerloop.

4.2.1 Dynamics

Chapter 4 considers short period mode dynamics in [34]. Note that the short period

mode is of paramount importance in the flight control design because one of the

main purposes of a stability augmentation system(SAS) for an aircraft is to enhance

this short period mode characteristics.
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α̇ =Z∗α (M,α)α + q + Z∗δ (M,α) δ

q̇ =M∗
α (M,α)α +M∗

q (M,α) q +M∗
δ (M,α) δ

where

Z∗α (M,α) =
q̄S

m
CZα (M,α)

1

U0

Z∗δ (M,α) =
q̄S

m
CZδ (M,α)

1

U0

M∗
α (M,α) =

q̄Sc̄

Iy
CMα (M,α)

+
q̄Sc̄2

2IyU0

CMα̇
(M,α)

q̄S

m
CZα (M,α)

1

U0

M∗
q (M,α) =

q̄Sc̄2

2IyU0

CMq (M,α) +
q̄Sc̄2

2IyU0

CMα̇
(M,α)

M∗
δ (M,α) =

q̄Sc̄

Iy
CMδ

(M,α)

+
q̄Sc̄2

2IyU0
2CMα̇

(M,α)
q̄S

m
CZδ (M,α)

(4.1)

State variables α and q denote for an angle of attack and a pitch rate, respectively.

Control input δ indicates a deflection angle of an elevator. q̄, U0 and M are dynamic

pressure, constant velocity and Mach number of an aircraft. For notational conve-

nience, aerodynamic derivatives given as functions of M and α will be represented

in shorthand form as Z∗α, Z∗δ , M∗
α, M∗

q and M∗
δ . C(·) indicates dimensionless aerody-

namic coefficients. S, c̄, m and Iy denote reference area, reference length, mass and

moment of inertia in y-axis of an aircraft, respectively.

Dynamics (4.1) describes a linear parameter-varying(LPV) system, i.e., a nonlinear

system which can be expressed as a parameterized linear system with parameters

changing with state variables. In Chapter 4, short period mode dynamics (4.1), not

full 6-DoF dynamics, is utilized for simplicity of the analysis. This research could

be extended for the analysis with full 6-DoF dynamics in a future work.

Since IBKS is based on the backstepping algorithm which requires that dynamics

should be in strict feedback form, Ẑ∗δ δ term related to non-minimum phase is ignored

in (4.1), resulting in (4.2).
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α̇ = Z∗αα + q

q̇ = M∗
αα +M∗

q q +M∗
δ δ

(4.2)

In order to make the system in lower-triangular form, a fin surface is assumed to be

a pure moment generator. This is a reasonable assumption for most of aircraft, often

made in flight controller design, since CZδ is generally small enough to be neglected

[34].

For the inner-loop control algorithm design with IBKS, q dynamics in (4.2) is mod-

ified as (4.3), under the assumption that the states α, q and the control input δ

can be represented as combinations of reference points (·)0 and perturbations ∆(·)
around them, which is valid especially with a sufficiently high sampling rate.

q̇ = M∗
α (α0 + ∆α) +M∗

q (q0 + ∆q) +M∗
δ (δ0 + ∆δ)

= q̇0 +M∗
α∆α +M∗

q ∆q +M∗
δ ∆δ

(4.3)

As described in [11, 16, 20, 23] and [24], the increments of states, ∆α and ∆q, have

much less effects on q dynamics than the increments of control input, ∆δ. This

results in the incremental dynamics (4.4) for the inner loop control system design

with IBKS, which is obtained by neglecting ∆α and ∆q in (4.3).

q̇ ' q̇0 +M∗
δ ∆δ (4.4)

Here is the final form of dynamics for the controller design.

α̇ = Z∗αα + q

q̇ = q̇0 +M∗
δ ∆δ

(4.5)

State errors are defined as (4.6).

z1 = α− αc
z2 = q − qc

(4.6)

where subscript c indicates a command.
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4.2.2 Derivation of Control Law

When Lyapunov function candidate is positive definite and its derivative is negative

definite, asymptotic stability can be guaranteed for the closed loop system. A control

command satisfying asymptotic stability of the system is derived from 2 cascaded

designing steps as follows.

First, for the outer loop controller design, Lyapunov function candidate V1 consid-

ering only z1 is selected as

V1 =
1

2
z2

1 (4.7)

which is positive definite.

The derivative of Lyapunov function candidate V1 is obtained as

V̇1 = z1ż1

= z1 (Z∗αα + q − α̇c)
(4.8)

In order to satisfy the Lyapunov stability condition, a pseudo-command qc is de-

signed as

qc = −C1z1 − Z∗αα + α̇c (4.9)

which makes negative definite V̇1 = −C1z
2
1 with a positive design parameter C1. The

state of the fast dynamics, q, is regarded as a control input for the slow dynamics.

Second, for the inner loop controller design, Lyapunov function candidate V2 con-

sidering both z1 and z2 is defined as

V2 =
1

2
z2

1 +
1

2
z2

2 (4.10)

which is positive definite.

The derivative of V2 can be calculated as (4.11), by utilizing the incremental dy-

namics of q in (4.4) for the inner loop controller design with IBKS.

V̇2 = z1ż1 + z2ż2

= z1 (Z∗αα + q − α̇c) + z2 (q̇0 +M∗
δ ∆δ − q̇c)

(4.11)

From the pseudo-command (4.9), V̇2 becomes
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V̇2 = z1 (−C1z1 + z2) + z2 (q̇0 +M∗
δ ∆δ − q̇c) (4.12)

To satisfy Lyapunov stability condition, ∆δ is designed as

∆δ =
1

Mδ

(−C2z2 − z1 − q̇0 + q̇c) (4.13)

which makes negative definite V̇2 = −C1z
2
1 − C2z

2
2 with positive design parameters

C1 and C2.

The final form of derived control algorithm can be suggested as follows.

qc = −C1z1 − Ẑ∗αα + α̇c

δ = δ0 + ∆δ

=
1

M̂∗
δ

(−C2z2 − z1 − q̇0 + q̇c) + δ0

(4.14)

Note that aerodynamic derivatives estimates (̂·) are utilized in (4.14) instead of real

Z∗α and M∗
δ , because only estimated values for the model information are available

in controller design phase. The pseudo-command qc makes the angle of attack α

converge to its desired value αc, and q achieves qc by the designed control input δ.

Comparing to a control command with pure BKS, explicit utilization of M̂∗
α and M̂∗

q

related terms is not required, since ∆α and ∆q are neglected in q dynamics (4.4)

for the inner loop control algorithm design with IBKS. This implies that model

dependency is reduced because Ẑ∗α and M̂∗
δ are only required for implementation of

the algorithm. Instead, measurements δ0 and q̇0, current control surface deflection

and state derivative in the inner loop, are additionally required to implement the

control algorithm with IBKS.

A flight controller is designed to accomplish asymptotic stability under Lyapunov

framework, assuming that there are no measurement defects like delays and model

uncertainties. The effects of measurement delays and model uncertainties, which can

make aimed performance and stability characteristics in this design phase difficult

to be achieved, will be investigated in following closed loop analysis part 4.3.
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4.3 Closed-loop Analysis

In Section 4.3, the closed loop analysis is performed considering measurement delays

and model uncertainties, under the piece-wise approach to handle this LPV system

as in [35]. For better understandings about the obtained closed loop characteristics

through a comparative study, relevant analysis results in [16] under the assumption

of perfect measurements are briefly summarized and suggested in Section 4.3.1. If

measurement delays are additionally considered in the closed loop analysis, it is

difficult to even judge absolute stability of the system in analytic way. Therefore,

a numerical framework is proposed in Section 4.3.2 to examine the system stability

under measurement delays and model uncertainties. An optimization concept is

utilized to search unstable poles efficiently and systematically, even for a highly

nonlinear metric function due to the measurement delays considered. By applying

the numerical framework suggested in Section 4.3.2, closed loop characteristics under

measurement delays and model uncertainties especially in stability point of view

are identified, which are presented in Section 4.3.3. A stability condition about a

relationship between delays on state derivative and control surface deflection angle

measurements is suggested, and it is shown that this condition is affected by the

model uncertainty. Simulations are carried out for verification and validation of

the framework results about the absolute stability, and they additionally provides

understandings about the relative stability. From the simulation results, system

performance is also investigated, which is addressed in Section 4.3.4.

4.3.1 Analysis without Measurement Delays

With the same control structure of Chapter 4, [16] performed theoretical closed loop

analysis for the nominal case and the case only considering model uncertainties. For

the comparative study in Section 4.3.3, relevant studies in [16] without considering

measurement delays are reviewed as follows.

In [16], the transfer function is shown to be insensitive to the uncertainty in M̂∗
δ ,

if a control command is calculated, transmitted and reflected fast enough to a real

control surface deflection. As a result, the closed loop system is only affected by

the uncertainty in Ẑ∗α. Note that Ẑ∗α is utilized for the outer loop controller design

with BKS, and M̂∗
δ is required for the inner loop controller design with IBKS. Since

Chapter 4 aims to have critical understandings about IBKS, the model uncertainty
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∆
M∗
δ

on M̂∗
δ = M∗

δ (1 + ∆
M∗
δ
) is mainly considered in Chapter 4, resulting in the

transfer function (4.15) which becomes the same with the one for the nominal case.

α(s)

αc(s)
=

T

s2 + 2ζωns+ ω2
n

where

T = C1C2 + 1

2ζωn = C1 + C2

ω2
n = C1C2 + 1

(4.15)

ζ and ωn represent a damping ratio and a natural frequency of the system. A

detailed derivation process of the transfer function (4.15) can be found in [16].

Poles p are obtained from (4.15) as (4.16).

p =
− (C1 + C2)±

√
(C1 − C2)2 − 4

2
(4.16)

With the positive design parameters, poles are always located in the left half plane,

which means that the closed loop system always becomes stable. Besides, poles are

given as a function of the design parameters only. This implies that the system

characteristics become uniform in the entire flight envelope.

A steady state error, ess, can be calculated using following relationship.

ess = αc − lim
t→∞

α(t) = αc − lim
s→0

sα(s) (4.17)

A step input αc = K in the time-domain is expressed in the frequency-domain as

below.

αc(s) =
K

s
(4.18)

By applying (4.15) and (4.18) to (4.17), the steady state error can be calculated,

resulting in zero value.

ess = 0 (4.19)
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4.3.2 Stability Analysis Framework under Measurement De-

lays

Comparing to classical BKS, state derivative and control surface deflection angle

measurements are additionally utilized and consequently, model information about

control effectiveness is only required for IBKS implementation. Hence, delays τq̇

and τδ on q̇0 and δ0 measurements together with the model uncertainty ∆
M∗
δ

on M̂∗
δ

are mainly considered in Section 4.3.2 for the closed loop analysis. Note that the

measurement delays in Chapter 4 are defined as final delays on the measurements for

control command calculation, including delays from sensors, communication links,

and processors with estimation algorithms. M̂∗
δ is assumed to have the same sign

with M∗
δ .

The first step for the stability analysis framework is to derive the transfer function

of the closed loop system with IBKS considering τq̇ and τδ along with ∆
M∗
δ
, resulting

in (4.20).

α(s)

αc(s)
=

M∗δ
M̂∗δ

(C1C2 + 1)

φ1(s)s2 + φ2(s)s+ φ3(s)

where

φ1(s) = 1− e−τδs +
M∗

δ

M̂∗
δ

e−τq̇s

φ2(s) = −(Z∗α +M∗
q )(1− e−τδs) +

M∗
δ

M̂∗
δ

(C1 + C2 + Z∗α − Z∗αe−τq̇s)

φ3(s) = (Z∗αM
∗
q −M∗

α)(1− e−τδs) +
M∗

δ

M̂∗
δ

(C1C2 + 1)

(4.20)

A detailed derivation of the transfer function (4.20) under the piece-wise approach

[35] is addressed in Appendix A.

The stability of the closed loop system can be examined by searching unstable poles

from its characteristic equation in (4.20). The biggest challenge to obtain poles is

that there exist exponential functions from the considered measurement delays. If

the exponential functions are approximated as in [27–30], it is difficult to figure out

the feasible range of delay for the valid approximation. In addition, [29] addresses

that the stability characteristics obtained with Taylor series expansion can be highly

sensitive to the order of the approximation. The proposed analysis framework in

Section 4.3.2 is based on a numerical approach without approximation, which will
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be shown in the rest of the steps.

The second step is to reformulate the characteristic equation for numerical pole

search. By substituting s = a + bi (a, b ∈ R) and applying Euler’s formula, φ1, φ2

and φ3 in (4.20) can be rewritten as (4.21).

φ1 = (1− xδ + Ωxq̇) + i(yδ − Ωyq̇)

φ2 =
{
−(Z∗α +M∗

q )(1− xδ) + Ω(C1 + C2 + Z∗α − Z∗αxq̇)
}

+ i
{
−(Z∗α +M∗

q )yδ + ΩZ∗αyq̇

}
φ3 =

{
(Z∗αM

∗
q −M∗

α)(1− xδ) + Ω(C1C2 + 1)
}

+ i(Z∗αM
∗
q −M∗

α)yδ

where

xδ = e−τδacos(τδb) xq̇ = e−τq̇acos(τq̇b)

yδ = e−τδasin(τδb) yq̇ = e−τq̇asin(τq̇b) Ω =
M∗

δ

M̂∗
δ

(4.21)

From (4.21) with s = a+bi (a, b ∈ R), the characteristic equation φ1s
2+φ2s+φ3 = 0

can be re-arranged as (4.22).

φ1s
2 + φ2s+ φ3 = Re(a, b) + Im(a, b)i = 0

where

Re(a, b) = (a2 − b2)
[
1−

{
e−τδacos(τδb)− Ωe−τq̇acos(τq̇b)

}]
− 2ab

{
e−τδasin(τδb)− Ωe−τq̇asin(τq̇b)

}
+ a

[
−(Z∗α +M∗

q ) + Ω(C1 + C2 + Z∗α) +M∗
q e
−τδacos(τδb)

+Z∗α
{
e−τδacos(τδb)− Ωe−τq̇acos(τq̇b))

}]
+ b
[
M∗

q e
−τδasin(τδb) + Z∗α

{
e−τδasin(τδb)− Ωe−τq̇asin(τq̇b)

}]
+
{

(Z∗αM
∗
q −M∗

α)(1− e−τδacos(τδb)) + Ω(C1C2 + 1)
}

Im(a, b) = (a2 − b2)
{
e−τδasin(τδb)− Ωe−τq̇asin(τq̇b)

}
+ 2ab

[
1−

{
e−τδacos(τδb)− Ωe−τq̇acos(τq̇b)

}]
− a

[
M∗

q e
−τδasin(τδb) + Z∗α

{
e−τδasin(τδb)− Ωe−τq̇asin(τq̇b)

}]
+ b
[
−(Z∗α +M∗

q ) + Ω(C1 + C2 + Z∗α) +M∗
q e
−τδacos(τδb)

+Z∗α
{
e−τδacos(τδb)− Ωe−τq̇acos(τq̇b)

}]
+ (Z∗αM

∗
q −M∗

α)e−τδasin(τδb)

(4.22)
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The last step is to find poles by searching a and b which make f(a, b) in (4.23) zero,

because both Re(a, b) and Im(a, b) should be zeros to have zero f(a, b).

f(a, b) , |Re(a, b)|+ |Im(a, b)| (4.23)

If ∃a > 0 s.t. f(a, b) = 0, the system is unstable. If not, it is stable. By utilizing

this property, Chapter 4 suggests a numerical analysis framework to judge absolute

stability for the system with IBKS considering τq̇ and τδ along with ∆
M∗
δ
, which is

summarized in Table 4.1.

Table 4.1: Stability Test Algorithm for Nonlinear Characteristic Equations

Algorithm 1. Stability Test Algorithm
1: count← 0
2: for aGRID = 0 to amax with ∆a
3: for bGRID = bmin to bmax with ∆b
4: if f (aGRID, bGRID) < fTH
5: a∗, b∗ ← arg mina,b∈R f (a, b)
6: with a0, b0 ← aGRID, bGRID
7: f ∗ ← f (a∗, b∗)
8: if f ∗ < ε and a∗ > 0
9: count← count+ 1
10: end if
11: end if
12: end for
13: end for
14: if count > 0
15: return Unstable
16: else
17: return Stable
18: end if

First, grid points (aGRID, bGRID) are determined by sparsely dividing the area of

interest, 0 ≤ aGRID < amax and bmin ≤ bGRID < bmax, with grid sizes ∆a and ∆b.

The grid points (aGRID, bGRID), whose function values f(aGRID, bGRID) are less than

a certain threshold value fTH , are selected as points for the initial guess. Second,

optimizations are conducted with each initial guess points, resulting in a set of local

minimum points (a∗, b∗). The local optimal points, where f(a∗, b∗) are less than a

threshold value ε ' 0, are regarded as poles. count indicates the number of unstable

poles.

As shown in Table 4.1, the proposed framework utilizes an optimization concept to
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examine the existence of the poles in the right half plane in systematic and efficient

way, even for the highly nonlinear metric function (4.23) with (4.22). Note that

under the heuristic approach as in [33], reliable pole search can not be guaranteed

even with the reduced grid size which elevates the computation load.

4.3.3 Closed-loop characteristics : Stability

In Section 4.3.3, closed loop characteristics under measurement delays along with

model uncertainties especially in stability point of view are presented, which are

identified by applying the suggested numerical framework in Section 4.3.2. Simula-

tions are performed for verification and validation of the obtained properties from

the framework. As illustrative examples, four different types of aircraft models are

considered for analysis and simulation, and their aerodynamic derivatives at certain

flight conditions [36] are provided in Appendix B. The design parameters C1 and C2

for the control algorithm are set to be 1.5 respectively. An extensive range of τq̇ and

τδ together with ∆
M∗
δ

is introduced to obtain critical insights about the effects of mea-

surement delays along with a model uncertainty on the system. Note that consider-

ing the page limit, this paper shows some parts of the results that are representative.

The presented cases are with τq̇ and τδ from 0s to 0.1s with 0.01s increment and from

0.1s to 0.2s with 0.02s increment (i.e.
[
{0s : 0.01s : 0.1s} ∪ {0.1s : 0.02s : 0.2s}

]
)

along with ∆
M∗
δ

=
[
− 50%, −35%, −20%, 0%, 25%, 100%, 200%, 300%

]
. Initial

values for the state variables α and q, and the α-command αc, are set to be 0◦, 0◦/s

and 1.5◦ respectively. Remaining parameters especially for the framework are listed

in Table 4.2.

Table 4.2: Framework Parameters

Parameter Value

amax 1000

∆a 10

bmin −1000

∆b 10

bmax 1000

fTH 106

ε 10−3
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Figure 4.1: Relationships between τq̇ and τδ for system stability under ∆M̂∗δ
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τq̇ and τδ cases examined to be stable by the framework are illustrated for each

∆
M∗
δ

in Fig. 4.1. Note that the markers #, 2, # and 2 in Fig. 4.1 denote the

framework results of aircraft A, B, C and D, respectively. Fig. 4.1 shows that the

closed loop system is stable if τq̇ = kτδ and the non-negative k has an upper bound

kmax which varies with ∆M̂∗δ
. kmax values in Fig. 4.1 are summarized as Table

4.3 which provides following observations. For ∆M̂∗δ
= 0, kmax is 1, indicating the

system becomes stable when there is no delay on q̇0 measurement (i.e. τq̇ = 0) or

when the additional measurements q̇0 and δ0 are synchronized with the same amount

of delay (i.e. τq̇ = τδ). If M̂∗
δ is under-estimated(i.e. ∆M̂∗δ

< 0), kmax gets smaller,

resulting in reduced number of stable points. On contrary, if M̂∗
δ is over-estimated

(i.e. ∆M̂∗δ
> 0), kmax becomes larger, resulting in increased number of stable points.

Table 4.3: kmax for each ∆M̂∗δ

kmax
∆M̂∗δ

Airplane A Airplane B Airplane C Airplane D

-0.5 0 0 0 0
-0.35 1 1 1 1
-0.2 1 1 1 1
0 1 1 1 1

0.25 2 2 2 2
1 3 3 3 3
2 5 5 5 4
3 6 6 6 5

The simulation results appear to coincide with the framework results, as can be seen

in Fig. 4.1. Note that the simulation results are given with markers  , �,  and

� for each aircraft A, B, C and D in Fig. 4.1. For some representative cases with

Aircraft A, time responses are presented in Fig. 4.2. It is shown in Fig. 4.2 that the

closed-loop system is unstable if τq̇ and τδ do not satisfy τq̇ = kτδ (k ≤ kmax) even

with small deviation.

For better understandings on stability and robustness of the closed loop systems,

gain margins under τq̇ and τδ together with ∆M̂∗δ
are examined through simulations.

For illustrative purpose, a part of results with Aircraft A under τδ = {0s : 0.01s :

0.05s} are given as Fig. 4.3, but the trend of all results is the same. Fig. 4.3

indicates that the gain margin increases as ∆M̂∗δ
increases under the same τq̇ and

τδ. For the same ∆M̂∗δ
, the gain margin decreases when k approaches to its upper

bound kmax.
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Figure 4.2: Time response graphs for Aircraft A
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Figure 4.3: Gain margin(GM) for stable closed-loop system under τq̇ and τδ together
with ∆M̂∗δ

The important findings from the framework results can be summarized as Observa-

tion 4.1 and 4.2.
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Observation 4.1. (Stability condition with τq̇ and τδ) : The system with IBKS is

stable only when τq̇ = kτδ with a non-negative integer k which has an upper bound

kmax. Otherwise, the closed loop system becomes unstable.

Observation 4.2. (Effect of ∆M̂∗δ
to stability condition) : kmax becomes smaller as

the model uncertainty on control effectiveness information ∆M̂∗δ
decreases.

Observation 4.1 and 4.2 can be understood as follows. q̇0 measurement has critical

influences on the system with IBKS because it contains the model information about

M∗
α and M∗

q to be replaced. If there is no delay on this measurement (i.e. τq̇ = 0 with

k = 0), the system with IBKS becomes stable. If q̇0 signal is delayed, the relationship

between delays on q̇0 and δ0 becomes important for the system stability due to the

following reason. Due to the considered delays on q̇0 and δ0, trigonometric functions

whose frequencies are τq̇ and τδ appear in the characteristic equation (4.22). The

differences between trigonometric terms with frequencies of τq̇ and τδ are repeatedly

shown in (4.22) and they have significant impacts to the closed-loop system stability

with IBKS. When τq̇ = kτδ with a positive integer k, these differences shows a

periodic pattern with the frequency of τδ like the case without τq̇, resulting in the

stable closed-loop response. k has its upper bound kmax determined by the model

uncertainty on control effectiveness information ∆M̂∗δ
, which can be explained as

follows. k indicates how many times the cycle of the trigonometric term with τq̇

is repeated during one period of that with τδ. ∆M̂∗δ
affects the amplitude of the

trigonometric term with τq̇, as can be seen in (4.22). The maximum magnitude of

the differences between trigonometric terms with frequencies of τq̇ and τδ can be

more amplified as k increases, and ∆M̂∗δ
has an impact on the magnitude of this

amplification. This implies that there exists an upper bound kmax which makes

the amplification to be within the range where the system is stable and this kmax

is affected by ∆M̂∗δ
. The reason why kmax decreases as ∆M̂∗δ

gets smaller can be

explained with loop gain point of view. In the derived control command (4.14),

there exists a reciprocal of M̂∗
δ . This implies that a loop gain becomes smaller with

over-estimated M̂∗
δ (i.e. ∆M̂∗δ

> 0), while it gets larger with under-estimated M̂∗
δ (i.e.

∆M̂∗δ
< 0). Thus, the closed-loop system becomes less robust against the defects as

∆M̂∗δ
reduces, resulting in smaller kmax. Instead, the time domain response of the

system becomes faster as ∆M̂∗δ
gets smaller since the loop gain increases.

The comparative study between the closed loop systems with and without measure-

ment delays under model uncertainties is provided as follows. Note that critical

understandings about individual and integrated effects of measurement delays and

model uncertainties to the system with IBKS can be facilitated by this comparative



IBKS under Measurement Delay and Model Uncertainty 83

study. For the closed loop system with model uncertainties and without measure-

ment delays, the previous study in [16] shows that the system with IBKS is not

affected by any model uncertainty even in M̂∗
δ and always stable with uniform per-

formance. When the closed loop system is under both measurement delays and

model uncertainties, the relationship between τq̇ and τδ for the system stability is

provided, which is affected by ∆M̂∗δ
. The framework result with ∆M̂∗δ

= 0 indicates

the case when τq̇ and τδ are only considered. In this case, the system is stable only

if τq̇ = 0 or τq̇ = τδ (i.e. kmax = 1). If ∆M̂∗δ
is additionally considered, the number

of stable points tends to decrease with 0 ≤ kmax ≤ 1 for under-estimated M̂∗
δ and

increase with kmax ≥ 1 for over-estimated M̂∗
δ .

4.3.4 Closed-loop characteristics : Performance
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Figure 4.4: Rising time(tr) for the stable points

Section 4.3.4 suggests closed-loop characteristics about system performance inves-

tigated from the simulation results. One of the system stability related properties

mentioned in Section 4.3.3 is that the number of stable points increases with im-

proved gain margin as ∆M̂∗δ
gets bigger in the positive direction. However, large ∆M̂∗δ

has a negative impact on the system performance, especially about fast response.

As can be seen in Fig. 4.4, rising time tr gets larger as ∆M̂∗δ
increases for the same

amount of delays on q̇0 and δ0. For the same ∆M̂∗δ
, tr increases with larger τq̇ and

τδ. The time response graph for the representative cases, Fig. 4.5, shows that the
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Figure 4.5: Time response graphs for the representative cases

steady state error always becomes zero. Steady state error can be also obtained in

analytic way by applying (4.20) and (4.18) to (4.17), resulting in zero value.

4.4 Conclusion

Chapter 4 suggests closed loop characteristics with IBKS obtained from the proposed

analysis framework, especially with consideration of measurement delays along with

model uncertainties. A numerical framework is proposed to judge absolute stability

for the closed loop system with IBKS under the measurement delays and the model

uncertainties. The suggested framework with an optimization concept efficiently

and systematically examines the existence of the poles in the right half plane, even

for the highly nonlinear metric function due to the considered measurement delays.

Chapter 4 also suggests critical understandings about the closed loop characteristics

with IBKS considering both measurement delays and model uncertainty. By apply-

ing the proposed numerical framework, a stability condition about the relationship

between delays on state derivative and control surface deflection angle measure-

ments is found. It is shown that this condition is affected by the model uncertainty

on control effectiveness information. The comparative study are conducted to sug-

gest important insights about individual and integrated effects of the measurement

delays and the model uncertainties to the closed loop system. The obtained prop-

erties about the absolute stability are verified through the simulation. From the

simulation results, robustness and performance under the measurement delays and

the model uncertainty are additionally investigated.
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Appendix

A Derivation of Transfer Function for the System with IBKS

under Measurement Delays and Model Uncertainties

Dynamics (4.2) can be expressed as a state space equation (4.24).

ẋ = Ax + Bu y = Cx

x =
[
α q

]T
u = δ

A =

[
Z∗α 1

M∗
α M∗

q

]
B =

[
0

M∗
δ

]
C =

[
1 0

] (4.24)

Delays on q̇0 and δ0 measurments are mainly considered for the analysis with IBKS

in Chapter 4, and modellings of these delayed measurements are suggested for the

closed loop analysis as (4.25) utilizing (4.2) for q̇0.

δ0 = δ (t− τδ)

q̇0 = q̇
(
t− τq̇

)
= M∗

αα
(
t− τq̇

)
+M∗

q q
(
t− τq̇

)
+M∗

δ δ
(
t− τq̇

) (4.25)

Since Chapter 4 focuses on IBKS, the model uncertainty ∆
M∗
δ

on M̂∗
δ is mainly

considered in this closed loop analysis. Using (4.14) with (4.2), (4.6) and (4.25)

under the assumption of constant αc(i.e. α̇c = α̈c = 0) and zero ∆
Z∗α

, δ can be

rearranged as (4.26).

δ = − 1

M̂∗
δ

ναα−
1

M̂∗
δ

νqq +
1

M̂∗
δ

(C1C2 + 1)αc

− M∗
α

M̂∗
δ

α
(
t− τq̇

)
−
M∗

q

M̂∗
δ

q
(
t− τq̇

)
+

{
δ (t− τδ)−

M∗
δ

M̂∗
δ

δ
(
t− τq̇

)}
where

να =
{

(C1 + Z∗α) (C2 + Z∗α) + 1
}

νq = (C1 + C2 + Z∗α)

(4.26)
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Applying Laplace transform to (4.26) and rearranging the equation with respect to δ,

δ(s) =
[
− 1

M̂∗δ φ1(s)
µα(s) − 1

M̂∗δ φ1(s)
µq(s)

]
X(s)

+
1

M̂∗
δ φ1(s)

(C1C2 + 1)αc(s)

where

φ1(s) = 1− e−τδs +
M∗

δ

M̂∗
δ

e−τq̇s

µα(s) = να +M∗
αe
−τq̇s

µq(s) = νq +M∗
q e
−τq̇s

(4.27)

If Laplace transform is applied to (4.24) and δ(s) in (4.27) is substituted into that

equation, the closed loop system can be derived as (4.28).

sX(s) = A(s)X(s) + B(s)αc(s) Y = C(s)X(s)

A(s) =

[
a11(s) a12(s)

a21(s) a22(s)

]
=

 Z∗α 1

M∗
α −

M∗δ
M̂∗δ φ1(s)

µα(s) M∗
q −

M∗δ
M̂∗δ φ1(s)

µq(s)


B(s) =

 0
M∗δ

M̂∗δ φ1(s)
(C1C2 + 1)


C(s) =

[
1 0

]
(4.28)

From (4.28), transfer function can be derived as (4.29).

α(s)

αc(s)
= C(s)

(
sI−A(s)

)−1
B(s)

=
a12

M∗δ
M̂∗δ φ1(s)

(C1C2 + 1)

s2 − (a11 + a22) s+ (a11a22 − a12a21)
=

M∗δ
M̂∗δ

(C1C2 + 1)

φ1(s)s2 + φ2(s)s+ φ3

where

φ1(s) = 1− e−τδs +
M∗

δ

M̂∗
δ

e−τq̇s

φ2(s) = −(Z∗α +M∗
q )(1− e−τδs) +

M∗
δ

M̂∗
δ

(C1 + C2 + Z∗α − Z∗αe−τq̇s)

φ3(s) = (Z∗αM
∗
q −M∗

α)(1− e−τδs) +
M∗

δ

M̂∗
δ

(C1C2 + 1)

(4.29)
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B Aerodynamic Derivatives

Table 4.4: Aerodynamic Derivatives of Aircraft

Parameters Airplane A Airplane B Airplane C Airplane D

h (km) 7.6200 1.5240 1.5240 6.0960

U0 (m/s) 185.9280 67.0865 103.6320 205.1304

Z∗α -1.9626 -0.8222 -2.4660 -0.5249

M∗
α -4.7488 -17.1690 -23.8147 -1.2473

M∗
q -3.9326 -6.8791 -5.8557 -0.6474

M∗
δ -26.6845 -35.2513 -28.4270 -1.6937
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[24] P Simpĺıcio, MD Pavel, E Van Kampen, and QP Chu. An acceleration

measurements-based approach for helicopter nonlinear flight control using incre-

mental nonlinear dynamic inversion. Control Engineering Practice, 21(8):1065–

1077, 2013.

[25] Xuerui Wang, Erik-Jan Van Kampen, Qiping Chu, and Peng Lu. Stability anal-

ysis for incremental nonlinear dynamic inversion control. Journal of Guidance,

Control, and Dynamics, 42(5):1116–1129, 2019.

[26] Stephen H Lane and Robert F Stengel. Flight control design using non-linear

inverse dynamics. Automatica, 24(4):471–483, 1988.

[27] RD Driver, DW Sasser, and ML Slater. The equation x’(t)= ax (t)+ bx (t- τ)

with ”small” delay. The American Mathematical Monthly, 80(9):990–995, 1973.

[28] Steve Guillouzic, Ivan L’Heureux, and André Longtin. Small delay approxima-
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Chapter 5

Composite Adaptive Backstepping

Control

5.1 Introduction

Backstepping(BKS) control is one of the most widely and successfully applied non-

linear flight control methods [1–3]. BKS has a cascade control structure, where a

state for an inner loop acts on an outer loop as a pseudo input driving a state for an

outer loop to its desired value. This implies that a control law design for a system

with large dimension can be split into several control law designs for simple systems

with smaller dimension in recursive way. The closed-loop system with BKS fulfills

a desired system response with known stability and convergence properties under

Lyapunov framework. One of the critical issues about BKS is that it is sensitive to

model uncertainties, because it requires full model information for implementation

of the algorithm. Since it is difficult to get accurate model information in general,

it is important to make BKS less dependent on model information.

In Chapter 5, a composite adaptive control approach [4–10] is introduced to BKS in

order to reduce its model dependency by estimating part of model parameters online

and utilizing the estimates for controller implementation. Note that the composite

adaptive control scheme has been widely utilized in previous studies, resulting in

advanced algorithms like composite model reference adaptive control (MRAC) [9]

and composite adaptive neural network-based control [11]. A composite adaptation

law has an advantage of improved estimation performance, which is achieved by

introducing an estimation error based term to a tracking error based adaptation
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law [4]. While a tracking error based adaptation law can be interpreted as a simple

integration of a tracking error signal, a composite adaptation law appears to be a low

pass filter on a tracking error signal due to the additionally introduced estimation

error based term. This implies that, when adaptation gains are increased to enhance

estimation speed, oscillations on estimation and tracking response in transient phase

can be amplified with a tracking error based adaptation law. On the other hand,

increase of adaptation gains enlarges a bandwidth of a composite adaptation law

without excessive amplifications of oscillatory behaviors in estimation and tracking

response in transient phase. Thus, a composite adaptation law achieves smoother

transient response than a tracking error based adaptation law, resulting in enhanced

tracking performance and system robustness. Note that robust adaptation laws have

been developed to enhance system robustness by introducing modification terms like

σ-modification[12], e-modification[13] and low-frequency learning[14], or suggesting

architectures like L1 adaptation law[15] and derivative-free adaptation law[16], but

only boundedness of parameter estimation error is guaranteed with those algorithms.

The parameter convergence can be guaranteed with the composite adaptation law,

but one of the main issues is that persistent excitation (PE) is required for the con-

vergence. This PE condition results in persistent oscillations of state and control

input signals, which is unrealistic for practical applications. There have been previ-

ous studies [17–20] on relaxation of PE condition to finite excitation (FE) condition

for composite adaptation laws. To achieve convergence of parameter estimation

only with FE, they utilize a similar approach as follows. An information matrix

is obtained by accumulating regressor data and algorithms to make use of richer

regressor signals for the information matrix are introduced. This results in full rank

of the information matrix after a certain time, only with FE. Besides, speed in the

slowest adaptation direction is maximized since the information matrix which max-

imizes its minimum eigenvalue is selected. The approaches in [17–19] require larger

memory than [20], since they store all regressor matrices for the information matrix

calculation. To the best of our knowledge, relaxation of PE condition has not been

discussed for the composite ABKS [21]. [17] and [20] are based on full-state feedback

control, and [18] and [19] utilize dynamic inversion control scheme.

For successful design of an adaptation law, it is also important to consider prac-

tical issues related to computational complexity induced from the adaptation law

structure. A structure of an adaptation law is highly dependent on a structure of a

baseline control algorithm. If the baseline control law has a cascade control struc-

ture, it is possible to design the adaptation law for each loop of the control system.
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In previous studies [17–20], baseline control algorithms do not have cascade control

structures. Even in [21] with ABKS, an adaptation law design does not fully take

advantage of the structural characteristics of BKS. As a result, adaptation laws in

relevant literature [17–21] are designed to estimate all the uncertain parameters in

the dynamic system at once. Since a dimension of an augmented parameter estima-

tion problem enlarges as the number of dynamic equations and uncertain parameters

increases, matrix operations with excessively large matrices are required, resulting

in high computational complexity. Thus, a structure of the proposed adaptation law

needs to be designed in a way to decrease the estimation problem dimension.

In Chapter 5, a composite ABKS control algorithm is designed, where its estimation

problem dimension is reduced and PE requirement is relaxed. The composite adap-

tation law which enhances both estimation and tracking performance is utilized.

The relaxation of PE requirement to FE for parameter convergence is accomplished

by utilizing information matrix construction and selection methods based on [20].

One of the main contributions of Chapter 5 is that the adaptation problem for the

overall dynamic system is divided into smaller estimation problems with the new

composite ABKS. By taking advantages from a cascade control structure of BKS, the

proposed adaptation law estimates model parameters in each loop separately, rather

than estimates whole parameters of the system at once. This results in decreased

computational complexity from reduced estimation problem dimension.

Chapter 5 is organized as follows. System dynamics with model uncertainty is de-

fined in Section 5.2. Derivation and stability analysis of the proposed composite

ABKS are addressed in Section 5.3. In Section 5.4, simulations are conducted to

show performance and characteristics of the new composite ABKS. The overall con-

cluding remarks are stated in Section 5.5.
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5.2 System Dynamics

In Chapter 5, system dynamics with model uncertainty is considered as follows.

ẋ = f(x) + g(x)u+ ∆(x)

where

x = [x1, x2, · · · , xn]T

x′i = [x1, x2, · · · , xi]T (i = 1, · · · , n)

f(x) =
[
f1(x′1), f2(x′2), · · · , fn(x′n)

]T
g(x) = diag

[
g1(x′1), g2(x′2), · · · , gn(x′n)

]
u = [u1, u2, · · · , un]T with ui =

xi+1 (i = 1, · · · , n− 1)

δ (i = n)

∆(x) =
[
∆1(x′1),∆2(x′2), · · · ,∆n(x′n)

]T

(5.1)

x ∈ Rn×1 indicates a state vector and x′i ∈ Ri×1 is a subset of the state vector

x. f(x) ∈ Rn×1 and g(x) ∈ Rn×n represent known model information. u ∈ Rn×1

denotes a control input vector. Model uncertainty is expressed as ∆(x) ∈ Rn×1,

which satisfies the matching condition in [22]. Since a control algorithm based on the

backstepping methodology will be proposed, the system dynamics (5.1) is suggested

in a strict-feedback form. First, fi(x
′
i) and gi(x

′
i) in f(x) and a diagonal matrix

g(x) only depend on x′i. Second, a real control input δ is applied for the innermost

loop and a state becomes a pseudo input for the next outer-loop in recursive way,

constructing the control input vector u as (5.1).

A structured model uncertainty ∆(x) which is linearly parameterized, is utilized in

Chapter 5 as below.

∆i(x
′
i) = θTi φi(x

′
i) (i = 1, · · · , n)

where

θi =
[
θi1 , θi2 · · · θimi

]T
φi(x

′
i) =

[
φi1(x′i), φi2(x′i) · · ·φimi (x

′
i)
]T

(5.2)

θi ∈ Rmi×1 is a vector of unique constant true parameters, which is unknown.

φi(x
′
i) ∈ Rmi×1 represents a known regressor vector which is continuously differen-

tiable.
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5.3 Composite Adaptive Backstepping Control

5.3.1 Derivation

A control command vector uc ∈ Rn×1 is defined as (5.3) from (5.1). Subscript c

indicates a command.

uc = [u1c , u2c , · · · , unc ]
T

with uic =

xi+1c (i = 1, · · · , n− 1)

δc (i = n)

(5.3)

uic is a command which ui should follow in order to drive xi to xic . Under the

assumption of ideal actuator, unc = δc = δ.

A tracking error z ∈ Rn×1 is given as below.

z = [z1, z2, · · · , zn]T

where zi = xi − xic
(5.4)

The unknown vector θi of true parameters will be estimated as θ̂i by the adaptation

law (5.7). A vector of parameter estimation errors is given as (5.5).

θ̂i − θi =
[
θ̂i1 − θi1 , θ̂i2 − θi2 , · · · , θ̂imi − θimi

]T
(5.5)

A recursive design methodology for the control command uc with an adaptation

law is utilized under Lyapunov framework, resulting in (5.6) with (5.7). Asymptotic

stability is achieved for the closed loop system with (5.6) and (5.7), which will be

proved under Lyapunov stability analysis framework in following Section 5.3.2.

A derived control command uic is suggested as follows.

uic =
1

gi

[
−Cizi − gi−1zi−1 − fi − θ̂

T

i φi + ẋic

]
where g0z0 , 0

(5.6)

Ci is a constant and positive design parameter for the control law to achieve a desired

closed-loop response.
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θ̂i in (5.6) can be obtained from the adaptation law (5.7).

d

dt
θ̂i = ziΓiφi − λiΓi

(
Ωiθ̂i − ηi

)
(5.7)

Γi = diag
[
γi1 , γi2 , · · · , γimi

]
∈ Rmi×mi is a matrix of constant and positive design

parameters for the adaptation law. Constant and positive λi is a relative weight

factor on the estimation error based term to the tracking error based term. Ωi ∈
Rmi×mi denotes an information matrix to be designed. ηi ∈ Rmi×1 denotes an

auxiliary vector, which can be expressed as ηi = Ωiθi. Since θi is unknown, ηi

should be calculated from known signals in another way, which will be discussed in

later part related to a regressor filtering scheme. The estimation error based term

in the composite adaptation law (5.7) leads to smoother transient estimation and

tracking response, resulting in enhanced system performance.

Regressor filtering scheme is utilized to compute the auxiliary vector without state

derivative information. For the i-th loop, (5.1) can be rewritten as (5.8) with g′i ,

giui.

ẋi = fi + g′i + θTi φi (5.8)

By applying Laplace transform to (5.8),

sxi(s) = fi(s) + g′i(s) + θTi φi(s) (5.9)

Filtered dynamics (5.10) can be obtained by multiplying a first order filter F (s) =
1

ks+1
with the filter parameter k for both sides.

sF (s)xi(s) = F (s)
{
fi(s) + g′i(s) + θTi φi(s)

}
(5.10)

Using sF (s) = 1
k
(1− F (s)), (5.10) can be rearranged as (5.11).

1

k

{
xi(s)− F (s)xi(s)

}
= F (s)fi(s) + F (s)g′i(s) + θTi

{
F (s)φi(s)

} (5.11)

Filtered dynamics in the time domain (5.12) is obtained by applying inverse Laplace
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tranform to (5.11).

1

k

(
xi − xif

)
= fif + g′if + θTi φif (5.12)

where (·)f represents a filtered signal by F (s).

Let

ζif ,
1

k
xif + fif + g′if (5.13)

(5.14) is obtained by rearranging (5.12) in terms of θTi φif and substituting (5.13)

into the rearranged equation.

θTi φif =
1

k
xi − ζif

where

φ̇if =
1

k

(
φi − φif

)
ζ̇if =

1

k

(
1

k
xi + fi + g′i − ζif

) (5.14)

θTi φif information in (5.14) will be utilized to calculate the auxiliary vector in (5.15).

Without regressor filtering scheme, θTi φi information is required to calculate the

auxiliary vector instead of θTi φif information, and θTi φi information can be obtained

from (5.8), resulting in usage of the state derivative information. In general, state

derivatives are difficult to be measured, and noise in state measurement signals can

be amplified if the state derivatives are calculated via differentiation of the state

measurements. Hence, it is advantageous to utilize regressor filtering scheme and

prevent usage of the state derivative information in auxiliary vector calculation.

Update laws for the information matrix Ωi and the auxiliary vector ηi are designed

as (5.15).

Ω̇i(t) = −K(t)Ωi(t) + φif (t)φi
T
f (t)

η̇i(t) = −K(t)ηi(t) + φif (t)

(
1

k
xi(t)− ζif (t)

)T (5.15)

with Ωi(t0) = 0mi×mi and ηi(t0) = 0mi×1. K(t) is a forgetting factor to be designed,

which is positive and bounded. The information matrix update law in (5.15) consists
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of two terms. The first term is defined by introducing the forgetting factor (5.17)

to the current information matrix obtained from accumulated regressor data for

previous time interval. The second term represents the effects of the current filtered

regressor φif on the information matrix update.

Ωi and ηi are derived by integrating the update laws (5.15).

Ωi(t) =

∫ t

t0

e−
∫ t
τ K(ν)dνφif (τ)φi

T
f (τ)dτ

ηi(t) =

∫ t

t0

e−
∫ t
τ K(ν)dνφif (τ)

(
1

k
xi(τ)− ζif (τ)

)T
dτ

= Ωi(t)θi

(5.16)

It can be observed from (5.16) that the information matrix Ωi is positive semi-

definite. Besides, (5.16) implies that the information matrix can have full rank and

become positive definite matrix over time, when the regressor signal is excited.

K(t) is a forgetting factor, which is designed as below.

K(t) = kL + (kU − kL) tanh
(
ϑ‖φ̇if (t)‖

)
(5.17)

kL and kU indicate lower and upper bounds of K(t) with positive constant values,

respectively. ϑ is a constant and positive design parameter for the forgetting factor.

The effects of the forgetting factor on the information matrix are addressed as fol-

lows. First, the forgetting factor enables the information matrix to be upper bounded

in its norm. Second, the forgetting factor makes richer signal to be reflected more on

the information matrix update (5.15). The forgetting factor (5.17) becomes larger

when φif contains richer data with large ‖φ̇if (t)‖. Consequently, the information

matrix is updated to consider the current filtered regressor signal more and the ac-

cumulated data less. On the other hand, when φif does not contain rich data with

small ‖φ̇if (t)‖, the forgetting factor (5.17) gets smaller. As a result, the current

filtered regressor signal is reflected less and the accumulated data affects more to

the information matrix update.

After the excitation is finished, the information matrix will be degenerated due to

the forgetting design and the incoming filtered regressor signal which is not rich. In
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order to prevent this phenomena, information matrix selection method is introduced.

Ωib(t) , Ωi(tb), ηib(t) , ηi(tb)

tb , max

{
argmax
τ∈(t0,t)

F(Ω(τ))

}
where F(Ω(τ)) = σmin(τ)

(5.18)

F(Ω(τ)) is selected as a minimum eigenvalue of the information matrix. Eigenvalues

of the information matrix are related to speed for the estimation error based term of

the adaptation law in corresponding eigenvector directions. This means that max-

imizing the minimum eigenvalue can be interpreted as maximizing the adaptation

speed of the slowest direction. Information matrix becomes positive definite dur-

ing excitation, but after FE it might become positive semi-definite again with rank

deficiency. The selection method (5.18) has an effect which automatically excludes

positive semi-definite matrices with zero eigenvalues. Hence, the condition to guar-

antee parameter convergence is relaxed from PE to FE through accumulation and

selection procedures.

A final adaptation law is suggested as (5.19), with best information matrix and

auxiliary vector from (5.18).

d

dt
θ̂i = ziΓiφi − λiΓi

(
Ωibθ̂i − ηib

)
(5.19)

Note that the adaptation law (5.19) is designed to estimate θi for each loop sep-

arately. If all θi are augmented into one parameter estimation problem for whole

system, the size of this augmented matrix for the unknown parameters is
∑n

i=1mi×n,

and the size of the corresponding information matrix becomes
∑n

i=1 mi×
∑n

i=1mi in

maximum. This implies that complex matrix operations, like matrix multiplication

and eigenvalue calculation for matrix selection, should be conducted with an exces-

sively large size of a matrix. Since the computational complexity of those matrix

operations dramatically increases as the matrix size enlarges, it is beneficial to divide

the adaptation problem into smaller ones and conduct estimation for parameters in

each loop, as addressed in (5.19).



C-ABKS 101

5.3.2 Stability Proof

A Lyapunov candidate function Vn considering both tracking and parameter esti-

mation errors, is selected as below.

Vn =
1

2

n∑
i=1

z2
i +

1

2

n∑
i=1

mi∑
j=1

1

γij

(
θ̂ij − θij

)2

(5.20)

Vn is positive definite for all tracking and parameter estimation errors except the

origin. V̇n, derivative of Vn, can be derived as (5.21).

V̇n =
n∑
i=1

ziżi +
n∑
i=1

mi∑
j=1

1

γij

(
θ̂ij − θij

)
˙̂
θij

=

[
z1

{
−C1z1 + g1z2 − θ̃T1 φ1

}
+

n−1∑
i=2

zi

{
−Cizi − gi−1zi−1 + gizi+1 − θ̃Ti φi

}
+zn

{
−Cnzn + gn−1zn−1 − θ̃Tnφn

}]
+

n∑
i=1

mi∑
j=1

1

γij

(
θ̂ij − θij

)
˙̂
θij

=−
n∑
i=1

Ciz
2
i −

n∑
i=1

mi∑
j=1

(
θ̂ij − θij

)
φijzi

+
i∑
i=1

mi∑
j=1

1

γij

(
θ̂ij − θij

)
˙̂
θij

=−
n∑
i=1

Ciz
2
i −

n∑
i=1

λi

(
θ̂i − θi

)T (
Ωibθ̂i − ηib

)
=−

n∑
i=1

Ciz
2
i −

n∑
i=1

λi

(
θ̂i − θi

)T
Ωib

(
θ̂i − θi

)

(5.21)

Since Ωib becomes positive definite under FE, V̇n becomes negative definite for

all tracking and parameter estimation errors except the origin. To this end, the

asymptotic stability for the closed-loop system is guaranteed.
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5.4 Simulation

Simulations are carried out to check performance of the proposed composite ABKS.

As an illustrative example, simulation results with short period mode dynamics for

an aircraft will be suggested in Section 5.4.

A short period mode dynamics is considered in this simulation as follows.[
α̇

q̇

]
=

[
Z∗α 1

M∗
α M∗

q

][
α

q

]
+

[
Z∗δ
M∗

δ

]
δ (5.22)

State variables α and q represent an angle of attack and a pitch rate, respectively. δ

denotes a deflection angle of an elevator. Z∗α, M∗
α, M∗

q , Z∗δ and M∗
δ are aerodynamic

derivatives.

(5.22) is rewritten in the strict-feedback form in (5.1) with (5.2) under the assump-

tion that the effect of Z∗δ is negligible [23].

x = [α, q]T

f(x) = [0, 0]T

g(x) = diag [1,M∗
δ ]

u = [q, δ]T

∆(x) =
[
∆1(x′1),∆2(x′2)

]T
=
[
θT1φ1(x′1),θT2φ2(x′2)

]T
where

θ1 = [Z∗α]

φ1(x′1) = [α]

θ2 =
[
M∗

α,M
∗
q

]T
φ2(x′2) = [α, q]T

(5.23)

Note that Z∗α, M∗
α and M∗

q are considered as unknown model parameters to be

estimated as θ̂1 =
[
Ẑ∗α

]
and θ̂2 =

[
M̂∗

α, M̂
∗
q

]T
with the proposed composite ABKS.

The estimate (̂·) of the parameter (·) is defined as (̂·) = (·)(1 + D(·)), where D(·)

is a parameter uncertainty level on (·) in percentage. True values for the model

parameters are set to be θ1 = [−1.963] and θ2 = [−4.749,−3.933]T and M∗
δ =
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−26.685.

To have critical understandings about closed-loop characteristics with the proposed

composite ABKS, simulation results with BKS will be additionally suggested and

investigated for cases with and without D(·), as references. For BKS and the pro-

posed composite ABKS, C1 and C2 are set to be 1.5, and angle of attack command

αc is given as low pass filtered 0◦ → 1.5◦ → 0◦ → −1.5◦ → 0◦ with 1
s+1

. Simulation

parameters for the proposed composite ABKS can be summarized as Table. 5.1.

Table 5.1: Simulation parameters for ABKS

Γ1 λ1 Γ2 λ2 k kL kU ϑ

104 0.5 diag
[
104, 104

]
0.5 10−3 0.1 10 1

Figure. 5.1 shows each α response for nominal BKS, BKS with D(·) = 5% and

ABKS.
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2

c

BKS with True Model Information

BKS with Model Uncertainty

ABKS

Figure 5.1: α Response

Magnitudes of tracking errors for each case and estimation errors with the proposed

composite ABKS are suggested in Figure. 5.2.

It is shown in Fig. 5.1 that the closed-loop system with BKS under true model

information tracks a desired response determined by C1 and C2 without any steady

state error. However, for BKS, 5% error on model information results in about

30% steady state error. The angle of attack response with new composite ABKS

converges to the command without any prior knowledge on model parameters. At
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Figure 5.2: Tracking and Estimation Error

the early stage, since the parameter estimation is not converged yet, it is observed

in Fig. 5.1 and Fig. 5.2 that the tracking performance with the proposed composite

ABKS is worse than with BKS for the nominal case. As the parameter estimation

converges, the tracking performance of the system with new composite ABKS is

enhanced, showing similar performance with nominal BKS, as addressed in Fig. 5.1

and Fig. 5.2. These simulation results imply that the information matrix becomes

full rank with the finite excitation and the information matrix is maintained to be

full rank after the finite excitation. The proposed composite ABKS shows high

estimation and tracking performance without persistent excitation.

5.5 Conclusion

A new composite ABKS control is successfully suggested with relaxation of PE

requirement to FE for parameter convergence and reduction of computational com-

plexity from decreased estimation problem dimension. A composite adaptation

method is applied for enhanced estimation and tracking performance. Parameter

convergence is accomplished without PE by making the information matrix full rank

only with FE. The adaptation law of the proposed composite ABKS is designed by

taking advantage of a cascade control structure of BKS. As a result, this adaptation

law estimates uncertain model parameters of each loop separately and computational

complexity is decreased from the reduced estimation problem dimension. Simula-

tion results are provided to show performance with the proposed composite ABKS

under FE.
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Chapter 6

Composite Adaptive Backstepping

Control with New Information

Matrix

6.1 Introduction

Adaptive control is one of the most widely and successfully applied control method-

ologies for dynamic systems with uncertain model parameters [1–5]. Uncertainty or

unknown variation in model parameters frequently occurs in many practical applica-

tions e.g. ship steering [1, 6], aircraft control [2, 7, 8], process control [9, 10], power

system control [3, 11] and robot manipulation [4, 5, 12]. The overall aim in adaptive

control algorithms is to maintain consistent performance of the closed loop system

under the model uncertainty. The basic idea for the adaptive control methodologies

to achieve this aim can be summarized as follows; uncertain model parameters or

corresponding controller parameters are estimated online via an adaptation law and

these estimates are utilized in a control command calculation.

Chapter 6 considers a composite adaptation law [12–24], which is designed by intro-

ducing a linear regression term to a tracking error based adaptation law. Note that

the composite adaptation law achieves faster estimation with smoother transient

response than the tracking error based adaptation law, resulting in enhanced esti-

mation and tracking performance with improved system robustness [25]. The linear

regression term consists of the information matrix and the corresponding auxiliary

vector. The information matrix appears to be positive semi-definite with rank-1 as
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shown in [12, 25] with its fundamental design. Consequently, persistent excitation

(PE) is required to guarantee the convergence of the parameter estimation. If pa-

rameter estimates do not converge to their true values, parameter drift can occur

especially under the existence of non-parametric uncertainties such as noise and un-

modeled dynamics, resulting in instability phenomena with sudden bursting [25].

Hence, the convergence of the parameter estimation should be guaranteed, but PE

requirement is undesirable for practical applications since this leads to continuous

oscillations of state and control input signals. The leading principle to relax the PE

requirement is to design positive definite information matrix under finite excitation

(FE) by modifying its fundamental form with positive semi-definiteness to be full

rank.

There have been extensive studies [26–30] which attempt to design positive definite

information matrix under FE by accumulating rank-1 matrices over time. Note that

the information matrix is populated to be full rank with rank-1 matrices obtained

from sufficiently excited regressor signals. Since this accumulation based approach

can lead to unboundedness of the information matrix and low tracking capability

against sudden parameter changes, a forgetting algorithm is introduced to this ap-

proach. The forgetting algorithm can make the information matrix become rank

deficient after FE, but this is prevented by additionally introduced selective update

scheme. Despite those measures in the previous researches, limitations from the

nature of accumulation over time still remain as follows. First, uncertain amount of

time is required to obtain sufficient number of linearly independent regressor signals

to make the information matrix full rank. Note that adaptation speed is degenerated

and asymptotic stability is not guaranteed before the information matrix becomes

full rank. Second, the eigenvalues of the information matrix constructed by accumu-

lating the rank-1 matrices from the regressor vectors with uncertain directions can

show undesirable pattern. For example, when obtained regressors are independent

but on a similar direction over time, the information matrix has an excessively large

principal eigenvalue and the others with extremely small values, resulting in lack of

system robustness and adaptation speed degeneration, respectively. These issues do

not appear if positive definite information matrix can be achieved under FE without

accumulation over time.

In Chapter 6, a new paradigm for the information matrix design is proposed to ac-

complish full rank under FE for parameter convergence by developing a modulation-

based approach. Since the modulation effects of the multiple filters on a regressor

signal are different from each other especially in its transient phase, a sufficient
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number of filtered regressor signals which are linearly independent with each other

can be obtained at each time step during excitation. These filtered regressor vec-

tors are modified to be orthogonal from each other while maintaining their original

magnitudes, and the information matrix is constructed from the set of these modi-

fied regressor vectors. The information matrix is updated to maximize its minimum

eigenvalue to enhance the adaptation speed and prevent a possible impacts from

linear dependency between filtered regressor vectors after excitation. This informa-

tion matrix is guaranteed to be full rank for all the time from the beginning under

FE, while achieving bounded information matrix and enhanced tracking capability.

Besides, adaptation speed and system robustness can be improved with a moderate

level of eigenvalues of the information matrix from the modified filtered regressors.

The rest of Chapter 6 is organized as follows. Preliminaries with mathematical defi-

nitions are given in Section 6.2 and Section 6.3 provides system dynamics with model

uncertainties. In Section 6.4, a composite adaptive control with new information

matrix is proposed to guarantee parameter convergence under FE. The fundamental

structure of the composite adaptive control is addressed in Section 6.4.1, and Section

6.4.2 suggests new information matrix from new modulation based design approach

and corresponding composite adaptation law. Section 6.5 presents key properties of

new information matrix including its positive definiteness and boundedness under

FE with theoretical proofs. In Section 6.6, it is proven that the closed-loop system

with the proposed algorithm is globally exponentially stable. Numerical simulations

in Section 6.7 are performed to examine the characteristics illustrated in Section

6.4, 6.5 and 6.6. The overall concluding remarks are addressed in Section 6.8.

6.2 Preliminaries

The main objective of this research is to propose new composite adaptive control

algorithm with relaxed requirement for parameter convergence from PE to FE. In

Section 6.2, definitions of persistent excitation (PE) and finite excitation (FE) in

[25, 31] are addressed as preliminaries.

Definition 6.1. (Persistent Excitation) : A bounded vector signal ψ(t) is persis-

tently exciting, if ∀t ≥ t0 there exist T > 0 and γ > 0 s.t.∫ t+T

t

ψ(τ)ψT (τ)dτ ≥ γI (6.1)
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Definition 6.2. (Finite Excitation) : A bounded vector signal ψ(t) is finitely ex-

citing over a time interval [ts, ts + T ], if there exist T > 0, ts ≥ t0 and γ > 0

s.t. ∫ ts+T

ts

ψ(τ)ψT (τ)dτ ≥ γI (6.2)

6.3 System dynamics

In Chapter 6, system dynamics with model uncertainty is considered in strict feed-

back form as (6.3), since backstepping control is introduced in Section 6.4.1 as a

representative example of baseline control algorithms to apply new composite adap-

tation law in Section 6.4.2. Note that the proposed adaptation law is compatible

with any stabilizable system and baseline control algorithm.

ẋ = f(x) +G(x)
[
u+ ∆(x)

]
where

x = [x1, x2, · · · , xn]T

x′i = [x1, x2, · · · , xi]T (i = 1, · · · , n)

f(x) =
[
f1(x′1), f2(x′2), · · · , fn(x′n)

]T
G(x) = diag

[
g1(x′1), g2(x′2), · · · , gn(x′n)

]
u = [u1, u2, · · · , un]T with ui =

xi+1 (i = 1, · · · , n− 1)

u (i = n)

∆(x) =
[
∆1(x′1),∆2(x′2), · · · ,∆n(x′n)

]T

(6.3)

x ∈ Rn×1 denotes a state vector and x′i ∈ Ri×1 are subsets of the state vector.

f(x) ∈ Rn×1 and G(x) ∈ Rn×m are known model information, and all elements in

the control effectiveness information are not zeros (i.e. gi(x
′
i) 6= 0). u ∈ Rm×1 is

a control input vector; a real control input u is applied for the innermost loop and

a state becomes a pseudo input for the next outer-loop in recursive way. Matched

model uncertainty is represented as ∆(x) ∈ Rn×1.

It is assumed that the model uncertainty in (6.3) has a linearly parameterized struc-

ture, resulting in (6.4).
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∆i(x
′
i) = θTi φi(x

′
i) (i = 1, · · · , n)

where

θi =
[
θi1, θi2 · · · θimi

]T
φi(x

′
i) =

[
φi1(x′i), φi2(x′i) · · ·φimi(x

′
i)
]T

(6.4)

θi ∈ Rmi×1 represents a vector of unique and constant true parameters for the i-th

loop, which is unknown. φi(x
′
i) ∈ Rmi×1 indicates a known regressor vector for the

i-th loop, where its components φij(x
′
i) are linearly independent functions from each

other.

6.4 Composite Adaptive Control with New Infor-

mation Matrix

6.4.1 Structure of Composite Adaptive Control

As a representative example, composite adaptive backstepping control is introduced

in Chapter 6. Note that the composite adaptation law with new information matrix

proposed in Section 6.4.2 is compatible with various baseline control algorithms,

whose application is not restricted to backstepping control. With the backstepping

algorithm, the adaptive control system in Chapter 6 can be designed for each loop

in a recursive way by taking advantage of its cascade structure [28, 32].

The control input command uic based on the backstepping algorithm is derived as

(6.5).

uic =



1

gi
[−Cizi − fi + ẋic]− θ̂Ti φi (i = 1)

1

gi
[−Cizi − fi + ẋic − gi−1zi−1]− θ̂Ti φi (i = 2, · · · , n)

(6.5)

Ci is a constant and positive design parameter for uic to achieve a desired i-th closed-

loop response. zi is the i-th component of a tracking error vector z , x−xc ∈ Rn×1.

θ̂i ∈ Rmi×1 denotes an estimate of the unknown parameter vector in the i-th loop θi,

obtained by the composite adaptation law (6.6). Note that subscript c represents a
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command to follow.

A fundamental structure of the composite adaptation law to provide perfect estima-

tion for uic in (6.5) is derived as (6.6) with φ′i , giφi.

˙̂
θi = ziΓiφ

′
i − λiΓi

(
Ωiθ̂i − ηi

)
(i = 1, · · · , n) (6.6)

Γi ∈ Rmi×mi is a constant and positive definite matrix with design parameters of

the adaptation law for the i-th loop. λi represents a relative weight factor on the

linear regression term to the tracking error based term in the adaptation law for

the i-th loop, which is constant and positive. Ωi ∈ Rmi×mi denotes an information

matrix for the i-th loop, which is designed in Section 6.4.2 to be positive definite.

An auxiliary vector for the i-th loop ηi ∈ Rmi×1 is designed to satisfy ηi = Ωiθi in

Section 6.4.2 to make linear regression term for the composite adaptation law (6.6).

Comparing to the tracking error based adaptation laws, the composite adaptation

law (6.6) shows improved estimation and tracking performance with enhanced sys-

tem robustness because of the additionally introduced linear regression term [25].

The most fundamental way to design ηi = Ωiθi from known information in dy-

namics with ∆i(x
′
i) = θTi φi(x

′
i) is to design corresponding information matrix as

Ωi = φ′iφ
′
i
T [12, 25]. In this case, Ωi is positive semi-definite always with rank-1,

resulting in PE requirement to make parameter estimates converge to their true

values. This PE requirement can be relaxed by designing a positive definite infor-

mation matrix under FE with consideration of rank deficiency issue in Ωi = φ′iφ
′
i
T .

Previous studies [26–30] utilize the property that rank of Ωi can be populated to

full rank by accumulating φ′iφ
′
i
T over time if direction of φ′i changes sufficiently, not

persistently. In Chapter 6, a novel idea to design the information matrix with full

rank under FE is suggested in Section 6.4.2; a modulation-based approach is devel-

oped which utilizes linear independency between multiple filtered regressor signals

generated from φ′i at each time instance.

6.4.2 New Information Matrix and Composite Adaptation

Law

To achieve parameter convergence without PE, new information matrix design frame-

work is proposed in Section 6.4.2, which guarantees its positive definiteness under

FE. The final composite adaption law is suggested by combining new information

matrix with the fundamental structure of the composite adaptation law introduced
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in Section 6.4.1.

The information matrix Ωi in the adaptation law for the i-th loop is defined as (6.7).

Ωi , Ωi
T
HΩiH (6.7)

where ΩiH ∈ Rmi×mi is a matrix to be designed. Positive semi-definite Ωi in (6.7)

can become positive definite if Ωi is designed to be full rank. Since ranks of Ωi

and ΩiH are the same, full rank of Ωi can be achieved by designing ΩiH to be full

rank. Chapter 6 proposes a new paradigm for the information matrix design based

on modulated regressor vectors φ′iFij via multiple filters Fij which are shown to be

linearly independent with each other in Section 6.5.1.

φ′iFij = Fij(s)φ
′
i

where Fij(s) =
1

kijs+ 1

(6.8)

kij (j = 1, · · · ,mi) denote multiple filter parameters with different values for the

i-th loop. The fundamental design methodology for ΩiH with full rank based on

the new paradigm is to simply augment φ′i
T
Fij

. In this case, Ωi appears to have an

extremely large principal eigenvalue and the others with excessively small values.

This is because φ′iFij which are obtained from modulations of the same φ′i tend to

have large parallel component but small orthogonal components with each other.

Note that excessively small or large eigenvalues of the information matrix can be

problematic for the estimation performance and system robustness since they work

as adaptation gains for the corresponding components of the estimation error vector.

To this end, Chapter 6 proposes ΩiH to be designed as (6.9) by augmenting the

vectors φ∗i
T
Fij

.

ΩiH ,

[
φ∗i Fi1 φ∗i Fi2 · · · φ

∗
i Fimi

]T
where

φ∗i Fij = φ′iFij (j = 1)

φ∗i Fij =

∥∥∥φ′iFij∥∥∥∥∥∥ϕiFij∥∥∥ϕiFij , ϕiFij = φ′iFij −
j−1∑
ξ=1

φ′iFij · φ
∗
i Fiξ∥∥∥φ∗i Fiξ∥∥∥2 φ∗i Fiξ (j = 2, · · · ,mi)

(6.9)
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In (6.9), φ∗i Fij are obtained by conducting following procedures recursively from

j = 2 to j = mi with φ∗i Fi1 = φ′iFi1 . First, components of φ′iFij parallel to φ∗i Fij′ (j′ =

1, · · · , j − 1) are subtracted from φ′iFij , resulting in a vector ϕiFij orthogonal to

φ∗i Fij′ . Second, φ∗i Fij is obtained by scaling up ϕiFij to have the same magnitude

with the original φ′iFij . Note that it is proven in Section 6.5.1 that the proposed

ΩiH is full rank from the orthogonality among φ∗i Fij . For detailed discussion on the

auxiliary vector design, ΩiH in (6.9) is rewritten as a multiplication of Oi ∈ Rmi×mi

and Hi ∈ Rmi×mi in (6.10), which represents an operation to transform φ′i
T
Fij

into

φ∗i
T
Fij

and a set of φ′i
T
Fij

, respectively.

ΩiH = OiHi

where

Oi = PimiPi(mi−1) · · ·Pi1

Pir(j, l) =



−

∥∥∥φ′iFij∥∥∥∥∥∥ϕiFij∥∥∥
φ′iFij · φ

∗
i Fil∥∥∥φ∗i Fil∥∥∥2 , l < j = r∥∥∥φ′iFij∥∥∥∥∥∥ϕiFij∥∥∥ , l = j = r

1, l = j 6= r

0, Otherwise

Hi ,

[
φ′iFi1 φ′iFi2 · · · φ

′
iFimi

]T

(6.10)

The auxiliary vector ηi in the adaptation law for the i-th loop can be suggested as

(6.11) with (6.7) and (6.10).

ηi , Ωiθi = Ωi
T
HΩiHθi = Ωi

T
HOiHiθi (6.11)

Hiθi, which is a set of filtered uncertainties for the i-th loop θTi φ
′
iFij

, can be derived

from known information in a set of filtered dynamics for the i-th loop as follows.

First, a set of filtered dynamics for the i-th loop is obtained as (6.12) by applying

multiple filters Fij(s) in (6.8) to the dynamics (6.3) for the i-th loop in s-domain

and taking inverse Laplace transform of this filtered dynamics in s-domain.

1

kij

(
xi − xiFij

)
= fiFij + guiFij + θi

Tφ′iFij (6.12)
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where gui , giui and (·)Fij indicates a filtered signal by Fij(s). Second, a set of

filtered uncertainties for the i-th loop θTi φ
′
iFij

is obtained as (6.13) from known

information in (6.12).

θi
Tφ′iFij =

1

kij
xi − ζiFij

where

ζ̇iFij =
1

kij

(
1

kij
xi + fi + gui − ζiFij

) (6.13)

From the definition of Hi in (6.10) and (6.13), Hiθi is obtained as (6.14).

Hiθi =



1
ki1
xi − ζiFi1

1
ki2
xi − ζiFi2

...

1
kimi

xi − ζiFimi


(6.14)

By substituting (6.14) into (6.11), ηi is derived as (6.15).

ηi = Ωi
T
HOi



1
ki1
xi − ζiFi1

1
ki2
xi − ζiFi2

...

1
kimi

xi − ζiFimi


(6.15)

The new composite adaptation law is obtained as (6.16) by utilizing Ωi in (6.7) with

(6.9) and ηi in (6.15) with the maximum F(Ωi).

˙̂
θi = ziΓiφ

′
i − λiΓi

(
Ωibθ̂i − ηib

)
(i = 1, · · · , n)

where

Ωib(t) , Ωi(tb), ηib(t) , ηi(tb)

tb , max

{
argmax
τ∈(t0,t)

F(Ωi(τ))

} (6.16)

(6.16) implies that Ωib and ηib are updated only when a newly acquired Ωi increases

F(Ωi). Minimum eigenvalue of Ωi is considered for the metric function F(Ωi) as
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(6.17), resulting in adaptation speed maximization in the slowest direction.

F(Ωi) = min
q
σΩiq (6.17)

where σΩiq (q = 1, · · · ,mi) denote eigenvalues of Ωi. The proposed composite

adaptation law accomplishes parameter convergence with positive definite Ωib under

FE, which is proven in Section 6.5.1. Note that key design considerations such

as linear independency of φ′iFij , orthogonality of φ∗i Fij , and selective update to

maximize minimum eigenvalue of Ωib, are discussed to show positive definiteness of

Ωib in Section 6.5.1.

6.5 Properties of New Information Matrix

6.5.1 Positive Definiteness

The parameter estimates converge to their true values if the information matrix in

the composite adaptation law is positive definite. In order to show positive definite-

ness of the proposed Ωib under FE, the first step is to address linear independency

between φ′iFij during excitation in Remark 6.1. From Remark 6.1 and the orthogo-

nality between φ∗i Fij , the second step is to prove that ΩiH is full rank while excited

in Lemma 6.1. Based on Lemma 6.1 and the selective update scheme, Ωib is shown

to be positive definite for all the time during and after excitation in Theorem 6.1,

as the final step.

Remark 6.1. (Linear Independency between Filtered Regressor Vectors) : φ′iFij are

linearly independent while excited.

φ′iFij =

[
φ′i1Fij , · · · , φ

′
imiFij

]T
(j = 1, · · · ,mi) are linearly independent with each

other if and only if there exist l∗ and l′ (l∗ 6= l′) with any set of βij which satisfy

(6.18) for any j∗. 
φ′il∗Fij∗ (t) =

∑mi
j=1
j 6=j∗

βijφ
′
il∗Fij

(t)

φ′il′Fij∗ (t) 6=
∑mi

j=1
j 6=j∗

βijφ
′
il′Fij

(t)

(6.18)
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From (6.8), the dynamics of φ′ilFij(t) can be given as (6.19).

kijφ̇
′
ilFij

(t) = −φ′ilFij(t) + φ′il(t) (l = 1, · · · ,mi) (6.19)

φ′ilFij(t) is obtained as (6.20) by integrating (6.19) with an initial condition φ′ilFij(0) =

0.

φ′ilFij(t) =
1

kij

∫ t

0

e
− t−τ
kij φ′il(τ)dτ (6.20)

By substituting (6.20) and φ′il , giφil into (6.18), (6.18) can be rewritten as (6.21).

∫ t

0

e
− t−τ
kij∗ gi(τ)φil∗(τ)dτ =

mi∑
j=1
j 6=j∗

βij

∫ t

0

e
− t−τ
kij gi(τ)φil∗(τ)dτ

∫ t

0

e
− t−τ
kij∗ gi(τ)φil′(τ)dτ 6=

mi∑
j=1
j 6=j∗

βij

∫ t

0

e
− t−τ
kij gi(τ)φil′(τ)dτ

(6.21)

Since kij (j = 1, · · · ,mi) are defined to be different from each other and φil (l =

1, · · · ,mi) are linearly independent functions of state variables, a set of βij which

makes both conditions in (6.21) to become equality for all pairs of l∗ and l′ (l∗ 6= l′)

with any j∗ does not exist while φil are excited. This implies that φ′iFij are linearly

independent during the excitation.

Lemma 6.1. (ΩiH with Full Rank) : ΩiH is full rank during excitation.

Proof. ΩiH is shown to be full rank during excitation by proving that all of its row

vectors, φ∗i
T
Fij

(j = 1, · · · ,mi), are non-zero and orthogonal to each other while

excited.

First, all φ∗i Fij are shown to be non-zero by utilizing Remark 6.1. From (6.10), φ∗i Fij
can be expressed for any j as (6.22).

φ∗i Fij =

mi∑
ξ=1

Oi(j, ξ)φ
′
iFiξ (6.22)

Since φ′iFij are linearly independent while excited as described in Remark 6.1,

φ∗i Fij in (6.22) equals to 0mi×1 during excitation only when Oi(j, ξ) = 0 for all

ξ = 1, · · · ,mi. However, as shown in (6.10), Oi(j, j) is non-zero with linearly
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independent φ′iFij . This implies that at least one of Oi(j, ξ) is non-zero. Thus,

φ∗i Fij 6= 0mi×1 (j = 1, · · · ,mi) holds.

Second, orthogonality between non-zero φ∗i Fij∗ and φ∗i Fij′ for all j∗, j′ ≤ mi(j
∗ 6= j′)

is proven from a mathematical induction to show that the inner product between

φ∗i Fij∗ and φ∗i Fij′ equals to 0.

The base step shows that φ∗i Fij∗ ·φ
∗
i Fij′

= 0 for all j′ and j∗ (1 ≤ j∗ < j′ ≤ j#) holds

with j# = 2. The dot product between φ∗i Fi2 and φ∗i Fi1 is calculated from (6.9) as

(6.23).

φ∗i Fi1 · φ
∗
i Fi2

=

∥∥∥φ′iFi2∥∥∥∥∥∥ϕiFi2∥∥∥
[
φ∗i Fi1 · φ

′
iFi2
−
φ′iFi2 · φ

∗
i Fi1∥∥∥φ∗i Fi1∥∥∥2 φ∗i Fi1 · φ

∗
i Fi1

]
= 0 (6.23)

The inductive step shows that φ∗i Fij∗ ·φ
∗
i Fij′

= 0 for all j′ and j∗ (1 ≤ j∗ < j′ ≤ j#)

holds for an arbitrary j# = j+ (j+ ≥ 3) under the assumption that the relationship

is satisfied for j# = j+− 1 case. The dot product between φ∗i Fij∗ and φ∗i Fij′ for any

j′ and j∗ (1 ≤ j∗ < j′ ≤ j+) is calculated as (6.24).

φ∗i Fij∗ · φ
∗
i Fij′

=

∥∥∥φ′iFij′∥∥∥∥∥∥ϕiFij′∥∥∥
[
φ∗i Fij∗ · φ

′
iFij′
−

j′−1∑
ξ=1

φ′iFij′ · φ
∗
i Fiξ∥∥∥φ∗i Fiξ∥∥∥2 φ∗i Fij∗ · φ

∗
i Fiξ

]
(6.24)

If j′ ≤ j+− 1, it is given from the assumption that φ∗i Fij∗ ·φ
∗
i Fij′

in (6.24) equals to

0. If j′ = j+, (6.24) is rewritten as (6.25).

φ∗i Fij∗ · φ
∗
i Fij′

=

∥∥∥φ′iFij+∥∥∥∥∥∥ϕiFij+∥∥∥
[
φ∗i Fij∗ · φ

′
iFij+

−
j+−1∑
ξ=1

φ′iFij+
· φ∗i Fiξ∥∥∥φ∗i Fiξ∥∥∥2 φ∗i Fij∗ · φ

∗
i Fiξ

]

(6.25)

Since the assumption indicates that φ∗i Fij∗ · φ
∗
i Fiξ

= 0 for all ξ 6= j∗ (ξ ≤ j+ − 1),

(6.26) is derived from (6.25).

φ∗i Fij∗ · φ
∗
i Fij′

=

∥∥∥φ′iFij+∥∥∥∥∥∥ϕiFij+∥∥∥
[
φ∗i Fij∗ · φ

′
iFij+

−
φ′iFij+

· φ∗i Fij∗∥∥∥φ∗i Fij∗∥∥∥2 φ∗i Fij∗ · φ
∗
i Fij∗

]

= 0

(6.26)

Thus, φ∗i Fij∗ is orthogonal to φ∗i Fij′ for all j′ and j∗ (1 ≤ j∗ < j′ ≤ j#) with an
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arbitrary j# = j+ (j+ ≥ 3) if this statement holds for j# = j+ − 1. From the base

and the inductive steps, the orthogonality between non-zero φ∗i Fij∗ and φ∗i Fij′ for all

j∗, j′ ≤ j# (j∗ 6= j′) is proven.

The first and the second steps imply that all φ∗i
T
Fij

are non-zero and orthogonal to

each other with j# = mi while excited. Thus, ΩiH is full rank during excitation.

Theorem 6.1. (Positive Definiteness of New Information Matrix) : Ωib(t) (i =

1, · · · , n) is positive definite for all t > t0 if φ′i(t) is finitely exciting over t ∈ [t0, t1].

Proof. Lemma 6.1 implies that Ωi(t) in (6.7) becomes full rank during excitation,

resulting in positive definite Ωi(t) for t ∈ (t0, t1]. Since Ωib(t) is selected among

Ωi(t), Ωib(t) is positive definite for t ∈ (t0, t1].

For t > t1, rank deficiency issue for Ωi(t) can be arised as φ′iFij(t) from multiple

filters converge to a steady-state value of φ′i(t). Although one or more eigenvalues of

Ωi(t) diminish to 0 and Ωi(t) becomes positive semi-definite after excitation, Ωib(t)

remains to be positive definite for t > t1 as follows. Ωib(t) is obtained from Ωi(t) with

the selective update scheme; Ωib(t) is designed to be updated only when minq σΩiq

is increased. Hence, Ωib(t) is not updated for the case when Ωi(t) becomes rank

deficient after excitation, since all eigenvalues of Ωi(t) are always positive during

excitation.

From the analyses on positive definiteness of Ωib(t) for t ∈ (t0, t1] and for t > t1,

Ωib(t) is shown to be positive definite for all t > t0.

6.5.2 Boundedness

Since the information matrix works as a time-varying gain for the linear regression

term of the composite adaptation law, boundedness of the information matrix is

inevitably related to estimation performance of the composite adaptation law and

stability of the closed-loop system. In Section 6.5.2, Ωib is shown to have lower and

upper bounds in Theorem 6.2 and 6.3, respectively.

Theorem 6.2. (Lower Bound of New Information Matrix) : If φ′i is exciting over

finite time [t0, t1], there exists a constant KL > 0 where Ωib ≥ KLImi×mi for all

t > t0.

Proof. In Theorem 6.1, Ωib is shown to be positive definite for all t > t0 if φ′i is
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exciting over [t0, t1]. Ωib > 0 indicates that minq σΩibq
is greater than 0. As a result,

there exists KL > 0 where Ωib ≥ KLImi×mi for all t > t0.

Theorem 6.3. (Upper Bound of New Information Matrix) : If φ′i is bounded i.e.∥∥φ′i∥∥ ≤ δφ′i, there exists a constant KU > 0 where Ωib ≤ KUImi×mi for all t > t0.

Proof. The sum of the eigenvalues of Ωib is obtained as (6.27) from (6.7), (6.9) and

(6.16).

mi∑
q=1

σΩibq
= tr (Ωi) =

mi∑
j=1

∥∥∥φ∗i Fij(tb)∥∥∥2

(6.27)

Since
∥∥∥φ′iFij∥∥∥ ≤ ∥∥φ′i∥∥ and (6.9) implies

∥∥∥φ∗i Fij∥∥∥ =
∥∥∥φ′iFij∥∥∥, (6.27) results in the

inequality (6.28).

mi∑
q=1

σΩibq
≤ miδ

2
φ′i

(6.28)

Since σΩibq
are all positive for all t > t0 from Theorem 6.1, the upper bound of σΩibq

can be suggested as (6.29) from (6.28).

max
q
σΩibq

< miδ
2
φ′i (6.29)

(6.29) indicates that there exists a constant KU > 0 where Ωib ≤ KUImi×mi .

6.6 Stability Analysis

The stability of the closed-loop system with the proposed composite adaptive control

utilizing new information matrix is analyzed in Section 6.6. The closed-loop error

dynamics is derived as (6.30) by substituting (6.5) into (6.3).

żi =


−Cizi + gizi+1 − θ̃Ti φ′i (i = 1)

−Cizi − gi−1zi−1 + gizi+1 − θ̃Ti φ′i (i = 2, · · · , n− 1)

−Cizi − gi−1zi−1 − θ̃Ti φ′i (i = n)

(6.30)
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The estimation error dynamics is obtained as (6.31) by rearranging (6.16) with

respect to θ̃i.

˙̃θi = ziΓiφ
′
i − λiΓiΩibθ̃i (i = 1, · · · , n) (6.31)

The equilibrium points for the system with (6.30) and (6.31) are z = 0 and θ̃i =

0 (i = 1, · · · , n). The global exponential stability of the closed-loop system with

(6.30) and (6.31) is shown in Theorem 6.4 based on Lyapunov stability theory.

Theorem 6.4. (Global Exponential Stability of Closed-loop system) : The closed-

loop system with the proposed composite adaptive control utilizing new information

matrix is globally exponentially stable under FE for all t > t0.

Proof. The Lyapunov candidate function Vn is defined as (6.32).

Vn =
1

2
zTz +

1

2

n∑
i=1

θ̃Ti Γ−1
i θ̃i (6.32)

(6.32) indicates that Vn = 0 if and only if z and θ̃i (i = 1, · · · , n) are 0, and Vn > 0

if and only if z or θ̃i (i = 1, · · · , n) is not 0. (6.32) implies that Vn is bounded as in

(6.33).

1

2
min

{
1,min

q
σΓ−1

i q

}
‖ν‖2 ≤ Vn ≤

1

2
max

{
1,max

q
σΓ−1

i q

}
‖ν‖2 (6.33)

where ν ,
[
zT θ̃T1 · · · θ̃Tmi

]T
. The derivative of Vn is obtained as (6.34) from (6.32)

with (6.30) and (6.31).

V̇n =
n∑
i=1

ziżi +
n∑
i=1

θ̃Ti Γ−1
i

˙̃θi

=

[
z1

{
−C1z1 + g1z2 − θ̃T1 φ′1

}
+

n−1∑
i=2

zi

{
−Cizi − gi−1zi−1 + gizi+1 − θ̃Ti φ′i

}
+ zn

{
−Cnzn + gn−1zn−1 − θ̃Tnφ′n

}]
+

n∑
i=1

θ̃Ti

{
ziφ
′
i − λiΩibθ̃i

}
=−

n∑
i=1

Ciz
2
i −

n∑
i=1

λiθ̃
T
i Ωibθ̃i

(6.34)
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The boundary of V̇n is derived from (6.34) as (6.35).

V̇n ≤−min
i
Ci‖z‖2 −

n∑
i=1

min
i,q

(
λiσΩibq

)∥∥∥θ̃i∥∥∥2

≤−min

{
min
i
Ci,min

i,q

(
λiσΩibq

)}
‖ν‖2

(6.35)

To this end, (6.36) is obtained from (6.33) and (6.35).

V̇n ≤ −aVn
where

a =

2 min

{
miniCi,mini,q

(
λiσΩibq

)}
max

{
1,maxq σΓ−1

i q

} (6.36)

Since σΩibq
> 0 under FE, a > 0 which implies that Vn converges to 0 exponen-

tially fast. Thus, the equilibrium point ν =
[
zT θ̃T1 · · · θ̃Tmi

]T
= 0 is globally

exponentially stable.

6.7 Numerical Simulation

6.7.1 Simulation Setup

As an illustrative example, system dynamics for numerical simulation is defined as

(6.37).

ẋ = f(x) +G(x)
[
u+ ∆(x)

]
where

x = [x1, x2]T

f(x) =
[
f1(x1), f2(x1, x2)

]T
=
[
x1|x1| , x1 sin (x2) + x3

2

]T
G(x) = diag

[
g1(x1), g2(x1, x2)

]
= diag

[
x4

1|x1|+ 1, |x1|+|x2|+ 1
]

u = [x2, u]T

∆(x) =
[
∆1(x1), ∆2(x1, x2)

]T

(6.37)
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The initial value for the state vector x is set to be [0, 0]T . ∆i (i = 1, 2) in (6.37)

are modeled as (6.38).

∆1(x1) = θT1φ1(x1) ∆2(x1, x2) = θT2φ2(x1, x2)

where

θ1 = [θ11, θ12]T φ′1(x1) =
[
x2

1,
√
|x1|
]T

θ2 = [θ21, θ22, θ23, θ24]T φ′2(x1, x2) =
[
x2

1, |x1|x2, x1 + x2
2, log

(
|x1|+ 1

)]T
(6.38)

The true values of the model parameters are defined as θ1 = [1.2, 2.5]T and θ2 =

[2.3, 1.7, 1.2, 3.1]T . The initial values for their estimates θ̂1 and θ̂2 are set to be

[0, 0]T and [0, 0, 0, 0]T , respectively.

Simulations are performed to verify the composite adaptive control with new infor-

mation matrix proposed in Section 6.4.2. As discussed in Section 6.4.1, the back-

stepping algorithm is applied for simulations as a representative example of baseline

control algorithms. To clearly show the characteristics of the new information ma-

trix investigated in Section 6.4, 6.5 and 6.6 via simulations, the proposed algorithm

is compared to the composite adaptive backstepping control algorithms with the

rank-1 information matrix Ω+
i as in [12, 25] and with the accumulation based Ω∗i b

in [29]. The rank-1 information matrix Ω+
i is provided as (6.39).

Ω+
i = φ′iFiφ

′
i
T
Fi

η+
i = φ′iFi

{
1

k
xi − ζiFi

} (6.39)

In [29], Ω∗i b is obtained from Ω∗i in (6.40) by applying the selective update scheme

given in (6.16) and (6.17) to prevent rank deficiency after FE due to the forgetting

design.

Ω̇∗i = −κiΩ∗i + φ′iFiφ
′
i
T
Fi

η̇∗i = −κiη∗i +

{
1

k
xi − ζiFi

}
φ′iFi

where

κi = κiL + (κiU − κiL) tanh
(
ϑi‖η̇∗i ‖

)
(6.40)

κiL, κiU and ϑi are design parameters for the forgetting factor κi where 0 < κiL ≤
κi ≤ κiU . Note that the subscript Fi in (6.39) and (6.40) denotes a filter with a single
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parameter ki which is applied not to use state derivative information for ηi. Since the

information matrix designs in the previous researches have different principles and

parameters with the one in this research, simulations are conducted with various

parameter sets for each algorithm and the results with the set which show the

best adaptation performance with each algorithm are provided in Chapter 6 for fair

comparison. Common design parameters are listed in Table 6.1 and individual design

parameters for each information matrix with the values for the best adaptation

performance are provided in Table 6.2. The state command to follow is given as a

step function with x1c = 1.5 and the step size for numerical simulations is set to be

10−4.

Table 6.1: Common Design Parameters

Parameter Value

C1, C2 1.5, 1.5

Γ1, Γ2 diag [10, 10], diag [10, 10, 10, 10]

λ1, λ2 2, 2

Table 6.2: Design Parameters for Information Matrix

Simulation Cases Parameters and Values

Ω+
i with Rank 1 k1 = k2 = 1.0× 10−2

Ω∗i b in [29]
ki = 1.0× 10−2,

κiL = 5× 10−3, κiU = 1× 10−2, ϑi = 1 (i = 1, 2)

New Ωib
k11 = k21 = 1.0× 10−2, k12 = k22 = 1.5× 10−2,

k23 = 2.0× 10−2, k24 = 2.5× 10−2

6.7.2 Simulation Results

The simulation results under Ω+
i with rank-1, Ω∗i b in [29] and new Ωib proposed

in Chapter 6 are addressed in Fig. 6.1 to 6.4. Note that it can be inferred from

Fig. 6.1 that there is no PE. Under FE, Fig. 6.1 and 6.2 show that tracking errors

become zeros for all cases. It is observed from Fig. 6.3 and 6.4 that the information

matrices of all three cases are bounded. Fig. 6.2 clearly indicates that θ̂1 and θ̂2 do

not converge to their true values θ1 and θ2 without PE for the case under the Ω+
i

with rank-1. This is because Ω+
i is rank deficient in the outer loop (i = 1) and the



126 C-ABKS with New Information Matrix

0 1 2 3 4 5 6 7 8 9 10

Time (s)

0

1

2

3

0 1 2 3 4 5 6 7 8 9 10

Time (s)

-2

0

2

0 1 2 3 4 5 6 7 8 9 10

Time (s)

-20

-10

0

Figure 6.1: State Response and Control Input
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Figure 6.2: Tracking and Estimation Error

inner loop (i = 2) where the number of unknown parameters are set to be 2 and 4

respectively, which is confirmed in Fig. 6.3 and 6.4 with 0 eigenvalues. Note that

instability phenomena can occur under the existence of non-parametric uncertainties

such as measurement noise and unmodeled dynamics if parameter convergence is not

accomplished even for the nominal circumstances [25]. θ̂1 and θ̂2 converge to θ1 and

θ2 for both cases under Ω∗i b in [29] and new Ωib proposed in Chapter 6. Fig. 6.3

and 6.4 show that both Ω∗i b and Ωib become full rank with all positive eigenvalues

but have different patterns in these eigenvalues. The principal eigenvalue of Ω∗i b is

excessively large while the others are extremely small. For Ωib, all eigenvalues have

similar and moderate values. These observations imply that the adaptation speeds

in all directions, including the slowest direction, are evenly high with Ωib. As a
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Figure 6.3: Eigenvalues of Information Matrix (Outer Loop)
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Figure 6.4: Eigenvalues of Information Matrix (Inner Loop)

result, the overall adaptation speed with Ωib is higher than with Ω∗i b as can be seen

in Fig. 6.2.

6.8 Conclusion

A composite adaptive control with new information matrix is successfully suggested

in Chapter 6 which guarantees convergence of parameter estimation under FE. The

novelty of this research is in the modulation based information matrix design frame-

work which achieves its positive definiteness for all the time only with FE. Based on
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the key design considerations such as linear independency between the filtered re-

gressor signals, orthogonality between the modified filtered regressor vectors and the

selective update for the information matrix, the new information matrix is proven

to be positive definite for all time from the beginning under FE. Besides, the new in-

formation matrix is shown to be lower and upper bounded. Note that the proposed

information matrix appears to have eigenvalues with moderate level of magnitudes,

which is advantageous for adaptation speed and system robustness. The global expo-

nential stability of the closed-loop system with the proposed composite adaptation

control utilizing new information matrix is addressed via stability analysis based

on Lyapunov theory. Numerical simulations are conducted to verify the proposed

algorithm and related theoretical findings.
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Chapter 7

Logarithmic Regression based

Composite Adaptive Backstepping

Control with New Information

Matrix

7.1 Introduction

Adaptive control has been extensively studied and utilized for various dynamic sys-

tems with uncertainties from robot manipulators to aircraft systems [1–15]. Since an

adaptive control algorithm estimates uncertain model parameters on-line and then

calculates a control input command from these estimates, stability and performance

of the closed-loop system are highly dependent on estimation performance of the

adaptation law. In order to achieve fast tracking performance of the closed loop

system, the parameter estimates should converge fast to their true values, which is

essential especially for fast dynamic systems like fighters [12] and missiles [13].

Composite adaptive control [14–28] is designed to achieve fast parameter conver-

gence by introducing a linear regression term to a tracking error based adaptation

law. This results in enhanced estimation and tracking performance with improved

system robustness comparing to the tracking error based adaptation law. Since the

linear regression term is simply proportional to the estimation error, the adaptation

speed is sufficiently high at the early stage with large estimation error, but it de-

creases as the estimation error becomes small. If the adaptation gain increases to
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relax this parameter convergence speed degeneration, the system robustness might

be reduced with the high adaptation gain. To the best of our knowledge, there

has been no relevant studies on the learning rate enhancement without excessive

increase of the adaptation gain for composite adaptive control.

In Chapter 7, a new paradigm for composite adaptation law design with regression

pattern shaping is proposed to achieve fast parameter convergence. The proposed

regression term is designed to be a logarithmic function of a signal containing esti-

mation error information, resulting in a high learning rate with reduced necessity of

a large adaptation gain. Since a logarithm is a concave and monotonically increasing

function, the new regression term diminishes slowly comparing to the linear regres-

sion term in the existing composite adaptation law. Chapter 7 suggests detailed

analysis about the condition on the design parameters of the logarithmic regression-

based composite adaptation law to guarantee faster parameter convergence than the

linear regression-based approach for the same adaptation gain within the system

boundary. If this condition is accomplished, it is examined for the linear regression-

based approach how much its adaptation gain is required to be increased for higher

adaptation speed than that of the logarithmic regression-based approach. Note that

the logarithmic regression-based composite adaptation law can provide improved

system robustness since lower adaptation gain can be utilized for the similar adap-

tation speed with the linear regression-based approach. The proposed logarithmic

regression-based composite adaptation law is designed to guarantee the asymptotic

stability of the closed-loop system and it is proven under the Lyapunov stability

theory. Note that the signal containing estimation error information is obtained by

utilizing the information matrix design in [28] which achieves positive definiteness

all the time under FE.

The rest of Chapter 7 is organized as follows. System dynamics with model un-

certainty and a baseline controller are provided in Section 7.2. In Section 7.3, the

new logarithmic regression-based composite adaptation law is proposed to enhance

the parameter convergence speed via regression pattern shaping instead of adap-

tation gain increase. The asymptotic stability of the closed-loop system with the

proposed logarithmic regression-based composite adaptation law is proven under the

Lyapunov stability theory in Section 7.4. Section 7.5 provides comparative study

between the existing linear regression based approach and the proposed logarithmic

regression-based approach in adaptation speed and system robustness point of view.

Numerical simulations are conducted in Section 7.6 for verification and Section 7.7

addresses the overall concluding remarks of Chapter 7.
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7.2 Preliminaries and Problem Formulation

7.2.1 Preliminaries

In Chapter 7, a new composite adaptive control algorithm for fast adaptation is

proposed, which is basically designed to achieve parameter convergence under finite

excitation. Note that the requirement for parameter convergence is relaxed from

persistent excitation to finite excitation based on the information matrix design

in [28]. Section 7.2.1 suggests definitions of persistent excitation (PE) and finite

excitation (FE) in [16, 29] as preliminaries.

Definition 7.1. (Persistent Excitation) : A bounded vector signal ψ(t) is persis-

tently exciting, if ∀t ≥ t0 there exist T > 0 and γ > 0 s.t.∫ t+T

t

ψ(τ)ψT (τ)dτ ≥ γI (7.1)

Definition 7.2. (Finite Excitation) : A bounded vector signal ψ(t) is finitely ex-

citing over a time interval [ts, ts + T ], if there exist T > 0, ts ≥ t0 and γ > 0

s.t. ∫ ts+T

ts

ψ(τ)ψT (τ)dτ ≥ γI (7.2)

7.2.2 Problem Formulation

A backstepping control algorithm is introduced in Section 7.2.2.2 as a representative

example of the baseline controller for the adaptive control system with the new log-

arithmic regression-based composite adaptation law in Section 7.3. Consequently,

system dynamics in a strict-feedback form is considered in Section 7.2.2.1 as a rep-

resentative example to apply the proposed method. Note that the new logarithmic

regression-based composite adaptation law in Section 7.3 is compatible with any

stabilizable system and baseline control algorithm.
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7.2.2.1 System dynamics

Consider system dynamics with model uncertainty as (7.3).

ẋ = f(x) +G(x)
[
u+ ∆(x)

]
where

x = [x1, x2, · · · , xn]T

x′i = [x1, x2, · · · , xi]T (i = 1, · · · , n)

f(x) =
[
f1(x′1), f2(x′2), · · · , fn(x′n)

]T
G(x) = diag

[
g1(x′1), g2(x′2), · · · , gn(x′n)

]
u = [u1, u2, · · · , un]T with ui =

xi+1 (i = 1, · · · , n− 1)

u (i = n)

∆(x) =
[
∆1(x′1),∆2(x′2), · · · ,∆n(x′n)

]T

(7.3)

x ∈ Rn×1 represents a state vector and x′i ∈ Ri×1 indicate subsets of x. f(x) ∈
Rn×1 and G(x) ∈ Rn×m with gi(x

′
i) 6= 0 are defined as known model information.

u ∈ Rm×1 indicates a control input vector; u is an actual control input exerted on

the innermost loop, and a state variable works as a pseudo control input on the next

outer loop recursively. ∆(x) ∈ Rn×1 stands for a matched model uncertainty.

The model uncertainty in (7.3) is assumed to be linearly structured as shown in

(7.4).

∆i(x
′
i) = θTi φi(x

′
i) (i = 1, · · · , n)

where

θi =
[
θi1, θi2 · · · θimi

]T
φi(x

′
i) =

[
φi1(x′i), φi2(x′i) · · ·φimi(x

′
i)
]T

(7.4)

θi ∈ Rmi×1 is a vector of true model parameters for the i-th loop, which is unique,

constant and unknown. φi(x
′
i) ∈ Rmi×1 denotes a known regressor vector for the

i-th loop, and φij(x
′
i) are linearly independent from each other.

7.2.2.2 Baseline Controller and Tracking Error Dynamics

The control input command for the i-th loop uic is derived with the backstepping

algorithm as (7.5). Note that the adaptive control system design can be conducted
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for each loop in a recursive way by taking advantage from the cascade structure of

the backstepping algorithm [27, 28, 30].

uic =



1

gi
[−Cizi − fi + ẋic]− θ̂Ti φi (i = 1)

1

gi
[−Cizi − fi + ẋic − gi−1zi−1]− θ̂Ti φi (i = 2, · · · , n)

(7.5)

A subscript i denotes the i-th loop and (·)c represents a command for (·). Ci rep-

resents a positive and constant design parameter for uic to accomplish a desired

response of the i-th closed-loop. z , x − xc ∈ Rn×1 is a tracking error vector and

zi denotes the i-th component of z. θ̂i ∈ Rmi×1 represents an estimate of θi and it

is obtained from the adaptation law discussed in Section 7.3.

Tracking error dynamics of the closed-loop system is obtained by applying the con-

trol input command in (7.5) to the system dynamics in (7.3).

żi =


−Cizi + gizi+1 − θ̃Ti φ′i (i = 1)

−Cizi − gi−1zi−1 + gizi+1 − θ̃Ti φ′i (i = 2, · · · , n− 1)

−Cizi − gi−1zi−1 − θ̃Ti φ′i (i = n)

(7.6)

7.3 Logarithmic Regression-based Composite Adap-

tation Law

In Section 7.3, a new composite adaptation law with logarithmic regression is pro-

posed for fast adaptation via parameter convergence pattern shaping. A fundamen-

tal structure of the composite adaptation law is represented as (7.7) with φ′i , giφi,

which is constructed by introducing a regression term to a tracking error based

adaptation law. Note that the regression term provides enhanced estimation and

tracking performance with improved system robustness [16].

˙̂
θi = ziΓiφ

′
i − λiΓiΞi (i = 1, · · · , n) (7.7)

Γi ∈ Rmi×mi is a design parameter of the adaptation law which is defined as a

constant and positive definite matrix. λi is a constant and positive design parameter

representing a relative weight factor on the regression term to the tracking error
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based term. Ξi = Ξi(θ̃i) ∈ Rmi×1 is designed to be a function of a parameter

estimation error θ̃i ∈ Rmi×1. Since the unknown parameter θi is assumed to be

constant, estimation error dynamics is derived as (7.8) from (7.7).

˙̃θi = ziΓiφ
′
i − λiΓiΞi (7.8)

A composite adaptation law is designed by introducing an appropriate Ξi to its

fundamental structure in (7.7). The main consideration in Ξi design is that desired

estimation performance should be accomplished with proper Ξi while stability of the

closed loop system is still guaranteed. A design requirement on Ξi in stability point

of view is derived from Lyapunov stability condition as follows. First, a Lyapunov

candidate function considering both state tracking and parameter estimation errors

is defined as (7.9).

Vn =
1

2
zTz +

1

2

n∑
i=1

θ̃Ti Γ−1
i θ̃i (7.9)

Note that Vn in (7.9) is positive definite except for the equilibrium point z = 0 and

θ̃i = 0 (i = 1, · · · , n) where Vn = 0. Derivative of Vn is derived as (7.10) from (7.9)

with (7.6) and (7.8).

V̇n =
n∑
i=1

ziżi +
n∑
i=1

θ̃Ti Γ−1
i

˙̃θi

=

[
z1

{
−C1z1 + g1z2 − θ̃T1 φ′1

}
+

n−1∑
i=2

zi

{
−Cizi − gi−1zi−1 + gizi+1 − θ̃Ti φ′i

}
+zn

{
−Cnzn + gn−1zn−1 − θ̃Tnφ′n

}]
+

n∑
i=1

(
θ̂i − θi

)T
Γi
−1
[
ziΓiφ

′
i − λiΓiΞi

]
=−

n∑
i=1

Ciz
2
i −

n∑
i=1

λi

(
θ̂i − θi

)T
Ξi

(7.10)

Since the first term in (7.10) is negative definite for all z except z = 0, the Lyapunov

stability condition can be satisfied if the second term in (7.10) becomes negative

definite for θ̂i 6= θi. This results in a design requirement on Ξi for the closed-loop
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system stability as (7.11).(
θ̂i − θi

)T
Ξi > 0 for θ̂i 6= θi (7.11)

In previous studies [14–28], Ξi is designed to be simply proportional to θ̃i, which

satisfies (7.11). This linear regression term leads to sufficiently high adaptation

speed for the initial phase with large estimation error, but the learning rate starts

to diminish as the estimation error decreases. The adaptation speed can be enhanced

by simply increasing adaptation gains like λi or Γi, but this can result in lack of

system robustness.

The main objective of a new composite adaptation law is to achieve fast adaptation

with appropriate design of Ξi which makes the regression term to degenerate slowly.

Chapter 7 proposes Ξi design with a logarithm as shown in (7.12) to accomplish

this objective with a guarantee of the closed loop system stability.

Ξi = Ωi
T
H diag

{
sgn (Ei)

}
E∗i

where

Ei = ΩiH θ̂i − ri =
[
Ei1, Ei2, · · · , Eimi

]T
diag

{
sgn (Ei)

}
=


sgn (Ei1) · · · 0

...
. . .

...

0 · · · sgn
(
Eimi

)


E∗i =
[
Ei
∗
1, Ei

∗
2, · · · , Ei∗mi

]T
Ei
∗
j = logpi

(
qi
∣∣Eij∣∣+ 1

)
(j = 1, · · · ,mi)

(7.12)

Ei ∈ Rmi×1 is a signal containing estimation error information with ri , ΩiHθi ∈
Rmi×1. ΩiH is designed to be full rank for parameter convergence and system sta-

bility under FE. pi and qi in E∗i ∈ Rmi×1 denote constant design parameters for

the logarithms. Note that pi > 1 and qi > 0 for system stability. The condition in

(7.11) is satisfied and the detailed stability proof of the closed-loop system is sug-

gested in Section 7.5. The new logarithmic regression-based composite adaptation

law is designed as (7.13) by substituting (7.12) into (7.7).

˙̂
θi = ziΓiφ

′
i − λiΓiΩi

T
H diag

{
sgn (Ei)

}
E∗i (7.13)
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In Chapter 7, ΩiH in (7.13) is constructed to be full rank for all the time under FE by

considering the design principles in [28]. As shown in [28], multiple filtered dynamics

are generated by applying the first-order filters Fij(s) = 1
kijs+1

(j = 1, · · · ,mi) with

different parameters kij to dynamics of the i-th loop in (7.3) with giui , gui and the

multiple filtered uncertainties of the i-th loop can be obtained as (7.14) from these

multiple filtered dynamics.

θi
Tφ′iFij =

1

kij
xi − ζiFij (j = 1, · · · ,mi)

where

φ̇′iFij =
1

kij

(
φ′i − φ′iFij

)
ζ̇iFij =

1

kij

(
1

kij
xi + fi + gui − ζiFij

)
(7.14)

ΩiH ∈ Rmi×mi is constructed as (7.15) by utilizing the multiple filtered regressor

vectors φ′iFij in (7.14) which become linearly independent during excitation as shown

in [28] based on different modulation effects of the multiple filters.

ΩiH ,

[
φ∗i Fi1 φ∗i Fi2 · · · φ

∗
i Fimi

]T
where

φ∗i Fij = φ′iFij (j = 1)

φ∗i Fij =

∥∥∥φ′iFij∥∥∥∥∥∥ϕiFij∥∥∥ϕiFij , ϕiFij = φ′iFij −
j−1∑
ξ=1

φ′iFij · φ
∗
i Fiξ∥∥∥φ∗i Fiξ∥∥∥2 φ∗i Fiξ

(j = 2, · · · ,mi)

(7.15)

ΩiH in (7.15) becomes full rank during excitation, and its detailed proof is provided

in [28] based on the orthogonality among φ∗i Fij . For ri design, ΩiH in (7.15) is

rewritten as a multiplication of Oi ∈ Rmi×mi and Hi ∈ Rmi×mi in (7.16).
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ΩiH = OiHi

where

Oi = PimiPi(mi−1) · · ·Pi1

Pir(j, l) =



−

∥∥∥φ′iFij∥∥∥∥∥∥ϕiFij∥∥∥
φ′iFij · φ

∗
i Fil∥∥∥φ∗i Fil∥∥∥2 , l < j = r∥∥∥φ′iFij∥∥∥∥∥∥ϕiFij∥∥∥ , l = j = r

1, l = j 6= r

0, Otherwise

Hi ,

[
φ′iFi1 φ′iFi2 · · · φ

′
iFimi

]T

(7.16)

From (7.14) and (7.16), ri can be suggested as (7.17), which is obtained from known

information.

ri , ΩiHθi = Oi



1
ki1
xi − ζiFi1

1
ki2
xi − ζiFi2

...

1
kimi

xi − ζiFimi


(7.17)

As can be seen in (7.18), ΩiHb is selectively updated from ΩiH when the minimum

eigenvalue of Ωi , Ωi
T
HΩiH is maximized.

Ωib(t) , Ωi(tb) ΩiHb(t) , ΩiH(tb) rib(t) , ri(tb)

where

tb , max

{
argmax
τ∈(t0,t)

F(Ωi(τ))

}
F(Ωi) = min

q
σΩiq

(7.18)

σΩiq (q = 1, · · · ,mi) represent eigenvalues of Ωi. From the linear independency of

φ′iFij , the orthogonality of φ∗i Fij and this selective update scheme, it is proven that

Ωib is full rank for all the time under FE in [28]. Since the rank of ΩiHb is identical
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with the rank of Ωib, ΩiHb is also full rank for all the time under FE.

The logarithmic regression-based composite adaptation law is finally proposed as

(7.19) with guaranteed parameter convergence under FE by utilizing ΩiHb and rib

in (7.18) for (7.13) with (7.12).

˙̂
θi = ziΓiφ

′
i − λiΓiΩiH

T
b diag

{
sgn (Eib)

}
Ei
∗
b

where

Eib = ΩiHbθ̂i − rib =
[
Ei1b, Ei2b, · · · , Eimib

]T
Ei
∗
b =

[
Ei1
∗
b , Ei2

∗
b , · · · , Eimi

∗
b

]T
Eij
∗
b

= logpi

(
qi

∣∣∣Eijb∣∣∣+ 1

)
(7.19)

7.4 Stability Analysis

In Section 7.4, the asymptotic stability of the closed-loop system with the proposed

logarithmic regression-based composite adaptive control is proven under the Lya-

punov theory. In Section 7.2.3, tracking error dynamics of the closed-loop system is

provided as (7.6). Since the unknown parameter θi is assumed to be constant, the

estimation error dynamics is derived from (7.19) as (7.20).

˙̃θi = ziΓiφ
′
i − λiΓiΩiH

T
b diag

{
sgn (Eib)

}
Ei
∗
b

(7.20)

The equilibrium points of the closed-loop system dynamics in (7.6) and (7.20) are

obtained as z = 0 and θ̃i = 0 (i = 1, · · · , n). The asymptotic stability of the

closed-loop system is proven with Lyapunov theory in Theorem 7.1.

Theorem 7.1. (Asymptotic Stability of Closed-Loop System) : The closed-loop sys-

tem with the logarithmic regression-based composite adaptation law is asymptotically

stable for all t > t0 if the system is under FE over t ∈ [t0, t1].

Proof. The Lyapunov candidate function Vn is defined by considering both z and

θ̃i (i = 1, · · · , n) as (7.21).

Vn =
1

2
zTz +

1

2

n∑
i=1

θ̃Ti Γ−1
i θ̃i (7.21)

Note that Vn in (7.21) is positive definite except the equilibrium point and becomes
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0 if and only if z = 0 and θ̃i = 0.

The derivative of Vn is derived as (7.22) from (7.21) with (7.6) and (7.20).

V̇n =
n∑
i=1

ziżi +
n∑
i=1

θ̃Ti Γ−1
i

˙̃θi

=

[
z1

{
−C1z1 + g1z2 − θ̃T1 φ′1

}
+

n−1∑
i=2

zi

{
−Cizi − gi−1zi−1 + gizi+1 − θ̃Ti φ′i

}
+zn

{
−Cnzn + gn−1zn−1 − θ̃Tnφ′n

}]
+

n∑
i=1

(
θ̂i − θi

)T
Γi
−1
[
ziΓiφ

′
i − λiΓiΩiH

T
b diag

{
sgn (Eib)

}
Ei
∗
b

]
=−

n∑
i=1

Ciz
2
i −

n∑
i=1

λiEi
T
b diag

{
sgn (Eib)

}
Ei
∗
b

(7.22)

The first term of (7.22) is negative definite when z 6= 0 and becomes 0 if and only

if z = 0. To examine the negative definiteness of the second term in (7.22), Eib is

rewritten as (7.23).

Eib =


sgn (Ei1b) · · · 0

...
. . .

...

0 · · · sgn
(
Eimib

)


|Ei1b|

...∣∣Eimib∣∣

 (7.23)

(7.24) is obtained by substituting (7.19) and (7.23) into the second term of (7.22).

−
n∑
i=1

λiEi
T
b diag

{
sgn (Eib)

}
Ei
∗
b

= −
n∑
i=1

λi

[
|Ei1b| , · · ·

∣∣Eimib∣∣]
× diag

{
sgn (Eib)

}T
diag

{
sgn (Eib)

}
Ei
∗
b

= −
n∑
i=1

λi mi∑
j=1

∣∣∣Eijb∣∣∣ logpi

(
qi

∣∣∣Eijb∣∣∣+ 1

)
(7.24)

Since ΩiHb is full-rank for all t > t0 if the system is under FE over t ∈ [t0, t1],

Eib = ΩiHbθ̃i = 0 if and only if θ̃i = 0. Hence, (7.24) is negative definite with
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pi > 1 and qi > 0 except for θ̃i = 0. Therefore, the asymptotic stability of the

closed loop system with new logarithmic regression-based composite adaptation law

under FE for t > t0 is shown to be guaranteed.

7.5 Comparative Study

7.5.1 Linear Regression-based Composite Adaptation Law

A linear regression-based composite adaptation law [14–28] can be derived as (7.25)

by introducing Ξi = Ωiθ̂i − ηi to (7.7).

˙̂
θi = ziΓiφ

′
i − λiΓi

(
Ωiθ̂i − ηi

)
(7.25)

Ωi ∈ Rmi×mi denotes an information matrix, and ηi , Ωiθi ∈ Rmi×1 represents

an auxiliary vector. For positive definite Ωi, the condition in (7.11) is satisfied.

If the information matrix in (7.18) is utilized for (7.25), the linear regression-based

composite adaptation law is derived as (7.26) with guaranteed parameter estimation

convergence under FE [28].

˙̂
θi = ziΓiφ

′
i − λiΓi

(
Ωibθ̂i − ηib

)
where Ωib = ΩiH

T
b ΩiHb ηib = ΩiH

T
b rib

(7.26)

Note that it is proven in [28] that the closed loop system is stable with positive

definite Ωi for all the time under FE. The linear regression-based composite adapta-

tion law in (7.26) can be rewritten as (7.27) using Eib = diag
{

sgn (Eib)
}
Ei

#
b with

Eij
#
b

=
∣∣∣Eijb∣∣∣.

˙̂
θi = ziΓiφ

′
i − λiΓiΩiH

T
b diag

{
sgn (Eib)

}
Ei

#
b

where

Eib = ΩiHbθ̂i − rib =
[
Ei1b, Ei2b, · · · , Eimib

]T
Ei

#
b =

[
Ei1

#
b , Ei2

#
b , · · · , Eimi

#
b

]T
Eij

#
b

=
∣∣∣Eijb∣∣∣

(7.27)

It is shown that the logarithmic regression term in (7.19) and the linear regression
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term in (7.27) can be expressed in the same form with only difference from Ei
∗
b

and Ei
#
b ; Eij

∗
b

= logpi

(
qi

∣∣∣Eijb∣∣∣+ 1

)
with pi > 1 and qi > 0 for the logarithmic

regression term and Eij
#
b

=
∣∣∣Eijb∣∣∣ for the linear regression term. As a result, com-

parative studies on the two composite adaptation laws can be simply conducted

with investigations on the differences between Eij
∗
b

and Eij
#
b

in Section 7.5.2.

7.5.2 Comparative Study between Logarithmic and Linear

Regression-based Composite Adaptation Law

The logarithmic function Eij
∗
b

is a concave and monotonically increasing function of∣∣∣Eijb∣∣∣ and the linear function Eij
#
b

is a monotonically increasing function of
∣∣∣Eijb∣∣∣

with constant slope. Considering these different regression patterns, a condition

to always accomplish faster parameter convergence with the logarithmic regression

based composite adaptation law than the linear regression based approach is mainly

investigated within the system boundary.

Before detailed discussions, reasonable system boundary with respect to
∣∣∣Eijb∣∣∣ is

examined for the comparative study. With (7.15) and (7.17),
∣∣∣Eijb∣∣∣ from Eib in

(7.19) and (7.27) is derived as (7.28).∣∣∣Eijb∣∣∣ =
∣∣∣φ∗i bTFij θ̃i∣∣∣ (7.28)

Under the assumption that φ′i is bounded as
∥∥φ′i∥∥ ≤ δφi with constant δφi ,

∥∥∥φ∗i bFij∥∥∥
can be suggested as (7.29) from

∥∥∥φ∗i bFij∥∥∥ =
∥∥∥φ′ibFij∥∥∥ ≤∥∥φ′i∥∥.

∥∥∥φ∗i bFij∥∥∥ ≤ δφi (7.29)

The unknown parameter θi is assumed to be within the range defined with constant

δθiL and δθiU as in (7.30).

δθiL ≤‖θi‖ ≤ δθiU (7.30)

If θ̃i = θ̂i − θi decreases with an adaptation law,∥∥∥θ̂i − θi∥∥∥ ≤∥∥∥θ̂i0 − θi∥∥∥ (7.31)
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where θ̂i0 represents the initial value of θ̂i. The upper bound of θ̃i is derived as

(7.32) from (7.30) and (7.31).∥∥∥θ̃i∥∥∥ ≤∥∥∥θ̂i0 − θi∥∥∥ ≤∥∥∥θ̂i0∥∥∥+‖θi‖ ≤
∥∥∥θ̂i0∥∥∥+ δθiU (7.32)

From (7.28), (7.29) and (7.32), the upper bound of
∣∣∣Eijb∣∣∣ is obtained as (7.33).

∣∣∣Eijb∣∣∣ ≤∥∥∥φ∗i bFij∥∥∥∥∥∥θ̃i∥∥∥ ≤ δφi

(∥∥∥θ̂i0∥∥∥+ δθiU

)
(7.33)

Since
∣∣∣Eijb∣∣∣ ≥ 0, the boundary of

∣∣∣Eijb∣∣∣ is given as (7.34).

0 ≤
∣∣∣Eijb∣∣∣ ≤ ∣∣∣Eijb∣∣∣U

where
∣∣∣Eijb∣∣∣U , δφi

(∥∥∥θ̂i0∥∥∥+ δθiU

) (7.34)

Within the system boundary, the logarithmic regression-based approach always

shows faster parameter convergence than the linear regression-based approach under

the same λi and Γi when condition on pi and qi in Theorem 7.2 is satisfied.

Theorem 7.2. (Condition on pi and qi for Eij
∗
b
> Eij

#
b

) : Under the assumption of

the same λi and Γi, the logarithmic regression-based composite adaptation law with

Eij
∗
b

is guaranteed to achieve faster parameter convergence than the linear regression-

based composite adaptation law with Eij
#
b

for 0 <
∣∣∣Eijb∣∣∣ ≤ ∣∣∣Eijb∣∣∣U if pi > 1 and qi > 0

satisfy pi
|Eijb|U − qi

∣∣∣Eijb∣∣∣U < 1.

Proof. Since Eij
∗
b

with pi > 1 and qi > 0 for the logarithmic regression term is con-

cave and monotonically increasing function, logpi

(
qi

∣∣∣Eijb∣∣∣+ 1

)
>
∣∣∣Eijb∣∣∣ is always

satisfied for 0 <
∣∣∣Eijb∣∣∣ ≤ ∣∣∣Eijb∣∣∣U when (7.35) is satisfied.

logpi

(
qi

∣∣∣Eijb∣∣∣U + 1

)
>
∣∣∣Eijb∣∣∣U (7.35)

The condition on pi and qi to make the logarithmic regression-based composite

adaptation always faster than the linear regression-based composite adaptation for

the same λi and Γi is derived by rewriting (7.35) into (7.36).

pi
|Eijb|U − qi

∣∣∣Eijb∣∣∣U < 1 (7.36)
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When the logarithmic regression-based composite adaptation law has higher learn-

ing rate than the linear regression-based composite adaptation law satisfying the

condition in Theorem 7.2, the required increase of λi to λ′i for the linear regression-

based approach is addressed in Theorem 7.3 for higher adaptation speed than the

logarithmic regression-based approach with λi.

Theorem 7.3. (Required increase of λi to λ′i in linear regression for λ′iEij
#
b
>

λiEij
∗
b
) : If Theorem 7.2 is satisfied, λi for the linear regression-based composite

adaptation law should increase to λ′i which satisfies
λ′i
λi
> qi

ln pi
for higher learning

rate than the logarithmic regression-base composite adaptation law with λi.

Proof. λ′iEij
#
b
> λiEij

∗
b

is satisfied when the slope of the tangent line of λiEij
∗
b

=

λi logpi

(
qi

∣∣∣Eijb∣∣∣+ 1

)
(pi > 1, qi > 0) at the origin is smaller than the slope of

λ′iEij
#
b

= λ′i

∣∣∣Eijb∣∣∣ which is λ′i.

λiqi

ln pi

(
qi

∣∣∣Eijb∣∣∣+ 1

)
∣∣∣∣∣∣∣∣∣
|Eijb|=0

< λ′i (7.37)

The condition on λ′i in (7.37) can be rewritten as (7.38).

λ′i
λi
>

qi
ln pi

(7.38)

Since pi and qi are designed to satisfy Theorem 7.2, (7.39) is obtained from (7.36).

∣∣∣Eijb∣∣∣U ln pi < ln

(
qi

∣∣∣Eijb∣∣∣U + 1

)
(7.39)

(7.40) is derived from (7.39) by utilizing ln

(
qi

∣∣∣Eijb∣∣∣U + 1

)
< qi

∣∣∣Eijb∣∣∣U for any∣∣∣Eijb∣∣∣U > 0

qi
ln pi

> 1 (7.40)

Thus, λ′i >
qi

ln pi
λi > λi for λ′iEij

#
b
> λiEij

∗
b

when Theorem 7.2 is satisfied, resulting

in Theorem 7.3.
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Theorem 7.2 and 7.3 imply that the logarithmic regression term can be designed

to utilize smaller adaptation gain than the linear regression term while accomplish-

ing the same adaptation speed. Thus, measurement signal errors induced by var-

ious non-parametric uncertainties like delay, noise or bias, are less amplified with

the logarithmic regression term than with the linear regression term. To this end,

the logarithmic regression-based composite adaptation law has enhanced robustness

than the linear regression-based composite adaptation law while providing the same

adaptation speed.

In order to prevent the logarithmic regression-based composite adaptation law to

become always slower than the linear regression-based composite adaptation law

under the same λi and Γi, pi and qi should be designed at least not to satisfy the

condition in Theorem 7.4.

Theorem 7.4. (Conditions on pi and qi for Eij
∗
b
< Eij

#
b

) : Under the assumption

of the same λi and Γi, the logarithmic regression-based composite adaptation law

with Eij
∗
b

is slower than the linear regression-based composite adaptation law with

Eij
#
b

if pi > 1 and qi > 0 satisfy qi > log pi.

Proof. Since Eij
∗
b

with pi > 1 and qi > 0 for the logarithmic regression term is con-

cave and monotonically increasing function, logpi

(
qi

∣∣∣Eijb∣∣∣+ 1

)
<
∣∣∣Eijb∣∣∣ is satisfied

when the slope of the tangent line of Eij
∗
b

at the origin is smaller than the slope of

Eij
#
b

which is 1.

qi

ln pi

(
qi

∣∣∣Eijb∣∣∣+ 1

)
∣∣∣∣∣∣∣∣∣
|Eijb|=0

< 1 (7.41)

From (7.41), the condition on pi and qi to make the logarithmic regression-based

composite adaptation law slower than the linear regression-based composite adap-

tation law under the same λi and Γi is obtained as (7.42).

qi > ln pi (7.42)
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7.6 Numerical Simulation

7.6.1 Simulation Setup

As an illustrative example, dynamics of an inverted pendulum on a cart is pro-

vided with consideration of uncertainties on a friction model as (7.43) for numerical

simulation.

ẋ = f(x) +G(x)
[
u+ ∆(x)

]
where

x = [x1, x2]T

f(x) =
[
f1(x1), f2(x1, x2)

]T
=

[
0,

(MC +MP ) g sinx1 − LPMPx
2
2 sinx1 cosx1

LP
[
MC + (1− cos2 x1)MP

] ]T
G(x) = diag

[
g1(x1), g2(x1, x2)

]
= diag

[
1,

− cosx1

LP
[
MC + (1− cos2 x1)MP

]]
u = [x2, u]T

∆(x) =
[
0, ∆2(x1, x2)

]T

(7.43)

x1 is a pendulum angle from the vertical line and x2 is a pendulum angle rate. MC

and MP denote mass of the cart and the pendulum, respectively. A pendulum length

is given as LP . g is gravitational acceleration. The control input u indicates lateral

force exerted on the cart. The friction model ∆2 is suggested as (7.44).

∆2(x1, x2) = θT2φ2(x1, x2)

where

θ2 = [θ21, θ22]T φ′2(x1, x2) =
[
φ′21(x1, x2), φ′22(x1, x2)

]T
φ′21(x1, x2) =

− (MC +MP )x2

LP
[
MC + (1− cos2 x1)MP

]
φ′22(x1, x2) =

(MC +MP ) g cosx1

LP
[
MC + (1− cos2 x1)MP

]
(7.44)

θ21 is a friction coefficient at the link between the pendulum and the cart. θ22

represents a friction coefficient between the cart and the ground. θ21 and θ22 are

uncertainties to be estimated.
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In this simulation, known model parameters are defined to be MC = 0.1kg, MP =

0.01kg, LP = 2m and g = 9.81m/s2. The boundaries of the uncertain model

parameters are given as 0.2 ≤ θ21 ≤ 2 and 0.2 ≤ θ22 ≤ 2, resulting in δθ2L = 0.2
√

2

and δθ2U = 2
√

2 in (7.30). The true values of the uncertain parameters to be

estimated from the adaptation law are defined as θ2 = [1.2, 1.7]T . The initial

conditions of the parameter estimates are set to be the minimum values of the

boundaries as θ̂20 = [0.2, 0.2]T . The boundaries of the state variables are given as

−180◦ ≤ x1 ≤ 180◦ and −60◦/s ≤ x2 ≤ 60◦/s. The initial conditions of the state

variables are defined as [60◦, 0], and the desired command on the state x1 is given

as x1c = 0◦ to make the pendulum stand vertically.

Simulations are conducted for verification of the logarithmic regression-based com-

posite adaptation law proposed in Section 7.3. The backstepping controller is uti-

lized as a representative example of the baseline controller as discussed in Section

7.2.2. The proposed algorithm is compared with the linear regression-based compos-

ite adaptation law in Section 7.5.1 to clearly show the characteristics suggested in

Section 7.5.2. Design parameters for the control input command vector are defined

as C1 = C2 = 1.5. The multiple filter parameters for Ω2b and Ω2Hb are set to be

k21 = 0.01 and k22 = 0.015.

The design parameters for the logarithmic and the linear regression-based composite

adaptation laws are selected to verify Theorem 7.2, 7.3 and 7.4 in Section 7.5.2 as

follows. First,
∣∣∣E2jb

∣∣∣
U

in (7.34) can be inferred from the boundaries of the state

variables and the uncertain parameters.
∥∥∥θ̂20

∥∥∥ = 0.2
√

2 and δθ2U = 2
√

2. To obtain

δφ2 , norm of φ′2(x1, x2) is examined from (7.44) as (7.45).

∥∥φ′2(x1, x2)
∥∥ =

MC +MP

LP

√
g2 cos2 x1 + x2

2

MC +MP −MP cos2 x1

(7.45)

Since cos2 x1 ≤ 1 and −π
3
≤ x2 ≤ π

3
, δφ2 is derived as (7.46),

∥∥φ′2(x1, x2)
∥∥ ≤ δφ2 =

MC +MP

LP

√
g2 + x2

2max

MC

(7.46)

In this simulation, δφ2 = 5.4262 and this results in
∣∣∣E2jb

∣∣∣
U

= 16.8822.

Second, design parameters are defined by considering Theorem 7.2, 7.3 and 7.4 with

the obtained
∣∣∣Eijb∣∣∣U as Table. 7.1.
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Table 7.1: Design Parameters for Adaptation Laws

Case Algorithm Γ2 λ2 p2 q2

1 Logarithmic Regression diag [0.8, 0.8] 1.2 1.2 1.5

2 Logarithmic Regression diag [0.8, 0.8] 1.2 1.2 0.15

A Linear Regression diag [0.8, 0.8] 1.2 - -

B Linear Regression with High λ2 (λ′2) diag [0.8, 0.8] 10 - -

7.6.2 Simulation Results
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Figure 7.1: Tracking and Estimation Error under Nominal Circumstance

Under the nominal circumstance, simulation results of the logarithmic and the linear

regression-based composite adaptation laws with the design parameters in Table.

7.1 are addressed in Fig. 7.1. It is shown in Fig. 7.1 that tracking and parameter

estimation errors for all cases converge to 0, as expected from the analysis in Section

7.5. Theorem 7.2 is verified from the following observation with Case 1 and A in

Fig. 7.1. Under the same λ2, parameter convergence for Case 1 with the proposed

logarithmic regression-based composite adaptation law is faster than the one for Case

A with the existing linear regression-based composite adaptation law. Note that p2

and q2 of Case 1 satisfy the condition in (7.36). Simulation results with Case 1 and

B in Fig. 7.1 validate Theorem 7.3. Since λ2 increases to λ′2 which satisfies (7.38)

in Case B, Case B with linear regression-based approach shows similar but slightly

higher parameter estimation speed than Case 1 with the logarithmic regression-

based approach. Instead, there exists a significant side-effect of the λ2 increase in

Case B on system robustness comparing to Case 1, which will be shown in Fig. 7.2

from simulations under measurement delays. Simulation results with Case 2 and A
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Figure 7.2: Tracking and Estimation Error with Measurement Delay

in Fig. 7.1 verify Theorem 7.3 as a design constraint for faster adaptation with the

proposed algorithm.

Simulations are additionally conducted as increasing measurement delays τ on both

x1 and x2 before system instability especially with Case 1 and Case B. The sys-

tem appears to be unstable from τ = 0.0018s with Case B and from τ = 0.0225s

with Case 1, which implies enhanced robustness for the logarithmic regression-based

approach. As a representative example, simulation results under τ = 0.0017s are

suggested in Fig. 7.2. Unlike Case 1 with the logarithmic regression-based approach,

Case B with the linear regression-based approach shows undesirable parameter es-

timation and tracking performance in Fig. 7.2. This is because λ2 is increased for

the linear regression-based law in Case B to have similar adaptation speed with the

logarithmic regression-based law in Case 1 under the nominal circumstance.

7.7 Conclusion

A new logarithmic regression-based composite adaptation law is successfully pro-

posed in Chapter 7, which accomplishes fast parameter convergence without exces-

sive increase of the adaptation gain. The novelty of this research is in the composite

adaptation law design with regression pattern shaping based on the logarithmic func-

tion to avoid the adaptation speed degeneration. Important findings on adaptation

speed and system robustness with the proposed algorithm is provided with detailed

analysis, which is obtained from comparative study between the logarithmic and the

linear regression-based approaches. The condition on the design parameters of the

logarithmic regression-based composite adaptation law is suggested, which always



152 Logarithmic Regression based C-ABKS with New Information Matrix

provides higher adaptation speed than the linear regression-based approach for the

same adaptation gain within the system boundary. If this condition is satisfied, it is

studied how much the linear regression-based approach should increase its adapta-

tion gain to make the adaptation faster than logarithmic regression-based approach.

The system robustness can be improved with the logarithmic regression-based ap-

proach comparing to the linear regression-based approach since the logarithmic ap-

proach with lower adaptation gain can accomplish similar parameter convergence

speed with the linear approach. With new logarithmic regression-based composite

adaptation law, the closed-loop system is proven to be globally exponentially stable.

Numerical simulations are performed to verify the proposed algorithm and related

theoretical findings.
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Chapter 8

General Discussion : Comparative

Study on Incremental and

Composite Adaptive Backstepping

Control

In Chapter 8, a comparative study between the incremental backstepping control

(IBKS) in Chapter 2-4 and the new composite adaptive backstepping control (new

C-ABKS) in Chapter 7 is performed through numerical simulations under various

defects. Note that simulations are conducted with short period mode dynamics and

6-degree of freedom (6-DoF) dynamics of aircraft, respectively. In Section 8.1, two

algorithms are compared under the short period mode dynamics where the analysis

on IBKS in Chapter 2-4 holds. In Section 8.2, the dynamics is extended to the

6-DoF aircraft dynamics in order to check whether the characteristics observed in

Section 8.1 are maintained under this extension.
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8.1 Comparative Study on IBKS and new C-ABKS

under Short Period Mode Dynamics

8.1.1 Simulation Setup

8.1.1.1 Aircraft Short Period Mode Dynamics

Short period mode dynamics (8.1) which has significant importance on flight control

system design [1] is considered for this comparative study. Z∗α is assumed to be

known since it can be obtained with relatively high accuracy in general. The model

parameters for the inner-loop dynamics, M∗
α and M∗

q , are set to be uncertain.

ẋ = f(x) + g(x)u+ ∆(x)

where

x = [x1, x2]T = [α, q]T

x′1 = [x1] , x′2 = [x1, x2]T

f(x) =
[
f1(x′1), f2(x′2)

]T
= [Z∗αα, 0]T

g(x) = diag
{[
g1(x′1), g2(x′2)

]}
= diag

{
[1,M∗

δ ]
}

u = [u1, u2]T = [q, δ]T

∆(x) =
[
0,∆2(x′2)

]T

(8.1)

∆2(x′2) in (8.1) is defined as (8.2).

∆2(x′2) = θT2 φ
′
2(x′2)

θ2 =
[
M∗

α,M
∗
q

]T
φ′2(x′2) = [α, q]T

(8.2)

8.1.1.2 Flight Controllers with IBKS and new C-ABKS

In Section 8.1.1.2, flight control algorithms for the comparative study, IBKS and

new C-ABKS, are briefly addressed with classical backstepping control (BKS) as

a reference. Note that both algorithms are utilized for inner-loop control, and the

outer-loop controller is designed with classical BKS since accurate Z∗α is assumed to

be available.
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Backstepping Controller A flight control law with the classical BKS is given as

(8.3) for the dynamics in (8.1). Note that detailed derivation of (8.3) is suggested

in Chapter 2.

qc = −C1z1 − Z∗αα + α̇c

δ =
1

M̂∗
δ

(
−C2z2 − z1 − M̂∗

αα− M̂∗
q q + q̇c

) (8.3)

Incremental Backstepping Controller The IBKS is applied to design the inner-

loop controller for the dynamics (8.1), resulting in (8.4). Note that detailed deriva-

tion of (8.4) can be found in Chapter 2, 3 and 4.

qc = −C1z1 − Z∗αα + α̇c

δ = δ0 + ∆δ

=
1

M̂∗
δ

(−C2z2 − z1 − q̇0 + q̇c) + δ0

(8.4)

New Composite Adaptive Backstepping Controller A flight control algo-

rithm is designed by applying new C-ABKS detailed in Chapter 7 to (8.1).

qc = −C1z1 − Z∗αα + α̇c

δ =
1

M̂∗
δ

(
−C2z2 − z1 − θ̂T2 φ2(x′2) + q̇c

) (8.5)

The estimate on the uncertain parameter vector θ̂2 in (8.1) is obtained from the

logarithmic regression-based composite adaptation law with new information matrix

in Chapter 7.

8.1.1.3 Simulation Case Definitions and Parameter Settings

Simulation case definitions and parameter settings for the comparative study with

short period mode dynamics are addressed in Section 8.1.1.3. The aerodynamic

model of F-16 in [2] at the altitude of 4000ft and the velocity of 846.27ft/s is utilized

for the simulations. The initial conditions on the state variables are α0 = −0.6384◦

and q0 = 0◦. The control command on α is αc = 1.5◦. The common design param-

eters from the backstepping control structure, C1 and C2, are set to be C1 = 6 and

C2 = 3. A set of design parameters for the logarithmic regression-based composite
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adaptation law with new information matrix, which provides the best parameter

estimation performance, is selected from a number of simulations. The selected de-

sign parameters are Γ2 = diag [1000, 1000], λ2 = 1, p2 = 1.2, q2 = 1.5, k21 = 0.10,

k22 = 0.15.

Model uncertainties and measurement delays are considered in this comparative

study. First, simulations are performed under the model uncertainties on the sys-

tem matrix and the control effectiveness matrix, respectively. Note that the model

parameters in the system matrix are replaced with the additional measurements

in IBKS and with their estimates in new C-ABKS, while the control effectiveness

information is still required for both algorithms. For the case with the model un-

certainty on the system matrix, ∆M∗α and ∆M∗q are set to be 0.5. The results for

the case with the model uncertainty on the control effectiveness matrix are obtained

under ∆M∗δ
= −0.2 and ∆M∗δ

= 0.5, respectively.

Second, simulations are conducted under the measurement delays with or without

the model uncertainty on the control effectiveness information. Note that delays

on state derivative and control surface deflection angle measurement are mainly

considered for IBKS, and simulations with new C-ABKS mainly deal with delay

on control surface deflection angle measurement. This is because the above two

measurements are additionally utilized for IBKS comparing to BKS for its reduced

model dependency, and the delay is considered in new C-ABKS for fair comparison.

The defined simulation cases are listed in Table 8.1.

Table 8.1: Simulation Cases under τδ, τq̇ and ∆M∗δ

Case ∆M∗δ
τδ τq̇

1 −0.2 0.01s 0s, 0.001s, 0.01s, 0.011s, 0.02s

2 0 0.01s 0s, 0.001s, 0.01s, 0.011s, 0.02s

3 0.5 0.01s 0s, 0.01s, 0.02s, 0.021s, 0.03s

8.1.2 Simulation Results

8.1.2.1 Model Uncertainty

Model Uncertainty on System Matrix The simulation results with the model

uncertainties on the system matrix are given in Fig. 8.1. It is shown in Fig. 8.1
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Figure 8.1: System Response with ∆M∗α and ∆M∗q

that both IBKS and new C-ABKS have advantages from their reduced model de-

pendency comparing to BKS as follows. BKS with the model uncertainties on M∗
α

and M∗
q shows a steady-state error on α response. IBKS provides the same response

with the nominal BKS. New C-ABKS takes some time for model parameter estima-

tion, but this also shows the same performance with the nominal BKS after perfect

adaptation.
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Figure 8.2: System Response with ∆M∗δ

Model Uncertainty on Control Effectiveness Fig. 8.2 provides the simulation

results with the uncertainty on the control effectiveness information. The closed-

loop system with BKS shows large steady-state errors with the uncertainty in control

effectiveness information. The IBKS shows the same response with the nominal BKS

even with the uncertainty in control effectiveness information if the control input is

calculated, transmitted, and reflected fast enough to the actual control surface. The
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new C-ABKS with uncertainty in control effectiveness information shows parameter

estimation errors, resulting in steady-state error in α response. This can be explained

by (8.19) in Appendix A with τδ = 0; θ̂2 converges to θ′2 which becomes different

with θ2 because of non-zero ∆M∗δ
.

8.1.2.2 Delays on Additional Measurements and Model Un-

certainty on Control Effectiveness
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Figure 8.3: System Response with τδ and τq̇ under ∆M∗δ
= −0.2
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Figure 8.4: System Response with τδ and τq̇ (∆M∗δ
= 0)

Fig. 8.4 shows the simulation results for case 2 with delays on the additional mea-

surements and without model uncertainties. It is addressed in Fig. 8.4 that the

closed-loop system with the IBKS is stable if there is no delay on the state deriva-

tive measurement or the non-zero delay on the state derivative measurement is
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Figure 8.5: System Response with τδ and τq̇ under ∆M∗δ
= 0.5

identical to the delay on the control surface deflection angle measurement. Even

with very small deviation from this stability condition, the system with the IBKS

becomes unstable as shown in Fig. 8.4. With the new C-ABKS, the closed-loop sys-

tem shows stable response under delay on the additional measurement. However,

as shown in Fig. 8.4, the delay induces parameter estimation error which results in

tracking error.

The simulation results for the cases 1 and 3 considering both measurement delay and

model uncertainty are provided in Fig. 8.3 and 8.5. Fig. 8.3 and 8.5 address that

the stability condition for the IBKS about delays on the additional measurements is

affected by the model uncertainty on control effectiveness information, resulting in

different kmax for different model uncertainties. In this comparative study, kmax = 1

for ∆M∗δ
= −0.2 and ∆M∗δ

= 0, and kmax = 2 for ∆M∗δ
= 0.5. It is also shown

in Fig. 8.3 and 8.5 that the closed-loop system with the IBKS becomes unstable

under the delays on the additional measurements which do not satisfy this stability

condition with the model uncertainty by small difference. Fig. 8.3 and 8.5 indicate

that the new C-ABKS under the delays on additional measurement and the model

uncertainty on control effectiveness has parameter estimation errors which makes α

response have a steady-state error.

Note that the detailed theoretical backgrounds for the above observations on the

IBKS are provided in Chapter 4. The parameter estimation error of the new C-

ABKS under delays on additional measurement can be explained with (8.19) in

Appendix A which implies that non-zero τδ makes θ′2 become different with θ2 and

the new C-ABKS drives θ̂2 to θ′2.
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8.2 Comparative Study on IBKS and new C-ABKS

under 6-DoF Dynamics

8.2.1 Simulation Setup

8.2.1.1 Aircraft 6-DoF Dynamics

The 6-DoF dynamics with the model uncertainty ∆2 is derived as (8.6) for compar-

ative study in Section 8.2.

d

dt


V

α

β

 = f ′1 +G1


T

q

r



d

dt


p

q

r

 = f ′2 +G2


δe

δa

δr

+ ∆2

where

f ′1 = f1 + fg

f1 =


1
m

(XT cosα cos β + YT sin β + ZT sinα cos β)

−p cosα tan β + 1
mV cosβ

(ZT cosα−XT sinα)

p sinα + 1
mV

(−XT cosα sin β + YT cos β − ZT sinα sin β)



fg =


g (− sin θ cosα cos β + cos θ sinφ sin β + cos θ cosφ sinα cos β)

g
V cosβ

(cos θ cosφ cosα + sin θ sinα)

g
V

(cos θ sinφ cos β + sin θ cosα sin β − cos θ cosφ cosα sin β)



f ′2 =


(c2p+ c1r) q − c4bYT

c̄
b

c5pr + c6

(
r2 − p2

)
+ c7c̄ZT

(
xCGR − xCG

)
c̄
b

(c8p− c2r) q − c9bYT
c̄
b



G1 =


cosα cosβ

m
0 0

− sinα
mV cosβ

1 − sinα tan β

− cosα sinβ
mV

0 − cosα

 G2 =


0 c3Lδa + c4Nδa c3Lδr + c4Nδr

c7Mδe 0 0

0 c4Lδa + c9Nδa c4Lδr + c9Nδr


(8.6)
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V , α and β represent velocity, angle-of-attack and sideslip angle. p,q, and r denote

body angular rates and φ, θ, and ψ stand for Euler angles. T , δe, δa, and δr indicate

thrust and elevator, aileron and rudder deflection angles, respectively. XT , YT and

ZT are aerodynamic forces in body x, y, and z-axis which are assumed to be known

[3] [4]. Lδa , Lδr , Mδe , Nδa and Nδr represent control effectiveness of the control

surfaces to the aerodynamic moments. c(·) denote parameters related to moment of

inertia as described in [5]. m is mass and g is the gravitational acceleration. xCGR
is the x-coordinate of the reference center of gravity position and xCG denotes the

x-coordinate of the center of gravity position. c̄ and b represent reference chord

length and wing span, respectively.

∆2 in (8.6) is defined as (8.7).

∆2 =

[
θTp φ

′
p θTq φ

′
q θTr φ

′
r

]T
where

θp = Sb



(
c3Cl0β + c4Cn0β

)
(
c3Cl0αβ + c4Cn0αβ

)
(
c3Cl0β2 + c4Cn0β2

)
(
c3Clp0

+ c4Cnp0

)
(
c3Clr0 + c4Cnr0

)



T

φ′p = q̄

[
β αβ β2 bp

2V
br
2V

]T

θq = Sc̄c7



Cm00

Cm0α

Cmq0

Cmqα



T

φ′q = q̄

[
1 α c̄

2V
q c̄

2V
qα

]T

θr = Sb



(
c4Cl0β + c9Cn0β

)
(
c4Cl0αβ + c9Cn0αβ

)
(
c4Cl0β2 + c9Cn0β2

)
(
c4Clp0

+ c9Cnp0

)
(
c4Clr0 + c9Cnr0

)



T

φ′r = q̄

[
β αβ β2 bp

2V
br
2V

]T

(8.7)

S denotes wing area and q̄ indicates dynamic pressure. C(−) are parameters to model
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the aerodynamic coefficients in (8.23). The detailed derivations of (8.6) and (8.7)

are provided in Appendix B.

The kinematics equation of the altitude h is given as (8.8).

d

dt
h = V (sin θ cos β cosα− sinφ cos θ sin β + cosφ cos θ cos β sinα) (8.8)

The kinematics in (8.8) can be rewritten with small angle approximation on α as

(8.9).

d

dt
h = fh + ghα

where

fh = V (sin θ cos β cosα− sinφ cos θ sin β)

gh = V (cosφ cos θ cos β)

(8.9)

8.2.1.2 Flight Controllers with IBKS and new C-ABKS

The flight control algorithms are designed in Section 8.2.1.2 for the comparative

study with 6-DoF dynamics. The overall structure of the flight control algorithms

is provided in Fig. 8.6.

Figure 8.6: Block Diagram of Control System

The angle-of-attack command αc to track hc is generated as (8.10) with nonlinear

dynamic inversion (NDI).

αc =
1

gh

(
−fh − khp (h− hc)− khi

∫ t

0

(h− hc) dτ

)
(8.10)
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where khp and khi are constant design parameters. Note that the altitude tracking

error, (h− hc), follows the desired error dynamics in (8.11) when hc is constant.

d

dt
(h− hc) = −khp (h− hc)− khi

∫ t

0

(h− hc) dτ (8.11)

The commands on thrust, pitch rate and yaw rates, Tc, qc and rc, are calculated as

(8.12) from classical BKS to track Vc, αc and βc.
Tc

qc

rc

 = G−1
1

−C1z1 − f ′1 +


V̇c

α̇c

β̇c


 (8.12)

IBKS and new C-ABKS are applied respectively for the design of the fin deflection

angle commands, δec, δac and δrc, to track the body angular rate commands, pc, qc

and rc. The fin deflection angle commands in (8.13) are derived by utilizing the

design procedures of IBKS in Chapter 2-4.
δec

δac

δrc

 = G−1
2

−C2z2 − z1 −


p0

q0

r0

+


ṗc

q̇c

ṙc


+


δe0

δa0

δr0

 (8.13)

The new C-ABKS in Chapter 7 is applied to obtain the fin deflection angle com-

mands of (8.14).


δec

δac

δrc

 = G−1
2

−C2z2 − z1 − f ′2 +


ṗc

q̇c

ṙc

−

θ̂Tp φ

′
p

θ̂Tq φ
′
q

θ̂Tr φ
′
r


 (8.14)

The estimates on the uncertain parameter vectors in (8.6), θ̂Tp , θ̂Tq and θ̂Tr , utilized

in (8.14) are obtained with the logarithmic regression-based composite adaptation

law with the new information matrix proposed in Chapter 7.
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8.2.1.3 Simulation Case Definitions and Parameter Settings

The parameter settings and simulation case definitions for the comparative study

with 6-DoF dynamics are provided in Section 8.2.1.3. Note that the aerodynamic

model of F-16 in [2] is utilized for the simulations. The initial conditions of the state

variables are [h V α β p q r]T0 =
[
4000ft 846.27ft/s − 0.6384◦ 0◦ 0◦/s 0◦/s 0◦/s

]T
.

The initial values of the Euler angles are set to be [φ θ ψ]T0 = [0◦ − 0.6384◦ 0◦]T .

The control commands are defined as hc = 4000ft, Vc = 855ft/s, βc = 1◦ and

pc = 0◦/s for altitude hold, velocity increase, sideslip angle change and roll rate sta-

bilization. The design parameters of the altitude controller are selected as khp = 3

and khi = 1. The common design parameters for the backstepping control struc-

ture are defined as C1 = diag[20, 20, 20] and C2 = diag[10, 10, 10]. The design

parameters for the logarithmic regression-based composite adaptation law with new

information matrix are selected to show the best parameter estimation perfor-

mance from a number of simulations. The parameter set for the new C-ABKS

are Γp = Γr = diag[0.1, 0.1, 0.1, 0.1, 0.1], Γq = diag[0.001, 0.001, 0.001, 0.001, 0.001],

λp = λq = λr = 1, pp = pq = pr = 1.2, qp = qq = qr = 1.5, k1 = 0.1, k2 = 0.15,

k3 = 0.2, k4 = 0.25, k5 = 0.3.

The simulations with 6-DoF dynamics are performed to investigate whether the

closed-loop characteristics observed from the comparative study with short period

mode dynamics are retained under the extension to the 6-DoF dynamics. In the sim-

ilar manner with the short period mode dynamics, the effects of model uncertainties

and measurement delays on the closed-loop system are systematically examined with

the 6-DoF dynamics. First, simulations are conducted with the model uncertainties

on control effectiveness which is still required for both algorithms despite their re-

duced model dependency. The model uncertainties on control effectiveness informa-

tion are set to be ∆(?) = −0.2 and ∆(?) = 0.5 for all (?) = Lδa , Lδr , Mδe , Nδa , Nδr .

Second, simulations are performed under the measurement delays with or without

model uncertainties on control effectiveness matrix. Due to the same reason ex-

plained in Section 8.1, delays on state derivative and control surface deflection angle

measurements are mainly considered for IBKS, and simulations with new C-ABKS

mainly deal with delays on control surface deflection angle measurements. Simula-

tion cases are defined with model uncertainties and measurement delays as Table.

8.2. Note that (?) = Lδa , Lδr , Mδe , Nδa , Nδr , (·) = δe, δa, δr and (∗) = ṗ, q̇, ṙ.
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Table 8.2: Simulation Cases under τ(·), τ(∗) and ∆(?)

Case ∆(?) τ(·) τ(∗)

a −0.2 0.01s 0s, 0.001s, 0.01s, 0.011s, 0.02s
b 0 0.01s 0s, 0.001s, 0.01s, 0.011s, 0.02s
c 0.5 0.01s 0s, 0.01s, 0.02s, 0.021s, 0.03s

8.2.2 Simulation Results

8.2.2.1 Model Uncertainty on Control Effectiveness
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Figure 8.7: System Response with ∆(?)

The 6-DoF simulation results with the IBKS and the new C-ABKS under model

uncertainties on control effectiveness information are addressed in Fig. 8.7. It

is observed in Fig. 8.7 that the closed-loop system with IBKS shows the same re-

sponse regardless of the uncertainties on the control effectiveness if the control input
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commands are generated, transmitted and reflected to the actual control surface ac-

tuators fast enough. The closed-loop system with the new C-ABKS is shown to be

stable in Fig. 8.7. Note that the closed-loop system with the new C-ABKS appears

to be stable for −0.4 ≤ ∆(?) ≤ 1.5 from a number of simulations with different

∆(?) conducted to identify the effects of ∆(?) on the system. However, the system

with the new C-ABKS have parameter estimation errors as addressed in Fig. 8.7(d)

when the uncertainties on control effectiveness exist, which results in the steady-

state errors on state outputs as shown in Fig. 8.7(b) and 8.7(c). Those observations

on the closed-loop systems with the IBKS and the new C-ABKS coincide with the

characteristics identified from the analysis and comparative studies with the short

period mode dynamics.

8.2.2.2 Delays on Additional Measurements and Model Un-

certainty on Control Effectiveness
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Figure 8.8: System Response with τ(·) and τ(∗) under ∆(?) = −0.2
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Figure 8.9: System Response with τ(·) and τ(∗) under ∆(?) = 0

Fig. 8.9 addresses the simulation results for case b with delays on additional mea-

surements and without model uncertainties. The closed-loop system with the IBKS

is shown to be stable in Fig. 8.9 when the delays on state derivative measurements do

not exist or the delays on state derivative measurements and control surface deflec-

tion angle measurements are the same. The closed-loop system with IBKS becomes

unstable even with small deviations from this stability condition on measurement

delays. The closed-loop system with the new C-ABKS is observed to be stable in

Fig. 8.9. Note that the closed-loop system with the new C-ABKS appears to be

stable for τ(·) ≤ 0.06s from a number of simulations with different τ(·) conducted to

identify the effects of τ(·) on the system. However, parameter estimation errors of

the system with the new C-ABKS are induced by the measurement delays as shown

in Fig. 8.9(d), which results in the the steady-state errors on state outputs as shown

in Fig. 8.9(b) and 8.9(c). Note that properties of the IBKS and the new C-ABKS

with delays under the 6-DoF dynamics are the same with the results under the short

period mode dynamics.
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Figure 8.10: System Response with τ(·) and τ(∗) under ∆(?) = 0.5

The simulation results for case a and c considering both measurement delays and

model uncertainties are provided in Fig. 8.8 and 8.10. It is shown that the stability

condition for the closed-loop system with the IBKS about delays on the additional

measurements is affected by the model uncertainties on control effectiveness infor-

mation; kmax = 1 for ∆(?) = −0.2 while kmax = 2 for ∆(?) = 0.5. It is also observed

that the closed-loop system with the IBKS becomes unstable when this stability

condition is not satisfied even with a small difference. The closed-loop system with

the new C-ABKS is stable under delays on the additional measurements and the

model uncertainties on control effectiveness information. However, the parameter

estimation errors induced by these defects result in the steady-state errors of the

state variables. These results address that the properties of the IBKS and the new C-

ABKS under measurement delays and model uncertainties identified with the short

period mode dynamics are maintained with the extension to the 6-DoF dynamics.
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8.3 Conclusion

Numerical simulations are conducted for comparative studies between the IBKS and

the new C-ABKS with the model uncertainties and delays on the additional mea-

surements. Note that the short period mode and the 6-DoF dynamics are considered

in the numerical simulations. The summary of the comparative studies is provided

in Table 8.3.

Table 8.3: Summary of Comparative Study
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Appendix

A Estimation Error of C-ABKS with Model Uncertainty

and Measurement Delay

The estimation error from the model uncertainty on control effectiveness information

and the delay on the additional measurement is investigated in Appendix A for the

comparative study. r2b can be written from (7.17) in Chapter 7 with (8.1) as (8.15).

r2b = Ω2Hbθ2 = O2b

 1
k21

(
x2b − x2F21b

)
−M∗

δ δF21b

1
k22

(
x2b − x2F22b

)
−M∗

δ δF22b

 (8.15)

where (·)b denotes (·) at t = tb. If there exist ∆M∗δ
and τδ, r

′
2b is obtained as follows.

r′2b = Ω′2Hbθ
′
2 = O′2b

 1
k21

(
x′2b − x′2F21b

)
− M̂∗

δ δ
′
F21b

(t− τδ)
1
k22

(
x′2b − x′2F22b

)
− M̂∗

δ δ
′
F22b

(t− τδ)

 (8.16)

where (·)′ represents (·) under ∆M∗δ
and τδ. (8.16) can be rewritten as (8.17) with

d′F2j b
, δ′F2j b

(t− τδ)− δ′F2j b
.

Ω′2Hbθ
′
2 = O′2b



{
1
k21

(
x′2b − x′2F21b

)
−M∗

δ δ
′
F21b

}
−M∗

δ ∆M∗δ
δ′F21b

−M∗
δ

(
1 + ∆M∗δ

)
d′F21b{

1
k22

(
x′2b − x′2F22b

)
−M∗

δ δ
′
F22b

}
−M∗

δ ∆M∗δ
δ′F22b

−M∗
δ

(
1 + ∆M∗δ

)
d′F22b


(8.17)

(8.18) is derived from (8.1) with filtered dynamics (7.14) in Chapter 7.

1

k2j

(
x′2b − x

′
2F21b

)
= θ21x

′
1F2j b

+ θ22x
′
2F2j b

+M∗
δ δ
′
F2j b

(8.18)

Thus, Ω′2Hbθ
′
2 is rewritten by applying (8.18) to (8.17).

Ω′2Hbθ
′
2 = Ω′2Hbθ2 −M∗

δO
′
2b

∆M∗δ

δ′F21b

δ′F22b

−
d′F21b

d′F22b

−∆M∗δ

d′F21b

d′F22b


 (8.19)
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It is shown in (8.19) that θ′2 is different from θ2 when ∆M∗δ
or τδ exist. Since

the composite adaptation law makes Ω′2Hbθ̂2 converge to Ω′2Hbθ
′
2, the parameter

estimates have steady-state errors if ∆M∗δ
or τδ exist.

B Derivation of Equations for 6-DoF Dynamics with Un-

certainties

The 6-DoF aircraft dynamics [5] is provided as (8.20).

d

dt


V

α

β

 = f1 + fg +G1


T

q

r



d

dt


p

q

r

 = f2 +G2


δe

δa

δr


where

f1 =


1
m

(XT cosα cos β + YT sin β + ZT sinα cos β)

−p cosα tan β + 1
mV cosβ

(ZT cosα−XT sinα)

p sinα + 1
mV

(−XT cosα sin β + YT cos β − ZT sinα sin β)



fg =


g (− sin θ cosα cos β + cos θ sinφ sin β + cos θ cosφ sinα cos β)

g
V cosβ

(cos θ cosφ cosα + sin θ sinα)

g
V

(cos θ sinφ cos β + sin θ cosα sin β − cos θ cosφ cosα sin β)



f2 =


(c2p+ c1r) q + c3LT + c4NT

c5pr + c6

(
r2 − p2

)
+ c7MT

(c8p− c2r) q + c4LT + c9NT



G1 =


cosα cosβ

m
0 0

− sinα
mV cosβ

1 − sinα tan β

− cosα sinβ
mV

0 − cosα

 G2 =


0 c3Lδa + c4Nδa c3Lδr + c4Nδr

c7Mδe 0 0

0 c4Lδa + c9Nδa c4Lδr + c9Nδr


(8.20)
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LT , MT and NT are aerodynamic moments in roll, pitch and yaw axis. Note that

the definitions of the other parameters are provided in Section 8.2.1.1.

The equations for the aerodynamic forces and moments and the control effectiveness

in (8.20) are listed in (8.21) and (8.22), respectively.

XT = q̄S

[
Cx0 (α) + Cxq (α)

c̄

2V
q

]
YT = q̄S

[
Cy0 (β) + Cyp (α)

b

2V
p+ Cyr (α)

b

2V
r

]
ZT = q̄S

[
Cz0 (α, β) + Czq (α)

c̄

2V
q

]
LT = q̄Sb

[
Cl0 (α, β) + Clp (α)

b

2V
p+ Clr (α)

b

2V
r

]
MT = q̄Sc̄

[
Cm0 (α) + Cmq (α)

c̄

2V
q +

(
Cz0 (α, β) + Czq (α)

c̄

2V
q

)(
xCGR − xCG

) c̄
b

]

NT = q̄Sb

[
Cn0 (α, β) + Cnp (α)

b

2V
p+ Cnr (α)

b

2V
r

−
(
Cy0 (β) + Cyp (α)

b

2V
p+ Cyr (α)

b

2V
r

)
c̄

b

]
(8.21)

Lδa = q̄SbClδa (α, β)

Lδr = q̄SbClδr (α, β)

Mδe = q̄Sc̄Cmδe (α, δe)

Nδa = q̄SbCnδa (α, β)

Nδr = q̄SbCnδr (α, β)

(8.22)

where C(·) is non-dimensional aerodynamic coefficient of (·).
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The aerodynamic coefficients related to aerodynamic forces are assumed to be ac-

curate which is reasonable as discussed in [3] and [4]. The uncertain aerodynamic

coefficients for aerodynamic moments are modeled as (8.23) by simplifying the mod-

els in [2].

Cl0 (α, β) = Cl0ββ + Cl0αβαβ + Cl0β2β
2

Clp (−) = Clp0

Clr (−) = Clr0

Cm0 (α) = Cm00 + Cm0αα

Cmq (α) = Cmq0
+ Cmqαα

Cn0 (α, β) = Cn0ββ + Cn0αβαβ + Cn0β2β
2

Cnp (−) = Cnp0

Cnr (−) = Cnr0

(8.23)

By substituting (8.21) and (8.23) into (8.20), the dynamic equation in (8.6) with

(8.7) is derived.



References

[1] Donald McLean. Automatic flight control systems. Prentice Hall, New York,

1990.

[2] Eugene A Morelli. Global nonlinear parametric modelling with application to

f-16 aerodynamics. In Proceedings of the 1998 American Control Conference.

ACC (IEEE Cat. No. 98CH36207), volume 2, pages 997–1001. IEEE, 1998.

[3] Pieter van Gils, Erik-Jan Van Kampen, Coen C de Visser, and Q Ping Chu.

Adaptive incremental backstepping flight control for a high-performance aircraft

with uncertainties. In AIAA Guidance, Navigation, and Control Conference,

2016.

[4] Paul Acquatella, E van Kampen, Qi Ping Chu, et al. Incremental backstepping

for robust nonlinear flight control. Proceedings of the EuroGNC, 2013, 2013.

[5] Brian L Stevens and Frank L Lewis. Aircraft Control And Simulation. John

Willey& Sons Inc., New York, 1992.



Chapter 9

Conclusions and Future Works

9.1 Conclusions

This thesis successfully innovates knowledge on nonlinear flight control algorithms

with reduced model dependency, responding research gaps for their practical appli-

cations. Note that this thesis considers IBKS and C-ABKS which are obtained by

applying the incremental and adaptive control schemes to BKS for reduced model de-

pendency. The leading principle for each IBKS and C-ABKS to make the algorithm

less dependent on model information can be summarized as follows. IBKS addition-

ally utilizes state derivative and control surface deflection angle measurements to

replace required model information except control effectiveness for its implementa-

tion. C-ABKS estimates uncertain model parameters online via adaptation law and

utilizes these estimates in control input command calculation. The details on the

contributions of the research with each algorithm are suggested as follows.

Extensive and systematic theoretical analyses under various defects are conducted

to provide critical understandings on IBKS. As a starting point, closed-loop analyses

under the model uncertainties are conducted with IBKS and BKS for theoretical in-

terpretations on reduced model dependency in IBKS. A piecewise analysis method is

utilized to obtain transfer functions with two algorithms under the model uncertain-

ties. The characteristics of each algorithm are investigated by comparing them with

the nominal results or with each other. As expected, stability and performance of

the closed-loop system with IBKS are not affected by the model uncertainties, while

they significantly influence the closed-loop characteristics with BKS. One interesting

observation is that the uncertainty on the control effectiveness information, which
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is still required to implement IBKS, does not have any impact on the closed-loop

system with IBKS if the control input is calculated, transmitted and reflected fast

enough to the actual control surface.

The discussions on the analysis with IBKS are broadened considering defects on the

additional measurements along with the model uncertainties. First, the closed-loop

characteristics with IBKS is analyzed under the biases on the additional measure-

ments and the model uncertainties. A similar piecewise approach with the model

uncertainty-only case is applied to acquire a transfer function under the measure-

ment biases and the model uncertainties for theoretical analysis. The measurement

biases result in a steady state error while not affecting the closed-loop system sta-

bility with IBKS. Unlike the analysis results only with the model uncertainties, the

uncertainty in control effectiveness information has an impact on the steady-state

error of the closed-loop system. Second, the closed-loop system with IBKS under

the delays on the additional measurements and the model uncertainties is exam-

ined with the analysis framework proposed in this thesis. The transfer function of

the closed-loop system with the measurement delays and the model uncertainties is

derived under the piecewise approach as in the previous discussions. Since the mea-

surement delays result in a highly nonlinear characteristic equation with exponential

terms, the absolute stability is difficult to be examined in an analytical way. To this

end, new numerical framework with optimization concept is proposed to systemati-

cally and efficiently test the closed-loop system stability under measurement delays.

The key finding is that the delays on the additional measurements should satisfy a

specific relationship for the closed-loop stability with IBKS. Besides, it is identified

that this stability condition is affected by the uncertainty on control effectiveness

information.

A new C-ABKS is designed to guarantee parameter convergence without PE and

enhance the adaptation speed without excessive increase of the adaptation gain.

There exist two main novel ideas for the design of the new C-ABKS to achieve this

aim; a new modulation based approach for the information matrix design and a

new logarithmic regression-based approach for the composite adaption law design.

First, a new paradigm of the information matrix design is proposed by developing

a modulation-based approach to accomplish parameter convergence under FE. A

new information matrix is designed by utilizing linear independency between fil-

tered regressor vectors from the multiple filters with different modulation effects.

The filtered regressor vectors are modified to be orthogonal to each other while

retaining their magnitudes before modifications, and the information matrix is con-
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structed with these modified filtered regressor vectors. Second, a new logarithmic

regression-based composite adaptive control is proposed to enhance the adaptation

speed without excessive increase of the adapation gain. Since the linear regression

term in previous studies is simply proportional to the estimation error, the adapta-

tion speed of the linear regression term decreases fast at the later stage when the

estimation error is small. The parameter convergence speed can be enhanced by

slowing down the adaptation speed degeneration at the later stage; concave and

monotonically increasing characteristics of the logarithmic function is utilized for

the regression term in this research.

The key properties of the new logarithmic regression-based composite adaptive con-

trol with the new information matrix are investigated as follows. The closed-loop

system with this new C-ABKS is shown to be asymptotically stable under FE by

applying Lyapunov theory. The properties especially from the new information ma-

trix constructed with modulation-based approach are addressed as follows. The

new information matrix is proven to be positive definite for all the time from the

beginning under FE, while the accumulation-based approach in previous studies

requires uncertain amount of time to populate the information matrix to be full

rank. Comparing to the accumulation-based approach, the new modulation-based

approach provides advantages in adaptation speed and system robustness since the

information matrix is designed to have all eigenvalues with moderate level of mag-

nitudes. The properties originated from the logarithmic regression-based approach

are given as follows. The logarithmic regression term is proven to be always larger

than the linear regression term within the system boundary if its design parame-

ters satisfy the suggested condition. In order to make the linear regression-based

approach to become always faster than the logarithmic regression-based approach

when its design parameters accomplish this condition, the adaptation gain of the

linear regression term should be increased and this can result in reduced robustness.

The extensive theoretical findings on IBKS and C-ABKS are obtained and veri-

fied throughout the thesis. Note that a comparative study between IBKS and new

C-ABKS is additionally performed via numerical simulations to address their differ-

ences especially under various defect circumstances.

9.2 Future Works

Researches presented in this thesis can be extended in several ways as follows.
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Critical insights on the system characteristics with IBKS under the model uncer-

tainties and the measurement delays are obtained from the analysis based on the

short period mode dynamics due to its importance in flight control and simplicity in

theoretical analysis. Further studies to examine and validate the properties of IBKS

identified in this thesis with 6 degree-of-freedom dynamics would be beneficial.

From the closed-loop analysis with IBKS under model uncertainties and measure-

ment delays, important stability condition is provided in terms of the relationship

between delays on the state derivative and control surface deflection angle measure-

ments. As can be seen in the numerical simulations, this condition is too strict,

which could be disadvantageous for its practical applications. Hence, compensa-

tion algorithm against the delays on the additional measurements and the model

uncertainties would be an interesting topic for the system with IBKS.

Most of the adaptive control algorithms are designed under the assumption of

linearly structured uncertainty with constant unknown parameters satisfying the

matching condition. The extension of the proposed C-ABKS algorithm to the

problems with time-varying unknown parameters, unstructured uncertainty or un-

matched uncertainty would be a challenging and interesting research topic.
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