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Abstract

During recent decades supply chains have grown, and became increasingly intercon-
nected due to globalisation and outsourcing. Empirical and theoretical studies now
characterise supply chains as complex networks rather than the hierarchical, linear
chain structures often theorised in classical literature. Increased topological com-
plexity resulted in an increased exposure to risk, however existing supply chain risk
management methodologies are designed based on the linear structure assumption
rather than interdependent network structures. There is a growing need to better
understand the complexities of supply networks, and how to identify, measure and
mitigate risks more efficiently.

The aim of this thesis is to identify how supply network topology influences re-
silience. More specifically, how applying well-established supply chain risk manage-
ment strategies can decrease disruption impact in different supply network topolo-
gies. The influence of supply network topology on resilience is captured using a
dynamic agent-based model based on empirical and theoretical supply network struc-
tures, without a single entity controlling the whole system where each supplier is
an independent decision-maker. These suppliers are then disrupted using various
disruption scenarios. Suppliers in the network then apply inventory mitigation and
contingent rerouting to decrease impact of disruptions on the rest of the network. To
the best of author’s knowledge, this is the first time the impact of random disruptions
and its reduction through risk management strategies in different supply network
topologies have been assessed in a fully dynamic, interconnected environment.

The main lessons from this work are as follows: It has been observed that the
supply network topology plays a crucial role in reducing impact of disruptions. Some
supply network topologies are more resilient to random disruptions as they better
fulfil customer demand under perturbations. Under random disruptions, inventory



mitigation is a well-performing shock absorption mechanism. Contingent rerouting,
on the other hand, is a strategy that needs specific conditions to work well. Firstly,
the strategy must be applied by companies in supply topologies where the majority
of supply chain members have alternative suppliers. Secondly, contingent rerouting
is only efficient in cases when the reaction time to supplier’s disruption is shorter
than the duration of the disruption.

It has also been observed that the topological position of the individual company
who applies specific risk management strategy heavily impacts costs and fill-rates of
the overall system. This property is moderated by other variables such as disruption
duration, disruption frequency and the chosen risk management strategy. An addi-
tional, important lesson here is that, choosing the supplier that suffered the most
from disruptions or have specific topological position in a network to apply a risk
management strategy might not always decrease the costs incurred by the whole
system. In contrast, it might increase it if not applied appropriately.

This thesis underpins the significance of topology in supply network resilience. The
results from this work are foundational to the claim that it is possible to design an
extended supply network that will be able reduce the impact of certain disruption
types. However, the design must consider topological properties as well as moder-
ating variables.
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Chapter 1

Introduction

1.1 Supply Chains as Complex Systems

Over the past decades supply chains have grown longer, became interconnected
as a result of globalisation and rising cost pressures (Basole and Bellamy, 2014b,
Diehl and Spinler, 2013, Garvey et al., 2015, Mizgier et al., 2013). These inter-firm
dependencies are the cause of complexity implying counter-intuitive behaviour and
emergence (Bezuidenhout et al., 2012).

Supply chains have been observed to share common properties with Complex Adap-
tive Systems (Choi et al., 2001), where a complex system or network denotes a
structure that has numerous interconnected components with non-trivial interac-
tions (Estrada, 2014, Ghadge et al., 2013, Pettit and Fiksel, 2013). Supply chains
are believed to be better represented and modelled as networks rather than linear
structures (Bellamy and Basole, 2013, Garvey et al., 2015). Terms "supply network"
and "supply chain" are used interchangeably throughout the thesis.

1.2 Need for Supply Chain Risk Management

Complexity and uncertainty in supply chains have increased (Adhitya et al., 2009,
Gaonkar and Viswanadham, 2004, Mizgier et al., 2013, Stecke and Kumar, 2009)
and so has risk exposure (Harland et al., 2003, Stecke and Kumar, 2009, Wagner
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and Bode, 2006). Risk assessment has thus become an important part of successful
supply chain management (Goh et al., 2007, Mizgier et al., 2013, Stecke and Kumar,
2009). The complexity of inter-firm relationships and higher frequency of disruptions
have increased supply network vulnerability (Cagliano et al., 2012, Choi and Krause,
2006, Diehl and Spinler, 2013, Ghadge et al., 2013, Guertler and Spinler, 2015),
since a failure in one supply chain entity can potentially propagate across the whole
network (Basole and Bellamy, 2014a,b, Garvey et al., 2015, Yang and Yang, 2010).
Under normal operations these risk interdependencies remain hidden without clear
knowledge of where the vulnerability lies and make risk mitigation and monitoring
challenging (Ghadge et al., 2013, Guertler and Spinler, 2015). Supply Chain Risk
Management (SCRM) tools and methods rarely consider effects of risk management
actions on the extended supply network, focusing mostly on the local perspective.
Moreover, these tools were designed when supply chains were relatively stable and do
not account for current volatility (Christopher and Holweg, 2011). There is a need
for better methods to identify, measure and mitigate risks (Schmitt and Singh, 2012,
Stecke and Kumar, 2009, Wagner and Neshat, 2012) that include extended supply
chain interdependencies (Juttner et al., 2003). Christopher and Holweg (2017) argue
that instead of eradicating the volatility completely the focus should be put on
designing the supply chain structure so that it mitigates risk.

1.3 Thesis scope

Due to increased supply chain risk exposure and lack of managerial focus on ex-
tended supply chain, there is an emerging need for understanding the role that
network topology plays in defining supply chain resilience. This thesis builds on
complex adaptive systems theory and supply chain risk management, to identify
how extended supply chain topology affects supply chain’s ability to absorb disrup-
tions and how effective are risk management strategies in reducing impact of dis-
ruptions. The considerations about resilience are extended further, by investigating
how network’s ability to withstand disruptions is affected if only specific suppliers
have capabilities to apply risk management strategy. To capture complex interac-
tion between suppliers and emulate disruptive scenarios in an extended supply chain
setting, a simulation is developed as a part of the thesis.
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1.4 Thesis Outline

The thesis is structured as follows. First, literature review is carried out to present
common approaches to supply chain risk, including what risks supply chains face and
what SCRM practices exist. Furthermore, as extended supply chains are shown to be
better represented as networks rather than linear structures, interdisciplinary field of
network science is studied as a tool for analysing topology of supply networks in the
context of supply chain risk. Considerations about risk management are extended
to complex supply networks and the knowledge gap is highlighted.

Knowledge gap leads to Chapter 3, presenting aim, objectives of the thesis, research
methodology, and design of experiments. This chapter explains how objectives ad-
dress knowledge gap. Research methodology presents tasks carried out in the thesis
to fulfil research aim, and explains the choice of agent-based simulation as a method-
ological tool for experimentations. Design of experiment section discusses the main
variables that are considered in this work: topologies, risk profiles, management
strategies, risk management strategy level and targeting strategies. Chapter 4 fo-
cuses on design, implementation and validation of a simulation method suitable
to emulate real-world scenarios in the extended supply network setting. Simulation
consists of four main components: (a) agent-based model; (b) generic stock manage-
ment structure; (c) disruptions module; and (d) implementation of risk management
strategies.

Chapters 5, 6, 7 and 8 contain experiments carried out to fulfil research aim. Chap-
ters 5 and 6 present how supply network topologies absorb disruptions and how effec-
tive are risk management strategies in reducing impact of disruptions with varying
the risk profile and the level at which specific strategy is implemented. Chapters 7
and 8 focus on understanding whether choosing specific suppliers embedded in the
supply network to apply risk management strategies can benefit the whole system.
The thesis is finalised with Chapter 9 summarising the findings, highlighting con-
tribution to knowledge, and suggesting further extensions to the work carried out.
Thesis outline is presented in Figures 1.1 and 1.2.
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Figure 1.1: Thesis outline for Chapter 2: Literature Review.
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Figure 1.2: Thesis outline for Chapters 3, 4, 5, 6, 7 and 8.





Chapter 2

Literature Review

A supply chain can be defined as a set of companies that share the production
and delivery responsibility of the material flow, from raw materials to the finished
product delivered to end-users (Londe and Masters, 1994). Over the years supply
chains have grown, to provide products and services globally rather than locally.
Globalisation resulted in increased competition, which led to pressure to decrease
costs through practices, such as reducing inventory or supplier base, outsourcing, or
factories tending to focus on core capabilities (Adhitya et al., 2009, Akyuz and Erkan,
2010, Chopra and Meindl, 2010, Diehl and Spinler, 2013, Kleindorfer and Saad,
2005, Mizgier et al., 2013, Vlajic et al., 2013). Global sourcing encouraged to locate
manufacturing in sites in few places in the world, which made companies vulnerable
to disruptions such as natural disasters and terrorism (Kleindorfer and Saad, 2005).
The complexity of supply chains have resulted in volatility and increased exposure
to risk (Christopher and Holweg, 2011).

The list of highly visible incidents that severely affected the continuity of supply
chain operations includes: Kobe earthquake (1995), fire in Philip’s plant in 2000,
9/11 terrorist attack (Sheffi, 2005), hurricane Katrina (2005), Tohoku earthquake
(2011) and Thailand flooding (2011). Two of these disasters are detailed below.

Tohoku earthquake has occurred in Japan on the 11th March 2011, recorded to have
the magnitude of 9.0 and being classified as one of the most powerful ones in Japan’s
and World’s history. The tragedy was magnified by following tsunamis and nuclear
facilities failure, resulting in the highest death toll caused by an earthquake in a
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developed country and giving economic losses of over $300 billion USD (Canis, 2011).
Electricity shortages across the country affected not only Japan’s production, but
had an international impact since overseas companies relied upon timely deliveries
of goods from Japan. The combined impact of the earthquake, tsunamis and nuclear
facilities failure affected the automakers such as Volkswagen, BMW, Toyota and GM,
and the electronics producers including Renesas, Panasonic, Toshiba and Hitachi1.

In the period of July - November 2011, following Japan’s tragedy in Tohoku, in Thai-
land occurred an excessive rainfall. The rainfall resulted in flooding, which has been
characterised as the fourth most expensive disaster until 2011, surpassed only by
Kobe earthquake (1995), hurricane Katrina (2005) and Tohoku earthquake (2011).
The economic losses has been estimated as $45.7 billion USD (Koontanakulvong
and Santitamnanon, 2013). The flooding affected Western Digital’s (WD) plant,
causing severe shortages of hard drives across the world. The international market
has been affected because Thailand was accounted for 40% of global hard drive as-
sembly2. The multitude of events that threat the supply chain bring to attention
the shortcomings of prioritising supply chain efficiency with just-in-time practices,
and neglecting supply chain risk (Goh et al., 2007, Mizgier et al., 2013, Stecke and
Kumar, 2009).

This chapter is focused on the importance of considering supply chain risk in business
plans and operations, and presents methods to deal with that risk. First, the term
risk is defined and various risks that supply chains face today are given. Next, the
concept of Supply Chain Risk Management (SCMRM) is described as the set of tools
and methods that deal with supply chain risk. These methods can be separated
into categories: identification, assessment, implementation and monitoring. The
thesis considers mostly risk assessment and risk implementation processes, therefore
particular attention to these was paid in the literature review.

Nowadays supply chains are no longer linear, they have evolved into networks con-
sisting of multiple interconnected entities. Current risk management methods have
in mind supply chain linearity, therefore perform poorly when applied to supply

1https://www.newscientist.com/blogs/shortsharpscience/2011/03/powerful-japan-quake-
sparks-ts.html, accessed on 12th January 2017

2http://spectrum.ieee.org/computing/hardware/the-lessons-of-thailands-flood, accessed on
12th January 2017
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networks. The systemic risk concept is presented as the risk of an event affecting
multiple interconnected entities. The methods drawn from network science and ap-
plied having in mind systemic risk are shown to be a successful proxy in assessing
risk in a supply network. Next, well-known strategies for risk management are pre-
sented. However, it is not known what is the effectiveness of these risk management
methods applied in a supply network, which is highlighted by the knowledge gap
section at the end of the chapter.

The literature review process was performed by searching Scopus, Science Direct and
Web of Science databases. Two themes informed the literature review: identification
of risks and challenges that supply chains face today, and identification of supply
chain risk management strategies to deal with the risks identified. To understand
the risks and challenges of supply chains, and get an understanding of the supply
chain risk management process the following keywords were used: supply chain risk
management, supply chain risk assessment, supply network risk assessment, supply
network risk management, and supply chain risk identification.

Articles were selected based on the relevance to the topic captured in the abstract,
and quality of the journal. Since this thesis is concerned with topology, the review
further focused on risk management in complex supply networks. In order to under-
stand how to manage the risk in a complex system, the literature has been expanded
beyond the field of supply chain management with the special attention to network
science literature. Databases were searched for robustness, resilience, supply chain
robustness, supply chain resilience, and complex supply network. Journals were se-
lected based on their abstract’s relevance to the topic with the specific focus on
supply chains being seen from the complex system perspective, and understanding
how risk is analysed and managed in systems beyond supply networks. To identify
strategies that companies apply to manage the risk, databases were searched for sup-
ply chain risk management, supply chain risk mitigation, supply chain contingency,
inventory mitigation, safety stock, contingent rerouting, and rerouting keywords.
Articles were selected based on their abstract, having in mind whether the paper
contains a discussion on evaluation of the performance of risk management strategy,
preferably in a complex network setting.
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2.1 Risks that supply chains face today

Risk has been defined as the variability from the possible outcomes (March and
Saphira, 1987); and a measure that enables to evaluate the potential losses (Scholz
et al., 2012, Scholz and Siegrist, 2010). A similar approach has been adopted by
Juttner et al. (2003), where the risk is "the variation in the distribution of possible
supply chain outcomes, their likelihood and subjective values". Another popular
definition defines risk as a product of probability and severity, where probability
refers to probability of the event to occur, and severity as the negative business
impact (Christopher and Peck, 2004). Although the majority of the literature con-
siders risk as a negative event, some sources recognise that risk could be seen as an
opportunity (Diehl and Spinler, 2013). Risk that is seen as an opportunity will not
be considered in this thesis, as the main focus is on the negative consequences of
the disturbances.

The risk, being a threat for the system under consideration, is closely related to vul-
nerability. Being vulnerable, according to the Oxford English Dictionary, is defined
as:

“exposed to the possibility of being attacked or harmed, either physically
or emotionally” (Stevenson, 2010, p. 1992)

A supply chain is vulnerable, when some part of it is at risk (Peck, 2005). In
the Supply Chain Risk Management Literature vulnerability is defined by Svensson
(2000) as:

“the existence of random disturbances that lead to deviations in the supply
chain of components and materials from normal, expected or planned
schedules or activities, all of which cause negative effects or consequences
for the involved manufacturer and its sub-contractors.” (Svensson, 2000,
p. 732)

Pettit et al. (2010) links vulnerability with the susceptibility to disruptions. Sim-
ilarly, Sheffi and Rice (2005) write that reducing vulnerability means reducing the
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likelihood of disturbances. Svensson (2002) highlights that vulnerability is composed
of two components: "a disturbance and the negative consequence of disturbance",
and Sheffi and Rice (2005) take similar stand.

Supply chains are exposed to numerous risks, potential disturbances, which can be
separated into various categories. The literature often divides risks according to
their source of origin, such as environmental, network or organisational risk sources
(Juttner et al., 2003). Environmental risks are uncontrollable events resulting from
the external environment, such as terrorists attacks or extreme weather. Operational
risks are occurring within the supply chain boundaries, therefore can be directly in-
fluenced by the organisation. They include labour strikes or IT system failures.
Network-related risks refer to the effects of interconnectedness of business partners
within the supply chain; examples of drivers of such risks include distorted infor-
mation, or stock-outs. Juttner et al. (2003) highlight that this kind of risk can be
amplified when passed on from the supplier to the customer, therefore the supply
chain-wide risk awareness is of critical importance. More detailed categorisation
of risks according to risk drivers, include demand risks, supply risks, product/ser-
vice management risks, or legal risks (Christopher and Peck, 2004, Diabat et al.,
2012, Harland et al., 2003, Manuj and Mentzer, 2008a, Oke and Gopalakrishnan,
2009). Tang and Musa (2011) categorise risks according to the type of flow, such as
material, financial and information flow risks. Supply chain risk classifications are
summarised in Table 2.1.

Table 2.1: Supply Chain Risk classification according to various sources

Reference Risk Categories
Juttner et al. (2003) environmental risks, network risks, or-

ganisational risks
Harland et al. (2003) strategic risks; operations risks; sup-

ply risks; customer risks; asset impair-
ment risks; competitive risks; reputa-
tion risks; financial risks; fiscal risks;
regulatory risks; legal risks
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Table 2.1 – Supply Chain Risk classification according to various sources
Reference Risk Categories
Chopra and Sodhi (2004) disruptions; delays; systems risks; fore-

cast risks; intellectual property risks;
procurement risks; receivables risks; in-
ventory risks; capacity risks

Christopher and Peck
(2004)

process risks; control risks; demand
risks; supply risks; environmental risks

Kleindorfer and Saad (2005) operational contingencies; natural haz-
ards, earthquakes, hurricanes and
storms; terrorism and political instabil-
ity

Manuj and Mentzer (2008a) supply risks; operational risks; demand
risks; security risks; macro risks; policy
risks; competitive risks; resource risks

Wagner and Bode (2008) demand side risks; supply side risks;
regulatory, legal and bureaucratic risks;
infrastructure risks; catastrophic risks

Oke and Gopalakrishnan
(2009)

supply risks; demand risks; miscella-
neous risks increasing costs-of-doing-
business

Tang and Musa (2011) material flow risks; financial flow risks;
information flow risks

Diabat et al. (2012) macro-level risks; demand management
risks; supply management risks; pro-
duct/service management risks; infor-
mation management risks

According to World Economic Forum (2012), the top external risks are natural
disasters, conflict and political unrest, sudden demand shocks, export/import re-
strictions, and terrorism; the top network-related problems are reliance on oil, avail-
ability of shared data/information, fragmentation along the value chain, extensive
subcontracting and supplier visibility. Dobie (2015) report that natural disasters,
accidents, political, economic and security threats are the most worrying issues in
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current times. Juttner et al. (2003) highlight that vulnerability in supply chains has
increased resulting in problems like labour strikes, terrorism and epidemics.

2.2 Supply Chain Risk Management

The multitude of risks necessitates diverse methods to deal with them. These meth-
ods and practices are gathered under the term Supply Chain Risk Management
(SCRM), which is defined as:

“the identification and management of risks for the supply chain, through
a co-ordinated approach amongst supply chain members, to reduce supply
chain vulnerability as a whole” (Jüttner, 2005, p. 124)

Tuncel and Alpan (2010) have distinguished four phases of SCRM:

1. Risk identification, which is a process of recognition of potential risks. Sup-
ply chain risks has been identified and classified by Chopra and Sodhi (2004),
Christopher and Peck (2004), Diabat et al. (2012), Harland et al. (2003), Klein-
dorfer and Saad (2005), Manuj and Mentzer (2008a), Oke and Gopalakrishnan
(2009), Tang and Musa (2011), Wagner and Bode (2008).

2. Risk assessment, which is a process of evaluation of the probability of risk
to occur and its consequences. An example of risk assessment methods are
conceptual frameworks (Pettit et al., 2010, Scholten et al., 2014). However
these are usually subjective and time-consuming. Other methods include risk
optimisation or modelling. Roncoli et al. (2013) developed a model for min-
imising transportation risk. Raj et al. (2015) developed a method measuring
resilience using Cox-PH model. These approaches are usually NP-hard (Zhao
et al., 2011), and become computationally expensive as supply networks can
reach to thousands of nodes and tens of thousands of links (Kito et al., 2014).

3. Risk management implementation, which can be separated into risk mitiga-
tion and contingency (Tomlin, 2006). Risk mitigation are actions that aim at
reducing the probability of the risk to occur, or minimise risk consequences.
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Contingency actions are focused on reducing the impact of the risk that has al-
ready materialised. For example, Tomlin (2006) and Dong and Tomlin (2012)
assessed performance of inventory mitigation and contingent rerouting strate-
gies. Qi and Lee (2015) evaluated drawbacks and advantages of expedited
shipping.

4. Risk monitoring, which is a process of continuous risk detection. For example,
Fernandez et al. (2015) developed a supply chain disruption monitoring service
using an agent-based model.

The categorisation of SCRM into different phases is presented also by Juttner et al.
(2003), where four phases are identified: assessing risk sources, defining risk conse-
quences, tracking risk drivers, and mitigating risks. A separation of SCRM into five
steps, adopted from Manuj and Mentzer (2008a), is as follows:

1. Risk identification, which includes classification of risks into supply, operations,
demand, and security

2. Risk assessment and evaluation, which includes estimating risk probability
distributions when historical data is available, or questionnaires when such
data in unavailable

3. Selection of appropriate risk management, where strategies might include avoid-
ance, postponement, speculation, hedging, control, sharing/transferring, and
security.

4. Implementation of supply chain risk management strategy, which includes the
following enablers of risk strategy implementation: complexity management,
organisational learning, information technology, and performance metrics

5. Mitigation of supply chain risks, which includes preparing for unforeseen risk
events

Hallikas et al. (2004), similarly to Tuncel and Alpan (2010), separates risk manage-
ment into: risk identification, risk assessment, decision and implementation of risk
management actions, and risk monitoring.
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Finch (2004), Adhitya et al. (2009) and World Economic Forum (2012) highlight
the importance of SCRM practices to maintain operational supply chains. Risk
management in a supply chain context brings numerous benefits, including better
decision-making, lower operating costs, and optimised insurance coverage and in-
surance premium (Auer et al., 2014).

Risk and vulnerability are multidisciplinary terms, which have been used in the
context of supply chains for long time (Chopra and Sodhi, 2004, Juttner et al.,
2003, Svensson, 2000). Recently, the discussion has been extended to concepts
of robustness and resilience, which are constructs adopted from fields of ecology,
psychology and engineering (Ponomarov and Holcomb, 2009).

The Oxford English Dictionary defines the term robust as:

“(Of a system, organisation, etc.) able to withstand or overcome adverse
conditions” (Stevenson, 2010, p. 1537)

Robustness, as defined in ecology literature, is the reduced sensitivity of a system’s
output to shocks (Anderies et al., 2013). A robust immune response system is able
to resist a disease even when the small part of the system is not active (Chowdhury
and Chakrabarti, 1990).

In operations management, robust supply chain is a system that is able to resist
disruptions and still operate without reorganising (Aven, 2011, Scholz et al., 2012,
Wieland and Wallenburg, 2012). According to Goetschalckx et al. (2012), robustness
is:

“The capability of the supply network to adapt to (...) changing condi-
tions and execute its function efficiently under a variety of future condi-
tions” (Goetschalckx et al., 2012, p. 121)

As Goetschalckx et al. (2012) mentions the adaptation to changing conditions, Aven
(2011) highlights that adaptation is restricted to known treats and disruptions.
Aven (2011), Scholz et al. (2012), Wieland and Wallenburg (2012) state that the
system does not need to reorganise to be able to maintain properties of being robust,
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whereas Brandon-Jones et al. (2014) highlight that this change is sometimes required
to maintain functionality.

The Oxford English Dictionary defines the term resilient as:

“(Of a system, organisation, etc.) able to withstand or overcome adverse
conditions” (Stevenson, 2010)

In ecology, resilience is defined as the ability to persist the relationships within the
ecological system and absorb changes (Holling, 1973). In the supply chain literature
resilience is seen as the capability of the system to go back to its stable state after the
disruption (Sheffi, 2005); the ability to absorb shocks and reorganising its structure
according to circumstances; readiness of the system to deal with unknown risks
(Scholz et al., 2012). Resilience is seen as a broad concept that includes flexibility,
robustness and adaptation (Soni et al., 2014). Many sources identify the speed of
system reorganisation and adaptation to changing circumstances as a key component
of resilience (Aven, 2011, Sheffi, 2005). Peck (2005) defines resilience as:

“ability of the system to return to is original or desired state after being
disturbed ” (Peck, 2005, p. 221)

Aven (2011) defines the term as following:

“[Resilience] is defined as the ability of the system to withstand a major
disruption within acceptable degradation parameters and to recover within
an acceptable time, and composite costs, and risks.” (Aven, 2011, p. 515)

According to Christopher and Peck (2004), resilience is “the ability of a system
to return to its original state or move to a new, more desirable state after being
disturbed".

Often, robustness and resilience are treated simultaneously, which makes it hard
to draw accurate boundaries between these two terms. As Anderies et al. (2013)
writes:
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“Are robustness and resilience the same? The short answer is yes and
no.” (Anderies et al., 2013, p. 5)

In the SCRM literature, both robustness and resilience are accounted for the ability
to adapt to the changing circumstances; although a resilient system is a system which
is not only able to adapt, but also to reconfigure to a new state after being exposed
to disruptions (Asbjornslett, 1999). The literature highlights the significance of
time in the change process, as a resilient system should be able to undergo the
changes within an acceptable time-frame. Juttner and Maklan (2011) relate risk,
vulnerability, supply chain risk management, and resilience as follows: vulnerability
is the susceptibility of a supply chain to disruptions; and SCRM is a set of techniques
aiming to reduce this vulnerability, increase resilience, manage and mitigate risks.

During recent decades supply chains became global and intertwined, increasing their
complexity and risk exposure. In this context the term complexity denotes a struc-
ture that has numerous interconnected components with non-trivial interactions
(Ghadge et al., 2013, Pettit and Fiksel, 2013). In a complex topology risks resulting
from complexity and infrastructure are believed to be of higher threat than the other
ones (Pettit and Fiksel, 2013).

SCRM literature shows that structural characteristics of supply chains significantly
influence vulnerability, highlighting an importance of supply network topology (Adenso-
Diaz et al., 2012, Craighead et al., 2007, Juttner et al., 2003, Wagner and Neshat,
2010), supplier-customer dependencies (Peck, 2005, Wagner and Neshat, 2012), net-
work density and criticality of supply chain members (Craighead et al., 2007). Mari
et al. (2015) proxied supply network resilience with structural characteristics of sup-
ply chains. This fact necessitates extended supply network visibility, where the term
extended refers to visibility beyond direct business partners. There is a need for bet-
ter methods to identify and measure risks (Stecke and Kumar, 2009, Wagner and
Neshat, 2012), including supply chain interdependencies (Juttner et al., 2003). The
following sections describe approaches to extended supply chain risk management.
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2.3 Supply chain as the complex network

Supplier-buyer relationships for many years were considered mainly as dyads. When
supply chains have grown, it has been shown that suppliers and buyers are interde-
pendent and influence each other’s decision-making. For example, buyer can exert
pressure on its suppliers and make them cooperate or compete (Wilhelm, 2011).
However, supply chains are no longer linear and they have become Complex Adap-
tive Systems (CAS), emerging without a single entity controlling it (Choi et al.,
2001). It has been proposed that supply chains are better represented as networks
(Choi and Wu, 2009), rather than a linear chain.

2.3.1 What is a network?

According to Newman:

“A network is, in its simplest form, a collection of points joined together
in pairs by lines.” (Newman, 2010, p. 1)

A network is an abstract representation of the system, where nodes refer to elements
of this system, and links represent relationships between these elements. There are
various examples of ways of representing a network: undirected, directed networks,
weighted, and many others (Figure 2.1).

An undirected network represents a system with relations in both directions. A link
between a node A and B implies that there is a link from A to B, and from B to
A (Figure 2.1a). In a directed network, the relationship have a direction. A link
from A to B, does not imply that there is a link from B to A (Figure 2.1b). In a
weighted network there is a numerical value defining either the relationship between
two nodes, or the node itself (Figures 2.1c and 2.1d). For example, in a social
network the weight associated with a node could be a person’s age or social status,
and a weight associated with a link could be the number of years that two people
have known each other.

Examples of real world networks are: the Internet (Faloutsos et al., 1999), trans-
portation networks (Kansky, 1963), social networks (Milgram, 1967, Travers and
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Figure 2.1: Network types

(a) undirected (b) directed

(c) undirected weighted (d) directed weighted



20 Chapter 2. Literature Review

Milgram, 1969), protein-protein interaction networks (Jeong et al., 2001), neural
networks (White et al., 1986), food webs (Cohen, 1989) and many others. Networks
are studied to capture the patterns of interactions, which have significant effect
on behaviour of the system. Milgram’s study on the social friendship networks in
America resulted in discovery of small-world effect. Small world implies that any
person in the world can be reached from any other person by following the net of
its acquaintances in fewer steps compared to randomly organised network of the
same size (Milgram, 1967). This property of the social network has been called six
degrees of separation. White et al. (1986) analyse brain of C. elegans, network of
less than 300 neurons, revealing the structure of the neural network of an organism.
Another study by (Faloutsos et al., 1999) reveals that the Internet consists of few
highly connected nodes, called hubs, and many poorly connected ones.

Analysis of supply chains through lens of network science is a relatively new concept,
starting from Choi et al. (2001), Borgatti and Li (2009), and Lomi and Pattison
(2006) claiming that supply chains are CASs and that network science is appropriate
for supply chain analysis. The broad picture of the supply network has not been
revealed for a long time. Analysis beyond direct customers and suppliers was difficult
due to long and laborious data collection. First examples of empirical studies on the
large-scale include Brintrup et al. (2016, 2015), Choi and Hong (2002), Kim et al.
(2011), Kito et al. (2014). Figure 2.2a presents Honda Acura’s material flow, where
each node corresponds to a single supplier and each link corresponds to the flow of
products from the supplier to the customer. Figure 2.2b is an undirected network
presenting Honda Acura’s contractual flow, where a link between two nodes indicate
that there is a business relation between two connected suppliers. Both networks
are empirical examples taken from Choi and Hong (2002) and Kim et al. (2011).

2.4 Systemic risk in complex supply networks

Supply networks can comprise thousands of suppliers (Basole and Bellamy, 2012,
Brintrup et al., 2016, 2015), implying that a disruption that originates in one supply
chain entity can affect other upstream or downstream companies. These interdepen-
dencies necessitate increased risk awareness beyond direct suppliers and customers.
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Figure 2.2: Directed material flow and undirected contractual network of Honda Acura.
Honda is marked by dark blue.

(a) Honda Acura’s material flow (b) Honda Acura’s contractual flow

The idea of local risk is thus replaced by the concept of systemic risk, which is
defined as:

“the risk of having not just statistically independent failures, but interde-
pendent, so-called ’cascading’ failures in a network of N interconnected
system components’ ’ (Helbing, 2013).

Systemic risk analysis techniques involve relating topology to cascading failures by
asking questions such as: Who is most likely to fail in a given system?, Who will fail
next if x fails?, and answer them utilising tools taken from field of network science
(Vespignani, 2012, Watts, 2002). The topology is a specific connection pattern, in
which suppliers of multiple tiers are tied together. Studies on network topology,
regarded as network science, unveil systems’ behavioural phenomena, which cannot
be well understood from the perspective of a single entity. Systemic risk assessment
has become popular in financial systems mainly after the 2008 financial crisis (Chen
et al., 2013, Hu et al., 2012, Zhang et al., 2014). The systemic risk concept is
one of many network science topics, regarded from the network-level and node-level
perspectives.
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2.4.1 Network-level metrics

Network-level metrics analyse characteristics of the overall system, and include
methods such as cascading failures, percolation or epidemiology. It has begun
with the field of social sciences and biology, where phenomena such as informa-
tion cascades, diffusion of innovations or spread of diseases are studied. In these
systems an individual in a society is able to influence other’s behaviour, decisions,
beliefs (Banerjee, 1992, Easley and Kleinberg, 2010) or health (Coleman et al., 1996).
Other methods originate from graph theory, which is the origin of network science.
The methods incude mean degree, mean geodesic distance (Correa and Yusta, 2013,
Correa-Henao and Yusta-Loyo, 2015, El-Rashidy and Grant-Muller, 2014), degree
distribution (Laxe et al., 2012, Tang, 2013), clustering coefficient (Tang, 2013), tran-
sitivity, and assortativity (Newman, 2010).

2.4.1.1 Cascading failures

Cascading failure happens when a disruption in one node triggers failures in neigh-
bouring nodes (Tang et al., 2016, Zeng and Xiao, 2014, Zhu et al., 2014). The concept
of cascading failures has been applied across range of domains such as transporta-
tion networks (Zhao et al., 2015), power-grids (Zhu et al., 2014) or supply networks
(Tang et al., 2016, Zeng and Xiao, 2014). It was observed that cascades in many
systems happen rarely, yet with surprisingly high impact. Also, cascading failures
are more likely to occur in certain topologies (Watts, 2002). There are multiple risk
propagation models available in the literature (Lorenz et al., 2009).

2.4.1.2 Epidemiology

Another view on systemic risk in complex systems can be taken from epidemiology,
the science of understanding the propagation of infectious diseases. It has been ap-
plied across numerous disciplines ranging from biological systems, power-grid failures
or computer viruses spread. Epidemiology studies how network topology influences
propagation of a disease and answers the question what is the possibility of an out-
break in the system (Newman, 2010). It expanded its view from disease spread to
systemic risk profiles, especially in financial networks studying unexpected shocks
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and bankruptcy propagation (Battistion et al., 2007, Gai and Kapadia, 2010). In
supply networks, Hertzel et al. (2008) studied the effects of customer and supplier
bankruptcy; Basole and Bellamy (2014b) used classical epidemic model to measure
risk diffusion in supply networks.

2.4.1.3 Percolation

Percolation is the process of removing some part of the network: nodes, links or both
(Dinh and Thai, 2010), to determine network robustness and resilience (Newman,
2010), but can be successfully applied as a systemic risk proxy. It has been used in
numerous applications including networks in general (Trajanovski et al., 2013), com-
munication networks (Jorgic et al., 2004) and supply chains, where Thadakamalla
et al. (2004) and Zhao et al. (2011) used percolation for supply network survivability
and resilience assessments.

2.4.1.4 Mean degree

The connection patterns of nodes and links are represented by an adjacency matrix
Aij, where Aij is equal to 1 when the node j is connected to node i (Equation 2.1).

Aij =

1 if there is an edge from j to i

0 otherwise.
(2.1)

The number of connections the single node has is called a degree k and is represented
by sum of corresponding adjacency matrix entries (Equation 2.2), where n indicates
number of nodes.

ki =
n∑

j=1

Aij (2.2)

In directed networks, the node has in-degree kini and out-degree koutj , which corre-
spond to incoming and outgoing connections, respectively (Equations 2.3 and 2.4).
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kini =
n∑

j=1

Aij (2.3)

koutj =
n∑

i=1

Aij (2.4)

The average of node degrees in the network is denoted by mean degree c (Equa-
tion 2.5).

c =
1

n

n∑
j=1

kj (2.5)

The mean degree defines how many connections there are on average between nodes.
When the mean degree is low, the network is sparse implying lowly interconnected
network; when it is high, the network is dense implying highly interconnected net-
work. Theoretical results highlight that more densely connected biological networks
are more robust than sparse topologies (Siegal et al., 2007, Wagner, 1996), although
there is an empirical evidence that biological networks with sparse connectivity pat-
terns also exhibit robustness (Leclerc, 2008). Examples of sparse and dense networks
are presented in Figure 2.3.

2.4.1.5 Transitivity

Transitivity, also called clustering, is a measure of immediate connectivity; in social
networks would imply how likely it is that a friend of my friend is also my friend. If
there are nodes u, v and w in the network, the connected triple is a relation where
there is a connection between nodes u and v, v and w, but there does not have to be
necessarily a connection between v and w (Figure 2.4a). A triangle (Figure 2.4b)
is a relation where all nodes u, v and w are connected (a friend of my friend is also
my friend). Transitivity counts the number of triangles divided by the number of
triples (Equation 2.6).

C =
(Number of triangles)× 3

(Number of connected triples)
(2.6)
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Figure 2.3: Sparse and dense network topologies

(a) sparse network (c = 1) (b) dense network (c = 8)

Figure 2.4: Triples and triangles in a network

(a) triple (b) triangle
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Triangles in a cause-and-effect network have been identified to result in increased
supply chain complexity (Bezuidenhout et al., 2012).

2.4.1.6 Assortativity

Assortativity is a measure of connection patterns with regard to their similarity;
whether nodes tend to connect to other nodes with similar properties. For example,
in social networks we tend to be friends with people that are somewhat similar to
us, have the same age, beliefs or nationality (Newman, 2010). The assortativity
coefficient r denotes whether nodes in the network connect to other nodes with
similar characteristic x (Equation 2.7).

r =

∑
ij(Aij − kikj

2m
)xixj∑

ij(kiδij −
kikj
2m

)xixj
(2.7)

Assortativity coefficient is composed of adjacency matrix Aij, degree k, number of
links m, numerical characteristic xi, and Kronecker delta δij. δij is equal to 1 if i
= j, 0 otherwise. The coefficient is in the range of -1 to 1, where 1 indicates high
assortativity and -1 denotes high disassortativity. Disassortativity is regarded as
pattern where nodes tend to connect to other nodes with distinct characteristics.
For example, in a material flow of a supply network, high assortativity would imply
large firms sourcing from large suppliers rather than small enterprises.

2.4.1.7 Mean geodesic distance

The mean geodesic distance l is the average of the shortest path lengths dij between
all nodes in the network. The geodesic distance between node i and j is denoted
by dij (Equation 2.8). It indicates how long one needs to travel on average from
one node to another in the network. The smaller the mean geodesic distance, the
shorter the average distance between nodes (Newman, 2010). In a supply network,
a mean geodesic distance indicates the average path goods travel, and if short it
is associated with high responsiveness and increased robustness (Nair and Vidal,
2011). Reniers et al. (2012) have developed a systemic risk index based on the mean
geodesic distance.
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l =
1

n2

∑
ij

dij (2.8)

2.4.1.8 Degree distribution

Until two decades ago, theoretical studies assumed that the topological properties of
the majority of real world networks were random in nature (Barabasi, 2009). Map-
ping large-scale structures of networks such as the World Wide Web revealed that
not only the connectivity patterns are not random, but also that the way nodes are
wired with each other gives rise to unique system characteristics (Barabasi, 2009).
Particular attention has been given to degree distribution, which defines the proba-
bility of a randomly selected node having a certain number of connections with its
neighbours (Newman, 2010). Figure 2.5 presents the exemplary degree distribution
Pk, indicating that there is 0.25 probability that the node randomly chosen from
this specific network will have a degree equal to one. The degree distribution is the
most commonly used measure determining topological properties of complex systems
(Newman, 2005) and a key feature that determines their vulnerabilities (Barabasi,
2009, Watts, 2002) including vulnerability of supply chains (Basole and Bellamy,
2014a, Nair and Vidal, 2011, Zhao et al., 2011). Two most characteristically distinct
network topologies based on degree distribution are:

• random networks, which are networks with Poisson degree distribution. There
are two popular models: G(n, m) and G(n, p), where the latter is referred
to as the Erdős Renyi random graph. G(n, m) is a model which assumes
that m links are placed amongst n nodes at random; G(n, p) network assumes
that connections between n nodes are chosen according to the probability p
(Newman, 2010).

• scale-free networks, which are networks with power-law degree distribution.
They consist of “hub” nodes that have very large number of connections, and
many small nodes, which connect to these “hubs”. The degree, to which nodes
can obtain links, has an exponential relationship to the number of a node’s
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Figure 2.5: Degree distribution P(k) of a network
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existing links. There are numerous examples of networks that exhibit scale-
free properties, such as physical internet or World Wide Web (Barabasi and
Albert, 1999).

There is an ongoing debate regarding the nature of supply network topology. Few
theoretical studies consider supply networks as scale-free (Hearnshaw and Wilson,
2013, Thadakamalla et al., 2004), whereas empirical observations do not support this
claim (Brintrup et al., 2016, 2015, Kito et al., 2014). Brintrup et al. (2015) and Brin-
trup et al. (2016) mapped the empirical networks of global automotive industry and
Airbus supply network: The global automotive network displayed an exponential
distribution, which means there is a limitation to which the hubs can grow; whereas
the Airbus network had too small sample size to determine significant patterns in
scale. The scarcity of empirical examples and their conflicting results prevent one
from opting for methods that depend on a priori assumptions on topology.

These models inherit different properties that lead to various strengths and weak-
nesses (Kim et al., 2015). Random networks are vulnerable against random disrup-
tions and robust against targeted ones. Scale-free networks are vulnerable against
targeted disruptions and robust against random disruptions (Barabasi and Albert,
1999). These claims have been supported by the supply chain literature (Nair and
Vidal, 2011, Thadakamalla et al., 2004, Zhao et al., 2011). Kim et al. (2015) state
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that the closer the supply network degree distribution to power-law, the more re-
silient supply network is. Thadakamalla et al. (2004) and Zhao et al. (2011) removed
supply nodes in a process called percolation and observed increased robustness of
scale-free topologies to random disruptions. Nair and Vidal (2011) linked topology
with network’s ability to reduce impact of disruptions, highlighting that scale-free
networks show lower vulnerability and respond quicker to disruptions.

2.4.2 Node-level metrics

Node-level metrics describe characteristics of an individual embedded in the complex
system. The most common node-level methods are centrality metrics. Centrality
metrics are statistical measures that enable one to explain the role that the node
plays in the general structure of a given network (Lozares et al., 2015, Newman,
2010). In addition, there are various types of interpretations for centralities such
as power, exposure, risk, control, autonomy or other (Borgatti and Everett, 2006).
Centralities have been used for vulnerability and risk assessment in various fields,
ranging from electrical grids and financial systems to supply networks. Borgatti and
Everett (2006) mention that these metrics complement each other and are needed
for creating a complete picture of various roles played by each node in the network.

2.4.2.1 Degree centrality

The degree of a node is the number of nodes connected to it (Newman, 2010). It
depicts the connectivity and immediate chance for a node to exert its influence to
the rest of the network (Wang et al., 2010). In literature the degree is associated
also with prestige, status (Newman, 2010) or access to knowledge (Rana and Allen,
2015). It is represented by the Equation 2.2.

The measure has been applied in vulnerability assessment in various domains includ-
ing power-grids, disease networks and supply chains. Wang et al. (2010) used degree
with the domain related information to find the vulnerable nodes in power-grid net-
work. Bell et al. (1999) used the metric to assess the vulnerability of individuals
defining it is a probability of being infected by HIV. Laxe et al. (2012) linked degree
with the operational capacity of each port in transportation networks. Correa and
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Yusta (2013) used the measure to define the operational functionality of the power
grid components, e.g. low-degree nodes are capacitors, high-degree are buses. Bor-
gatti and Everett (2006) related to the degree centrality as the volume measure and
discuss that it is associated with certainty of arrival. There are many applications
for this centrality measure, which has a fair background in vulnerability assessment
(Chopra and Khanna, 2014), being a good indicator of the exposure of the node to
whatever is flowing through the network (Kuzubas et al., 2014, Wang et al., 2010).

In a supply chain context, degree specifies the number of business partners. It has
been used to identify specific roles of firms within the supply network: integrators
and allocators. An integrator is a company assembling or transforming materials into
value-added products, whereas an allocator’s responsibility is resource distribution
(Kim et al., 2011). It has been used by Bezuidenhout et al. (2012) and Mizgier
et al. (2013) for bottleneck identification, and by Dong (2006) to assess supply chain
robustness.

Although a useful measure to assess the vulnerability, it might not be enough to as-
sess the systemic risk, since it accounts only partially for network topology (Mizgier
et al., 2013). Niu et al. (2015) mentioned that the degree consider limited informa-
tion and there are better metrics that include the global information.

2.4.2.2 Eigenvector centrality

Eigenvector centrality measures node importance based on the importance of its
neighbours (Bonacich, 1972). It is represented by Equation 2.9.

C
′

EIi
= κ−11

∑
j

AijCEIj (2.9)

where A is an adjacency matrix, CEIi is eigenvector centrality of the node i and κ1
is the largest eigenvalue of the adjacency matrix.

High eigenvector centrality means that a node has more power (Kuzubas et al.,
2014, Niu et al., 2015). Borgatti and Everett (2006) related eigenvector centrality
with certainty of arrival and highlight the link with risk assessment. It was used
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in pattern analysis in fMRI data of the human brain (Lohmann et al., 2010) and
applied to electric power grid for vulnerability analysis (Wang et al., 2010).

Eigenvector centrality has drawbacks when applied in directed networks, since it
relies on number of in-coming or out-going links. In directed networks, the periph-
eral nodes usually have zero in-degree. Zero in-degree causes eigenvector centrality
to converge to zero after a number of iterations. For further information, reader is
directed to Newman (2010). To prevent this from happening eigenvector central-
ity has been modified so that a small amount of centrality β is assigned for each
node. The modified version of eigenvector centrality is called Katz centrality and is
presented in the Equation 2.10 (Katz, 1953).

C
′

Ki
= κ−11

∑
j

AijCKj
+ βi (2.10)

where CKi
is Katz centrality of a node i, A is the adjacency matrix of the network,

α and β are constants.

2.4.2.3 Hub and Authority Centrality

Hubs are nodes that point to many authorities. Authorities are nodes that are
pointed to by many hubs (Kleinberg, 1999). These centralities are represented by
Equations 2.11 and 2.12.

CHi
= β

∑
j

AjiCAj
(2.11)

CAi
= α

∑
j

AijCHj
(2.12)

where α and β are positive constants, A is an adjacency matrix, CA is authority
centrality and CH is hub centrality.

Hub and authority centrality have been used in financial systems to identify which
banks need a capital injection in order to stop contagious failures (Hu et al., 2012).
Carlos (2013) argues that authority and hub centralities are successful proxies to
measure systemic risk and are able to identify different systemic risk types: coming
from the out-going and in-coming links.
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2.4.2.4 Closeness centrality

Closeness centrality is the inverse of the mean distance from a node to other nodes
(Newman, 2010), introduced by Bavelas (1950). It is denoted by Equation 2.13.

CCi
=

n∑
j

dij
(2.13)

where CC is closeness centrality, n is number of nodes and dij is length of the shortest
path between nodes i and j (Newman, 2010).

Closeness centrality indicates how long it takes for information to spread from the
node to the rest of the network (Niu et al., 2015), and is associated with the influence
on other nodes (Kuzubas et al., 2014) or independence (Rana and Allen, 2015). It is
regarded as a proxy for social capital and information spread (Borgatti et al., 1998,
Otte and Rousseau, 2002). Closeness centrality-like measures are natural choice
when dealing with risk of something arriving on time (Borgatti and Everett, 2006).
Closeness is used by Nguyen and Thai (2013) for the vulnerability analysis in the
electric power network.

The highest closeness value for a company embedded in the supply chain indicates
that the firm has the smallest average distance to the other parts of the network.
Companies with high centrality have been classified as navigators, who collect in-
formation more autonomously (Kim et al., 2011).

2.4.2.5 Radiality centrality

Radiality centrality is a measure of how a node is connected and reachable within a
network (Valente and Foreman, 1998), and is denoted by Equation 2.14.

CRi
=

∑
j

d− dij + 1

n− 1
(2.14)

where d is the network diameter, dij is the length of the shortest path between nodes
i and j, and n is the number of nodes.
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In a supply chain context, radiality centrality denotes how closely the company is
located to its partners in the neighbourhood. It is a natural choice when dealing
with risk of something not arriving on time (Borgatti and Everett, 2006). Mizgier
et al. (2013) used radiality to identify suppliers that if disrupted affect the most
companies.

2.4.2.6 Betweenness centrality

Betweenness centrality measures the extent to which a node lies on paths between
other nodes (Freeman, 1977). It can be denoted by:

CBTi
=

∑
j,k

stj,k(i)

stj,k
(2.15)

where stj,k(i) indicates number of shortest paths between j and k going through i
and stj,k number of all shortest paths between j and k.

Betweenness centrality is associated with the global importance of the node and the
influence it has over the flow in the network (Chopra and Khanna, 2014, Niu et al.,
2015) including spread (Kuzubas et al., 2014) and cut-off of information (Rana
and Allen, 2015). Bompard et al. (2011) argue that the higher the betweenness,
the higher number of geodesic paths coming though the node and therefore higher
criticality. Laxe et al. (2012) relates betweenness centrality to relative geographical
importance. Nguyen and Thai (2013) use the metric for vulnerability assessment in
power networks, whereas Tang (2013) for IP multimedia subsystems.

Betweenness centrality in a supply chain context might indicate companies that
act as a middleman, important in passing a product from a supplier to a customer.
Those companies are intermediaries, controlling the flow of goods (Kim et al., 2011).
Mizgier et al. (2013) used it to identify bottlenecks in the supply network; Basole and
Bellamy (2014b) used betweenness as a risk measure in their visualisation model.
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2.5 Risk management strategies

There are a multitude of supply chain management techniques aiming at reducing
risk exposure in supply chains. Examples of risk management strategies are pre-
sented in Table 2.2, including strategies such as safety stock, multi-sourcing strate-
gies, information sharing, collaboration, and contingent rerouting. These strategies
usually focus on adding redundancy or flexibility (Chopra and Sodhi, 2004, Talluri
et al., 2013, Yang and Yang, 2010).

Supply Chain Management literature refers to supply chain risk management strate-
gies mainly as risk mitigation, however in this work risk mitigation is restricted to be
a strategy performed before the occurrence of the disruption. The reactive strategy,
which is performed after the occurrence of the disruption to remedy the effect is
called contingency strategy. The distinction of risk management techniques into risk
mitigation and contingency is taken from Tomlin (2006).

Stecke and Kumar (2009) divides risk mitigation in proactive strategies, advanced
warning strategies and coping strategies. Proactive strategies are actions the purpose
of which is to decrease likelihood of a disruption and overall vulnerability; advanced
warning strategies are actions aiming at predicting a disruption and preparing for it
in advance; coping strategies ’ purpose is to minimise the impact of disruptions and
build on flexibility and redundancy. Colicchia et al. (2010) divide management ap-
proaches into: operational buffers, mitigation, and contingency plans. Pettit et al.
(2010) introduce supply chain capabilities, which are defined as "attributes that
enable an enterprise to anticipate and overcome disruptions"; by increasing these
capabilities the supply chain resilience increases. Although rerouting is classified as
contingency strategy by Tomlin (2006), Stecke and Kumar (2009) include rerouting
in coping strategies category under risk mitigation. In this thesis, the rerouting
strategy is treated as a contingency strategy. Although Colicchia et al. (2010) sep-
arates additional inventory from mitigation strategies, in this thesis inventory is
classified as a mitigation strategy, following the distinction made by Tomlin (2006).

Stecke and Kumar (2009) highlight the importance of applying mitigation strategies
to reduce risk, as these reduce lead time and lead time variability, enhance inventory
management, reduce bullwhip effect. Tang (2006) raises few concerns related to
application of supply chain management strategies such as: possible additional costs
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related to strategy implementation; or that the strategy might not fit with the
company’s overall business strategy.

Table 2.2: Supply chain risk management strategies according to various sources

Reference Risk management strategies
Juttner et al. (2003) avoidance; control; cooperation; flexibility
Chopra and Sodhi (2004) additional capacity, additional inventory, re-

dundant suppliers; increase responsiveness;
increase flexibility; aggregate or pool de-
mand; increase capability; multiple cus-
tomers

Tang (2006) postponement; strategic stock; flexible sup-
ply base; make-and-buy; economic supply
incentives; flexible transportation; revenue
management via dynamic pricing and pro-
motion; assortment planning; silent product
rollover

Khan and Burnes (2007) supplier collaboration; purchasing part-
nerships; risk sharing/knowledge transfer;
strategic alliances; inventory management;
focus on core competence; proactive supply
management; buffers; product differentiation

Manuj and Mentzer
(2008a), Manuj and
Mentzer (2008b)

avoidance; postponement; speculation; hedg-
ing; control; transferring/sharing risk; secu-
rity

Oke and Gopalakrishnan
(2009)

better planning and co-ordination of sup-
ply and demand; flexible capacity; having
contingency plans; multiple sourcing; edu-
cate customers; identification of supply chain
vulnerability; cost reduction in operations;
lobbying; finding alternative raw materials;
managing demand
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Table 2.2 – Supply chain risk management strategies according to various sources
Reference Risk management strategies
Stecke and Kumar (2009) proactive strategies: select safe locations,

choose robust suppliers and transportation
media, establish secure communication links,
enforce security, use efficient human resource
management; advance warning strategies:
enhance visibility and coordination, increase
transportation visibility, monitor weather
forecasts, monitor trends; coping strategies:
carry extra inventory, alternative sourcing
arrangement, flexible transportation, main-
tain redundant critical components, stan-
dardise various processes, redesign products
to pool risks.

Colicchia et al. (2010) operational buffers: excess inventory, pro-
ductive capacity, backup sourcing, multiple
sourcing; mitigation: reducing risk likelihood
and impact; contingency planning: business
continuity management

Pettit et al. (2010) flexibility in sourcing; flexibility in order
fulfilment; increase capability; increase effi-
ciency; increase visibility; increase adaptabil-
ity; increase recovery capability; increase dis-
persion; increase collaboration; increase or-
ganisation capability; increase security; in-
crease financial strength

Effectiveness of various risk management actions has been a subject of broad discus-
sion, including effectiveness of inventory policies (Constantino et al., 2014, Kurano
et al., 2014), collaboration and information sharing techniques (Constantino et al.,
2014, Sarkar and Kumar, 2015, Yang and Fan, 2016), production rescheduling (Paul
et al., 2015), insurance (Dong and Tomlin, 2012), order quantity optimisation (Giri,
2011, Hu and Kostamis, 2015), re-planning multi-stage supply chain (Ivanov et al.,
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2016), rescheduling procurement (Kirilmaz and Erol, 2016) or change of transporta-
tion modes (Colicchia et al., 2010).

Talluri et al. (2013) suggests that no strategy is a one-fits-all solution; Chopra and
Sodhi (2004) highlight that while decreasing risk in one area, risk mitigation and
contingency actions might increase risk in the other. Also, Harland et al. (2003)
brought to attention that some risks might not be possible to eliminate, especially
external ones such as political, economic or climate risks. Risk has been managed
using different sets of methods, although current risk practices are developed for
supply chains having in mind their hierarchical properties and simplicity. Lack of
awareness on how certain risks propagate across the network creates an uncertainty
about how to mitigate their effects.

2.6 Scope and knowledge gap

The study focuses on disruption risks, since these risks are often top-ranked across
supply chain literature. Disruption risks are considered as supply chain interruptions
which are unpredictable. These can be considered in two dimensions: likelihood
and severity (Sheffi and Rice, 2005). Examples of low-likelihood and high-impact
events are natural disasters, labour disputes, supplier bankruptcy, war, or terrorism
(Chopra and Sodhi, 2004). Examples of high-likelihood and low-impact events are
machine breakdowns or transportation link disruption (Sheffi and Rice, 2005). There
are events that have both likelihood and impact either high or low and examples
of such events include: loss of key supplier, quality problems, or computer viruses.
Hendricks and Singhal (2005) showed in his study on 827 disruptions between 1989
and 2000, that companies that have experienced disruption have showed average
40% lower stock returns than their non-disrupted industry peers. The decrease in
stock returns happened regardless of disruption type or industry.

The choice of risk management strategies includes inventory mitigation and con-
tingent rerouting as these are identified as effective in reducing impact of supply
network disruptions (Chopra and Sodhi, 2004). Inventory mitigation is considered
a redundancy based strategy, where additional amount of inventory is kept to pre-
vent the focal company from stocking out in case of a disruption. Kurano et al.
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(2014) claimed that the amount of additional inventory needed is dependent on the
risk profile. Additional inventory is expensive. Nonetheless, it also ensures produc-
tion continuity during disruptions (Kamalahmadi and Parast, 2017) and absorbs
shocks (Mishra et al., 2016). Tomlin (2006) highlighted that inventory mitigation is
not an attractive strategy in rare and long disruptions if other options are available
because the costs associated with excessive inventory kept for long periods of time
do not balance the risk. Colicchia et al. (2010) claim that operational buffers, like
additional inventory, might decrease operational performance and could negatively
impact competitive advantage.

Contingent rerouting is considered to be a flexibility based approach, where the
focal company reorganises its volumes after the disruption so as to minimise the
disruption’s impact. Literature highlights dominance of flexibility based strategies
over redundancy based ones (Talluri et al., 2013). It is claimed that flexibility creates
a competitive advantage in the marketplace (Sheffi and Rice, 2005). Carvalho et al.
(2012) found that flexible transportation capacity performs better than inventory
mitigation in an automotive supply network. Dong and Tomlin (2012) claimed that
contingent rerouting is more effective in cost reduction than inventory mitigation
for rare and long disruptions.

The performance of inventory mitigation and contingency rerouting has been broadly
investigated by the literature. Tomlin (2006) and Qi and Lee (2015) used a two ech-
elon setting with 1 manufacturer and two suppliers: one reliable and the other
not, to investigate performance of inventory mitigation and contingency sourcing.
Qi (2013) evaluated different sourcing strategies under disruptions at the primary
supplier. Chen et al. (2012) evaluated the performance of contingency rerouting
strategy with a backup supplier that has limited capacity and optimises the inven-
tory management policy. Iakovou et al. (2015) explored emergency sourcing and
determined the optimal capacity level to be reserved from the emergency supplier.
They consider contingent rerouting, backup capacities, alternative transportation
channels, increased order quantities and increased warehouse storage.

SCRM literature focuses mostly on the focal company and its direct business part-
ners rather than the extended supply network. Nonetheless, there are exceptions
where studies are extended to multi-tiered supply network. Seok et al. (2016) devel-
oped an intelligent contingent sourcing, where each supply tier is independent and
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self-interested. They perform the study on the beer-game supply network topology.
The intelligent contingent sourcing is based on the idea that each agent decides
itself whether to cooperate or not. Benaicha and Hadj-Alouane (2013) assessed
the performance of adding additional location to the supply network as a backup
plan in case of a disruption. Silbermayr and Minner (2014) evaluated performance
of single and dual-sourcing strategies in suppliers that are subject to disruptions,
highlighting advantages of the dual-sourcing strategy. Schmitt and Singh (2012)
developed a simulation to optimise inventory to minimise total costs and meet re-
quired service levels. Talluri et al. (2013) investigated the effectiveness of different
risk mitigation strategies proposed by Chopra and Sodhi (2004). They highlighted
the benefits of flexibility approaches over keeping additional inventory because they
characterised the latter as costly and not effective in reducing disruption impact.
Wang et al. (2010) investigated the performance of dual sourcing and process im-
provement strategy. Carvalho et al. (2012) used redundancy and flexibility strategies
in an automotive supply network to assess their performance against disruptions.
They found that additional transportation capacity works out better than inventory
mitigation strategy. These studies extend to multi-tiered topologies, although they
consider linear structures and account for only one topology at the time.

Regardless of the strategy applied, SCR managers often need to decide on the trade-
offs between robustness and effectiveness (Christopher and Peck, 2004). Others
argue that the right balance might lie in the strategic decision-making process.
Schmitt and Singh (2012) and Kleindorfer and Saad (2005) highlighted that in order
to strengthen the whole system, the performance of the weakest link needs to be
improved. This assumption brings to life considerations about targeted mitigation
and contingency, where applying the strategy in the suppliers located in a critical
position might substantially improve performance of the overall system.

In summary, the following research gaps have been identified:

1. While studies on the influence of supply network topology on supply network’s
ability to absorb disruptions exist, they usually do not consider supply network
dynamics, or network costs and fill-rates. The term dynamics refer here to
changes over time.
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2. The effectiveness of risk management strategies on a focal company has been
explored, however the effectiveness of mitigation and contingency in different
supply network topologies have not been considered yet.

3. There is a lack of understanding of how strengthening the weakest supplier
can benefit supply network performance. There is little evidence supporting
the statement that targeting low-performing supply chain members to apply
certain risk management strategy will increase the overall system performance.



Chapter 3

Research Aim, Objectives and Methodology

To the best of author’s knowledge, little attention has been given to how perfor-
mance of various supply network topologies is influenced by random disruptions.
Moreover, the ability of risk management strategies to decrease impact of disrup-
tions in different network topologies has not been investigated so far. There is a
lack of knowledge on how targeted risk management can benefit the overall supply
network with distinct topologies.

3.1 Aim

Therefore, the aim of this thesis is as follows:

To identify how network topology influences supply network resilience to
random disruptions.

Within the context of this thesis supply network topology refers to supplier con-
nection patterns measured by degree distribution (Thadakamalla et al., 2004, Zhao
et al., 2011).

Supply network resilience refers to the ability of the system to absorb shocks (Scholz
et al., 2012), withstand a disruption (Aven, 2011), and the extent to which the
network can return to its desired state after being disturbed (Peck, 2005). It is
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operationalised in the context of this thesis as the ability of the system to fulfil
customer demand while a part of the supply network is being perturbed.

While SCRM literature highlights that a resilient company can undergo a transition,
or a structural change when facing a disruption (Christopher and Peck, 2004, Scholz
et al., 2012), the contextualisation of structural changes is beyond the scope of this
thesis as the key area of interest is the relationship between existing supply network
topology and its resilience. Finally, following the literature review presented in
Chapter 2, two key risk management strategies that have been found to be commonly
applied in SCRM are considered: inventory mitigation and contingent rerouting.

3.2 Objectives

The aim leads to the following objectives:

1. To evaluate how costs and fill-rates are influenced by random disruptions in
different supply network topologies.

2. To evaluate an ability of a random inventory mitigation strategy to decrease
costs and increase fill-rates in supply networks under random disruptions.

3. To evaluate an ability of a random contingent rerouting strategy to decrease
costs and increase fill-rates in supply networks under random disruptions.

4. To evaluate an ability of a targeted inventory mitigation strategy to decrease
costs and increase fill-rates in supply networks under random disruptions.

5. To evaluate an ability of a targeted contingent rerouting strategy to decrease
costs and increase fill-rates in supply networks under random disruptions.

Here random inventory mitigation and random contingent rerouting refer to the
random choice of companies embedded in supply network applying risk manage-
ment strategy; and targeted inventory mitigation and targeted contingent rerouting
indicates strategic choice of companies applying risk management strategies. The
strategic choice might be informed by a company’s topological position, or its de-
clining performance, proxied by its costs or fill-rates.
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In this work, disruptions are considered in two dimensions, namely disruption fre-
quency which corresponds to likelihood, and disruption duration which corresponds
to severity.

1st research objective relates to 1st knowledge gap and is addressed in Chapters 5
and 6. 2nd and 3rd research objectives relate to 2nd knowledge gap and are addressed
in Chapters 5 and 6. 4th and 5th research objectives relate to 3rd knowledge gap
and are addressed in Chapters 7 and 8. The simulation, presented in Chapter 4, is
chosen as a methodological step to fulfil research objectives and emulate disruptive
scenarios.

3.3 Overview of existing simulation techniques

The thesis focuses on the effectiveness of risk management strategies on distinct
supply network topologies, therefore the methodology applied needs to fulfil the
following criteria:

• Quantitative: Because costs and fill-rates of various networks will be bench-
marked, the method needs to be able to measure these in a way where numer-
ical comparison can be applied.

• Dynamic: Because the effectiveness of risk management strategies can be only
observed over time, the method needs to simulate supply network’s dynamics.

• Flexible: Because different topologies are compared, the method needs to be
suitable for connecting companies in different topological configurations with-
out substantial effort.

• Distributed : Because there is a need to model the supply network as composed
of entities that can make decisions independently, without a single entity con-
trolling the whole system, the method needs to enable distributed decision-
making.

Complexity of many supply chain-related problems results in risk management meth-
ods being hard to apply (Gjerdrum et al., 2001). Supply networks can exhibit pos-
sible conflicts between local and global interests (Terzi and Cavalieri, 2004), which
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imply that what is good for a single entity might not prove to be optimal for the
whole system. Most analytical models and empirical studies focus on the focal firm
perspective, rarely considering how a firm embedded in a complex adaptive supply
network influences other firms and its environment (Li et al., 2010). Simulation is
a useful tool in supply chain modelling because it enables to investigate the infor-
mation, cash and material flow over time. Simulation supports the identification
of performance gaps between the desired and actual state of the system, enabling
one to design scenarios to reduce the vulnerability to disturbances (Carvalho et al.,
2012). De Sensi et al. (2008) highlighted that simulation plays a crucial role in
defining trade-offs between experimental variables, such as inventory or costs. The
most popular supply chain simulation techniques are discrete-event simulation and
agent-based modelling.

According to Brialsford et al. (2014), Discrete event simulation models queueing
systems as they progress through time. It is comprised of entities, activities and
events, where the entity is an object that flows trough the system of queues, an
activity is a process performed on the entity, and an event is a discrete point in time
which triggers the change of the system state (Brialsford et al., 2014). Discrete-event
simulation allows to assess the system’s performance prior to its implementation
by enabling what-if analysis and possibility of incorporating new features without
interruptions to the real system (Chang and Makatsoris, 2001).

Multi-agent modelling is a simulation technique which comprises of multiple entities,
called agents, which are computer systems capable of independent actions, commu-
nicating and interacting with each other (Costas et al., 2015). Agents are: reactive,
proactive and social. Reactiveness imply that agents perceive environment and react
according to the observed input. Proactiveness imply that agents can exhibit goals
and can take the initiative to fulfil those goals. They have social abilities, which
implies that they interact with other agents in order to meet their objectives and
goals (Wooldridge, 2009).

Multi-agent systems are claimed to be the best methodology for modelling dis-
tributed decision-making problems in supply chains, where entities embedded in
this system do not have the perfect knowledge about the surrounding environment
(Costas et al., 2015, Gjerdrum et al., 2001, Julka et al., 2002). Gjerdrum et al.
(2001) claims that multi-agent modelling is appropriate for order fulfilment process
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modelling. Literature advocates the use of multi-agent systems to model supply
networks since it enables one to represent supply chain members as autonomous,
interdependent, adaptive and self-organizing entities (Swaminathan et al., 1998).
Agent based modelling methods are especially valuable since they enable one to
capture complex phenomena at network-level (Pathak et al., 2007), which could not
be obtained by traditional analytical approaches (Chatfield et al., 2013).

Due to the ability to model entities as autonomous individuals and to model dynamic
processes, the agent-based modelling has been chosen as a method to fulfil the
research aim. Java Agent Development Environment (JADE) has been chosen as
the software environment employed for agent-based simulation due to: 1) compliance
with Foundation for Intelligent Agents (FIPA) specifications and 2) scalability and
flexibility, since agents can be distributed across different machines3.

3.4 Research Methodology

This section contains steps undertaken to meet the research aim and objectives,
described as research methodology (split into two parts and shown in Tables 3.1 and
3.2). Phases contain: information acquisition and analysis, simulation design and
development, data collection, experimentation, discussion, conclusions and writing-
up.

During the initial part of the project, scoping activities have been carried out. They
enabled the establishment of the initial project scope, identification of the knowledge
gap, aims and objectives, and selection of tools and methods that are applied to
fulfil the aim. Next, the agent-based model has been designed and developed using
JADE programming environment. There are multiple network topologies considered
as the basis for creating a structure in which firms are connected in the agent-based
simulation. These topologies can be divided into two categories: empirical and
theoretical networks.

Empirical networks indicate network topologies informed by real supply networks.
There are two empirical networks considered: the Maserati automotive supply net-
work and logistics network of the company operating within fast-moving consumer

3http://jade.tilab.com/, accessed on 19th January 2017
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Table 3.1: Research Methodology: Information Acquisition and Analysis, Simulation
Design and Implementation, and Data Collection phases.

Phase Name Description Outcome
Information
Acquisition and
Analysis

Literature Review Define knowledge gap, aims, and
objectives; Identification of appli-
cable methods and techniques

Requirement Assess-
ment

Project scope, project success and
failure criteria

Simulation
Design,
Development &
Validation

Software Require-
ments Analysis

List of requirements

Literature review Identification of suitable software:
JAVA based JADE programming
environment chosen

Software Design Software architecture design
Software Development Agent-based model implemented
Identification of per-
formance metrics

Total costs and unit fill rates cho-
sen

Validation Validate model
Data Collection Collecting supply net-

work data on compa-
nies in different in-
dustries, generation of
theoretical networks

auto-maker supply network,
FMCG internal logistics network,
random and scale-free topologies

goods industry. These empirical topologies were chosen due to their different topo-
logical characteristics and data availability. The Maserati network is an automotive
supply network, and it is a classical example of the diamond shaped upstream sup-
ply chain (Kito et al., 2014), with single auto maker and numerous middle-tier
suppliers. The Maserati supply network has been retrieved from Marklines4, on-
line automotive database. FMCG network is a logistics network, which has been
obtained from the company operating within FMCG industry, where the company
has been anonymised. The logistics network, even if is not the supply network, still

4http://www.marklines.com/en/supplier db/, accessed on 1st March 2014



3.4. Research Methodology 47

Table 3.2: Research Methodology: Carrying out Experiments, Discussion and Conclu-
sions phases.

Phase Name Description Outcome

Carrying out
Experiments

assessing ability of
supply networks to
withstand disruptions

Meeting 1sr research objective

assessing effectiveness
of random inventory
mitigation and ran-
dom contingent reout-
ing

Meeting 2nd and 3rd research ob-
jectives

assessing effectiveness
of targeted inven-
tory mitigation and
targeted contingent
rerouting

Meeting 4th and 5th research ob-
jectives

Discussion and
Conclusions

Critical academic discussion and
conclusions on managerial impli-
cations

Thesis writing Thesis document

represents the firm material flow, from the plants to distribution centres through
logistics terminals.

Theoretical networks refer to the topological extremes informed by the literature:
The one of non-existent hubs and the one with hubs, which are regarded as random
and scale-free networks, respectively. Random and scale-free networks have been
used to characterise supply networks because: (1) this thesis concurs with theoretical
studies that point out the existence of hubs in supply networks; (2) multiple sources
use these to model supply networks, including Nair and Vidal (2011), Thadakamalla
et al. (2004), Zhao et al. (2011); and (3) these models are well documented in the
literature to have various strengths and weaknesses to different disruption types. De-
gree distribution has been chosen as the basis for distinguishing theoretical networks
since it has been identified as critical in assessing robustness.
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The data collection process has been carried out to obtain empirical networks of
the automotive and fast-moving consumer goods industry; random and scale-free
topologies informed by the empirical networks have been generated. The phrase
"informed by" refers to theoretical networks having the same number of nodes and
links as empirical networks they relate to. The agent-based model performance
metrics and targeted risk management selection criteria have been identified. The
simulation has been validated with the work of Edali and Yasarcan (2014, 2016),
Sterman (1989). Next, experiments have been carried out to answer five research
objectives. These include the evaluation of the ability of empirical and theoretical
networks to withstand disruptions and the evaluation of effectiveness of risk man-
agement strategies informed by the random and strategic choice of firms. The thesis
is finalised with the critical academic discussion and conclusions on managerial im-
plications.

The detailed design of experiments carried out to answer research questions is pre-
sented in the next section.

3.5 Design of experiment

There are two sets of experiments: one performed using risk management strategies
applied by randomly chosen supply chain members, and the other using risk man-
agement strategies applied by supply chain members selected according to certain
criteria, called random and targeted risk management, respectively. Experiments are
carried out on empirical and theoretical networks informed by a real case study in
the automotive and fast-moving consumer goods industries. Empirical and theoret-
ical network topologies are used to create the structure in which firms are connected
to each other. Each empirical network has its theoretical equivalents generated:
For automotive network there are 5 random and 5 scale-free topologies generated
with 565 nodes and 652 links, for fast-moving consumer goods network there are 5
random and 5 scale-free topologies generated with 103 nodes and 472 links. One
by one, each network instance is then exposed to disruptions under different risk
profiles (Tables 3.3 and 3.4). Five theoretical topologies were enough to conduct
experiments as more would not significantly increase the accuracy of the results, as
presented in Appendix A.
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According to literature, risk profile can be expressed by two dimensions: likelihood
and severity (Sheffi and Rice, 2005), which in this research is denoted as frequency
and duration. Frequency is expressed by rare or frequent disruptions, and duration
by short or long. In this thesis, a rare disruption is defined as the one having
0.5% chance of occurrence, meaning that disruption happens approximately once
per four years per company. A frequent disruption is defined as the one having 10%
chance of occurrence and indicate that it happens once per 10 weeks. Short and
long disruptions last for 1 and 5 weeks, respectively. The combination of frequent
and long disruptions is considered as a high risk environment, and the combination
of rare and short disruption as a low risk environment. These values have been
chosen guided by results obtained through trial and error and to express possible
extreme real-world scenarios (Appendix A). It has been observed that there is a
limit to which it is possible to disrupt suppliers in the model, since unnaturally
high risk profiles result in increase in performance of all suppliers embedded in the
network. This phenomenon occurs because when majority of suppliers are disrupted
simultaneously, suppliers do not order nor sell their products resulting in the market
freeze, as shown in Appendix A.

The final experimental variable consists of two risk management strategies: inven-
tory mitigation and contingent rerouting. At any given run, only one strategy is
available to all agents. The amount of agents applying a strategy is moderated
by the mitigation level, which indicates the percentage of agents within the supply
network that are chosen at random to perform mitigation or contingency actions.
These consist of: 0%, 5%, 25%, 50%, 75%, and 100%, where 0% indicates that none
of the agents apply mitigation or contingency and 100% indicates that all agents
apply given strategy.

Thus, a single experimental run of random risk management scenarios consists of a
given topology, risk profile, strategy, and the level at which that strategy is pursued
by the firms. Each experimental run is repeated 30 times, giving a total 31,680
experiments. Scenarios are summarised in Table 3.3.

The next set of experiments focuses on targeted risk management to investigate
whether strengthening the worst performing firms influences the overall network
performance. The weakest firms are chosen according to centrality metrics and
their performances obtained in scenarios without applying given strategies. Then,
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Table 3.3: Experimental set-up for risk management in theoretical and empirical net-
works. There are in total 31,680 experiments which have been conducted using permutation
of values in (A)-(D), each scenario includes 30 repetitions.

Nodes,
links

(A) Topology (B) Risk profile (C) SCRM
strategy

(D)
Mit./Cont.
level

565, 652
5 Scale-free rare, short

Safety stock
0%,

5 Random rare, long 5%,
Maserati frequent, short 25%,

103, 472
5 Scale-free frequent, long

Contingency
re-routing

50%,
5 Random 75%,
FMCG 100%

for every topology and each risk profile, 5% of agents that obtained the highest CKi
,

highest CAi
, highest CHi

, highest CBTi
, highest CCi

, highest CRi
, highest Ci and

lowest FRi are chosen. The improvements in targeted and random risk management
performances are then compared. Thus a single experimental run consists of a given
topology, risk profile, risk management strategy and targeting strategy. There are
616 experiments, summarised in Table 3.4.
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Table 3.4: Experimental set-up for performance assessment of targeted mitigation
and contingency. There are in total 616 experiments which have been conducted using
permutation of values in (A)-(C) and (E).

Nodes,
links

(A) Topology (B) Risk profile (C) SCRM
strategy

(E) Targeting
strategy

565, 652
5 Scale-free
5 Random
Maserati

rare, short
rare, long
frequent, short
frequent, long

Safety stock

Contingent
rerouting

random
highest CKi

highest CAi

highest CHi

highest CBTi

highest CCi

highest CRi

highest Ci

lowest FRi





Chapter 4

Simulation design and validation

This section discusses the main components of the research design: (a) an agent-
based model of the supply network; (b) the generic stock-management structure
and its extension to complex supply networks; (c) disruptions; (d) risk management
strategies and (e) performance metrics. Next, detailed input/output specifications
are presented and the simulation is validated against the work of Edali and Yasarcan
(2014, 2016) and Sterman (1989).

4.1 Agent-based model design

In this work, an agent-based model is composed of interconnected software entities,
embedded in the complex supply network, as presented in Figure 4.1. There are five
types of supply network members:

1. Agent

2. Logistic provider

3. Consumer

4. Raw Materials Supplier

5. Clock
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Figure 4.1: Agents embedded in a supply network topology. Solid arrows indicate
material flow from the supplier to the customer.

Where each agent represents a member of the supply network controlling its own
inventory, the logistic provider ships goods across the network, consumer and raw
material supplier reside on the upstream and downstream ends of the supply network
to pull the demand and provide infinite supply of raw materials (Figure 4.2), and the
clock which synchronises all the supply network members to perform their tasks in a
weekly manner. Usually, any software entity in an agent-based model is referred to
as an agent, although in this work the term is restricted only to the decision-makers,
the other members of the supply network are referred to by their respective names,
if not stated otherwise. The functionality scope of agents includes:

1. Receive inventory

2. Fill orders

3. Record inventory and backlog

4. Ship products

5. Forecast demand and place orders
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Figure 4.2: The upstream and downstream ends of a supply network are represented
by consumers and raw material suppliers. Consumer pulls the demand and raw material
supplier provide an infinite supply to agents. Solid arrows indicate the material flow from
the supplier to the customer.

Each agent has their suppliers from whom it orders products and customers who
order from the agent. Agents order from their suppliers and fill orders from their
customers communicating via messages. Suppliers and customers are terms, which
describe a relative position of an agent rather than a type of an agent. An agent em-
bedded in a complex supply network can be some agent’s supplier and other agent’s
customer at the same time. This implies high architecture flexibility because agents
can be assembled in any topology chosen. Simulation runs in a discrete manner,
where agents simultaneously perform ordering decisions each week, synchronised by
the clock. It is assumed that all suppliers of an agent have perfectly substitutable
goods.

Agents interact with their suppliers and customers each week in the following man-
ner, an agent: (1) receives inventory from its suppliers; (2) receives orders from their
customers; (3) subtracts order amount from inventory or register backlog; (4) ships
available goods through logistics providers; and (5) forecast demand and place or-
ders to its suppliers. The decision-making processes are taken from Sterman (1989).
The diagram of how agents interact with each other is presented in Figure 4.3.
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Figure 4.3: Agent interaction with its suppliers and customers. Solid arrows indicate
material flow from the supplier to the customer, and dashed ones indicate information flow.

Each agent manages its inventory according to specific rules, as set out in Sterman
(1989) in the beer distribution game. More details on ordering process are presented
in the next section. An agent manages its inventory in the following manner: inven-
tory is increased when goods are received; inventory is decreased when the products
are shipped to customers; the backlog is registered when there is not enough in-
ventory to fill the customer order. When the customer order is greater than the
available inventory, the agent ships whatever is available and register the backlog of
remaining amount. If an agent has multiple customers, it responds to their requests
on a first-come-first-serve basis.

Logistics providers act as a transportation proxy between the customer and the sup-
plier. When the logistic provider obtains goods from the supplier, it "keeps" prod-
ucts for the time in-transit and when this period is over, the goods are delivered to
the customer. The clock synchronises all agents, logistics providers, consumers and
raw material suppliers so that they perform each action according to the schedule.
The simulation week is divided into the following phases:

1. Receive inventory, receive orders, manage inventory, record backlog and send
shipments to customers (agents).



4.1. Agent-based model design 57

Figure 4.4: Clock synchronises all agents to perform actions weekly according to their
schedule. Dashed arrows indicate information flow.

2. Forecast demand and order from suppliers (agents).

3. Advance logistics (logistic providers).

The consumers and raw material suppliers participate in the first two phases, al-
though their responsibilities are restricted to: receiving orders, sending shipments
(raw material suppliers) and ordering from suppliers (consumers).

After each phase, there is a message sent by the clock to indicate that a certain
phase begins (Figure 4.4). The message is sent to agents, consumers, raw material
suppliers or logistic providers, depending on the phase. When the agent finishes
performing actions scheduled in a certain phase, it sends the message to the clock
to communicate that all the necessary tasks have been carried out. When the clock
receives the "done" message by all concerned agents, it proceeds to another phase,
by sending appropriate initiation messages again.
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4.2 Internal decision-making

4.2.1 Generic stock management

Each agent is assumed to control its inventory, which is modelled using the generic
stock management structure (Figure 4.5). This generic structure encompasses both
the physical aspects of the stock management task and the decision making processes
of human decision makers (Sterman, 1989, Yasarcan, 2011). The orders are formed
using the anchor-and-adjust ordering policy as suggested by Sterman (1989). There
are other stock management systems, such as human resources, driving or social
drinking (Sterman, 1989).

The parameters of the stock management system that refer to inventory management
are as follows: stock (S) refers to net inventory, supply line (SL) refers to goods on
order (past orders that have not arrived yet), loss flow (L) refers to shipments to
customers, acquisition flow (AF ) refers to arrivals from suppliers, acquisition delay
time refers to the delay with which the supplies arrive, control flow (O) refers to
order of goods. Stock (S) is composed of on-hand inventory and backlog, where
on-hand inventory (It) is the amount of physically available goods in the stock and
backlog (Bt) refers to customer orders which have been received, but could not be
filled due to lack of on-hand inventory at the time (Equation 4.1).

St = It +Bt (4.1)

The expected loss (EL) refers to forecasting customer demand4. The indicated con-
trol decision, called also indicated order (IO), represents the desired order amount
to be placed to the supplier and is represented by the Equation 4.2. It is composed
of three terms: losses which is an anchor term, stock adjustment and supply line
adjustment which are adjustment terms. Stock adjustments (SA) are corrections
made to the net inventory, supply line adjustments (SLA) are corrections made to
goods on order.

4In this study, the expectation formation is performed using exponential smoothing methods
with exponential smoothing fraction (θ) equal to 0.2, as suggested by Edali and Yasarcan (2014).
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Figure 4.5: The generic stock management system (adopted from Sterman (1989))
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IOt = ELt + SAt + SLAt (4.2)

The Equation 4.2 can take negative values in some cases, e.g. when the amount of
on-hand inventory and amount of goods on order is much higher than the expected
demand. The assumption is made that negative orders are not possible, therefore
the equation is modified as presented in the Equation 4.3, which always will take
non-negative values.

Ot = MAX(0, IOt) (4.3)

The equations for adjustment terms are presented in 4.4 and 4.5. They are composed
of stock adjustment time (sat), desired stock (S∗), stock (S), weight of supply line
(wsl), desired supply line (SL∗) and supply line (SL). The desired stock and desired
supply line correspond to the level which is required to prevent steady-state errors
at equilibrium for stock and goods on order, respectively. The desired supply line is
changing during the simulation run to close the discrepancies, the desired stock is
chosen only once at the beginning. The stock adjustment time is a parameter, which
defines the speed of closing the gap between the current and desired level of stock.
The weight of supply line is the importance given to the supply line discrepancies.

SAt =
(S∗ − St)

sat
(4.4)

SLAt =
wsl · (SL∗t − SLt)

sat
(4.5)

The acquisition delay time is composed of mailing delay time and shipment time
(Equation 4.6). Mailing delay time (mdt) is the time between submitting an order
to the supplier and receiving that order by the supplier, and is equal to one week.
Shipment time (st) is the time goods are in-transit and is equal to two weeks.

adt = mdt+ st (4.6)
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4.2.2 Extension to the complex supply network

The generic stock management presented by Sterman (1989) and Edali and Yasarcan
(2014) has been extended to complex supply networks and the main differences
between these can be given as (1) in Edali and Yasarcan (2014) and Sterman (1989),
the supply chain members are connected in series, the extended version is simulating
complex network topologies; (2) their model describes four agents, whereas the
extended model includes many more; (3) in their paper, the end-customer demand
is around eight units per week, but in the extended study it is assumed to be
equal to 1400 units per week for FMCG networks and and 14000 units per week for
automotive networks, following empirical examples.

Agents applying anchor-and-adjust ordering policy are embedded in the complex
network, therefore an ordering decision of a single agent has an effect on other
agents. The equations of anchor-and-adjust policy are modified as presented in
Equations 4.7, 4.8, 4.9, 4.10 and 4.11.

Oi,t = MAX(0, IOi,t) (4.7)

IOi,t = ELi,t + SAi,t + SLAi,t (4.8)

SAi,t = αS(S∗i − Si,t) (4.9)

SLAi,t = αSL(SL∗i,t − SLi,t) (4.10)

Si,t = Ii,t +Bi,t (4.11)

Where i and t refer to a decision made by agent i in the week t. The other parameters
are taken from Edali and Yasarcan (2014)4.

4αS = 1, αSL = 1, mdt = 1, st = 2, inventory holding costs = $0.5 per unit per week, backlog
costs = $1 per unit per week, θ = 0.2
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If an agent has multiple suppliers, the ordering decision is still made according to
the original stock management structure, but the value is later split equally between
all suppliers (Equation 4.12).

Oji,t =
AijOi,t

kini
(4.12)

where Oi,t is an ordering decision made by agent i in week t, Oji,t indicates order
submitted to agent j by agent i in week t, Aij is an adjacency matrix, which takes
value 1 when agent j is a supplier of agent i, and kini is an in-degree of an agent i.
The in-degree kini will always be greater than zero because all agents always have
suppliers. These suppliers might be other agents or the raw-material suppliers.

Each agent’s desired stock is equal to 0, which implies that all agents try to optimise
their inventory and keep its level equal to 0 (Equation 4.13). The time frame for the
simulation is extended to 500 weeks to prevent the effect of the short-term transient
dynamics dominating the overall results. The initial stock (Si,t0) of each agent i is
equal to 0, as presented in Equation 4.14.

S∗i,t = 0 (4.13)

Si,t0 = 0 (4.14)

The initial order amount that an agent places to its suppliers is equal to the sum of
initial orders of this agent’s customers placed to that agent. The idea is presented
in Equation 4.15, where the total number of agents in the network is equal to N and
Aji is an adjacency matrix. The adjacency matrix Aji takes value 1 when agent j
is the customer of agent i, 0 otherwise.

Oi,t0 =
N∑

j=0,j 6=i

AjiOji,t0 (4.15)

Initial supply line of each agent is equal to their initial order amount multiplied
by the acquisition delay time, as presented in the Equation 4.16. If there are no
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internal (e.g. disruptions) or external (e.g. demand fluctuations) shocks applied to
the system, this configuration enables stocks of all agents to be in an equilibrium
and represent perfect just-in-time (JIT) system. The equilibrium implies, that in-
ventories and ordering decisions will not change for all agents. In order to reach
that equilibrium a setting up period is included in each simulation run and is not
accounted in performance assessment. In case when shocks are present, the change
in ordering decision of one agent will have an influence on the whole supply network.

SLi,t0 = adt×Oi,t0 (4.16)

4.3 Disruptions

The agent-based model is subject to disruptions. According to the Oxford English
Dictionary to disrupt means:

“interrupt (an event, activity, or process) by causing a disturbance
or problem; drastically alter or destroy the structure of (something)’ ’
(Stevenson, 2010, p. 507)

Therefore, a disruption is modelled in the agent-based simulation as a process that
disables basic functionalities of a single agent, which can be equivalent to labour
strike, natural disaster, or an accident such as fire or explosion. The effects of
disabling the agent will be as follows:

• disrupted agent will not be able to order from its suppliers

• disrupted agent will not fill any orders from its customers

• disrupted agent will not receive inventory

• disrupted agent will not send shipments to its customers

• disrupted agent will notify its customers that it is disrupted
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The duration of the disruption is dependent on the risk profile, and in this study
it is equal to one or five ordering cycles, as specified in the Chapter 3 in Design of
experiment section. All agents have the same probability p(φ) of being disrupted,
where φi,t is the operationality of an agent i in week t. In simple words if the
disruption probability p(φ) is equal to 0.5 it means that every agent will fail 50%
of the time. The agent is disrupted, when its operationality φ is equal to 0. The
disruption test is performed each week t for every agent i separately by drawing a
sample ωi,t from uniform distribution with values in the range [0, 1]. If ωi,t ≤ p(φ),
then the agent i is disrupted in a week t for number of cycles specified by the risk
profile, as presented in Equation 4.17.

φi,t =

0 if ωi,t ≤ p(φ)

1 if ωi,t > p(φ)
(4.17)

φi,t is equal to 0 when the agent i is not operational in week t, and 1 otherwise. As
the probability tests will be performed simultaneously in a certain week t for every
agent in the network, it is possible that many agents will be disrupted at the same
time, only one will be disrupted, or none will be disrupted.

4.4 Implementation of risk management strategies

4.4.1 Inventory mitigation

Inventory mitigation is a proactive risk management strategy aiming at reducing
the impact of disruptions by holding an additional amount of stock at all times. In
the extended model, an agent which applies inventory mitigation strategy keeps an
additional amount of stock equal to its initial order amount. If and agent does not
perform inventory mitigation, its desired inventory is equal to 0 (as presented in
Equation 4.18).

S∗i =

0 if agent i does not apply inventory mitigation

Oi,t0 if agent i applies inventory mitigation
(4.18)
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4.4.2 Contingent rerouting

Contingent rerouting is a reactive risk management strategy performed only when
an agent has more than one supplier; the number of suppliers of a specific agent
depends on the network topology in which it is embedded. When an agent reroutes,
it stops ordering from the disrupted supplier and moves the disrupted volume to
suppliers that are still operational. The agent sources equally from its operational
suppliers at all times, as presented in Equations 4.19 and 4.20.

Oji,t =
φj,tAijOi,t

Φi,t

(4.19)

Φi,t =
N∑

j=0,j 6=i

φj,tAij (4.20)

φj,t is equal to 1 when an agent j is operational in week t, and Φi,t is the number of
operational suppliers of agent i in week t. If none of the suppliers of i are operational
(Φi,t = 0), then the agent comes back to the original volume split, as indicated in
Equation 4.12.

4.5 Performance metrics

Supply network performance has been evaluated using the following parameters:
total costs incurred by all agents in the network denoted by CNET ; costs incurred
by the end manufacturer denoted by CMAN ; average unit fill-rate of agents in the
network denoted by FRNET ; and unit fill-rate of the end manufacturer denoted
by FRNET . These four metrics enable the evaluation of trade-offs between main-
taining low costs and keeping high customer service at the end manufacturer and
at the system’s level. The end manufacturer (referred also as Original Equipment
Manufacturer or OEM) is an agent which is located at the downstream end and is
supplying products to end-consumer.

The total cost incurred by agent i is represented by the equation 4.21.
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Ci =
T∑
t=1

Ii,t × 0.5$ +Bi,t × 1$ (4.21)

Ii,t denotes the on-hand inventory, Bi,t indicates the backlog of an agent i in week
t, and T is the number of simulation weeks. These values are multiplied by the
inventory holding cost and backlog cost, which are 0.5$ and 1$ per unit per week,
respectively (Edali and Yasarcan, 2014, Sterman, 1989). Inventory holding costs
and backlog costs generated in each week are summed and show the total cost that
agent i generated during T weeks of a single simulation run. The total cost incurred
by the whole network is represented by CNET , which is equal to the sum of costs
generated independently by all agents (Equation 4.22).

CNET =
N∑
i=1

Ci (4.22)

The unit fill-rate can be described as a measure of customer service, number of units
(e.g. cases) filled as a fraction of units ordered (Closs et al., 2010). This measure is
referred later simply as fill-rate. Fill-rate of an agent i (FRi) is a percentage of net
demand in T simulated weeks (Equation 4.23).

FRi =

∑T
t Di,t −

∑T
t=1 UDi,t∑T

t Di,t

× 100% (4.23)

Di,t and UDi,t are the demand and unmet demand of agent i in week t, respectively.
FRNET , represented by equation 4.24, is an average of fill-rates of individual agents.

FRNET =

∑N
i=1 FRi

N
(4.24)

4.6 I/O specification

This section includes the detailed description of the input and output specification
that is required for the simulation.
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4.6.1 Input

The input to the agent-based model needs to include the following:

• Disruption frequency (rare or frequent)

• Disruption duration (short or long)

• Network topology

• Risk management strategy

• Agents’ initial orders

Disruption duration, disruption frequency and risk management strategy applied are
hard-coded into the simulation. Network topology and initial orders are included in
a single text file, which has the following format:

agent_name:agents.AgentClass(additional_inventory##

initial_order##

list_of_suppliers##

list_of_customers);

additional_inventory is the amount of safety stock kept by that agent which is
effectively S∗i , initial_order is the value of initial order Oi,t0 of that agent. List of
suppliers can be expanded in the following way:

supplier_A#supplier_B#supplier_C

List of customers can be expanded in the following way:

customer_A@logistics_provider_to_A#customer_B@logistics_provider_to_B

Sample input file is presented below:

agents=asyn:agents.Clock();

i0:agents.Agent(100.0##100.0##i1##c@t1);

i1:agents.Agent(0.0##100.0##s##i0@t2);

s:agents.RawMaterialSupplier(0.0##100.0####i1@t3);

c:agents.Consumer(0.0##14000.0##i0##);

t1:agents.LogisticsProvider();

t2:agents.LogisticsProvider()t3:agents.LogisticsProvider()
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4.6.2 Outputs

Each agent logs its progress by writing parameters of each week into the text file.
Sample log file of an agent is as follows:

I_t S_t D_t O_t A_t EL_t sum(O) sum(UD) t

300.0 300.0 100.0 100.0 0.0 100.0 0.0 0.0 −2
200.0 200.0 100.0 100.0 0.0 100.0 100.0 0.0 −1
100.0 100.0 100.0 100.0 0.0 100.0 200.0 0.0 0

100.0 100.0 100.0 100.0 100.0 100.0 300.0 0.0 1

100.0 100.0 100.0 100.0 100.0 100.0 400.0 0.0 2

Where It is on-hand inventory in week t, St is stock in week t, Dt is customer demand
in week t, Ot is order submitted to suppliers in week t, At is amount of goods that
arrived in week t, ELt is forecasted demand, sum(O) is the total amount of goods
ordered in previous weeks, sum(UD) is the sum of unmet demands until week t.

Weeks -2, -1 and 0 are a part of the setting up period, therefore they are not
included in the performance assessment. Each agent output file is then processed
and summarized as follows:

agent_name: total_costs average_fill_rate

With an example:

i0: 25000.0 100.0

i1: 0.0 100.0

The results are further processed for the whole network by summing all individual
agent’s costs and averaging fill rates. Individual network results are averaged further,
depending on which group the scenario belongs to. The results are grouped by
topology, risk profile and strategy applied. Scenarios of theoretical networks are
grouped by topology type creating an instance of 150 samples: 30 repetitions for 5
topologies. The topologies of the same type are grouped together e.g. all random
automotive topologies. Scenarios of empirical networks create a group of 30 samples
per topology. It has been observed that results from each sample within specific
group have low standard error, as outputs of samples lie within similar ranges.
These ranges are greater for higher disruption frequencies and durations, but in
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general still can be considered relatively small. All data points for a single topology
are presented in Appendix A.

In the output file, the groups are decoded such that the topology type comes first
(e.g. random automotive, scale-free automotive or empirical FMCG) and the mit-
igation/contingency level afterwards. 0IM indicates that 0% of agents applied in-
ventory mitigation strategy, 75CR indicates that 75% agents applied contingent
rerouting strategy. Results in that format are directly plotted in Chapters 5 and 6.
Exemplary output file for rare and short disruptions can be as follows:

randomA_5IM: 20000.0 90.0 65.00 5.0 ... 75.0 2.0

randomA_25IM: 15000.0 80.0 70.00 5.0 ... 80.0 1.0

...

sfreeA_75CR: 4000.0 20.0 80.00 5.0 ... 92.0 1.0

sfreeA_100CR: 2000.0 10.0 85.00 5.0 ... 96.0 1.0

where the consecutive columns are represented as:

group : CNET σCNET FRNET σFRNET CMAN σCMAN FRMAN σFRMAN

CNET and FRNET are total costs and fill-rates for the whole network,CMAN and
FRMAN are costs and fill-rates for the manufacturer only.

4.7 Simulation Validation

To validate the model, an agent-based simulation replicating conditions of Edali and
Yasarcan (2014) and Sterman (1989) has been built. A supply network composed
of fours agents connected in series and with the exact same parameters as reported
in Sterman (1989) and Edali and Yasarcan (2014)5, generated the same costs and
inventories: $204 total costs, $46 for a retailer, $50 for the wholesaler, $54 for the
distribution centre and $54 for the factory. Inventory and backlog dynamics were
compared with the output of the R source code published by Edali and Yasarcan
(2014)6 and the exact result was observed. The agent-based model dynamics are

5S∗
r,w,d = 16, S∗

f = 12 , I0 = 12, αS = 1, αSL = 1, mdt = 1, st = 2, inventory holding costs =
$0.5 per unit per week, backlog costs = $1 per unit per week, θ = 0

6available at https://www.openabm.org/model/4166/version/1/view, accessed on 15th July
2016
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Figure 4.6: Inventory (It) and backlog (Bt) dynamics

(a) retailer (b) wholesaler

(c) distribution centre (d) factory

presented in Figure 4.6, the dynamics obtained by Edali and Yasarcan (2014) are
presented in Figure 4.7.

The empirical evidence of the dynamics of the model and data is presented in Ap-
pendices B, and C, where the simulation is run on an experimental supply network
under four scenarios: (a) without disruptions, (b) with a disruption, (c) with a
disruption applying inventory mitigation, and (d) with a disruption applying con-
tingent rerouting. Scenarios contain a discussion on how a single disruption affects
agents’ stocks and customer demand.

In order to validate the extended model, the simulation was run for topologies with-
out disruptions. Such a scenario is perfect just-in-time system, where whatever was
delivered by a supplier is immediately sold to the customer, without accumulating
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Figure 4.7: Inventory and backlog dynamics by Edali and Yasarcan (2014). On-hand
inventory and backlog generated by retailer (blue), wholesaler (red), distributor (green)
and factory (black) as reported by the R source code from Edali and Yasarcan (2014).

(a) inventory dynamics (b) backlog dynamics

inventory. In this case CNET has to be equal to 0, since agents do not generate costs
because they do not have on-hand inventory nor backlog. FRNET is equal to 100.0
because everything that is ordered is immediately filled from the stock.

The concept is shown in the Figure 4.8, where the inventory and backlog of an
arbitrary agent are plotted against time. It can be seen that the dynamics of both
parameters are equal to 0 at all times. The same pattern was recurring for all
agents in the network and for all topology types, except the empirical case of FMCG
company. CNET and FRNET of all topologies for the base scenario are presented in
Table 4.1.

CNET of FMCG empirical network is $233,336,150.21 and FRNET is equal to 51.09%
because the logistics network contains cycles. A cycle in a directed network indicates
that there is a path that starts at a node i and ends at the same node i. The cycles
in the FMCG logistics network are paths of length two, where a node i links to node
j, and node j links to node i. In practice, such behaviour means that a supplier
of a company is this company’s customer as well. These "ordering feedback loops"
result in instabilities because when an agent i increases the order amount placed to
agent j, agent j corrects its ordering decision by increasing its order amount placed
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Figure 4.8: Visualisation of the inventory and backlog dynamics for the complex supply
network, where the on-hand inventory (It) and backlog (Bt) of one agents are plotted
against the time.

OEM
tier 1
tier 2
tier 3
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Table 4.1: Validation of agent-based model extended to supply networks

Topology (n, m) Network CNET FRNET

Random
FMCG
(103,472)

random 1 0.00 100.00%
random 2 0.00 100.00%
random 3 0.00 100.00%
random 4 0.00 100.00%
random 5 0.00 100.00%

Random
automo-
tive
(565,652)

random 1 0.00 100.00%
random 2 0.00 100.00%
random 3 0.00 100.00%
random 4 0.00 100.00%
random 5 0.00 100.00%

Scale-free
FMCG
(103,472)

random 1 0.00 100.00%
random 2 0.00 100.00%
random 3 0.00 100.00%
random 4 0.00 100.00%
random 5 0.00 100.00%

Scale-free
automo-
tive
(565,652)

random 1 0.00 100.00%
random 2 0.00 100.00%
random 3 0.00 100.00%
random 4 0.00 100.00%
random 5 0.00 100.00%

FMCG (103,472) 233,336,150.21 51.09%
Maserati (565,652) 0.00 100.00%
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to agent i in the next week. Then, agent i again increases its order decision and so
on. In a perfect just-in-time system, as used for the validation purposes, the changes
in agents’ orders should not happen, although they still do because the agent-based
model is subject to floating point arithmetic errors. For example, if an agent has
three suppliers and its ordering decision is 1 unit, it will split the amount into
three suppliers with 0.33333 each. In all acyclic supply networks, the floating point
arithmetic errors are very small and are mitigated by agents. In the case of cyclic
logistics network, these error build up resulting in a very unstable environment,
high costs and low fill-rates. These instabilities are solely the result of an attempt
to model the supply network on a logistics network topology. The cycles are present
in logistics network because an inventory movement within the same organisation
back and forth over some period of time has a justification. It makes the cycles
valid in this case, although it would not usually happen in a supply network. The
results of logistics network cannot be used to make conclusions on effectiveness of
risk management strategies, nor be compared to other supply networks, although it
is used rather as a curiosity and an exemplary show case which presents how cycles
in a supply network could potentially hurt the performance.



Chapter 5

Risk management for theoretical networks

This section presents the ability of artificially generated random and scale-free net-
works to absorb disruptions and reduce the disruption impact through inventory mit-
igation and contingent rerouting. First, random and preferential generation models
used to create theoretical networks are presented. Theoretical topologies are anal-
ysed using network-level metrics to gain insights into their potential vulnerabilities.
Next, these networks are exposed to disruptions to investigate how topology affects
costs and fill-rates. Mitigation and contingency strategies are applied in randomly
chosen firms to assess their effectiveness in various topological configurations.

5.1 Network Generation Models

In order to create theoretical networks, two generation models have been used: ran-
dom attachment model and preferential attachment model. A generation model is
a set of rules which determine how network is created; ie. how nodes connect to
each other. Random attachment model places m links between n nodes at random,
generating random networks. Preferential attachment model places m links between
n nodes, choosing each link with a probability proportional to the number of neigh-
bours a node has, generating scale-free networks. The more neighbours, the higher
probability of a specific node being chosen (Newman, 2010). Figures 5.1a and 5.1b
present examples of topologies created using both generation models.

75
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Figure 5.1: Exemplary networks generated with random and preferential attachment
models

(a) random network (b) scale-free network

In order to generate networks which can represent realistic supply chains, there are
certain limitations made on how the network is created. First, self-edges and multi-
edges are not allowed. A self-edge is a link pointing to the same node it originates
from, and is not a part of realistic supply network because a company cannot be
supplying to itself products it is selling to others. Mutli-edge is a multiple instance
of a link between the same pair of nodes. Because all goods are assumed to be
perfectly substitutable, it is not allowed for a single supplier to deliver two or more
different goods to the same customer. Both generation models avoid creating cycles.
This is because a cycle implies that a single product has been transformed multiple
times before it finally comes back to the starting node. To avoid cycles, all nodes
in theoretical networks have links pointing downstream direction, never upstream.
Moreover, there are no restrictions on the number of tiers or the number of nodes
within the same tier.

5.2 Network-level characteristics of theoretical networks

There have been 20 distinct topologies generated: 5 random FMCG, 5 scale-free
FMCG, 5 random automotive and 5 scale-free automotive networks. Random and
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scale-free networks have number of nodes and links corresponding to their respective
empirical equivalents: 103 nodes and 472 links for FMCG networks, 565 nodes and
652 links for automotive networks. Random and scale-free network topologies for
the automotive supply network are presented in Figures 5.4 and 5.5. Random and
scale-free networks for FMCG logistics network are presented in Figures 5.2 and 5.3.
Basic statistical properties of these networks are presented in Tables 5.1 and 5.2.

FMCG networks have higher mean-degree than automotive, with 4.58 for FMCG and
1.15 for automotive, implying that FMCG networks are more dense. Transitivity
is equal to 0.1 for random and 0.48 for scale-free automotive topologies; 0.13 for
random and 0.48 for scale-free FMCG topologies. Higher transitivity for scale-free
FMCG and scale-free automotive networks implies that there are more triangles
than in random topologies. High number of triangles in a supply network context
would imply that given a firm having two suppliers, there is high probability that
one of these suppliers is also supplying to the other one.

All scale-free networks have shorter mean geodesic distance than their random equiv-
alents, with 0.723 for random FMCG and 0.060 for scale-free FMCG, with 0.057 for
random automotive and 0.003 for scale-free automotive. This implies that there are
less tiers in scale-free networks than in random ones, with approximately 7-8 tiers
less for scale-free automotive networks and 1 tier less for scale-free FMCG networks
(Figures 5.2, 5.3, 5.4 and 5.5). Lower mean geodesic distance for scale-free networks
might lead to higher responsiveness and increased robustness.

Random and scale-free FMCG networks are both slightly disassortative, which
means that nodes tend to connect to other nodes with distinct characteristics. Ran-
dom automotive topologies have assortativity close to zero and scale-free automotive
topologies have high disassortativity. The differences in assortativity in random and
scale-free automotive networks come from low mean degree. Low mean degree im-
plies a restricted number of links per node, therefore scale-free networks tend to
create star-like structures, with hubs in the center of the network and peripheral
nodes connected to these hubs.

Topological characteristics, according to literature, suggest that scale-free networks
absorb disruptions better than random networks (Barabasi and Albert, 1999, Kim
et al., 2015, Nair and Vidal, 2011, Newman, 2010, Thadakamalla et al., 2004, Zhao
et al., 2011).
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Figure 5.2: FMCG random networks generated using random attachment model (n =
103, m = 472)

(a) random 1 (103, 472) (b) random 2 (103, 472)

(c) random 3 (103, 472) (d) random 4 (103, 472)

(e) random 5 (103, 472)

OEM
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tier 3
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Figure 5.3: FMCG scale-free networks generated using preferential attachment model
(n = 103, m = 472)

(a) scale-free 1 (103, 472) (b) scale-free 2 (103, 472)

(c) scale-free 3 (103, 472) (d) scale-free 4 (103, 472)

(e) scale-free 5 (103, 472)

OEM
tier 1
tier 2
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Figure 5.4: Automotive random networks generated using random attachment model
(n = 565, m = 652)

(a) random 1 (565, 652) (b) random 2 (565, 652)

(c) random 3 (565, 652) (d) random 4 (565, 652)

(e) random 5 (565, 652)

OEM
tier 1
tier 2
tier 3
tier 4
tier 5
tier 6
tier 7
tier 8
tier 9

tier 10+



5.2. Network-level characteristics of theoretical networks 81

Figure 5.5: Automotive scale-free networks generated using preferential attachment
model (n = 565, m = 652)

(a) scale-free 1 (565, 652) (b) scale-free 2 (565, 652)

(c) scale-free 3 (565, 652) (d) scale-free 4 (565, 652)

(e) scale-free 5 (565, 652)

OEM
tier 1
tier 2
tier 3



82 Chapter 5. Risk management for theoretical networks

Table 5.1: Mean degree c and transitivity C of theoretical networks

Type Topology n m c* σc C* σC

FMCG
Random 103 472 4.58 0.000 0.13 0.006
Scale-free 103 472 4.58 0.000 0.48 0.012

Automotive
Random 565 652 1.15 0.000 0.01 0.009
Scale-free 565 652 1.15 0.000 0.48 0.008

n number of nodes, m number of links, c mean degree, C transitivity,
σc,σC standard deviation of c,C
* average over 5 topologies

Table 5.2: Assortativity (r) and mean geodesic distance (l) of theoretical networks

Type Topology n m r* σr l* σl

FMCG
Random 103 472 -0.096 0.054 0.723 0.045
Scale-free 103 472 -0.088 0.054 0.060 0.006

Automotive
Random 565 652 -0.005 0.060 0.057 0.011
Scale-free 565 652 -0.222 0.053 0.003 0.000

n number of nodes, m number of links, r assortativity coefficient, l
mean geodesic distance, σr,σl standard deviation of r, l
* average over 5 topologies
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5.3 Disruption absorption in theoretical networks

When a supply network is exposed to disruptions, some agents experience problems
in fulfilling the demand of their customers due to delayed deliveries of their suppliers.
Inventory levels oscillate, and these oscillations travel upstream and downstream,
causing lower fill-rates and higher costs (Table 5.3). The higher the risk profile, the
higher costs CNET and lower fill-rates FRNET . For example, for random FMCG
networks costs increase from $1,180,475 to $3,479,350.34 when duration of rare dis-
ruptions is increased from short to long; fill-rates decrease from 75.40% to 46.39%.
The same pattern can be observed for random automotive, scale-free FMCG and
scale-free automotive.

Random FMCG and random automotive networks generate higher costs than scale-
free FMCG and scale-free automotive for all risk profiles. For example, for low
risk profile costs are $1,180,475.94 and $82,834.50 for random FMCG and scale-free
FMCG networks, respectively. This is 14 times higher costs for random networks
than scale-free. For high risk profiles costs are $13,615,533.95 and $2,469,877.41,
which is 5.5 times higher costs for random networks than scale-free. For low risk
profile costs are $10,615,611.69 and $532,250.63 for random automotive and scale-
free automotive networks, respectively. These are 20 times higher costs for random
than scale-free. For high risk profiles costs are $137,904,910.47 and $20,256,150,
which is 7 times higher. The cost difference between random and scale-free is de-
creasing for higher risk profiles, which implies that scale-free networks lose some of
their resilience when heavily perturbed. When risk is high, there is a higher proba-
bility that the impact of the disruption reaches the hubs within the network. When
hubs are impacted by the disruption, there is a chance that a phenomenon called
cascading failure will occur.

Random FMCG and random automotive networks have lower fill-rates than scale-
free FMCG and scale-free automotive. For low risk fill-rates are equal to 75.40%
and 95.99% in random FMCG and scale-free FMCG networks, respectively. When
risk is high, random FMCG network’s fill-rates drop to 25.81%, which is half of the
fill-rate obtained for scale-free FMCG networks under the same conditions. For low
risk profile fill rates are 65.62% and 97.30% for random automotive and scale-free
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automotive networks, respectively. For high risk fill rates drop to 42.15% for random
automotive and to 60.16% for scale-free automotive.

Random and scale-free automotive topologies generate higher costs than FMCG
topologies because there are more nodes in the network and the end-consumer de-
mand is higher. If the total cost is a biased metric because it depends on number
of agents, fill-rates are normalised which makes it a good performance metric to
compare topologies with different number of nodes or links. Automotive topolo-
gies have higher fill-rates for most of the cases compared with FMCG topologies.
Higher resilience of automotive networks comes from its sparsity: When a disruption
happens, there is a smaller damage spectrum and less immediate business partners
affected.

In accordance with the literature, scale-free supply networks are more resilient to
random disruptions (Nair and Vidal, 2011, Thadakamalla et al., 2004, Zhao et al.,
2011). In addition, this work highlights that scale-free supply networks generate
lower costs and have higher fill-rates.

5.4 Effectiveness of inventory mitigation in theoretical net-
works

The inventory mitigation strategy proves to be effective for scale-free and random
topologies because it increases fill-rates and might decrease costs. However, the
amount of cost reduction depends on risk profile and topology. Results are presented
in Figures 5.6, 5.7, 5.8 and 5.9. Each data point plotted on these Figures is an
average over 150 samples. Standard error of these samples is small because they fall
within similar ranges. Even if plotted on all Figures, standard error is not always
visible. All data points for a single topology are presented for chosen scenarios in
Appendix A.

When all companies apply inventory mitigation for frequent and long disruptions,
CNET is decreased by 31.81% and 32.66% for random and scale-free FMCG topolo-
gies, respectively. For random and scale-free automotive topologies there was 16.25%
and 33.71% CNET reduction, respectively (Table 5.4). Cost reductions are caused
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Table 5.3: Performance of theoretical networks exposed to disruptions. σFRNET and
σCNET are standard deviations of fill-rates and costs, respectively.

Topology (n, m) Risk profile FRNET
* σFRNET CNET

* σCNET

Random
(103,472)

rare, short 75.40% 4.36% 1,180,475.94$ 292,446.99$
rare, long 46.39% 4.43% 3,479,350.34$ 538,255.84$

frequent, short 38.38% 2.17% 4,947,204.54$ 370,403.37$
frequent, long 25.81% 1.14% 13,615,533.95$ 817,469.95$

Random
(565,652)

rare, short 65.62% 1.55% 10,615,611.69$ 2,668,248.99$
rare, long 48.51% 1.14% 32,895,719.54$ 8,192,217.54$

frequent, short 54.59% 0.61% 42,389,538.93$ 6,490,383.26$
frequent, long 42.15% 0.91% 137,904,910.47$ 22,247,087.01$

Scale-free
(103,472)

rare, short 95.99% 1.15% 82,834.50$ 24,859.64$
rare, long 89.83% 2.67% 281,940.23$ 86,665.64$

frequent, short 75.96% 1.67% 707,977.39$ 44,637.77$
frequent, long 55.00% 1.85% 2,469,877.41$ 130,703.55$

Scale-free
(565,652)

rare, short 97.30% 0.97% 532,250.63$ 186,739.11$
rare, long 93.23% 2.27% 1,852,794.42$ 609,556.81$

frequent, short 78.79% 1.27% 5,909,025.48$ 223,047.69$
frequent, long 60.16% 1.87% 20,256,150.26$ 503,290.62$

* average over 5 topologies and 30 trials
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by the fact that the increase in inventory holding costs resulting from the additional
inventory is less than the decrease in the backlog costs.

When disruptions are rare, the topology has a strong impact on the effectiveness
of the inventory mitigation strategy. A decrease in cost can be observed only for
random FMCG and random automotive topologies, where it occurs up to the specific
mitigation level, e.g. the lowest costs for rare and short disruptions occur when
around 25% of firms keep additional inventory. Cost reduction does not occur for
rare disruptions in scale-free FMCG and scale-free automotive topologies, thus, they
do not require as much inventory as random topologies. This is expressed by an
increase in CNET for scale-free FMCG topologies by 836.54% for rare and short
disruptions when all companies apply inventory mitigation, and by 182.64% for
rare and long disruptions (Table 5.4). Similarly to FMCG, scale-free automotive
topologies have CNET increased by 1242.93% for rare and short disruptions, and by
291.27% for rare and long disruptions.

Inventory mitigation strategy always improves fill-rates, regardless of topology (Fig-
ures 5.8 and 5.9). Increase in fill-rate is caused by the fact that companies keep
additional inventory which absorbs any demand oscillations. The FRNET improve-
ment for frequent and long disruptions is 13.43% and 17.44% for random and scale-
free FMCG topologies, respectively. The FRNET improvement for frequent and long
disruptions is 3.73% and 16.88% in random and scale-free automotive topologies, re-
spectively. Scale-free topologies reduce disruption impact better because they reach
higher FRNET than random topologies for all risk profiles. For example, under
frequent and short disruptions, in order to reach 75% FRNET in random FMCG
topology, there needs to be around 100% agents keeping additional inventory. For
scale-free FMCG networks, the same result can be obtained with only 5% of agents
applying inventory mitigation. Under frequent and short disruptions, in order to
reach 65% FRNET in random automotive topology, there needs to be around 100%
agents keeping additional inventory. For scale-free automotive networks, FRNET is
already equal to 78.79% when 0% agents keep additional inventory. On average,
the manufacturer reduces disruption impact better than the whole network for the
majority of the risk profiles for FMCG and automotive topologies. This is because
additional inventory prevents cascading failures across the network, stopping inven-
tory oscillations from reaching the manufacturer. When risk is high, the amount of
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inventory is not enough to stop the failures and the impact of the disruption reaches
the manufacturer.

On average, scale-free networks are more resilient to random disruptions, they re-
duce disruption impact better using inventory mitigation, generate lower CNET and
CMAN , and have higher FRNET and FRMAN . They have higher disruption thresh-
olds and need less inventory than random topologies for the same risk profile. Keep-
ing additional inventory is an effective risk mitigation strategy in a complex supply
network environment as it always increases FRNET and FRMAN , and might decrease
CNET and CMAN depending on the risk profile and topology. The same amount of
inventory decreases total costs for random networks, but increases costs for scale-free
networks under the same conditions.

5.5 Effectiveness of contingent rerouting in theoretical net-
works

Contingent rerouting is not effective for short disruptions because of mailing de-
lay time (mdt). If the disruption duration is short, the disrupted supplier is back
to business before its customer applies contingent rerouting. Delay in application
of contingency strategy causes unnecessary inventory oscillations and results in in-
creased costs and decreased fill-rates for both the manufacturer and the whole net-
work (Figures 5.10, Figures 5.11, 5.12 and 5.13).

Contingent rerouting is effective for long disruptions, but not in all cases. It increases
random FMCG network performance, with an increase in FRNET and FRMAN , and
with a decrease in CNET and CMAN . For scale-free FMCG networks, the strategy
works only for the manufacturer with an increase in FRMAN and a decrease in CMAN .
However, it does not improve the performance of the overall network (Table 5.4).
This happens because the manufacturer has multiple alternative suppliers, whereas
the majority of firms within scale-free network do not have many alternative sourcing
options. Contingent rerouting is not effective even for long disruptions in automotive
topologies. It results from the fact that these topologies have low mean degree, thus
have an average small number of alternative suppliers. Contingent rerouting is
effective for long disruptions in all manufacturers, regardless of topology. This is
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Figure 5.6: (a, b) Network and (c, d) manufacturer’s costs for inventory mitigation
(IM) strategy for FMCG random and scale-free networks (n=103, m=472)
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(a) CNET for random networks
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(b) CNET for scale-free networks
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(c) CMAN for random networks
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Figure 5.7: (a, b) Network and (c, d) manufacturer’s costs for inventory mitigation
(IM) strategy for automotive random and scale-free networks (n=565, m=652)
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(a) CNET for random networks
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(b) CNET for scale-free networks
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(c) CMAN for random networks
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Figure 5.8: (a, b) Network and (c, d) manufacturer’s fill-rates for inventory mitigation
(IM) strategy for FMCG random and scale-free networks (n=103, m=472)
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(a) FRNET for random networks
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(b) FRNET for scale-free networks
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(c) FRMAN for random networks
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Figure 5.9: (a, b) Network and (c, d) manufacturer’s fill-rates for inventory mitigation
(IM) strategy for automotive random and scale-free networks (n=565, m=652)
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(a) FRNET for random networks
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(b) FRNET for scale-free networks
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(c) FRMAN for random networks
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(d) FRMAN for scale-free networks
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Figure 5.10: (a, b) Network and (c, d) manufacturer’s costs for contingent rerouting
(CR) strategy for FMCG random and scale-free networks (n=103, m=472)
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(a) CNET for random networks
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(b) CNET for scale-free networks
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(c) CMAN for random networks
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(d) CMAN for scale-free networks
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Figure 5.11: (a, b) Network and (c, d) manufacturer’s costs for contingent rerouting
(CR) strategy for automotive random and scale-free networks (n=565, m=652)
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(a) CNET for random networks

0 25 50 75 100
0

0.5

1

1.5

2

2.5
·108

Number of agents using CR [%]

C
N
E
T
[$
]

rare short
rare long

frequent short
frequent long

(b) CNET for scale-free networks
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(c) CMAN for random networks
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Figure 5.12: (a, b) Network and (c, d) manufacturer’s fill-rates for contingent rerouting
(CR) strategy for FMCG random and scale-free networks (n=103, m=472)
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(a) FRNET for random networks

0 25 50 75 100
0

10
20
30
40
50
60
70
80
90

100

Number of agents using CR [%]

F
R

N
E
T
[$
]

rare short
rare long

frequent short
frequent long

(b) FRNET for scale-free networks
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(c) FRMAN for random networks
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(d) FRMAN for scale-free networks
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Figure 5.13: (a, b) Network and (c, d) manufacturer’s fill-rates for contingent rerouting
(CR) strategy for automotive random and scale-free networks (n=565, m=652)
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(a) FRNET for random networks
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(b) FRNET for scale-free networks
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(c) FRMAN for random networks
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(d) FRMAN for scale-free networks
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Table 5.4: Effectiveness of mitigation and contingency when all agents apply IM or CR
strategies. % change from when no IM/CR strategy is applied.

FRNET CNET

Topology (n, m) Risk profile IM* CR* IM* CR*

Random
(103,472)

rare, short 22.84% -6.84% 52.71% 24.50%
rare, long 43.32% 2.03% -34.95% -5.88%

frequent, short 38.93% -3.11% -43.75% 19.44%
frequent, long 13.43% 6.63% -31.81% -8.87%

Random
(565,652)

rare, short 23.33% -8.42% 53.31% 52.19%
rare, long 19.23% -0.30% -23.61% 16.47%

frequent, short 11.54% -4.59% -26.09% 60.10%
frequent, long 3.73% -6.16% -16.25% 75.19%

Scale-free
(103,472)

rare, short 3.97% -2.65% 836.54% 58.23%
rare, long 8.58% -1.96% 182.64% 5.53%

frequent, short 21.69% -10.72% 23.27% 42.70%
frequent, long 17.44% -2.65% -32.66% -4.37%

Scale-free
(565,652)

rare, short 2.65% -1.79% 1242.93% 47.67%
rare, long 5.57% -1.50% 291.27% -0.13%

frequent, short 18.64% -10.44% 34.87% 43.44%
frequent, long 16.88% -3.59% -33.71% -4.12%

* IM (inventory mitigation); CR (contingent rerouting)

because all manufacturers have high number of suppliers, implying high number of
alternatives when it comes to applying contingency strategy.

5.6 Summary

In this chapter it has been shown how random and scale-free topologies absorb
disruptions and how inventory mitigation and contingent rerouting strategies are
effective in reducing disruption impact.

It has been observed that: (1) scale-free networks generate lower costs than random
networks; (2) scale-free networks generate higher fill-rates than random networks.
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The results lead to the conclusion that an inventory mitigation strategy clearly
outperforms contingent rerouting for all topology types and the majority of the risk
profiles. The more additional inventory is kept in the network the higher the cost
decrease will be. However, the amount of decrease occurs only up to some threshold
value. When this threshold is passed, additional inventory causes costs to increase.
The topology plays an important role in effectiveness of inventory mitigation because
it influences the threshold value. Scale-free topologies have lower threshold values
than random topologies, which implies that they need less inventory.

The following conclusions about inventory mitigation strategy has been drawn: (1)
Additional inventory always increases fill-rate; (2) Additional inventory might de-
crease or increase costs depending on risk profile and network topology. The ap-
plication of inventory mitigation for rare and long disruptions decreases costs in
random networks and increases costs in scale-free networks; (3) Scale-free networks
have higher disruption tolerance and need less inventory than random topologies for
the same risk profiles.

Contingent rerouting changes costs linearly. Depending on the length of the dis-
ruption; it decreases the costs for long disruptions and increases the costs for short
disruptions. The improvement for long disruptions is possible only in dense topolo-
gies, where agents have multiple alternative suppliers. In sparse topologies, this
strategy did not prove to be effective. Inventory mitigation strategy always im-
proves the fill-rate, whereas contingent rerouting decreases it for the majority of the
cases.

The following conclusions about contingent rerouting strategy have been drawn: (1)
Contingent rerouting is an effective strategy when disruption duration is long. It
decreases costs and increases fill-rates. For short disruptions, there is an increase in
costs and decrease in fill-rate due to inventory oscillations caused by order processing
time; (2) Contingent rerouting is not an effective strategy for networks with low mean
degree due to the low number of alternative suppliers; (3) Contingent rerouting is
effective for firms that have high number of alternative suppliers.

The effectiveness of inventory mitigation and contingent rerouting has been a topic
broadly discussed in the literature. It has been claimed that for long disruptions, the
inventory mitigation does not prove to be an attractive strategy (Dong and Tomlin,
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2012, Talluri et al., 2013, Tomlin, 2006), whereas results in this work show that
the effectiveness of the strategy is highly dependent on the topology and performs
better than contingent rerouting for the majority of the cases. The high effectiveness
of inventory mitigation results from the absorption of inventory oscillations across
the network (Mishra et al., 2016). Low performance of contingent rerouting applied
in rare disruptions comes from high interconnectedness of the supply network; the
supplier which receives the volume of the disrupted competitor has other supply
obligations to meet. The short-term increase in demand in one supplier causes
inventory oscillations to travel through the network creating the bullwhip effect
and generates higher backlogs. Low performance of contingent rerouting in sparse
topologies is caused by the fact that companies do not have alternative suppliers to
source from in case one of them is disrupted.



Chapter 6

Risk management for empirical networks

This chapter extends robustness considerations to empirical networks. The effective-
ness of two empirical networks is assessed and conclusions are made on its effective-
ness in disruption absorption. Next, inventory mitigation and contingent rerouting
strategies are applied. Their effectiveness on empirical networks is compared to their
theoretical equivalents.

6.1 Network-level characteristics of empirical networks

Two empirical networks are considered: the automotive supply network of Maserati
and a fast-moving consumer goods logistics network. The two networks have differ-
ent types of supply entities. The Maserati network is a supply network, where each
node represents an international company engaged in the supply of multiple parts
used in a complex product assembly (Figure 6.2). Links between nodes indicate
the material flow. The fast-moving consumer goods logistics network represents the
internal firm operations, where nodes represent plants, distribution centres and rail
terminals used to transport goods across the network (Figure 6.1).

Visualisations of Maserati and FMCG networks are presented in Figures 6.1 and 6.2.
Basic topological properties of these networks are presented in Table 6.1. The
Maserati network has a higher number of nodes, with 565 nodes and 652 links,
compared with 103 nodes and 472 links in logistics network. The mean degree is
lower almost four times for the Maserati network, which implies its sparsity. The

99
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Table 6.1: Topological properties of empirical networks

Network type n m c C r l

FMCG 103 472 4.54 0.34 0.14 1.58
Maserati 565 652 1.15 0.11 -0.04 0.01

n number of nodes, m number of links, c mean degree,
C transitivity, r assortativity, l mean geodesic distance

mean degree is higher for FMCG topology, as expected from a logistics network, be-
cause products undertake less transformations and more movements from the plants
to distribution centres etc. The rail terminals act as proxies between sites, trans-
porting units across the network. Terminals playing the role of proxies also explain
the high transitivity of the FMCG network. The Maserati network has very low
negative assortativity, which implies that firms do not connect to other firms with
a similar number of business partners. The logistics network is slightly assortative,
which means that hub nodes tend to connect to other hub nodes. This is indeed the
case because terminals which distribute the goods across the network are connected
to other terminals.

Mean geodesic distance is equal to 0.01 for Maserati and 1.58 for FMCG network.
The mean geodesic distances are so low for Maserati and other theoretical networks
because they are acyclic. When there is no path between two nodes (e.g. a path from
the manufacturer to raw-material supplier) a geodesic distance between these nodes
is assumed to be zero. Since in acyclic supply networks only downstream links are
allowed, there are many pairs of nodes which do not have the geodesic path. Non-
existent paths between pair of nodes are not counted in the final sum, resulting
in lower overall mean geodesic distance. The empirical FMCG network has cycles,
with links pointing to upstream and downstream directions, therefore there are more
paths available. Higher mean geodesic distance in the FMCG network does not
practically mean that this distance is very high compared to other networks. Cycles
in FMCG supply network have various effectiveness implications, as discussed later
in this section.

Figures 6.3 and 6.4 present degree distribution for the Maserati and FMCG net-
works. Clearly, these networks distributions do not resemble each other mostly
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Figure 6.1: FMCG company’s logistics network
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Figure 6.2: Maserati supply network
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Figure 6.3: In-degree and out-degree distribution (P(kin), P(kout)) of FMCG network.
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Figure 6.4: In-degree and out-degree distribution (P(kin), P(kout)) of Maserati.
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because one is a supply network and the other is a logistics network. The FMCG
logistics network has higher frequency of nodes with higher degree, as seen on Figure
6.3. Maserati, on the other hand, has much more low-degree nodes than high-degree
nodes. Histograms in Figure 6.4 might resemble power-law, although it has been
observed that scale-free automotive networks reach higher maximum degrees than
Maserati do. Also, there are other differences between Maserati and scale-free net-
works as reported in Tables 5.1, 5.2, and 6.1. There is an ongoing debate as to
the nature of supply network topology, although this is not the scope of this thesis
therefore Maserati and FMCG networks will be treated as separate networks without
being associated neither with scale-free nor random topologies.

6.2 Disruption absorption in empirical networks

This section describes how empirical supply networks react to disruptions. Table 6.2
presents CNET and FRNET of FMCG company and Maserati networks subject to
disruptions. The higher risk, the higher costs and lower fill-rates for the majority
of cases for both networks. The costs are 410 times more for FMCG than Maserati
for rare and short disruptions and 20 times more for frequent and long disruptions.
This is because the FMCG network contains cycles causing inventory oscillations
as mentioned in the validation section in Chapter 4. Figures 6.5 and 6.6 present
comparison between effectiveness of empirical networks under disruptions and their
theoretical equivalents. Empirical FMCG topology generates much higher costs
than random and scale free topologies (Figure 6.5a), and has lower fill-rates (Fig-
ure 6.5b). Maserati topology generates slightly higher costs and lower fill-rates
than scale-free networks, which shows how close the dynamics of empirical supply
networks might be to their scale-free equivalents. Additionally, scale-free automo-
tive networks seem to have higher tolerance to disruption duration generating lower
costs and higher fill rates than Maserati network. Empirical Maserati network has
higher tolerance towards disruption frequency, generating lower costs and higher
fill-rates than scale-free automotive network. Both phenomena are seen in Figures
6.6a and 6.6b. These results bring considerations about topologies being a key
feature determining robustness to different characteristics of risk, such as duration
and frequency.
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Figure 6.5: CNET and FRNET of FMCG company under disruptions compared to its
theoretical equivalents. RS (rare, short); RL (rare long); FS (frequent short); FL (frequent
long)
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Figure 6.6: CNET and FRNET of Maserati under disruptions compared to its theo-
retical equivalents. RS (rare, short); RL (rare long); FS (frequent short); FL (frequent
long)
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Table 6.2: Effectiveness of supply networks exposed to disruptions. σFRNET and σCNET

are standard deviations of fill-rates and costs respectively.

Topology (n, m) Risk profile FRNET
* σFRNET CNET

* σCNET

FMCG
(103,472)

rare, short 34.75% 0.78% 335,585,856.50$ 6,097,455.67$
rare, long 31.51% 2.35% 352,810,431.70$ 21,845,181.67$

frequent, short 29.78% 3.08% 315,820,857.90$ 41,886,940.12$
frequent, long 20.65% 0.56% 490,804,717.40$ 27,941,853.20$

Maserati
(565,652)

rare, short 94.68% 1.40% 817,891.86$ 244,862.63$
rare, long 71.35% 0.96% 6,908,904.30$ 189,694.28$

frequent, short 87.94% 2.12% 2,525,580.33$ 656,619.82$
frequent, long 55.81% 0.97% 23,860,195.52$ 431,143.45$

* average over 5 topologies and 30 trials

6.3 Effectiveness of inventory mitigation in empirical net-
works

In the FMCG company, any amount of inventory reduced costs and increased fill-
rates for the whole network and the manufacturer. For all risk profiles CNET has
decreased by 46.22% to 50.92% when all agents applied inventory mitigation. For all
risk profiles FRNET has been increased by 22.88% to 33.35%. Inventory mitigation
is so effective in FMCG network because the network is unstable, which proves how
effective inventory mitigation is in shock absorption. Nonetheless, FMCG still does
not reach the effectiveness levels of its theoretical equivalents.

The Maserati network is similar to scale-free automotive networks in its resilience to
disruptions, and does not need as much additional inventory as random automotive
networks. The Maserati network needs less inventory for frequent disruptions than
for rare disruptions because costs are increased by "only" 21.14% for rare and short
disruptions, and increased by 205.77% for frequent and short disruptions. Higher
cost increase indicates that the inventory threshold has been passed and adding any
additional amount will result in costs’ increase. Inventory mitigation has increased
fill-rates for the Maserati network for all risk profiles, being the most effective for
rare and long disruptions.
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Figure 6.7: (a, b) Network and (c, d) manufacturer’s costs for inventory mitigation
(IM) strategy for FMCG company and Maserati.
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Figure 6.8: (a, b) Network and (c, d) manufacturer’s fill-rates for inventory mitigation
(IM) strategy for FMCG company and Maserati.
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Figure 6.9: CNET and FRNET of FMCG company compared to its theoretical equiv-
alents when all agents apply IM. RS (rare, short); RL (rare long); FS (frequent short); FL
(frequent long); IM(inventory mitigation).
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Figure 6.10: CNET and FRNET of Maserati compared to its theoretical equivalents
when all agents apply IM. RS (rare, short); RL (rare long); FS (frequent short); FL (frequent
long); IM(inventory mitigation).
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6.4 Effectiveness of contingent rerouting in empirical net-
works

Contingent rerouting is effective for the majority of cases for the FMCG company,
but its effectiveness is dependent on the disruption duration. When disruptions are
long, the fill-rates are improved and costs reduced. When disruptions are short,
both costs and fill-rates are decreased.

Contingent rerouting does not prove to be effective for Maserati. For short and long
disruptions the strategy caused fill-rates to decrease by 1.37% to 9.06% and costs to
increase by 8.96% to 49.64% for most of the time. The ineffectiveness of contingent
rerotuing comes from its low mean degree. Maserati’s mean degree is slightly higher
than 1, which implies that each agent in the network has approximately only one
supplier. There are no alternative suppliers to source from in case when there is
a supplier disruption. Maserati responds to contingent rerouting in a very similar
fashion as scale-free automotive networks. Also, as in previous cases, it is more
effective in reducing disruption impact than scale-free automotive networks exposed
to frequent and short disruptions.

6.5 Summary

In this section, the effectiveness of empirical networks under disruptions has been
evaluated. Also, it has been assessed how empirical networks reduce impact of
disruptions using inventory mitigation and contingent rerouting compared to their
random and scale-free equivalents. Since the empirical FMCG network is a logis-
tics cyclic network, not an acyclic supply network, the conclusions will be drawn
separately for both empirical examples.

Results suggest that: (1) the Maserati network has shown high resilience to dis-
ruptions; (2) Maserati and scale-free networks show sensitivity to the type of risk.
Scale-free networks are more resilient to long disruptions, whereas Maserati is re-
silient to frequent but short disruptions.

The following conclusions have been drawn from application of risk management
strategies in empirical Maserati network: (1) inventory mitigation decreases costs
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Figure 6.11: (a, b) Network and (c, d) manufacturer’s costs for contingent rerouting
(CR) strategy for FMCG company and Maserati.
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Figure 6.12: (a, b) Network and (c, d) manufacturer’s fill-rates for contingent rerouting
(CR) strategy for FMCG company and Maserati.
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Figure 6.13: CNET and FRNET of FMCG company compared to its theoretical equiv-
alents when all agents apply CR. RS (rare, short); RL (rare long); FS (frequent short); FL
(frequent long); CR(Contingent rerouting).
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Figure 6.14: CNET and FRNET of Maserati compared to its theoretical equivalents
when all agents apply CR. RS (rare, short); RL (rare long); FS (frequent short); FL
(frequent long); CR(Contingent rerouting).
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Table 6.3: Effectiveness of mitigation and contingency when all agents apply IM or CR
strategies. % change from when no IM/CR strategy is applied.

FRNET CNET

Topology (n, m) Risk profile IM* CR* IM* CR*

FMCG
(103,472)

rare, short 27.64% -0.40% -46.76% -0.59%
rare, long 28.62% 1.43% -46.22% -3.07%

frequent, short 33.35% -0.76% -50.92% -2.56%
frequent, long 22.88% 9.26% -50.87% -17.63%

Maserati
(565,652)

rare, short 5.06% -2.94% 816.28% 49.64%
rare, long 20.25% -9.06% 21.14% 42.18%

frequent, short 9.13% -2.64% 205.77% 8.96%
frequent, long 10.18% -1.37% -30.89% -3.56%

* IM (inventory mitigation); CR (contingent rerouting)

only for high risk profiles because similarly to scale-free networks, Maserati network
needs less inventory; (2) inventory mitigation always increases fill-rates; (3) contin-
gent rerouting is not effective for short and long disruptions because of the network’s
low mean degree.

It has been observed that in the majority cases the Maserati network reduced
disruption impact almost as well as scale-free networks. Interestingly, Maserati
and scale-free networks showed resilience to different risk types. Namely, Maserati
showed higher resilience to frequent and short disruptions, whereas scale-free net-
works showed higher resilience to rare and long disruptions. This property might
indicate that supply network design with the focus on specific risk profile is possible.

Results of FMCG show that: (1) acyclic logistics network is still able to reduce
disruptions impact despite having order feedback loops; (2) risk management in an
unstable environment causes high effectiveness of these strategies.





Chapter 7

Targeted risk management in automotive net-
works

In this chapter, targeted inventory mitigation and targeted contingent rerouting are
applied in empirical and theoretical automotive networks. The study on targeted risk
management is motivated by the claims of Kleindorfer and Saad (2005), Schmitt and
Singh (2012) who state that improving the weakest link is necessary to improve the
overall network performance. In this study, improving the weakest link is interpreted
as the strategic choice of companies embedded in a supply network to apply risk
management. The strategic choice is informed by the topological position of the firm
(e.g. centrality metrics) or its operational performance obtained without applying
any strategy (e.g. highest costs). First, centrality metrics are applied in random
automotive, scale-free automotive and Maserati networks to identify topologically
critical suppliers. Then, inventory mitigation and contingent rerouting strategies are
applied targeting firms with the highest centrality metrics, highest costs and lowest
fill-rates. The effectiveness of targeted risk management is then compared with
random choice of agents applying the management strategy. Later in this chapter,
random automotive networks are referred to as random, and scale-free automotive
as scale-free.

119
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7.1 Node-level characteristics of automotive networks

The following centrality metrics have been applied for random, scale-free and Maserati
networks: degree k, Katz centrality Ck, authority centrality CA, hub centrality CH ,
closeness centrality CC , radiality centrality CR and betweenness centrality CBT . The
higher the centrality value, the higher the criticality of a specific firm.

Degree k and Katz CK centralities of automotive networks are presented in Figures
7.1, 7.2 and 7.3. The higher the centrality metric, the bigger node size in the figure.
Each metric is normalised using feature scaling, which means that a relationship
between respective centrality values is captured rather than their exact magnitudes.
One random and one scale-free network are chosen to visualise centrality metrics for
demonstration purposes.

Degree is the highest for nodes with the highest number of immediate suppliers, as
observed for 1st tier suppliers in the Maserati network, OEM in scale-free networks,
and multiple other nodes in random networks. The degree centrality distribution of
a random network is uniform because the connections between nodes were chosen
at random. In Maserati and scale-free networks there are only few suppliers with
high degree because in these networks there are many small suppliers selling their
products to a few hubs.

Katz centrality shows similar patterns for all network types, with higher Katz values
closer to the OEM. Katz centrality denotes high undirected risk spread (Ledwoch
et al., 2016). This is because Katz centrality is updated taking into account not
only the immediate number of suppliers, but also the whole structure of the network.
The supply "stress" is propagated downstream, therefore the highest Katz centrality
can be observed in OEMs and their highly connected direct suppliers. One might
observe that nodes sized by Katz centrality in random networks are similar in size,
which implies that values are quite high compared with the biggest value and have
relatively small differences between each other.

Authority and hub centralities for Maserati, random and scale-free networks are
presented in Figures 7.4a, 7.4b, 7.5a,7.5b, 7.6a and 7.6b. For all the networks,
authorities are nodes with the highest number of hubs and hubs are nodes supplying
to authorities. Authority centrality denotes supply pressure and hub centrality
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Figure 7.1: Visualisation of the degree and Katz centralities for Maserati supply net-
work. Nodes are coloured according to the tier, and sized according to their centrality.
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Figure 7.2: Visualisation of the degree and Katz centralities for random automotive
supply network. Nodes are coloured according to the tier, and sized according to their
centrality.
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Figure 7.3: Visualisation of the degree and Katz centralities for scale-free automotive
supply network. Nodes are coloured according to the tier, and sized according to their
centrality.
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denotes customer-side pressure (Ledwoch et al., 2016). Both, in Maserati and scale-
free networks, only few authorities have been identified. In Maserati, an authority
is a single 1st tier supplier, in scale-free network it is a single 1st tier supplier and
an OEM, and in random network these are two suppliers: one in 1st and one i 2nd

tiers. Nodes with high hub centralities are nodes, which are directly supplying to
authorities. In the Maserati network, these are 2nd tier suppliers delivering to a
single authority, in the scale-free network these are mostly 1st tier suppliers, and in
the random network these are few suppliers in 2nd and 3rd tiers.

Closeness and radiality centrality are presented in Figures 7.7, 7.8 and 7.9. They
are associated with the speed of cascading failures (Ledwoch et al., 2016). For all
network types, closeness and radiality are high for all nodes. This implies that the
differences in values between nodes in the same network are small. The closer to the
OEM, the higher closeness and radiality centralities for all networks. The difference
in closeness and radiality centralities between the central and peripheral nodes is
higher for random networks than for scale-free and Maserati. This is because there
are more tiers in random network, therefore the distances and time needed for goods
to travel from the raw-material supplier to the OEM is higher than for the other
topologies.

Betweenness centrality is presented in Figures 7.10 and 7.11. It is associated with
firms being an intermediary and having high risk (Ledwoch et al., 2016). For
Maserati the nodes with high betweenness are also nodes with highest degrees, for
scale-free networks only one node in the network has high betweenness. This implies
that for these networks there are only few critical paths leading from raw-material
suppliers to OEM, and that the network relies heavily on these nodes. If these nodes
suffer from disruption, the operations of that network would be highly disrupted.
Random network has numerous nodes with high betweenness, what would imply
that there are numerous alternative paths from raw-material supplier to the OEM.
This might sound like random networks are more robust, but in fact if disruptions
are random, there is higher chance that a critical supplier will be affected. In scale-
free and Maserati networks, there are only few such path-critical suppliers, therefore
there is very low probability that these suppliers will be affected.

Critical suppliers identified by different centrality metrics often overlap, meaning
that some metrics might perform similarly when applying targeted risk management.
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Figure 7.4: Visualisation of the authority and hub centralities for Maserati supply
network. Nodes are coloured according to the tier, and sized according to their centrality.
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Figure 7.5: Visualisation of the authority and hub centralities for random automotive
supply network. Nodes are coloured according to the tier, and sized according to their
centrality.
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Figure 7.6: Visualisation of the authority and hub centralities for scale-free automotive
supply network. Nodes are coloured according to the tier, and sized according to their
centrality.
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Figure 7.7: Visualisation of closeness, radiality and betweenness centralities for
Maserati supply network. Nodes are coloured according to the tier, and sized according to
their centrality value.
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Figure 7.8: Visualisation of closeness and radiality centralities for random automotive
supply network. Nodes are coloured according to the tier, and sized according to their
centrality.
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Figure 7.9: Visualisation of closeness and radiality centralities for scale-free automotive
supply network. Nodes are coloured according to the tier, and sized according to their
centrality.
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Figure 7.10: Visualisation of betweenness centrality for Maserati supply network.
Nodes are coloured according to the tier, and sized according to their centrality value.
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Figure 7.11: Visualisation of betweenness centrality for random and scale-free auto-
motive supply network. Nodes are coloured according to the tier, and sized according to
their centrality.
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7.2 Targeted inventory mitigation for automotive networks

In this section, results on targeted inventory mitigation will be discussed. The firms
identified to apply risk mitigation are chosen using the following criteria: The highest
degree centrality ki, the highest Katz centrality CKi

, the highest authority centrality
CAi

, the highest hub centrality CHi
, the highest closeness centrality CCi

, the highest
radiality centrality CRi

, the highest betweenness centrality CBTi
, the highest costs

Ci and the lowest fill-rate FRi. For each network instance, 5% of nodes with the
metrics presented are chosen. Results of targeting these nodes to apply mitigation
strategy is compared with random mitigation to identify how the choice of agents
can improve performance. For all networks, targeted nodes were chosen for each
risk profile and topology separately, giving in total 44 different results. Then, for
theoretical networks these results were averaged over 5 topologies of the same type.

The effectiveness of the targeted inventory mitigation is dependent on the topology,
risk profile and targeting strategy applied. For the majority of cases, targeted in-
ventory mitigation does not seem to be an effective strategy for low risk profiles for
Maserati and scale-free networks because costs can be increased by around 400%
- 600% for some targeting strategies. Targeted inventory mitigation performs in
these cases even worse than if inventory mitigation was applied for firms chosen at
random. This is because Maserati and scale-free networks need much less inventory
than random networks, therefore when risk is low, the amount of inventory kept
by agents is higher than needed, generating high inventory holding costs. Usually
nodes which have high centrality have critical positions in the network. The central
location of such nodes implies that these nodes must have high number of suppliers
and that the volume flowing through this node must be significant. If the volume is
significant, the amount of additional inventory kept by that agent also will be very
high, generating high cost. Not all centrality metrics applied in Maserati and scale-
free networks resulted in performance worse than random mitigation. For example,
targeting CHi

in Maserati for rare and short disruptions resulted in increase by 7%,
which is lower than increase by 38.53% when using random mitigation. The effec-
tiveness of inventory mitigation for low risk profile in random networks depends on
the targeting strategy applied. For example, costs were decreased by 15.49%, 8.25%
and 7.18% when targeting CBTi

, CHi
and FRi, respectively, compared to decrease
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by 3.31% when random mitigation was applied. Using other metrics, such as CKi

or CRi
resulted in cost increase by 17.32% and 19.94%, respectively.

Targeted inventory mitigation is effective for high risk profile in all the networks,
decreasing costs and increasing fill-rates, when a certain targeting strategy is applied.
For example, when CAi

is targeted for Maserati for frequent and long disruptions,
there is a decrease in costs by 26.37% and in increase in fill-rates by 2.00%, which
is better than random mitigation. Although, when CHi

is targeted for the same
topology and risk profile, costs are increased by 3.43% and fill-rates decrease by
0.18%.

Targeting the same metric can result in different effects for various risk profiles. For
example, targeting CKi

for rare and short disruptions in Maserati results in cost
increase by 402.16% and fill-rate decrease by 1.65%. Targeting the same metric
in frequent and long disruptions results in cost decrease by 25.73% and fill-rates
increase by 0.70%. Certain metrics, when used as a targeting criteria, can lead to
similar performance outcomes. For example, for rare and short disruptions in scale-
free networks targeting highest ki, CKi

, CAi
, CCi

, CRi
, and Ci results in an increase

in costs by about 621.68% to 650.12%, whereas for frequent and long disruptions cost
decrease by 25.15% to 27.22%. For these centrality metrics, increase and decrease in
costs were within similar ranges for different risk profiles. Targeting using different
centrality metrics results in various responses within the same risk profiles. For
example, ki, CKi

, CAi
, CCi

, CRi
, and Ci decreases costs for Maserati for frequent

and long disruptions, whereas CAi
increases costs for the same conditions.

Similar patterns can be observed for fill-rates. For example metrics FRi, k, CH and
CC increased fill-rates for Maserati for rare and short disruptions, whereas other
metrics have decreased it. For frequent and long disruptions FRi, CH and CC

decreased fill-rates, whereas the other metrics have increased it.

The effect that targeted inventory mitigation has on different topologies can eas-
ily highlight their strengths and weaknesses. For example, costs are increased for
Maserati when targeting nodes for frequent and short disruptions with the range
from 140.31% to 175.20%. For scale-free networks for the same risk profile costs
are usually decreased with the ranges from 1.59% to 2.94%. Such difference means
that the Maserati network needs much less inventory for this risk profile than the
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scale-free network. A similar effect is seen for scale-free networks for rare and long
disruptions, where scale-free networks need less inventory than the Maserati net-
work. These effects suggest that the Maserati network is resilient to frequent and
short disruptions, whereas scale-free networks are resilient to rare and long disrup-
tions, which confirms results obtained in Chapter 6.

7.3 Targeted contingent rerouting for automotive networks

The changes in CNET and FRNET using targeted contingent rerouting are presented
in Figures 7.3 and 7.4. As in the case of inventory mitigation, for contingent rerout-
ing centrality metrics can be divided into clusters of metrics that have similar impact
on the costs for different risk profiles. For example, k, CK , CA, CC , CR and Ci in-
crease costs of random networks for rare and short disruptions by around 35.38% to
65%. CH and CBT increase these costs only by around 4, 5%, whereas FRi decrease
costs by 6.60%. For frequent and long disruptions, CH and CBT increase costs by
7.91% and 13.02% respectively. The rest of centrality metrics increase costs in the
range from 20.65% to 55.08%. In this particular case, CHand CBT increase the costs
less than the rest of centrality metrics.

Centrality metrics prove to be very effective in the Maserati network for rare and
long disruptions, where all of the metrics decrease costs by up to 70% and increase
fill-rates by up to 17%. This is much higher than a random strategy because when
applying targeted contingent rerouting focused on centrality metrics, the suppliers
with high number of business partners are chosen to apply the strategy. Therefore
these "hubs" have numerous suppliers, despite the rest of the network having rather
small number, resulting in high effectiveness of contingent rerouting. Targeted con-
tingent rerouting is not as effective in scale-free networks because they have less
"hubs" than Maserati. Scale-free networks have usually one or two "super-hubs",
whereas Maserati has around 8.

In general, targeted contingency rerouting is not effective for short disruptions,
increasing costs and decreasing fill-rates. For example, targeting highest CC in
Maserati network for frequent and short disruptions results in CNET increase by
325.24% and FRNET decrease by 26.30%, compared to increase in costs by 4.57%
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Table 7.1: The change in CNET for inventory mitigation. The comparison is done for
the case with disruptions between no mitigation and 5% mitigation.

Topology Selection strategy
CNET

RS* RL* FS* FL*

Maserati

Random 38.53% 0.90% 14.25% -1.43%

Targeted

Highest ki 402.16% -36.09% 157.98% -26.97%
Highest CKi

442.56% -36.62% 140.31% -25.73%
Highest CAi

432.42% -18.19% 162.19% -26.37%
Highest CHi

7.71% -57.94% 164.03% 3.43%
Highest CCi

413.28% -36.91% 160.75% -20.61%
Highest CRi

427.77% -21.09% 163.76% -26.45%
Highest CBTi

32.02% -45.94% 164.12% -2.02%
Highest Ci 533.50% -17.21% 175.20% -26.67%
Lowest FRi 3.65% -37.79% 154.87% -23.44%

Random

Random -3.31% -3.83% -2.18% -0.92%

Targeted

Highest ki 11.41% -20.53% -13.81% -9.65%
Highest CKi

17.32% -22.96% -17.96% -9.96%
Highest CAi

2.61% -8.18% -15.68% -10.72%
Highest CHi

-8.25% -8.03% -6.52% -4.40%
Highest CCi

10.41% -15.92% -19.08% -14.20%
Highest CRi

19.94% -12.19% -19.42% -9.00%
Highest CBTi

-15.49% -8.90% -10.82% -3.89%
Highest Ci 33.92% -20.97% -24.28% -13.21%
Lowest FRi -7.18% -15.58% -22.02% -8.08%

Scale-free

Random 56.84% 8.01% -0.08% -1.70%

Targeted

Highest ki 635.22% 133.90% -2.61% -27.22%
Highest CKi

621.68% 117.74% -2.53% -26.31%
Highest CAi

623.48% 135.01% -0.14% -25.12%
Highest CHi

73.80% 26.42% -1.59% 1.04%
Highest CCi

632.34% 128.09% -2.94% -25.23%
Highest CRi

650.12% 133.89% 0.22% -25.58%
Highest CBTi

25.92% -20.79% -2.68% -3.29%
Highest Ci 626.28% 125.43% 0.18% -26.39%
Lowest FRi 27.69% 19.93% 1.20% -26.88%

* R (rare disruptions); F (frequent); S (short); L (long)
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Table 7.2: The change in FRNET for inventory mitigation. The comparison is done for
the case with disruptions between no mitigation and 5% mitigation.

Topology Selection strategy
FRNET

RS* RL* FS* FL*

Maserati

Random 0.26% 0.36% -0.02% 0.32%

Targeted

Highest ki 1.97% 19.52% -16.92% 0.11%
Highest CKi

-1.65% 19.62% -14.11% 0.70%
Highest CAi

-1.02% 12.02% -16.66% 2.00%
Highest CHi

0.19% 15.77% -15.04% -0.18%
Highest CCi

0.53% 16.91% -15.93% -0.05%
Highest CRi

-0.92% 14.06% -16.30% 1.69%
Highest CBTi

0.09% 12.75% -16.50% 0.00%
Highest Ci -0.49% 17.20% -15.57% 2.47%
Lowest FRi 0.66% 19.01% -16.08% -0.07%

Random

Random 1.63% 1.07% 0.50% 0.12%

Targeted

Highest ki 1.49% 1.76% 0.88% 0.41%
Highest CKi

1.50% 1.93% 0.94% 1.06%
Highest CAi

1.88% 1.32% 1.27% 0.34%
Highest CHi

1.35% 1.69% 0.74% -0.16%
Highest CCi

2.16% 1.50% 1.25% 1.20%
Highest CRi

1.25% 1.84% 1.51% 0.82%
Highest CBTi

2.21% 1.36% 1.06% 0.31%
Highest Ci 0.99% 1.15% 1.74% 0.97%
Lowest FRi 1.89% 1.50% 1.25% -0.03%

Scale-free

Random 0.07% 0.59% 1.03% 0.95%

Targeted

Highest ki 0.12% 0.44% 1.59% 1.58%
Highest CKi

0.44% 1.94% 1.98% 1.66%
Highest CAi

0.53% -0.45% 0.95% 0.83%
Highest CHi

-0.69% -1.12% 1.63% 0.77%
Highest CCi

0.30% 0.85% 1.48% 1.57%
Highest CRi

-0.66% 0.00% 0.85% 0.96%
Highest CBTi

0.33% 2.29% 1.64% 2.68%
Highest Ci 0.63% 1.17% 1.05% 1.25%
Lowest FRi 0.05% 1.03% -0.19% 1.32%

* R (rare disruptions); F (frequent); S (short); L (long)
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and decrease in fill-rates by -0.63% when random contingency is applied. The de-
crease in performance for short disruptions is caused by mailing delay time, which
disables an agent to react in time when its supplier is disrupted. When the most crit-
ical suppliers are targeted, the losses are more severe, since these critical suppliers
carry higher volumes than the rest of the network, thus higher potential costs.

Contingent rerouting mostly works for long disruptions, but its effectiveness is de-
pendent on the network structure and targeting strategy. When nodes are chosen at
random for mitigation, the strategy is not effective because Maserati, random and
scale-free networks have low mean degree, meaning that there is low average number
of alternative suppliers. The strategy starts to be effective for targeted contingent
rerouting for scale-free and Maserati networks because nodes with high number of
suppliers are chosen, therefore they have numerous possibilities of rerouting the
disrupted volume to other operational suppliers.

7.4 Summary

In this chapter, targeted risk management strategies have been applied in automotive
networks: random, scale-free and Maserati, where 5% of selected firms were applying
the specific strategy. Different firm targeting criteria have been chosen with the
following conclusions: (1) targeted risk management is dependent of risk profile,
topology and targeting strategy; (2) targeting the weakest company does not always
result in an increased performance; on the contrary, the effectiveness of such a
strategy can be even worse than if management was performed in firms chosen at
random.

The following conclusions have been drawn from targeted risk mitigation: (1) tar-
geted inventory mitigation usually performs worse than random mitigation for low
risk profiles in scale-free and empirical networks because these networks need less
safety stock; (2) targeted inventory mitigation performs better than random for high
risk profile because critical suppliers absorb disruptions better; (3) some targeting
strategies are better for specific risk profiles than others. For example, in Maserati
costs are increased by CA in frequent and long disruptions, but decreased by CCi

;
(4) some metrics have similar effects across different risk profiles. For example, tar-
geting ki, CKi

, CAi
, CCi

, CRi
, and Ci in Maserati increases costs by similar amount
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Table 7.3: The change in CNET for contingent rerouting. The comparison is done for
the case with disruptions between no rerouting and 5% rerouting.

Topology Selection strategy
CNET

RS* RL* FS* FL*

Maserati

Random 6.94% 2.29% 4.57% -0.52%

Targeted

Highest ki 71.75% -44.07% 327.14% 0.81%
Highest CKi

39.04% -46.69% 325.87% -2.69%
Highest CAi

27.87% -73.76% 319.79% -8.08%
Highest CHi

-10.24% -43.66% 189.72% 5.60%
Highest CCi

34.91% -64.26% 325.24% -5.47%
Highest CRi

48.56% -70.14% 320.90% -11.26%
Highest CBTi

33.77% -52.44% 207.04% 1.69%
Highest Ci 46.96% -64.14% 322.15% -6.85%
Lowest FRi 10.32% -65.16% 194.97% -2.05%

Random

Random 0.71% 1.13% 3.24% 2.84%

Targeted

Highest ki 46.29% 15.67% 39.44% 26.65%
Highest CKi

47.02% 4.18% 40.67% 30.79%
Highest CAi

35.38% 14.48% 25.81% 20.65%
Highest CHi

5.51% 5.68% 5.37% 7.91%
Highest CCi

52.23% 6.37% 47.46% 39.03%
Highest CRi

60.26% 8.59% 44.87% 27.00%
Highest CBTi

4.61% 8.69% 11.55% 13.02%
Highest Ci 65.11% 7.05% 44.91% 44.80%
Lowest FRi -6.60% 7.38% 52.04% 55.08%

Scale-free

Random -7.24% 2.93% 2.11% 0.25%

Targeted

Highest ki 28.25% -8.95% 42.63% -4.41%
Highest CKi

51.12% -4.53% 42.86% -2.81%
Highest CAi

80.44% 22.15% 45.99% -4.50%
Highest CHi

2.60% -8.11% 1.30% 0.13%
Highest CCi

64.24% -12.77% 42.04% -4.69%
Highest CRi

29.03% 22.63% 43.48% -6.48%
Highest CBTi

3.05% -6.77% 1.47% 0.00%
Highest Ci 52.78% 13.14% 41.84% -3.81%
Lowest FRi -3.66% -8.12% 41.99% -4.72%

* R (rare disruptions); F (frequent); S (short); L (long)
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Table 7.4: The change in FRNET for contingent rerouting. The comparison is done
for the case with disruptions between no rerouting and 5% rerouting.

Topology Selection strategy
FRNET

RS* RL* FS* FL*

Maserati

Random -0.40% -0.72% -0.63% -0.18%

Targeted

Highest ki -4.98% 10.67% -26.11% -2.14%
Highest CKi

-2.42% 12.35% -26.22% -0.52%
Highest CAi

-1.28% 17.33% -26.37% -0.45%
Highest CHi

0.72% 11.97% -16.68% -0.95%
Highest CCi

-2.82% 14.70% -26.30% -1.66%
Highest CRi

-2.03% 16.00% -26.51% -0.58%
Highest CBTi

-1.83% 12.27% -20.83% -0.49%
Highest Ci -2.90% 13.74% -25.95% -0.31%
Lowest FRi -1.31% 15.30% -20.59% -2.21%

Random

Random -0.41% 0.02% -0.31% -0.19%

Targeted

Highest ki -7.30% -1.07% -2.99% -5.96%
Highest CKi

-7.46% 0.24% -3.26% -6.15%
Highest CAi

-5.94% 0.16% -2.22% -2.79%
Highest CHi

-1.72% -0.05% -0.47% -1.46%
Highest CCi

-8.01% -0.14% -3.48% -7.97%
Highest CRi

-8.02% 0.35% -3.39% -6.24%
Highest CBTi

-3.30% -0.53% -2.55% -4.56%
Highest Ci -7.82% -0.15% -2.91% -4.34%
Lowest FRi 0.35% -0.57% -3.51% -6.83%

Scale-free

Random 0.16% -0.38% -0.56% -0.28%

Targeted

Highest ki -1.20% -0.73% -10.55% -3.82%
Highest CKi

-1.80% -1.10% -9.98% -4.22%
Highest CAi

-2.61% -2.91% -10.70% -3.72%
Highest CHi

-0.03% 0.61% -0.37% 0.02%
Highest CCi

-2.28% -0.74% -10.44% -3.50%
Highest CRi

-1.20% -2.86% -10.45% -2.71%
Highest CBTi

-0.44% -0.33% -1.22% -0.63%
Highest Ci -1.95% -2.13% -10.36% -3.95%
Lowest FRi -0.20% 0.35% -9.96% -3.39%

* R (rare disruptions); F (frequent); S (short); L (long)
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for rare and short disruptions, and decreases costs by similar amount for frequent
and long disruptions.

The following conclusions have been drawn from targeted risk contingency: 1) tar-
geted rerouting is not effective for short disruptions for all cases. Targeting gives
even worse effect than random rerouting; 2) targeted contingent rerouting can be
more effective than random for networks with low mean degree if targeting is applied
on "hubs", nodes with high number of alternative supplier. The effect was observed
only for Maserati and scale-free networks.

In this work it has been proven that risk in complex supply networks can be effec-
tively treated with relatively small cost, if appropriately applied. The effectiveness
of mitigation strategies is dependent on many factors including risk profile, topol-
ogy and targeting strategy. Targeting appropriate nodes, having known the risk
profile and topology can result in a decrease in costs and improvements in customer
service. When targeted risk management is ill-performed without prior knowledge
of risk profile, topology, or suitable targeting strategy it can do more harm than
random risk management, causing an increase in costs and decrease in fill-rates.





Chapter 8

Targeted risk management in FMCG networks

This chapter presents an empirically informed topology, intended as validation for
the artificially generated networks in Chapter 7. The results are similar. It has been
shown that there is not a single selection criteria that would increase the performance
of one risk management strategy for all networks and under all risk profiles, which
highlights the need for topology informed decision-making.

In this chapter, targeted inventory mitigation and targeted contingent rerouting
are applied to theoretical FMCG networks. First, random and scale-free FMCG
topologies and the centrality values of supply chain members are visualised and
discussed. Next, targeted risk management strategies are applied to selected supply
chain members. The selection is guided by two criteria: (a) the suppliers who
suffered the most in experiments from Chapter 5, and (b) the suppliers based on
their topological positions in the network.

Selection of suppliers who suffered the most is guided by highest costs generated
by this supplier and lowest fill-rate achieved during the simulation runs. Selection
of suppliers based on their topological position is guided by suppliers who have the
highest centrality metrics: degree, Katz, authority, hub, closeness, radiality and
betweenness.

Then, selected suppliers, while being exposed to disruptions, apply inventory mit-
igation and contingent rerouting. The effectiveness of targeted risk management
strategies in supply networks is discussed. Here, random FMCG network are re-
ferred to as random, and scale-free FMCG as scale-free.

143



144 Chapter 8. Targeted risk management in FMCG networks

8.1 Node-level characteristics of FMCG networks

The following centrality metrics have been applied for random and scale-free net-
works: degree k, Katz centrality Ck, authority centrality CA, hub centrality CH ,
closeness centrality CC , radiality centrality CR, and betweenness centrality CBT .
Visualisations of networks and corresponding centrality metrics are presented in
Figures 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, and 8.7. The higher the centrality metric, the
bigger the node size in the figure. Each metric is normalised using feature scaling,
which means that a relationship between respective centrality values is captured
rather than their exact magnitudes. One random and one scale-free network are
chosen to visualise centrality metrics for demonstration purposes.

Degree k is presented in Figures 8.1a and 8.2a, which represents the supply chain
members who have the highest number of immediate suppliers. For both random
and scale-free networks these are the OEM, and some of its first tier suppliers. For
scale-free networks there are only few first tier suppliers with high degrees, to which
the majority of the network connects. Katz centrality values are similar to these of
the degree, as noted in Chapter 7.

Authority and hub centralities are presented in Figures 8.3 and 8.4. Similarly to
Chapter 7, hub centralities are high for companies who supply to companies with
high authority centrality. Authority centrality is high for companies who are cus-
tomers of companies who have high hub centrality. Authorities usually have high
number of incoming links; whereas hubs have high number of outgoing links. In
both random and scale-free networks companies with high authority are the OEM
and some first tier suppliers. Companies with high hub centrality are mostly second
tier suppliers for random networks; and majority of 1st tier suppliers in scale-free
networks.

Closeness and radiality centralities are presented in Figures 8.5 and 8.6. Values
of closeness and radiality centralities are similarly distributed across the network;
suppliers with higher values are closer to the OEM, and lower are further away from
the OEM, for both random and scale-free networks. This is because the average path
length is quite small for both networks, as indicated in Chapter 5, which means that
there is relatively low distance between all the nodes.
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Betweenness centrality for random and scale-free networks is presented in Figure
8.7. Companies that have high betweenness in random networks are located mainly
in the first and second tiers. Companies that have high betweenness in scale-free
networks are located in the first tier. There are more nodes with high betweenness
in random networks than in the scale-free network, and this is because the material
flow is more distributed in random networks, which means that there are many
intermediary suppliers and more independent paths from the raw material suppliers
to the OEM. In the scale-free network, the supply is mostly dependent on a few nodes
with high material flow, which means that there are fewer independent supply paths
from raw material suppliers to the OEM. These observations agree with Chapter 7.

8.2 Targeted inventory mitigation for FMCG networks

In this section, results of targeted inventory mitigation are discussed. The com-
panies that apply inventory mitigation are selected according to their performance
from experiments in Chapter 5, and according to their centrality metrics. 5% of
companies with 1) the highest degree centrality k, 2) the highest Katz centrality
CK , 3) the highest authority centrality CA, 4) the highest hub centrality CH , 5) the
highest closeness centrality CC , 6) the highest radiality centrality CR, 7) the highest
betweenness centrality CBT , 8) the highest costs Ci and 9) the lowest fill-rates FRi

were chosen.

Nodes applying inventory mitigation are chosen based on their performance. Results
from each simulation were averaged. The changes with respect to costs and fill-rates
achieved by applying targeted strategy are presented in Tables 8.1 and 8.2. Changes
are presented as a percentage increase or decrease with comparison to the base
scenario where no risk management strategy was applied. These results are then
compared with the effectiveness of risk management when companies that appplied
the strategy were chosen at random.

The results show that the effectiveness of targeted inventory mitigation depends on
the following factors: network topology, risk profile, and targeting criteria. The same
targeting criteria for two different network topologies yield different results. For
example, when additional inventory is kept by companies with high CH in random
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Figure 8.1: Visualisation of the degree and Katz centralities for random FMCG supply
network. Nodes are coloured according to the tier, and sized according to their centrality.

(a) degree k

OEM
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tier 2
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(b) Katz CK

OEM
tier 1
tier 2
tier 3
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Figure 8.2: Visualisation of the degree and Katz centralities for scale-free FMCG supply
network. Nodes are coloured according to the tier, and sized according to their centrality.

(a) degree k OEM
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OEM
tier 1
tier 2
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Figure 8.3: Visualisation of the FMCG and hub centralities for random automotive
supply network. Nodes are coloured according to the tier, and sized according to their
centrality.
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Figure 8.4: Visualisation of the authority and hub centralities for scale-free FMCG
supply network. Nodes are coloured according to the tier, and sized according to their
centrality.
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Figure 8.5: Visualisation of closeness and radiality centralities for random FMCG supply
network. Nodes are coloured according to the tier, and sized according to their centrality.
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Figure 8.6: Visualisation of closeness and radiality centralities for scale-free FMCG
supply network. Nodes are coloured according to the tier, and sized according to their
centrality.

(a) closeness CC
OEM
tier 1
tier 2

(b) radiality CR
OEM
tier 1
tier 2



152 Chapter 8. Targeted risk management in FMCG networks

Figure 8.7: Visualisation of betweenness centrality for random and scale-free FMCG
supply networks. Nodes are coloured according to the tier, and sized according to their
centrality.

(a) betweenness CBT of random FMCG network

OEM
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networks for rare and long disruptions, the costs are decreased by 13.51% and fill-
rates are increased by 9.17%, which is a better result than when random companies
keep additional inventory. On the contrary, when additional inventory is kept by
companies with high CH in scale-free networks for rare and long disruptions, costs
are increased by 39.13% and fill-rates are decreased by 2.66%, and for both cases
the result is worse than if random companies kept additional inventory. This shows
that in order to achieve higher resilience, the selection of companies that keep safety
stock should be informed not only by the topological position, but also the degree
distribution of the supply network.

Furthermore the effectiveness of targeted inventory mitigation for the same selection
criteria might differ for different risk profiles. For example, when companies with
high betweenness centrality apply inventory mitigation in random topology under
rare and short disruptions, the costs are decreased by 10.99% and fill-rates are
increased by 3.78%. A result which yields better results than randomly selected
companies applying the strategy. On the other hand, when the same companies
with high betweenness centrality apply inventory mitigation in random network
under frequent and long disruptions, the costs are increased by 1.55% and fill-rates
are decreased by 1.60%, which is worse than if randomly selected companies applied
the strategy. This means that the effectiveness of targeted inventory mitigation
depend not only on selection criteria of companies applying the strategy, but also
the frequency and duration of disruptions the network is exposed to. For some risk
profiles, regardless of selection criteria for targeted inventory mitigation, costs were
increased. For example, for random networks under frequent and long disruptions,
degree k, CK , CA, CH , CC , CR, Ci, and FRi decreased costs better than when
companies were selected at random. For scale-free networks under frequent and
long disruptions the effect was the same. This means that the risk profile moderates
the extent to which selection criteria influences costs and fill-rates.

The selection criteria for companies that apply inventory mitigation affects how the
strategy improves network fill-rates and decreases the costs. Targeting by differ-
ent centrality metrics might yield completely different results for the same network
topology, under the same risk profile. For example, by selecting companies with
high degree k in random networks the costs were decreased by 20.71%, but when
companies with high Katz centrality were selected, costs were increased by 14.55%.
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Selecting companies with high degree k in random networks exposed to rare and
short disruptions increased fill-rates by 4.56%, whereas selecting companies with
high Katz centrality CK under the same conditions decreases fill-rates by 1.06%.
This shows that the topological position of the company applying risk management
strategy moderates supply network resiliency.

8.3 Targeted contingent rerouting for FMCG networks

In this section, the effect of targeted contingent rerouting are compared for random
and scale-free networks. The costs and fill-rates are presented in Figures 8.3 and
8.4, respectively. Similarly for the case of inventory mitigation, the effectiveness of
the strategy depends on the risk profile, the topology in which it has been applied,
and the selection strategy itself.

The results show that certain groups of metrics affect costs and fill-rates similarly
within different network topologies, and risk profiles. For example, degree k, Katz
centrality CK , authority centrality CA, closeness centrality CC , radiality centrality
CR, and costs C increase CNET by 36 - 41% for scale-free networks exposed to
frequent and short disruptions. The same group of metrics increase CNET by 31-
58% in scale-free networks exposed to rare and short disruptions.

Some metrics are effective in decreasing costs for both random and scale-free net-
works, regardless of the risk profile. An example of such a metric is betweenness
centrality CBT , which decreases costs in random networks by 11.79%, 13.12%, 5.28%,
and 2.47% for rare and short, rare and long, frequent and short, and frequent and
long disruptions respectively. Targeting agents by betweenness centrality CBT de-
creases costs also for scale-free networks by 5.64%, 2.82%, and 2.34% for i) rare and
long, ii) frequent and short, and iii) frequent and long disruptions, respectively.

Other metrics show to be effective in increasing fill-rates for one topology but not
the other. For example, closeness centrality CC increased fill-rates by 1.90%, 2.57%,
0.55%, 3.28% in random networks exposed to rare and short, rare and long, frequent
and short, and frequent and long disruptions, respectively. Targeting suppliers by
closeness centrality decreases fill-rates for scale-free networks in majority of risk
profiles by 1.48%, 12.93%, and 5.55% for i) rare and short, ii) frequent and short, and
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Table 8.1: The change in CNET for inventory mitigation. The comparison is done for
the case with disruptions between no mitigation and 5% mitigation.

Topology Selection strategy
CNET

RS* RL* FS* FL*

Random

Random -4.27% -3.82% -3.27% -1.29%

Targeted

Highest ki -20.71% -10.05% -5.73% -2.23%
Highest CKi

14.55% -15.37% -9.09% -10.03%
Highest CAi

-1.43% -15.95% -13.62% -8.74%
Highest CHi

1.62% -13.51% -5.03% -4.40%
Highest CCi

3.63% -13.33% -8.28% -6.58%
Highest CRi

-11.60% -5.67% -10.82% -3.93%
Highest CBTi

-10.99% 2.98% -4.36% 1.55%
Highest Ci 0.60% -21.21% -14.75% -9.25%
Lowest FRi -26.44% -10.13% -8.36% -1.76%

Scale-free

Random 41.31% 10.27% -0.33% -1.72%

Targeted

Highest ki 379.79% 54.65% -6.70% -21.82%
Highest CKi

393.51% 77.46% -4.51% -22.85%
Highest CAi

381.09% 62.78% -6.35% -24.39%
Highest CHi

6.10% 39.13% -1.62% -4.33%
Highest CCi

373.34% 77.14% -9.50% -23.96%
Highest CRi

384.80% 63.70% -5.90% -24.88%
Highest CBTi

15.27% -18.42% -8.28% -1.36%
Highest Ci 382.36% 72.74% -5.09% -22.68%
Lowest FRi 30.99% -15.60% -2.17% -23.43%

* R (rare disruptions); F (frequent); S (short); L (long)
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Table 8.2: The change in FRNET for inventory mitigation. The comparison is done for
the case with disruptions between no mitigation and 5% mitigation.

Topology Selection strategy
FRNET

RS* RL* FS* FL*

Random

Random 2.86% 5.65% 3.80% 2.16%

Targeted

Highest ki 4.56% 6.58% 5.75% 1.82%
Highest CKi

-1.06% 6.34% 2.58% 3.64%
Highest CAi

3.24% 3.72% 6.83% 2.84%
Highest CHi

-0.77% 9.17% 3.85% 2.89%
Highest CCi

0.13% 9.38% 5.77% 3.96%
Highest CRi

2.79% 4.81% 8.40% 3.73%
Highest CBTi

3.78% 4.92% 5.50% 1.60%
Highest Ci 4.90% 9.90% 5.20% 2.89%
Lowest FRi 6.46% 11.18% 5.38% 0.56%

Scale-free

Random 0.25% 0.24% 1.20% 1.35%

Targeted

Highest ki 0.86% 3.52% 3.32% 0.89%
Highest CKi

-0.15% -0.03% 2.66% -0.29%
Highest CAi

0.80% 2.52% 2.84% 1.75%
Highest CHi

1.05% -2.66% 2.16% 1.52%
Highest CCi

1.34% 0.37% 4.38% 1.81%
Highest CRi

0.43% 2.19% 2.86% 2.09%
Highest CBTi

0.63% 3.08% 4.52% 0.25%
Highest Ci 1.28% 1.53% 2.99% 1.17%
Lowest FRi 0.21% 3.14% 2.00% 1.33%

* R (rare disruptions); F (frequent); S (short); L (long)
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iii) frequent and long disruptions, respectively. Targeting with closeness centrality
CC is better than random supplier selection in random networks, but is worse than
random supplier selection in scale-free networks.

In general, targeted contingent rerouting is not effective for short disruptions in
agreement with conclusions in Chapter 5, 6, and 7. This is due to the mailing delay
time which slows down time of agent’s reaction to the supplier’s disruption. When
the disruption is short, the disrupted supplier is already back in business when the
agent applies contingent rerouting, leading to unnecessarily increased demand in
other operational suppliers, therefore increased oscillations in the network. This
has been shown in Appendix A, where the customer demand fluctuations caused
by contingent rerouting strategy misinformed the operational supplier about the
possible increase in general demand pattern, rather than the temporary oscillation
caused by a disruption.

Using targeted contingent rerouting seems to be more effective in random networks
than in scale-free networks. Similar conclusions have been drawn in Chapter 5, al-
though in Chapter 5 the strategy was applied in randomly chosen suppliers. When
suppliers are chosen at random in random FMCG network, there is a higher proba-
bility that an agent with multiple suppliers are chosen, whereas in scale-free FMCG
networks there is a higher probability that an agent with a few or single suppliers
is selected. This makes contingent rerouting more effective in random networks be-
cause there is a higher probability of high-degree suppliers to be chosen. Although,
in targeted contingent rerouting, suppliers chosen are usually suppliers with high
topological position, such as the OEM, first tier suppliers etc. These agents usually
have high number of connections, therefore high potential to have many alternative
suppliers when it comes to applying contingent rerouting. For example, a decrease
in fill-rates by 5.41% and 6.07% in scale-free networks exposed to long disruptions
when targeting by degree k is surprising. The low effectiveness of targeted contingent
rerouting in Chapter 8, but not in Chapter 7, might have been caused by high den-
sity of networks under experimentation. High density would imply that inventory
oscillations caused by contingent rerouting are more likely to affect more companies,
resulting in higher backlogs and therefore higher costs and lower fill-rates.
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Table 8.3: The change in CNET for contingent rerouting. The comparison is done for
the case with disruptions between no rerouting and 5% rerouting.

Topology Selection strategy
CNET

RS* RL* FS* FL*

Random

Random -2.01% -3.25% 2.25% -0.76%

Targeted

Highest ki -2.52% 6.24% -8.40% -8.45%
Highest CKi

16.70% -6.54% 2.72% -12.43%
Highest CAi

7.51% -7.64% 1.45% -4.37%
Highest CHi

-16.25% -10.73% -1.30% -3.59%
Highest CCi

-19.12% 2.03% -5.00% -7.07%
Highest CRi

1.65% 8.35% -3.52% -5.95%
Highest CBTi

-11.79% -13.12% -5.28% -2.47%
Highest Ci 25.39% -9.26% 8.28% -3.76%
Lowest FRi -0.76% -0.69% 3.48% -0.01%

Scale-free

Random 2.88% -2.93% 3.56% -0.66%

Targeted

Highest ki 58.45% 43.27% 36.77% -4.42%
Highest CKi

23.07% -8.16% 36.95% -3.99%
Highest CAi

57.83% 6.98% 38.01% -5.16%
Highest CHi

6.12% 22.57% -7.97% 0.63%
Highest CCi

38.70% -12.23% 39.47% -6.32%
Highest CRi

31.71% 19.98% 37.60% -6.13%
Highest CBTi

13.48% -5.64% -2.82% -2.34%
Highest Ci 47.25% -15.27% 40.84% -4.97%
Lowest FRi 34.08% -0.94% 2.38% -2.73%

* R (rare disruptions); F (frequent); S (short); L (long)
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Table 8.4: The change in FRNET for contingent rerouting. The comparison is done
for the case with disruptions between no rerouting and 5% rerouting.

Topology Selection strategy
FRNET

RS* RL* FS* FL*

Random

Random 0.05% 0.97% -1.07% 1.12%

Targeted

Highest ki -0.98% -0.87% 3.93% 4.53%
Highest CKi

-5.76% 2.69% -0.44% 6.49%
Highest CAi

-4.18% 2.29% -0.94% 2.80%
Highest CHi

1.93% 2.95% -0.32% 3.81%
Highest CCi

1.90% 2.57% 0.55% 3.28%
Highest CRi

-1.14% -2.43% 1.02% 3.59%
Highest CBTi

0.49% 5.00% 1.20% 2.68%
Highest Ci -5.59% 5.53% -3.01% 3.65%
Lowest FRi 0.06% 3.14% -0.86% 3.10%

Scale-free

Random -0.16% 0.20% -1.03% -0.31%

Targeted

Highest ki -2.29% -5.41% -13.01% -6.07%
Highest CKi

-0.93% -0.13% -12.60% -7.28%
Highest CAi

-2.21% -1.73% -12.84% -5.45%
Highest CHi

-0.01% -1.64% 2.97% -1.45%
Highest CCi

-1.48% 0.19% -12.93% -5.55%
Highest CRi

-1.20% -3.13% -12.86% -5.01%
Highest CBTi

-0.35% 0.89% 0.54% 0.27%
Highest Ci -1.71% 0.79% -12.10% -5.37%
Lowest FRi -0.71% 1.01% 0.26% -6.74%

* R (rare disruptions); F (frequent); S (short); L (long)
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8.4 Summary

In this chapter, targeted risk management strategies have been applied in random
and scale-free FMCG networks. The inventory mitigation and contingent rerouting
strategies were applied in 5% companies which had certain characteristics: (a) suf-
fered the most from disruptions, as expressed by experiments in Chapter 5, and (b)
have specific topological position as informed by centrality metrics. In conjunction
with Chapter 7, this chapter yields similar lessons, mainly:

1. targeted risk management is dependent on the risk profile, topology and target-
ing strategy. Targeting by certain selection criteria might prove to be effective
in one scenario but not the other;

2. targeting the weakest company does not always result in increased effectiveness
of the system and sometimes it might decrease it;

3. targeted inventory mitigation performs better than random in high risk pro-
files;

4. targeted inventory mitigation performs worse than random in low risk profiles
because of excessive inventory carried over a long period of time;

5. targeted contingent rerouting performs worse than random when networks are
exposed to short disruptions;

6. targeted contingent rerouting does not always work for long disruptions. This
is because of inventory oscillations that are likely to propagate more in dense
networks.



Chapter 9

Discussion and Conclusions

9.1 Overall discussion and conclusions

Supply chain risk management involve practices that are well understood on the
local scale. However, the effectiveness of these strategies in different supply network
topologies has thus far not been investigated.

Following a literature review which identified widely practiced risk management
strategies, two strategies were chosen to represent flexibility and redundancy based
approaches, namely inventory mitigation and contingent rerouting. Network topolo-
gies include 11 automotive supply network topologies and 11 topologies informed by
a real case in the fast-moving consumer goods industry. Automotive topologies con-
sist of 1 empirical Maserati supply network, 5 random and 5 scale-free topologies
which were generated based on the empirical example. Fast-moving consumer goods
topologies consisted of 1 empirical logistics network, 5 random supply networks and
5 scale-free supply networks which were generated based on the empirical example.
Due to the ongoing debate as to the nature of supply network topology, empiri-
cal networks were treated separately. Theoretical random and scale-free topologies
were chosen because of a lack of consensus on complex supply network topology in
the extant empirical literature; and, thus, reflect the extreme ends of the possible
topological continuum.

A simulation approach was developed to test which strategy, at what level, in which
topology results in a better performance for the manufacturer and for the overall
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network. Performance criteria included both network and the manufacturer’s fill-
rate and associated costs. Next, the study was extended to targeted inventory
mitigation and targeted contingent rerouting, where the weakest firms embedded in
the automotive supply networks were selected to apply risk management strategy.
The experiments were performed to conclude how firm’s position can influence the
effectiveness of a risk management strategy.

The results are discussed to conclude on the influence of network topology on supply
chain resilience. Resilience is expressed as the ability of a network to fulfil customer
demand regardless of its part being perturbed.

The work on how network topology influences disruption impact is concluded as
follows, thus answering 1st research objective:

1. Different topologies absorb disruptions differently. Maserati and scale-free
automotive networks under disruptions generate lower costs and higher fill-
rates than random networks. Scale-free FMCG networks generate lower costs
and higher fill-rates than random networks. The FMCG empirical network
generate the highest costs and lowest fill-rates than other networks because it
contains cycles;

2. Topology of a supply network impacts resilience to different risk types. The
Maserati network is more resilient to frequent and short disruptions, whereas
scale-free networks are more resilient to rare but long disruptions. Both net-
works generate similar costs and fill-rates in other risk profiles.

The above conclusions show that different supply network topologies moderate the
impact of disruptions differently. Scale-free supply networks suffer less from ran-
dom disruptions than random supply networks, which has also been observed in
network science literature with regard to other network types (Barabasi and Albert,
1999, Nair and Vidal, 2011, Thadakamalla et al., 2004, Zhao et al., 2011). This is
because when a network is exposed to random disruptions, there is higher proba-
bility of a peripheral node being disrupted in scale-free networks. These peripheral
nodes, while disrupted, tend to affect smaller numbers of nodes resulting in reduced
impact of disruptions on network performance. The Maserati network respond to
disruptions similarly as scale-free networks due to existence of hubs. The Maserati
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network and scale-free networks are able to satisfy customer demand better while
being perturbed, therefore they show increased resilience to random disruptions.

The results on inventory mitigation in theoretical and empirical networks are as
follows, answering the 2nd research objective:

1. Additional inventory always increases fill-rate;

2. Additional inventory might decrease or increase costs depending on risk profile
and network topology. Application of inventory mitigation for rare and long
disruptions decreased costs in random automotive, random FMCG and FMCG
networks and increased costs in scale-free automotive, scale-free FMCG and
Maserati networks;

3. Scale-free automotive, scale-free FMCG and Maserati networks have higher
disruption tolerance and need less inventory than random automotive and
random FMCG topologies for the same risk profiles.

4. Maserati needs less inventory in frequent and short disruptions, scale-free au-
tomotive networks need less inventory in rare and long disruptions.

5. Inventory mitigation has proven to be very effective in networks prone to
instabilities, such as FMCG empirical network, regardless of the risk profile
applied.

It has been shown that when additional inventory is kept in the supply network,
the impact of the disruption is usually smaller than if this inventory is not present.
This is evidenced by high fill-rates. When a network is resilient while companies
apply inventory mitigation, it does not have to necessarily imply that this network
generates low costs. This is because when companies keep additional inventory they
incur additional inventory holding costs. If the disruption impact on the companies
embedded in a network is lower, or if companies return to their desired inventory
quicker, they will carry more inventory. This has been shown in Appendix B, where
inventory mitigation indeed increases resilience of the network by reducing the im-
pact of the disruption on companies, however also significantly increases costs. Sim-
ilar observations were made by Colicchia et al. (2010), Tomlin (2006), who mention



164 Chapter 9. Discussion and Conclusions

that inventory mitigation is not effective in some risk profiles because excessive in-
ventory is carried for long periods of time resulting in high inventory holding costs.
Similar observations are reported in Chapters 5 and 6 for some scenarios, however
it has been shown that inventory mitigation can be also cost effective.

When the amount of additional inventory is just right, it not only improves fill-rates,
but also decreases costs because additional inventory has a reduction effect on the
disruptions (Kamalahmadi and Parast, 2017, Mishra et al., 2016). The amount of
inventory needed is moderated by risk profile, as reported by (Kurano et al., 2014),
but also by network topology. The amount of inventory that is "just right" for a
specific topology and a specific risk profile can be defined as the inventory threshold.
When additional inventory exceeds this threshold, higher fill-rates can be achieved
but also costs incurred are higher due to excessive inventory carried out for long
periods of time. When additional inventory is below the threshold, lower fill-rates
are achieved, but also higher costs are incurred because of backlog costs generated
when there is not enough inventory. The threshold therefore represents a good
balance between inventory holding costs and backlog costs.

Interestingly, network topology also affects the inventory threshold value. The
threshold value is lower for scale-free networks and empirical Maserati network,
and higher for random networks. This implies that scale-free networks need less
additional inventory to achieve the same fill-rates as random networks. Moreover
they generate higher inventory holding costs with the same amount of additional
inventory as random networks. Network topology affects the threshold because it
affects the resilience to random disruptions (Barabasi and Albert, 1999, Mari et al.,
2015). There is higher probability that a peripheral company will be disrupted in
networks with scale-free property; and when a peripheral company is disrupted it af-
fects less firms embedded in the supply network, resulting in higher fill-rates. When
less firms are affected by the disruption, less additional inventory is needed.

In summary, inventory mitigation proves to be a good shock absorption mechanism,
ensuring the production continuity and decreasing the impact of disruptions on the
overall network, therefore increasing resilience of the complex supply network.

The conclusions on contingent rerouting, answering 3rd research objective, are as
follows:
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1. The effectiveness of contingent rerouting depends on the risk profile of the
network. Contingent rerouting is not effective for short disruptions because
of mailing delay time, where it increases costs and decreases fill-rates. The
strategy might be effective for long disruptions, but its effectiveness depends
on the topology in which it has been applied.

2. The effectiveness of contingent rerouting depends on topology. The strategy
is not effective in networks where majority of nodes have small number of
alternative suppliers, such as scale-free FMCG networks;

3. Contingent rerouting is not effective in networks with a low mean degree, such
as scale-free automotive, random automotive and Maserati because majority
of firms have small number of alternative suppliers.

Literature highlights the dominance of flexibility-based approaches over redundancy-
based approaches (Carvalho et al., 2012, Dong and Tomlin, 2012, Talluri et al.,
2013). In contrast, this thesis results show that contingent rerouting does not always
increase the resilience of the supply network.

As shown in Chapters 5 and 6, contingent rerouting was effective only when the
network was exposed to long disruptions. It did not work for short disruptions
because of the mailing delay time. The mailing delay is the time it takes the order
to reach the supplier. This implies a lag in executing contingent rerouting, therefore
a long reaction time to a supplier’s disruption. Before the company realises that
its supplier is disrupted, the supplier becomes operational again. The company
still reroutes the order volumes, affecting operational suppliers. Appendix B shows
the inventory dynamics in such a situation, and proves that an agent redirecting the
volume to operational supplier actually causes more disruption for this supplier. This
is because the operational supplier does not realise that the network experiences a
disruption, therefore it counts an unexpected increase in demand as a valid customer
demand pattern, therefore orders more to accommodate for future demand. Later,
this excessive inventory is not really needed and creates additional inventory holding
costs. Contingent rerouting in scale-free networks might be beneficial for the OEM,
but not necessarily for the rest of the network.
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The reason why literature claims the dominance of the strategy over inventory mit-
igation might come from the fact that it has not been explored how the strategy
affects companies that do not apply the contingency strategy.

In this thesis, it has been shown that most of the time, contingent rerouting neg-
atively impacts the majority of supply chain members in short disruptions and
therefore do not increase resilience of the network. Contingent rerouting might in-
crease resilience of the network by increasing fill-rates when certain criteria are met:
(a) companies applying the strategy must have multiple suppliers available; (b) the
time needed to implement the strategy (the response time) must be shorter than
the duration of the disruption.

The conclusions on targeted inventory mitigation, answering the 4th research objec-
tive, are as follows:

1. Targeted inventory mitigation might increase performance of the overall net-
work if applied appropriately. The targeting strategy was mostly effective in
high risk profiles.

2. Targeting the weakest firms does not always increase performance of the overall
network. For example, for low risk profiles costs were higher than when random
inventory mitigation was applied.

3. Different targeting strategies perform better in various risk profiles. For ex-
ample, CH and CBT perform better than others in rare and short disruptions,
but perform worse for frequent and long disruptions.

4. Maserati reduces disruption impact better better in rare and long disruptions
using different targeting strategies than scale-free networks. Scale-free net-
works reduce disruption impact more effective than Maserati for frequent and
short disruptions.

The conclusions on targeted contingent rerouting, answering 5th research objective,
are as follows:
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1. Targeting the weakest firms does not always increase performance of the overall
network. For example, targeting firms in short disruptions resulted in higher
costs and lower fill-rates than if random contingency was applied because this
strategy is not effective when disruption duration is short;

2. Certain targeting strategies are more effective in specific risk profiles than
others. For example, targeting CHi

decreased costs and increased fill-rates for
Maserati in rare and short disruptions, whereas targeting ki increased costs
and decreased fill-rates;

3. Targeted contingent rerouting is more effective in Maserati in rare and long
disruptions than in random and scale-free because: (a) targeted nodes usually
have high number of alternative suppliers; (b) Maserati network is vulnerable
to rare and long disruptions, therefore it reduces disruption impact better
using the strategy.

4. Targeted contingent rerouting showed to be less effective in scale-free FMCG
networks than in scale-free automotive networks. This is because scale-free
FMCG networks are more dense, hence inventory oscillations affect more sup-
pliers and imply higher backlogs and lower fill-rates.

Literature mentions that in order to improve the performance of the whole system,
the weakest company needs to be strengthened (Kleindorfer and Saad, 2005, Schmitt
and Singh, 2012). However, in this work it has been shown that this is not always
the case. This is because supply chains often have been treated as hierarchical
structures, whereas they are complex systems with multiple inter-firm dependencies
and non-trivial dynamics. In a complex system a small change might invoke a
significant response; therefore strengthening the weakest firm does not necessarily
result in increased performance.

Targeted inventory mitigation in the majority of experiments did not decrease costs,
nor improved fill-rates when the network was exposed to low risk profiles; and did
not perform better than randomly selecting companies that apply the strategy.

This is because: (1) excessive amount of inventory was kept for long periods of
time, and (2) the companies that were chosen to carry the additional inventory had
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a strategic position implying that in general they dealt with higher inventories. Deal-
ing with high inventories implied high inventory carrying costs. Low effectiveness of
targeted inventory mitigation in low risk profiles implies that additional inventory
might not be needed in firms occupying central topological positions, but rather on
the peripheries. Peripheral companies keeping additional inventory would prevent
the disruption from affecting companies further downstream.

On the other hand, targeted inventory mitigation proven to be effective for high risk
profiles, by decreasing costs and increasing fill-rates. This implies that when risk is
high, the inventory might be needed more in the centrally-located companies rather
than on the peripheries.

In most cases, targeted contingent rerouting worked better in random automotive
networks for longer disruptions than when companies were selected at random, be-
cause mostly hubs were targeted. However, the strategy did not work well in FMCG
scale-free networks because of high density of the network as discussed in Chapter 8.
High density implied that more companies were affected by inventory oscillations.

Targeted risk management experiments have shown that applying risk management
strategies in supply chain members guided by centrality metrics, or how much the
companies have suffered from disruptions needs to be applied with extra care because
the supplier selection strategy will greatly affect the resilience of the supply network.
The effectiveness of the targeting strategy depends not only on the selection criteria,
but also on the risk profile and topology in which firms are embedded. This implies
that what works for one supply network, might not work for another.

This work, thus, shows that network topology plays a crucial role in reducing im-
pact of disruptions, which motivates for topology-informed decision-making. The
results show that inventory mitigation outperforms contingent rerouting for the ma-
jority of cases, implying that additional inventory serves as a useful shock absorp-
tion mechanism. Moreover, it is shown that different topologies exhibit different
responses to risk duration and frequency. This observation suggests the need for
topology-informed supply network design, which enables resilience to certain risk
types. Experiments on targeted risk management suggest that targeting nodes is a
powerful tool in cost reduction, although when applied inadequately it might cause
severe damages in costs and customer service.
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One needs to bear in mind that strategies considered are not a one-fits-all solution
and they might increase other types of risks e.g. inventory risks (Chopra and Sodhi,
2004). Also, the network-focused approach discussed in this thesis is only applica-
ble if the companies have at least a rough idea of the topological and operational
characteristics of their supply network.

This research is the foundation for the following managerial implications:

1. The literature often had underestimated inventory mitigation as the risk man-
agement strategy; this research shows that it serves well in the majority of
cases as an effective disruption absorption mechanism.

2. Some supply networks need less inventory than others, therefore it is important
to identify the level at which the inventory starts to be excessive for a specific
topology and risk profile.

3. Contingent rerouting has proven to be the less effective and harder to imple-
ment than inventory mitigation in a complex supply network setting; In order
for contingent rerouting to work well, specific conditions need to be met: (1)
the majority of supply chain members need to have multiple alternative sup-
pliers, which might turn out not to be practical in real-world scenarios; (2) the
response time has to be less than the disruption duration, otherwise it results
in increased inventory oscillations and drop in effectiveness of this strategy.

4. Since supply network topologies showed resilience to different risk types, it is
possible to design a supply network in a way that it is resilient to specific risk
e.g. frequent disruptions.

5. Targeted risk management can be a very effective tool to remedy impact of
disruptions. However it is necessary to understand the role each firm plays
in the supply network. If misaligned, the strategy that initially was aimed at
decreasing risk might significantly hurt the performance of the overall system.

In order to understand how to remedy effects of disruptions in the extended supply
network, it is necessary to have a visibility beyond one’s direct suppliers and cus-
tomers. With the current advances in the information technology, it is a matter of
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time when partial, or even complete, supply network information will be available to
all stakeholders. This research showed that topology is a crucial variable when con-
sidering supply chain resilience, and in the future supply networks might be designed
in a way to absorb disruptions and reduce disruption impact more effectively.

9.2 Novelty and contribution to knowledge

Although resilience of supply networks has already been a topic broadly discussed in
the literature, for the first time the influence of supply network topology on its ability
to reduce disruption impact using risk management strategies has been tackled in a
fully dynamic environment, where each supplier is an independent decision-maker.
For the first time, costs and fill-rates of different supply network topologies have
been compared to conclude on the effectiveness of broadly used risk management
strategies, namely inventory mitigation and contingent rerouting. Moreover, to the
best of the author’s knowledge, supply network members have not been targeted to
apply certain risk management strategies to conclude how strengthening the weakest
firm in the network will affect the overall network performance.

9.3 Research limitations and future work

In this section, limitations of this study are reviewed to provide direction for the
future research.

Firstly, the agent-based model that has been built, assumes perfect substitutability
of goods. This has implications on the results of simulations. If companies were
sourcing multiple products, they would need to carry more stock for each product/-
component. More stock implies more costs, which in turn might show that inventory
mitigation is less cost effective. However, inventory mitigation might be shown to
still increase resilience of the supply network because it would enable production
continuity. For example, when products A and B are used to manufacture a prod-
uct C, if product A is stocked-out, the company might halt orders of product B
as well because product C will not be able to be manufactured without product
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A anyway. Additional inventory would create a buffer against disruptions of other
supply chain members and therefore increase fill-rates.

Product substitutability would also affect effectiveness of contingent rerouting. A
company which has multiple suppliers might not be able to apply contingent rerout-
ing strategy if these suppliers deliver different products. For example, if a company
has two suppliers where one supplier delivers product A and the other product B,
if the supplier delivering product A is disrupted, the company will not be able to
reroute the order volumes to the other operational supplier because it supplies a
different product. This would create a situation where many companies are not able
to apply contingent rerouting strategy due to lack of multiple suppliers of the same
product. Further study is needed to investigate the effect of imperfect substitutabil-
ity.

Multi-product considerations give rise to a discussion on product criticality. Some
goods might not be equally important. For example, if the product A is a critical
component to manufacture product C; and product B can be substituted, then
a disruption of supplier delivering product A would cause the customer to halt
production. Moreover, a company sourcing the critical part/component might want
to have more than just one supplier for this part, or seek for an alternative source
when the critical component supplier is disrupted.

Another limitation is that the agent-based model developed in this thesis does not
allow the possibility to reorganise network structure, whereas in reality supply net-
works continuously evolve and change over time (Pathak et al., 2007). This would
imply that if a supplier fails often, the company might seek a more reliable supplier,
and destroy or form new supplier-customer connections with agents. The impact
of this kind of behaviour might improve network resilience because it would ensure
production continuity, but could also increase inventory oscillations in the network
since it would change the companies customer demand patterns.

Thirdly, only two strategies as an example of redundancy and flexibility approaches
has been used. In the future, more mitigation and contingency strategies could be
explored.

This research considers only disruption risk, but more risk types could be incorpo-
rated, such as fluctuating demand risk, or economic or political risks.
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It has also to be noted here that all companies within an agent-based model had the
same probability of being disrupted. In the real world, this might not be the case.
Some suppliers might be more reliable than others.

Degree, Katz, hub, authority, closeness, betweenness and radiality centralities, costs
and fill-rate have been chosen as a criteria to target the suppliers to apply chosen
risk management strategy, but other metrics could be used.

Finally, other empirical supply networks could be considered.
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Appendix A

Rationale of choice for simulation parameters

A.1 Trial and error experiments

This appendix presents the trial and error experiments performed on supply network
topologies to understand how disruption duration and disruption frequency affect
the overall network performance. It has been observed that with an increase in
disruption frequency and duration, network performance decreases i.e. costs increase
and fill-rates decrease for all network types. Although this behaviour is observed
up to some point. If the disruption frequency and duration are unnaturally high
(i.e. suppliers are always disrupted) the performance starts to increase i.e. costs
decrease and fill-rates increase. This phenomenon occurs because when all suppliers
are disrupted at all times, there is a material flow freeze, where no one sells nor
buys from each other. When there are no transactions, the inventories stay at the
same level and there is no unmet demand because there is no demand at all. This is
observed in Figures A.1, A.2, A.3 and A.4, where costs CNET increase approximately
to the middle of the diagram and FRNET decrease up to the middle of the diagram.
After mid-point, costs start to decrease and fill-rates increase. Unnaturally high risk
should not be considered in the model because even if non-zero probability these are
situations that do not happen in the real-life and moreover distort the simulation
results.
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Figure A.1: CNET of FMCG random 1 and scale-free 1 networks under different
disruption frequency and duration. Frequency and duration are expressed on x-axis by
numbers with % and w , respectively.
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Figure A.2: FRNET of FMCG random 1 and scale-free 1 networks under different
disruption frequency and duration. Frequency and duration are expressed on x-axis by
numbers with % and w , respectively.
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Figure A.3: CNET of Maserati random 1 and scale-free 1 networks under different
disruption frequency and duration. Frequency and duration are expressed on x-axis by
numbers with % and w , respectively.
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Figure A.4: FRNET of Maserati random 1 and scale-free 1 networks under different
disruption frequency and duration. Frequency and duration are expressed on x-axis by
numbers with % and w , respectively.
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A.2 Choice of topologies

5 scale-free and 5 random topologies were generated for each empirical topology, giv-
ing 5 random automotive, 5 scale-free automotive, 5 random FMCG, and 5 scale-free
FMCG topologies. The choice of number of generated topologies was guided by the
decrease of the standard error for both costs and fill-rates; 5 topologies were enough
to decrease the standard error and adding more topologies would not significantly
increase the accuracy of the results. The standard error for networks under frequent
and long disruptions was plotted in Figures A.5 and A.6 for 100% agents applying
inventory mitigation; and in Figures A.7 and A.8 for 100% agents applying contin-
gent rerouting. Frequent and long disruptions were chosen for presentation because
these form the highest risk profile considered in this thesis, therefore will result in
the highest standard error. It is possible to observe that the more topologies con-
sidered in the experimentation, the lower the standard error for fill-rates. Standard
error of costs increases slightly when two topologies are considered because a new
supply network topology is added which increases variability of the results. Then,
adding even more topologies results in a decrease in standard errors to the point
when it is not significantly improved beyond five topologies. Additionally, to show
the proximity of results obtained and replication of patterns across the same family
of topologies, extended plots are presented in Figures A.9, A.10, A.11, A.12, A.13,
A.14, A.15, A.16.
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Figure A.5: CNET standard error decrease in scale-free and random networks while
adding more topologies for frequent and long disruptions for inventory mitigation (IM).
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Figure A.6: FRNET standard error decrease in scale-free and random networks while
adding more topologies for frequent and long disruptions for inventory mitigation (IM).
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Figure A.7: CNET standard error decrease in scale-free and random networks while
adding more topologies for frequent and long disruptions for contingent rerouting (CR).

1 2 3 4 5
0

1

2

3

4

5

6

7
·106

Number of topologies

SE
of
C

N
E
T
[$
]

(a) automotive networks

1 2 3 4 5
0

1

2

3
·106

Number of topologies

St
an

da
rd

er
ro
r
of
F
R

N
E
T
[$
]

random
scale-free

(b) FMCG networks

Figure A.8: FRNET standard error decrease in scale-free and random networks while
adding more topologies for frequent and long disruptions for contingent rerouting (CR).
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Figure A.9: Inventory mitigation random 1 FMCG and scale-free FMCG 1 (n=103,
m=472), 0.5% 1 week (star) and 10% 5 weeks, CNET
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Figure A.10: Inventory mitigation random FMCG 1 and scale-free FMCG 1 (n=103,
m=472), 0.5% 1 week (star) and 10% 5 weeks, FRNET
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Figure A.11: Contingent rerouting random FMCG 1 and scale-free FMCG 1 (n=103,
m=472), 0.5% 1 week and 10% 5 weeks, CNET
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Figure A.12: Contingent rerouting random FMCG 1 and scale-free FMCG 1 (n=103,
m=472), 0.5% 1 week and 10% 5 weeks, FRNET
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Figure A.13: Inventory mitigation random 1 and scale-free 1 automotive, 0.5% 1 week
(star) and 10% 5 weeks, CNET
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Figure A.14: Inventory mitigation random 1 and scale-free 1 automotive, 0.5% 1 week
(star) and 10% 5 weeks, FRNET
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Figure A.15: Contingent rerouting random 1 and scale-free 1 automotive, 0.5% 1
week and 10% 5 weeks, CNET
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Figure A.16: Contingent rerouting random 1 and scale-free 1 automotive, 0.5% 1
week (star) and 10% 5 weeks, FRNET
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Appendix B

Evidence of the model dynamics

n this appendix, the dynamics of an agent-based model, where agents are embedded
in an exemplary supply network, will be explored under four scenarios: (a) with-
out a disruption, (b) with a disruption, (c) with a disruption applying inventory
mitigation, (d) and with a disruption applying contingent rerouting. The purpose
of these scenarios is to show how inventory levels (S) and customer demand (D)
change when agents are exposed to a disruption.

The network topology which has been used as the basis for experimentation is pre-
sented in Figure B.1. It consists of the OEM, two first tier suppliers (suppliers 1
and 2), and three second tier suppliers (suppliers 3, 4, and 5). This network will be
exposed to four scenarios (a), (b), (c), and (d) summarised in Table B.1.

Table B.1: Appendix A scenarios

Scenario Disruption Applying inven-
tory mitigation

Applying contin-
gent rerouting

(a) - - -
(b) supplier 3 in 6th week - -
(c) supplier 3 in 6th week the OEM, suppliers

1, 2, 3, 4, and 5
-

(d) supplier 3 in 6th week - the OEM, suppliers
1, 2, 3, 4, and 5
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All agents follow anchor-and-adjust inventory policy as described in Chapter 4. The
initial order for the OEM is 1400 units per week. As mentioned in the Chapter 4,
the OEM has a single dummy agent as a customer that pulls the demand, although
this dummy agent is not the part of the topology. The OEM then splits the order
equally between it’s suppliers, giving order of 700 units to supplier 1 and 700 units
to supplier 2. Because supplier 1 has two suppliers 3 and 4, it again splits its order
equally between these, giving initial order of 350 units submitted to supplier 3 and
order of 350 units submitted to supplier 4. Supplier 2 has only one supplier, therefore
order of 700 units is directly submitted to supplier 5. Suppliers 3, 4, and 5 get their
supplies from dummy agents. Dummy agents attached to these suppliers provide
infinite amount of raw materials, and as mentioned in Chapter 4, are there to only
to provide continuous flow of goods and are not the part of the topology.

There is a one week order mailing delay, which means that when an agent submits
an order to its supplier, it will arrive one week later. Goods need two weeks time to
be delivered to the customer after they are shipped by the supplier. The simulation
is run for 30 weeks only for the demonstration purposes (500 week-long simulations
were performed for main thesis experiments).

The scenario (a) is the agent-based simulation run without disruptions. Each agent
in each week sells exactly the same amount of goods as it receives from its suppliers,
therefore it does not carry any inventory and the customer demand is constant. In-
ventory (Si,t) and customer demand (Di,t) for all agents are presented in Figure B.2.
It can be observed that the inventory levels for the OEM, Suppliers 1, 2, 3, 4, and 5
are constant and are equal to zero; and that the customer demand for each agent is
also constant and its value depends on the position of the agent: 1400 units/week
for the OEM, 700 units/week for suppliers 1, 2, and 5, 350 units/week for suppliers
3 and 4.

Costs generated in scenario (a) are equal to 0$ for each agent, CNET is equal to 0,
and COEM is equal to 0. Goods which are received by an agent are immediately
sold to the customer, therefore no excess inventory is hold nor backlog is generated.
Fill rates are equal to 100% for each agent, FRNET and FROEM are equal to 100%
because the demand for each agent is constant. Here, CNET and COEM are sum
of costs generated by all network members and costs generated by the OEM, re-
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Figure B.1: Supply network topology under investigation

spectively. FRNET and FROEM are the average fill-rates achieved by all network
members and fill-rates achieved by the OEM, respectively.

Next three scenarios focus on the effect of a single disruption on stock and demand
dynamics in the presented supply network. Supplier 3 is disrupted in the 6th week
of operations and the disruption lasts for one week.

The stock and demand dynamics for scenario (b) are presented in Figure B.3. From
the plots it is possible to observe that the affected agents are: the OEM, suppliers
1, 3, and 4. In the week of the disruption, Supplier 3 experiences no demand from
supplier 1 and no supplies from the dummy agent, therefore its stock level stays the
same as in the previous week. The disruption does not affect stock of supplier 1
until week 7 because there are still goods in transit from supplier 3 that are being
delivered to supplier 1. As soon as supplier 1 realises that supplier 3 will not be
able to fulfil its demand due to the disruption, it increases its orders. Supplier 1
increases its order in week 7, but it is received by suppliers 3 and 4 in week 8 due
to the mailing delay. This can be seen on the demand plots of supplier 3 and 4 in
week 8. The unexpected demand jump experienced by supplier 4 makes it to stock
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Figure B.2: Stock and customer demand dynamics for scenario (a): No disruptions

(a) OEM (b) Supplier 1

(c) Supplier 2 (d) Supplier 3

(e) Supplier 4 (f) Supplier 5
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Table B.2: Scenario (a): costs and fill-rates

Agent Costs (C) Fill-rates (FR)
OEM 0.0$ 100.00%

Supplier 1 0.0$ 100.00%
Supplier 2 0.0$ 100.00%
Supplier 3 0.0$ 100.00%
Supplier 4 0.0$ 100.00%
Supplier 5 0.0$ 100.00%
Network 0.0$ 100.00%

out in the same week, and therefore to experience a backlog of almost 400 units for
a duration of 2 weeks.

When supplier 3 becomes operational after the disruption, it receives double amount
of goods from its suppliers because goods in-transit accumulated from the previous
week. It also receives an increased order from supplier 1, which causes supplier 3 to
stock-out in week 11 creating a backlog of around 300 units for the period of one
week. Suppliers 3 and 4 return to their initial stock levels, but interestingly supplier
3 returns faster than supplier 4. This means that the non-disrupted supplier felt the
post-disruption effects for longer than the supplier that was originally disrupted.
This phenomenon is caused by the way companies forecast their demand. When
supplier 4 experienced an increase in the demand it has identified it as a valid
demand pattern, as it did not have the knowledge that supplier 3 was disrupted.
Supplier 4 forecasted that it will need more inventory in the future to accommodate
higher demand, which resulted also an increase in desired supply line. Because the
demand quickly returned to its original level, supplier 4 has been left with an excess
inventory in the weeks following the disruption. Supplier 3 returned to desired
inventory level quicker because: (1) While the supplier was disrupted it experienced
demand of 0 in that week, which balanced out with the following increase in customer
demand. The supplier was more accurate when predicting future demand; (2) It had
higher inventory levels post-disruption because it received goods from current week
and the week it was disrupted. Higher inventory levels resulted in lower backlog
post-disruption.
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Supplier 1 and the OEM have similar responses to the disruption, but the timing of
experiencing the backlog differs for both agents. Supplier 1 experiences the backlog
in week 8 and it lasts for 8 weeks; the OEM experiences backlog in week 10 and
it lasts for 8 weeks. The difference can be explained by the shipment delay. The
OEM and supplier 1 experience backlogs because of a knock-on effect: supplier 3 did
not supply goods while it was disrupted, therefore supplier 1 could not fully fulfil
the order of the OEM, therefore the OEM could not fulfil the order of the dummy
customer agent.

Despite the OEM and supplier 1 experiencing backlogs it is possible to observe that
their customer demand is constant. This is because orders are backordered, i.e.
the goods have been promised to be delivered at a later time therefore there is no
need for OEM to order more from supplier 1. The backlog the OEM experiences
reflects the time needed for the supplier 1 to fulfil all the backlogged orders that
were promised to the OEM. As it can be observed from the plots in Figure B.3,
suppliers 2 and 5 did not suffer from the disruption. This is due to steady orders
submitted by the OEM to supplier 2.

Costs and fill-rates generated by agents in scenario (b) are presented in Table B.3.
As observed previously, suppliers 2 and 5 did not suffer from the disruption gen-
erating costs equal to 0$, and fill-rates equal to 100%. The OEM and supplier 1
generated the same costs of 3269.0$ because they experienced the same backlog pat-
terns, although shifted in time. Supplier 1 experienced lower fill-rate than the OEM
because in general supplier 1 deals with lower volumes than the OEM. This means
that when the backlog magnitude was the same for the OEM and for the supplier
1, it hurt more the supplier 1 because it fulfilled lesser percentage of customer order
volumes than the OEM. Interestingly, supplier 4 suffered more from the disruption
than supplier 3 itself.

This scenario carries an important finding, as it shows that the disruption can: (a)
affect not only direct business partners of the disrupted supplier, but also it can go
beyond that; and (b) the connectivity patters are crucial in understanding who will
be affected by a disruption and to what extend. For example, if supplier 1 had more
suppliers than two, maybe the fluctuation of order volumes would affect its suppliers
less.
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Figure B.3: Stock and customer demand dynamics for scenario (b): Disruptions

(a) OEM (b) Supplier 1

(c) Supplier 2 (d) Supplier 3

(e) Supplier 4 (f) Supplier 5
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Table B.3: Scenario (b): costs and fill-rates

Agent Costs (C) Fill-rates (FR)
OEM 1925.0$ 95.56%

Supplier 1 1925.0$ 91.13%
Supplier 2 0.0$ 100.00%
Supplier 3 1873.6$ 95.08%
Supplier 4 1786.1$ 93.65%
Supplier 5 0.0$ 100.00%
Network 7509.7$ 95.90%

In scenario (c) the disruption of a supplier 3 in the 6th week is repeated; but this
time all agents keep additional inventory during the simulation run. The additional
inventory of agents is equated to the initial order amount, as specified at the be-
ginning of this appendix, and can be seen as a red line in the stock dynamics part
of the plot in the Figure B.4. First observation from the plots can be that unlike
in scenario (b), the OEM is not affected by the disruption. The additional stock
prevented supplier 1 to experience backlog, therefore all goods ordered by the OEM
were delivered on time. This shows that inventory mitigation, in this particular
case, caused the network to be more resilient because agents were able to fulfil the
customer demand better despite being perturbed. However, additional inventory did
not prevent supplier 4 from suffering. The inventory dynamics resemble patterns
seen in scenario (b), although it is shifted vertically upwards as the desired inven-
tory is higher. Despite agents keeping additional inventory, it takes similar time for
suppliers 3 and 4 to return to their original stock levels as in the scenario (b). This
is because the desired inventory of these suppliers is higher than in scenario (b),
therefore they need to undertake the same efforts to return to the original inventory
levels. Interestingly, the time to return to desired inventory level is shorter for sup-
plier 1 when compared with scenario (b). In scenario (c) it took supplier 1 only 3
weeks, compared to 8 weeks in scenario (b). This shows that for some suppliers the
time to return to desired inventory might be improved, thus resulting in increased
resilience.

When looking closer at the costs generated by each agent, one might see a significant
increase when compared to scenario (b). Costs generated are almost 100 times
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Figure B.4: Stock and customer demand dynamics for scenario (c): Inventory mitiga-
tion

(a) OEM (b) Supplier 1

(c) Supplier 2 (d) Supplier 3

(e) Supplier 4 (f) Supplier 5
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Table B.4: Scenario (c): costs and fill-rates

Agent Costs (C) Fill-rates (FR)
OEM 350700.0$ 100.0%

Supplier 1 175000.0$ 100.0%
Supplier 2 175350.0$ 100.0%
Supplier 3 88761.1$ 100.0%
Supplier 4 88411.1$ 100.0%
Supplier 5 175350.0$ 100.0%
Network 1053572.2$ 100.00%

higher, and this is caused by excessive amount of inventory carried by each agent.
However, this scenario is evaluating impact of only one disruption, when in reality
companies are embedded in a complex supply network which might be exposed to
multiple disruptions simultaneously.

Interestingly, supplier 3 incurred slightly higher costs than supplier 4. This is be-
cause in scenario (b) supplier 4 experienced higher backlog for longer period of time
than supplier 3, and this was the main source of incurring high costs. On the other
hand, in scenario (c) the additional stock reduced the impact of the disruption on
supplier 4 which did not experience any backlog.

Inventory mitigation increased resilience of the whole network as: (1) it enabled
agents to keep their fill-rates high; and (2) smaller number of agents were affected
by the disruption when comparing to scenario (b). The main disadvantage of the
inventory mitigation strategy is that it might be very expensive as excessive amount
of inventory is carried for a long period of time. It might be necessary to adjust
additional inventory to the level which suits the company and reflects the risks.

In scenario (d), agents apply contingent rerouting when exposed to a supplier’s
disruption. In this particular supply network only supplier 1 will be applying the
strategy since it is directly affected by disruption of supplier 3. When supplier 3 is
disrupted in the 6th week, supplier 1 redirects the order volume to supplier 4. This
can be seen in week 8, when supplier 3 does not experience any customer demand
and supplier 4 experiences demand of 700 units. Supplier 4 experiences a backlog of
500 units for the duration of 3 weeks. The magnitude and duration of the backlog is
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Table B.5: Scenario (d): costs and fill-rates

Agent Costs (C) Fill-rates (FR)
OEM 6265.7$ 91.82%

Supplier 1 5295.2$ 83.61%
Supplier 2 0.0$ 100.00%
Supplier 3 2486.6$ 94.32%
Supplier 4 5279.8$ 86.15%
Supplier 5 0.0$ 100.00%
Network 19327.3$ 92.65%

in fact higher and longer than in scenario (b). This is caused by supplier 1 increasing
order submitted to supplier 4. In scenario (b) supplier 1 ordered equally from both
around 500 units, whereas in scenario (d) supplier 1 ordered 700 units only from
supplier 4. This made the supplier 4 to stock out quicker and therefore order more
goods than in scenario (b). More goods, when arrived in week 13 turned out to be
redundant because the increase in demand was a customer reaction to a disruption,
not a long-term demand pattern. Applying contingent rerouting by supplier 1 turned
out not only to confuse supplier 4, but also had negative effects on the rest of the
network. For example, it took much longer for the OEM and supplier 1 to return to
their desired inventory levels than in both scenario (b) and (c). In fact, only around
week 30 the OEM and supplier 1 managed to return to their original inventories.

Costs generated for all supply network agents are higher for scenario (d) when
contingent rerouting was applied by supplier 1, than in scenario (b) where risk
management strategies were not applied. The resilience of the system also decrease
because: (1) suppliers are not able to fulfil customer demand as well as in scenario b);
and (2) suppliers return to their desired inventories slower and experience backlogs
for longer period of times. The reason why contingent rerouting does not work very
well here is because of mailing delay. Supplier 1 acts too slowly compared to the
duration of the disruption. Supplier 1 receives the information about supplier 3
being disrupted in week 6, then orders solely from supplier 4 in week 7. The order
is received by supplier 4 in week 8 due to the mailing delay. In week 8, supplier 3 is
already operational and the strategy does not prove to be effective.
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Figure B.5: Stock and customer demand dynamics for scenario (d): Contingent rerout-
ing

(a) OEM (b) Supplier 1

(c) Supplier 2 (d) Supplier 3

(e) Supplier 4 (f) Supplier 5
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In this appendix, it has been shown that the disruption of a supplier might affect
not only its direct business partners, but also might go beyond that. Scenarios
(b), (c), and (d) showed that that not only the customer of disrupted supplier was
affected, but most importantly its competitor and the customer’s customer. It was
possible to observe that the risk management strategies applied by the suppliers
have an enormous effect not only on them, but also on the other companies that are
connected to them. This suggests that the connectivity patters of suppliers influence
supply network resilience.





Appendix C

Evidence of the model data

Results generated by Appendix’a A scenarios (a), (b), (c), and (d) are presented
below. It is on-hand inventory in week t, St is stock in week t, Dt is customer
demand in week t, Ot is order submitted to suppliers in week t, At is amount of
goods that arrived in week t, ELt is forecasted demand, sum(O) is the total amount
of goods ordered in previous weeks, sum(UD) is the sum of unmet demands until
week t.

C.1 Scenario (a)

C.1.1 OEM

I_t S_t D_t O_t A_t EL_t sum(O) sum(UD) t

0.0 0.0 1400.0 1400.0 1400.0 1400.0 0.0 0.0 1

0.0 0.0 1400.0 1400.0 1400.0 1400.0 1400.0 0.0 2

0.0 0.0 1400.0 1400.0 1400.0 1400.0 2800.0 0.0 3

0.0 0.0 1400.0 1400.0 1400.0 1400.0 4200.0 0.0 4

0.0 0.0 1400.0 1400.0 1400.0 1400.0 5600.0 0.0 5

0.0 0.0 1400.0 1400.0 1400.0 1400.0 7000.0 0.0 6

0.0 0.0 1400.0 1400.0 1400.0 1400.0 8400.0 0.0 7

0.0 0.0 1400.0 1400.0 1400.0 1400.0 9800.0 0.0 8

0.0 0.0 1400.0 1400.0 1400.0 1400.0 11200.0 0.0 9

0.0 0.0 1400.0 1400.0 1400.0 1400.0 12600.0 0.0 10

0.0 0.0 1400.0 1400.0 1400.0 1400.0 14000.0 0.0 11

0.0 0.0 1400.0 1400.0 1400.0 1400.0 15400.0 0.0 12

215
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0.0 0.0 1400.0 1400.0 1400.0 1400.0 16800.0 0.0 13

0.0 0.0 1400.0 1400.0 1400.0 1400.0 18200.0 0.0 14

0.0 0.0 1400.0 1400.0 1400.0 1400.0 19600.0 0.0 15

0.0 0.0 1400.0 1400.0 1400.0 1400.0 21000.0 0.0 16

0.0 0.0 1400.0 1400.0 1400.0 1400.0 22400.0 0.0 17

0.0 0.0 1400.0 1400.0 1400.0 1400.0 23800.0 0.0 18

0.0 0.0 1400.0 1400.0 1400.0 1400.0 25200.0 0.0 19

0.0 0.0 1400.0 1400.0 1400.0 1400.0 26600.0 0.0 20

0.0 0.0 1400.0 1400.0 1400.0 1400.0 28000.0 0.0 21

0.0 0.0 1400.0 1400.0 1400.0 1400.0 29400.0 0.0 22

0.0 0.0 1400.0 1400.0 1400.0 1400.0 30800.0 0.0 23

0.0 0.0 1400.0 1400.0 1400.0 1400.0 32200.0 0.0 24

0.0 0.0 1400.0 1400.0 1400.0 1400.0 33600.0 0.0 25

0.0 0.0 1400.0 1400.0 1400.0 1400.0 35000.0 0.0 26

0.0 0.0 1400.0 1400.0 1400.0 1400.0 36400.0 0.0 27

0.0 0.0 1400.0 1400.0 1400.0 1400.0 37800.0 0.0 28

0.0 0.0 1400.0 1400.0 1400.0 1400.0 39200.0 0.0 29

0.0 0.0 1400.0 1400.0 1400.0 1400.0 40600.0 0.0 30

C.1.2 Supplier 1

I_t S_t D_t O_t A_t EL_t sum(O) sum(UD) t

0.0 0.0 700.0 700.0 700.0 700.0 0.0 0.0 1

0.0 0.0 700.0 700.0 700.0 700.0 700.0 0.0 2

0.0 0.0 700.0 700.0 700.0 700.0 1400.0 0.0 3

0.0 0.0 700.0 700.0 700.0 700.0 2100.0 0.0 4

0.0 0.0 700.0 700.0 700.0 700.0 2800.0 0.0 5

0.0 0.0 700.0 700.0 700.0 700.0 3500.0 0.0 6

0.0 0.0 700.0 700.0 700.0 700.0 4200.0 0.0 7

0.0 0.0 700.0 700.0 700.0 700.0 4900.0 0.0 8

0.0 0.0 700.0 700.0 700.0 700.0 5600.0 0.0 9

0.0 0.0 700.0 700.0 700.0 700.0 6300.0 0.0 10

0.0 0.0 700.0 700.0 700.0 700.0 7000.0 0.0 11

0.0 0.0 700.0 700.0 700.0 700.0 7700.0 0.0 12

0.0 0.0 700.0 700.0 700.0 700.0 8400.0 0.0 13

0.0 0.0 700.0 700.0 700.0 700.0 9100.0 0.0 14

0.0 0.0 700.0 700.0 700.0 700.0 9800.0 0.0 15

0.0 0.0 700.0 700.0 700.0 700.0 10500.0 0.0 16

0.0 0.0 700.0 700.0 700.0 700.0 11200.0 0.0 17

0.0 0.0 700.0 700.0 700.0 700.0 11900.0 0.0 18

0.0 0.0 700.0 700.0 700.0 700.0 12600.0 0.0 19
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0.0 0.0 700.0 700.0 700.0 700.0 13300.0 0.0 20

0.0 0.0 700.0 700.0 700.0 700.0 14000.0 0.0 21

0.0 0.0 700.0 700.0 700.0 700.0 14700.0 0.0 22

0.0 0.0 700.0 700.0 700.0 700.0 15400.0 0.0 23

0.0 0.0 700.0 700.0 700.0 700.0 16100.0 0.0 24

0.0 0.0 700.0 700.0 700.0 700.0 16800.0 0.0 25

0.0 0.0 700.0 700.0 700.0 700.0 17500.0 0.0 26

0.0 0.0 700.0 700.0 700.0 700.0 18200.0 0.0 27

0.0 0.0 700.0 700.0 700.0 700.0 18900.0 0.0 28

0.0 0.0 700.0 700.0 700.0 700.0 19600.0 0.0 29

0.0 0.0 700.0 700.0 700.0 700.0 20300.0 0.0 30

C.1.3 Supplier 2

I_t S_t D_t O_t A_t EL_t sum(O) sum(UD) t

0.0 0.0 700.0 700.0 700.0 700.0 0.0 0.0 1

0.0 0.0 700.0 700.0 700.0 700.0 700.0 0.0 2

0.0 0.0 700.0 700.0 700.0 700.0 1400.0 0.0 3

0.0 0.0 700.0 700.0 700.0 700.0 2100.0 0.0 4

0.0 0.0 700.0 700.0 700.0 700.0 2800.0 0.0 5

0.0 0.0 700.0 700.0 700.0 700.0 3500.0 0.0 6

0.0 0.0 700.0 700.0 700.0 700.0 4200.0 0.0 7

0.0 0.0 700.0 700.0 700.0 700.0 4900.0 0.0 8

0.0 0.0 700.0 700.0 700.0 700.0 5600.0 0.0 9

0.0 0.0 700.0 700.0 700.0 700.0 6300.0 0.0 10

0.0 0.0 700.0 700.0 700.0 700.0 7000.0 0.0 11

0.0 0.0 700.0 700.0 700.0 700.0 7700.0 0.0 12

0.0 0.0 700.0 700.0 700.0 700.0 8400.0 0.0 13

0.0 0.0 700.0 700.0 700.0 700.0 9100.0 0.0 14

0.0 0.0 700.0 700.0 700.0 700.0 9800.0 0.0 15

0.0 0.0 700.0 700.0 700.0 700.0 10500.0 0.0 16

0.0 0.0 700.0 700.0 700.0 700.0 11200.0 0.0 17

0.0 0.0 700.0 700.0 700.0 700.0 11900.0 0.0 18

0.0 0.0 700.0 700.0 700.0 700.0 12600.0 0.0 19

0.0 0.0 700.0 700.0 700.0 700.0 13300.0 0.0 20

0.0 0.0 700.0 700.0 700.0 700.0 14000.0 0.0 21

0.0 0.0 700.0 700.0 700.0 700.0 14700.0 0.0 22

0.0 0.0 700.0 700.0 700.0 700.0 15400.0 0.0 23

0.0 0.0 700.0 700.0 700.0 700.0 16100.0 0.0 24

0.0 0.0 700.0 700.0 700.0 700.0 16800.0 0.0 25

0.0 0.0 700.0 700.0 700.0 700.0 17500.0 0.0 26
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0.0 0.0 700.0 700.0 700.0 700.0 18200.0 0.0 27

0.0 0.0 700.0 700.0 700.0 700.0 18900.0 0.0 28

0.0 0.0 700.0 700.0 700.0 700.0 19600.0 0.0 29

0.0 0.0 700.0 700.0 700.0 700.0 20300.0 0.0 30

C.1.4 Supplier 3

I_t S_t D_t O_t A_t EL_t sum(O) sum(UD) t

0.0 0.0 350.0 350.0 350.0 350.0 0.0 0.0 1

0.0 0.0 350.0 350.0 350.0 350.0 350.0 0.0 2

0.0 0.0 350.0 350.0 350.0 350.0 700.0 0.0 3

0.0 0.0 350.0 350.0 350.0 350.0 1050.0 0.0 4

0.0 0.0 350.0 350.0 350.0 350.0 1400.0 0.0 5

0.0 0.0 350.0 350.0 350.0 350.0 1750.0 0.0 6

0.0 0.0 350.0 350.0 350.0 350.0 2100.0 0.0 7

0.0 0.0 350.0 350.0 350.0 350.0 2450.0 0.0 8

0.0 0.0 350.0 350.0 350.0 350.0 2800.0 0.0 9

0.0 0.0 350.0 350.0 350.0 350.0 3150.0 0.0 10

0.0 0.0 350.0 350.0 350.0 350.0 3500.0 0.0 11

0.0 0.0 350.0 350.0 350.0 350.0 3850.0 0.0 12

0.0 0.0 350.0 350.0 350.0 350.0 4200.0 0.0 13

0.0 0.0 350.0 350.0 350.0 350.0 4550.0 0.0 14

0.0 0.0 350.0 350.0 350.0 350.0 4900.0 0.0 15

0.0 0.0 350.0 350.0 350.0 350.0 5250.0 0.0 16

0.0 0.0 350.0 350.0 350.0 350.0 5600.0 0.0 17

0.0 0.0 350.0 350.0 350.0 350.0 5950.0 0.0 18

0.0 0.0 350.0 350.0 350.0 350.0 6300.0 0.0 19

0.0 0.0 350.0 350.0 350.0 350.0 6650.0 0.0 20

0.0 0.0 350.0 350.0 350.0 350.0 7000.0 0.0 21

0.0 0.0 350.0 350.0 350.0 350.0 7350.0 0.0 22

0.0 0.0 350.0 350.0 350.0 350.0 7700.0 0.0 23

0.0 0.0 350.0 350.0 350.0 350.0 8050.0 0.0 24

0.0 0.0 350.0 350.0 350.0 350.0 8400.0 0.0 25

0.0 0.0 350.0 350.0 350.0 350.0 8750.0 0.0 26

0.0 0.0 350.0 350.0 350.0 350.0 9100.0 0.0 27

0.0 0.0 350.0 350.0 350.0 350.0 9450.0 0.0 28

0.0 0.0 350.0 350.0 350.0 350.0 9800.0 0.0 29

0.0 0.0 350.0 350.0 350.0 350.0 10150.0 0.0 30

C.1.5 Supplier 4
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I_t S_t D_t O_t A_t EL_t sum(O) sum(UD) t

0.0 0.0 350.0 350.0 350.0 350.0 0.0 0.0 1

0.0 0.0 350.0 350.0 350.0 350.0 350.0 0.0 2

0.0 0.0 350.0 350.0 350.0 350.0 700.0 0.0 3

0.0 0.0 350.0 350.0 350.0 350.0 1050.0 0.0 4

0.0 0.0 350.0 350.0 350.0 350.0 1400.0 0.0 5

0.0 0.0 350.0 350.0 350.0 350.0 1750.0 0.0 6

0.0 0.0 350.0 350.0 350.0 350.0 2100.0 0.0 7

0.0 0.0 350.0 350.0 350.0 350.0 2450.0 0.0 8

0.0 0.0 350.0 350.0 350.0 350.0 2800.0 0.0 9

0.0 0.0 350.0 350.0 350.0 350.0 3150.0 0.0 10

0.0 0.0 350.0 350.0 350.0 350.0 3500.0 0.0 11

0.0 0.0 350.0 350.0 350.0 350.0 3850.0 0.0 12

0.0 0.0 350.0 350.0 350.0 350.0 4200.0 0.0 13

0.0 0.0 350.0 350.0 350.0 350.0 4550.0 0.0 14

0.0 0.0 350.0 350.0 350.0 350.0 4900.0 0.0 15

0.0 0.0 350.0 350.0 350.0 350.0 5250.0 0.0 16

0.0 0.0 350.0 350.0 350.0 350.0 5600.0 0.0 17

0.0 0.0 350.0 350.0 350.0 350.0 5950.0 0.0 18

0.0 0.0 350.0 350.0 350.0 350.0 6300.0 0.0 19

0.0 0.0 350.0 350.0 350.0 350.0 6650.0 0.0 20

0.0 0.0 350.0 350.0 350.0 350.0 7000.0 0.0 21

0.0 0.0 350.0 350.0 350.0 350.0 7350.0 0.0 22

0.0 0.0 350.0 350.0 350.0 350.0 7700.0 0.0 23

0.0 0.0 350.0 350.0 350.0 350.0 8050.0 0.0 24

0.0 0.0 350.0 350.0 350.0 350.0 8400.0 0.0 25

0.0 0.0 350.0 350.0 350.0 350.0 8750.0 0.0 26

0.0 0.0 350.0 350.0 350.0 350.0 9100.0 0.0 27

0.0 0.0 350.0 350.0 350.0 350.0 9450.0 0.0 28

0.0 0.0 350.0 350.0 350.0 350.0 9800.0 0.0 29

0.0 0.0 350.0 350.0 350.0 350.0 10150.0 0.0 30

C.1.6 Supplier 5

I_t S_t D_t O_t A_t EL_t sum(O) sum(UD) t

0.0 0.0 700.0 700.0 700.0 700.0 0.0 0.0 1

0.0 0.0 700.0 700.0 700.0 700.0 700.0 0.0 2

0.0 0.0 700.0 700.0 700.0 700.0 1400.0 0.0 3

0.0 0.0 700.0 700.0 700.0 700.0 2100.0 0.0 4

0.0 0.0 700.0 700.0 700.0 700.0 2800.0 0.0 5

0.0 0.0 700.0 700.0 700.0 700.0 3500.0 0.0 6
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0.0 0.0 700.0 700.0 700.0 700.0 4200.0 0.0 7

0.0 0.0 700.0 700.0 700.0 700.0 4900.0 0.0 8

0.0 0.0 700.0 700.0 700.0 700.0 5600.0 0.0 9

0.0 0.0 700.0 700.0 700.0 700.0 6300.0 0.0 10

0.0 0.0 700.0 700.0 700.0 700.0 7000.0 0.0 11

0.0 0.0 700.0 700.0 700.0 700.0 7700.0 0.0 12

0.0 0.0 700.0 700.0 700.0 700.0 8400.0 0.0 13

0.0 0.0 700.0 700.0 700.0 700.0 9100.0 0.0 14

0.0 0.0 700.0 700.0 700.0 700.0 9800.0 0.0 15

0.0 0.0 700.0 700.0 700.0 700.0 10500.0 0.0 16

0.0 0.0 700.0 700.0 700.0 700.0 11200.0 0.0 17

0.0 0.0 700.0 700.0 700.0 700.0 11900.0 0.0 18

0.0 0.0 700.0 700.0 700.0 700.0 12600.0 0.0 19

0.0 0.0 700.0 700.0 700.0 700.0 13300.0 0.0 20

0.0 0.0 700.0 700.0 700.0 700.0 14000.0 0.0 21

0.0 0.0 700.0 700.0 700.0 700.0 14700.0 0.0 22

0.0 0.0 700.0 700.0 700.0 700.0 15400.0 0.0 23

0.0 0.0 700.0 700.0 700.0 700.0 16100.0 0.0 24

0.0 0.0 700.0 700.0 700.0 700.0 16800.0 0.0 25

0.0 0.0 700.0 700.0 700.0 700.0 17500.0 0.0 26

0.0 0.0 700.0 700.0 700.0 700.0 18200.0 0.0 27

0.0 0.0 700.0 700.0 700.0 700.0 18900.0 0.0 28

0.0 0.0 700.0 700.0 700.0 700.0 19600.0 0.0 29

0.0 0.0 700.0 700.0 700.0 700.0 20300.0 0.0 30

C.2 Scenario (b)

C.2.1 OEM

I_t S_t D_t O_t A_t EL_t sum(O) sum(UD) t

0.0 0.0 1400.0 1400.0 1400.0 1400.0 0.0 0.0 1

0.0 0.0 1400.0 1400.0 1400.0 1400.0 1400.0 0.0 2

0.0 0.0 1400.0 1400.0 1400.0 1400.0 2800.0 0.0 3

0.0 0.0 1400.0 1400.0 1400.0 1400.0 4200.0 0.0 4

0.0 0.0 1400.0 1400.0 1400.0 1400.0 5600.0 0.0 5

0.0 0.0 1400.0 1400.0 1400.0 1400.0 7000.0 0.0 6

0.0 0.0 1400.0 1400.0 1400.0 1400.0 8400.0 0.0 7

0.0 0.0 1400.0 1400.0 1400.0 1400.0 9800.0 0.0 8

0.0 0.0 1400.0 1400.0 1400.0 1400.0 11200.0 0.0 9

0.0 −350.0 1400.0 1400.0 1050.0 1400.0 12600.0 350.0 10
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0.0 −350.0 1400.0 1400.0 1400.0 1400.0 14000.0 700.0 11

0.0 −175.0 1400.0 1400.0 1575.0 1400.0 15400.0 875.0 12

0.0 −350.0 1400.0 1400.0 1225.0 1400.0 16800.0 1225.0 13

0.0 −350.0 1400.0 1400.0 1400.0 1400.0 18200.0 1575.0 14

0.0 −350.0 1400.0 1400.0 1400.0 1400.0 19600.0 1925.0 15

0.0 0.0 1400.0 1400.0 1750.0 1400.0 21000.0 1925.0 16

0.0 0.0 1400.0 1400.0 1400.0 1400.0 22400.0 1925.0 17

0.0 0.0 1400.0 1400.0 1400.0 1400.0 23800.0 1925.0 18

0.0 0.0 1400.0 1400.0 1400.0 1400.0 25200.0 1925.0 19

0.0 0.0 1400.0 1400.0 1400.0 1400.0 26600.0 1925.0 20

0.0 0.0 1400.0 1400.0 1400.0 1400.0 28000.0 1925.0 21

0.0 0.0 1400.0 1400.0 1400.0 1400.0 29400.0 1925.0 22

0.0 0.0 1400.0 1400.0 1400.0 1400.0 30800.0 1925.0 23

0.0 0.0 1400.0 1400.0 1400.0 1400.0 32200.0 1925.0 24

0.0 0.0 1400.0 1400.0 1400.0 1400.0 33600.0 1925.0 25

0.0 0.0 1400.0 1400.0 1400.0 1400.0 35000.0 1925.0 26

0.0 0.0 1400.0 1400.0 1400.0 1400.0 36400.0 1925.0 27

0.0 0.0 1400.0 1400.0 1400.0 1400.0 37800.0 1925.0 28

0.0 0.0 1400.0 1400.0 1400.0 1400.0 39200.0 1925.0 29

0.0 0.0 1400.0 1400.0 1400.0 1400.0 40600.0 1925.0 30

C.2.2 Supplier 1

I_t S_t D_t O_t A_t EL_t sum(O) sum(UD) t

0.0 0.0 700.0 700.0 700.0 700.0 0.0 0.0 1

0.0 0.0 700.0 700.0 700.0 700.0 700.0 0.0 2

0.0 0.0 700.0 700.0 700.0 700.0 1400.0 0.0 3

0.0 0.0 700.0 700.0 700.0 700.0 2100.0 0.0 4

0.0 0.0 700.0 700.0 700.0 700.0 2800.0 0.0 5

0.0 0.0 700.0 1050.0 700.0 700.0 3500.0 0.0 6

0.0 0.0 700.0 700.0 700.0 700.0 4200.0 0.0 7

0.0 −350.0 700.0 700.0 350.0 700.0 4900.0 350.0 8

0.0 −350.0 700.0 700.0 700.0 700.0 5600.0 700.0 9

0.0 −175.0 700.0 700.0 875.0 700.0 6300.0 875.0 10

0.0 −350.0 700.0 700.0 525.0 700.0 7000.0 1225.0 11

0.0 −350.0 700.0 700.0 700.0 700.0 7700.0 1575.0 12

0.0 −350.0 700.0 700.0 700.0 700.0 8400.0 1925.0 13

0.0 0.0 700.0 700.0 1050.0 700.0 9100.0 1925.0 14

0.0 0.0 700.0 700.0 700.0 700.0 9800.0 1925.0 15

0.0 0.0 700.0 700.0 700.0 700.0 10500.0 1925.0 16

0.0 0.0 700.0 700.0 700.0 700.0 11200.0 1925.0 17
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0.0 0.0 700.0 700.0 700.0 700.0 11900.0 1925.0 18

0.0 0.0 700.0 700.0 700.0 700.0 12600.0 1925.0 19

0.0 0.0 700.0 700.0 700.0 700.0 13300.0 1925.0 20

0.0 0.0 700.0 700.0 700.0 700.0 14000.0 1925.0 21

0.0 0.0 700.0 700.0 700.0 700.0 14700.0 1925.0 22

0.0 0.0 700.0 700.0 700.0 700.0 15400.0 1925.0 23

0.0 0.0 700.0 700.0 700.0 700.0 16100.0 1925.0 24

0.0 0.0 700.0 700.0 700.0 700.0 16800.0 1925.0 25

0.0 0.0 700.0 700.0 700.0 700.0 17500.0 1925.0 26

0.0 0.0 700.0 700.0 700.0 700.0 18200.0 1925.0 27

0.0 0.0 700.0 700.0 700.0 700.0 18900.0 1925.0 28

0.0 0.0 700.0 700.0 700.0 700.0 19600.0 1925.0 29

0.0 0.0 700.0 700.0 700.0 700.0 20300.0 1925.0 30

C.2.3 Supplier 2

I_t S_t D_t O_t A_t EL_t sum(O) sum(UD) t

0.0 0.0 700.0 700.0 700.0 700.0 0.0 0.0 1

0.0 0.0 700.0 700.0 700.0 700.0 700.0 0.0 2

0.0 0.0 700.0 700.0 700.0 700.0 1400.0 0.0 3

0.0 0.0 700.0 700.0 700.0 700.0 2100.0 0.0 4

0.0 0.0 700.0 700.0 700.0 700.0 2800.0 0.0 5

0.0 0.0 700.0 700.0 700.0 700.0 3500.0 0.0 6

0.0 0.0 700.0 700.0 700.0 700.0 4200.0 0.0 7

0.0 0.0 700.0 700.0 700.0 700.0 4900.0 0.0 8

0.0 0.0 700.0 700.0 700.0 700.0 5600.0 0.0 9

0.0 0.0 700.0 700.0 700.0 700.0 6300.0 0.0 10

0.0 0.0 700.0 700.0 700.0 700.0 7000.0 0.0 11

0.0 0.0 700.0 700.0 700.0 700.0 7700.0 0.0 12

0.0 0.0 700.0 700.0 700.0 700.0 8400.0 0.0 13

0.0 0.0 700.0 700.0 700.0 700.0 9100.0 0.0 14

0.0 0.0 700.0 700.0 700.0 700.0 9800.0 0.0 15

0.0 0.0 700.0 700.0 700.0 700.0 10500.0 0.0 16

0.0 0.0 700.0 700.0 700.0 700.0 11200.0 0.0 17

0.0 0.0 700.0 700.0 700.0 700.0 11900.0 0.0 18

0.0 0.0 700.0 700.0 700.0 700.0 12600.0 0.0 19

0.0 0.0 700.0 700.0 700.0 700.0 13300.0 0.0 20

0.0 0.0 700.0 700.0 700.0 700.0 14000.0 0.0 21

0.0 0.0 700.0 700.0 700.0 700.0 14700.0 0.0 22

0.0 0.0 700.0 700.0 700.0 700.0 15400.0 0.0 23

0.0 0.0 700.0 700.0 700.0 700.0 16100.0 0.0 24
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0.0 0.0 700.0 700.0 700.0 700.0 16800.0 0.0 25

0.0 0.0 700.0 700.0 700.0 700.0 17500.0 0.0 26

0.0 0.0 700.0 700.0 700.0 700.0 18200.0 0.0 27

0.0 0.0 700.0 700.0 700.0 700.0 18900.0 0.0 28

0.0 0.0 700.0 700.0 700.0 700.0 19600.0 0.0 29

0.0 0.0 700.0 700.0 700.0 700.0 20300.0 0.0 30

C.2.4 Supplier 3

I_t S_t D_t O_t A_t EL_t sum(O) sum(UD) t

0.0 0.0 350.0 350.0 350.0 350.0 0.0 0.0 1

0.0 0.0 350.0 350.0 350.0 350.0 350.0 0.0 2

0.0 0.0 350.0 350.0 350.0 350.0 700.0 0.0 3

0.0 0.0 350.0 350.0 350.0 350.0 1050.0 0.0 4

0.0 0.0 350.0 350.0 350.0 350.0 1400.0 0.0 5

0.0 0.0 0.0 0.0 0.0 0.0 1400.0 0.0 6

350.0 350.0 350.0 350.0 700.0 350.0 1750.0 0.0 7

175.0 175.0 525.0 665.0 350.0 385.0 2275.0 0.0 8

0.0 −175.0 350.0 322.0 0.0 378.0 2625.0 175.0 9

0.0 −175.0 350.0 327.6 350.0 372.4 2975.0 350.0 10

0.0 −175.0 350.0 332.1 350.0 367.9 3325.0 525.0 11

140.0 140.0 350.0 335.7 665.0 364.3 3675.0 525.0 12

112.0 112.0 350.0 338.5 322.0 361.5 4025.0 525.0 13

89.6 89.6 350.0 340.8 327.6 359.2 4375.0 525.0 14

71.7 71.7 350.0 342.7 332.1 357.3 4725.0 525.0 15

57.3 57.3 350.0 344.1 335.7 355.9 5075.0 525.0 16

45.9 45.9 350.0 345.3 338.5 354.7 5425.0 525.0 17

36.7 36.7 350.0 346.2 340.8 353.8 5775.0 525.0 18

29.4 29.4 350.0 347.0 342.7 353.0 6125.0 525.0 19

23.5 23.5 350.0 347.6 344.1 352.4 6475.0 525.0 20

18.8 18.8 350.0 348.1 345.3 351.9 6825.0 525.0 21

15.0 15.0 350.0 348.5 346.2 351.5 7175.0 525.0 22

12.0 12.0 350.0 348.8 347.0 351.2 7525.0 525.0 23

9.6 9.6 350.0 349.0 347.6 351.0 7875.0 525.0 24

7.7 7.7 350.0 349.2 348.1 350.8 8225.0 525.0 25

6.2 6.2 350.0 349.4 348.5 350.6 8575.0 525.0 26

4.9 4.9 350.0 349.5 348.8 350.5 8925.0 525.0 27

3.9 3.9 350.0 349.6 349.0 350.4 9275.0 525.0 28

3.2 3.2 350.0 349.7 349.2 350.3 9625.0 525.0 29

2.5 2.5 350.0 349.7 349.4 350.3 9975.0 525.0 30
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C.2.5 Supplier 4

I_t S_t D_t O_t A_t EL_t sum(O) sum(UD) t

0.0 0.0 350.0 350.0 350.0 350.0 0.0 0.0 1

0.0 0.0 350.0 350.0 350.0 350.0 350.0 0.0 2

0.0 0.0 350.0 350.0 350.0 350.0 700.0 0.0 3

0.0 0.0 350.0 350.0 350.0 350.0 1050.0 0.0 4

0.0 0.0 350.0 350.0 350.0 350.0 1400.0 0.0 5

0.0 0.0 350.0 350.0 350.0 350.0 1750.0 0.0 6

0.0 0.0 350.0 350.0 350.0 350.0 2100.0 0.0 7

0.0 −175.0 525.0 665.0 350.0 385.0 2625.0 175.0 8

0.0 −175.0 350.0 322.0 350.0 378.0 2975.0 350.0 9

0.0 −175.0 350.0 327.6 350.0 372.4 3325.0 525.0 10

0.0 −175.0 350.0 332.1 350.0 367.9 3675.0 700.0 11

140.0 140.0 350.0 335.7 665.0 364.3 4025.0 700.0 12

112.0 112.0 350.0 338.5 322.0 361.5 4375.0 700.0 13

89.6 89.6 350.0 340.8 327.6 359.2 4725.0 700.0 14

71.7 71.7 350.0 342.7 332.1 357.3 5075.0 700.0 15

57.3 57.3 350.0 344.1 335.7 355.9 5425.0 700.0 16

45.9 45.9 350.0 345.3 338.5 354.7 5775.0 700.0 17

36.7 36.7 350.0 346.2 340.8 353.8 6125.0 700.0 18

29.4 29.4 350.0 347.0 342.7 353.0 6475.0 700.0 19

23.5 23.5 350.0 347.6 344.1 352.4 6825.0 700.0 20

18.8 18.8 350.0 348.1 345.3 351.9 7175.0 700.0 21

15.0 15.0 350.0 348.5 346.2 351.5 7525.0 700.0 22

12.0 12.0 350.0 348.8 347.0 351.2 7875.0 700.0 23

9.6 9.6 350.0 349.0 347.6 351.0 8225.0 700.0 24

7.7 7.7 350.0 349.2 348.1 350.8 8575.0 700.0 25

6.2 6.2 350.0 349.4 348.5 350.6 8925.0 700.0 26

4.9 4.9 350.0 349.5 348.8 350.5 9275.0 700.0 27

3.9 3.9 350.0 349.6 349.0 350.4 9625.0 700.0 28

3.2 3.2 350.0 349.7 349.2 350.3 9975.0 700.0 29

2.5 2.5 350.0 349.7 349.4 350.3 10325.0 700.0 30

C.2.6 Supplier 5

I_t S_t D_t O_t A_t EL_t sum(O) sum(UD) t

0.0 0.0 700.0 700.0 700.0 700.0 0.0 0.0 1

0.0 0.0 700.0 700.0 700.0 700.0 700.0 0.0 2

0.0 0.0 700.0 700.0 700.0 700.0 1400.0 0.0 3

0.0 0.0 700.0 700.0 700.0 700.0 2100.0 0.0 4
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0.0 0.0 700.0 700.0 700.0 700.0 2800.0 0.0 5

0.0 0.0 700.0 700.0 700.0 700.0 3500.0 0.0 6

0.0 0.0 700.0 700.0 700.0 700.0 4200.0 0.0 7

0.0 0.0 700.0 700.0 700.0 700.0 4900.0 0.0 8

0.0 0.0 700.0 700.0 700.0 700.0 5600.0 0.0 9

0.0 0.0 700.0 700.0 700.0 700.0 6300.0 0.0 10

0.0 0.0 700.0 700.0 700.0 700.0 7000.0 0.0 11

0.0 0.0 700.0 700.0 700.0 700.0 7700.0 0.0 12

0.0 0.0 700.0 700.0 700.0 700.0 8400.0 0.0 13

0.0 0.0 700.0 700.0 700.0 700.0 9100.0 0.0 14

0.0 0.0 700.0 700.0 700.0 700.0 9800.0 0.0 15

0.0 0.0 700.0 700.0 700.0 700.0 10500.0 0.0 16

0.0 0.0 700.0 700.0 700.0 700.0 11200.0 0.0 17

0.0 0.0 700.0 700.0 700.0 700.0 11900.0 0.0 18

0.0 0.0 700.0 700.0 700.0 700.0 12600.0 0.0 19

0.0 0.0 700.0 700.0 700.0 700.0 13300.0 0.0 20

0.0 0.0 700.0 700.0 700.0 700.0 14000.0 0.0 21

0.0 0.0 700.0 700.0 700.0 700.0 14700.0 0.0 22

0.0 0.0 700.0 700.0 700.0 700.0 15400.0 0.0 23

0.0 0.0 700.0 700.0 700.0 700.0 16100.0 0.0 24

0.0 0.0 700.0 700.0 700.0 700.0 16800.0 0.0 25

0.0 0.0 700.0 700.0 700.0 700.0 17500.0 0.0 26

0.0 0.0 700.0 700.0 700.0 700.0 18200.0 0.0 27

0.0 0.0 700.0 700.0 700.0 700.0 18900.0 0.0 28

0.0 0.0 700.0 700.0 700.0 700.0 19600.0 0.0 29

0.0 0.0 700.0 700.0 700.0 700.0 20300.0 0.0 30

C.3 Scenario (c)

C.3.1 OEM

I_t S_t D_t O_t A_t EL_t sum(O) sum(UD) t

1400.0 1400.0 1400.0 1400.0 1400.0 1400.0 0.0 0.0 1

1400.0 1400.0 1400.0 1400.0 1400.0 1400.0 1400.0 0.0 2

1400.0 1400.0 1400.0 1400.0 1400.0 1400.0 2800.0 0.0 3

1400.0 1400.0 1400.0 1400.0 1400.0 1400.0 4200.0 0.0 4

1400.0 1400.0 1400.0 1400.0 1400.0 1400.0 5600.0 0.0 5

1400.0 1400.0 1400.0 1400.0 1400.0 1400.0 7000.0 0.0 6

1400.0 1400.0 1400.0 1400.0 1400.0 1400.0 8400.0 0.0 7

1400.0 1400.0 1400.0 1400.0 1400.0 1400.0 9800.0 0.0 8
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1400.0 1400.0 1400.0 1400.0 1400.0 1400.0 11200.0 0.0 9

1400.0 1400.0 1400.0 1400.0 1400.0 1400.0 12600.0 0.0 10

1400.0 1400.0 1400.0 1400.0 1400.0 1400.0 14000.0 0.0 11

1400.0 1400.0 1400.0 1400.0 1400.0 1400.0 15400.0 0.0 12

1400.0 1400.0 1400.0 1400.0 1400.0 1400.0 16800.0 0.0 13

1400.0 1400.0 1400.0 1400.0 1400.0 1400.0 18200.0 0.0 14

1400.0 1400.0 1400.0 1400.0 1400.0 1400.0 19600.0 0.0 15

1400.0 1400.0 1400.0 1400.0 1400.0 1400.0 21000.0 0.0 16

1400.0 1400.0 1400.0 1400.0 1400.0 1400.0 22400.0 0.0 17

1400.0 1400.0 1400.0 1400.0 1400.0 1400.0 23800.0 0.0 18

1400.0 1400.0 1400.0 1400.0 1400.0 1400.0 25200.0 0.0 19

1400.0 1400.0 1400.0 1400.0 1400.0 1400.0 26600.0 0.0 20

1400.0 1400.0 1400.0 1400.0 1400.0 1400.0 28000.0 0.0 21

1400.0 1400.0 1400.0 1400.0 1400.0 1400.0 29400.0 0.0 22

1400.0 1400.0 1400.0 1400.0 1400.0 1400.0 30800.0 0.0 23

1400.0 1400.0 1400.0 1400.0 1400.0 1400.0 32200.0 0.0 24

1400.0 1400.0 1400.0 1400.0 1400.0 1400.0 33600.0 0.0 25

1400.0 1400.0 1400.0 1400.0 1400.0 1400.0 35000.0 0.0 26

1400.0 1400.0 1400.0 1400.0 1400.0 1400.0 36400.0 0.0 27

1400.0 1400.0 1400.0 1400.0 1400.0 1400.0 37800.0 0.0 28

1400.0 1400.0 1400.0 1400.0 1400.0 1400.0 39200.0 0.0 29

1400.0 1400.0 1400.0 1400.0 1400.0 1400.0 40600.0 0.0 30

C.3.2 Supplier 1

I_t S_t D_t O_t A_t EL_t sum(O) sum(UD) t

700.0 700.0 700.0 700.0 700.0 700.0 0.0 0.0 1

700.0 700.0 700.0 700.0 700.0 700.0 700.0 0.0 2

700.0 700.0 700.0 700.0 700.0 700.0 1400.0 0.0 3

700.0 700.0 700.0 700.0 700.0 700.0 2100.0 0.0 4

700.0 700.0 700.0 700.0 700.0 700.0 2800.0 0.0 5

700.0 700.0 700.0 1050.0 700.0 700.0 3500.0 0.0 6

700.0 700.0 700.0 700.0 700.0 700.0 4200.0 0.0 7

350.0 350.0 700.0 700.0 350.0 700.0 4900.0 0.0 8

350.0 350.0 700.0 700.0 700.0 700.0 5600.0 0.0 9

700.0 700.0 700.0 700.0 1050.0 700.0 6300.0 0.0 10

700.0 700.0 700.0 700.0 700.0 700.0 7000.0 0.0 11

700.0 700.0 700.0 700.0 700.0 700.0 7700.0 0.0 12

700.0 700.0 700.0 700.0 700.0 700.0 8400.0 0.0 13

700.0 700.0 700.0 700.0 700.0 700.0 9100.0 0.0 14

700.0 700.0 700.0 700.0 700.0 700.0 9800.0 0.0 15
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700.0 700.0 700.0 700.0 700.0 700.0 10500.0 0.0 16

700.0 700.0 700.0 700.0 700.0 700.0 11200.0 0.0 17

700.0 700.0 700.0 700.0 700.0 700.0 11900.0 0.0 18

700.0 700.0 700.0 700.0 700.0 700.0 12600.0 0.0 19

700.0 700.0 700.0 700.0 700.0 700.0 13300.0 0.0 20

700.0 700.0 700.0 700.0 700.0 700.0 14000.0 0.0 21

700.0 700.0 700.0 700.0 700.0 700.0 14700.0 0.0 22

700.0 700.0 700.0 700.0 700.0 700.0 15400.0 0.0 23

700.0 700.0 700.0 700.0 700.0 700.0 16100.0 0.0 24

700.0 700.0 700.0 700.0 700.0 700.0 16800.0 0.0 25

700.0 700.0 700.0 700.0 700.0 700.0 17500.0 0.0 26

700.0 700.0 700.0 700.0 700.0 700.0 18200.0 0.0 27

700.0 700.0 700.0 700.0 700.0 700.0 18900.0 0.0 28

700.0 700.0 700.0 700.0 700.0 700.0 19600.0 0.0 29

700.0 700.0 700.0 700.0 700.0 700.0 20300.0 0.0 30

C.3.3 Supplier 2

I_t S_t D_t O_t A_t EL_t sum(O) sum(UD) t

700.0 700.0 700.0 700.0 700.0 700.0 0.0 0.0 1

700.0 700.0 700.0 700.0 700.0 700.0 700.0 0.0 2

700.0 700.0 700.0 700.0 700.0 700.0 1400.0 0.0 3

700.0 700.0 700.0 700.0 700.0 700.0 2100.0 0.0 4

700.0 700.0 700.0 700.0 700.0 700.0 2800.0 0.0 5

700.0 700.0 700.0 700.0 700.0 700.0 3500.0 0.0 6

700.0 700.0 700.0 700.0 700.0 700.0 4200.0 0.0 7

700.0 700.0 700.0 700.0 700.0 700.0 4900.0 0.0 8

700.0 700.0 700.0 700.0 700.0 700.0 5600.0 0.0 9

700.0 700.0 700.0 700.0 700.0 700.0 6300.0 0.0 10

700.0 700.0 700.0 700.0 700.0 700.0 7000.0 0.0 11

700.0 700.0 700.0 700.0 700.0 700.0 7700.0 0.0 12

700.0 700.0 700.0 700.0 700.0 700.0 8400.0 0.0 13

700.0 700.0 700.0 700.0 700.0 700.0 9100.0 0.0 14

700.0 700.0 700.0 700.0 700.0 700.0 9800.0 0.0 15

700.0 700.0 700.0 700.0 700.0 700.0 10500.0 0.0 16

700.0 700.0 700.0 700.0 700.0 700.0 11200.0 0.0 17

700.0 700.0 700.0 700.0 700.0 700.0 11900.0 0.0 18

700.0 700.0 700.0 700.0 700.0 700.0 12600.0 0.0 19

700.0 700.0 700.0 700.0 700.0 700.0 13300.0 0.0 20

700.0 700.0 700.0 700.0 700.0 700.0 14000.0 0.0 21

700.0 700.0 700.0 700.0 700.0 700.0 14700.0 0.0 22
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700.0 700.0 700.0 700.0 700.0 700.0 15400.0 0.0 23

700.0 700.0 700.0 700.0 700.0 700.0 16100.0 0.0 24

700.0 700.0 700.0 700.0 700.0 700.0 16800.0 0.0 25

700.0 700.0 700.0 700.0 700.0 700.0 17500.0 0.0 26

700.0 700.0 700.0 700.0 700.0 700.0 18200.0 0.0 27

700.0 700.0 700.0 700.0 700.0 700.0 18900.0 0.0 28

700.0 700.0 700.0 700.0 700.0 700.0 19600.0 0.0 29

700.0 700.0 700.0 700.0 700.0 700.0 20300.0 0.0 30

C.3.4 Supplier 3

I_t S_t D_t O_t A_t EL_t sum(O) sum(UD) t

350.0 350.0 350.0 350.0 350.0 350.0 0.0 0.0 1

350.0 350.0 350.0 350.0 350.0 350.0 350.0 0.0 2

350.0 350.0 350.0 350.0 350.0 350.0 700.0 0.0 3

350.0 350.0 350.0 350.0 350.0 350.0 1050.0 0.0 4

350.0 350.0 350.0 350.0 350.0 350.0 1400.0 0.0 5

350.0 350.0 0.0 0.0 0.0 0.0 1400.0 0.0 6

700.0 700.0 350.0 350.0 700.0 350.0 1750.0 0.0 7

525.0 525.0 525.0 665.0 350.0 385.0 2275.0 0.0 8

175.0 175.0 350.0 322.0 0.0 378.0 2625.0 0.0 9

175.0 175.0 350.0 327.6 350.0 372.4 2975.0 0.0 10

175.0 175.0 350.0 332.1 350.0 367.9 3325.0 0.0 11

490.0 490.0 350.0 335.7 665.0 364.3 3675.0 0.0 12

462.0 462.0 350.0 338.5 322.0 361.5 4025.0 0.0 13

439.6 439.6 350.0 340.8 327.6 359.2 4375.0 0.0 14

421.7 421.7 350.0 342.7 332.1 357.3 4725.0 0.0 15

407.3 407.3 350.0 344.1 335.7 355.9 5075.0 0.0 16

395.9 395.9 350.0 345.3 338.5 354.7 5425.0 0.0 17

386.7 386.7 350.0 346.2 340.8 353.8 5775.0 0.0 18

379.4 379.4 350.0 347.0 342.7 353.0 6125.0 0.0 19

373.5 373.5 350.0 347.6 344.1 352.4 6475.0 0.0 20

368.8 368.8 350.0 348.1 345.3 351.9 6825.0 0.0 21

365.0 365.0 350.0 348.5 346.2 351.5 7175.0 0.0 22

362.0 362.0 350.0 348.8 347.0 351.2 7525.0 0.0 23

359.6 359.6 350.0 349.0 347.6 351.0 7875.0 0.0 24

357.7 357.7 350.0 349.2 348.1 350.8 8225.0 0.0 25

356.2 356.2 350.0 349.4 348.5 350.6 8575.0 0.0 26

354.9 354.9 350.0 349.5 348.8 350.5 8925.0 0.0 27

353.9 353.9 350.0 349.6 349.0 350.4 9275.0 0.0 28

353.2 353.2 350.0 349.7 349.2 350.3 9625.0 0.0 29
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352.5 352.5 350.0 349.7 349.4 350.3 9975.0 0.0 30

C.3.5 Supplier 4

I_t S_t D_t O_t A_t EL_t sum(O) sum(UD) t

350.0 350.0 350.0 350.0 350.0 350.0 0.0 0.0 1

350.0 350.0 350.0 350.0 350.0 350.0 350.0 0.0 2

350.0 350.0 350.0 350.0 350.0 350.0 700.0 0.0 3

350.0 350.0 350.0 350.0 350.0 350.0 1050.0 0.0 4

350.0 350.0 350.0 350.0 350.0 350.0 1400.0 0.0 5

350.0 350.0 350.0 350.0 350.0 350.0 1750.0 0.0 6

350.0 350.0 350.0 350.0 350.0 350.0 2100.0 0.0 7

175.0 175.0 525.0 665.0 350.0 385.0 2625.0 0.0 8

175.0 175.0 350.0 322.0 350.0 378.0 2975.0 0.0 9

175.0 175.0 350.0 327.6 350.0 372.4 3325.0 0.0 10

175.0 175.0 350.0 332.1 350.0 367.9 3675.0 0.0 11

490.0 490.0 350.0 335.7 665.0 364.3 4025.0 0.0 12

462.0 462.0 350.0 338.5 322.0 361.5 4375.0 0.0 13

439.6 439.6 350.0 340.8 327.6 359.2 4725.0 0.0 14

421.7 421.7 350.0 342.7 332.1 357.3 5075.0 0.0 15

407.3 407.3 350.0 344.1 335.7 355.9 5425.0 0.0 16

395.9 395.9 350.0 345.3 338.5 354.7 5775.0 0.0 17

386.7 386.7 350.0 346.2 340.8 353.8 6125.0 0.0 18

379.4 379.4 350.0 347.0 342.7 353.0 6475.0 0.0 19

373.5 373.5 350.0 347.6 344.1 352.4 6825.0 0.0 20

368.8 368.8 350.0 348.1 345.3 351.9 7175.0 0.0 21

365.0 365.0 350.0 348.5 346.2 351.5 7525.0 0.0 22

362.0 362.0 350.0 348.8 347.0 351.2 7875.0 0.0 23

359.6 359.6 350.0 349.0 347.6 351.0 8225.0 0.0 24

357.7 357.7 350.0 349.2 348.1 350.8 8575.0 0.0 25

356.2 356.2 350.0 349.4 348.5 350.6 8925.0 0.0 26

354.9 354.9 350.0 349.5 348.8 350.5 9275.0 0.0 27

353.9 353.9 350.0 349.6 349.0 350.4 9625.0 0.0 28

353.2 353.2 350.0 349.7 349.2 350.3 9975.0 0.0 29

352.5 352.5 350.0 349.7 349.4 350.3 10325.0 0.0 30

C.3.6 Supplier 5

I_t S_t D_t O_t A_t EL_t sum(O) sum(UD) t

700.0 700.0 700.0 700.0 700.0 700.0 0.0 0.0 1

700.0 700.0 700.0 700.0 700.0 700.0 700.0 0.0 2
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700.0 700.0 700.0 700.0 700.0 700.0 1400.0 0.0 3

700.0 700.0 700.0 700.0 700.0 700.0 2100.0 0.0 4

700.0 700.0 700.0 700.0 700.0 700.0 2800.0 0.0 5

700.0 700.0 700.0 700.0 700.0 700.0 3500.0 0.0 6

700.0 700.0 700.0 700.0 700.0 700.0 4200.0 0.0 7

700.0 700.0 700.0 700.0 700.0 700.0 4900.0 0.0 8

700.0 700.0 700.0 700.0 700.0 700.0 5600.0 0.0 9

700.0 700.0 700.0 700.0 700.0 700.0 6300.0 0.0 10

700.0 700.0 700.0 700.0 700.0 700.0 7000.0 0.0 11

700.0 700.0 700.0 700.0 700.0 700.0 7700.0 0.0 12

700.0 700.0 700.0 700.0 700.0 700.0 8400.0 0.0 13

700.0 700.0 700.0 700.0 700.0 700.0 9100.0 0.0 14

700.0 700.0 700.0 700.0 700.0 700.0 9800.0 0.0 15

700.0 700.0 700.0 700.0 700.0 700.0 10500.0 0.0 16

700.0 700.0 700.0 700.0 700.0 700.0 11200.0 0.0 17

700.0 700.0 700.0 700.0 700.0 700.0 11900.0 0.0 18

700.0 700.0 700.0 700.0 700.0 700.0 12600.0 0.0 19

700.0 700.0 700.0 700.0 700.0 700.0 13300.0 0.0 20

700.0 700.0 700.0 700.0 700.0 700.0 14000.0 0.0 21

700.0 700.0 700.0 700.0 700.0 700.0 14700.0 0.0 22

700.0 700.0 700.0 700.0 700.0 700.0 15400.0 0.0 23

700.0 700.0 700.0 700.0 700.0 700.0 16100.0 0.0 24

700.0 700.0 700.0 700.0 700.0 700.0 16800.0 0.0 25

700.0 700.0 700.0 700.0 700.0 700.0 17500.0 0.0 26

700.0 700.0 700.0 700.0 700.0 700.0 18200.0 0.0 27

700.0 700.0 700.0 700.0 700.0 700.0 18900.0 0.0 28

700.0 700.0 700.0 700.0 700.0 700.0 19600.0 0.0 29

700.0 700.0 700.0 700.0 700.0 700.0 20300.0 0.0 30

C.4 Scenario (d)

C.4.1 OEM

I_t S_t D_t O_t A_t EL_t sum(O) sum(UD) t

0.0 0.0 1400.0 1400.0 1400.0 1400.0 0.0 0.0 1

0.0 0.0 1400.0 1400.0 1400.0 1400.0 1400.0 0.0 2

0.0 0.0 1400.0 1400.0 1400.0 1400.0 2800.0 0.0 3

0.0 0.0 1400.0 1400.0 1400.0 1400.0 4200.0 0.0 4

0.0 0.0 1400.0 1400.0 1400.0 1400.0 5600.0 0.0 5

0.0 0.0 1400.0 1400.0 1400.0 1400.0 7000.0 0.0 6
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0.0 0.0 1400.0 1400.0 1400.0 1400.0 8400.0 0.0 7

0.0 0.0 1400.0 1400.0 1400.0 1400.0 9800.0 0.0 8

0.0 0.0 1400.0 1400.0 1400.0 1400.0 11200.0 0.0 9

0.0 −350.0 1400.0 1400.0 1050.0 1400.0 12600.0 350.0 10

0.0 −350.0 1400.0 1400.0 1400.0 1400.0 14000.0 700.0 11

0.0 −700.0 1400.0 1400.0 1050.0 1400.0 15400.0 1400.0 12

0.0 −525.0 1400.0 1400.0 1575.0 1400.0 16800.0 1925.0 13

0.0 −525.0 1400.0 1400.0 1400.0 1400.0 18200.0 2450.0 14

0.0 −525.0 1400.0 1400.0 1400.0 1400.0 19600.0 2975.0 15

0.0 −175.0 1400.0 1400.0 1750.0 1400.0 21000.0 3150.0 16

0.0 −84.0 1400.0 1400.0 1491.0 1400.0 22400.0 3234.0 17

0.0 −67.2 1400.0 1400.0 1416.8 1400.0 23800.0 3301.2 18

0.0 −53.8 1400.0 1400.0 1413.4 1400.0 25200.0 3355.0 19

0.0 −43.0 1400.0 1400.0 1410.8 1400.0 26600.0 3398.0 20

0.0 −34.4 1400.0 1400.0 1408.6 1400.0 28000.0 3432.4 21

0.0 −27.5 1400.0 1400.0 1406.9 1400.0 29400.0 3459.9 22

0.0 −22.0 1400.0 1400.0 1405.5 1400.0 30800.0 3481.9 23

0.0 −17.6 1400.0 1400.0 1404.4 1400.0 32200.0 3499.5 24

0.0 −14.1 1400.0 1400.0 1403.5 1400.0 33600.0 3513.6 25

0.0 −11.3 1400.0 1400.0 1402.8 1400.0 35000.0 3524.9 26

0.0 −9.0 1400.0 1400.0 1402.3 1400.0 36400.0 3533.9 27

0.0 −7.2 1400.0 1400.0 1401.8 1400.0 37800.0 3541.1 28

0.0 −5.8 1400.0 1400.0 1401.4 1400.0 39200.0 3546.9 29

0.0 −4.6 1400.0 1400.0 1401.2 1400.0 40600.0 3551.5 30

C.4.2 Supplier 1

I_t S_t D_t O_t A_t EL_t sum(O) sum(UD) t

0.0 0.0 700.0 700.0 700.0 700.0 0.0 0.0 1

0.0 0.0 700.0 700.0 700.0 700.0 700.0 0.0 2

0.0 0.0 700.0 700.0 700.0 700.0 1400.0 0.0 3

0.0 0.0 700.0 700.0 700.0 700.0 2100.0 0.0 4

0.0 0.0 700.0 700.0 700.0 700.0 2800.0 0.0 5

0.0 0.0 700.0 700.0 700.0 700.0 3500.0 0.0 6

0.0 0.0 700.0 1050.0 700.0 700.0 4200.0 0.0 7

0.0 −350.0 700.0 700.0 350.0 700.0 4900.0 350.0 8

0.0 −350.0 700.0 700.0 700.0 700.0 5600.0 700.0 9

0.0 −700.0 700.0 700.0 350.0 700.0 6300.0 1400.0 10

0.0 −525.0 700.0 700.0 875.0 700.0 7000.0 1925.0 11

0.0 −525.0 700.0 700.0 700.0 700.0 7700.0 2450.0 12

0.0 −525.0 700.0 700.0 700.0 700.0 8400.0 2975.0 13
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0.0 −175.0 700.0 700.0 1050.0 700.0 9100.0 3150.0 14

0.0 −84.0 700.0 700.0 791.0 700.0 9800.0 3234.0 15

0.0 −67.2 700.0 700.0 716.8 700.0 10500.0 3301.2 16

0.0 −53.8 700.0 700.0 713.4 700.0 11200.0 3355.0 17

0.0 −43.0 700.0 700.0 710.8 700.0 11900.0 3398.0 18

0.0 −34.4 700.0 700.0 708.6 700.0 12600.0 3432.4 19

0.0 −27.5 700.0 700.0 706.9 700.0 13300.0 3459.9 20

0.0 −22.0 700.0 700.0 705.5 700.0 14000.0 3481.9 21

0.0 −17.6 700.0 700.0 704.4 700.0 14700.0 3499.5 22

0.0 −14.1 700.0 700.0 703.5 700.0 15400.0 3513.6 23

0.0 −11.3 700.0 700.0 702.8 700.0 16100.0 3524.9 24

0.0 −9.0 700.0 700.0 702.3 700.0 16800.0 3533.9 25

0.0 −7.2 700.0 700.0 701.8 700.0 17500.0 3541.1 26

0.0 −5.8 700.0 700.0 701.4 700.0 18200.0 3546.9 27

0.0 −4.6 700.0 700.0 701.2 700.0 18900.0 3551.5 28

0.0 −3.7 700.0 700.0 700.9 700.0 19600.0 3555.2 29

0.0 −3.0 700.0 700.0 700.7 700.0 20300.0 3558.2 30

C.4.3 Supplier 2

I_t S_t D_t O_t A_t EL_t sum(O) sum(UD) t

0.0 0.0 700.0 700.0 700.0 700.0 0.0 0.0 1

0.0 0.0 700.0 700.0 700.0 700.0 700.0 0.0 2

0.0 0.0 700.0 700.0 700.0 700.0 1400.0 0.0 3

0.0 0.0 700.0 700.0 700.0 700.0 2100.0 0.0 4

0.0 0.0 700.0 700.0 700.0 700.0 2800.0 0.0 5

0.0 0.0 700.0 700.0 700.0 700.0 3500.0 0.0 6

0.0 0.0 700.0 700.0 700.0 700.0 4200.0 0.0 7

0.0 0.0 700.0 700.0 700.0 700.0 4900.0 0.0 8

0.0 0.0 700.0 700.0 700.0 700.0 5600.0 0.0 9

0.0 0.0 700.0 700.0 700.0 700.0 6300.0 0.0 10

0.0 0.0 700.0 700.0 700.0 700.0 7000.0 0.0 11

0.0 0.0 700.0 700.0 700.0 700.0 7700.0 0.0 12

0.0 0.0 700.0 700.0 700.0 700.0 8400.0 0.0 13

0.0 0.0 700.0 700.0 700.0 700.0 9100.0 0.0 14

0.0 0.0 700.0 700.0 700.0 700.0 9800.0 0.0 15

0.0 0.0 700.0 700.0 700.0 700.0 10500.0 0.0 16

0.0 0.0 700.0 700.0 700.0 700.0 11200.0 0.0 17

0.0 0.0 700.0 700.0 700.0 700.0 11900.0 0.0 18

0.0 0.0 700.0 700.0 700.0 700.0 12600.0 0.0 19

0.0 0.0 700.0 700.0 700.0 700.0 13300.0 0.0 20
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0.0 0.0 700.0 700.0 700.0 700.0 14000.0 0.0 21

0.0 0.0 700.0 700.0 700.0 700.0 14700.0 0.0 22

0.0 0.0 700.0 700.0 700.0 700.0 15400.0 0.0 23

0.0 0.0 700.0 700.0 700.0 700.0 16100.0 0.0 24

0.0 0.0 700.0 700.0 700.0 700.0 16800.0 0.0 25

0.0 0.0 700.0 700.0 700.0 700.0 17500.0 0.0 26

0.0 0.0 700.0 700.0 700.0 700.0 18200.0 0.0 27

0.0 0.0 700.0 700.0 700.0 700.0 18900.0 0.0 28

0.0 0.0 700.0 700.0 700.0 700.0 19600.0 0.0 29

0.0 0.0 700.0 700.0 700.0 700.0 20300.0 0.0 30

C.4.4 Supplier 3

I_t S_t D_t O_t A_t EL_t sum(O) sum(UD) t

0.0 0.0 350.0 350.0 350.0 350.0 0.0 0.0 1

0.0 0.0 350.0 350.0 350.0 350.0 350.0 0.0 2

0.0 0.0 350.0 350.0 350.0 350.0 700.0 0.0 3

0.0 0.0 350.0 350.0 350.0 350.0 1050.0 0.0 4

0.0 0.0 350.0 350.0 350.0 350.0 1400.0 0.0 5

0.0 0.0 0.0 0.0 0.0 0.0 1400.0 0.0 6

350.0 350.0 350.0 350.0 700.0 350.0 1750.0 0.0 7

700.0 700.0 0.0 0.0 350.0 280.0 1750.0 0.0 8

175.0 175.0 525.0 441.0 0.0 329.0 2275.0 0.0 9

175.0 175.0 350.0 366.8 350.0 333.2 2625.0 0.0 10

175.0 175.0 350.0 363.4 350.0 336.6 2975.0 0.0 11

0.0 −175.0 350.0 360.8 0.0 339.2 3325.0 175.0 12

0.0 −84.0 350.0 358.6 441.0 341.4 3675.0 259.0 13

0.0 −67.2 350.0 356.9 366.8 343.1 4025.0 326.2 14

0.0 −53.8 350.0 355.5 363.4 344.5 4375.0 380.0 15

0.0 −43.0 350.0 354.4 360.8 345.6 4725.0 423.0 16

0.0 −34.4 350.0 353.5 358.6 346.5 5075.0 457.4 17

0.0 −27.5 350.0 352.8 356.9 347.2 5425.0 484.9 18

0.0 −22.0 350.0 352.3 355.5 347.7 5775.0 506.9 19

0.0 −17.6 350.0 351.8 354.4 348.2 6125.0 524.5 20

0.0 −14.1 350.0 351.4 353.5 348.6 6475.0 538.6 21

0.0 −11.3 350.0 351.2 352.8 348.8 6825.0 549.9 22

0.0 −9.0 350.0 350.9 352.3 349.1 7175.0 558.9 23

0.0 −7.2 350.0 350.7 351.8 349.3 7525.0 566.1 24

0.0 −5.8 350.0 350.6 351.4 349.4 7875.0 571.9 25

0.0 −4.6 350.0 350.5 351.2 349.5 8225.0 576.5 26

0.0 −3.7 350.0 350.4 350.9 349.6 8575.0 580.2 27
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0.0 −3.0 350.0 350.3 350.7 349.7 8925.0 583.2 28

0.0 −2.4 350.0 350.2 350.6 349.8 9275.0 585.5 29

0.0 −1.9 350.0 350.2 350.5 349.8 9625.0 587.4 30

C.4.5 Supplier 4

I_t S_t D_t O_t A_t EL_t sum(O) sum(UD) t

0.0 0.0 350.0 350.0 350.0 350.0 0.0 0.0 1

0.0 0.0 350.0 350.0 350.0 350.0 350.0 0.0 2

0.0 0.0 350.0 350.0 350.0 350.0 700.0 0.0 3

0.0 0.0 350.0 350.0 350.0 350.0 1050.0 0.0 4

0.0 0.0 350.0 350.0 350.0 350.0 1400.0 0.0 5

0.0 0.0 350.0 350.0 350.0 350.0 1750.0 0.0 6

0.0 0.0 350.0 350.0 350.0 350.0 2100.0 0.0 7

0.0 −350.0 700.0 980.0 350.0 420.0 2800.0 350.0 8

0.0 −525.0 525.0 609.0 350.0 441.0 3325.0 875.0 9

0.0 −525.0 350.0 277.2 350.0 422.8 3675.0 1225.0 10

0.0 −525.0 350.0 291.8 350.0 408.2 4025.0 1575.0 11

105.0 105.0 350.0 303.4 980.0 396.6 4375.0 1575.0 12

364.0 364.0 350.0 312.7 609.0 387.3 4725.0 1575.0 13

291.2 291.2 350.0 320.2 277.2 379.8 5075.0 1575.0 14

233.0 233.0 350.0 326.1 291.8 373.9 5425.0 1575.0 15

186.4 186.4 350.0 330.9 303.4 369.1 5775.0 1575.0 16

149.1 149.1 350.0 334.7 312.7 365.3 6125.0 1575.0 17

119.3 119.3 350.0 337.8 320.2 362.2 6475.0 1575.0 18

95.4 95.4 350.0 340.2 326.1 359.8 6825.0 1575.0 19

76.3 76.3 350.0 342.2 330.9 357.8 7175.0 1575.0 20

61.1 61.1 350.0 343.7 334.7 356.3 7525.0 1575.0 21

48.9 48.9 350.0 345.0 337.8 355.0 7875.0 1575.0 22

39.1 39.1 350.0 346.0 340.2 354.0 8225.0 1575.0 23

31.3 31.3 350.0 346.8 342.2 353.2 8575.0 1575.0 24

25.0 25.0 350.0 347.4 343.7 352.6 8925.0 1575.0 25

20.0 20.0 350.0 348.0 345.0 352.0 9275.0 1575.0 26

16.0 16.0 350.0 348.4 346.0 351.6 9625.0 1575.0 27

12.8 12.8 350.0 348.7 346.8 351.3 9975.0 1575.0 28

10.2 10.2 350.0 349.0 347.4 351.0 10325.0 1575.0 29

8.2 8.2 350.0 349.2 348.0 350.8 10675.0 1575.0 30

C.4.6 Supplier 5
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I_t S_t D_t O_t A_t EL_t sum(O) sum(UD) t

0.0 0.0 700.0 700.0 700.0 700.0 0.0 0.0 1

0.0 0.0 700.0 700.0 700.0 700.0 700.0 0.0 2

0.0 0.0 700.0 700.0 700.0 700.0 1400.0 0.0 3

0.0 0.0 700.0 700.0 700.0 700.0 2100.0 0.0 4

0.0 0.0 700.0 700.0 700.0 700.0 2800.0 0.0 5

0.0 0.0 700.0 700.0 700.0 700.0 3500.0 0.0 6

0.0 0.0 700.0 700.0 700.0 700.0 4200.0 0.0 7

0.0 0.0 700.0 700.0 700.0 700.0 4900.0 0.0 8

0.0 0.0 700.0 700.0 700.0 700.0 5600.0 0.0 9

0.0 0.0 700.0 700.0 700.0 700.0 6300.0 0.0 10

0.0 0.0 700.0 700.0 700.0 700.0 7000.0 0.0 11

0.0 0.0 700.0 700.0 700.0 700.0 7700.0 0.0 12

0.0 0.0 700.0 700.0 700.0 700.0 8400.0 0.0 13

0.0 0.0 700.0 700.0 700.0 700.0 9100.0 0.0 14

0.0 0.0 700.0 700.0 700.0 700.0 9800.0 0.0 15

0.0 0.0 700.0 700.0 700.0 700.0 10500.0 0.0 16

0.0 0.0 700.0 700.0 700.0 700.0 11200.0 0.0 17

0.0 0.0 700.0 700.0 700.0 700.0 11900.0 0.0 18

0.0 0.0 700.0 700.0 700.0 700.0 12600.0 0.0 19

0.0 0.0 700.0 700.0 700.0 700.0 13300.0 0.0 20

0.0 0.0 700.0 700.0 700.0 700.0 14000.0 0.0 21

0.0 0.0 700.0 700.0 700.0 700.0 14700.0 0.0 22

0.0 0.0 700.0 700.0 700.0 700.0 15400.0 0.0 23

0.0 0.0 700.0 700.0 700.0 700.0 16100.0 0.0 24

0.0 0.0 700.0 700.0 700.0 700.0 16800.0 0.0 25

0.0 0.0 700.0 700.0 700.0 700.0 17500.0 0.0 26

0.0 0.0 700.0 700.0 700.0 700.0 18200.0 0.0 27

0.0 0.0 700.0 700.0 700.0 700.0 18900.0 0.0 28

0.0 0.0 700.0 700.0 700.0 700.0 19600.0 0.0 29

0.0 0.0 700.0 700.0 700.0 700.0 20300.0 0.0 30
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