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Abstract. Early medical intervention to address burn injuries in hospitals is an important step towards 

relieving the burden on patients and the patient’s family at large. However, in most developing 

countries, the medical centres have major obstacles including but not limited to inadequate workforce, 

poor diagnostic facilities, and high maintenance/operational costs. Hence, the aforementioned issues 

have become a bottleneck to majority of people living in the third world. Towards this end, there is a 

need to develop an automatic machine learning algorithm to non-invasively identify skin burns; this 

will operate with little or no human intervention thereby acting as an affordable substitute to human 

expertise. Here, we leverage the weights of pre-trained deep neural networks for image description, 

subsequently, the extracted image features are fed into a Support Vector Machine (SVM) for 

classification. To the best of our knowledge, this is the first study that investigates black African skin 

data. Interestingly, the proposed algorithm achieves state of the art classification accuracy on both 

Caucasian and African datasets. 
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I. INTRODUCTION 

Burn injuries are devastating to affected patients as well as the victim’s family and consequently, to the 

nation in general [1]. Affected individuals face life challenges including but not limited to 

discrimination in the society, disfigurement due to scars, low self-esteem and other psychological 

problems. These injuries are reported by [2-5] to be the most cause of morbidity and mortality in the 

world with over 90% ruinous burns related injuries in low- and middle-income countries (LMIC) such 

as those in Africa and Asia. According to World Health Organisation (WHO) as reported in 2014 [6], 

almost 11 million people were affected by burn injuries severe enough for medical attention. South-east 

Asian countries such as Indonesia, India, Bangladesh, Maldives, Nepal and Myanmar have the highest 

burn incidences with mortality rate of at least 8.3 deaths per 100,000 affected individuals. Africa is the 

second with highest mortality rate of approximately 5.5 deaths per 100,000 people. On the other hand, 

the report showed that high-income countries (HIC) such as Americas have an average death rate of 1.3 

per 100,000 people. Burns are caused by fire flames, chemicals such as concentrated acid which mostly 

occur in work places (industries) as a result of accidental spillage, ultraviolet sun radiation and friction. 

Reports have shown that about 85% of the total global population is in low-and middle-income countries 

where high-income countries constitute only 15% of the global population  [7]. Unfortunately, about 

three-quarter (75%) of the population residing in LMIC die before the age of 70 compared to those in 
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HIC as a result of infections and non-communicable diseases. Furthermore, these calamities were 

associated with inadequate healthcare systems, and lack of experienced health care workforce  [7]. 

According to a publication of the Global Burden of Disease in 1996 [8], it was projected that by the 

year 2020, non-communicable diseases are expected to rise and account to about seven out of ten deaths 

in poor countries. Similarly, Lack of specialized hospital for burn victims and lack of epidemiological 

data by the concerned agency has resulted to unavailability of policy that could help to strategize 

preventive measures in LMICs such as Ghana [9]. Moreover, in a study by [10], it was observed that 

up to 4 million women suffer burns injuries worldwide almost same number as those found with 

HIV/AIDS but not much attention is given to burn injuries. The authors further reported that burn 

injuries in pregnant women is not well documented. They further lamented that the consequences of the 

injury are felt by both the mother and the unborn child. Complications such as precipitated labour due 

to septicaemia, and catabolic state is associated to be the consequence experienced by the pregnant 

women with burn injuries. 

Researchers at Stanford University [11] found that over 33.5 million thermal burn injuries were 

recorded in 2013 mostly in low-and middle-income countries (about 90% of the global incidences), 

which substantially contributed to high mortality rate [12]. This was mostly influenced by 

socioeconomic condition in addition to culture and life style. According to authors in [3], 

socioeconomic condition is the biggest factor as such this incidence is highly reported in low- and 

middle-income countries while lesser occurrences in high-income countries (HIC). However, views 

have been expressed that preventive measures in order to minimise the morbidity and mortality rates 

should be a primary concern rather than focusing on burn care improvement measures. This conform to 

the expression made by Keswani [13] in 1986 that “100 per cent successful care of the burn injury does 

not provide the fully needed outcome but the successful preventive measure that will ensure none 

occurrence of the incidences”. Nevertheless, preventive measures are found to be much more effective 

in HIC [6, 14] than in LMIC due to the socioeconomic and life style differences.  

While this calamity is tearing people apart, specialised burns centres are lacking in most crowded 

communities living in extreme poverty, access to medical centres in many parts of the globe is hard, 

available burn centres in some parts of the world are overcrowded with no good facilities and such 

condition results to diagnosis delay and ineffective assessment. In 2015, Boissin and other scholars 

from South-Africa [15] also lamented that most of the improvements in burn prevention and care is 

highly recorded in HIC, with low recorded improvement in LMIC. They similarly further associated 

the imbalance improvement of care received by patients in poor countries with lack of medical access 

and in extreme cases due to poverty that hinders majority from utilising or affording good medical 

treatment. However, this disproportion can be improved using alternative approaches which can provide 

timely and low-cost effective service delivery for burn patients. We believe our work is novel because 

of the following contributions: we have collected the largest dataset so far as compared to the literature 

(to the best of our knowledge); we intend to make it publicly available; using the weights of deep neural 
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networks we have attained results that are extremely good which we hope will form the baseline for 

future research; our rigorous evaluation protocol proves the efficiency of the proposed technique 

The rest of the paper is organized as follows: section two presents an excerpt from the related literature; 

section three provides an overview of deep neural networks; method such as image acquisition, feature 

extraction and classification techniques are presented in section four; section five presents the 

experiment and results; and finally the research is concluded in section six. 

II. RELATED LITERATURES 

Attempts to automate the process of burn identification have been proposed in few studies such as [16], 

where five burn wounds were obtained from the department of medical science in the ministry of public 

health in Thailand. These acquired images were artificially augmented by experienced surgeons who 

identified second degree and third degree regions. Afterwards SVM was trained using 34 sub-images, 

through a 4-fold cross-validation, they achieved classification accuracy of 89.29%. 

 

Automatic classification of burns based on observable features by experienced burn surgeons was also 

proposed in [17]. Here, a total of 20 images were analysed, where the surgeons rated images based on 

the images similarities. Specifically, grouping of the images were based on severity of the burn wounds; 

such as reddish appearance for the superficial burns and pink-whitish colour for the deep dermal burns. 

The detected features were subsequently classified using support vector machine; they reported an 

accuracy of 80% with specificity as well as sensitivity of 60% and 97% respectively. Obviously the 

number of images used is too few to draw conclusion. Moreover, none of the aforementioned authors 

has made his data public. 

 

In [18], 611 images obtained from 53 pediatric patients were augmented and used to train a 

convolutional neural network (CNN) to distinguish skin burns from healthy skins. The algorithm’s 

reported sensitivity and specificity were 82.96% and 75.91% respectively. Unfortunately, the dataset 

used here is too small to produce the best from CNN. Rather than training from scratch, transfer learning 

will have been a better alternative. The dataset is also inaccessible. 

 

It is worth noting that none of the studies considered classifying burns in African patients. To the best 

of our knowledge, researchers only used images of Caucasian patients, including the most recent study 

[19] who proposed segmentation of burn wounds. Furthermore, the data used by the aforementioned 

researchers is not publicly available, thus the algorithm proposed in this study cannot be compared to 

any of the reviewed literature. 

 

As such, this study aims to investigate the use of deep neural networks for automatic recognition of 

burns to infer fast, accurate, reliable and cost-effective diagnostic process. Here we do not intend to 
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train the model from scratch. Instead, the weights of pre-trained models shall be used for image feature 

extraction. Additionally, the research investigates the efficacy of the algorithm when applied on images 

of both Caucasian and African patients. We believe that the proposed pipeline could aid tremendously 

when deployed to complement the diagnostic reliability of medical experts thereby enhancing service 

delivery in remote locations for different ethnicities. As an additional benefit to the research community, 

and to ensure ease of algorithm comparison, the dataset used in this study shall be made publicly 

available to researchers. 

III. CONVOLUTIONAL NEURAL NETWORKS 

Since the advent of machine learning (ML), many aspects of human activities such as commerce [20], 

healthcare [21] and police detective operations [22] have been revolutionized.  As a branch of ML, deep 

learning uses stacks of multiple hidden neural network layers arranged in a hierarchical passion to learn 

deep representations of data and to subsequently classify them in accordance to the categories for which 

they were trained to identify. Different architectures of convolutional neural network have been utilised 

recently in diverse fields such as face recognition [23], speech emotion recognition [24], and medical 

image analysis [25-27]. The most popular pre-trained CNN models are those used for the ImageNet 

competition [28], including but not limited to AlexNet [29], VGG-16 and VGG-19 [30]. Here, we 

consider three different VGG models due to their simplicity and reported accuracy [30]. 

A. VGG-16 

This is a deep neural network developed by Visual Geometry Group (VGG) at the University of Oxford. 

VGG-16 has a total of 37 layers out of which there are 13 convolution layers and 3 FC layers and all 

the convolution layers are equipped with 3 x 3 size filters as depicted in figure 1. The remaining layers 

are activation and pooling layers and the last layer is the decision layer. This deep neural network was 

trained on ImageNet database in 2014 [30]. In 2015, the VGG-16 model was retrained on a dataset of 

2.6 million human faces [31, 32], this they named the VGG-Face; it has been reported to have achieved 

state of the art accuracy in face recognition. 

 

 

Figure 1. Architectural illustration of VGG-16 model 

 

B. VGG-19 

VGG-19 architecture is a deeper updated version of the VGG-16, the depth of the network was 

increased reaching up to 43 layers comprising of 16 convolution layers, 3 FC layers, and the rest are 

interweaved activation and pooling layers. 
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IV. METHOD 

Our method in this paper is simple, the weights of VGG-Face as well as both VGG-16 and VGG-19 

deep neural networks are used to extract discriminatory features from burn images, subsequently, three 

sets of features are used to train support vector machine classification algorithms. The rationale for the 

proposed pipeline is to achieve efficient burn identification and also to assess whether the training 

datasets initially used to train the (compared) models has an impact on burn identification accuracy. We 

hope this comparison will further give us more insight on to the effect of neural network depth. Since, 

VGG-16 and VGG-19 were trained on database of 1000 different categories of objects while VGG-face 

model was trained on a database of human faces (VGG-Face). Intuitively, VGG-Face has closer 

relationship to our skin data, but will this provide significantly stronger features? 

Additionally, we believe this approach of using a pre-trained model is simple and well suited for our 

task, especially due to the fact that our dataset has insufficient images; any attempt to retrain the whole 

neural network or a few of its layers will most likely lead to over-fitting. 

A. Data Collection and Ethical Consideration 

• Caucasian patients: The datasets were captured with the patient’s full consent in a hospital from 

the city of Bradford, United Kingdom; sample images contained in this dataset are presented in 

figure 2. 

 

 

Figure 2. Samples of healthy and burnt skin from Caucasian patients 

• African patients: Burn images from patients with dark (black) skin were obtained from Federal 

Teaching Hospital Gombe (FTHG) in the North-Eastern Nigeria. The hospital is situated in a 

city of over 3 million people and it is the only hospital with a burn unit. The dataset was released 

upon the successful approval of the submitted application/request by the teaching hospital’s 

research and ethics committee. Figure 3 shows samples of the African burn images. The quality 

of images contained in this dataset is very poor, having low resolution as well as poor contrast. 

 
 

 
Figure 3. Samples of healthy and burnt skin from African patients 

The skin in Caucasian and African people differ in appearance due to a colouring pigment called 

melanin. This pigment is present in all human races however, the secretion of these pigments varies in 

accordance to geographic location. Melanin pigment is produced by melanocyte which is contained in 

both white and black skin [33]. Melanin in black skin is brown-black pigment called eumelanin and 

yellow-reddish pigment in white skin called Pheomelanin. The secretion of these pigments depends on 

the ultraviolent (UV) sun radiation in a region. People living in region with high UV light produce more 

melanin to shield them against the negative effect of too much exposure to sun heat. Thus, people with 
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high rate of melanin secretion possess black skin, for instance people living in sub-Saharan Africa. 

Another distinguishing element between white and black people found in the epidermal layer of skin is 

the outermost protective barrier that sits on top of the epidermis. This layer is called stratum Corneum; 

it aids water retention as well as hydration [34] and has  15 or more flattened corneocytes. According 

to [16] there are 20 corneocytes in black skin compared to 16 corneocytes in white skin, however the 

thickness of the stratum Corneum in both races is the same but they are more compacted in black skin. 

B. Data Preparation 

The collected datasets contain burn images of different complexity levels (i.e., different burn degrees 

and sizes), also the patients are of varying age group; adults and infants. Furthermore, the affected burn 

locations are from different regions of the body (head, torso to limbs). We harvested 1360 rectangular 

patches from 32 Caucasian subjects. Extraction of patches from the images was done carefully to 

include varying degrees of burn information. Similarly, 700 regions were cropped out from the images 

of 60 black patients. All cropped regions were resized to 224 by 224 pixels to conform to the input of 

the VGG models. 

C. Feature Extraction 

As stated earlier, three sets of features were extracted from colour images using the pre-trained models 

(VGG-16, VGG-19 and VGG-Face). Assuming input images are given as I0 and is represented as I0 ԑ 

VH x W x C , the parameters H,W and C stand for height of the images, width of the image and colour 

channel respectively. Each input image passes through different layers of the pre-trained model which 

is composed of series of learning functions 𝐹𝐿 = 𝑓1 ≫  𝑓2 ≫ 𝑓3 … 𝑓𝑛, where output of each layer is 

the input of the immediate layer. Specifically, layer FC7 of the three models are utilized. Hence each 

image feature is given by a vector of 4096 elements.  

D. Classification 

Following successful feature extraction, a linear support vector machine (SVM) classifier is trained for 

each set of features. Specifically, for each feature set, three SVMs were trained on; Caucasian images, 

African images, and a combination of the two. This we have done to get an insight on how skin colour 

affects the overall performance of the classifier. Hence, in total 9 SVMs were trained. 

Skin-burn discrimination is a binary classification problem, where the test data are either healthy skin 

or burnt skin. Given a training set (𝑥𝑖, 𝑦𝑖) for i=1,…,n with x ԑ RN and 𝑦𝑖  ԑ {-1 , +1} a classifier is 

learned such that 

𝑓(𝑥𝑖) = {
  ≥ 0 𝑦𝑖 =  +1
< 0 𝑦𝑖 =  −1

                                                      (1) 

Here, +1 and -1 denotes skin burn and healthy skin. The goal of the SVM is to find the most favourable 

separating hyperplane that best divides the two classes. It functions by projecting the training samples 

via a function Ø into an infinite dimensional space F. Then the optimal separating hyperplane is obtained 

in F by solving an optimization problem. However, the mapping from input space X to the feature space 
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F is not done explicitly; rather it is done via the kernel trick, which computes the inner dot products of 

the training data. Reader is referred to [35] for more detail on SVM. In this paper linear kernel SVM is 

utilised, given by: 

 

𝐾(𝑥𝑖,𝑥𝑗) = 𝑥𝑖
𝑇𝑥𝑗                                                                      (2) 

 

 

 

V. EXPERIMENT AND RESULTS 

 

Here, results of experiments performed using the proposed pipeline are presented. 

Unfortunately, we cannot make comparison to other works highlighted in section II. This is 

because the dataset they all used are private and every attempt to get access to them have been 

futile. We however hope to make our dataset publicly available, thus the results presented in 

this section can act as a baseline for future research. 

 
All nine SVMs are evaluated through a 10 fold cross-validation technique. Hence, in each of the 9 

scenarios, the dataset say S is randomly partitioned into 10 mutually exclusive parts/folds S1, S2, …, S10 

of same size. The SVM was trained 10-times where in each iteration 1-fold is held-out and the classifier 

is trained using 9 folds and tested on the held out split. Thus, after 10 iterations all data samples will 

have been used for testing and training at some point in time. Classification accuracies for all 9 scenarios 

is presented in table 1. Figure 4 depicts the experiment procedure. 

 

 

Figure 4. Experimental setup 

 
Table 1. Classification accuracy 

CNN 

Models 
Caucasian African Hybrid 

VGG-16 99.286% 98.869% 98.750% 

VGG-19 98.333% 97.500% 97.560% 

VGG-Face 96.310% 97.202% 95.208% 

 
As can be seen in table 1, all 9 scenarios achieved excellent classification accuracies. It is also obvious 

that skin burn classification is easier in Caucasian images, this can be attributed to the fact that the burns 

have a clear contrast as compared to the normal skin colour. Moreover, the Caucasian dataset is bigger 

and has better image quality as compared to its African counterpart. It can also be observed that 

combining both white and dark skin images into a single global dataset further introduces confusion, 

thereby deflecting the accuracy even further. Table 1 also highlights that out of the three VGG models, 
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the two (VGG-16 and 19) that were trained on ImageNet outperform VGG-Face which was trained on 

faces. This highlights to us the importance of training data and the diversity of data categories. The 

features of VGG-Face seem to have been fine-tuned so much toward face images, hence the slight under 

performance when used to describe non-face images. Additionally, we have seen that VGG-16 

outperforms VGG-19, here is a scenario where increase in depth only made the performance worst,  it 

can be argued that this is due to the fact that as depth increases in CNNs, accuracy saturates and 

subsequently degrades; this has been mentioned in the literature [36], as one of the reasons why residual 

neural networks were introduced. Figure 5, graphically summarizes the result of Table 1. Lastly, it can 

be noted that the result in VGG-Face shows that the model represents dark skins better than the lighter 

skins, despite that fact, the overall accuracy is still below the other two models. 

 

 

Figure 5. Classification accuracy 

The accuracy of a classification algorithm tells the overall correctness of the trained model on the 

dataset in question. However, there is need to know which of the instances or class samples were 

less/highly misclassified. This information can be obtained if proportion of the positive samples were 

determined, likewise for the negative samples. Since the study deals with binary classification, let 

consider a situation represented by a 2 x 2 dimensional table known as confusion matrix or contingency 

table as shown in table 2 

 
  Table 2. Confusion matrix 

P
re

d
ic

te
d

 C
la

ss
e
s 

Actual Classes 

 Negative Positive  

 

True 

(T) 

Healthy 

Skin: True 

Negative 

(TN) 

Misclassified 

TP: False 

Negative 

(FN) 

 

False(F) 

False 

(F) 

Misclassified 

TN: False 

Positive (FP) 

Abnormal 

Skin: True 

Positive (TP) 

True 

(T) 

 

The contingency table shown in Table 2 shows there can be only 4 possible outcomes when the test is 

conducted. The abnormal class is represented by the cell labelled TP which indicates percentage of 

correctly classified positive (burned skins) instances and the normal or healthy instances that were 

correctly classified are represented by TN which indicates the actual normal negative. For simplicity, 

instances that falls within the shaded cells are the correct prediction made by the classification model. 

However, those that fall into the unshaded cells are the misclassified instances; FN represents a 

percentage of burned-skins that were falsely classified as healthy, on the other hand, FP shows 

percentage of normal skins that were flagged as burnt.  
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The confusion matrix of our 9 models, are represented in Tables 3, 4 and 5. For each of the tables the 

a) b) and c) sub-tables represent VGG-16, VGG-19 and VGG-Face respectively. Figures 6, 7 and 8 

further summarize as well as compare the specificities and sensitivities of the three features under the 

3 scenarios.

 
Table 3a. Classification of burns in Caucasian using VGG-16 features 

P
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C
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Target Classes 

 Burns Healthy 

Burns 837 9 

Healthy 3 831 

 
Table 3b. Classification of burns in black/African using VGG-16 features 

P
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d
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C
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Target Classes 

 Burns Healthy 

Burns 834 13 

Healthy 6 827 

 
Table 3c. Classification of burns in both Caucasian & African using VGG-16 features 

P
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Target Classes 

 Burns Healthy 

Burns 1664 26 

Healthy 16 1654 

 
Table 4a. Classification of burns in Caucasian using VGG-19 features 
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Target Classes 

 Burns Healthy 

Burns 830 18 

Healthy 10 822 

 
Table 4b. Classification of burns in African using VGG-19 features 

P
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Target Classes 

 Burns Healthy 

Burns 820 28 

Healthy 20 813 

 
Table 4c. Classification of burns in both Caucasian & African using VGG-19 features 

P
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C
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Target Classes 

 Burns Healthy 

Burns 1646 48 

Healthy 34 1632 
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Table 5a. Classification of burns in Caucasian using VGG-Face features 
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Target Classes 

 Burns Healthy 

Burns 818 40 

Healthy 22 800 

 
Table 5b. Classification of burns in African using VGG-19 features 
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Target Classes 

 Burns Healthy 

Burns 820 27 

Healthy 20 813 

 
Table 5c. Classification of burns in both Caucasian & African using VGG-19 features 

P
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C
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Target Classes 

 Burns Healthy 

Burns 1606 87 

Healthy 74 1593 

 

 

 
Figure 6. Sensitivity and specificity from the classification of burns in Caucasian patients 

 

 
Figure 7. Sensitivity and specificity from the classification of burns in African patients 

 

 
Figure 8. Sensitivity and specificity from the classification of burns in both Caucasian and African patients 

 
The results of the confusion matrix presented above, further corroborate the output of the accuracies 

presented in Table 1. In all scenarios VGG-16 weights have proven to have the strongest burn features. 

The confusion (FN and FP) are consistently minimal when training is done on isolated ethnicities. The 

global classifier seems to have more confusion, this suggests that it will be better to encode some 



11 

 

ethnicity information into the classifier in the feature, that way it is hoped that the combined classifier 

having prior information about the ethnicity will tend to perform better.  

Figure 9 shows some misclassified images, this failure of the algorithm can be attributed to waxy, white 

and leathery appearances of full-thickness burns. Poor resolution and low contrast are also additional 

causes of misclassification 

 

 

Figure 9. Images (a) and (b) are full-thickness burns, (d) and (e) are healthy skin images from Caucasian patient 

while (c) and (f) are burn images from African patients 

 
Finally, the results of our 9 experiments are represented using receiver operating characteristics (ROC). 

This is a tool that gives a graphical representation of sensitivity of the diagnostic test against the 

corresponding specificity. In summary, the computed area under the (AUC) curve gives a summary of 

which test/algorithm has lesser confusion and hence better overall performance. It is worth nothing that 

the values of AUC range between 0 and 1, with 1 been the ideal state. 

 

Figures 10, 11 and 12 show ROC curves generated for all three scenarios. Again, the performance of 

our pipeline is close to the ideal case (i.e. AUC = 1). Furthermore, VGG-16 features outperform the 

other two, and again the global classification shows a slight drop in performance. Figure 13 summarizes 

the AUC and compare the performances under three scenarios. 

 

 

 
Figure 10. ROC curve from the classification of burns in Caucasian patients 

 

 
Figure 114. ROC curve from the classification of burns in African patients 

 

 
Figure 12. ROC curve from the classification of burns in both Caucasian and African patients 

 

 
Figure 14. AUC comparison 

 

VI. CONCLUSION 

In this paper, we presented a straightforward but very effective means of recognizing human skin burns. 

To the best of our knowledge, this is the first work that used machine learning to discriminate burn skin 

injuries from healthy skins for patients of different ethnicities.  
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Burn images obtained from Caucasian patients as well as those from black-African patients living in 

two different geographic regions were used to train various machine learning algorithms to discriminate 

healthy and burnt human skins. Weights of pre-trained deep neural networks were utilized for image 

feature extraction and subsequently linear kernel SVM was used for classification.  

 

Besides achieving extremely good classification accuracies under nine scenarios, we were able to 

observe that deep learning models trained on multiple data categories have strong generic information 

that can be used on the fly for image feature representation.  

 

Our work has also thoroughly investigated the effect of race/ethnicity on the overall performance of the 

skin-burns identification algorithm. We have thus observed that training local models for each ethnic 

group (or race) tends to be more robust than a single global model for all skin colors. As such, in the 

future, we shall investigate the development of a single global model with a priori ethnicity information 

encoded into the model. 

 

We have further observed that the performance of CNNs saturates and subsequently degrade as they go 

deeper. Hence, in the future we will also like to investigate the weights of extremely deep residual 

neural networks since they were invented with a view to tackling problems associated with the 

conventional CNNs. Additionally, a multi-class problem of categorizing different degrees of skin burn 

shall be studied.  
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