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Abstract

A new quasilinear saturation model SAT3 has been developed for the purpose of calculating radial turbulent fluxes

in the core of tokamak plasmas. The new model is shown to be able to better recreate the isotope mass dependence

of nonlinear gyrokinetic fluxes compared to contemporary quasilinear models, including SAT2 [1], whilst performing

at least as well in other key equilibrium parameters. By first quantifying the isotope scaling of gyrokinetic flux

spectra, it is shown that the deviation from the gyroBohm scaling of fluxes originates primarily in the magnitude

of the saturated potentials. Using this result SAT3 was formulated using observations made from gyrokinetic data,

including a novel and robust relation between the 1D potential spectrum and the radial spectral widths. This

serves to define the underlying functional forms of SAT3 before then connecting to the linear dynamics, including

a difference in saturation level between ITG- and TEM-dominated turbulence, with the resulting free parameters

having been fit to a database of high-resolution nonlinear CGYRO simulations. Additional features outside of

the database are included, including E × B shear and multi-ion plasma capability. The methodology used in the

development of SAT3 represents an algorithm which can be used in the improvement and generation of future

saturation models.

1 Introduction

In the field of tokamak transport it is well established that the isotope scaling of the global energy confinement time τE
is not commensurate with that suggested by simple theory [2–5], which assumes that local turbulent fluxes Qi follow

gyroBohm scaling, for which Qi ∝
√
A for ion mass number A, and that there exists a simple translation between

the local fluxes in the device and the global confinement properties, τE ∝ 1/Qi ∝ A−0.5. Experimental scaling laws

derived from observations made across many tokamaks however consistently observe positive scalings, τE ∝ Ap, p > 0

[6, 7]. Whilst this result bodes well for the success of future tokamak devices in their shift from pure deuterium (D)

plasmas to the operational 50/50 mix of deuterium-tritium (DT), the mechanisms responsible for this ‘isotope effect’

remain incompletely understood.

To investigate the gyroBohm scaling assumption, nonlinear gyrokinetic codes [8–10] can be used to accurately

simulate how local turbulent fluxes depend on isotope mass. Previous studies have shown that in sufficiently simple

cases, namely those dominated by ITG turbulence with a single ion species and adiabatic electrons, the gyroBohm

scaling of fluxes is produced [11, 12]. The inclusion of more sophisticated physics in these simulations breaks this

scaling, as has been demonstrated for the inclusion of kinetic electrons [13], electromagnetic effects [14], collisions [15]

[16], E ×B shear [17] and fast particles [18]. Numerous studies have also shown that not only can local fluxes deviate

from the gyroBohm prediction, but can follow the opposite trend, the so-called anti-gyroBohm scaling, in which fluxes

scale inversely with isotope mass [13, 19]. The plurality of mechanisms involved in this gyroBohm-breaking effect

makes even a partial explanation of the isotope effect on a local level challenging.

Nonlinear gyrokinetics represents the most accurate plasma turbulence modelling paradigm available, having been

extensively validated against experiment [20–27]. However, its great computational expense renders it impractical

for use in integrated modelling simulations, in which one is required to simulate many flux surfaces over confinement

timescales. Quasilinear models such as TGLF [28] and QuaLiKiz [29] are instead used for this purpose. These models

bypass the expense of calculating the fluxes in the nonlinear gyrokinetic system by instead solving for the linear

response of the plasma instabilities, which is then combined with an estimation of the magnitude of the saturated

potentials via a saturation rule to provide a calculation of the fluxes in a greatly reduced time. A standard and

relatively simple estimation of these potential magnitudes comes from the mixing length rule [29], which models the
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turbulent transport as a diffusive process, with a step size of a characteristic wavenumber of the linear instability and

a time step of the inverse of the growth rate. This estimation is employed in QuaLiKiz [30], however saturation rules

can be based on other turbulence saturation mechanisms, such as TGLF SAT1 [31] and SAT2’s [1] paradigm of zonal

mixing. Quasilinear models have been extensively validated against nonlinear gyrokinetic codes for deuterium plasmas

[1, 32] and have successfully modelled deuterium plasma discharges [11, 33–36]. However, their historically limited

considerations of plasmas in other isotopes, coupled with their incomplete description of the isotope effect, cause them

to struggle to replicate the behaviour of nonlinear gyrokinetic fluxes with isotope mass, rendering predictive flux-driven

modelling efforts unreliable [11, 19].

An example of the isotope effect as it appears in local nonlinear gyrokinetics was explicitly demonstrated in a paper

by E. A. Belli et al [13], focusing on the role of kinetic electrons. It was shown using the gyrokinetic code CGYRO [9]

that by increasing the equilibrium density gradient from a GA-standard case [37] baseline, one moves from a regime

of ITG-dominated turbulence to TEM-dominated turbulence, accompanied by a reversal in the flux scaling. It was

suggested that this anti-gyroBohm scaling may not be captured by reduced turbulence models, in part due to the

observation that the mixing length rule did not exhibit this isotope reversal.

To test the adherence between the nonlinear (NL) CGYRO results and the quasilinear model results, the NL

CGYRO data from the density gradient scan presented in [13] is shown in figure 1, along with the data from equivalent

simulations using TGLF-SAT1, TGLF-SAT2 and QuaLiKiz. Moving from a/Ln = 0.0 to a/Ln = 3.0, one observes

that the anti-gyroBohm scaling seen in the data from NL CGYRO for a/Ln > 2.0 is not replicated in the results of

any of the three quasilinear models. These all instead exhibit positive isotope scaling across the scan, indicating that

the relevant physics to capture this isotope scaling reversal is missing.
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Figure 1: Turbulent ion energy fluxes against density gradient scale length for (a) NL CGYRO, (b) TGLF-SAT1, (c)

TGLF-SAT2 and (d) QuaLiKiz in H, D and T, from a GA-std case baseline. Note that the isotope scaling reversal

present in NL CGYRO (shaded region) is not recreated in any of the quasilinear models. Subfigure (a) reproduced

from [13], with the permission of AIP Publishing.
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The inability of current models to reliably predict this scaling undermines the efforts of integrated modelling in

terms of prediction and optimisation of experimental campaigns in plasmas with compositions differing from pure

deuterium. With the advent of ITER and the subsequent shift to operations with DT, as well as isotope experiments

at the JET tokamak, it is essential that modern quasilinear models more accurately approximate fluxes in different

isotopes.

The aim of this work is to develop a new quasilinear model that is able to more reliably predict how turbulent fluxes

scale with isotope mass, by capturing the physics contained in local nonlinear gyrokinetic simulations. The paper is

organised as follows: Section 2 contains a discussion on the theory of turbulent plasma fluxes, and how this informs

the structure of quasilinear models. The detail of the gyrokinetic database created for this work is given in Section

3. In Section 4, contemporary reduced transport models are compared with gyrokinetic simulations, to illustrate in

detail how those models fail to capture the isotope dependence of the transport. Section 5 describes the development

of the new saturation rule SAT3, with a summary of the model given in Section 5.7, and Section 6 presents the results

from SAT3. A conclusion follows.

2 Turbulent fluxes

2.1 Fluxes in gyrokinetics

The following employs local flux-tube geometry [38] with coordinates {x, y, θ} denoting the radial, binormal and

parallel-to-field coordinates respectively. A summary of the field-aligned system, geometric conventions and averages

used in this paper is given in Appendix A. This work focuses primarily on electrostatic turbulence, such that the only

non-negligible component of the turbulent electromagnetic field is the fluctuating electrostatic potential δφ.

Turbulent heat fluxes arise in the gyrokinetic system due to the interaction between δφ and the pressure fluctu-

ations of the present plasma species δps (for species s) via the turbulent E × B velocity [39, 40]. Once saturated, a

statistically steady-state flux can be defined by taking both an ensemble average and a flux-surface average over these

fluctuations. Of particular interest is the radial component of this averaged flux, due to its integral role in determining

the confinement properties of the plasma. This is given by

Qs =

〈

∇x · b̂×∇δφ
B

δps

〉

Ens,FS

(1)

where b̂ is the unit vector in the direction of the equilibrium magnetic field, B = |B| is the equilibrium magnetic

field magnitude, and ⟨...⟩Ens,FS denotes an average over the turbulent ensemble and flux-surface respectively. By

representing each fluctuating quantity as a Fourier series in x and y, one can show that equation 1 may be written (a

step-by-step derivation is given in Appendix B):

Qs =
∑

ky>0

2
∑

kx

〈

kyIm
[

Z∗
s,kx,ky

]

Bunit

∣

∣

∣δφ̂kx,ky

∣

∣

∣

2
〉

θ,t

=
∑

ky>0

Qs,ky

(2)

where Zs,kx,ky
= δp̂s,kx,ky

/δφ̂kx,ky
. Here the total flux Qs has been decomposed into a sum of discrete flux components

per positive binormal wavenumber, Qs,ky
= 2

∑

kx

〈

kyIm
[

Z∗
s,kx,ky

]

Bunit

∣

∣

∣δφ̂kx,ky

∣

∣

∣

2
〉

θ,t

. Circumflexes are used to denote

Fourier amplitudes and ∗ signifies a complex conjugate. The averages over θ and t are defined by equations A.5 and

A.6, and Bunit is an effective magnetic field

Bunit =
q(r)

r

dψ

dr
(3)

where ψ is the poloidal magnetic flux divided by 2π, q is the safety factor and r denotes a given flux-surface.

Equation 2 shows that each flux component Qs,ky
can be considered as a sum over kx of averaged terms comprised of

two factors: the squared magnitude of the potential fluctuations
∣

∣

∣
δφ̂kx,ky

∣

∣

∣

2

, and kyIm
[

Z∗
s,kx,ky

]

/Bunit, which contains

the phase difference between the pressure and potential fluctuations.
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2.2 Fluxes in reduced models

Two types of reduced turbulence models are considered in this work: Those with ‘exact’ linear solvers, which compute

the linear behaviour of microinstabilities using a local gyrokinetic code, and those with ‘fast’ linear solvers, which

solve a simplified version of the linear gyrokinetic system to approximate the linear response of the plasma in a greatly

reduced time. The results of these solvers are then combined with a saturation rule in order to calculate turbulent

fluxes.

Whilst the use of exact linear solvers is too computationally expensive for routine use in reduced models required

by integrated modelling, it is useful for the purposes of saturation rule development, as the dynamics of the linear

microinstability are computed more accurately. This model type has been used previously [41–43], including under

the name ‘QLGYRO’ [44], for which linear CGYRO results were combined with TGLF’s SAT1 rule. In the interest of

generality, in this paper reduced models will be referred to using the taxonomy ⟨ linear inputs ⟩-⟨ saturation rule ⟩, to
clearly specify the constituents of each model. Thus CGYRO-SAT1 refers to the QLGYRO paradigm, TGLF-SAT1

refers to SAT1 with the reduced linear inputs of TGLF, and the QuaLiKiz saturation rule (qlk) with the linear inputs

of QuaLiKiz is QuaLiKiz-qlk.

The flux calculation of models using an exact linear solver will first be considered. For each ky one can define an

average phase, dubbed the ‘weight’ Ws,ky
, such that

Ws,ky
=

〈

kyIm
[

Z∗
s,kx,ky

]

Bunit

〉

=

∑

kx

〈

kyIm
[

Z∗
s,kx,ky

]

Bunit

∣

∣

∣
δφ̂kx,ky

∣

∣

∣

2
〉

θ,t

∑

kx

〈

∣

∣

∣δφ̂kxky

∣

∣

∣

2
〉

θ,t

=
1
2Qs,ky

〈

∣

∣

∣δφ̂ky

∣

∣

∣

2
〉

x,θ,t

(4)

where the relation
〈

∣

∣

∣δφ̂ky

∣

∣

∣

2
〉

x,θ,t

=
∑

kx

〈

∣

∣

∣δφ̂kx,ky

∣

∣

∣

2
〉

θ,t

(5)

is a consequence of Parseval’s theorem (Appendix C). Note the factor of 1
2 in the final expression of the weights due to

historical convention. One can define both a ‘nonlinear weight’ WNL
s,ky

and a ‘linear weight’ WL
s,ky

, named due to their

calculation from the nonlinear gyrokinetic system and the linear gyrokinetic system respectively. The flux obtained

from nonlinear gyrokinetics may therefore be written as a 1D sum over binormal wavenumber of nonlinear weights

and potentials:

Qs = 2
∑

ky>0

WNL
s,ky

〈

∣

∣

∣δφ̂ky

∣

∣

∣

2
〉

x,θ,t

(6)

To express the flux in a form relevant to reduced models, and assuming only the dominant mode is considered in the

linear solver, one multiplies and divides by the linear weight:

Qs = 2
∑

ky>0

[

WNL
s,ky

WL
s,ky

]

WL
s,ky

〈

∣

∣

∣δφ̂ky

∣

∣

∣

2
〉

x,θ,t

= 2
∑

ky>0

Λs,ky
WL

s,ky

〈

∣

∣

∣δφ̂ky

∣

∣

∣

2
〉

x,θ,t

(7)

where Λs,ky
= WNL

s,ky
/WL

s,ky
is the ‘quasilinear approximation (QLA) function’. This defines an explicit measure of

the quasilinear approximation, which assumes that the average phase between the fluctuations in the linear regime is

conserved in the nonlinear regime [45]. If this approximation were to be satisfied exactly, one would observe Λs,ky
= 1

for all species at all binormal wavenumbers, which is typically assumed in current quasilinear models.

Finally, for the purposes of reduced modelling, one does not mathematically describe the potentials

〈

∣

∣

∣δφ̂ky

∣

∣

∣

2
〉

x,θ,t

,

but rather the potentials normalised to the binormal grid spacing ∆ky, as this can be shown to be invariant under a

change of grid resolution once past the point of convergence (Appendix D). This consideration yields

Qs = 2
∑

ky>0

Λs,ky
WL

s,ky











〈

∣

∣

∣δφ̂ky

∣

∣

∣

2
〉

x,θ,t

∆ky











∆ky (8)
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which is the final result for the structure of fluxes in quasilinear models with an exact linear solver. Each term in the

sum over ky is comprised of four parts, two of which are obtained from linear simulations, and two of which must be

prescribed. The two linearly determined quantities are the adopted binormal grid spacing ∆ky and the linear weight,

WL
s,ky

. The two quantities in need of prescription are the grid-independent potentials

〈

∣

∣

∣δφ̂ky

∣

∣

∣

2
〉

x,θ,t

/∆ky, calculated

by the quasilinear saturation rule, and the QLA function, Λs,ky
.

The flux calculation for the fast model type is similar to equation 8, however as they solve a simplified version of

the linear gyrokinetic system, some additional sources of error are incurred due to their approximate calculation of

the linear response. These errors can enter through the linear weights and through linear quantities needed in the

saturation rule, typically the growth rate of the dominant mode.

Note that the discussion and derivations in this section thus far hold completely analogously for the particle flux

Γs and momentum flux Πs, by simply substituting the pressure fluctuations δps for the density fluctuations δns or

velocity fluctuations δvs respectively in equation 1.

3 Simulation database

Normalising quantities in this work are given in SI units. These normalisations are the deuterium mass mD, the

electron temperature Te, the electron density ne, the tokamak minor radius a and the effective magnetic field Bunit,

defined by equation 3. The reference gyroradius is therefore ρunit =
√
mDTe/eBunit, with ρ∗ = ρunit/a, and the

deuterium sound speed is cs =
√

Te/mD. Other useful normalisations include those of frequency cs/a, particle flux

ΓGBD = ρ2∗necs, energy flux QGBD = ρ2∗neTecs and the electrostatic potential φunit = ρ∗Te/e = Bunitρ
2
unit (cs/a).

A database of 43 nonlinear gyrokinetic simulations was generated using CGYRO [9]. The database is primarily

centered around the GA-std case, defined by a/LTi
= a/LTe

= 3.0, a/Ln = 1.0, Ti/Te = 1.0, ŝ = 1.0, q = 2.0,

(a/cs) νee = 0.1 and circular Miller flux-surface geometry with r0/R0 = 1/6, for tokamak major radius R0. Definitions

of equilibrium geometry quantities correspond to those found in [46]. Kinetic electrons and a single ion species are

used for all cases. The three isotopes that have been simulated are H, D and T, with mi/mD values of 0.5, 1.0 and 1.5

respectively. No rotation is included. All simulations are predominantly electrostatic, however include δA∥ fluctuations

with a small plasma beta of βe,unit = 0.05% to allow for an increased time-step with negligible effect on the fluxes [9].

Additional parameters considered include the elongation κ and the Shafranov shift ∆ = dR0/dr, and w is the box

size integer which relates the radial and binormal domains, Lx = Lyw/ (2πŝ). Changes in temperature gradient scale

lengths were kept constant between the ions and electrons (a/LTi
= a/LTe

). In table 1, the tokamak parameters that

differ from the GA-std baseline are shown for the database.

The resolutions used in this work for the nonlinear simulations are Ny = 40 binormal modes, Nx = 224 radial

modes, Nθ = 32 parallel grid-points, Nξ = 16 pitch-angle grid-points and Nu = 8 energy grid-points. The density of

binormal modes is greater than that typically used in studies of similar cases [13], as it was found during convergence

tests that this lower resolution can cause fluxes to be under-predicted. The box size integer w has a value of 4 for all

simulations except those changing the magnetic shear from its baseline value of ŝ = 1. For these cases, the box length

integer was also changed so as to keep ŝ/w constant and thus the radial domain length unchanged. All simulations

were conducted at the ion scale up to kyρi = 1.0, where ρi =
√

mi/mDρunit, to keep the radial and binormal domains

constant relative to the main ion gyroradius. This binormal grid set-up was also used for the quasilinear model

simulations of TGLF and QuaLiKiz shown in figure 1. Finite aspect-ratio Miller geometry was used for all simulations

other than those of QuaLiKiz, which used large aspect-ratio circular geometry.

Nonlinear simulations were given sufficient time to saturate, running to at least (cs/a)τ > 1000, where τ is the

total simulation time. Time averages of fluctuating data were performed by taking three separate measurements with

consecutive time-windows of size 0.28τ between 0.16τ and τ . From these three measurements a mean and standard

deviation were calculated for the final result. These windows were chosen to avoid the initial linear regime of the

simulations, and to provide a representative standard deviation of the statistical fluctuations. Unless otherwise noted,

all error bars shown in this work are the standard deviations obtained from this method.

For each nonlinear case 39 linear simulations were also conducted, corresponding to the 39 non-zero binormal modes

present in their respective nonlinear simulations. An altered radial domain was used with Nx = 128 and w = 1, due
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Varied Parameter Values (Label) Fixed Isotopes Simulated

- (GA-std) - (a) - H, D, T

a/LTi
= a/LTe

1.5 (b), 2.25 (c), 3.5 (d) - H, D, T

a/Ln 2.0 (e), 3.0 (f) - H, D, T

ŝ 0.25 (g), 0.5 (h), 1.5 (i) ŝ/w = 1/4 D

(a/cs)νee 0.01 (j) - H, D, T

(a/cs)νee 1.0 (k) - D

Ti/Te 0.5 (l), 1.5 (m) - D

q 1.5 (n), 2.5 (o) - D

κ 1.25 (p), 1.5 (q), 2.0 (r) - D

∆ −0.125 (s), −0.25 (t), −0.5 (u) - D

r0/R0 1/4 (v), 1/12 (w) - D

(a/cs)νee 0.01 (x) a/Ln = 3.0 H, D, T

(a/cs)νee 0.05 (y) a/Ln = 3.0 H, T

(a/cs)νee 1.0 (z) a/Ln = 3.0 D

Table 1: Details of the 43 nonlinear CGYRO simulations that form the database. Note that the labels in the second

column correspond with those in figure 13(c), used for discerning the cases displayed in figures 13(a), 13(b), 17 and

18.

to the difference in grid requirements for convergence between nonlinear and linear runs.

A single nonlinear simulation of the GA-std case in D was repeated with Nx = 896 keeping w = 4, for use in figure

7. This extended domain case plays no other part in the work.

Six additional linear simulations were also performed scanning over relative concentrations of D and T in mixed

DT plasmas for the GA-std and a/Ln = 3.0 cases in Section 5.5.2. The values simulated are nD/ne = {0.25, 0.5, 0.75},
with nT /ne = 1− nD/ne.

4 Model comparison and isotope scaling diagnosis

In this section, the results from the CGYRO database are compared with those obtained from CGYRO-SAT1, TGLF-

SAT1 and QuaLiKiz-qlk1. This is done to observe from where in the nonlinear gyrokinetic data the non-trivial isotope

scaling originates, as per the flux breakdown in equation 8, as well as to identify why the current reduced models

are not reproducing the NL CGYRO results. As an example case this section will focus on the three a/Ln = 3.0

simulations, due to the anti-gyroBohm scaling present in the fluxes.

To analyse the isotope scaling of these models the metric αA is introduced, such that for flux data in H, D and T,

one may fit the data with a function of the form

f(A;CA, αA) = CAA
αA (9)

where the values of CA and αA are found via best fit to the data points. An advantage to this metric is that one

number αA describes the isotope scaling for three isotopes, whereas previously used metrics [11, 17] have been based

around taking the difference between two fluxes, and thus at least two numbers have been needed for an approximately

equivalent description. The values of αA are also intuitive: if one measures an αA value of αA ≈ 0.5, one knows that

the case follows approximate gyroBohm scaling. If one measures αA ≈ 0.0, then the fluxes do not vary with isotope,

and for αA < 0.0, the case exhibits anti-gyroBohm scaling. Outside of these limiting cases, one can quantify to what

degree the case diverges from gyroBohm scaling: for two hypothetical cases of αA = 0.4 and αA = 0.1, then both

1The results of TGLF-SAT2 are included in figure 2 only. The behaviour of SAT2 with isotope mass is very similar to that of SAT1,

as demonstrated by the similarities in scaling metric between the fluxes of TGLF-SAT1 and TGLF-SAT2 in figure 2. This is in part due

to the lack of consideration of isotopes other than deuterium in their development, as well as the similarity of their saturated potentials’

functional form. Beyond figure 2 therefore only the results of SAT1 are shown, with any conclusions regarding the isotope scaling of SAT1

also applicable to SAT2.
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exhibit positive scaling, however the second ‘deviates more’ from gyroBohm than the first, by a defined quantitative

amount.

Figure 2 shows the total ion energy fluxes for the GA-std case and the a/Ln = 3.0 case against A for the four

models, as well as TGLF-SAT2. Fitted to each data set is the result of the metric fit with the measured values of αA

displayed in the legend. Positive isotope scaling is seen in the GA-std case (figure 2(a)) for all 5 models, as one would

expect for ITG-dominated turbulence representative of the quasilinear models’ training datasets2. QuaLiKiz remains

close to the gyroBohm result.

For the a/Ln = 3.0 case, anti-gyroBohm scaling is observed in the NL CGYRO data, whereas the three fast

quasilinear models all continue to exhibit positive isotope scaling, αA > 0. For CGYRO-SAT1 one finds α ≈ 0.0,

implying that the use of the linear solver of CGYRO compared with the reduced linear solver of TGLF is having an

influence on the isotope scaling. As an exact linear solver type model, the resulting difference in isotope scaling between

CGYRO-SAT1 and NL CGYRO can only come from either the QLA function, which is assumed to be constant in

SAT1, and/or the functional form of the saturation rule.
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(b) NL CGYRO, αA =-0.46±0.08

CGYRO-SAT1, αA =-0.01±0.01

TGLF-SAT1, αA =0.22±0.01

QLK-qlk, αA =0.40±0.06

TGLF-SAT2, αA =0.19±0.01

Figure 2: Turbulent ion energy flux against isotope mass for the GA-std case (a) and the a/Ln = 3.0 case (b), for NL

CGYRO (black), CGYRO-SAT1 (red), TGLF-SAT1 (blue), QuaLiKiz-qlk (yellow) and TGLF-SAT2 (green). Note

the positive isotope scaling observed in both cases for the three fast quasilinear models, and the difference between

the CGYRO-SAT1 and the TGLF-SAT1 results, originating solely from a difference in linear solver.

To probe this discrepancy further, the decomposition of the total fluxes into their flux components Qs,ky
for the

a/Ln = 3.0 case is shown in figure 3(a). Here the flux components for NL CGYRO are plotted against kyρi for the three

isotope simulations, such that they have a shared ky-axis. To quantify the isotope scaling of these flux components

the isotope scaling metric αA can again be used, however now as a function of kyρi, to quantify how the scaling of

the flux components varies across the spectrum. Hence for each value of kyρi, the three flux component data points

are fitted using equation 9 with the resulting αA measurements forming an ‘αA line’, as shown in black in figure 3(b).

This exercise is repeated for CGYRO-SAT1, TGLF-SAT1 and QuaLiKiz-qlk. Also shown in figure 3(b) is a reference

line at αA = 0.5, corresponding to the expected result if the flux components followed gyroBohm scaling.

For the NL CGYRO αA line, the isotope scaling is not uniform across the spectrum as one may expect, but instead

two key features can be observed: an ‘offset’ from the gyroBohm value, most obviously seen in the region of kyρi > 0.3,

and a variation in the isotope scaling with kyρi between 0.0 < kyρi < 0.3. It is also in this low ky region that the

flux component magnitudes are largest, and hence contribute most to the total flux and its isotope scaling. Upon

consideration of the other cases in the database these features can be shown to be general, with differing offsets and

degrees of steepness in the low ky region. Because the larger kyρi region’s flux contribution is essentially negligible

in comparison, figure 3 implies that to accurately capture the isotope scaling of the total flux, one must capture the

2The difference in magnitude between NL CGYRO and the quasilinear models is due to the increase in the NL CGYRO fluxes compared

to previous datasets [1, 31], from the finer grid-resolutions used in this work.
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Figure 3: NL CGYRO ion flux components against wavenumber normalised to the main ion gyroradius kyρi for the

a/Ln = 3.0 case in H, D and T (a). In (b), the result of applying the αA metric at each kyρi is shown for the four

models, as well as the value that would be seen if the fluxes followed gyroBohm scaling (αA = 0.5). The error bars

shown for all models in (b) are the uncertainties in the fitted parameter αA.

shape of the flux component spectrum around the peak, as well as the isotope scaling characteristics observed in the

low ky region of the NL CGYRO data of figure 3(b).

Considering now the constituents of the flux components relevant to reduced models, as per equation 8, the two

quantities in need of prescription are the QLA functions and the potentials. The results of analogous αA fitting

exercises are shown in figures 4 and 5 for the ion energy QLA function and the saturated potentials respectively, along

with their reference lines expected from gyroBohm scaling arguments. Looking at the αA line of the QLA function in

figure 4(b), a small variation of αA ∼ −0.1 is seen in the region of low ky. Reduced models are not shown on this plot

as they all assume the QLA function to be exactly 1, and so would be simply aligned with the gyroBohm-predicted

result of αA = 0.0.
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Figure 4: CGYRO ion energy QLA function against kyρi for the a/Ln = 3.0 case in H, D and T (a). In (b), the

result of applying the αA metric at each ky is shown, including the reference value one would expect if gyroBohm

scaling were followed (αA = 0.0). This value is expected as the scaling of the linear and nonlinear weights is the

same, WL,WNL ∝ e2necs/T ∝ A−0.5, and thus their ratio cancels any predicted scaling dependence. The results of

the quasilinear models are not shown as their QLA functions are taken to be constant, and thus exhibit no scaling

(αA = 0.0). The error bars shown for the NL CGYRO data in (b) are the uncertainties in the fitted parameter αA.
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Whilst there is some non-trivial isotope scaling in the low ky region of the QLA function, this can be seen to be

relatively small when compared to the difference between the NL CGYRO result and the gyroBohm-predicted scaling

of the saturated potentials, shown in figure 5(b). The crucial variation in isotope scaling in the low ky region observed

in the flux components is also seen to originate here. Hence for this case, the deviation from gyroBohm scaling of

total fluxes in nonlinear gyrokinetics originates primarily in the saturated potentials, specifically in the region of low

ky. Upon consideration of the database more broadly this can be shown to be a general result for the dataset.
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Figure 5: NL CGYRO squared potential magnitudes against kyρi for the a/Ln = 3.0 case in H, D and T (a). In (b),

the result of applying the αA metric at each ky is shown, including the reference value one would expect if gyroBohm

scaling were followed (αA = 1.0), originating from the ordering assumption δφ2 ∝ ρ2∗(T/e)
2 ∝ A. The error bars shown

for all models in (b) are the uncertainties in the fitted parameter αA.

Turning to the results of the current quasilinear models in figure 5(b), TGLF-SAT1 and CGYRO-SAT1 both appear

to recreate a portion of the isotope scaling variation in the low ky region, indicating a reasonably accurate spectral

shape for SAT1. This implies that it is their offsets that are primarily responsible for the total flux scalings seen in

figure 2(b), with the different values attributed to the difference in linear solver. QuaLiKiz-qlk on the other hand

does not exhibit this continuous variation, due to the comparatively simple functional form of its spectral shape. The

majority of the scaling in the higher ky region can also be seen to approximately lie at the gyroBohm level for the

potentials. These results indicate that neither SAT1 or the QuaLiKiz saturation rule are fully capturing the relevant

physics that describes the variation in the saturated potentials with isotope, whether as a consequence of missing the

variation in the low ky region, the correct offset from the gyroBohm result, or a combination of the two.

To summarise the findings of this section, then in order for quasilinear models to capture the isotope scaling of

turbulent fluxes seen in nonlinear gyrokinetics, one must have a saturation rule that accurately predicts the spectral

shape of the potentials around the peak, as well as captures the αA line characteristics observed in figure 5(b). The

model must therefore have sufficient functional complexity to capture the variation of the scaling with ky in the low

ky region, and an accurate prediction of the offset. A new saturation rule, derived in light of these observations, will

now be considered.

5 New saturation rule

This section details the construction of the new saturation rule SAT3, which will for the first time recreate the properties

of the isotope scaling seen in the previous section. A summary of the model is presented in Section 5.7.

In the calculation of quasilinear fluxes, saturation rules are only strictly required to predict the 1D grid-independent

saturated potentials,

〈

∣

∣

∣δφ̂ky

∣

∣

∣

2
〉

x,θ,t

/∆ky, however in the interest of generality the two dimensional spectrum in ky

and kx will first be considered,

〈

∣

∣

∣δφ̂kx,ky

∣

∣

∣

2
〉

θ,t

. One can obtain the 1D potentials needed from the 2D spectrum simply
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by summing the potentials over kx, as in equation 5.

5.1 2D spectrum

For all cases in the database observed and at all values of ky, some common features exist regarding the 2D potential

slices in kx, a representative example of which is shown in figure 6. All spectra considered are approximately even

functions about a single peaked value, and tend to 0 for large |kx|. Due to the absence of any symmetry-breaking

effects [47] in the database, the spectra are always observed to peak at kx = 0. It has been shown however that in at

least the case of non-zero E × B shear a shift in the peak can be produced [48–50], and so a non-zero peak position

K(ky) is considered in the following.
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Figure 6: Example of a kx-slice of the 2D potential magnitude spectrum, exhibiting the common features of an even,

singularly peaked function with vanishing limits. Taken from the GA-std case in D, for kyρunit = 10/39 = 0.256.

The foregoing observations can all be accommodated into a functional description of the spectra by Taylor expanding

the inverse of the potentials with the form

1
〈

∣

∣

∣δφ̂kx,ky

∣

∣

∣

2
〉

θ,t

= C0 (ky) + (kx −K (ky))
2
C1 (ky) + (kx −K (ky))

4
C2 (ky) + ... (10)

where Ci(ky) are ky-dependent Taylor coefficients yet to be determined. Evaluating equation 10 at kx = K, one finds

C0(ky) = 1/

〈

∣

∣

∣δφ̂kx=K,ky

∣

∣

∣

2
〉

θ,t

, the inverse of the potentials at the peak. By truncating the expansion at O(k4x),

taking out a factor of C0, relabelling the coefficients Ci/C0 → Ci and inverting the equation one obtains

〈

∣

∣

∣δφ̂kx,ky

∣

∣

∣

2
〉

θ,t

=

〈

∣

∣

∣δφ̂kx=K,ky

∣

∣

∣

2
〉

θ,t

1 + C1 (ky) (kx −K (ky))
2
+ C2 (ky) (kx −K (ky))

4 . (11)

The physical interpretation of the coefficients C1, C2 and K can be determined from considerations of the first three kx
moments of the 2D spectrum. The zeroth order moment is simply the 1D potential, given by equation 5. The first and

second order moments define the mean value of kx (⟨kx⟩) and the radial width of the spectrum

(

σky
=

√

⟨k2x⟩ − ⟨kx⟩2
)

respectively,

⟨kx⟩ =

∑

kx
kx

〈

∣

∣

∣δφ̂kx,ky

∣

∣

∣

2
〉

θ,t
〈

∣

∣

∣δφ̂ky

∣

∣

∣

2
〉

x,θ,t

(12)
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σ2
ky

=

∑

kx
(kx − ⟨kx⟩)2

〈

∣

∣

∣δφ̂kx,ky

∣

∣

∣

2
〉

θ,t
〈

∣

∣

∣δφ̂ky

∣

∣

∣

2
〉

x,θ,t

. (13)

By approximating the summations over kx in equations 5, 12 and 13 as integrals via
∑b

x=a f(xi)∆x ≈
∫ b

a
f(x) dx and

using the expression given by equation 11 for the 2D potential spectrum, one can evaluate the resulting integrals over

kx analytically (Appendix E). Assuming a sufficiently small ∆kx and a sufficiently large limit, one can show

K = ⟨kx⟩, C2 (ky) =
1

σ4
ky

, C1 (ky) =





















π

〈

∣

∣

∣δφ̂kx=⟨kx⟩,ky

∣

∣

∣

2
〉

θ,t

σky

∆kx

〈

∣

∣

∣δφ̂ky

∣

∣

∣

2
〉

x,θ,t











2

− 2











1

σ2
ky

(14)

and thus equation 11 becomes

〈

∣

∣

∣δφ̂kx,ky

∣

∣

∣

2
〉

θ,t

=

〈

∣

∣

∣δφ̂kx=⟨kx⟩,ky

∣

∣

∣

2
〉

θ,t

1 +





(

π
〈

|δφ̂kx=⟨kx⟩,ky |2
〉

θ,t
σky

∆kx

〈

|δφ̂ky |2
〉

x,θ,t

)2

− 2





(

kx−⟨kx⟩
σky

)2

+
(

kx−⟨kx⟩
σky

)4

. (15)

The prefactor of the k2x term can be interpreted in relation to the normalised fall-off from the spectrum peak. Evaluating

equation 15 at kx = ⟨kx⟩ ± σky
, one finds:











π

〈

∣

∣

∣
δφ̂kx=⟨kx⟩,ky

∣

∣

∣

2
〉

θ,t

σky

∆kx

〈

∣

∣

∣δφ̂ky

∣

∣

∣

2
〉

x,θ,t











2

=

〈

∣

∣

∣δφ̂kx=⟨kx⟩,ky

∣

∣

∣

2
〉

θ,t
〈

∣

∣

∣δφ̂kx=⟨kx⟩±σky ,ky

∣

∣

∣

2
〉

θ,t

. (16)

Equation 15 is similar to that used in TGLF’s SAT1 and SAT2 [1, 31], in which the potentials are modelled as a

squared Lorentzian, which assumes σ2
ky
C1 (ky) = 2 for all ky in all cases3. Equation 15 generalises this assumption,

retaining a degree of freedom in the description of the fall-off of the spectrum. The measured NL CGYRO values of
√

σ2
ky
C1 (ky) for the GA-standard case in D are shown in figure 7(a) exhibiting strong variation against ky, particularly

in the low ky region, indicating the value of this generalisation.

The quality of adherence to the data for equation 15 is demonstrated in figures 7(b) and 7(c), using the radially-

extended GA-std D simulation. Calculating the moments from the raw data, it can be observed that the functional

form holds extremely well over a wide domain and many orders of magnitude in range. To explore the different cascade

regimes predicted by this equation, the simplifying notation here is introduced such that equation 15 is written:

P (X) =
P0

1 + CX2 +X4
(17)

where P =

〈

∣

∣

∣
δφ̂kx,ky

∣

∣

∣

2
〉

θ,t

, X =
∣

∣(kx − ⟨kx⟩) /σky

∣

∣, P0 =

〈

∣

∣

∣
δφ̂kx=⟨kx⟩,ky

∣

∣

∣

2
〉

θ,t

and C = σ2
ky
C1 (ky). Assuming

√
C ≫ 1, three distinct regions of scaling are predicted4:

P ≈















P0 X ≪ 1√
C

P0

CX2

1√
C

≪ X ≪
√
C

P0

X4 X ≫
√
C

(18)

which are seen to be present in the data, as evidenced by the model-data agreement between the limiting regions

marked in 7(c).

3The values of σky
for SAT1 and SAT2 are obtained via best-fit close to the peak of the data rather than calculation, and so can be

considered an ‘effective width’ if the spectrum were a squared Lorentzian.
4As one reduces the value of

√
C to ∼ 1, and further to

√
C ≪ 1, the P0/CX2 scaling is found to be suppressed.
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Figure 7: (a) Measured values of
√

σ2
ky
C1 against kyρunit for the radially-extended (Nx = 896) GA-standard case

simulation in D, with
√

σ2
ky
C1 =

√
2 marked in red, corresponding to the squared Lorentzian assumption. (b) An

example of equation 15 (red) applied to NL CGYRO data (blue) for kyρunit = 5/39 = 0.128 of the radially-extended

GA-std case, plotted against kx/σky
. The squared Lorentzian model with the spectral width taken from the raw data

is shown in green. (c) The same spectrum as (b) shown on a logarithmic y-axis, with the predicted scaling regime

limits marked.

Having modelled the kx-dependence for the spectrum, the ky-dependence will now be considered. Four as-yet

unmodelled ky-dependent quantities are present in equation 15: The 1D potential

〈

∣

∣

∣δφ̂ky

∣

∣

∣

2
〉

x,θ,t

, the spectrum peak

〈

∣

∣

∣δφ̂kx=⟨kx⟩,ky

∣

∣

∣

2
〉

θ,t

, the peak position ⟨kx⟩ and the radial spectral width σky
. In order to have a full 2D potential

model, one must uniquely constrain these quantities by providing four equations describing them. This is the chosen

method of TGLF SAT1 [31], for which one of the four equations is the squared Lorentzian assumption. However,

flux calculations ultimately only use the 1D potential,

〈

∣

∣

∣
δφ̂ky

∣

∣

∣

2
〉

x,θ,t

, and so technically this is the only quantity that

needs to be prescribed for a reduced model. This potential could be modelled directly as a 1D function of ky, such as

is done by QuaLiKiz [51], but attempting to relate the remaining spectral quantities to one another first can help to

establish a more firm physics basis.

5.2 Saturation equations

5.2.1 Radial spectral width parameterisation

The following relation was discovered predominantly via empirical experimentation with the database, and describes

a seemingly fundamental relation between the zeroth radial moment and the second order radial moment of the 2D

spectrum. It is observed that the zeroth moment is very well modelled by the equation

〈

∣

∣

∣δφ̂ky

∣

∣

∣

2
〉

x,θ,t

∆ky
= c0σ

c1
ky

(19)

for ky > 0, where c0 and c1 are case-dependent parameters. When allowing these parameters to be fitted to the

NL CGYRO data, as shown for various cases in figure 8, it can be seen that the two curves adhere to one another

extremely closely5. Per case, this constitutes only two fitted parameters for 39 data points, rendering there no question

of over-fitting. Moreover, the measured value of the exponent c1 is found to be strongly consistent across cases, as

displayed in figure 9, with an approximate value of c1 = −2.42 for the database.

This observation is perhaps the most important point of this work, as it appears to describe a general and robust

relation between two hypothetically-independent moments of the 2D potential spectrum. Somewhat counter-intuitively

it suggests that the area under the radial spectrum, related to the zeroth moment, is independent of its peak value,

5For reference, example data for σky
ρunit corresponding to the case of figure 8(a) is shown in figure 10.
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Figure 8: (a) The model of equation 19 (black) applied to the NL CGYRO grid-independent potentials of the GA-

standard case in D (red), allowing the two parameters to be fitted to the data. (b) Further examples of equation 19,

for the a/Ln = 3.0, νee(a/cs) = 0.01 case in H, D and T.

and instead only depends on the width. This observed relation is understood to be novel, and a physical mechanism

for why this is the case is yet to be put forward. It is this observation that forms the core of the new saturation rule.
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Figure 9: Measured values of the c1 parameter across all nonlinear simulations in the database. The error bars shown

are the uncertainties in the fitted parameter c1.

5.2.2 Parameter considerations

Given sufficient ability to model the case-dependent values of c0 and c1, equation 19 provides one of the four equations

necessary to uniquely define the 2D potential spectrum. However, for every parameter introduced by such equations,

a linear-physics based model for its case-dependent calculation will be required. Because equation 19 implies that the

1D potential is independent of the peak spectrum value and ⟨kx⟩, the choice is made in this work to model σky
only.

Doing so will leave the 2D spectrum with an arbitrary peak value and location, but will have both its zeroth and

second moments defined.

5.2.3 Model for the radial spectral width

To inform the model for σky
, a representative plot is shown in figure 10. Equation 19 implies two important qualities

of σky
: firstly, that the characteristic peak observed in the 1D potentials should correspond to a minimum in σky

at
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the same position in ky, which is indeed seen, and is denoted kmin. This is the first time this observation has been

made, in part due to the well-resolved fluctuation averages obtained from extended simulation times and the increased

density of binormal grid-points used in the database. The second quality is that, because the values of the potentials

away from the peak are comparatively small and contribute negligibly to the overall flux, the accurate modelling of

σky
in this higher ky region is less fundamental to successful flux prediction.
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Figure 10: Example of σky
ρunit data obtained for the GA-standard case in D (blue). In red is the model for the widths

given by equation 20, with the parameters a, b and c fitted to the data. Also marked are kmin and kP , the positions

of the minimum and piecewise connection point respectively.

To incorporate the observed minimum into the model a quadratic polynomial is used. A quadratic over the entire

ky domain capturing this minimum can however become too large in the middle ky region, and so a piecewise function

is constructed, with a first-order polynomial used past a certain point, kP . This is taken to be kP = 2kmin. The two

regions are connected by imposing continuity of the function, as well as continuity of the gradient, at ky = kP :

σky
=

{

ak2y + bky + c 0 < ky ≤ kP

(2akP + b) ky + c− ak2P kP < ky ≤ ∞
(20)

where a, b and c are coefficients to be modelled. Here the function is assumed to extend to infinity.

By combining equations 19 and 20, one obtains an equation for the 1D potentials solely as a function of ky and

the parameters {c0, c1, a, b, c}. To make progress in modelling these parameters, they shall first be defined in terms of

more physically meaningful quantities.

5.3 Recasting the coefficients

The exponent c1 is dimensionless and has already been fitted to the nonlinear database in figure 9, and so does not

need to be recast. An expression for c0 can be obtained by evaluating equation 19 at some given point k0, to be

determined:

c0 =

〈

∣

∣

∣δφ̂ky=k0

∣

∣

∣

2
〉

x,θ,t

∆ky

(

1

σky=k0

)c1

(21)

giving the overall saturation model as
〈

∣

∣

∣δφ̂ky

∣

∣

∣

2
〉

x,θ,t

∆ky
=

〈

∣

∣

∣δφ̂ky=k0

∣

∣

∣

2
〉

x,θ,t

∆ky

(

σky

σky=k0

)c1

(22)

Equation 22 expresses the 1D potentials as a product of their magnitude at a given point k0,

〈

∣

∣

∣δφ̂ky=k0

∣

∣

∣

2
〉

x,θ,t

/∆ky

and a ky-dependent function describing the shape of the spectrum,
(

σky
/σky=k0

)c1
. These quantities are denoted the
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saturation level and the spectral shape respectively. The variation with ky observed in the potential αA plot (figure

5(b)) comes entirely from the spectral shape, with the offset mainly attributed to the saturation level.

As the spectral widths appear only in the above normalised form for the saturation model, a reduction in the

degrees of freedom is provided. Assuming 0 < k0 ≤ kP , one can divide through by one of the expansion coefficients in

the spectral widths, chosen here to be b:

σky

σky=k0

=

{

(

a
b k

2
y + ky +

c
b

)

/
(

a
b k

2
0 + k0 +

c
b

)

0 < ky ≤ kP
((

2a
b kP + 1

)

ky +
c
b − a

b k
2
P

)

/
(

a
b k

2
0 + k0 +

c
b

)

kP < ky ≤ ∞
(23)

and so the number of unknown coefficients reduces from 3 to 2, now requiring only the ratios a/b and c/b. A more

transparent physical interpretation of a/b can be obtained by considering the definition of the minimum of the spectral

widths. Imposing a minimum at kmin in equation 20, one finds

dσky

dky

∣

∣

∣

∣

ky=kmin

= 2akmin + b = 0 (24)

and therefore a/b = −1/ (2kmin). With the coefficients now recast, this leaves 3 quantities to be modelled, for a given

choice of k0: kmin, c/b, and

〈

∣

∣

∣δφ̂ky=k0

∣

∣

∣

2
〉

x,θ,t

/∆ky.

Note, as of yet no appeals to linear physics have been made, the model derived thus far has come solely from

considerations of nonlinear gyrokinetic spectra. By taking this bottom-up approach, the validity of the underlying

functional forms of the saturation rule equations is guaranteed, up to the hypothetical quality observed when the

parameters are fitted to the data. This foundation implies that as linear physics based approximations for c1 and the

three quantities above improve, the model will tend towards being as accurate as when fitted in this way.

5.4 Approximating the parameters from linear physics quantities

For TGLF’s saturation rules SAT1 and SAT2, both of which are based on the saturation mechanism of zonal mixing,

it is argued that the linear growth of the present plasma instabilities γky
is damped by the competing influence of

the zonal flow mixing kyVZF, where VZF is the zonal flow velocity. The wavenumber at which the drive-to-damping

ratio of these two processes is maximised therefore provides an estimate of the location of the peak of the turbulent

transport, as well as a characteristic length scale of the nonlinear saturation from the linear system. This wavenumber

is denoted kmax, and is defined by
d

dky

(

γky

ky

)∣

∣

∣

∣

ky=kmax

= 0 (25)

with the corresponding growth rate γmax providing an estimate of the characteristic time scale of the saturation

γmax = γky=kmax
. (26)

A graphical example of the determination of these quantities for a given equilibrium is shown in figure 11.

The new saturation rule parameters kmin, c/b, and

〈

∣

∣

∣δφ̂ky=k0

∣

∣

∣

2
〉

x,θ,t

/∆ky will now be modelled entirely from linear

physics, by assuming proportionality to the dimensionally-consistent combination of the characteristic linear quantities

γmax and kmax, as well as the equilibrium quantity Bunit.

Considering first the dimensionality of b and c individually from equation 20, one finds b to be dimensionless and

c to have dimensions of ky, giving c/b dimensions of ky. The quantity kmin also has dimensions of ky, and so per the

method above these are both modelled as proportional to kmax. The database-fitting exercise is carried out in figure

12, resulting in c/b = −0.751kmax, kmin = 0.685kmax.

For the saturation level

〈

∣

∣

∣δφ̂ky=k0

∣

∣

∣

2
〉

x,θ,t

/∆ky, the value of k0 is chosen to be k0 = 0.6kmin, as it is at this

position that the model scatter for the following is found to be minimised. The dimensionally-consistent combination

of linear quantities for the saturation level is ∝ B2
unitγ

2
max/k

5
max. Note that this is a similar form to that derived from

considerations of balance between linear growth and turbulent E ×B advection [52].
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Figure 11: Demonstration of the calculation of kmax and γmax from a linear growth rate spectrum, here for the

a/Ln = 3.0 case in H. Starting from γky
(solid black), one divides this spectrum by ky to obtain γky

/ky (dashed

green). The maximum of this curve is then found via quadratic interpolation, with the ky value at which this occurs

being defined as kmax. Returning then to γky
, the value of this curve at kmax is defined as γmax.
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Figure 12: Fitting exercise of the two quantities modelled as proportional to kmax across the NL CGYRO database:

kmin (black circles), and c/b (red squares), used in defining the model for the spectral shape σky
/σky=k0

(equation 23).

When tested against the database, B2
unitγ

2
max/k

5
max is found to be a good model for the cases in which the dominant

mode is the ITG (figure 13(a)). However, for those with TEMs present, B2
unitγ

2
max/k

4
max in dimensionless units is found

to be in much better agreement, indicating a difference in physical saturation between the two mode types (figure

13(b)). The TEM saturation in dimensional units is therefore assumed proportional to γ2maxρunitB
2
unit/k

4
max. It is here

explicitly that a large cause of the difference in isotope scaling between the two mode types can be seen, and the reason

why previous saturation models have failed to recreate the isotope scalings seen in TEM-dominated turbulence.

To explain why this factor of kmaxρunit affects the isotope scaling, consider first this quantity in a system with adi-

abatic electrons. In such a situation, all quantities are exactly gyroBohm scaled, such that for three linear simulations

in H, D and T the value of kmax occurs at the same value of kyρi. Because ρi ∝
√
A, one finds in the adiabatic electron

case that kmax ∝ A−0.5. In the simulations of this work, for which kinetic electrons have been used, the scaling of kmax

with A generally becomes slightly more positive at around αA ≈ −0.3, which is sufficient to capture the differences

between the isotope scalings of the two mode types’ saturation levels.

The above kinetic electron physics will be captured in the saturation model by using two different saturation

levels for the ITG and TEM, such that one has 12.7B2
unitγ

2
maxρunit/k

4
max for the TEM, and 3.3B2

unitγ
2
max/k

5
max for

the ITG, where the proportionality constants are taken from figure 13. In order to decide which saturation level to
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Figure 13: Potential magnitudes evaluated at 0.6kmin against a combination of linear quantities ((a) and (b)). Subfigure

(c) displays the marker type used for each case, with the labels corresponding to those shown in table 1. Data points

of the same colour connected by a line indicate simulations of the same equilibrium but of different isotopes. In

(a), the cases with a dominant ITG instability scale approximately with B2
unitγ

2
max/k

5
max, however for those that are

TEM-dominated (cases f, x, y and z, shown in (b)), a scaling of B2
unitγ

2
maxρunit/k

4
max is found to be in much better

agreement, indicating a difference in saturation level between the two mode types.

use for a given simulation, the linear physics must be considered to reveal whether the turbulence is ITG- or TEM-

dominated. For SAT3, the ratio between the magnitude of the linear energy weights of the electrons and ions is used,
∣

∣

∣WL
e,ky

∣

∣

∣ /
∣

∣

∣WL
i,ky

∣

∣

∣ =
∣

∣

∣WL
e,ky

/WL
i,ky

∣

∣

∣, due to the disparate behaviour in the ratio of the species’ energy fluxes for the

two mode types [53]. For ion-dominated turbulence, in which the electron energy fluxes are comparatively small, one

expects the ratio of
∣

∣

∣WL
e,ky

/WL
i,ky

∣

∣

∣ to also be small. When in the regime of TEM turbulence however, the electron

turbulent energy flux increases to approximately the level of the ions. The ratio of
∣

∣

∣WL
e,ky

/WL
i,ky

∣

∣

∣ can be calculated

from linear physics, and so represents a useful metric to select between the two saturation levels. If new classes of

modes were present, this aspect of the saturation rule would likely need to be revisited and extended further.

A plot of
∣

∣

∣WL
e,ky

/WL
i,ky

∣

∣

∣ for all cases in the database against ky/kmax is shown in figure 14, with ITG cases in red

and TEM cases in blue. It can be seen that the TEM cases cluster around a value of
∣

∣

∣WL
e,ky

/WL
i,ky

∣

∣

∣ ≈ 1, whereas ITG

cases are mainly grouped around 0.4.
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Figure 14: Ratios of the linear electron energy weight magnitudes to the linear ion energy weight magnitudes
∣

∣

∣WL
e,ky

/WL
i,ky

∣

∣

∣ against ky/kmax for the database. Cases for which the dominant linear instability is the TEM are

in blue, and those with ITG are shown in red. Note the disparate grouping between the mode types.

A transition function is now defined for the two modes, as a function of the weight ratio evaluated at ky = kmax. At
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values below
∣

∣

∣WL
e,ky

/WL
i,ky

∣

∣

∣

ky=kmax

= 0.8 the ITG scaling is used, and at values of 1 and above the TEM scaling is used,

with a first-order polynomial in-between to connect the two regions. The mode transition function M (x;x1, x2, y1, y2)

is introduced such that

M (x;x1, x2, y1, y2) =















y1 x ≤ x1

y1
x2−x
x2−x1

+ y2
x−x1

x2−x1
x1 < x ≤ x2

y2 x2 < x

(27)

which allows the potentials evaluated at k0 to be written
〈

∣

∣

∣δφ̂ky=k0

∣

∣

∣

2
〉

x,θ,t

∆ky
=M





∣

∣

∣

∣

∣

WL
e,ky

WL
i,ky

∣

∣

∣

∣

∣

ky=kmax

; 0.8, 1.0, 3.3
γ2max

k5max

, 12.7
γ2maxρunit
k4max



B2
unit. (28)

It can be shown that measuring the sign of the linear frequency at a position in ky can also be used to differentiate

between the two mode types, however the above was chosen to attempt to avoid discontinuous changes in flux at the

point of a mode transition.

5.5 Model extensions

5.5.1 E ×B shear

Modern quasilinear models are required to include the effects of equilibrium E ×B shear, a mechanism that can both

generate turbulent momentum transport, as well as suppress turbulence in other channels. This effect is incorporated

through an equilibrium input parameter, the shearing rate γE , and the consequences of non-zero E × B shear must

be explicitly defined in the saturation rule. Although no such cases were considered in the database, one can simply

isolate the E ×B effect of a previous rule and incorporate it into the new model. Using an apostrophe to denote said

previous rule, taken in this work to be that of TGLF’s SAT2 [1], one defines the effect of shear F ′
s,ky

as the ratio of

flux components with shear to those without

F ′
s,ky

(γE) =
Q′

s,ky
(γE)

Q′
s,ky

(γE = 0)
. (29)

The flux components of the new saturation rule are then obtained simply by multiplying F ′
s,ky

by the flux components

of the new rule without flow shear, Qs,ky
(γE) = F ′

s,ky
(γE)Qs,ky

(γE = 0). Taking the ratio of the flux components as

opposed to the potentials bypasses any complications arising from differences in definitions between the two saturation

rules. Looking at TGLF SAT2, one finds

F ′
s,ky

(γE) =
W̃L

s,ky,kx=kx0
/W̃L

s,ky,kx=0

(

1 +
(

αx
kx0

kmodel
x

)σx
)2
(

1 +
(

kx0

kmodel
x

)2
)2 (30)

which is the function incorporated into SAT3. Here W̃L
s,ky,kx

is the quasilinear weight defined by TGLF, which is

evaluated at a single kx rather than a sum over kx. The two constants are αx = 1.21 and σx = 2, with kx0 =

0.32ky (kmax/ky)
0.7

(γE/γmax) and

kmodel
x =











0.76kmax√
gxx(θ=0)

ky < 0.76kmax

0.76kmax√
gxx(θ=0)

+ 1.22√
gxx(θ=0)

B(θ=0)
Bunit

(ky − 0.76kmax) ky ≥ 0.76kmax

(31)

where gxx = |∇x|2.

5.5.2 Mixed plasmas

For all simulations in the database of this work a pure plasma was used. For generality, quasilinear models must be

able to operate with multiple ion species. The only aspect of SAT3 that is explicitly affected by this generalisation is
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the ratio of the magnitude of the linear weights
∣

∣

∣WL
e,ky

/WL
i,ky

∣

∣

∣, used as an argument in the mode transition function,

as this becomes ambiguously defined in a plasma with multiple ion species.

This ambiguity is resolved by changing the denominator of the linear weight ratio to the sum over ion weights,
∣

∣

∣WL
e,ky

/WL
i,ky

∣

∣

∣→
∣

∣

∣WL
e,ky

/
∑

iW
L
i,ky

∣

∣

∣
for ion species i. By conducting a scan over relative concentrations of D and T in

the GA-std and a/Ln = 3.0 cases linearly (figure 15), this new ratio is shown to be invariant with relative density and

thus recreate the expected behaviour.
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Figure 15: Linear energy weight magnitude ratios
∣

∣

∣WL
e,ky

/
∑

iW
L
i,ky

∣

∣

∣ for different relative concentrations of D and T

against ky/kmax for the GA-std case (a) and the a/Ln = 3.0 case (b). Note the essential invariance across the spectrum

for the different concentrations.

5.6 Quasilinear approximation functions

Having described the saturated potentials, the QLA functions are now considered, defined in equation 7. In general

for electrostatic turbulence there are 3ns of these functions, where ns is the total number of species present, with

one existing for each combination of the 3 velocity moments and species. Historically these functions have seen a

comparatively small amount of focus compared to the potentials, and are typically modelled as a constant [51]. By

plotting these functions explicitly from the CGYRO data, one can determine to what degree a constant QLA is a

reasonable assumption to make.

All cases in this database use kinetic electrons and a single ion species, giving 6 functions. Of these 6, the two

momentum QLA functions are trivially zero, due to there being no momentum transport in the cases considered, and

the two particle functions are identical, as a consequence of ambipolarity. This leaves three as non-trivial: the two

energy functions for the ion and electrons, and one of the particle functions.

Plots of these three QLA functions against kyρi are shown in figure 16 for all cases in the database. The vast

majority of the energy functions for both species have a similar shape across the spectrum, and most importantly

exhibit relatively small variation in the region where the flux components are largest (kyρi ∼ 0.2, evidenced in figure

3(a)). A similar description is seen for the particle function, although with more sporadic variation in some cases.

The assumption that the QLA could be modelled as constant was found to be a reasonable approximation for the

database, with the constants for the model being set by minimising the scatter between the NL CGYRO flux data and

the CGYRO-SAT3 flux data. The values of these constants for the electron and ion fluxes were found to be similar,

however were stratified by mode type and moment. These are ΛΓ
ITG = 1.1, ΛΓ

TEM = ΛQ
TEM = 0.6 and ΛQ

ITG = 0.75.

To capture these differences, the QLA functions are expressed in terms of the mode transition function (equation 27),

such that for the particle flux

ΛΓ
s,ky

=M





∣

∣

∣

∣

∣

WL
e,ky

∑

iW
L
i,ky

∣

∣

∣

∣

∣

ky=kmax

; 0.8, 1.0, 1.1, 0.6



 (32)
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Figure 16: QLA functions for all cases in the database, showing those for (a) ion energy flux, (b) electron energy flux

and (c) particle flux.

and for the energy flux

ΛQ
s,ky

=M





∣

∣

∣

∣

∣

WL
e,ky

∑

iW
L
i,ky

∣

∣

∣

∣

∣

ky=kmax

; 0.8, 1.0, 0.75, 0.6



 . (33)

Any other forms of transport are assumed to have Λs,ky
= 0.8.

While a mode-dependent constant remains a reasonable model for the contribution of the QLA functions to the

overall flux in this database, it is not perfect, missing for example the isotope scaling seen in figure 4. In future studies

more exotic tokamak equilibria may cause the QLA functions to deviate further from those seen here, potentially

necessitating an effort to try to predict their shapes from linear physics.

5.7 Summary of new saturation model, SAT3

The entirety of SAT3 is collected here for reference. The fluxes of the model are constructed via

Qs = 2
∑

ky>0

Λs,ky
WL

s,ky
Fs,ky











〈

∣

∣

∣δφ̂ky

∣

∣

∣

2
〉

x,θ,t

∆ky











∆ky (34)

where Λs,ky
is the quasilinear approximation (QLA) function, WL

s,ky
is the linear weight for species s, Fs,ky

describes

the effect of E ×B shear,

〈

∣

∣

∣δφ̂ky

∣

∣

∣

2
〉

x,θ,t

/∆ky is the saturated potential, and ∆ky is the binormal grid spacing of the

simulation. The model for the saturated potentials is

〈

∣

∣

∣δφ̂ky

∣

∣

∣

2
〉

x,θ,t

∆ky
=M





∣

∣

∣

∣

∣

WL
e,ky

∑

iW
L
i,ky

∣

∣

∣

∣

∣

ky=kmax

; 0.8 , 1.0 , 3.3
γ2max

k5max

, 12.7
γ2maxρunit
k4max



B2
unit

(

σky

σky=k0

)−2.42

(35)

where M is the mode transition function

M (x;x1, x2, y1, y2) =















y1 x ≤ x1

y1
x2−x
x2−x1

+ y2
x−x1

x2−x1
x1 < x ≤ x2

y2 x2 < x

(36)

which captures the disparate saturation levels between ITG- and TEM-dominated turbulence. The wavenumber kmax

is defined as the position of the maximum of the linear growth rate divided by ky,

d

dky

(

γky

ky

)∣

∣

∣

∣

ky=kmax

= 0 (37)
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and γmax = γky=kmax
. The reference magnetic field Bunit is given by equation 3, with ρunit =

√
mDTe/eBunit, and

σky

σky=k0

=







(

− 1
2kmin

k2y + ky +
c
b

)

/
(

− 1
2kmin

k20 + k0 +
c
b

)

0 < ky ≤ kP
((

− 1
kmin

kP + 1
)

ky +
c
b +

1
2kmin

k2P

)

/
(

− 1
2kmin

k20 + ky +
c
b

)

kP < ky ≤ ∞
(38)

where c/b = −0.751kmax, kmin = 0.685kmax, k0 = 0.6kmin and kP = 2kmin.

The quasilinear approximation functions Λs,ky
vary depending on velocity moment and mode type. For the particle

flux and energy flux these are

ΛΓ
s,ky

=M





∣

∣

∣

∣

∣

WL
e,ky

∑

iW
L
i,ky

∣

∣

∣

∣

∣

ky=kmax

; 0.8, 1.0, 1.1, 0.6



 (39)

ΛQ
s,ky

=M





∣

∣

∣

∣

∣

WL
e,ky

∑

iW
L
i,ky

∣

∣

∣

∣

∣

ky=kmax

; 0.8, 1.0, 0.75, 0.6



 (40)

with other fluxes taking Λs,ky
= 0.8.

Finally, the function Fs,ky
describes the effect of E ×B shear and is given by [1]

Fs,ky
(γE) =

W̃L
s,ky,kx=kx0

/W̃L
s,ky,kx=0

(

1 +
(

αx
kx0

kmodel
x

)σx
)2
(

1 +
(

kx0

kmodel
x

)2
)2 (41)

where W̃L
s,ky,kx

is the quasilinear weight defined by TGLF, which is evaluated at a single kx rather than a sum over

kx. The two constants are αx = 1.21 and σx = 2, with kx0 = 0.32ky (kmax/ky)
0.7

(γE/γmax) and

kmodel
x =











0.76kmax√
gxx(θ=0)

ky < 0.76kmax

0.76kmax√
gxx(θ=0)

+ 1.22√
gxx(θ=0)

B(θ=0)
Bunit

(ky − 0.76kmax) ky ≥ 0.76kmax

(42)

where gxx = |∇x|2 and B is the equilibrium magnetic field magnitude.

6 Results

The scatter plots of the fluxes obtained from NL CGYRO against the results of CGYRO-SAT3 are shown in figure

17 for the ion energy fluxes, electron energy fluxes and particle fluxes. TEM-dominated cases are marked by circles

(labelled f, x, y and z in figure 13(c)), with the remainder being ITG-dominated. Data points connected by a line

denote simulations of the same equilibrium but different of isotopes. A metric for the quality of the model agreement

can be calculated by taking the average percentage error,

ΣQ =
1

N

N
∑

m=1

∣

∣

∣

∣

Qmodel,m −QNL,m

QNL,m

∣

∣

∣

∣

(43)

ΣΓ =
1

N

N
∑

m=1

∣

∣

∣

∣

Γmodel,m − ΓNL,m

ΓNL,m

∣

∣

∣

∣

(44)

for the energy flux and particle flux, where N is the number of simulations in the database. The values obtained for

the three plots are displayed in their respective subfigures.

For comparison, the equivalent scatter plots for a rescaled CGYRO-SAT1 model are shown in figure 18, with

additional fitted prefactors for each flux type, labelled CGYRO-SAT1∗6. Looking at figures 17 and 18 a reduction in

6This accounts for the larger NL CGYRO fluxes compared to those of SAT1’s training database, which resulted from an increased

binormal resolution in this work. These pre-factors were fitted to the D simulations of the ITG-dominated cases, and are displayed in the

legends of figure 18. Note that the isotope scaling of the fluxes is unaffected by a database-wide rescaling constant.
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the average percentage error between CGYRO-SAT1∗ and CGYRO-SAT3 is seen for the three flux types. CGYRO-

SAT1∗ and CGYRO-SAT3 can be seen to perform similarly in the ITG-dominated cases, as may be expected, however

great improvement is shown in the isotope scaling and magnitude of the TEM cases, owing to the modelling of the

difference in saturation level between the two mode types present in SAT3. This is demonstrated explicitly in figure

19, which exhibits the ion and electron energy fluxes against isotope mass for the ITG-dominated GA-std case and

the TEM-dominated a/Ln = 3.0 case compared between the three models.
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Figure 17: Scatter plots of NL CGYRO against CGYRO-SAT3 results for (a) ion energy flux, (b) electron energy

flux and (c) particle flux. The legend for these figures is shown in figure 13(c). The line to denote perfect agreement

between the models is shown in black, with the respective relative errors also shown on each plot, defined by equations

43 and 44.
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Figure 18: Scatter plots equivalent to those of figure 17, however now comparing NL CGYRO against CGYRO-SAT1∗

results for (a) ion energy flux, (b) electron energy flux and (c) particle flux. The rescaling constants for the different

flux types are displayed in the legends.

A selection of energy flux scans with various key tokamak parameters is shown in figure 20, comparing NL CGYRO

and CGYRO-SAT3. The density gradient scan is a recreation of a subset of the data points from figure 1, now with

larger NL CGYRO fluxes, demonstrating the recreation of the positive isotope scaling for the ITG-dominated GA-std

cases at low density gradient, the grouping of the fluxes for the transition case, and the anti-gyroBohm scaling at

the high density gradient TEM-dominated a/Ln = 3.0 case. How this a/Ln = 3.0 case varies with collisionality is

then displayed in figure 20(b), from which it is seen that the correct scaling is maintained across a large range of

collisionalities. Finally the ion and electron heat fluxes against matched temperature gradients (a/LTi
= a/LTe

) are

shown in figure 20(c). The general trend in both isotope scaling and magnitude can be observed to agree with the NL

CGYRO data, however the fluxes appear to be somewhat under-predicted near the point of threshold. The generality

of SAT3’s behaviour in this region presents an area to be investigated further, as this is a key region of parameter

space for experimental conditions.

To connect these results with the observations made in Section 4, figure 21 shows a recreation of figure 3(b),

exhibiting the isotope scaling of the ion energy flux components Qi,ky
in the a/Ln = 3.0 case for the different models,
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Figure 19: Turbulent ion energy fluxes (solid lines) and electron energy fluxes (dashed lines) against isotope mass for

NL CGYRO (black), CGYRO-SAT3 (red) and CGYRO-SAT1∗ (blue), for the ITG-dominated GA-standard case (a)

and the TEM-dominated a/Ln = 3.0 case (b). Note the recreation of the anti-gyroBohm scaling seen in the a/Ln = 3.0

case for CGYRO-SAT3.
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Figure 20: (a) Ion energy fluxes for NL CGYRO (solid lines) and CGYRO-SAT3 (dashed lines) against density gradient

scale length a/Ln. (b) Ion energy fluxes for NL CGYRO and CGYRO-SAT3 against collisionality, keeping a/Ln = 3.0

fixed. (c) Ion and electron energy fluxes for NL CGYRO and CGYRO-SAT3 against matched temperature gradient

scale length, a/LTi
= a/LTe

.

now with the data for CGYRO-SAT3 included. The improved low kyρi variation and offset in the isotope scaling can

be seen, as a consequence of the strong spectral shape and the differing TEM saturation level in SAT3.
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Figure 21: Isotope scaling metric αA of the flux components for the a/Ln = 3.0 case, for NL CGYRO (black), CGYRO-

SAT3 (purple), CGYRO-SAT1 (red), TGLF-SAT1 (blue) and QuaLiKiz-qlk (yellow). The error bars shown for all

models are the uncertainties in the fitted parameter αA.
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6.1 A note on future improvements

The SAT3 model presented above is an accurate model for the enhanced CGYRO database generated, and is promising

for extrapolation within the most common ITG and TEM turbulence regimes found in experiment. It does not

however represent a complete description of turbulent plasma transport, and will of course perform less reliably

in a parameter space far from its training database. The approach taken in SAT3’s development however naturally

presents a methodology with which to diagnose and improve on such future discrepancies. That is, for some hypothetical

simulation that this model catastrophically fails to recreate, an established methodology can be employed to effectively

diagnose and attempt to rectify the issue.

This approach starts by taking care to preserve the role of each physical element that constitutes the model flux

calculation, so as to keep separate the contributions of the QLA, the weights, and the potentials. This decomposition

of the reduced model clarifies which aspect of the reduced model is responsible for the recreation of each part of the

nonlinear flux, and each can be considered in turn when attempting to diagnose future model disagreements with NL

gyrokinetic results.

If the discrepancy is found to originate in the saturation rule, then one can first test whether the underlying

functional relations (equations 19 and 20) still hold when their parameters are fitted to nonlinear data. If not, these

will need to be amended. Otherwise, one continues to the question of the linear modelling of the parameters c1,

kmin, c/b and

〈

∣

∣

∣δφ̂ky=k0

∣

∣

∣

2
〉

x,θ,t

/∆ky, each of which can be considered modularly. If a more robust method for

approximating kmin from the linear data is discovered in the future for example, one can replace/amend that aspect

of the model without requiring change elsewhere.

7 Conclusion

The isotope scaling of fluxes in local nonlinear gyrokinetics and quasilinear models has been considered. It was

confirmed that existing quasilinear models generally struggle to capture the isotope scaling of fluxes seen in nonlinear

gyrokinetic simulations, in part due to the historical lack of focus on isotopes other than deuterium in the development

of their saturation rules and an incomplete understanding of the isotope effect. The origin of this non-trivial isotope

scaling in nonlinear gyrokinetics was demonstrated to originate primarily in the magnitude of the saturated electrostatic

potentials, with current quasilinear models failing to replicate this behaviour due to missing one or both of the following

effects in their saturation rules: the variation in the isotope scaling with ky in the low-ky region, and the ‘offset’ from

the gyroBohm-predicted level, which is sensitive to the dominant mode type.

In developing a new saturation rule to capture this behaviour the general form of the 2D potential spectrum in

kx and ky was first considered, generalising the previous assumption of a squared Lorentzian form. The 2D model

adhered to the data extremely well across a range of decades in radial wavenumber.

The new 1D saturation model SAT3 was then developed on a database of 43 simulations, including both ITG-

and TEM-dominated cases. This database is similar in scope to those used for previous TGLF saturation mod-

els, however now includes simulations in different isotopes. A summary of the SAT3 model is given in Section 5.7.

An accurate model for the spectral shape was built using a robust novel relationship between the 1D potentials
〈

∣

∣

∣δφ̂ky

∣

∣

∣

2
〉

x,θ,t

/∆ky and the radial spectral widths σky
that was discovered in the NL gyrokinetic simulation re-

sults, which appears to capture a conserved quantity in electrostatic turbulence. The resulting parameters of SAT3,

kmin, c/b, c1 and

〈

∣

∣

∣δφ̂ky=k0

∣

∣

∣

2
〉

x,θ,t

/∆ky were modelled using linear quantities inspired from a previous work. The

database demonstrated different saturation levels for ITG and TEM turbulence, which motivated a saturation model

for each mode type with a transition function between them. The QLA functions were considered explicitly, however

ultimately constant factors to discriminate between mode type and moment were used.

The new model has been shown to better capture the isotope scaling of the cases in the database, particularly

in the cases of TEM-dominated turbulence, whilst performing at least as well as existing quasilinear models in other

parameters, as exhibited via comparison with CGYRO-SAT1∗ in figures 17 and 18. Generalisations of the model

outside of the dataset have been implemented, namely the effect of E × B shear and multi-ion plasma operation.

Having been constructed from a database of predominantly ion-scale, electrostatic core plasmas, dominated by either
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ITG or TEM turbulence, SAT3’s applicability is naturally most valid in these regions of parameter space. Caution

should therefore be exercised in the use of SAT3 away from these areas, such as plasmas for which electromagnetic

effects or electron-scale dynamics are expected to be significant, in the pedestal, or in the presence of dominant modes

other than the ITG or TEM. Generalisation of SAT3 into these regimes will require comparison to additional nonlinear

gyrokinetic simulations. An algorithm for performing such generalisations, based on the systematic comparison of the

constituent parts of SAT3 to nonlinear gyrokinetic data, is discussed in Section 6.1.

In future work SAT3 will be paired with the linear solvers of TGLF and QuaLiKiz for use in integrated modelling

suites, to be validated against experimental data from recent isotope campaigns on JET and other machines. Whilst

a degree of error will be incurred in flux prediction by moving from an exact linear solver to a fast linear solver, this

effect is expected to be small, with fast linear solvers having shown good agreement with linear gyrokinetics in the

most common experimentally-relevant regimes [28].
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9 Appendices

A Geometry and averages

The field-aligned coordinate system used in this work {x, y, θ} is defined such that the equilibrium magnetic field can

be expressed

B = Bunit∇x×∇y =
Bunit

Jxyθ
aθ (A.1)

where Jxyθ is the Jacobian of the field-aligned system and aθ is the covariant basis vector of the θ coordinate. Field

lines are given by constant {x, y} and θ measures the distance along a field line. These coordinates are equivalent to

x = r′, y = −r0α′/q (r0) and θ = −θ′, where dashed coordinates are those defined by CGYRO [9], with r0 being the

reference flux-surface.

Fluctuating quantities can be written as a Fourier series in the perpendicular-to-field coordinates x and y,

δf (x, y, θ, t) =
∑

kx

∑

ky

δf̂kx,ky
(θ, t) eikxxeikyy (A.2)

where kx = 2πnx/Lx and ky = 2πny/Ly. The radial domain length Lx is quantised due to the parallel periodicity

condition such that Lx = Lyw/ (2πŝ) for box size integer w.

Averages over the radial, binormal and parallel directions are defined by

⟨f⟩x =
1

Lx

∫ x0+Lx

x0

f dx (A.3)

⟨f⟩y =
1

Ly

∫ y0+Ly

y0

f dy (A.4)

⟨f⟩θ =

∫ π

−π
fJxyθ (θ) dθ

∫ π

−π
Jxyθ (θ) dθ

(A.5)
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where x0 and y0 are the lower bounds of the x and y domains. The time average is given by

⟨f⟩t =
1

∆t

∫ t0+∆t

t0

f dt (A.6)

for some initial time t0. Here ∆t = τ − t0, where τ is the upper bound of the time domain. Equation A.6 is equivalent

to taking the mean of 3 time-window averages of length ∆t/3 over the same domain, the methodology discussed in

section 3, by virtue of

1

∆t

∫ t0+∆t

t0

f dt =
1

N

N
∑

j=1

1

(∆t/N)

∫ t0+j(∆t/N)

t0+(j−1)(∆t/N)

f dt (A.7)

for any integer N .

In the local limit, the combination of an ensemble average and a flux-surface average amounts to an average over

the three spatial dimensions plus time

⟨f⟩Ens,FS = ⟨f⟩x,y,θ,t . (A.8)

Angular brackets without a subscript denote a type of averaging weighted over the potential magnitudes, used in

equations 4 and 12.

⟨f⟩ =

∑

kx

〈

f
∣

∣

∣δφ̂kx,ky

∣

∣

∣

2
〉

θ,t
〈

∣

∣

∣δφ̂ky

∣

∣

∣

2
〉

x,θ,t

(A.9)

B Turbulent flux calculation

This section provides a step-by-step derivation of equation 2, taking equation 1 as the starting point. Evaluating

equation 1 in the field-aligned system, one obtains

Qs = −
〈

1

Bunit
δps

∂δφ

∂y

〉

Ens,FS

. (B.1)

Inserting the Fourier representation from equation A.2 for the potential and pressure fluctuations and using equation

A.8, equation B.1 becomes

Qs =

〈

∑

kx

∑

k′
x

∑

ky

∑

k′
y

−ik′y
Bunit

δp̂s,kx,ky
(θ, t) δφ̂k′

x,k
′
y
(θ, t) ei(kx+k′

x)xei(ky+k′
y)y

〉

x,y,θ,t

. (B.2)

Upon carrying out the averages in x and y, the orthogonality of the exponentials leaves only the terms with k′x = −kx,
k′y = −ky:

Qs =
∑

kx

∑

ky

iky
Bunit

〈

δp̂s,kx,ky
(θ, t) δφ̂−kx,−ky

(θ, t)
〉

θ,t
. (B.3)

Because the quantities involved in this calculation are real, their Fourier components satisfy δf̂−kx,−ky
= δf̂∗kx,ky

,

which when applied to the potentials gives

Qs =
∑

kx

∑

ky

iky
Bunit

〈

δp̂s,kx,ky
(θ, t) δφ̂∗kx,ky

(θ, t)
〉

θ,t
=
∑

kx

∑

ky

Vkx,ky
(B.4)

where Vkxky
has been introduced to reduce clutter in the following. Observing Vkx,ky=0 = 0, equation B.4 may be

written

Qs =
∑

ky>0

∑

kx

(

Vkx,ky
+ Vkx,−ky

)

. (B.5)

Using the result
∑

kx
Vkx,−ky

=
∑

kx
V−kx,−ky

, as well as the property V ∗
kx,ky

= V−kx,−ky
:

Qs =
∑

ky>0

∑

kx

(

Vkx,ky
+ V−kx,−ky

)

=
∑

ky>0

∑

kx

(

Vkx,ky
+ V ∗

kx,ky

)

. (B.6)
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This may be expressed more succinctly using the definition of the real part of a complex number, Re [z] = (z + z∗) /2:

Qs = 2
∑

ky>0

∑

kx

Re
[

Vkxky

]

. (B.7)

Here the real property of the fields has introduced a symmetry to the terms, such that the flux contribution from the

negative binormal modes is equal to that of the positive. Re-writing equation B.7 using Re [iz] = −Im [z] = Im [z∗]

gives

Qs = 2
∑

ky>0

∑

kx

ky
Bunit

〈

Im
[

δp̂∗s,kx,ky
(θ, t) δφ̂kx,ky

(θ, t)
]〉

θ,t
. (B.8)

In order to express the right-hand side of equation B.8 in terms of the magnitude of the electrostatic potentials and

the phase difference between the fluctuations, one can define Zs,kx,ky
such that for every Fourier mode δp̂s,kx,ky

=

Zs,kx,ky
δφ̂kx,ky

. Multiplying both sides of this relation by δφ̂∗kx,ky
, taking the complex conjugate and isolating the

imaginary part yields Im
[

δp̂∗s,kx,ky
(θ, t) δφ̂kx,ky

(θ, t)
]

= Im
[

Z∗
s,kx,ky

] ∣

∣

∣δφ̂kx,ky

∣

∣

∣

2

. The total flux may therefore finally

be written

Qs = 2
∑

ky>0

∑

kx

ky
Bunit

〈

Im
[

Z∗
s,kx,ky

] ∣

∣

∣
δφ̂kx,ky

∣

∣

∣

2
〉

θ,t

(B.9)

which is equation 2.

C Parseval’s theorem

Parseval’s theorem relates the average of an absolute squared function in real space to the sum of the absolute squares

of its Fourier amplitudes. Consider the Fourier representation of a function f(x) over a finite domain {x0, x0 + L}

f(x) =
∑

kx

f̂kx
eikxx (C.1)

where kx = 2πnx/L for all integers nx. Multiplying both sides by f∗(x) and averaging over the domain leaves only

the kx = k′x terms, producing the result.

1

L

∫ x0+L

x0

|f(x)|2 dx =
∑

kx

∑

k′
x

f̂kx
f̂∗k′

x

1

L

∫ x0+L

x0

ei(kx−k′
x)x dx

=
∑

kx

∣

∣

∣
f̂kx

∣

∣

∣

2
(C.2)

D Grid-resolution dependence

The flux Qs in equation 2 is a physical quantity, resulting in part from a spatial average over the x and y domains. It

should therefore be independent of the binormal wavenumber grid resolution ∆ky, once past a certain value required

for convergence. It then follows that the flux components Qs,ky
must depend on the grid resolution, as if one doubles

the resolution, one doubles the number of terms in the sum while maintaining a constant total.

Multiplying and dividing the right-hand side of equation 2 by ∆ky and approximating the summation as an integral

gives

Qs =
∑

ky>0

Qs,ky

∆ky
∆ky ≈

∫ ∞

0

Qs,ky

∆ky
dky (D.1)

and thus because the area under Qs,ky
/∆ky is independent of the grid resolution, so too must Qs,ky

/∆ky be itself.

Analogously for the potentials, the volume and time average of the squared potentials in real space must be independent

of ∆ky. Using Parseval’s theorem,
〈

|δφ|2
〉

x,y,θ,t
=
∑

ky

〈

∣

∣

∣δφ̂ky

∣

∣

∣

2
〉

x,θ,t

(D.2)
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it follows that

〈

|δφ|2
〉

x,y,θ,t
≈
∫ ∞

−∞

〈

∣

∣

∣δφ̂ky

∣

∣

∣

2
〉

x,θ,t

∆ky
dky (D.3)

and therefore

〈

∣

∣

∣δφ̂ky

∣

∣

∣

2
〉

x,θ,t

/∆ky must also be independent of ∆ky. Now using equation 5, one finds

〈

∣

∣

∣δφ̂ky

∣

∣

∣

2
〉

x,θ,t

∆ky
=
∑

kx

〈

∣

∣

∣δφ̂kx,ky

∣

∣

∣

2
〉

θ,t

∆ky∆kx
∆kx ≈

∫ ∞

−∞

〈

∣

∣

∣δφ̂kx,ky

∣

∣

∣

2
〉

θ,t

∆ky∆kx
dkx (D.4)

resulting in

〈

∣

∣

∣δφ̂kx,ky

∣

∣

∣

2
〉

θ,t

/∆ky∆kx being the grid-independent version of the 2D potentials.

E 2D spectrum moment integrals

Here the first three moments of the 2D potential spectrum (equations 5, 12 and 13) are integrated analytically to obtain

expressions for the coefficients C1, C2 and K in equation 11. Starting with the zeroth moment, defined by equation

5, then by approximating the summation as an integral and inserting equation 11 for the 2D potential spectrum, one

obtains

〈

∣

∣

∣
δφ̂ky

∣

∣

∣

2
〉

x,θ,t

=
1

∆kx

∫ ∞

−∞

〈

∣

∣

∣δφ̂kx=K,ky

∣

∣

∣

2
〉

θ,t

1 + C1 (kx −K)
2
+ C2 (kx −K)

4 dkx. (E.1)

Taking out a factor of C2 from the denominator, the integral may be written

〈

∣

∣

∣
δφ̂ky

∣

∣

∣

2
〉

x,θ,t

= D

∫ ∞

−∞

1

E + Fu2 + u4
du (E.2)

where D =

〈

∣

∣

∣δφ̂kx=K,ky

∣

∣

∣

2
〉

θ,t

/ (C2∆kx), E = 1/C2, F = C1/C2 and u = kx − K. The denominator can then

be factorised via E + Fu2 + u4 =
(

u2 +G
) (

u2 +H
)

, where G = 1
2

(

F +
√
F 2 − 4E

)

, H = 1
2

(

F −
√
F 2 − 4E

)

and

F = G+H, E = GH. Note that for the integral to have no singularities one requires G,H > 0, and hence E,F > 0.

This factorised form can then be separated using partial fractions as

〈

∣

∣

∣δφ̂ky

∣

∣

∣

2
〉

x,θ,t

=
D

G−H

∫ ∞

−∞

[

1

u2 +H
− 1

u2 +G

]

du. (E.3)

Using the substitution u =
√
H tan (v) and u =

√
G tan (v) respectively for the two integrals, equation E.3 evaluates

to
〈

∣

∣

∣δφ̂ky

∣

∣

∣

2
〉

x,θ,t

=
D

G−H

[

1√
H

arctan

(

u√
H

)

− 1√
G

arctan

(

u√
G

)]∞

−∞

=
Dπ

√
GH

(√
G+

√
H
) .

(E.4)

Squaring this equation, using the relations GH = 1/C2, G+H = C1/C2 and re-arranging, one finds

C1 + 2
√

C2 =











π

〈

∣

∣

∣δφ̂kx=K,ky

∣

∣

∣

2
〉

θ,t

∆kx

〈

∣

∣

∣δφ̂ky

∣

∣

∣

2
〉

x,θ,t











2

. (E.5)

28



Turning now to the first moment, equation 12, this can be found via

⟨kx⟩ =

∑

kx
(u+K)

〈

∣

∣

∣δφ̂kx,ky

∣

∣

∣

2
〉

θ,t
〈

∣

∣

∣δφ̂ky

∣

∣

∣

2
〉

x,θ,t

=

∑

kx
u

〈

∣

∣

∣δφ̂kx,ky

∣

∣

∣

2
〉

θ,t
〈

∣

∣

∣δφ̂ky

∣

∣

∣

2
〉

x,θ,t

+K

=
D

〈

∣

∣

∣δφ̂ky

∣

∣

∣

2
〉

x,θ,t

[∫ ∞

−∞

u

E + Fu2 + u4
du

]

+K

= K

(E.6)

as the integral of an odd function over a symmetric boundary is zero.

The second moment, equation 13, can be written

σ2
ky

=
D

〈

∣

∣

∣δφ̂ky

∣

∣

∣

2
〉

x,θ,t

∫ ∞

−∞

u2

E + Fu2 + u4
du (E.7)

which, following an analogous method of solution as the zeroth moment, evaluates to

σ2
ky

=
1

〈

∣

∣
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δφ̂ky

∣

∣

∣

2
〉

x,θ,t
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1

〈

∣

∣
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∣
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∣

2
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√
H
.

(E.8)

Squaring this result and expressing it in terms of C1 and C2 gives

C2

(

C1 + 2
√

C2

)

=
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





π
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∣

∣

∣

2
〉

θ,t

∆kx

〈

∣

∣

∣δφ̂ky

∣

∣

∣

2
〉

x,θ,t











2

1

σ4
ky

(E.9)

which when combined with equation E.5, produces the desired solutions

C2 =
1

σ4
ky

, C1 =





















π

〈

∣

∣

∣
δφ̂kx=⟨kx⟩,ky

∣

∣

∣

2
〉

θ,t

σky

∆kx

〈

∣

∣

∣
δφ̂ky

∣

∣

∣

2
〉

x,θ,t











2

− 2











1

σ2
ky

. (E.10)

The results of this section have been derived assuming integration over the entire kx domain, which is inaccessible

for turbulence simulations. For some finite domain {−kx,lim, kx,lim}, these results continue to hold provided that

kx,lim ≫ |⟨kx⟩|+ σky
.

References

[1] Staebler GM, Belli EA, Candy J, Kinsey JE, Dudding H, Patel B. Verification of a quasi-linear model for

gyrokinetic turbulent transport. Nuclear Fusion. 2021 Sep;61(11):116007. Publisher: IOP Publishing. Available

from: https://doi.org/10.1088/1741-4326/ac243a.

29



[2] Bessenrodt-Weberpals M, Wagner F, Gehre O, Giannone L, Hofmann JV, Kallenbach A, et al. The isotope

effect in ASDEX. Nuclear Fusion. 1993 Aug;33(8):1205-38. Publisher: IOP Publishing. Available from: https:

//doi.org/10.1088/0029-5515/33/8/i09.

[3] Schneider PA, Bustos A, Hennequin P, Ryter F, Bernert M, Cavedon M, et al. Explaining the isotope effect on heat

transport in L-mode with the collisional electron-ion energy exchange. Nuclear Fusion. 2017 Apr;57(6):066003.

Publisher: IOP Publishing. Available from: https://doi.org/10.1088/1741-4326/aa65b3.

[4] Maggi CF, Weisen H, Hillesheim JC, Chankin A, Delabie E, Horvath L, et al. Isotope effects on L-H threshold

and confinement in tokamak plasmas. Plasma Physics and Controlled Fusion. 2017 Nov;60(1):014045. Publisher:

IOP Publishing. Available from: https://doi.org/10.1088/1361-6587/aa9901.

[5] Weisen H, Maggi CF, Oberparleiter M, Casson FJ, Camenen Y, Menmuir S, et al. Iso-

tope dependence of energy, momentum and particle confinement in tokamaks. Jour-

nal of Plasma Physics. 2020 Oct;86(5). Publisher: Cambridge University Press. Avail-

able from: https://www.cambridge.org/core/journals/journal-of-plasma-physics/

article/isotope-dependence-of-energy-momentum-and-particle-confinement-in-tokamaks/

A24259BC335460AC4B0D7EFACE6068E4.

[6] ITER Physics Basis Expert Groups on Confinement and Transport and Confinement Modelling and Database,

ITER Physics Basis Editors. Chapter 2: Plasma confinement and transport;39(12):2175-249. Publisher: IOP

Publishing. Available from: https://doi.org/10.1088/0029-5515/39/12/302.

[7] Scott SD, Zarnstorff MC, Barnes CW, Bell R, Bretz NL, Bush C, et al. Isotopic scaling of confinement in

deuterium–tritium plasmas. Physics of Plasmas. 1995 Jun;2(6):2299-307. Publisher: American Institute of Physics.

Available from: https://aip.scitation.org/doi/10.1063/1.871253.

[8] Peeters AG, Camenen Y, Casson FJ, Hornsby WA, Snodin AP, Strintzi D, et al. The nonlinear gyro-kinetic

flux tube code GKW. Computer Physics Communications. 2009 Dec;180(12):2650-72. Available from: https:

//www.sciencedirect.com/science/article/pii/S0010465509002112.

[9] Candy J, Belli EA, Bravenec RV. A high-accuracy Eulerian gyrokinetic solver for collisional plasmas. Journal

of Computational Physics. 2016 Nov;324:73-93. Available from: https://www.sciencedirect.com/science/

article/pii/S0021999116303400.

[10] Candy J, Belli EA. Gyro Technical Guide. General Atomics; 2011.

[11] Garcia J, Dumont RJ, Joly J, Morales J, Garzotti L, Bache TW, et al. First principles and integrated modelling

achievements towards trustful fusion power predictions for JET and ITER. Nuclear Fusion. 2019 Aug;59(8):086047.

Available from: https://iopscience.iop.org/article/10.1088/1741-4326/ab25b1.

[12] Manfredi G, Ottaviani M. Gyro-Bohm Scaling of Ion Thermal Transport from Global Numerical Simulations

of Ion-Temperature-Gradient-Driven Turbulence. Physical Review Letters. 1997 Nov;79(21):4190-3. Publisher:

American Physical Society. Available from: https://link.aps.org/doi/10.1103/PhysRevLett.79.4190.

[13] Belli EA, Candy J, Waltz RE. Reversal of turbulent gyroBohm isotope scaling due to nonadiabatic electron

drive. Physics of Plasmas. 2019 Aug;26(8):082305. Publisher: American Institute of Physics. Available from:

https://aip.scitation.org/doi/10.1063/1.5110401.

[14] Garcia J, Görler T, Jenko F, Giruzzi G. Gyrokinetic nonlinear isotope effects in tokamak plasmas. Nuclear Fusion.

2016 Dec;57(1):014007. Publisher: IOP Publishing. Available from: https://doi.org/10.1088/1741-4326/57/

1/014007.

[15] Nakata M, Nunami M, Sugama H, Watanabe TH. Isotope Effects on Trapped-Electron-Mode Driven Turbulence

and Zonal Flows in Helical and Tokamak Plasmas. Physical Review Letters. 2017 Apr;118(16):165002. Publisher:

American Physical Society. Available from: https://link.aps.org/doi/10.1103/PhysRevLett.118.165002.

30



[16] Pusztai I, Candy J, Gohil P. Isotope mass and charge effects in tokamak plasmas. Physics of Plasmas. 2011

Dec;18(12):122501. Publisher: American Institute of Physics. Available from: https://aip.scitation.org/

doi/10.1063/1.3663844.
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