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Abstract

How concepts are coded in the brain is a core issue in cognitive neuroscience. Studies have focused on how individual concepts are
processed, but the way in which conceptual representation changes to suit the context is unclear. We parametrically manipulated
the association strength between words, presented in pairs one word at a time using a slow event-related fMRI design. We combined
representational similarity analysis and computational linguistics to probe the neurocomputational content of these trials. Individual
word meaning was maintained in supramarginal gyrus (associated with verbal short-term memory) when items were judged to be
unrelated, but not when a linking context was retrieved. Context-dependentmeaningwas instead represented in left lateral prefrontal
gyrus (associated with controlled retrieval), angular gyrus, and ventral temporal lobe (regions associated with integrative aspects of
memory). Analyses of informational connectivity, examining the similarity of activation patterns across trials between sites, showed
that control network regions had more similar multivariate responses across trials when association strength was weak, reflecting a
common controlled retrieval state when the task required more unusual associations. These findings indicate that semantic control
and representational sites amplify contextually relevant meanings in trials judged to be related.

Key words: conceptual representation; representational similarity analysis; context-dependent meaning; context-invariant meaning;
fMRI.

Introduction
The question of how concepts are coded in the brain is

a core issue in cognitive neuroscience. Neuropsycholog-

ical, neuroimaging, and neuromodulation studies have

provided information about how individual concepts are

represented in the brain (Martin 2007; Patterson et al.

2007; Binder and Desai 2011; Pulvermüller 2013; Lambon

Ralph et al. 2017; Jefferies et al. 2020)—yet the brain

produces diverse patterns of semantic retrieval for the

same inputs to suit the context. For example, APPLE

is associated with CAKE when it occurs together with

KITCHEN, but also with LAPTOP when we encounter it

with KEYBOARD. Even though concepts are thought to

be constructed in this dynamic fashion, empirical studies

have, until recently, largely focused on invariant concep-

tual representation—i.e. the features of concepts that

do not vary across contexts (Yee and Thompson-Schill

2016).We therefore presented thematically related word-

pairs which varied from weak to strong associations to

instantiate context-dependent representations of con-

cepts, to investigate the neural basis of flexible semantic

cognition (Yee and Thompson-Schill 2016).

The controlled semantic cognition (CSC) framework

suggests that distributed modality-specific features

(e.g. visual, auditory, motor, and valence features) in

“spoke” systems are integrated within a semantic “hub”

or “convergence zone” in the anterior temporal lobes

(ATL), giving rise to heteromodal concepts (Patterson

et al. 2007; Lambon Ralph et al. 2017). An additional

distributed semantic control network (SCN) manipulates

activation within this conceptual representation system

to generate appropriate patterns of semantic retrieval

that suit the circumstances in which they occur. In well-

practiced contexts, left angular gyrus (AG) and ATL are

thought to support conceptual combination, with the

strongest responses observed when conceptual retrieval

is highly coherent and control demands are minimized

(Bemis and Pylkkänen 2013; Davey et al. 2015; Teige et al.

2019; Lanzoni et al. 2020). In other situations, when

retrieval must be focused on nondominant features

or unusual conceptual combinations, there is greater

engagement of the “SCN,” which includes left inferior

frontal gyrus (IFG; Thompson-Schill et al. 1997; Wagner

et al. 2001; Whitney et al. 2011; Hallam et al. 2016, 2018;
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Gonzalez Alam et al. 2019; Lanzoni et al. 2020; Jackson

2021). These semantic control processes can shape

the interaction between hub and spokes to focus on

the features required by a task (Davey et al. 2016;

Lambon Ralph et al. 2017; Chiou et al. 2018; Zhang

et al. 2021). Stronger connectivity between left IFG

and the semantic “hub” region in left ventral ATL is

associated with better semantic CSC (Chiou and Lambon

Ralph 2019; Jung et al. 2021). Therefore, we reasoned

that the SCN is a neural candidate underlying context-

dependent meaning.

In some situations, there is an explicit goal for

semantic retrieval specified by the task demands: for

example, for the concept “PIANO,” if we want to play this

instrument, our retrieval is focused on the motor fea-

tures that allow us to move our fingers in an appropriate

way, while if we have the goal of finding this instrument

in a warehouse, we will retrieve visual information about

its shape and size. In these situations, semantic control

processes might be able to bias the pattern of semantic

retrieval in task-appropriate ways by facilitating or

inhibiting connections between the heteromodal hub

in ATL and task-relevant and task-irrelevant spokes.

Multivoxel pattern analysis provides us with a powerful

tool to probe how the representation of semantic infor-

mation in the brain varies according to the context; these

studies have started to explore how features combine to

construct concepts and how word meaning is modified

syntactically (Allen et al. 2012; Coutanche and Thomp-

son-Schill 2014; Boylan et al. 2015; Hoffman and Tamm

2020; Solomon and Thompson-Schill 2020). For example,

a recent magnetoencephalography study showed that

neural representations of the noun were modified across

temporal, inferior frontal, and inferior parietal regions

according to the verb it was combined with (Lyu et al.

2019). Yet in many other situations requiring semantic

control—for example, when weak as opposed to strong

thematic associations must be identified—participants

are not required to focus on specific types of features, but

instead to identify a context in which concepts co-occur.

Given that there is no explicit goal or instruction guiding

semantic retrieval, this might require participants to

create an event representation to simulate or construct

a scenario, which can then bias retrieval toward features

of the concept that are consistent with this event and

away from other potentially dominant features which

are inconsistent (Mirman et al. 2017). An understanding

of the neurobiological mechanisms that underpin this

process remains elusive.

In the current study, we used fMRI to identify where

in the brain, noncontextualized meanings of words

are represented as well as to determine how words

are integrated to form context-dependent conceptual

representations. We varied the strength of thematic

relationships between two words presented successively,

from very strong (dog with leash), through intermediate

trials (dog with beach), to very weak pairs (dog with

keyboard). We leveraged word embeddings of natural

language processing (NLP) to establish vectors of simi-

larity for our word stimuli which were either (i) focused

on context-invariant meaning using word2vec (Mikolov

et al. 2013) or (ii) captured vectors of similarity for

words based on the ongoing context (i.e. taking into

account the preceding/following words) using ELMo

(Peters et al. 2018), see example in Fig. 2a. We combined

these computational linguistic approaches with a

slow-event related fMRI design and representational

similarity analysis (RSA) (Kriegeskorte et al. 2006, 2008),

implemented using a searchlight approach, to determine

where in the brain, similarity in multivoxel activity

patterns could be predicted by context-free and context-

sensitive conceptual similarities. Specifically, we asked

whether networks implicated in more automatic and

controlled aspects of semantic cognition in previous

studies (Fedorenko et al. 2013; Humphreys and Lambon

Ralph 2015; Davey et al. 2016; Wang et al. 2020; Gao

et al. 2021; Jackson 2021) would show differential

representation of context-independent and context-

dependent meaning or alternatively whether semantic

regions across these networks would commonly support

the construction of context-dependent meanings but

in different ways (via more automatic vs. controlled

integrative processes, giving rise to context-dependent

meanings of strong and weak associations, respectively).

Materials and methods
Participants

A group of 32 healthy participants aged 19–35 years

(mean age=21.97± 3.47 years; 19 females) was recruited

from the University of York. They were all right-handed,

native English speakers, with normal or corrected-

to-normal vision, and no history of psychiatric or

neurological illness. The study was approved by the

Research Ethics Committee of the York Neuroimaging

Centre.All volunteers provided informedwritten consent

and received monetary compensation or course credit

for their participation. Data from 4 participants were

excluded due to head motion (translational displace-

ment was greater than 2 mm), resulting in a final sample

of 28 participants for the semantic task. This study

provides a novel analysis of a dataset first reported by

Gao et al. (2021).

Semantic task

The experimental stimuli were 192 English concrete

noun word pairs. We excluded any abstract nouns

and pairs of items drawn from the same taxonomic

category, so that only thematic links were evaluated.

The strength of the thematic link between the items

varied parametrically from trials with no clear link

to highly related trials; in this way, participants were

free to decide based on their own experience if the

words had a discernible semantic link. There were no

“correct” and “incorrect” responses: instead, we expected

slower response times (RTs) and less convergence across

participants for items judged to be “related” when the
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associative strength between the items was weak, and

for items judged to be “unrelated” when the associative

strength between the items was strong. Overall, there

were roughly equal numbers of “related” and “unrelated”

responses across participants.

Each trial began with a visually presented word

(WORD-1) which lasted 1.5 s, followed by a fixation cross

presented at the centre of the screen for 1.5 s. Then, the

second word (WORD-2) was presented for 1.5 s, followed

by a blank screen for 1.5 s. Participants had 3 s from

the onset of WORD-2 to judge whether this word pair

was semantically associated or not by pressing one of

two buttons with their right hand (using their index and

middle fingers). During the intertrial interval (3 s), a red

fixation cross was presented until the next trial began.

Both RT and response choice were recorded. Participants

finished 4 runs of the semantic task, each lasting

7.3 min. Before the scan, they completed a practice

session to familiarize themselves with the task and key

responses.

Neuroimaging data acquisition

Imaging data were acquired on a 3.0 T GE HDx Excite

Magnetic Resonance Imaging (MRI) scanner using an 8-

channel phased array head coil at the YorkNeuroimaging

Centre. A single-shot T2
∗-weighted gradient-echo, EPI

sequence was used for functional imaging acquisition

with the following parameters: TR/TE/θ =1500 ms/

15 ms/90◦, FOV=192×192 mm, matrix = 64× 64, and

slice thickness = 4 mm. Thirty-two contiguous axial

slices, tilted upper to the eye, were obtained to decrease

distortion in the ATL and prefrontal cortex. Anatomical

MRI was acquired using a T1-weighted, 3D, gradient-

echo pulse-sequence (MPRAGE). The parameters for this

sequence were as follows: TR/TE/θ =7.8 s/2.3 ms/20◦,

FOV=256× 256 mm, matrix = 256×256, and slice thick-

ness = 1 mm. A total of 176 sagittal slices were acquired

to provide high-resolution structural images of the whole

brain.

Semantic similarity matrices

Using NLP tools, two semantic similarity matrices were

constructed based on two types of word embedding to

investigate different types of semantic information in

neural activity patterns. Embedding vectors extracted

from word2vec and ELMo for all word pairs are available

online: https://osf.io/hwfdp/.

word2vec

The word2vec model represents words as fixed high-

dimensional vectors of embeddings. The vectors of word

embeddings were generated by training the network on

the 100-billion-word Google News corpus. Each time the

network was presented with a word from the corpus, it

was trained to predict the context in which it appeared,

where context was defined as the two words preceding

and following it in the corpus. The model learns to

represent words used in similar contexts with similar

patterns; each word’s vector had 300 dimensions, with

similarity across two words’ vectors indicating that

they appear in similar contexts, and thus have related

meanings. Word2vec embeddings are fixed and unique

for each word; for example, irrespective of whether

“apple” was followed by “bread” or “keyboard,” its word

embeddings were the same. Therefore, using word2vec,

we constructed semantic similarity matrices (word2vec-

based RSM), separately for WORD1 and WORD2; these

reflected themeaning of single words, unmodified by the

context in which these items appeared, by calculating

cosine similarity between words drawn from different

trials.

ELMo

Given that context can change the meaning of individual

words in sentences and phrases, Peters et al. (2018)

proposed a deep contextualized word embedding model

called ELMo (Embeddings from Language Models) to

capture the context-dependent semantic representation

of words. Rather than providing a dictionary of words

and their corresponding vectors, ELMo analyzes words

within their linguistic context, with each token assigned

a representation that is a function of the entire input

sentence. ELMo representations are deep in the sense

that they are a function of all the internal layers of a

deep bidirectional language model: there is a context-

independent fixed input vector for the word in the lowest

layer, with two higher layers capturing backward and

forward context-sensitive aspects of word meaning. We

used the pretrained model released by Allennlp (Gardner

et al. 2018), which was trained on a large test corpus

of 5.5B tokens from Wikipedia and the English news

data from the workshop of machine translation (WMT)

2008–2012.We selected the top layer in ELMo to generate

context-sensitive embeddings for WORD2. Each vector

representing word meaning had 1024 dimensions. We

calculated a context-sensitive semantic similaritymatrix

(ELMo-based RSM) for WORD-2 by correlating the top

embedding vectors across words taken from different

trials, regressing out the lowest layer’s embedding vectors

to control the contribution of more context-independent

patterns of representation (see Xu et al. 2018 for a

similar approach), to search for brain regions where the

pattern of responses across voxels was associated with

contextually constrained semantic cognition.

To further validate this approach, we searched for

sentences that included the word pairs used in the

current study (within widely used NLP datasets, such

as Google News) and estimated the context-dependent

meaning of WORD-2 stimuli within these sentence

contexts (see Supplementary Materials). Following the

procedure described above, we constructed a sentence-

based context-dependentmeaning similaritymatrix.The

two similarity matrices for context-dependent meaning

were strongly correlated: r =0.81 (P<0.001), and the

neuroimaging results are also highly consistent (see

Supplementary Materials).
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fMRI data preprocessing analysis

Image preprocessing and statistical analysis were per-

formed using FEAT (FMRI Expert Analysis Tool) version

6.00, part of FSL (FMRIB software library, version 5.0.9,

www.fmrib.ox.ac.uk/fsl). The first 4 volumes before the

task were discarded to allow for T1 equilibrium. The

remaining images were then realigned to correct for head

movement. Translational movement parameters never

exceeded 1 voxel in any direction for any participant or

session. No spatial smoothing was performed. The data

were filtered in the temporal domain using a nonlinear

high-pass filter with a 100-s cutoff. Following Deuker

et al. (2016) and Bellmund et al. (2019), 6 motion parame-

ters were used as predictors in a GLM. The residuals from

this model (which could not be explained by motion)

were then taken into the next analysis step. A 2-step reg-

istration procedure was used whereby EPI images were

first registered to the MPRAGE structural image (Jenkin-

son and Smith 2001). Registration from MPRAGE struc-

tural image to standard space was further refined using

FNIRT nonlinear registration (Andersson et al. 2007a,

2007b). The denoised time series were transformed to

standard space for the multivariate analyses.

Univariate parametric analysis

We examined the effects of semantic control demands

via a parametric manipulation of strength of association

at the network level, following the approach reported by

Gao et al. (2021). We predicted that it would be harder

for participants to decide that items were semantically

related when they were weakly associated (with lower

word2vec values), and it would also be harder for them

to decide that items were semantically unrelated when

in trials with higher word2vec values. Therefore, we

extracted the parametric effect of word2vec on the BOLD

response separately for trials judged to be related and

unrelated. Since association strength was negatively

correlated with control demands for trials judged to

be related, we means-centered and reversed the sign

of word2vec values for these trials in each run before

the next analysis step. This allowed us to compare the

effects of semantic control demands across related and

unrelated trials. We performed this analysis within 4

functional networks involved in more automatic or more

controlled aspects of semantic cognition or executive

control. The networks were taken from previous meta-

analytic studies of the SCN and multiple-demand

network (MDN; Fedorenko et al. 2013; Jackson 2021).

Within these networks, we selected (i) semantic control–

specific areas, which did not overlap with MDN; (ii)

multiple-demand–specific regions, which did not overlap

with SCN; (iii) shared control regions, identified from the

overlap betweenMDNand SCN; and (iv) semantic regions

not implicated in control; these were identified using

Neurosynth (search term “semantic”; 1031 contributing

studies; http://www.neurosynth.org/analyses/terms/),

removing regions that overlapped with the 2 control

networks to identify regions associated with semantic

representation or more automatic aspects of semantic

retrieval, mostly within DMN (e.g. in lateral temporal

cortex and AG). This process defined 30 ROIs: 4 in

semantic noncontrol areas, 3 in SCN, 6 in the overlap

of MDN and SCN, and 17 in MDN specific areas. These 30

ROIs are available online: https://osf.io/hwfdp/ and were

previously used by Gao et al. (2021). The ROIs within each

network were averaged across all relevant sites for the

network-based analyses presented below.

Pattern similarity analysis

In order to examine how the characteristics of semantic

representation were influenced by the context, we

focused on the decision phase of the task. This period

corresponded to TR 6 and 7 after WORD-1 onset. Second-

order RSA was performed using a searchlight approach;

semantic RSMs (i.e. the word2vec-based RSM and ELMo-

based RSM) were compared with neural pattern simi-

larity matrices (brain-based RSM) to test what semantic

information was represented in different brain regions,

see Fig. 2b. Neural pattern similarity was estimated for

cubic regions of interest (ROIs) containing 125 voxels

surrounding a central voxel, as many previous studies

examining semantic representation used this approach

successfully (Fairhall and Caramazza 2013; Malone et al.

2016; Stolier and Freeman 2016; Leshinskaya et al. 2017;

Wang et al. 2017; Viganò and Piazza 2020). In each

of these ROIs, we compared patterns of brain activity

to derive a neural RSM from the pairwise Pearson

correlations of each pair of trials. We excluded any

pairs presented in the same run from the calculation

of pattern similarity to avoid any autocorrelation issues.

Spearman’s rank correlation was used to measure the

alignment between semantic and brain-based models

during the decision phase.Of note, both semanticmodels

(word2vec and ELMo-based RSMs) were correlated to

the same neural similarity matrices, which allows us

to examine where and how context-dependent and

context-free meanings of concepts were represented

in the brain, depending on the decision participants

reached (i.e. related vs. unrelated) during the decision

phase. The resulting coefficients were Fisher’s z trans-

formed and statistically inferred across participants. The

searchlight analysis was conducted in standard space.

A random-effects model was used for group analysis.

Since no first-level variance was available, an ordinary

least square model was used.

We also examined neural representations of context-

free and context-dependent meaning within ROIs. As for

the univariate analysis of parametric effects of word2vec,

we focused on four sets of regions: (i) semantic control–

specific (SCN specific) areas, which did not overlap

with MDN; (ii) multiple-demand–specific (MDN specific)

regions, which did not overlap with SCN; (iii) shared

control regions identified from the overlap between

MDN and SCN; and (iv) regions within the semantic

network not implicated in control.The same 30 ROIswere

used for both univariate and multivariate analyses, with
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individual ROIs within each network averaged for

network-based analyses.

Informational connectivity between networks as
a function of association strength

Even when multiple networks show similar representa-

tion of context-dependent meanings based on second-

order RSA (ELMo to neural alignment), this does not

establish that they represent similar information across

trials. In order to examine whether neural activity pat-

terns between regions belonging to specific functional

networks capture similar semantic representations, and

to investigate how this similarity in the multivariate

response across trials might change as a function of

the strength of association between the words being

linked, we performed a novel informational connectivity

analysis. In contrast to functional connectivity analysis

using global BOLD signals averaged across voxels in each

region, this analysis assessed the similarity of the mul-

tivariate patterns between pairs of brain regions across

trials (Aly and Turk-Browne 2016; Xiao et al. 2017; Anzel-

lotti and Coutanche 2018), within sliding windows cap-

turing trials of different associative strengths. First, we

sorted all the word-pairs from weakly to strongly asso-

ciated according to their semantic association strength

(word2vec value) for the related and unrelated conditions

separately. Next, we grouped every 16 trials into one win-

dow; adjacent windows partially overlapped with each

other by 4 trials. We then computed second-order RSAs

by correlating the neural similarity matrices between

ROIs within each window. The next step of this analysis

established how this informational connectivity metric

changed as a function of the association strength of

the words being linked, using Spearman correlation. The

resulting correlation coefficients were transformed into

Fisher’s z-scores and then averaged across ROIs within

each network. We performed several variants of this

analysis, using window sizes and overlapping step sizes

of 16,4; 12,4; 20,4, respectively (window sizes, i.e. the

number of trials in each window varying in associative

strength; step sizes, i.e. the number of overlapping trials

across adjacent windows), to ensure the robustness of

our conclusions.

Mixed-effects modeling analysis of behavioral
performance

Since participants judged different numbers of items

to be semantically related and unrelated, mixed-effects

modeling was used for the analysis of the behavioral

data. This approach is particularly suitable when

the number of trials in each condition differs across

participants (Mumford and Poldrack 2007; Ward et al.

2013). Mixed-effects modeling was implemented with

lme4 in R (Bates et al. 2014). We used the likelihood

ratio test (i.e. Chi-Square test) to compare models, in

order to determine whether the inclusion of predictor

variables significantly improved the model fit. Semantic

association strength was used as a predictor of the

decision participants made (judgments about whether

the words were related or unrelated) and, in a separate

model, the reaction time (RT) this decision took. Partici-

pant identity was included as a random effect. By com-

paring models with and without the association strength

predictor, we were able to establish whether semantic

association strength predicted semantic performance.

Results
Behavioral results

Since we used a continuous manipulation of associative

strength, and there is no categorical boundary of

word2vec values which can capture the trials reliably

judged to be related and unrelated, traditional error

scores were not calculated. Chi-square was conducted

to examine whether equal numbers of word pairs were

judged to be related or unrelated by the participants

(mean ratio for the related and unrelated trials: 0.491

vs. 0.495, χ2(1) = 0.00021, P>0.995). Linear mixed-effects

model analysis revealed that the strength of the semantic

association (word2vec value for each pair) was positively

associated with a higher probability that participants

would identify a semantic relationship between the

words (χ2(1) = 2505.4, P< 0.001). The percentage of trials

judged to be related varied from 34.9% to 60.9% with

a standard deviation of 6.16%, while the percentage

of trials judged to unrelated ranged from 39.1% to

63.5% with a standard deviation of 6.16%. There were

no outliers in these judgments of relatedness (no

participants were more than 3 standard deviations from

the mean).

Linear mixed-effects models also examined how

association strength modulated RT for trials judged to

be related and unrelated. There was a significant effect

of strength of semantic association (word2vec) for both

related and unrelated decisions: association strength

was negatively associated with RT for related trials

(χ2(1) = 156.55, P=2.2e–16) and positively associated

with RT for trials judged to be unrelated (χ2(1) = 52.415,

P=4.5e–13), Fig. 1b. It was more difficult for participants

to retrieve a semantic connection between 2 words when

the strength of association was lower; on the contrary,

it was easier for them to decide that there was no

semantic connection between word pairs with when

word2vec was low. The average RT for trials judged to

be related was 1.12 s (standard deviation=0.48 s), while

the average time for unrelated judgments was 1.17 s

(standard deviation=0.47 s); 0.9% and 0.7% of related

and unrelated decisions, respectively,were outliers (more

than 3 standard deviations from the mean).

fMRI results
Neural representation of context-free meaning

Whole-brain analysis was performed using a searchlight

approach. First, we examined context-free semantic rep-

resentation of the original or unmodified meaning of

individual words during the decision phase, using the
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6 | Cerebral Cortex, 2022, Vol. 00, No. 00

Fig. 1. Experiment paradigm and behavioral results. a) Left-hand panel: Semantic association task; participants were asked to decide if word pairs were
semantically related or not. Right-hand panel: Word pair examples for both related and unrelated decisions from one participant, with association
strength increasing from weak to strong. Trials were assigned to related and unrelated sets on an individual basis for each participant, depending on
their decisions. b) The semantic association strength (word2vec) was negatively associated with RTs for related trials and positively associated with RT
for trials judged to be unrelated. People were faster to discern a relationship between words when they had high semantic overlap, and slower to decide
that the words were unrelated when they had high semantic overlap.

word2vec model to assess semantic similarity across tri-

als—since word similarity in this model is fixed, and not

dependent on the context in which words are presented.

The strongest responses reflecting context-free meaning

are expected for WORD-1, since retrieval of the meaning

of this item commenced in the absence of any semantic

context (while for WORD-2, the context established by

the first word in the pair is likely to influence the pattern

of retrieval). We also expect context-free meaning to be

most relevant during trials judged to be unrelated, since

on these trials, participants did not identify a linking

context.

For WORD-1, on those trials judged to be seman-

tically unrelated (i.e. when no linking context was

retrieved), a significant positive association betweenneu-

ral pattern similarity and semantic similarity based on

word2vec was seen in the left supramarginal gyrus; see

Fig. 3a (left-hand panel). This site showed more similar

neural patterns during semantic decision-making when

the context-free meaning of WORD-1 was more similar.

For word pairs that were judged to be semantically

related, there was no relationship between neural

pattern similarity and semantic similarity for WORD-1.

Next, we examined the representation of original

word meaning for WORD-2. The meaning of this item

was retrieved in a semantic context established by

the presentation of WORD-1, and consequently, we

did not expect to see an association between neural

pattern similarity and context-freemeaning across trials.

In line with our expectations, there were no positive

correlations between the word2vec and neural models

for WORD-2; instead, there were negative correlations

between these models in visual cortex; see Fig. 3b. These

negative associations suggest that the prior presentation

of WORD-1 pushed the visual representations of seman-

tically similar WORD-2 items further apart. Semantically
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Fig. 2. a) Example association strength values produced by ELMo and word2vec. The word2vec value between word-pairs was fixed and not dependent
on the context the words were presented in, in contrast to ELMo. b) Semantic-to-neural similarity computed via second-order RSAs: these analyses
characterized the semantic similarity between words on different trials and examined the association with neural pattern similarity across trials. Left-
hand panel: word2vec-based RSM for unmodified word meanings across trials—this matrix captured the semantic similarity of individual words used
across trials; right-hand panel: ELMo-based RSM for context-dependentmeaning—thismatrix captured the semantic similarity of contextuallymodified
meanings across trials.

similar items often have similar visual features—for

example animals typically have legs and eyes; vehicles

often have wheels; fruits are often brightly colored. Our

results suggest that when participants retrieve word

meaning in a context established by the presentation

of a previous item, they focus less on these shared visual

features of semantically similar concepts.

In summary, evidence for the neural representation of

context-free word meaning was only found for WORD-

1 in unrelated trials. There was no evidence that par-

ticipants represented context-free meanings either for

WORD-2 (when participants were attempting to retrieve

a semantic link with the previous word) or for trials in

which the words were judged to be related in meaning,

indicating that a linking context was retrieved.

Neural representation of context-dependent meaning

The preceding results demonstrated that activity pat-

terns in the brain represented the original or unmodified

meaning of words presented in the absence of a context,

but not when a linking context was retrieved. Motivated

by the theory that a concept cannot be meaningfully

separated from the context in which it occurs (Yee

and Thompson-Schill 2016), we next tested whether

neural similarity across trials was related to contextually

derived word meaning, especially for word pairs judged

to be related. We focused this analysis on WORD-2,

since the meaning of this item was processed in the

context of the preceding item (in contrast, no semantic

context was available when themeaning ofWORD-1 was

first retrieved). We used ELMo to estimate the context-

dependent semantic similarity between the WORD-2

items across trials, separately for words presented in

trials judged to be related and unrelated. For trials judged

to be semantically related, a positive correlation between

neural similarity and ELMo-based semantic similarity

was found in left lateral frontal cortex and AG; see Fig. 4a

(right-hand panel). No correlations between context-

dependent semantic similarity and neural similarity

were found for trials judged to be unrelated. Additional

analyses were conducted using a sentences-based

context-dependentmeaning estimation,which produced

highly similar results showing a positive correlation

between neural similarity and ELMo-based semantic

similarity in left lateral frontal cortex and AG, see

Supplementary Fig. 1a.

Left ventral anterior temporal lobe (lvATL) has been

suggested to be a semantic “hub” (Binney et al. 2016;

Lambon Ralph et al. 2017), playing a crucial role in repre-

senting strong associations and semantic combinations

in long-term memory (Bemis and Pylkkänen 2013; Teige

et al. 2019). However, distortion and signal loss occur in

this area due to magnetic inhomogeneities close to air-

tissue boundaries, causing a lower signal-to-noise ratio

and weaker effects of interest (Weiskopf et al. 2006;

Binney et al. 2010); see Supplementary Fig. 4. Given we

did not observe effects in ventral ATL in whole-brain

analyses, the neural representation of context-free and

context-dependent meaning at this site was assessed

using ROI-based analysis. We created a sphere ROI (117
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8 | Cerebral Cortex, 2022, Vol. 00, No. 00

Fig. 3. a) Positive correlation was found for the neural representation of original meaning of WORD-1 (before context is presented) on trials judged to be
unrelated (Z>2.6, corrected). b) Decoding of this cluster-corrected spatial map a) using Neurosynth revealed terms linked to attention control and task
demands. c) Negative correlations were found for the neural representation of original meaning of WORD-1 (before context is presented) and WORD-2
(after context is presented) for items judged to be related. d) Positive correlation was found for the neural representation of context-dependent meaning
ofWORD-2 for trials judged to be related (Z>2.6, corrected). e) Decoding of this cluster-corrected spatial map d) using Neurosynth revealed terms linked
to semantic and language processing. f) Negative correlation was found for the neural representation of context-dependent meaning of WORD-2 for
the trials judged to be unrelated (Z>2.6, corrected). g) Region of interest analysis: a spherical ROI (117 voxels, right top panel) was created for the lvATL
around the peak voxel at MNI coordinate (x=−36, y=−18, z=−30) reported by Binney et al. (2016). Significant positive correlation was found for the
neural representation of context-dependent meaning of WORD-2 in trials judged to be related. ∗P< 0.05.

voxels) for lvATL around the peak voxel implicated in

semantic cognition at MNI coordinate (x=−36, y=−18,

z=−30) (Binney et al. 2016). Only neural representa-

tion of context-dependent meaning for related trials was

found, see Fig. 3f. To check the robustness of our results,

additional analyses were conducted using both larger

(179 voxels) and smaller spheres (81 voxels) centered on

lvATL; highly similar results were found, see Supplemen-

tary Fig. 1b.

What dominates the semantic response within functional
networks?

To examine how context-free and context-dependent

meaning is represented in functional networks relevant

to semantic representation and control, we conducted

second-order RSA analyses for each ROI within 4

networks, reporting averages across the ROIs for each

network. These functional networks included semantic

not control areas (which are implicated in semantic
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Zhiyao Gao et al. | 9

Fig. 4. a) Functional networks: (i) semantic not control, (ii) within the SCN but outsidemultiple-demand cortex (DMN), (iii) within both SCN andMDN, and
(iv) falling in MDN regions not implicated in semantic cognition. b) Neural representation of context-free and context-dependent meaning in functional
networks. Positive correlations were found for context-dependent meaning of WORD-2 for trials judged to be related in all four networks. c) Univariate
parametric effects in four functional networks showingmodulation of the BOLD response according to control demands: the weaker associative strength
for trials judged to be related was associated with the higher activation, while the stronger associative strength for trials judged to be unrelated was
associated higher activation. SCN and regions falling within both SCN and MDN showed significantly higher activation for those trials with weaker
associations and consequently higher controlled retrieval demands. ∗P<0.05; ∗∗P<0.01; ∗∗∗P< 0.001. Bonferroni correction was applied.

processing but not in semantic or domain-general

control), semantic control areas (i.e. cortical regions

specifically implicated in semantic control and not

domain-general control), and areas shared by semantic

control and MDN areas as well as areas specific to

MDN that are not typically activated by semantic

tasks (see more details in Materials and methods). The

results showed that there was no significant neural

representation of context-free meaning in any of these

networks, but there was significant representation of

context-dependent meaning for WORD-2 for those trials

judged to be related in all 4 networks. Moreover, there

was no significant difference between networks in

the representation of context-dependent meaning and

context-free meaning for WORD-1 andWORD-2 for trials

either judged to be related or unrelated (student’s t-test

between any two pairs, all Ps> 0.45, after Bonferroni

correction), suggesting all 4 functional networks track

the way that words are being used, instead of long-term

invariant semantic knowledge.

We further examined whether the representation

of context-dependent meaning was dependent on

association strength across networks. We sorted trials

by strength of association and grouped those trials

judged to be related into small analysis “windows”

containing 16 trials (window length). Adjacent windows

were overlapping by 4 trials (step size). We measured

neural representations of context-dependent meaning in

each window and correlated the neural representation

with association strength using spearman correlation.

The above procedure was conducted for each ROI and

averaged across ROIs within each network.No significant

linear relationship between association strength and the

neural representation of context-dependent meaning

was found in any of these functional networks (all

Ps>0.85, after Bonferroni correction).

Even though context-dependent meaning was repre-

sented irrespective of associative strength across these

different networks, previous studies suggest that they

are differently sensitive to semantic control demands

(Fedorenko et al. 2013; Humphreys and Lambon Ralph

2015; Davey et al. 2016; Jackson 2021). To confirm this

pattern in the current dataset, we characterized the

parametric effects of associative strength (inverted for

related trials such that higher scores denote greater

activation for more difficult decisions, for both related

and unrelated judgments). We conducted a 2-way

repeated ANOVA, with the factors of network (4 lev-

els) and trial type (related vs. unrelated) as within-

participant variables. We found a significant main effect

of network (F(1.429, 38.591) = 30.737, P< 0.001) but no

main effect of trial type (F(1, 27) = 0.477, P=0.496) and no

interaction (F(1.995, 53.861) = 0.877, P=0.422); see Fig. 4c.

Direct comparisons between networks using t-tests
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revealed significantly stronger responses to the semantic

difficulty manipulation in SCN than in both “semantic

not control” regions (P<0.001) and MDN regions that

were outside those areas activated by semantic control

manipulations (P< 0.001). There was no significant dif-

ference between SCN and SCN+MDN regions (P=0.47);

SCN+MDN areas also showed significantly stronger

responses to difficulty than “semantic not control”

regions (P< 0.001) and MDN (P< 0.001). All P-values were

Bonferroni corrected. These results suggest that different

brain networks play distinct roles in semantic retrieval.

Neural representation between networks was more
differentiated as association strength increased
for related trials

While there were no differences between networks in the

neural representation of context-dependent meaning

and context-free meaning in the analysis above, this

does not demonstrate that these networks represent

conceptual information in the same way, especially

given that our univariate analysis shows different

responses across these networks to the parametric

manipulation of association strength. In order to assess

the degree to which neural representation was similar

across networks, and how this similarity in neural

patterns changed as a function of association strength,

we conducted a novel “sliding window” analysis of

informational connectivity. We firstly measured the

overall informational connectivity between networks

when all trials were included for related and unrelated

decisions separately. No significant differences were

found overall for informational connectivity between

related and unrelated trials (all Ps> 0.5 after FDR

correction; see Supplementary Fig. 2a). Next, we sorted

trials judged to be related according to their associative

strength, from weak to strong (based on word2vec

between the words in each pair), and grouped every

16 trials into 1 window; we then constructed neural

similarity matrices in each window by calculating the

Spearman’s correlation of neural similarity matrices

between pairs of ROIs, taking an average across ROIs

belonging to each network. This allowed us to calculate

Spearman correlation between association strength

and informational connectivity at the network level.

All correlation values were Fisher’s Z transformed.

There was a significant effect of associative strength

on informational connectivity between networks for

related trials; themultivariate pattern similarity between

related trials was increased when strength of association

was low for the SCN+MDN regions (Fig. 5b). This

finding suggests that these regions take on a pattern of

connectivity that supports controlled semantic retrieval;

these connections are more similar across trials that are

weakly related. No such effects were found for those

trials judged to be unrelated. Further direct comparisons

of the influence of associative strength on informational

connectivity between related and unrelated trials

revealed significantly faster decreases in informational

connectivity for related trials as association strength

increased: this pattern was observed when SCN+MDN

regions were compared with SCN (P=0.004), MDN

(P=0.008), and other SCN+MDN parcels (P=0.005), this

effect was not significant within or between any other

networks. All P-values were Bonferroni corrected.

To check the robustness of these results, we gener-

ated different window sizes containing different num-

bers of trials along the continuous dimension of associa-

tion strength and changed the extent to which adjacent

windows overlappedwith each other (i.e. the overlap step

size). We confirmed that the results were robust across

a range of window sizes and overlap step sizes (window

sizes and overlapping step sizes of 16,4; 12,4; 20,4, respec-

tively). Informational connectivity between SCN+MDN

regions and other networks was negatively correlated

with association strength in related trials across these

analyses (see Supplementary Fig. 2b and c).

Discussion

This study parametrically modulated the association

strength between pairs of words to delineate the neural

representation of context-free and context-dependent

meanings. We related the multivariate neural responses

on these trials to 2 classes of computational linguistic

models, representing concepts as either independent

or dependent on their linguistic context. Using RSA, we

found brain activity patterns in the left supramarginal

gyrus reflected context-independent conceptual infor-

mation—but only for the first word that was presented

and for trials judged to be semantically unrelated, when

there was no linking context to modify the meanings

of words. For the second word presented in each pair,

there were negative correlations between context-

independent semantic models and neural similarity

in visual cortex, suggesting that less similar visual

features were retrieved for words with similar meanings

when participants attempted to retrieve meanings in

context. At the same time, context-dependent meanings

were represented in regions implicated in semantic

control and semantic representation, including left

lateral prefrontal cortex and AG as well as lvATL,

on trials judged to be thematically related, when a

linking context was retrieved. All large-scale networks

implicated in semantic cognition showed this pattern,

confirming that the neural response during semantic

retrieval tracks the way that words are being interpreted

currently (irrespective of associative strength). Despite

this network-level similarity, informational connectivity

analyses examiningmultivariate neural similarity across

trials found that semantic control regions (defined by

the overlap of SCN and MDN) showed more similar

patterns across trials to other networks when the

words being related were weakly associated. For weak

thematic relations, networks were more aligned with

control regions, while for strong thematic relations, the

responses across networks were more divergent.
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Zhiyao Gao et al. | 11

Fig. 5. a) Schematic of sliding window analysis of informational connectivity. Trials were sorted according to their association strength from weak to
strong associations (based on a word2vec score for each word-pair) and every 16 trials were grouped into one window. We then constructed a neural
similarity matrix in each ROI and each window.Wemeasured the informational connectivity within each window by calculating Spearman’s correlation
for the neural similarity matrices between ROIs, and then averaged across ROIs according to which functional network each site belonged to. Lastly, we
calculated a Spearman correlation between association strength and informational connectivity at the network level. b) There was a significant effect
of associative strength on informational connectivity between networks for related trials; the multivariate pattern similarity between related trials
was increased when strength of association is low for the SCN+MDN regions (left panel), but not for unrelated trials (right panel). ∗P< 0.05; ∗∗P< 0.01;
∗∗∗P<0.001. Bonferroni correction was applied.

Past studies have often compared activation patterns

elicited by stimuli from different categories, for instance,

faces, objects, places, and tools; these studies have

significantly advanced our understanding of the neural

substrates of “individual” (i.e. static) concepts (Binder

et al. 2009; Price 2012). Nevertheless, previous behavioral

work on conceptual integration has revealed that the

conceptual representation of word meaning is context

sensitive; for instance, when “red” is paired with fire,

apple, or sky, the magnitude of the representation of

“red” is modulated by the following noun (Halff et al.

1976; Coutanche et al. 2019). Previous investigations of

dynamic conceptual representation are limited because

it is challenging to know how representations of mean-

ing will change between contexts—this information

cannot be easily gleaned from participants’ reports.

However, ELMo, a recently developed NLP algorithm

(Peters et al. 2018), allows contextualized conceptual

representations to be investigated in the brain. We

found context-dependent meaning in all the networks

implicated in semantic cognition. Whole-brain analyses

also identified distinct clusters in left IFG within the

SCN (implicated in controlled semantic retrieval) and

left AG within the default mode network (implicated

in more integrative or automatic aspects of semantic

retrieval). These effects were only found when semantic

links were identified by participants and not when trials

were judged to be unrelated. Three recent studies that

also employed ELMo and topic modeling techniques to

study context-dependent semantic cognition similarly

identified left inferior prefrontal and lateral ante-

rior temporal cortex in context-dependent conceptual
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representation (Lyu et al. 2019; Lopopolo et al. 2020;

Toneva et al. 2020). These studies examined the brain’s

response to stories and sentences, while our study used

a more constrained experimental context which has

advantages in terms of experimental control, allowing us

to compare neural representations of different decision

types and to assess the parametric modulation effect of

associative strength on neural representations in a direct

and well-controlled fashion.

In ameta-analysis (Binder et al. 2009), left inferior pari-

etal cortex was the region most consistently activated by

semantic tasks, but its precise role in semantic cognition

is still elusive: it comprises several functionally dissocia-

ble areas (Ruschel et al. 2014) andmay contribute to both

semantic representation and control (Noonan et al. 2013;

Humphreys and Lambon Ralph 2015). Our searchlight

analysis revealed 2 clusters in left anterior and posterior

lateral parietal cortex, representing context-free and

context-dependent meaning, respectively. Left SMG

showed a positive correlation between neural similarity

and context-independent meaning estimated from

computational linguistic models. Similarly, a recent RSA

study observed that activation patterns in left SMG

reflected the semantic similarities of inferred objects

(Kivisaari et al. 2019). The anterior cluster within the

supramarginal gyrus largely fell within salience and

ventral attention networks which support bottom-up

attentional processes (Vossel et al. 2014) and respond to

unexpected but salient stimuli (Menon and Uddin 2010;

Cai et al. 2019). Decoding using Neurosynth revealed

terms linked to attention and cognitive demands. Since

left SMG is associated with verbal short-term memory

(Buchsbaum and D’Esposito 2009; Baldo et al. 2012), our

findings might reflect participants’ need to maintain

information about WORD-1 to support the subsequent

semantic decision. In contrast, the posterior AG cluster

implicated in context-dependent meaning fell within

DMN. Decoding using Neurosynth revealed terms linked

to semantic memory and language. AG has been linked

to the retrieval of thematic knowledge; moreover, this

site consistently shows stronger activation to strong

than weak associations, implying that it might support

more automatic (as well as potentially more controlled)

aspects of retrieval (Binder et al. 2009; Humphreys and

Lambon Ralph 2015; Jefferies et al. 2020; Humphreys

et al. 2021). In line with this, Humphreys and Lambon

Ralph (2015) proposed that the inferior parietal lobe

(IPL) buffers inputs and learns relations over time,

supporting retrieval and integration; however; the time-

scales over which it operates may vary from relatively

short in anterior IPL (SMG) to longer in posterior IPL

(AG). This account might provide an explanation of the

functional dissociation we observed in IPL, since SMG

might buffer single word inputs (drawing on familiar

sequences of phonemes or letters over time), while AG

can track semantic contexts given its buffering of more

extensive inputs over a long time-period (Lerner et al.

2011; Baldassano et al. 2017).

The control demands of context-dependent meaning

retrieval are variable: whenwords are strongly associated

in long-term memory, little control is needed to recover

a relevant relationship, since this information is highly

accessible. For weak associations, however, recovering

a linking context requires controlled retrieval since

dominant features and associations not relevant to the

linking context must be inhibited. This may help to

explain why we observed context-dependent meaning

in both left IFG (a control site) and AG/lvATL (sites which

support more automatic as well as controlled patterns

of retrieval). These automatic and controlled aspects

of conceptual integration were outside the scope of

previous studies using naturalistic stimuli to explore

context-dependent meaning (Lyu et al. 2019; Lopopolo

et al. 2020; Toneva et al. 2020). Although RSA showed

that both control and DMN networks could represent

context-dependent meaning irrespective of associative

strength, this analysis was blind to potential similarities

and differences in the way that context-dependent

meaning is represented across trials. Informational

connectivity analysis, therefore, provided complemen-

tary evidence. When trials were judged to unrelated,

informational connectivity between brain networks was

not dependent on the strength of association, remaining

relatively stable across windows. A different pattern was

found for trials judged to be related: the informational

connectivity between networks was more diverse for

strong associations as opposed to weak associations,

providing evidence that semantic representations coded

among regions and networks were different even for

the same concepts. Moreover, the multivariate pattern

similarity between related trials was higher for weakly

associated items for the SCN+MDN regions, indicating

these regions adopt a pattern of connections that

supports controlled semantic retrieval. Our results

are broadly consistent with the CSC framework that

suggests that while a semantic “hub” in ATL might

integrate diverse features to form concepts in long-term

memory, semantic control regions (both outside and

within MDN) might be responsible for supporting the

retrieval of nondominant information required by the

context or task instructions (Lambon Ralph et al. 2017).

The informational connectivity analysis provided clear

evidence that distinct networks played different roles in

context-appropriate semantic retrieval.

In previous studies of semantic control, participants

have often been asked to focus conceptual retrieval

on aspects of knowledge required by the task. For

instance, task requirements can gate the recruitment

of “spoke” systems (Zhang et al. 2021); participants can

retrieve specific unimodal features when they have

task instructions providing a clear goal for conceptual

processing and/or suppress the activation of nonrelevant

spoke representations (Coutanche and Thompson-Schill

2014; Martin et al. 2018). In contrast, in the current study,

the task instructions did not change between trials:

participants were always judging whether two words
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were thematically related. The meaning of the words

themselves defined the nature of the linking context

and established which features should be the focus

of subsequent retrieval. In this situation, “stimulus-

driven” semantic control appears to be supported by the

SCN, which maintains semantic contexts in a controlled

fashion, even when these are nondominant, to modulate

the flow of activation through semantic space. To our

best knowledge, this is the first study to compare

context-independent and context-dependent meaning

representation in the brain during this kind of thematic

decision task, which requires meaning-based contexts to

drive retrieval.

Left IFG has long been linked to semantic selection and

control processes (Thompson-Schill et al. 1997; Jefferies

2013; Noonan et al. 2013; Jackson 2021) and is activated

during the retrieval of weak semantic associations (Lam-

bon Ralph et al. 2017; Jefferies et al. 2020). Additional

univariate analyses of this dataset focusing on control

demands also found higher activation for harder deci-

sions in left IFG and pMTG as well as preSMA (Gao et al.

2021). All of these regions showed successful decoding

accuracy of task difficulty, providing strong evidence

for their roles in controlled semantic retrieval; however,

the contribution of these sites to the representation of

conceptual combinations has barely been investigated.

One recent study found that left IFG is sensitive to feature

uncertainty during the comprehension of combined con-

cepts, while ATL reflects the integration of conceptual

features (Solomon and Thompson-Schill 2020). Another

recent study investigated how the brain resolves seman-

tic ambiguity in homonym comprehension and found

that IFG supports context-appropriate meaning (Hoff-

man and Tamm 2020). The current study identifies left

IFG as one of the sites that supports context-dependent

meaning for trials judged to be related—as opposed to

context-free meaning for trials judged to be unrelated—

implying that left IFG might only represent information

suitable for the current context, while inputs that are

unable to generate coherent conceptual retrieval might

be stored and manipulated in MDN regions, such as left

SMG in the current study.

One limitation of the current study was that our

measure of context-sensitive conceptual representation

(from ELMo) was derived across trials and participants

andwas unable to detect individual-specific understand-

ing of each word pair. Moreover, the weaker associations

are, the more variance in semantic representation

there is likely to be across participants. Future studies

could collect subjective reports of context-dependent

understanding of word pairs for each participant,

and then leverage ELMo to create individual-specific

semantic models. More detailed and precise ELMo-

based semantic models might result in further neural-

semantic alignment results, extending beyond the

regions identified here. In addition, we did not find

evidence that left ventral ATL represented context-

free word meaning in the searchlight analysis, even

though this region is thought to provide a heteromodal

conceptual “hub” that extracts invariant semantic

features across different learning episodes. This site has

been shown to decode both the meanings of individual

words (Murphy et al. 2017) and context-dependent

meaning in previous studies (Lyu et al. 2019; Lopopolo

et al. 2020; Toneva et al. 2020). However, ventral parts of

ATL are affected by magnetic susceptibility artifacts and

our neuroimaging protocol had poorer signal-to-noise

in these regions, which may have impacted our ability

to resolve neural patterns relating to word meaning.

The ROI-based analysis focusing on the lvATL provided

evidence for a role of this site in the representation

of context-dependent meaning, suggesting that future

studies using distortion-corrected fMRI techniques may

detect stronger effects.

In conclusion, this study leverages natural language

models and RSA, to compare context-independent

and context-dependent meaning representation in

the brain during sematic decisions for the first time.

Our study demonstrates that different brain regions

support context-independent and context-dependent

meaning, with a functional dissociation within left IPL

between SMG (context-independent representation) and

AG (context-dependent representation). In addition,

while both regions implicated in relatively automatic

(left AG and vATL) and more controlled (left IFG)

patterns of semantic retrieval represented context-

dependent meaning, the synchronization of neural

representation coded in brain networks depended on

associative strength, with networks more differentiated

from each other as associative strength increased. These

findings clarify the roles of distinct brain networks in the

computation of coherent meanings across inputs.

Supplementary material

Supplementary material is available at Cerebral Cortex

Journal online.
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