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Abstract—Coherence lifetimes (T2) of excited states of a 

hydrogen-like arsenic donor in germanium (Ge:As) have been 

determined by nonlinear two-dimensional (2D) ultrafast time-

domain terahertz spectroscopy at cryogenic temperatures. The 

derived coherence times for the 2p0 and 2p± donor states are 2 ps 

and 0.15 ps respectively. 

I. INTRODUCTION 

 WO-DIMENSIONAL Terahertz time-domain 

spectroscopy has shown to be an effective tool for 

analysing nonlinear processes such as resolving multi-level 

dynamics in quantum well systems [1], including intersubband 

saturable absorbers [2] and QCLs [3]; graphene [1]; and 

vibrational spectroscopy of semiconductor phonons [4]. 

Impurity centers in semiconductors have long been studied [5] 

but in recent years have gained attention for applications as 

sources and detectors in the THz range [6-7] as well as for 

coherent control of spin orbitals for quantum computing [8] 

owing to their long-lived states. For these applications, 2D 

time-domain spectroscopy presents some benefits over single-

frequency photon-echo techniques [8] since it should be 

possible to determine the transition relaxation times of several 

transitions simultaneously and monitor multi-level relaxation 

pathways over ultrafast time scales. 

 

  

II. SAMPLE AND SETUP 

The sample under investigation is a 3 mm thick, wedged 

germanium crystal with a 9x1014 cm–3 Arsenic doping 

concentration (Ge:As), cooled to <10 K using a liquid He flow 

cryostat. The representative energy spectrum of the As donor is 

shown in Fig. 1. The transitions from the ground state, 1s(A1), 

into the excited 2p0 and 2p± states have the largest oscillator 

strengths and are within the spectrum of the THz sources used 

for this experiment. Owing to imperfect thermal coupling to the 

cold finger, there is also a non-vanishing population of the 

1s(T2) state, therefore, two additional transitions occur in 

absorption spectra to the 2p0 and 2p± states.  

A photoconductive array [9] and a BNA crystal [10] were used 

to producing peak fields of 60 kVcm-1, labelled �� and �� 

respectively. An amplified laser system generating 40 fs pulses 

at a center wavelength of 800 nm at a repetition rate of 1 kHz 

was used to excite both emitters. The pulses were combined 

using a silicon beamsplitter before being focused onto the 

sample using a parabolic mirror (see Fig. 2). The pump pulses 

are chopped 90° out of phase to allow
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Fig. 1. Energy level diagram of Ge:As, highlighting the main absorbing 
transitions from the 1s(A1) and 1s(T2) states. Energy level values taken from 

[5]. 

Fig. 2. System diagram of the experimental system used to perform the 

measurement. A PCA and a BNA crystal are used to produce the two excitation 
pulses and are combined using a Si beamsplitter before being focused onto the 

Ge:As sample using an off-axis parabolic mirror. Expanded PTFE filters are 

placed after the emitters to block the excess IR excitation beam. 



the four pulse combinations: ���, ��, �� and �� to be acquired 

for each scan. The delay between �� and �� (τ) alongside the 

delay of the sampling pulse (t) are altered throughout the 

measurement to acquire a two-dimensional signal. The electric 

field of the THz pulses were detected by electro-optic sampling, 

using a 1 mm thick ZnTe crystal, providing a detectable 

bandwidth of 3 THz.  

III. RESULTS 

The nonlinear response of the sample is calculate using the 

formula ��� � ��� � �� � �� and is shown in Fig. 3, with Fig 

4. showing an example of how ��� is acquired from the four 

signal states at a single τ delay (horizontal slice of Fig. 3). The 

oscillation of the polarization appears in the t axis, whilst the 

coherent system memory appears as an oscillating signal in the 

τ axis, thus allowing for the population and coherence lifetimes 

of the states (T1 and T2) to be acquired by fitting a slice of the 

nonlinear signal in the τ axis (dashed line in Fig. 3) [2]: 
���
�� �  ��,� exp � ��

��,�� � ��,� sin
ω�τ� exp � ��
��,��
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where, the index, n, denotes the transition(s) involved. The T1 

decay times of the 2p0 and 2p± donor states were derived in 

pump-probe experiments as 0.8 ns and 0.6 ns, correspondingly 

[11], much larger than the timescale of this measurement, 

meaning that �� exp
��/���  ��. Attempting to fit for T2, it 

was found that the expected exponentially decaying sine wave 

of 2.28 THz (1s(A1)-2p0) was observed (T2 = 2 ± 1 ps), 

alongside another lower frequency decaying sine wave of 2.02 

THz (T2 = 0.15 ± 0.04 ps), likely from the 1s(T2)-2p± transition. 

The resulting fit is shown in Fig. 5. Further results, including 

THz excitation field dependence will be presented.  
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Fig. 3. The 2D nonlinear signal obtained from the measurement of the Ge:As 
sample. The dotted line highlights the slice used for fitting in Fig. 5. 

Fig. 5. Slice of the two-dimensional nonlinear signal at t = 0.5 ps shown to be 

the combination of two exponentially decaying sine waves of frequency 2.28 

and 2.02 THz, relating to the 1s(A1)-2p0 and 1s(T2)-2p± transitions. The T2

values of the transitions are 2 and 0.15 ps for the 2.28 THz and 2.02 THz 

transitions respectively. 

Fig. 4. Four signal states acquired from a measurement at a single τ delay (1.31 

ps). �� is generated using a PCA [9] whilst �� is generated using a BNA crystal

[10]. The peak field of both pulses on the sample was measured as 60 kVcm-1. The 

nonlinear signal shown in red is obtained by performing ��� � �� � ��. 


