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ABSTRACT

Many-to-many voice conversion with non-parallel training data has

seen significant progress in recent years. It is challenging because of

lacking of ground truth parallel data. StarGAN-based models have

gained attentions because of their efficiency and effective. However,

most of the StarGAN-based works only focused on small number of

speakers and large amount of training data. In this work, we aim at

improving the data efficiency of the model and achieving a many-to-

many non-parallel StarGAN-based voice conversion for a relatively

large number of speakers with limited training samples. In order to

improve data efficiency, the proposed model uses a speaker encoder

for extracting speaker embeddings and weight adaptive instance nor-

malization (W-AdaIN) layers. Experiments are conducted with 109

speakers under two low-resource situations, where the number of

training samples is 20 and 5 per speaker. An objective evaluation

shows the proposed model outperforms baseline methods signifi-

cantly. Furthermore, a subjective evaluation shows that, for both

naturalness and similarity, the proposed model outperforms baseline

method.

Index Terms— Voice Conversion, Generative Adversarial Net-

works, Low-resource

1. INTRODUCTION

Given a voice sample of a source speaker and a voice sample of a

target speaker, voice conversion aims at converting speaker proper-

ties of source sample to target speaker. Statistical models such as

Gaussian mixture models (GMMs) [1, 2] have been used for voice

conversion. Besides, deep neural networks (DNN) [3, 4] have also

been popular for voice conversion. However, both the GMM-based

models and the DNN-based models required aligned parallel data for

training, where source sample and target sample contain the same

speech content information. Obtaining aligned parallel data is not

easy and requires time-consuming human works. More recently,

generative models such as variational auto-encoder [5, 6, 7] (VAE)

and generative adversarial network (GAN) [8] have gained attentions

for non-parallel voice conversion.

In terms of GAN-based models for non-parallel voice conver-

sion, CycleGAN-VC [9] used CycleGAN [10] model. A cycle-

consistency loss was used in CycleGAN-VC to avoid using aligned

parallel data. StarGAN-VC [11] proposed to use StarGAN [12]

model for voice conversion. It used a domain classifier module,

in order to enhance the similarity of converted samples. StarGAN-

VC suffered from a partial conversion issue, which means the con-

verted voices were neutral. Also the domain classifier module in-

fluenced the voice quality. StarGAN-VC2 [13] and [14] were pro-

posed to improve the performance of StarGAN-based voice conver-

sion by removing the domain classifier module. StarGAN-VC2 pro-

posed to use conditional instance normalization [15] to improve the

speaker adaptation ability of the model. However, feature-based nor-

malization layers [16, 15, 17] have been found causing information

loss[18], which could lead to low data efficiency.

Most of the mentioned StarGAN-based voice conversion works

used a small number of speakers. For example, in StarGAN-VC and

StarGAN-VC2, only 4 speakers were used, and the amount of the

training data per speaker was 5 minutes. [19] trained the StarGAN-

VC model with 37 speakers, however the training data per speaker

was 30 minutes in average. It is unclear whether the StarGAN-based

models can keep the performance when increasing the number of

speakers and decreasing the training samples.

This work aims at improving the data efficiency of the StarGAN-

based model and exploring voice conversion under low-resource

situations. We propose a weight adaptive instance normalization

StarGAN-VC (WAStarGAN-VC) model. Two approaches are used

to improve the data efficiency of the model: (1) unlike StarGAN-VC

and StarGAN-VC2 only using speaker identity for target speaker in-

formation, we uses a speaker encoder to extract speaker embeddings

from target speech; (2) instead of normalizing feature, we follow

the idea from StyleGAN2 [18] and conduct adaptive instance nor-

malization on the convolutional weights, to avoid information loss

caused by normalization layers. The voice conversion experiments

are conducted with 109 speakers under two low-resource situations.

We use speaker identification and verification for objective evalu-

ation. For subjective evaluation, we evaluate the proposed model

using ABX test (similarity) and AB test (naturalness). The evalu-

ation results show that WAStarGAN-VC outperforms the baseline

models (StarGAN-VC and StarGAN-VC2).

2. STARGAN-BASED VOICE CONVERSION

This section reviews two previous StarGAN-based voice conversion

models: StarGAN-VC [11] model and StarGAN-VC2 [13] model.

2.1. StarGAN-VC Model

StarGAN-VC [11] adapted and used the StarGAN [12] model for

voice conversion. The model is composed of three modules: a gen-

erator G(), a discriminator D() and a domain classifier C(). Given

a real data x ∼ p(x) and a target speaker identity sy , the generator

converts data x to data y.

y = G(x, sy) (1)

As shown in Equation 2, the discriminator takes in a data x∗ and

a speaker identity s∗, where (x∗, s∗) can be real source data and

source speaker identity (x, sx) or converted data and target speaker

identity (y, sy).
o = D(x∗

, s
∗), (2)



where o is the output of the discriminator, sx is the source speaker id.

o is the probability that the input x∗ belongs to real data distribution.

The loss function of StarGAN-VC has four parts:

LG
StarGAN−V C = LG

adv + LG
cyc + LG

id + LG
domain (3)

LD
StarGAN−V C = LD

adv (4)

The adversarial losses are defined as:

LG
adv = −Ex,sy [D(G(x, sy), sy))] (5)

LD
adv = −Ex,sx [D(x, sx)]− Ex,sy [1−D(G(x, sy), sy)] (6)

Besides, StarGAN-VC also used the identity loss Lid and the cycle

consistency loss Lcyc.

LG
id = Ex,sx [||x−G(x, sx)||1] (7)

LG
cyc = Ex,sy ,sx [||x−G(G(x, sy), sx)||1] (8)

The domain classifier is used to force the generated data y to be

similar to the target speaker sy .

LC
domain = −Ex,sx [pC(sx|x)] (9)

LG
domain = −Ex,sy [pC(sy|G(x, sy))] (10)

2.2. StarGAN-VC2 Model

One of limitations of the StarGAN-VC model is that the domain

classifier loss hurts the voice quality [13]. Additionally, only using

the target speaker identity sy in the generator and the discrimina-

tor causes the partial conversion issue [13]. In order to solve the

voice quality issue, the StarGAN-VC2 model removed the domain

classifier module. Besides, to improve similarity, the StarGAN-VC2

model used the concatenation of the source speaker embedding ex
and the target speaker embedding ey as speaker condition.

exy = concat([ex, ey]) (11)

where concat is the concatenation function, speaker embeddings ex
an ey can be obtained through speaker ids sx and sy .

StarGAN-VC2 incorporated conditional instance normalization

[15] (CIN) in the generator. In the StarGAN-VC2 model, CIN nor-

malizes the feature f across time and conducts affine transformation

given the speaker condition exy .

CIN(f) = γ(exy) ∗ (
f − µ

σ
) + β(exy), (12)

where CIN(f) is the output of CIN, γ() and β() are linear func-

tions, µ and σ are the mean and the standard deviation of the feature

f across time.

The training objectives of StarGAN-VC2 are similar to StarGAN-

VC, including the adversarial loss, the identity loss and the cycle

consistency loss. StarGAN-VC2 did not use the domain classifier

loss.

Fig. 1. Model architecture of the proposed WAStarGAN-VC model,

spk emb denotes speaker embedding

Fig. 2. Module details of the proposed WAStarGAN-VC: spk id

denotes speaker identity, spk emb denotes speaker embedding

3. STARGAN VOICE CONVERSION WITH WEIGHT

ADAPTIVE INSTANCE NORMALIZATION

Given a source data xs ∼ p(x) and a target data xt ∼ p(x), the

proposed WAStarGAN-VC model is expected to generate a data yt
that contains speech content information of xs and speaker proper-

ties of xt. As shown in Figure 3 WAStarGAN-VC is composed of

three modules: a generator G(), a discriminator D() and a speaker

encoder E().

Both StarGAN-VC and StarGAN-VC2 used speaker identity as

the target speaker information input. In contrast, in order to improve

the data efficiency of the model, WAStarGAN-VC uses a speaker

encoder to extract speaker embeddings from target data. By doing

this, the model is expected to learn speaker embeddings more ef-

ficiently. On the other hand, it has been found that normalization

layers such as instance normalization [16] could cause information

loss [18]. WAStarGAN-VC proposes to normalize and transform

convolutional weights, to improve the data efficiency of the model

as in StyleGAN2[18].



Fig. 3. Weight adaptive instance normalization: spk emb denotes

speaker embedding, gamma and beta affine parameters. ’GLU’ de-

notes activation function. I , J , K are incoming channels, outcom-

ing channels, and kernel size. w is convolution kernel initialized

randomly.

3.1. Generator with Weight Adaptive Instance Normalization

WAStarGAN-VC uses a 2-1-2 model architecture for the generator,

which is similar to CycleGAN-VC [20] and StarGAN-VC2 [13].

The generator contains three parts: the downsampling blocks, the

bottleneck blocks and the upsampling blocks. As shown in Figure

2, the upsampling blocks and the downsampling blocks uses 2D-

convolutional layers and instance normalization [16] (IN). There are

9 bottleneck blocks, where each contains a 1D-convolutional layer

with the weight adaptive instance normalization (W-AdaIN). The

gated linear units (GLU) are used as the activation function.

3.1.1. Adaptive Instance Normalization

Adaptive instance normalization [17] (AdaIN) was initially proposed

for image style transfer tasks. Based on CIN (Equation 12), AdaIN

uses a speaker encoder to extract the speaker embedding ey = E(y).

AdaIN(f) = γ(ey) ∗ (
f − µ

σ
) + β(ey), (13)

where AdaIN(f) is the output of AdaIN, ey is speaker embedding,

y is target data, f is feature, µ and σ are the mean and the stan-

dard deviation of the feature f across time, γ() and β() are linear

functions.

3.1.2. Weight Adaptive Instance Normalization

This work tries to improve the data efficiency of the model by us-

ing the W-AdaIN module in the bottleneck blocks of the genera-

tor. In WAStarGAN-VC, as shown in Figure 3, the 1D-convolutional

weight w has the shape of [I, J,K], where I is the outcoming chan-

nel dimensionality of the convolutional layer, J is the incoming

channel dimensionality of the convolutional layer, K is the kernel

size.

The target speaker data xt is fed into the speaker encoder to get

the speaker embedding et = E(xt). et is fed into linear functions

to get the affine parameters γ and β. The affine parameters γ and β
have the shape of [B, J ], where B is the batch size. Then they are

expanded on the second and the fourth dimension.

γb,1,j,1, βb,1,j,1 = γb,j , βb,j

Then the weight w is expanded on the first dimension, where wi,j,k

is the element of w.

w1,i,j,k = wi,j,k

Next, the expanded weight w1,i,j,k is transformed by γb,1,j,1 and

βb,1,j,1.

w
∗

b,i,j,k = γb,1,j,1 ∗ w1,i,j,k + βb,1,j,1 (14)

The transformed weights w∗

b,i,j,k are normalized across the outcom-

ing dimension (I).

w
∗∗

b,i,j,k =
w∗

b,i,j,k − µb,1,j,k

σb,1,j,k

, (15)

where w∗∗

b,i,j,k is the output of the W-AdaIN module, µb,1,j,k and

σb,1,j,k are the statistics of w∗

b,i,j,k across the outcoming dimension

I . Finally, the convolution is conducted on feature using the new

adapted weight w∗∗.

3.2. Discriminator and Speaker Encoder

To get speaker-conditioned discriminator output, as in [14] and

StarGAN-V2 [21], the discriminator uses N parallel speaker-

conditioned output layers, where N is the number of the speakers in

the training dataset. As shown in Figure 2, in the discriminator, the

first 4 layers are shared across N speakers. For one input sample, the

switch selects one of the speaker-conditioned output layers accord-

ing to the input speaker id. Hence the output of the discriminator

is conditioned on the speaker identity. The speaker encoder also

uses the speaker-conditioned parallel output layers. Moreover, the

speaker encoder uses a statistic pooling layer as in the Xvector [22].

3.3. Training Objectives

In WAStarGAN-VC, the training objectives include three parts: ad-

versarial loss, cycle consistency loss and speaker embedding recon-

struction loss. As for the adversarial loss, the least square loss [23]

is used, which is the same as in StarGAN-VC2 [13]. The cycle con-

sistency loss is the same as in Equation 8. The speaker embedding

reconstruction loss Lspk tries to reconstruct the target speaker em-

bedding et from the converted data yt.

Lspk = Exs,xt [||E(xt)− E(G(xs, E(xt)))||1] (16)

4. EXPERIMENT IMPLEMENTATION

The experiments use VCTK [24] dataset 1. The VCTK dataset con-

tains English speech studio recordings with 109 speakers. The aver-

age number of speech samples per speaker is 400.

4.1. Experiment Setup

The experiments are split into three situations according to the num-

ber of speakers, the number of training samples: (1) for the first

situation, 10 speakers with the full training samples are used, (2)

for the second situation, 109 speakers with 20 samples per speaker

are used, (3) for the third situation, 109 speakers with 5 samples

per speaker are used. StarGAN-VC and StarGAN-VC2 are used

as baseline methods. In case that there are no official open source

implementations of the StarGAN-VC model and the StarGAN-VC2

model, we implemented two baseline models. The waveform data

is downsampled into 22.05 kHz. Mel-cepstral coefficients (MCEPs)

1Source code is available at: https://github.com/MingjieChen/LowResourceVC,
voice samples is available at: https://minidemo.dcs.shef.ac.uk/wastarganvc/



N=10,M=Full N=109,M=20, N=109,M=5,

S=900 S=5400 S=5400

Model ACC EER ACC EER ACC EER

StarGAN-VC 64.4 14.88 54.4 21.96 none none

StarGAN-VC2 91.5 2.99 79.6 4.61 62.6 8.27

Ours 97.0 0.66 95.9 1.77 92.5 3.56

Table 1. Objective evaluation results: ACC (%) denotes speaker

identification accuracy, EER (%) denotes the speaker verification

equal error rate. N is the number of speakers, M is the number train-

ing samples, S is the number of converted samples for evaluation.

are extracted using PyWorld [25] toolkit. The StarGAN-based mod-

els only focus on the conversion of the MCEPs. As in [11] and [13],

the logarithmic fundamental frequencies (F0s) are transformed lin-

early. WORLD [25] vocoder is used to generate waveform based

on the converted MCEPs, the transformed F0s and the aperiodicities

(APs). Finally, the loudness of the generated waveform is normal-

ized using PyLoudNorm [26] toolkit.

4.2. Model Configurations

The proposed WAStarGAN-VC model is implemented using the Py-

Torch [27] toolkit. The optimizer is Adam [28] with the learning rate

for the generator and the discriminator as 2e-4 and 1e-4 respectively.

The MCEPs are randomly cropped into 256-frame segments during

training. The batch size is 8 and the training process takes 250k

iterations for 30 hours on one single GPU.

5. EXPERIMENT RESULTS

The evaluation includes objective evaluation and subjective evalua-

tion. For objective evaluation, we evaluate the models on all three

situations. For subjective evaluation, we only evaluate the StarGAN-

VC2 model and the WAStarGAN-VC model on the second situation.

5.1. Objective Evaluation

For objective evaluation, as in [29], speaker identification accuracy

(ACC) and speaker verification equal error rate (EER) are the mea-

surements of the quality of the converted samples. In this work, a

Xvector [22] model is pretrained on the VCTK dataset for the whole

109 speakers. The ACC and EER of the converted samples are used

as evaluation metrics. For the third situation where the number of

the training samples is 5, the StarGAN-VC model failed to generate

sensible voices.

As shown in Table 1, generally, in all three situations, the

proposed model yields the best ACC and EER results. For the

first situation, WAStarGAN-VC gets ACC 97.0%, EER 0.66%.

StarGAN-VC2 is slightly worse than WAStarGAN-VC (ACC

91.5%, EER 2.99%), StarGAN-VC is much worse (ACC 64.4%,

EER 14.88%). For the second situation, WAStarGAN-VC gets ACC

95.9%, EER 1.77%. StarGAN-VC2 gets ACC 79.6%, EER 4.61%,

and StarGAN-VC gets 54.4%, EER 21.96%. Both two baseline

models are much worse for this situation. For the third situation,

WAStarGAN-VC gets ACC 92.5%, EER 3.56%. StarGAN-VC2

gets ACC 62.6%, EER 8.27%, which is much worse than the pro-

posed model.

The objective results show that our proposed model is slightly

better than StarGAN-VC2 when using the full of training samples for

10 speakers. However, for the low-resource situations, our proposed

Fig. 4. Subjective evaluation results

model is much better than StarGAN-VC and StarGAN-VC2. This

maybe because the proposed model has better data efficiency, which

enables it being able to keep the performance under the low-resource

situations.

5.2. Subjective Evaluation

To assess the naturalness and the similarity, this work conducts the

listening tests by comparing WAStarGAN-VC and StarGAN-VC2.

The two models are trained under the second situation where the

number of speakers is 109 and the number of training samples is 20.

AB tests are used for the naturalness evaluation, where evaluators

need to choose one sample that has better naturalness from two sam-

ples generated from two models. For the similarity evaluation, ABX

tests are used. Evaluators need to choose one from two samples that

is more similar to the real target sample. A subset of 10 speakers is

randomly selected (5 male and 5 female). In total 90 (10*9=90 all

conversion directions) samples are evaluated for each model.

As shown in Figure 4, for both the naturalness and the similar-

ity, the proposed model obtains the most choices. WAStarGAN-VC

gets 68.4% and 46.6% choices for the naturalness and the similar-

ity respectively. For the huge gap between WAStarGAN-VC and

StarGAN-VC2 on the naturalness, it might because the W-AdaIN

module used in the WAStarGAN-VC model alleviates the infor-

mation loss, therefore the naturalness has gained an improvement.

However, for the similarity, there are 36.1% of the choices for the

option ’can not be decided’. We compute the correlations of the

three choices between the naturalness and the similarity. When the

naturalness is ’can’t be decided’, the probability of the similarity

being ’can’t be decided’ is 81.5%. It means that the naturalness

might has correlations with the similarity when the naturalness is

low.

6. CONCLUSION

In this work, we proposed the WAStarGAN-VC model and tried to

achieve StarGAN-based voice conversion under low-resource situa-

tions. The subjective and objective evaluation results show that our

proposed model has better performance than the baseline models on

both naturalness and similarity. Our future work could be one shot

voice conversion using StarGAN-based models.
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