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The coalescent model represents how individuals sampled from a population may have originated from a
last common ancestor. The bounded coalescent model is obtained by conditioning the coalescent model
such that the last common ancestor must have existed after a certain date. This conditioned model arises
in a variety of applications, such as speciation, horizontal gene transfer or transmission analysis, and yet
the bounded coalescent model has not been previously analysed in detail. Here we describe a new algo-
rithm to simulate from this model directly, without resorting to rejection sampling. We show that this
direct simulation algorithm is more computationally efficient than the rejection sampling approach.
We also show how to calculate the probability of the last common ancestor occurring after a given date,
which is required to compute the probability density of realisations under the bounded coalescent model.
Our results are applicable in both the isochronous (when all samples have the same date) and hete-
rochronous (where samples can have different dates) settings. We explore the effect of setting a bound
on the date of the last common ancestor, and show that it affects a number of properties of the resulting
phylogenies. All our methods are implemented in a new R package called BoundedCoalescent which is
freely available online.

� 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The coalescent model is a stochastic process that describes the
ancestry of a sample of individuals within a population (Kingman,
1982; Kingman, 1982). Conditioning the most recent common
ancestor of the sample to be after a certain date results in a model
called the ‘‘bounded coalescent” model and which was first men-
tioned in a model unifying gene duplication, loss and coalescence
(Rasmussen and Kellis, 2012). In this context, the bound condition
is used to deal with incomplete lineage sorting, which could cause
a gene tree to be incongruent with the species tree (Maddison,
1997; Maddison and Knowles, 2006). Consequently, the bounded
coalescent model is used in many multi-species coalescent models,
to enforce the full coalescence of members of a same species before
the speciation event (Mallo et al., 2016; Du et al., 2019; Hill et al.,
2020; Li et al., 2021). The bounded coalescent model is also used in
work on homologous recombination resulting in ancestral recom-
bination graphs (Ferretti et al., 2013; Rasmussen et al., 2014). Fur-
thermore, the bounded coalescent model is useful to perform
pathogen transmission analysis from genetic data whilst account-
ing for within–host diversity (Didelot et al., 2014; Didelot et al.,
2017). In this case, setting a bound on the coalescent process
equates to assuming a complete transmission bottleneck, so that
all pathogen lineages within an infected individual need to coa-
lesce before the host became infected. This results in a simpler
relationship between the transmission tree of who-infected-
whom and the genealogy of the pathogen sampled from the
infected individuals. Despite this increasingly frequent use of the
bounded coalescent model in several different biological research
fields, the consequences of imposing a minimum on the date of
the last common ancestor have not been formally investigated. In
particular, under the standard coalescent model the waiting times
between coalescent events are independent whereas this is no
longer the case in the bounded coalescent model (Rasmussen
and Kellis, 2012) since an increase in a waiting time needs to be
compensated by a decrease in other waiting times to satisfy the
bound condition.

In this paper, we start by defining the bounded coalescent
model formally in both isochronous and heterochronous sampling
settings. In the former all individuals are sampled at the same time,
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so that the genealogy is ultrametric (all leaves have the same dis-
tance to the root), whereas in the latter the individuals are sampled
at different times, so that the genealogy is not ultrametric
(Rambaut, 2000). We show how the probability density of any
genealogy can be computed under the bounded coalescent model
with a given effective population size and bound time. This
requires to first compute the probability of having the bound prop-
erty occurring under a standard unbounded coalescent model, and
we show how this can be computed efficiently. We also present a
new algorithm for the simulation of genealogies under the
bounded coalescent model given the sample number and dates,
the effective population size and the bound time. Our algorithm
can simulate directly from the bounded coalescent model, unlike
previously described approaches which used rejection sampling
on trees simulated from the standard unbounded coalescent model
(Didelot et al., 2014; Mallo et al., 2016). These new algorithms to
calculate the probability density of a genealogy and to simulate
directly under the bounded coalescent model are both useful to
perform inference under the model. Finally, we investigate a num-
ber of properties of the genealogies arising from the bounded coa-
lescent model and how they differ from the unbounded coalescent
model.

2. Definitions and notations

Coalescent models are typically derived from forward-in-time
population models, such as the Wright-Fisher model (Wright,
1931; Fisher, 1930), the Moran model (Moran, 1958) and the Can-
nings exchangeable model (Cannings, 1974). The Wright-Fisher
model assumes that a population evolves through non-
overlapping generations, with each individual in each generation
having a random uniformly distributed ancestor in the previous
generation, independent of the others. Under a constant popula-
tion size N, the probability that two individuals have the same
ancestor in the previous generation is 1=N, so that the number of
generations back-in-time until a common ancestor is found follows
a Geometric distribution with mean N. This can be converted to
real time by multiplying the number of generations by the gener-
ation interval Tg , resulting in the effective population size
Ne ¼ NTg . Where Ne is sufficiently large, we can instead use the
Kingman coalescent model (Kingman, 1982; Kingman, 1982),
which replaces the Geometric distribution with an Exponential dis-
tribution and provides a continuous-time equivalent.

Under the standard coalescent model, the waiting time Dt for a
coalescence with a lineages has for probability density

f ðDtjaÞ ¼ aða� 1Þ
2Ne

exp � aða� 1Þ
2Ne

Dt
� �

; ð1Þ

since each pair of lineages coalesces at rate 1=Ne and there are aða�1Þ
2

pairs of lineages.
In the most commonly used coalescent setting, L samples are

taken simultaneously (isochronous) so that their ancestral process
is simply made of the L� 1 coalescent events occurring back in
time until the most recent common ancestor (MRCA) of the L sam-
ples is found. The probability density of the coalescent dates in this
isochronous setting can therefore be computed as the product of
L� 1 terms given by Eq. (1).

Here we consider a frequently used extension of this setting, in
which the leaves are taken at different dates (heterochronous)
t1 < t2 < . . . < tK (Drummond et al., 2002; Drummond et al.,
2003). We define Lk as the number of leaves taken at date
tk; L ¼PK

k¼1Lk as the total number of leaves, and
s1 < s2 < . . . < sL�1 as the coalescent node times. Here and
throughout this manuscript time is measured in the forward direc-
tion, so that for example s1 is the date of the MRCA, and tK is the
2

date of the most recent sample. Furthermore we define the number
of extant lineages at time t as

AðtÞ ¼
XK
i¼1

Iðti P tÞLi �
XL�1

j¼1

Iðsj > tÞ; ð2Þ

so that if t is a coalescence time, AðtÞ is the number of lineages that
could have coalesced. These definitions are illustrated using an
example phylogeny in Fig. 1. Note that the isochronous case is a
special case of the heterochronous case in which K ¼ 1 and L1 ¼ L.

Letting s1; . . . ; sKþL�1 be the ordered union of the leaves and coa-
lescent node times, and Dk ¼ tk; Lkf g denote the combined sam-
pling information, the probability density of the ancestor dates in
a heterochronous setting can be calculated as follows
(Drummond et al., 2002):

f ðs1:L�1jD1:KÞ ¼
YL�1

j¼1

AðsjÞðAðsjÞ � 1Þ
2Ne

 !

�
YKþL�2

i¼1

exp �AðsiÞðAðsiÞ � 1Þ
2Ne

ðsiþ1 � siÞ
� � !

; ð3Þ

where we use the notations s1:L�1 ¼ s1; . . . ; sL�1 and
D1:K ¼ D1; . . . ;DK .

In the bounded coalescent model we have the additional
requirement that the lineages must coalesce to their MRCA before
some specified bound time t�, so that s1 > t�. We therefore write
the probability density of ancestor dates under the bounded coa-
lescent model f ðs1:L�1jD1:K ; s1 > t�Þ as opposed to f ðs1:L�1jD1:KÞ for
the unbounded coalescent model. The probability density of the
ancestor dates under the bounded coalescent model can be rewrit-
ten using Bayes rule:

f ðs1:L�1jD1:K ; s1 > t�Þ ¼ f ðs1:L�1jD1:KÞ
pðs1 > t�jD1:KÞ Iðs1 > t�Þ: ð4Þ

Note that the numerator is given by Eq. (3). In other words the
bounded coalescent model adds a normalising constant (denomina-
tor in Eq. (4)) equal to the probability of all lineages coalescing,
pðs1 > t�jD1:KÞ, which we call the ‘‘bound probability” and which
can be computed as shown in the next section. For two trees satis-
fying the bound condition, their probability density ratio under the
bounded coalescent model is the same as their probability density
ratio under the standard (unbounded) coalescent model:

f ðs01:L�1jD1:K ; s01 > t�Þ
f ðs1:L�1jD1:K ; s1 > t�Þ ¼ f ðs01:L�1jD1:KÞ

f ðs1:L�1jD1:KÞ : ð5Þ

This Eq. (5) clearly follows from Eq. (4) since the denominators are
the same and cancel out. Finally, we note that when t� ! �1 the
bound condition is always satisfied and the bound probability
becomes one. In this case the bounded coalescent model reduces
to the unbounded coalescent model, which in other words means
that the bounded coalescent model is an extension of the
unbounded coalescent model.

3. Bound probability

In an isochronous setting the bound probability is equal to the
probability that L lineages coalesce into one within the time inter-
val between sampling and t�. This probability is directly derived
from the density function of the time to the MRCA in the standard
coalescent model, which can be computed using matrix operations
on the Kingman’s Markov chain (Tavaré, 1984), using a Laplace
transform (Takahata and Nei, 1985) or using a convolution of expo-
nential distributions (Wakeley, 2009) from the coalescent waiting
times in Eq. (1). Slightly more generally, the probability that i lin-
eages coalesce down to j 6 i lineages in time Dt has also been com-



Fig. 1. An example phylogeny in the heterochronous setting. Leaves are taken at times t1; t2, and t3, numbering L1 ¼ 1; L2 ¼ 2, and L3 ¼ 2 leaves respectively (indicated by �).
Lineages coalesce at times s1; s2; s3, and s4. AðtÞ is the number of lineages that may coalesce at time t. In the bounded coalescent model all lineages must coalesce by time t�

(dashed line), such that Aðt�Þ ¼ 1.

J. Carson, A. Ledda, L. Ferretti et al. Journal of Theoretical Biology 548 (2022) 111186
puted before (Tavaré, 1984; Nordborg, 1998; Wakeley, 2009) and
can be expressed as

gi;jðDtÞ ¼
1�

Xi

k¼2

e�kðk�1ÞDt=2Ne
Yi

l¼2;l–k

lðl�1Þ
lðl�1Þ�kðk�1Þ

 !
j ¼ 1

2
jðj�1Þ

Xi

k¼j

kðk�1Þ
2 e�kðk�1ÞDt=2Ne

Yi
l¼j;l–k

lðl�1Þ
lðl�1Þ�kðk�1Þ j > 1

8>>>>><
>>>>>:

ð6Þ

Hence the bound probability for the isochronous case is simply
pðs1 > t�jt1; LÞ ¼ gL;1ðt1 � t�Þ.

The heterochronous setting is more complex as lineages do not
monotonically decrease with every coalescence. To simplify nota-
tion, let Ak ¼ AðtkÞ denote the number of lineages at time tk. Note
the following Markov property for the unbounded coalescent
process

pðAkjAkþ1:KÞ ¼ pðAkjAkþ1Þ: ð7Þ
Consequently, we can express the number of lineages at a discrete
set of time points as a hidden Markov model (HMM). We can then
determine the bound probability using the forward algorithm
(Rabiner, 1989; Zucchini and MacDonald, 2009).

The forward algorithm provides the set of probabilities
pðAk ¼ akÞ, which are the probabilities of having ak lineages at time
tk under the standard coalescent model. The algorithm is initialised
at time tK with pðAK ¼ LKÞ ¼ 1, and iterates through
k ¼ K � 1;K � 2; . . . ;1 in order to evaluate

pðAk ¼ jþ LkÞ ¼
XMkþ1

i¼Lkþ1

pðAk ¼ jþ LkjAkþ1 ¼ iÞpðAkþ1 ¼ iÞ; ð8Þ

for j ¼ 1; . . . ;Mkþ1, where Mk ¼
PK

l¼kLl is the maximum number of
lineages that can exist at time tk. The transition probabilities
pðAk ¼ jþ LkjAkþ1 ¼ iÞ correspond to the probability in the standard
coalescent model that i lineages coalesce down to j lineages in a
time interval t ¼ tkþ1 � tk as given in Eq. (6), that is
pðAk ¼ jþ LkjAkþ1 ¼ iÞ ¼ gi;jðtkþ1 � tkÞ. Since Lk additional leaves are
sampled at time tk, this results in jþ Lk lineages.
3

The forward algorithm is terminated at the bound time t�.
Defining A� as the number of lineages at the bound time, calcula-
tion of the forward probabilities pðA�Þ follow Eq. (8) but without
new leaves being added:

pðA� ¼ jÞ ¼
XL
i¼1

pðA� ¼ jjA1 ¼ iÞpðA1 ¼ iÞ; ð9Þ

for j ¼ 1; . . . ; L, where pðA� ¼ jjA1 ¼ iÞ ¼ gi;jðt1 � t�Þ. The bound prob-
ability is then given by pðA� ¼ 1Þ.

This concludes the calculation of the bound probability in the
heterochronous case. This quantity is of interest by itself, but also
and perhaps more importantly it allows the calculation of the
probability of sampling a tree under the bounded coalescent model
by applying Eq. (4). This calculation allows inference to be per-
formed under the bounded coalescent model, either using
maximum-likelihood or in a Bayesian framework.
4. Direct sampling

A straightforward approach to simulate realisations of the
bounded coalescent model is to use rejection sampling (Didelot
et al., 2014; Mallo et al., 2016). This involves simulating from the
standard coalescent model and keeping only those simulations in
which s1 > t�. This rejection sampling approach can also be used
to estimate the bound probability, since acceptance happens with
probability equal to the bound probability. However, rejection
sampling will be inefficient especially if lineages are sampled close
to the bound relative to the effective population size, i.e. if
N�1

e ðt1 � t�ÞJ0. In this case the bound probability is small and
therefore so is the acceptance probability of the rejection sampler.
Here we introduce a direct sampler for the bounded coalescent
model that does not suffer this limitation.

The direct sampling approach proceeds through the following
five steps:
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1. Use the forward filtering backward sampling (FFBS) algorithm
to sample the number of lineages A1:K at times t1:K conditioned
on the bound.

2. From the sampled A1:K derive the number of coalescence events
in the time intervals ðt�; t1Þ and ðtk; tkþ1Þ for k ¼ 1; . . . ;K � 1.

3. For intervals containing multiple coalescence events, subdivide
the time interval and sample the number of coalescence events
for each subinterval. Repeat this step until all L� 1 coalescence
events are constrained by unique, non-overlapping time
intervals.

4. Use inverse transform sampling to sample the (constrained)
coalescence times.

5. Working backwards in time, sample a pair of lineages for each
coalescence event.

Further details of each step are discussed below. We also describe
how to calculate the probability density f ðs1:L�1jD1:K ; s1 > t�Þ con-
currently with the sampling approach, allowing the sampler to
be efficiently utilised within an inferential framework. For example
it allows the use of the sampler as a proposal distribution in a Mar-
kov Chain Monte-Carlo or Importance Sampling algorithm, since in
both cases the probability density of the proposed tree would be
needed.

4.1. Step 1

In Section 3 we describe how the number of lineages A�
;A1:K can

be expressed as a HMM. By treating A� ¼ 1 as an ‘observation’, we
can simulate values of A1:K conditioned on A� ¼ 1 using the FFBS
algorithm. FFBS uses a two-step recursion: a forward recursion to
calculate the forward probabilities, and a backward recursion to
generate samples. The forward recursion is the forward algorithm
described in Section 3, so here we focus on the backward recursion
for sampling.

The backward recursion is initiated by calculating the
probabilities

pðA1 ¼ ijA� ¼ 1Þ ¼ pðA� ¼ 1jA1 ¼ iÞpðA1 ¼ iÞ
pðA� ¼ 1Þ ; ð10Þ

for i ¼ 1; . . . ; L. The terms pðA1 ¼ iÞ and pðA� ¼ 1Þ are probabilities
calculated in the forward algorithm, and the transition probability
is given by Eq. (6), i.e. pðA� ¼ 1jA1 ¼ iÞ ¼ gi;1ðt1 � t�Þ. Once these
probabilities have been calculated, the number of lineages a1 is
sampled according to the probabilities pðA1 ¼ a1jA� ¼ 1Þ. The back-
ward recursion then iterates through k ¼ 2; ::;K , calculating the
probabilities

pðAk ¼ ijAk�1 ¼ ak�1Þ ¼ pðAk�1 ¼ ak�1jAk ¼ iÞpðAk ¼ iÞ
pðAk�1 ¼ ak�1Þ ; ð11Þ

and sampling a value ak accordingly. Note again that the transition
probabilities must account for the addition of leaves, i.e.
pðAk�1 ¼ jþ Lk�1jAk ¼ iÞ ¼ gi;jðtk � tk�1Þ.

The calculation of f ðs1:L�1jD1:K ; s1 > t�Þ is initialised by setting

F :¼ pðA1:K ¼ a1:K jA� ¼ 1Þ

:¼ pðA1 ¼ a1jA� ¼ 1Þ
YK
k¼2

pðAk ¼ akjAk�1 ¼ ak�1Þ:
ð12Þ

We use F to emphasise that this is a partial calculation, and will be
updated in the following steps.

4.2. Step 2

Having sampled the number of lineages a1:K we derive the num-
ber of coalescence events between successive time points. Define
4

c�;1 as the number of coalescence events in the interval ðt�; t1Þ,
and ck�1;k as the number of coalescence events in the interval
ðtk�1; tkÞ. Then
c�;1 ¼ a1 � 1
ck�1;k ¼ Lk�1 þ ak � ak�1; k ¼ 2; . . . ;K:

ð13Þ
4.3. Step 3

In order to sample coalescence times in Step 4, we require that
each coalescence event is constrained within a unique, non-
overlapping time interval. Hence, for any ck�1;k P 2, we need to
partition the corresponding time interval until the coalescence
events are separated. Here, we bisect the interval ðtk�1; tkÞ and sam-
ple the number of coalescent events in the subintervals ðtk�1; tk�0:5Þ
and ðtk�0:5; tkÞ, where tk�0:5 ¼ 0:5ðtk�1 þ tkÞ. This is achieved by sam-
pling the number of lineages ak�0:5 at the newly added time point
tk�0:5 according to

pðAk�0:5 ¼ ak�0:5jAk�1 ¼ ak�1;Ak ¼ akÞ ¼
pðAk�1¼ak�1 jAk�0:5¼ak�0:5ÞpðAk�0:5¼ak�0:5 jAk¼akÞ

pðAk�1¼ak�1 jAk¼akÞ ;
ð14Þ

and then deriving the number of coalescence events ck�1;k�0:5 and
ck�0:5;k as in Step 2. The probability of sampling ak�0:5 is incorporated
into the calculation of f ðs1:L�1jD1:K ; s1 > t�Þ:
F :¼ F� pðAk�0:5 ¼ ak�0:5jAk�1 ¼ ak�1;Ak ¼ akÞ: ð15Þ
This process is also applied to the interval ðt�; t1Þ if c�;1 P 2, and any
newly generated subintervals until we have at most one coales-
cence event in any defined time interval.

4.4. Step 4

Each coalescence event is constrained by a unique non-
overlapping time interval, but is not uniformly distributed within
said interval. From the previous steps, assume that a coalescence
event occurs in the interval ðtk�1; tkÞ, with ak lineages at time tk
and ak�1 ¼ ak � 1 lineages at time tk�1. The probability density of
the coalescence time s is proportional to the density of the coales-
cence time under the standard coalescent model multiplied by the
probability that no further coalescence events occur in the interval
ðtk�1; sÞ, giving

f ðsjtk�1; tk; akÞ / akðak � 1Þ
2Ne

exp � akðak � 1Þ
2Ne

ðtk � sÞ
� �

� exp �ðak � 1Þðak � 2Þ
2Ne

ðs� tk�1Þ
� �

; ð16Þ

for tk�1 < s < tk. This enables us to sample s using inverse trans-
form sampling. Collecting the s terms of Eq. (16) gives

f ðsjtk�1; tk; akÞ ¼ 1
Z
exp

ak � 1
Ne

s
� �

; tk�1 < s < tk; ð17Þ

where Z is the normalising constant, and is equal to

Z ¼ Ne

ak � 1
exp

ak � 1
Ne

tk

� �
� exp

ak � 1
Ne

tk�1

� �� �
: ð18Þ

If u is a draw from a standard uniform distribution, we can compute
s using inverse transform sampling by solving

u ¼ Ne

Zðak � 1Þ exp
ak � 1
Ne

tk

� �
� exp

ak � 1
Ne

s
� �� �

; ð19Þ

where the right side is the cumulative density function of s. This
gives

s ¼ Ne

ak � 1
log exp

ak � 1
Ne

tk

� �
� ak � 1

Ne
Zu

� �
: ð20Þ
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Each time a coalescence time is sampled, the calculation of
f ðs1:L�1jD1:K ; s1 > t�Þ is updated using

F :¼ F� f ðsjtk�1; tk; akÞ: ð21Þ
By using inverse transform sampling for each coalescence event, we
obtain the full set of coalescence times s1:L�1. The probability den-
sity F at the end of this step is equal to that given by Eq. (4), i.e.
F ¼ f ðs1:L�1jD1:K ; s1 > t�Þ.

4.5. Step 5

The final step is to sample the topology of the tree. Here we sim-
ply iterate backwards in time through the coalescence events and
sample two of the extant lineages, noting the ancestors for each
coalescent node. The probability of a topology G conditional on
the sampled s1:L�1 is given by

pðGjs1:L�1;D1:KÞ ¼
YL�1

i¼1

2
AðsiÞðAðsiÞ � 1Þ : ð22Þ

The density of the sampled tree under the bounded coalescent
model is then given by

f ðG; s1:L�1jD1:K ; s1 > t�Þ ¼ pðGjs1:L�1;D1:KÞ � f ðs1:L�1jD1:K ; s1
> t�Þ: ð23Þ
4.6. Validation and comparison with rejection sampling

4.6.1. Bound probability
Here we consider an example, with L ¼ 5 leaves at different

times t1 ¼ 0:0; t2 ¼ 0:5; t3 ¼ 1:0; t4 ¼ 1:5; t5 ¼ 2:0 and a bound time
t� ¼ �0:5. We use an effective population size of Ne ¼ 1 so that
pairs of lineages coalesce at rate 1=Ne ¼ 1. We first used a rejection
approach to simulate under these conditions. The rejection sam-
pler required 427 371 simulations in order to obtain 105 accep-
tances, which means that the bound probability is estimated to
be 0:234.

Next we run the forward filter described in Section 3, giving the
probabilities shown in Table 1. In particular we note that the
bound probability of having a single lineage at the bound time t�

is 0:233, which is consistent with the bound probability estimated
by the rejection sampler.

4.6.2. A single run of the direct sampler
Step 1 of the direct sampler consists in running the forward

algorithm to obtain the probabilities shown in Table 1, followed
by backwards sampling conditioned on the bound, that is A� ¼ 1.
We update the filtered probabilities for A1 using Eq. (11), giving
the probability vector ð0:000;0:411;0:494; 0:093;0:002Þ|, from
which we sample. Say we sample A1 ¼ 4, we iterate to time t2
and obtain the probabilities pðA2 ¼ 3jA1 ¼ 4Þ ¼ 0:736 and
pðA2 ¼ 4jA1 ¼ 4Þ ¼ 0:264. Note that pðA2 ¼ 2jA1 ¼ 4Þ ¼ 0 since 2
leaves at time t2 can not result in 4 leaves at time t1. This sampling
procedure continues until we have samples a1; . . . ; a5.
Table 1
Forward filter probabilities in the numerical example (probabilities may not add to
one due to rounding).

Lineages t� ¼ �0:5 t1 ¼ 0:0 t2 ¼ 0:5 t3 ¼ 1:0 t4 ¼ 1:5 t5 ¼ 2:0

1 0.233 0 0 0 0 1
2 0.565 0.244 0.277 0.393 1 0
3 0.192 0.571 0.587 0.607 0 0
4 0.010 0.178 0.135 0 0 0
5 0.000 0.007 0 0 0 0

5

In Step 2 we determine the number of coalescence events
between time points. If in Step 1 we sample
a1 ¼ 4; a2 ¼ 3; a3 ¼ 3; a4 ¼ 2; a5 ¼ 1 we can determine that c�;1 ¼ 3
coalescence events occur in the interval ðt�; t1Þ, and c2;3 ¼ 1 in
ðt2; t3Þ.

In Step 3 we further partition the time axis in order to separate
each coalescence event. Here we would add a new time point at
t0:5 ¼ �0:25, and sample the extant number of lineages conditional
on having a single lineage at time t� and four lineages at time t1.
Hence we may sample 0, 1, 2, or 3 coalescence events in the inter-
val ðt�; t0:5Þ, with the remainder occurring in the interval ðt0:5; t1Þ.
This partitioning continues until each coalescence events is con-
strained by a unique non-overlapping time interval, i.e.
ð�0:5;�0:25Þ; ð�0:25;�0:125Þ; ð�0:125;0:0Þ; ð0:5;1:0Þ.

Step 4 is simply a matter of sampling the coalescence times,
conditioned on the corresponding intervals.

Finally, in Step 5 we sample the lineages for each coalescence
event. Starting with the latest event, we determine which lineages
currently exist. For the interval ð0:5;1:0Þ these would be the lin-
eages corresponding to leaves 3, 4, and 5. In the interval
ð�0:125;0:0Þ, these would be the lineages corresponding to leaves
1 and 2, as well as the resulting lineages from the previous coales-
cence event.

4.6.3. Comparison of simulated trees using direct and rejection
sampling

We obtain 105 simulations from both the rejection sampling
algorithm and the direct sampling algorithm as described above.
In Fig. 2 we compare the simulated coalescence times, and observe
strong agreement between the two methods. This example also
demonstrates complex behaviour arising from the heterochronous
setting. In particular, the distributions of the latter coalescence
times are multimodal. This results from lineages not coalescing
by the time a new leaf is added, leading to an increased coalescent
rate.

We also compare the run times of the two algorithms as we
vary the number of leaves. Keeping t� ¼ �0:5 and Ne ¼ 1 fixed,
we sample L leaves uniformly over the interval ð0;2Þ and obtain
105 simulations from each algorithm. The run times for
L ¼ 2; . . . ;50 are shown in Fig. 3. For a small number of leaves, both
algorithms exhibit similar performance. However, as the number
of leaves increases, the computational cost of rejection sampling
increases much more rapidly than the direct sampling approach.
This results from the smaller bound probabilities lowering the
acceptance rate of the rejection sampler.

5. Properties

In this section we investigate the effect of the bound on various
properties of the tree, which can differ markedly from the standard
coalescent model and alter the outcome of many standard
analyses.

5.1. Dependencies between coalescent events

The bound induces dependencies between the waiting times of
the coalescence events. As a demonstration, we consider the iso-
chronous setting with L ¼ 3; t1 ¼ 0, and estimate the correlation
between the two waiting times for bound times �5 6 t� 6 �0:01.
This estimation is performed numerically by simulating 105 trees
for each bound time. The results are shown in Fig. 4. As the bound
time increases, the correlation between waiting times becomes
stronger. Since all lineages must coalesce by the bound time, if
one waiting time is large then the other must be small. As the
bound time decreases and the bounded coalescent model more
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strongly approximates the standard coalescent model, the correla-
tion tends towards zero.

Due to these dependencies, it is necessary to consider all leaves
and lineages jointly when performing simulations or deriving
probabilities under the bounded coalescent model. For instance,
simulation under the standard coalescent model can be under-
taken by adding leaves one by one to the growing tree, but this
is not the case under the bounded coalescent model. To illustrate,
we again consider the isochronous setting and estimate by simula-
tion the average pairwise distance between leaves for L ¼ 2; . . . ;50,
while keeping t� fixed at �0:5 (Fig. 5)a and and �2 (Fig. 5b). In both
6

cases, increasing the total number of leaves increases their average
pairwise distance. Consequently, simulating a tree under the
bounded coalescent model with L ¼ 3 can not be achieved by first
simulating a tree under the bounded coalescent model with L ¼ 2
and then adding an extra leaf. Rather, the initial two leaves would
need to be simulated conditional on all three leaves coalescing by
the bound time.
5.2. Bound probability

For further exploration we consider the heterochronous setting
where L leaves are sampled at evenly spaced times over the sam-
pling interval ð0; tLÞ. The isochronous setting can be recovered by
setting tL ¼ 0. We investigate how properties of the simulated trees
change as L; tL, and t� are varied.



Fig. 5. Average distance between two leaves for different values of L keeping t1 ¼ 0 and Ne ¼ 1 fixed.
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Estimates of the bound probability for varying L; tL, and t� are
shown in Fig. 6. The value of the bound time t� has the largest
impact. As the bound time moves further into the past the bound
probability tends towards one, even for large numbers of leaves
and/or short sampling intervals. Sampled trees will strongly
resemble those obtained under the standard coalescent model.
On the other hand, as the bound time becomes more recent, the
bound probability tends towards zero. In this region sampled trees
will have very different properties than the standard coalescent
model. For modest bound times, the choice of both L and tL signif-
icantly impact the bound probability, which decreases for increas-
ing L and decreasing tL. The largest changes are observed for small L
and tL, and asymptotic behaviour is observed for large L and tL.
Fig. 6. Bound probabilities as the bound time and number of leaves vary in the heterochr
a bound time of t� ¼ �0:5, and (d) uses a bound time of t� ¼ �1. The remaining parame

7

5.3. Tree summary statistics

Fig. 7 shows how several summary statistics of bounded coales-
cent trees change as the bound time is altered. In particular we con-
sider the distributions of the time of the MRCA (TMRCA), the total
branch length, the average pairwise distance between the leaves,
and the ratio between the average terminal branch length to the
average internal branch length (starlikeness). The total number of
leaves is fixed at L ¼ 50 in Fig. 7, and we consider three sampling
intervals, tL ¼ 0 (isochronous), tL ¼ 1, and tL ¼ 10. Within these
three configurations, we consider the four bound times
t� ¼ �1; t� ¼ �2; t� ¼ �1, and t� ¼ �0:5, and sample 1000 trees in
each of the twelve cases to approximate the resulting distributions.
onous example. (a) uses a sampling interval of tL ¼ 1, (b) uses L ¼ 50 leaves, (c) uses
ters in each simulation are given by the x-axis (x) and y-axis (y).
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Since all lineages are required to coalesce before the bound
time, providing a lower bound for TMRCA, the bounded coalescent
model leads to more recent values of TMRCA. As the bound time
increases, values of TMRCA become increasingly concentrated near
the bound time. Increasing the bound time tends to reduce the
total branch length. This results from requiring all lineages to coa-
lesce by the bound time, which gives an upper limit of
ððtL=2Þ � t�ÞL.

As with the total branch length, the bounded coalescent model
places an upper bound on the average pairwise distance, which is
Fig. 7. Properties of the bounded coalescent model with L ¼ 50 leaves, sampling interv
(corresponding to the standard unbounded coalescent), �2;�1 and �0:5. Mean values a

8

ðLþ 1Þ=ð3ðL� 1ÞÞ. This causes the average pairwise distance to
decrease as the bound time increases. Finally, the starlikeness
increases as the bound time increases.

5.4. Phylodynamics

The starlikeness of a tree is often an indication of past popula-
tion size growth (Slatkin and Hudson, 1991; den Bakker et al.,
2008; Volz et al., 2009). Therefore, the fact that this tree summary
statistic depends on the bound time (Fig. 7) suggests that the pres-
als of length t50 ¼ 0 (isochronous), t50 ¼ 1, and t50 ¼ 10, and bound time t� of �1
re shown as white circles.
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ence of a bound could confound phylodynamic inference studies,
which are aimed at reconstruct past population size dynamics
given genetic or phylogenetic data (Nee et al., 1995; Pybus et al.,
2000; Ho and Shapiro, 2011).

To illustrate this, Fig. 8 shows two examples of skyline plots in
the isochronous setting and two examples in the heterochronous
setting. All skyline plots were computed using Bayesian nonpara-
metric phylodynamic reconstruction (Palacios and Minin, 2012)
as implemented in the R package phylodyn (Karcher et al., 2017).
In all four examples the population size was incorrectly inferred
to have grown significantly. In examples (a) and (c) this was caused
by a high effective population size relative to the bound time, so
that the bound conditions forces coalescence to happen before it
would normally do, whereas in examples (b) and (d) the same
occurred due to relatively recent bound times. Similarly, a previous
study showed that having a bound mimics the effect of population
growth on the site frequency spectrum (Lapierre et al., 2017), even
though the two processes are not equivalent. These results do not
invalidate the principles of phylodynamic inference, which assume
that there is no bound on the root date, but warn against its appli-
cation in situations where a bound is present.
6. Implementation

We implemented the algorithms and methods described in this
paper into a new R package called BoundedCoalescent which is
available at https://github.com/DrJCarson/BoundedCoalescent.
This package includes functions to calculate the bound probability,
to calculate the probability density of a tree under the bounded
coalescent model, and to simulate trees under the bounded coales-
cent model. Most of the code was written in C++ and integrated
Fig. 8. Skyline plots with L ¼ 50. The solid lines show the median population estimates
bound time and the latest leaf. The dashed line shows the earliest sampled leaf.

9

into the R package using Rcpp (Eddelbuettel and François, 2011;
Eddelbuettel, 2013). The R package ape was used to store, manip-
ulate and visualise phylogenetic trees (Paradis and Schliep, 2019).
7. Discussion

In this paper we have presented a formal description of the
bounded coalescent model (Rasmussen and Kellis, 2012), an exten-
sion of the standard coalescent model in which all lineages are con-
strained to find a common ancestor by a predefined date. We have
shown how to calculate the probability of the bound constraint
happening by chance, which is useful to calculate the probability
density of a given phylogeny under the bounded coalescent model
with a given bound time. We have also described a method to
directly sample phylogenies under the bounded coalescent model,
and used this to explore the properties of the model and the effect
of the conditioning. Although we focused on the case of a lower
bound on the root date, we note that our results can also be used
in situations where the root date has an upper bound, for example
due to fossil records (Ho et al., 2014). The probability density of a
tree in this case can be obtained by dividing the unbounded prob-
ability density by one minus the bound probability, similar to Eq.
(4). Sampling can be achieved by first selecting a number of exist-
ing lineages of at least two at the bound time, and simulating the
constrained coalescent process after the bound time using the
same constrained procedure as described in Section 4. The only
additional computation is to also simulate the coalescent process
before the bound time, which simply follows the unconstrained
coalescent process (Eq. (1)).

The standard coalescent framework can be extended in many
ways (Donnelly and Tavare, 1995; Fu and Li, 1999; Rosenberg
, and the grey regions show 95% credible intervals. The plotted range indicates the
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and Nordborg, 2002), for example to allow for variations in the
population size (Griffiths and Tavare, 1994), geographical structure
(Notohara, 1990), recombination (Hudson, 1990) and selection
(Krone and Neuhauser, 1997). All of these extensions are in princi-
ple compatible with the conditioning imposed by the bounded coa-
lescent model. For example, an ancestral recombination graph
could be simulated, for which efficient methods have been devel-
oped (McVean and Cardin, 2005), and rejection sampling could
be applied to ensure that the bound condition is met. However, it
is unclear under which of these coalescent framework extensions
a direct sampling method can be devised or an efficient method
to calculate the probability density of realisations. As for other
extensions of the coalescent framework, there are data analysis sit-
uations where it is unclear whether a bounded model should be
used or not. Having a well-defined bounded coalescent model
including an algorithm for computing tree probability densities
allows for model selection techniques to be used in such situations
(Xie et al., 2011).

The bounded coalescent model is of special interest for applying
coalescent theory in infectious disease epidemiology. This includes
the need to have full coalescence of lineages within a host before
that host become infected, if we assume a complete transmission
bottleneck (Didelot et al., 2014; Didelot et al., 2017). The effect of
a complete transmission bottleneck becomes more important as
data on within–host diversity are increasingly being used to infer
who infected whom (De Maio et al., 2018; Wymant et al., 2018).
An alternative approach to the bounded coalescent model in order
to enforce a complete transmission bottleneck is to start the
within–host population with an effective population size of zero,
with subsequent growth, so that the coalescence rate is close to
infinity just after infection. For example, a within–host linear
growth model starting at zero was used as part of a method for
simultaneous inference of phylogenetic and transmission trees
(Klinkenberg et al., 2017). Similarly, a recently proposed model
on clonal expansion has each expansion starting with a size of zero
to ensure they initially correspond to a single lineage (Helekal
et al., 2021). Finally, the coalescent process is sometimes equated
with the transmission process by assuming that the within–host
population size is negligible, so that coalescent times correspond
to transmission events (Volz et al., 2009; Frost and Volz, 2010).
In this framework, considering that incidence is proportional to
prevalence, as is the case in many infectious disease epidemiology
models, leads to an effective population size proportional to the
number of infected individuals minus one (Volz, 2012; Volz and
Didelot, 2018). Consequently, the bound condition is enforced by
having an effective population size of zero at the time when an
outbreak is seeded with a single index case.
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