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Abstract—Privacy-preserving spatio-temporal data sharing is
vital in many machine learning and analysis tasks, such as
managing disease spread or tailoring public services to a
population’s travel patterns. Current methods for data release
are insufficiently accurate to provide meaningful utility, and
they carry a high risk of deanonymization or membership
inference attacks. These limitations and public concern over
privacy and data protection has limited the extent to which
data is shared. This work presents approaches generating and
publishing spatio-temporal data, such as geographic locations
and trajectories, with differential privacy. In the first solution,
differentially private spatial data is generated using kernel
density estimation and a road network-aware approach. In
the second solution, a local differentially private mechanism is
developed by perturbing hierarchically-structured, overlapping
n-grams of trajectory data. Both of the solutions incorporate
publicly available information, such as the road network or
categories of places of interests, to enhance the utility of the
output data without negatively affecting privacy or efficiency.
Experiments with real-world data demonstrate that the private
data can perform as well as the non-private data in a range of
practical data science tasks.

Index Terms—Differential Privacy, Spatio-Temporal Data, Tra-
jectories, Privacy

I. INTRODUCTION

People’s location is collected at large scale by a wide
range of organizations (e.g. Uber and Google Maps), typically
through mobile technologies. Being able to analyze and model
location patterns is highly valuable to other businesses and
researchers (and society as a whole) to enable a vast range of
location-based applications, from tracking disease spread to
reducing traffic congestion. However, such data is extremely
private, for numerous personal, social, and financial reasons,
and the risks concerning the violation of individuals’ privacy
presents a major impediment to the free sharing of such data.
More recently, the coronavirus pandemic and the need for high
quality contact tracing has emphasized the need for privacy-
aware use of personal location data.

This research focuses on developing utility-focused algo-
rithms for spatio-temporal data generation and publication
with strong privacy guarantees, which are achieved through
applying differential privacy (DP). A range of publicly avail-
able external knowledge is incorporated to boost utility of
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the output data with no cost to privacy. This contrasts with
most existing DP mechanisms, which are typically very re-
strictive in their use of external knowledge. The publicly
available external knowledge that can be utilized ranges from
geographic knowledge (e.g., locations of rivers, seas, military
compounds), to location- or domain-specific information (e.g.,
business opening hours, sports teams schedules), and even
abstract commonsense knowledge (e.g., churches are likely
to be busy on Sunday mornings, but not Tuesdays at 3am).
Experiments with real-world data demonstrate that including
this external knowledge can improve utility noticeably.

The work in Sections III and IV has been published in [1]
and [2], respectively, and will be included in the thesis. An
extension to the work of Section IV, which forms ongoing
research, is also briefly discussed, and it will also be included
in the thesis.

II. DIFFERENTIAL PRIVACY

Definition 1 (ϵ-differential privacy [3], [4]): A randomized
mechanism M satisfies ϵ-differential privacy if, for any two
datasets D, D′ differing by one element and output y ∈ Y:

Pr[M(D) = y] ≤ eϵ Pr[M(D′) = y] (1)

where ϵ is the privacy budget; higher privacy budgets generally
mean less privacy but better utility.

The Laplace mechanism releases differentially private val-
ues of numerical functions of data [4]. For a function f acting
on D, it adds random noise to the value of f(D) such that:

Mf = f(D) + Lap(
∆f

ϵ ) (2)

where, Lap(·) denotes the Laplace distribution, and the
scale of the noise is set by the sensitivity of f , ∆f =
maxD,D′ |f(D) − f(D′)|. The exponential mechanism [5]
is an alternative method for releasing DP output. For any
dataset D and output y ∈ Y , the result of mechanism M
is ϵ-differentially private if one randomly selects y such that:

Pr[M(D) = y] =
exp(ϵq(D,y)/2∆q)∑

yi∈Y exp(ϵq(D,yi)/2∆q)
(3)

where, q(D, y) is some quality function, and ∆q is the
sensitivity of the quality function (defined as for ∆f ).

Definition 2 (ϵ-local differential privacy [6]): A randomized
mechanism M satisfies ϵ-local differential privacy if, for any
two inputs x, x′ and output y:

Pr[M(x) = y] ≤ eϵ Pr[M(x′) = y] (4)
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Fig. 1: Plots of real and synthetic data for data generation methods; picture reproduced from [1] with authors’ permission

Whereas centralized DP allows the aggregator to add noise,
LDP ensures that noise is added to data (typically by the user,
or on their device) before it is shared with an aggregator.

Both DP and LDP have two important properties that are
utilized in this work [7]. First, mechanism outputs can be
manipulated without affecting the privacy guarantee. Second,
an ϵi-(L)DP mechanism can be sequentially composed to
give an overall privacy loss of ϵ =

∑
i ϵi. This allows the

privacy budget, ϵ, to be split across the mechanism while still
providing a strict upper bound on privacy leakage.

III. PRIVATE LOCATION DATA GENERATION

Most existing work on differentially private spatial data
publication or generation (e.g., [8]–[11]) fails to output data
in the same format as the input data, which limits its practical
utility and the range of data analytics tasks for which it can be
used. With this motivation, the section focuses on constructing
two end-to-end pipelines for privately generating spatial point
data. Both pipelines take an input point dataset P and seek
to privately generate a synthetic point dataset S that preserves
as much as of the underlying distribution of the real data as
possible.

A. Partitioning-Based Approaches

This work presents three partitioning-based approaches,
although other forms of partitioning can be used. Each ap-
proach utilizes a differentially private partitioning method from
literature to divide the spatial domain into a set of finite
regions (denoted as Ri). The first uses a uniform grid [12], the
second accounts for uneven point distribution (as is common
in spatial datasets) by using adaptive grids (also from [12]),
and the third uses k-means-style clustering [13], [14]. Once
partitioned, Laplace noise is added to the number of points in
each region to get noisy counts: n̂i = ni + Lap( 1

ϵ1
).

Synthetic data is generated using a kernel density estimation
(KDE) based approach in which the kernel function is tuned
to the size of the regions. Given a kernel function ϕ, the kernel
density estimator, f̂(x), for a dataset of size N is:

f̂(x) = 1
N

∑N
j=1 ϕ(x− xj) (5)

Given the widespread use of its one-dimensional counterpart
in other DP work, this work uses the two-dimensional Laplace
distribution (in its polar form) for the kernel function, defined
as:

ϕ(x− xj) ≡ ϕ(rj , θj) =
exp(−rj/hi)

2πhi
(6)

where rj = ∥x − xj∥, θj is the angle between x and xj ,
and hi is a normalization (or smoothing) factor. To obtain
a DP-compliant kernel for region Ri, one must tune ϕ for
each region Ri such that the probability ratio between the two
most distal points in Ri is no more than eϵ, as required by
Definition 1. Hence, the smoothing parameter for Ri is set
to: hi =

∥Ri∥
ϵ2

, where ∥Ri∥ is the maximum distance between
any two locations (not necessarily in P) in Ri. Once the KDE
is constructed, n̂i points are generated in each region. When
doing so, public geographic knowledge from maps etc. is used
to prevent points from being generated in geographic areas that
would be nonsensical (e.g., seas, rivers, military compounds).

Using DP’s composition theorem means that the overall
privacy loss for each point is ϵ1 + ϵ2 = ϵ.

B. Road Network-Aware Approach

Many datasets exhibit a degree of underlying structure and,
in the case of spatial datasets, this underlying structure may
be public knowledge (e.g., the road network). This underlying
structure can be exploited when generating synthetic data, as
will now be outlined in this three-step method, in which the
road network is modeled as a graph G(E ,V).

First, the noisy number of points along each edge e ∈ E
are obtained: n̂e = ne + Lap( 1

ϵ1
). Micro-histograms are

constructed to obtain the distribution of points along edges
(both parallel and perpendicular to each edge). The number
of bins for each micro-histogram is O

(√
ϵn̂e

)
, which can be

shown to minimize the total error. Laplace noise is added
to each histogram bin count using ϵ2 and ϵ3 to control the
noise, which means the overall privacy leakage for each point
is ϵ1 + ϵ2 + ϵ3 = ϵ. Finally, n̂e synthetic points are generated
along each edge by randomly sampling from the noisy micro-
histograms.

Fig. 1 shows synthetic data samples based on Beijing taxi
data. The road network approach generates synthetic data
that is visually more faithful to the original data than the
partitioning-based approaches, which demonstrates the benefit
of incorporating publicly-available external knowledge.

IV. TRAJECTORY SHARING WITH LDP

Despite generating strong techniques for doing so, generat-
ing or publishing private point data has a fundamental limita-
tion: it fails to consider the spatio-temporal correlations that
exist between consecutive points. Furthermore, the centralized
setting of DP relies on a trusted aggregator, which is not



always realistic or practical. Hence, this section focuses on
publishing temporally-ordered sequences (i.e., trajectories) of
places of interest (POIs) using LDP.

A. Challenges

The key challenge in this problem is trying to preserve exist-
ing spatio-temporal correlations between consecutive points, in
addition to aiming to ensure that the error between any single
real and perturbed trajectory point is minimized. This chal-
lenge is complemented by the ubiquitous aim of providing a
strong privacy guarantee through a mechanism that is efficient
and scalable for city-size applications.

A naı̈ve solution to these challenges would be to perturb the
entire trajectory as one entity, by modeling them as individual
points in high-dimensional space. However, this approach
quickly becomes computationally infeasible as the number
of possible trajectories (all of which must be instantiated) is
O( P τT !

τ !(T−τ)! ), where P is the number of POIs, τ is the length
of the trajectory, and T is the number of discrete timesteps at
which events can occur.

B. n-Gram Solution

These challenges are addressed through a solution that uses
the exponential mechanism to perturb hierarchically-structured
overlapping n-grams (i.e., contiguous trajectory subsequences
of length n) in accordance with LDP. Using n-grams means
that the spatio-temporal relationship between adjacent points
can be captured, without needing to instantiate an infeasibly
large domain set. By overlapping the n-grams, it is possible
to capture more information for each point (thereby providing
utility benefits), without affecting the overall privacy guaran-
tee. Publicly known semantic information regarding the POIs
(e.g., category, opening hours) is used to construct a quality
function that the exponential mechanism uses to ensure that
semantically similar n-grams are more likely to be returned
by the mechanism, which improves utility.

Space, time, and much of the public external knowledge that
can be utilized (e.g., POI categories) have intrinsic hierarchical
structures. For example, a POI is located on a street, in a
suburb, and in a city—all levels of a spatial hierarchy. Sim-
ilarly, ‘Italian restaurant’, ‘restaurant’, and ‘food and drink’
are all tags that can be associated with a pizza restaurant.
This solution exploits these hierarchies by structuring the n-
gram space into a hierarchy of combined space-time-category
regions. This has three benefits: a) these regions preserve cor-
relations between the three attributes, which helps to enhance
utility, b) utility also benefits from a smaller domain size, and
c) smaller domain sets ensure that the mechanism remains
scalable for urban-size settings. The mechanism can operate
at different granularities depending on other attributes, which
may be public knowledge, such as the relative popularity of
POIs.

The overall number of perturbations is τ + n− 1, given by
τ − n+ 1 perturbations of overlapping n-grams and 2(n− 1)
supplementary perturbations, which use shorter n-grams and
are necessary to ensure points at the end of trajectories are

covered n times. By assigning each perturbation a fraction of
the overall privacy budget, ϵ′ = ϵ

τ+n−1 , the overall privacy
guarantee is at the user-level and is bounded by ϵ.

C. Extensions
This work can be extended to a more complex and com-

pelling trajectory sharing problem in which multiple services
wish share private data on the same set of users between each
other. This problem is important given that it would allow
services to learn richer patterns about their customers, while
still giving users strong trajectory-level privacy guarantees. For
example, if Anna purchases a phone from a shop and then buys
headphones online, their bank will know the value of both
transactions but not the items purchased, whereas the stores
will know the items purchased at their outlets, but not items
bought elsewhere. By allowing private trajectory sharing, all
three services have the opportunity to learn more about events
they capture (e.g., the bank can learn what item was purchases)
as well as events they do not capture (e.g., each store can learn
information about the other transaction). Many of the main
challenges from Section IV-A apply, with the additional chal-
lenges of preserving correlations between attributes within the
same event, and ensuring that events common to both services
can be preserved in the shared perturbed data. Addressing this
practical problem forms ongoing work.
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