
Tackling Neural Architecture Search
With Quality Diversity Optimization

Lennart Schneider1 Florian Pfisterer1 Paul Kent2 Juergen Branke3 Bernd Bischl1

Janek Thomas1

1
Department of Statistics, LMU Munich, Germany

2
Mathematics of Real World Systems, University of Warwick, UK

3
Warwick Business School, University of Warwick, UK

Abstract Neural architecture search (NAS) has been studied extensively and has grown to become

a research field with substantial impact. While classical single-objective NAS searches

for the architecture with the best performance, multi-objective NAS considers multiple

objectives that should be optimized simultaneously, e.g., minimizing resource usage along

the validation error. Although considerable progress has been made in the field of multi-

objective NAS, we argue that there is some discrepancy between the actual optimization

problem of practical interest and the optimization problem that multi-objective NAS tries

to solve. We resolve this discrepancy by formulating the multi-objective NAS problem

as a quality diversity optimization (QDO) problem and introduce three quality diversity

NAS optimizers (two of them belonging to the group of multifidelity optimizers), which

search for high-performing yet diverse architectures that are optimal for application-specific

niches, e.g., hardware constraints. By comparing these optimizers to their multi-objective

counterparts, we demonstrate that quality diversity NAS in general outperforms multi-

objective NAS with respect to quality of solutions and efficiency. We further show how

applications and future NAS research can thrive on QDO.

1 Introduction

The goal of neural architecture search (NAS) is to automate the manual process of designing

optimal neural network architectures. Traditionally, NAS is formulated as a single-objective

optimization problem with the goal of finding an architecture that has minimal validation error

[13, 35, 45, 47, 46, 63]. Considerations for additional objectives such as efficiency have led to the

formulation of constraint NAS methods that enforce efficiency thresholds [1] as well as multi-

objective NAS methods [10, 12, 37, 53, 36] that yield a Pareto optimal set of architectures. However,

Figure 1: Optimizing neural network architectures for a discrete set of devices. We are interested in

the best solution (green) within the constraints of the respective device (dashed vertical

lines). Multi-objective optimization, in contrast, approximates the full Pareto front (black).

AutoML Conference 2022 © 2022 the authors, released under CC BY 4.0

mailto:lennart.schneider@stat.uni-muenchen.de
mailto:florian.pfisterer@stat.uni-muenchen.de
mailto:paul.kent@warwick.ac.uk
mailto:juergen.branke@wbs.ac.uk
mailto:bernd.bischl@stat.uni-muenchen.de
mailto:janek.thomas@stat.uni-muenchen.de
https://creativecommons.org/licenses/by/4.0/

in most practical applications, we are not interested in the complete Pareto optimal set. Instead,

we would like to obtain solutions for a discrete set of scenarios (e.g., end-user devices), which we

henceforth refer to as niches in this paper. This is illustrated in Figure 1. A concrete example is

finding neural architectures for microcontrollers [32] and other edge devices [38], e.g., in `NAS

[32] architectures for “mid-tier” IoT devices are searched. To evaluate the benefits for larger devices,

the search would need to be restarted with adapted constraints, thus wasting computational

resources. Formulating the search as a multi-objective problem would also waste resources; once

an architecture satisfies the constraints of a device, we are not interested in additional trade-offs,

and we select only based on the validation error.

We therefore argue that the multi-objective NAS problem can and usually should be formu-

lated as a quality diversity optimization (QDO) problem, which directly corresponds to the actual

optimization problem of interest. The main contributions of this paper are: We (1) formulate

multi-objective NAS as a QDO problem; (2) show how to adapt black-box optimization algorithms

for the QDO setting; (3) modify existing QDO algorithms for the NAS setting; (4) propose novel

multifidelity QDO algorithms for NAS; and (5) illustrate that our approach can be used to extend a

broad range of NAS methods from conventional to Once-for-All methods.

2 Theoretical Background and Related Work

Let A denote a search space of architectures and Λ the search space of additional hyperparameters

controlling the training of an architecture𝐴. Furthermore, let 𝑓err : A×Λ→ R denote the validation

error obtained after training an architecture 𝐴 ∈ A with a set of hyperparameters _ ∈ Λ for a

given number of epochs (_epoch ∈ _). Typically, we consider _ ∈ Λ to be fixed, except for _epoch in

multifidelity methods, and we therefore omit _ in the following. The goal of single-objective NAS

is to find the architecture with the lowest validation error, 𝐴∗ B argmin𝐴∈A 𝑓err(𝐴).
NAS methods can be categorized along three dimensions: search space, search strategy, and

performance estimation strategy [13]. For chain-structured neural networks (simply a connected

sequence of layers), cell-based search spaces have gained popularity [46, 45]. In cell-based search

spaces, different kinds of cells – typically, a normal cell preserving dimensionality of the input

and a reduction cell reducing spatial dimension – are stacked in a predefined arrangement to form

a final architecture. Regarding search strategy, popular methods utilize Bayesian optimization

(BO) [3, 8, 39, 24, 57], evolutionary methods [41, 34, 47, 46, 12], reinforcement learning [63, 64],

or gradient-based algorithms [35, 45]. For performance estimation, popular approaches leverage

lower fidelity estimates [31, 14, 64] or make use of learning curve extrapolation [8, 27].

Multi-Objective Neural Architecture Search Contrary to the single-objective NAS formulation,

multi-objective NAS does not solely aim for minimizing the validation error but simultaneously

optimizes multiple objectives. These objectives typically take resource consumption – such as

memory requirements, energy usage or latency – into account [10, 12, 37, 53, 36]. Denote by

𝑓1, . . . , 𝑓𝑘 the 𝑘 ≥ 2 objectives of interest, where typically 𝑓1 = 𝑓err and denote by f (𝐴) the vector
of objective function values obtained for architecture 𝐴 ∈ A, f (𝐴) = (𝑓1(𝐴), . . . , 𝑓𝑘 (𝐴)) ′. The
optimization problem of multi-objective NAS is then formulated as min𝐴∈A f (𝐴). There is no

architecture that minimizes all objectives at the same time since these are typically in competition

with each other. Rather, there are multiple Pareto optimal architectures reflecting different trade-offs

in objectives approximating the true (unknown) Pareto front. An architecture 𝐴 is said to dominate

another architecture 𝐴′ iff ∀𝑖 ∈ {1, . . . , 𝑘} : 𝑓𝑖 (𝐴) ≤ 𝑓𝑖 (𝐴′) ∧ ∃ 𝑗 ∈ {1, . . . , 𝑘} : 𝑓𝑗 (𝐴) < 𝑓𝑗 (𝐴′).
Constrained and Hardware-Aware Neural Architecture Search In contrast, Constrained NAS

[62, 15, 55] solves the problem of finding an architecture that optimizes one objective (e.g., validation

error) with constraints on secondary objectives (e.g., model size). Constraints can be naturally given

by the target hardware that a model should be deployed on. Hardware-Aware NAS in turn searches

for an architecture that trades off primary objectives [60] against secondary, hardware-specific

2

metrics. In Once-for-All [5], a large supernet is trained which can be efficiently searched for subnets

that, e.g., meet latency constraints of target devices. For a recent survey, we refer to [1].

Quality Diversity Optimization The goal of a QDO algorithm is to find a set of high-performing,

yet behaviorally diverse, solutions. Similarly to multi-objective optimization, there is no single best

solution. However, whereas multi-objective optimization aims for the simultaneous minimization of

multiple objectives, QDO minimizes a single-objective function with respect to diversity defined on

one or more feature functions. A feature function measures a quality of interest and a combination

of feature values points to a niche, i.e., a region in feature space. QDO could be considered a set
of constrained optimisation problems over the same input domain where the niche boundaries

are constraints in feature space. The key difference is that constrained optimisation seeks a

single optimal configuration given some constraints, while QDO attempts to identify the optimal

configuration for each of a set of constrained regions simultaneously. In this sense, QDO could

be framed as a so-called multi-task optimization problem [43] where each task is to find the best

solution belonging to a particular niche.

QDO algorithms maintain an archive of niche-optimal observations, i.e., a best-performing

observed solution for each niche. Observations with similar feature values compete to be selected

for the archive, and the solution set gradually improves during the optimization process. Once

the optimization budget has been spent, QDO algorithms typically return this archive as their

solution. QDO is motivated by applications where a group of diverse solutions is beneficial, such as

the training of robot movement where a repertoire of behaviours must be learned [7], developing

game playing agents with diverse strategies [44], and in automatic design where QDO can be used

by human designers to search a large dimensional search space for diverse solutions before the

optimization is finished by hand. Work on automatic design tasks have been varied and include

air-foil design [18], computer game level design [16], and architectural design [9]. Recently, QDO

algorithms were used for illuminating the interpretability and resource usage of machine learning

models while minimizing their generalization error [52].

In the earliest examples, Novelty Search (NS; [29]) asks whether diversity alone can produce

a good set of solutions. Despite not actively pursuing objective performance, NS performed

surprisingly well in some settings and was followed by Novelty Search with Local Competition

[30], the first true quality diversity (QD) algorithm. MAP-Elites [42], a standard evolutionary QDO

algorithm, partitions the feature space a-priori into niches and attempts to identify the optimal

solution in each of these niches. QDO has seen much work in recent years and a variant based on

BO, BOP-Elites, was proposed recently [25]. BOP-Elites models the objective and feature functions

with surrogate models and implements an acquisition function over a structured archive to achieve

high sample efficiency even in the case of black-box features.

3 Formulating Neural Architecture Search as a Quality Diversity Optimization Problem

In the example in Figure 1, a quality diversity NAS (subsequently abbreviated as qdNAS) problem is

given by the validation error and three behavioral niches (corresponding to different devices) that

are defined via resource usage measured by a single feature function. Let 𝑓1 : A→ R, 𝐴 ↦→ 𝑓1(𝐴)
denote the objective function of interest (in our context, 𝑓err). Denote by 𝑓𝑖 : A → R, 𝐴 ↦→
𝑓𝑖 (𝐴), 𝑖 ∈ {2, . . . , 𝑘}, 𝑘 ≥ 2 the feature function(s) of interest (e.g., memory usage). Behavioral

niches 𝑁 𝑗 ⊆ A, 𝑗 ∈ {1, . . . , 𝑐}, 𝑐 ≥ 1 are sets of architectures characterized via niche-specific

boundaries b𝑖 𝑗 =
[
𝑙𝑖 𝑗 , 𝑢𝑖 𝑗

)
⊆ R on the images of the feature functions. An architecture 𝐴 belongs to

niche 𝑁 𝑗 if its values with respect to the feature functions lie between the respective boundaries,

i.e.:

𝐴 ∈ 𝑁 𝑗 ⇐⇒ ∀𝑖 ∈ {2, . . . , 𝑘} : 𝑓𝑖 (𝐴) ∈ b𝑖 𝑗 .

3

The goal of a QDO algorithm is then to find for each behavioral niche 𝑁 𝑗 the architecture that

minimizes the objective function 𝑓1:

𝐴∗𝑗 B argmin

𝐴∈𝑁 𝑗

𝑓1(𝐴) .

In other words, the goal is to obtain a set of architectures S B
{
𝐴∗
1
, . . . , 𝐴∗𝑐

}
that are diverse with

respect to the feature functions and yet high-performing.

A Remark about Niches In the classical QDO literature, niches are typically constructed to be

pairwise disjoint, i.e., a configuration can only belong to a single niche (or none) [42, 25]. However,

depending on the concrete application, relaxing this constraint and allowing for overlap can be

beneficial. For example, in our context, an architecture that fits on a mid-tier device should also be

considered for deployment on a higher-tier device, i.e., in Figure 1, the boundaries indicated by

vertical dashed lines resemble the respective upper bound of a niche whereas the lower bound is

unconstrained. This results in niches being nested within each other, i.e., 𝑁1 ⊊ 𝑁2 ⊊ . . . ⊊ 𝑁𝑐 ⊆ A,

with 𝑁1 being the most restrictive niche, followed by 𝑁2. In Supplement A, we further discuss

different ways of constructing niches in the context of NAS.

3.1 Quality Diversity Optimizers for Neural Architecture Search
As themajority of NAS optimizers are iterative, we first demonstrate how any iterative optimizer can

in principle be turned into a QD optimizer. Based on this correspondence, we introduce three novel

QD optimizers for NAS: BOP-Elites*, qdHB and BOP-ElitesHB. Let 𝑓1 : A→ R, 𝐴 ↦→ 𝑓1(𝑥) denote
the objective function that should be minimized. In each iteration, an iterative optimizer proposes

a new configuration (e.g., architecture) for evaluation, evaluates this configuration, potentially

updates the incumbent (best configuration evaluated so far) if better performance has been observed,

and updates its archive. For generic pseudo code, see Supplement B.

Moving to a QDO problem, there are now feature functions 𝑓𝑖 : A → R, 𝐴 ↦→ 𝑓𝑖 (𝐴), 𝑖 ∈
{2, . . . , 𝑘}, 𝑘 ≥ 2, and niches 𝑁 𝑗 , 𝑗 ∈ {1, . . . , 𝑐}, 𝑐 ≥ 1, defined via their niche-specific bound-

aries b𝑖 𝑗 =
[
𝑙𝑖 𝑗 , 𝑢𝑖 𝑗

)
⊆ R on the images of the feature functions. Any iterative single-objective

optimizer must then keep track of the best incumbent per niche (often referred to as an elite in
the QDO literature) and essentially becomes a QD optimizer (see Algorithm 1). The challenge

Algorithm 1: Generic pseudo code for an iterative quality diversity optimizer.

Input : 𝑓1, 𝑓𝑖 , 𝑖 ∈ {2, . . . , 𝑘}, 𝑘 ≥ 2, 𝑁 𝑗 , 𝑗 ∈ {1, . . . , 𝑐}, 𝑐 ≥ 1, Ddesign, 𝑛total
Result :𝑆 = {𝐴∗

1
, . . . , 𝐴∗𝑐 }

1 D← Ddesign

2 for 𝑗 ← 1 to 𝑐 do
3 𝐴∗𝑗 ← argmin𝐴∈D|𝑁𝑗

𝑓1(𝐴) # initial incumbent of niche 𝑁 𝑗 based on archive

4 end
5 for 𝑛 ← 1 to 𝑛total do
6 Propose a new candidate 𝐴★

subroutine

7 Evaluate 𝑦 ← 𝑓1(𝐴★),∀𝑖 ∈ {2, . . . , 𝑘} : 𝑧𝑖 ← 𝑓𝑖 (𝐴★)
8 if 𝐴★ ∈ 𝑁 𝑗 ∧ 𝑦 < 𝑓1(𝐴∗𝑗) then
9 𝐴∗𝑗 ← 𝐴★

update incumbent of niche 𝑁 𝑗

10 end
11 D← D ∪

{(
𝐴★, 𝑦, 𝑧2, . . . , 𝑧𝑘

)}
12 end

in designing an efficient and well-performing QD optimizer now mostly lies in proposing a new

candidate for evaluation that considers improvement over all niches.

4

Bayesian Optimization A recently proposed model-based QD optimizer, BOP-Elites [25], ex-

tends BO [54, 17] to QDO. BOP-Elites relies on Gaussian process surrogate models for the objective

function and all feature functions. New candidates for evaluation are selected by a novel acqui-

sition function – the expected joint improvement of elites (EJIE), which measures the expected

improvement to the ensemble problem of identifying the best solution in every niche:

𝛼EJIE(𝐴) B
𝑐∑︁
𝑗=1

P (𝐴 ∈ 𝑁 𝑗 |D)E𝑦

[
I |𝑁 𝑗
(𝐴)

]
. (1)

Here, P (𝐴 ∈ 𝑁 𝑗 |D) is the posterior probability of 𝐴 belonging to niche 𝑁 𝑗 , and E𝑦

[
I |𝑁 𝑗
(𝐴)

]
is the

expected improvement (EI; [23]) with respect to niche 𝑁 𝑗 :

E𝑦

[
I |𝑁 𝑗
(𝐴)

]
= E𝑦

[
max

(
𝑓minN

j

− 𝑦, 0
)]

,

where 𝑓min𝑁𝑗
is the best observed objective function value in niche 𝑁 𝑗 so far, and 𝑦 is the surrogate

model prediction for 𝐴. A new candidate is then proposed by maximizing the EJIE, i.e., Line 6 in

Algorithm 1 looks like the following: 𝐴★← argmax𝐴∈A 𝛼EJIE(𝐴).
BOP-Elites* In order to adapt BOP-Elites for NAS, we introduce several modifications. First, we

employ truncated (one-hot) path encoding [56, 57]. In path encoding, architectures are transformed

into a set of binary features indicating presence for each path of the directed acyclic graph from the

input to the output. By then truncating the least-likely paths, the encoding scales linearly in the

size of the cell [57] allowing for an efficient representation of architectures. Second, we substitute

the Gaussian process surrogate models used in BOP-Elites with random forests [4] allowing us

to model non-continuous hyperparameter spaces. Random forests have been successfully used as

surrogates in BO [21, 33], often performing on a par with ensembles of neural networks [57] in the

context of NAS [51, 59]. Third, we introduce a local mutation scheme similarly to the one used

by the BANANAS algorithm [57] for optimizing the infill criterion EJIE: Since our aim is to find

high quality solutions across all niches, we maintain an archive of the incumbent architecture in

each niche and perform local mutations on each incumbent. We refer to our adjusted version as

BOP-Elites* in the remainder of the paper to emphasize the difference from the original algorithm.

For the initial design, we sample architectures based on adjacency matrix encoding [56].

Multifidelity Optimizers For NAS, performance estimation is the computationally most ex-

pensive component [13], and almost all NAS optimizers can be made more efficient by allowing

access to cheaper, lower fidelity estimates [13, 31, 14, 64]. By evaluating most architectures at lower

fidelity and only promoting promising architectures to higher fidelity, many more architectures

can be explored given the same total computational budget. The fidelity parameter is typically the

number of epochs over which an architecture is trained.

qdHB One of the most prominent multifidelity optimizers is Hyperband (HB; [31]), a multi-

armed bandit strategy that uses repeated Successive Halving (SH; [22]) as a subroutine to identify

the best configuration (e.g., architecture) among a set of randomly sampled ones. Given an initial

and maximum fidelity, a scaling parameter [, and a set of configurations of size 𝑛, SH evaluates all

configurations on the initial smallest fidelity, then sorts the configurations by performance and only

keeps the best 1/[configurations. These configurations are then trained with fidelity increased by a

factor of [. This process is repeated until the maximum fidelity for a single configuration is reached.

HB repeatedly runs SH with different sized sets of initial configurations called brackets. Only

two inputs are required: 𝑅, the maximum fidelity and [, the scaling parameter that controls the

proportion of configurations discarded in each round of SH. Based on these inputs, the number 𝑠max

and size 𝑛𝑖 of different brackets is determined. To adapt HB to the QD setting, we must track the

incumbent architecture in each niche and promote configurations based on their performancewithin

the respective niche (see Supplement B): To achieve this, we choose the top ⌊𝑛𝑖/[⌋ configurations

5

to be promoted uniformly over the 𝑐 niches (done in the topk_qdo function), i.e., we iteratively select
one of the niches uniformly at random and choose the best configuration observed so far that

has yet not been selected for promotion until ⌊𝑛𝑖/[⌋ configurations have been selected. Note that

during this procedure, it may happen that not enough configurations belonging to a specific niche

have been observed yet. In this case, we choose any configuration uniformly at random over the

set of all configurations that have yet to be promoted. With those modifications, we propose qdHB,

as a multifidelity QD optimizer.

BOP-ElitesHB While HB typically shows strong anytime performance [31], it only samples

configurations at random and is typically outperformed by BO methods with respect to final

performance if optimizer runtime is sufficiently large [14]. BOHB [14] combines the strengths of

HB and BO in a single optimizer, resulting in strong anytime performance and fast convergence.

This approach employs a fidelity schedule similar to HB to determine how many configurations to

evaluate at which fidelity but replaces the random selection of configurations in each HB iteration

by a model-based proposal. In BOHB, a Tree Parzen Estimator [2] is used to model densities

𝑙 (𝐴) = 𝑝 (𝑦 < 𝛼 |𝐴,D) and 𝑔(𝐴) = 𝑝 (𝑦 > 𝛼 |𝐴,D), and candidates are proposed that maximize the

ratio 𝑙 (𝐴)/𝑔(𝐴), which is equivalent to maximizing EI [2]. Based on BOP-Elites* and qdHB, we

can now derive the QD Bayesian optimization Hyperband optimizer (BOP-ElitesHB): Instead of

selecting configurations at random at the beginning of each qdHB iteration, we propose candidates

that maximize the EJIE criterion. This sampling procedure is described in Supplement B.

4 Main Benchmark Experiments and Results

We are interested in answering the following research questions: (RQ1) Does qdNAS outperform
multi-objective NAS if the optimization goal is to find high-performing architectures in pre-defined
niches? (RQ2) Do multifidelity qdNAS optimizers improve over full-fidelity qdNAS optimizers? To

answer these questions, we benchmark our three qdNAS optimizers – BOP-Elites*, qdHB, and

BOP-ElitesHB– on the well-known NAS-Bench-101 [61] and NAS-Bench-201 [11] and compare

them to three multi-objective optimizers adapted for NAS: ParEGO*, moHB*, and ParEGOHB as

well as a simple Random Search
1
.

Experimental Setup It is important to compare optimizers using analogous implementation

details. We therefore use truncated path encoding and random forest surrogates throughout our

experiments for all model-based optimizers. Furthermore, we use local mutations as described

in [57] in order to optimize acquisition functions in BOP-Elites*, BOP-ElitesHB, ParEGO*, and

ParEGOHB. To control for differences in implementation, we re-implement all optimizers and take

great care in matching the original implementations.

We provide full details regarding implementation in Supplement B and only briefly introduce

conceptual differences: ParEGO* is a multi-objective optimizer based on ParEGO [28] and only

deviates from BOP-Elites* in that it considers a differently scalarized objective in each iteration,

which is optimized using local mutations similar to the acquisition function optimization of BOP-

Elites*. moHB* is an extension of HB to the multi-objective setting (promoting configurations based

on non-dominated sorting with hypervolume contribution for tie breaking, for similar approaches

see, e.g., [48, 49, 50, 19]). ParEGOHB is a model-based extension of moHB* that relies on the

ParEGO scalarization [28] and on the same acquisition function optimization as ParEGO*.

All optimizers were evaluated on NAS-Bench-101 (Cifar-10, validation error as the first objective

and the number of trainable parameters as the feature function/second objective) and NAS-Bench-

201 (Cifar-10, Cifar-100, ImageNet16-120, validation error as the first objective and latency as the

feature function/second objective). For multifidelity, we train architectures for 4, 12, 36, 108 epochs

on NAS-Bench-101 and for 2, 7, 22, 67, 200 epochs on NAS-Bench-201 (reflecting [= 3 in the HB

variants). As the optimization budget, we consider 200 full architecture evaluations (resulting in

1
using adjacency matrix encoding [56]

6

a total budget of 21600 epochs for NAS-Bench-101 and 40000 epochs for NAS-Bench-201). For

each of these four settings, we construct three different scenarios by considering different niches

of interest with respect to the feature function, resulting in a total of 12 benchmark problems.

In the small/medium/large settings, two, five and ten niches are considered, respectively. Niches

are constructed to be overlapping, and boundaries are defined based on percentiles of the feature

function. For the small setting, the boundary is given by the 50% percentile (𝑞50%), effectively

resulting in two niches with boundaries [0, 𝑞50%) and [0,∞). For the medium and large settings,
percentiles indicating progressively larger niches were used, ranging from: 1% to 30% and 70%

respectively. More details on the niches can be found in Supplement C. All runs were replicated

100 times.

Results As an anytime performance measure, we are interested in the validation error obtained

for each niche, which we aggregate in a single performance measure as

∑𝑐
𝑗=1 𝑓err(𝐴∗𝑗), i.e., we

consider the sum of validation errors over the best-performing architecture per niche. If a niche

is empty, we assign a validation error of 100 as a penalty (this is common practice in QDO, i.e.,

if no solution has been found for a niche, this niche is assigned the worst possible objective

function value [25]). For the final performance, we also consider the analogous test error. Figure 2

shows the anytime performance of optimizers. We observe that model-based optimizers (BOP-

Elites* and ParEGO*) in general strongly outperform Random Search, and BO HB optimizers

(BOP-ElitesHB and ParEGOHB) generally outperform their full-fidelity counterparts, although this

effect diminishes with increasing optimization budget. In general, HB variants that do not rely

on a surrogate model (qdHB and moHB*) show poor performance compared to the model-based

optimizers. Moreover, especially in the small number of niches setting, QD strongly outperforms

multi-objective optimization. Mean ranks of optimizers with respect to final validation and test

performance are given in Table 1. For completeness, we also report critical differences plots of

these ranks in Supplement C.

We also conducted two four-way ANOVAs on the average performance after half and all of

the optimization budget is used, with the factors problem (benchmark problem), multifidelity

(whether an optimizer uses multifidelity), QDO (whether an optimizer is a QD optimizer) and

model-based (whether the optimizer relies on a surrogate model)
2
. For half the budget used,

results indicate significant main effects of the factors multifidelity (𝐹 (1) = 19.13, 𝑝 = 0.0001), QDO

(𝐹 (1) = 11.08, 𝑝 = 0.0017) andmodel-based (𝐹 (1) = 21.13, 𝑝 < 0.0001). For all of the budget used, the

significance of multifidelity diminishes, whereas the main effects of QDO (𝐹 (1) = 18.31, 𝑝 = 0.0001)

and model-based (𝐹 (43.44), 𝑝 < 0.0001) are still significant. We can conclude that QDO in general

outperforms competitors when the goal is to find high-performing architectures in pre-defined

niches. Multi-fidelity optimizers improve over full-fidelity optimizers but this effect diminishes

with increasing budget. Detailed results are reported in Supplement C.

Regarding efficiency, we analyzed the expected running time (ERT) of the QD optimizers given

the average performance of the respective multi-objective optimizers after half of the optimization

budget: For each benchmark problem, we computed the mean validation performance of each

multi-objective optimizer after having spent half of its optimization budget and investigated the

ERT of the analogous
3
QD optimizer. For each benchmark problem, we then computed the ratio of

ERTs between multi-objective and QD optimizers and averaged them over the benchmark problems.

For BOP-ElitesHB, we observe an average ERT ratio of 2.41, i.e., in expectation, BOP-ElitesHB is a

factor of 2.41 faster than ParEGOHB in reaching the average performance of ParEGOHB (after half

the optimization budget). For qdHB and BOP-Elites*, the average ERT ratios are 1.14 and 1.44. We

conclude that all QD optimizers are more efficient than their multi-objective counterparts. More

details can be found in Supplement C.

2
For this analysis, we excluded qdHB and moHB* due to their lackluster performance.

3
BOP-ElitesHB for ParEGOHB, qdHB for moHB*, and BOP-Elites* for ParEGO*

7

Figure 2: Anytime performance of optimizers. Ribbons represent standard errors over 100 replications.

x-axis starts after 10 full-fidelity evaluations.

Table 1: Ranks of optimizers with respect to final performance, averaged over benchmark problems.

Mean Rank (SE) BOP-ElitesHB qdHB BOP-Elites* ParEGOHB moHB* ParEGO* Random

Validation 2.08 (0.29) 5.92 (0.26) 1.83 (0.21) 4.25 (0.48) 6.42 (0.15) 2.58 (0.31) 4.92 (0.34)

Test 1.42 (0.19) 5.00 (0.17) 2.08 (0.23) 4.33 (0.50) 6.50 (0.19) 3.25 (0.35) 5.42 (0.42)

5 Additional Experiments and Applications

In this section, we illustrate how qdNAS can be used beyond the scenarios investigated so far and

present results of additional experiments ranging from a comparison of qdNAS to multi-objective

NAS on the MobileNetV3 search space to an example on how to incorporate QDO in existing

frameworks such as Once-for-All [5] or how to use qdNAS for model compression.

Benchmarks on the MobileNetV3 Search Space We further investigated how qdNAS compares

to multi-objective NAS on a search space that is frequently used in practice [20]. We consider

CNNs divided into a sequence of units with feature map size gradually being reduced and channel

numbers being increased. Each unit consists of a sequence of layers where only the first layer has

stride 2 if the feature map size decreases and all other layers in the units have stride 1. Units can use

an arbitrary number of layers (elastic depth chosen from {2, 3, 4}) and for each layer, an arbitrary

number of channels (elastic width chosen from {3, 4, 6}) and kernel sizes (elastic kernel size chosen

from {3, 5, 7}) can be used. Additionally, the input image size can be varied (elastic resolution

ranging from 128 to 224 with a stride 4). For more details on the search space, see [5]. To allow for

reasonable runtimes we use accuracy predictors (based on architectures trained and evaluated on

ImageNet as described in [5]) and resource usage look-up tables of the Once-for-All library [5, 6]

and construct a surrogate benchmark. As an objective function we select the validation error and as

a feature function/second objective the latency (in ms) when deployed on a Samsung Note 10 (batch

size of 1), or the number of flops (M) used by the model. So far, we have only investigated qdNAS in

the context of 𝑘 = 2, i.e., considering one objective and one feature function. Here, we additionally

consider a setting of 𝑘 = 3, by incorporating both latency and the size of the model (in MB) as

feature functions/second and third objective. We compare BOP-Elites* to ParEGO* and a Random

8

Search due to the accuracy predictors not supporting evaluations at multiple fidelities. We again

construct three scenarios by considering different niches of interest with respect to the feature

functions taking inspiration from latency and flops constraints as used in [5] (details are given

in Table 4 in Supplement C). Optimizers are given a total budget of 100 architecture evaluations.

Figure 3 shows the anytime performance of optimizers with respect to the validation error summed

over niches (averaged over 100 replications). BOP-Elites* strongly outperforms the competitors on

all benchmark problems. More details are provided in Supplement D.

Figure 3: MobileNetV3 search space. Anytime performance of optimizers. Ribbons represent standard

errors over 100 replications. x-axis starts after 10 evaluations.

Making Once-for-All Even More Efficient In Once-for-All [5], an already trained supernet

is searched via regularized evolution [46] for a well performing subnet that meets hardware

requirements of a target device relying on an accuracy predictor and resource usage look-up tables.

This is sensible if only a single solution is required, however, if various subnets meeting different

constraints on the same device are desired, repeated regularized evolution is not efficient. Moreover,

look-up tables do not generalize to new target devices in which case using as few as possible

architecture evaluations suddenly becomes relevant again. We notice that the search for multiple

architectures within Once-for-All can again be formulated as a QDO problem and therefore compare

MAP-Elites [42] to regularized evolution when performing a joint search for architectures meeting

different latency constraints on a Samsung Note 10. Results are given in Table 2 with MAP-Elites

consistently outperforming regularized evolution, making this novel variant of Once-for-All even

more efficient. More details are provided in Supplement E.

Table 2: MAP-Elites vs. regularized evolution within Once-for-All.

Method Best Validation Error for Different Latency Constraints
[0, 15) [0, 18) [0, 21) [0, 24) [0, 27) [0, 30) [0, 33)

Reg. Evo. 21.57 (0.01) 20.34 (0.02) 19.29 (0.01) 18.48 (0.02) 17.81 (0.02) 17.40 (0.02) 17.06 (0.02)

MAP-Elites 21.60 (0.01) 20.28 (0.01) 19.21 (0.01) 18.39 (0.01) 17.70 (0.01) 17.25 (0.01) 16.90 (0.01)
Average over 100 replications based on the accuracy predictor of Once-for-All [5, 6]. Standard errors in parentheses. Reg. Evo. = regularized evolution.

Applying qdNAS to Model Compression We are interested in deploying a MobileNetV2 across
different devices that are mainly constrained by memory. For each device, we can therefore only

consider models up to a fixed amount of parameters, similarly as depicted in Figure 1. Given that we

have a pretrained model that achieves high performance, we want to compress this model exploiting

redundancies in model parameters. In our application, we use the Stanford Dogs dataset [26] and

9

rely on the neural network intelligence (NNI; [40]) toolkit for model compression. Pruning consists

of several (iterative) steps as well as re-training of the pruned architectures. Choices for the pruner

itself, pruner hyperparameters, and hyperparameters controlling retraining are available and must

be carefully selected to obtain optimal models (see Supplement F). We consider the number of model

parameters as a proxy measure for memory requirement, yielding three overlapping niches for

different devices. The pre-trained MobileNetV2 achieves a validation error of 20.25% using around

2.34 million model parameters. We define niches with boundaries corresponding to compression

rates (number of parameters after pruning) of 40% to 50%, 40% to 60%, and 40% to 70%. As the

QD optimizer, we use BOP-ElitesHB and specify the number of fine-tuning epochs a pruner can

use as a fidelity parameter, since fine-tuning after pruning is costly but also strongly influences

final performance. After evaluating only 69 configurations (a single BOP-ElitesHB run with [= 3),

we obtain high-performing pruner configurations for each niche, resulting in the performance vs.

memory requirement (number of parameters) trade-offs shown in Table 3.

Table 3: Results of using BOP-ElitesHB for model compression of MobileNetV2 on Stanford Dogs.

Niche Validation Error # Params (in millions; rounded) % (# ParamsBaseline)

Niche 1 [0.94, 1.17) 31.20% 1.13 48.10%

Niche 2 [0.94, 1.41) 29.07% 1.29 54.99%

Niche 3 [0.94, 1.64) 27.76% 1.62 68.97%

Baseline 20.25% 2.34 100.00%

6 Conclusion

We demonstrated how multi-objective NAS can be formulated as a QDO problem that, contrary

to multi-objective NAS, directly corresponds to the actual optimization problem of interest, i.e.,

finding high-performing architectures in different niches. We have shown how any iterative black

box optimization algorithm can be adapted to the QDO setting and proposed three QDO algorithms

for NAS, with two of which making use of multifidelity evaluations. In benchmark experiments,

we have shown that qdNAS outperforms multi-objective NAS while simultaneously being more

efficient. We furthermore illustrated how qdNAS can be used for model compression and how

future NAS research can thrive on QDO. QDO is orthogonal to the NAS strategy of an algorithm

and can be similarly used to extend, e.g., one-shot NAS methods.

Limitations The framework we describe relies on pre-defined niches, e.g., memory requirements

of different devices. If niches are mis-specified or cannot be specified a priori, multi-objective

NAS may outperform qdNAS. However, an initial study (see Supplement H) how qdNAS performs

in a true multi-objective setting, which would correspond to unknown niches, shows little to no

performance degradation depending on the choice of niches. Moreover, we only investigated the

performance of qdNAS in the deterministic setting. Additionally, our multifidelity optimizers

require niche membership to be unaffected by the multifidelity parameter. Finally, we mainly

focused on model-based NAS algorithms that we have extended to the QDO setting.

Broader Impact Our work extends previous research on NAS and therefore inherits its implica-

tions on society and individuals such as potential discrimination in resulting models. Moreover,

evaluating a large number of architectures is computationally costly and can introduce serious

environmental issues. We have shown that qdNAS allows for finding better solutions, while simul-

taneously being more efficient than multi-objective NAS. As performance estimation is extremely

costly in NAS, we believe that this is an important contribution towards reducing resource usage

and the CO2 footprint of NAS.

10

7 Reproducibility Checklist

1. For all authors. . .

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] See Section 6.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] See Section 6.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to them?

[Yes]

2. If you are including theoretical results. . .

(a) Did you state the full set of assumptions of all theoretical results? [N/A]

(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments. . .

(a) Did you include the code, data, and instructions needed to reproduce the main experimental

results, including all requirements (e.g., requirements.txtwith explicit version), an instruc-
tive README with installation, and execution commands (either in the supplemental material

or as a url)? [Yes] The full code for experiments, application, figures and tables can be

obtained from the following GitHub repository: https://github.com/slds-lmu/qdo_nas.

(b) Did you include the raw results of running the given instructions on the given code and

data? [Yes] Raw results are provided via the same GitHub repository.

(c) Did you include scripts and commands that can be used to generate the figures and tables

in your paper based on the raw results of the code, data, and instructions given? [Yes]

Scripts to generate figures and tables based on raw results are provided via the same GitHub

repository.

(d) Did you ensure sufficient code quality such that your code can be safely executed and the

code is properly documented? [Yes]

(e) Did you specify all the training details (e.g., data splits, pre-processing, search spaces, fixed

hyperparameter settings, and how they were chosen)? [Yes] For our benchmark experiments

we used NAS-Bench-101 and NAS-Bench-201. Regarding the Additional Experiments

and Applications section, all details are reported in Supplement D, Supplement E and

Supplement F.

(f) Did you ensure that you compared different methods (including your own) exactly on

the same benchmarks, including the same datasets, search space, code for training and

hyperparameters for that code? [Yes] As described in Section 4.

(g) Did you run ablation studies to assess the impact of different components of your approach?

[Yes] See Supplement C, Supplement G and Supplement H.

(h) Did you use the same evaluation protocol for the methods being compared? [Yes] As

described in Section 4.

(i) Did you compare performance over time? [Yes] Anytime performance was assessed with

respect to the number of epochs as described in Section 4 or the number of architecture

evaluations as described in Section 5.

11

https://github.com/slds-lmu/qdo_nas

(j) Did you perform multiple runs of your experiments and report random seeds? [Yes] All

runs of main benchmark experiments were replicated 100 times. Random seeds can be

obtained via https://github.com/slds-lmu/qdo_nas.

(k) Did you report error bars (e.g., with respect to the random seed after running experiments

multiple times)? [Yes] All results include error bars accompanying mean estimates.

(l) Did you use tabular or surrogate benchmarks for in-depth evaluations? [Yes] We used the

tabular NAS-Bench-101 and NAS-Bench-201 benchmarks.

(m) Did you include the total amount of compute and the type of resources used (e.g., type of

gpus, internal cluster, or cloud provider)? [Yes] As described in Supplement I.

(n) Did you report how you tuned hyperparameters, and what time and resources this required

(if they were not automatically tuned by your AutoML method, e.g. in a nas approach; and

also hyperparameters of your own method)? [N/A] No tuning of hyperparameters was

performed.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets. . .

(a) If your work uses existing assets, did you cite the creators? [Yes] NAS-Bench-101, NAS-

Bench-201, Naszilla, the Once-for-All library, NNI, and the Stanford Dogs dataset are cited

appropriately.

(b) Did you mention the license of the assets? [Yes] Done in Supplement I.

(c) Did you include any new assets either in the supplemental material or as a url? [Yes] We

provide all our code via https://github.com/slds-lmu/qdo_nas.

(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A] All assets used are either released under the Apache-2.0 License or

MIT License.

(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects. . .

(a) Did you include the full text of instructions given to participants and screenshots, if appli-

cable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review Board

(irb) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount spent

on participant compensation? [N/A]

Acknowledgements. The authors of this work take full responsibilities for its content. Lennart

Schneider is supported by the Bavarian Ministry of Economic Affairs, Regional Development and

Energy through the Center for Analytics - Data - Applications (ADACenter) within the framework

of BAYERN DIGITAL II (20-3410-2-9-8). This work was supported by the German Federal Ministry

of Education and Research (BMBF) under Grant No. 01IS18036A. Paul Kent acknowledges support

from EPSRC under grant EP/L015374. This work has been carried out by making use of AI

infrastructure hosted and operated by the Leibniz-Rechenzentrum (LRZ) der Bayerischen Akademie

der Wissenschaften and funded by the German Federal Ministry of Education and Research (BMBF)

under Grant No. 01IS18036A. The authors gratefully acknowledge the computational and data

resources provided by the Leibniz Supercomputing Centre (www.lrz.de).

12

https://github.com/slds-lmu/qdo_nas
https://github.com/slds-lmu/qdo_nas
www.lrz.de

References

[1] H. Benmeziane, K. El Maghraoui, H. Ouarnoughi, S. Niar, M. Wistuba, and N. Wang. Hardware-

aware neural architecture search: Survey and taxonomy. In Z.-H. Zhou, editor, Proceedings of
the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21, pages 4322–4329,
2021.

[2] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms for hyper-parameter optimization.

In Advances in Neural Information Processing Systems, volume 24, 2011.

[3] J. Bergstra, D. Yamins, and D. Cox. Making a science of model search: Hyperparameter

optimization in hundreds of dimensions for vision architectures. In Proceedings of the 30th
International Conference on Machine Learning, pages 115–123, 2013.

[4] L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

[5] H. Cai, C. Gan, T. Wang, Z. Zhang, and S. Han. Once-for-All: Train one network and specialize

it for efficient deployment. In International Conference on Learning Representations, 2020.

[6] H. Cai, C. Gan, T. Wang, Z. Zhang, and S. Han. Once-for-All: Train one network and specialize

it for efficient deployment. https://github.com/mit-han-lab/once-for-all, 2020.

[7] A. Cully and J.-B. Mouret. Evolving a behavioral repertoire for a walking robot. Evolutionary
Computation, 24(1):59–88, 2016.

[8] T. Domhan, J. T. Springenberg, and F. Hutter. Speeding up automatic hyperparameter opti-

mization of deep neural networks by extrapolation of learning curves. In Proceedings of the
24th International Conference on Artificial Intelligence, pages 3460–3468, 2015.

[9] S. Doncieux, N. Bredeche, L. L. Goff, B. Girard, A. Coninx, O. Sigaud, M. Khamassi, N. Díaz-

Rodríguez, D. Filliat, T. Hospedales, A. Eiben, and R. Duro. Dream architecture: A develop-

mental approach to open-ended learning in robotics. arXiv:2005.06223, 2020.

[10] J.-D. Dong, A.-C. Cheng, D.-C. Juan, W. Wei, and M. Sun. Dpp-net: Device-aware progressive

search for pareto-optimal neural architectures. In European Conference on Computer Vision,
2018.

[11] X. Dong and Y. Yang. NAS-Bench-201: Extending the scope of reproducible neural architecture

search. In International Conference on Learning Representations, 2020.

[12] T. Elsken, J. H. Metzen, and F. Hutter. Efficient multi-objective neural architecture search via

Lamarckian evolution. In Proceedings of the International Conference on Learning Representa-
tions, 2019.

[13] T. Elsken, J. H. Metzen, and F. Hutter. Neural architecture search: A survey. Journal of Machine
Learning Research, 20(55):1–21, 2019.

[14] S. Falkner, A. Klein, and F. Hutter. BOHB: Robust and efficient hyperparameter optimization

at scale. In Proceedings of the 35th International Conference on Machine Learning, 2018.

[15] I. Fedorov, R. P. Adams, M. Mattina, and P. Whatmough. Sparse: Sparse architecture search for

CNNs on resource-constrained microcontrollers. Advances in Neural Information Processing
Systems, 32, 2019.

13

https://github.com/mit-han-lab/once-for-all

[16] M. C. Fontaine, R. Liu, J. Togelius, A. K. Hoover, and S. Nikolaidis. Illuminating mario scenes

in the latent space of a generative adversarial network. In AAAI Conference on Artificial
Intelligence, 2021.

[17] P. I. Frazier. A tutorial on Bayesian optimization. arXiv:1807.02811, 2018.

[18] A. Gaier, A. Asteroth, and J.-B. Mouret. Aerodynamic design exploration through surrogate-

assisted illumination. In 18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Con-
ference, 2017.

[19] J. Guerrero-Viu, S. Hauns, S. Izquierdo, G. Miotto, S. Schrodi, A. Biedenkapp, T. Elsken, D. Deng,

M. Lindauer, and F. Hutter. Bag of baselines for multi-objective joint neural architecture search

and hyperparameter optimization. In 8th ICML Workshop on Automated Machine Learning,
2021.

[20] A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang, Y. Zhu, R. Pang,

V. Vasudevan, Q. V. Le, and H. Adam. Searching for MobileNetV3. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 1314–1324, 2019.

[21] F. Hutter, H. H. Hoos, and K. Leyton-Brown. Sequential model-based optimization for general

algorithm configuration. In International Conference on Learning and Intelligent Optimization,
pages 507–523, 2011.

[22] K. Jamieson and A. Talwalkar. Non-stochastic best arm identification and hyperparameter

optimization. In International Conference on Artificial Intelligence and Statistics (AISTATS),
2015.

[23] D. R. Jones, M. Schonlau, and W. J. Welch. Efficient global optimization of expensive black-box

functions. Journal of Global Optimization, 13(4):455–492, 1998.

[24] K. Kandasamy, W. Neiswanger, J. Schneider, B. Poczos, and E. Xing. Neural architecture search

with Bayesian optimisation and optimal transport. In Proceedings of the 32nd International
Conference on Neural Information Processing Systems, 2018.

[25] P. Kent and J. Branke. BOP-Elites, a Bayesian optimisation algorithm for quality-diversity

search. arXiv:2005.04320, 2020.

[26] A. Khosla, N. Jayadevaprakash, B. Yao, and L. Fei-Fei. Novel dataset for fine-grained image

categorization. In FirstWorkshop on Fine-Grained Visual Categorization (FGVC), IEEE Conference
on Computer Vision and Pattern Recognition, 2011.

[27] A. Klein, S. Falkner, J. T. Springenberg, and F. Hutter. Learning curve prediction with Bayesian

neural networks. In International Conference on Learning Representations, 2017.

[28] J. Knowles. ParEGO: A hybrid algorithm with on-line landscape approximation for expen-

sive multiobjective optimization problems. IEEE Transactions on Evolutionary Computation,
10(1):50–66, 2006.

[29] J. Lehman and K. O. Stanley. Abandoning objectives: Evolution through the search for novelty

alone. Evolutionary Computation, 19(2):189–223, 2011.

[30] J. Lehman and K. O. Stanley. Evolving a diversity of virtual creatures through novelty search

and local competition. In Proceedings of the 13th Annual Conference on Genetic and Evolutionary
Computation, pages 211–218, 2011.

14

[31] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar. Hyperband: Bandit-based

configuration evaluation for hyperparameter optimization. In International Conference on
Learning Representations, 2017.

[32] E. Liberis, Ł. Dudziak, and N. D. Lane. `nas: Constrained neural architecture search for

microcontrollers. In Proceedings of the 1st Workshop on Machine Learning and Systems, pages
70–79, 2021.

[33] M. Lindauer, K. Eggensperger, M. Feurer, A. Biedenkapp, D. Deng, C. Benjamins, T. Ruhopf,

R. Sass, and F. Hutter. SMAC3: A versatile Bayesian optimization package for hyperparameter

optimization. Journal of Machine Learning Research, 23(54):1–9, 2022.

[34] H. Liu, K. Simonyan, O. Vinyals, C. Fernando, and K. Kavukcuoglu. Hierarchical represen-

tations for efficient architecture search. In Proceedings of the International Conference on
Learning Representations, 2017.

[35] H. Liu, K. Simonyan, and Y. Yang. DARTS: Differentiable architecture search. In Proceedings
of the International Conference on Learning Representations, 2019.

[36] Z. Lu, K. Deb, E. Goodman, W. Banzhaf, and V. N. Boddeti. NSGANetV2: Evolutionary multi-

objective surrogate-assisted neural architecture search. In A. Vedaldi, H. Bischof, T. Brox, and

J.-M. Frahm, editors, European Conference on Computer Vision, pages 35–51, 2020.

[37] Z. Lu, I. Whalen, V. Boddeti, Y. Dhebar, K. Deb, E. Goodman, and W. Banzhaf. NSGA-Net: A

multi-objective genetic algorithm for neural architecture search. In Proceedings of the Genetic
and Evolutionary Computation Conference, pages 419–427, 2019.

[38] B. Lyu, H. Yuan, L. Lu, and Y. Zhang. Resource-constrained neural architecture search on

edge devices. IEEE Transactions on Network Science and Engineering, 9(1):134–142, 2021.

[39] H. Mendoza, A. Klein, M. Feurer, J. T. Springenberg, and F. Hutter. Towards automatically-

tuned neural networks. In ICML Workshop on Automatic Machine Learning, 2016.

[40] Microsoft. Neural Network Intelligence. https://github.com/microsoft/nni, 2021.

[41] G. F. Miller, P. M. Todd, and S. U. Hegde. Designing neural networks using genetic algorithms.

In Proceedings of the Third International Conference on Genetic Algorithms, pages 379–384,
1989.

[42] J.-B. Mouret and Jeff. Clune. Illuminating search spaces by mapping elites. arXiv:1504.04909,
2015.

[43] M. Pearce and J. Branke. Continuous multi-task Bayesian optimisation with correlation.

European Journal of Operational Research, 270(3):1074–1085, 2018.

[44] D. Perez-Liebana, C. Guerrero-Romero, A. Dockhorn, D. Jeurissen, and L. Xu. Generating

diverse and competitive play-styles for strategy games. In 2021 IEEE Conference on Games
(CoG), pages 1–8, 2021.

[45] H. Pham, M. Guan, B. Zoph, Q. V. Le, and J. Dean. Efficient neural architecture search via

parameter sharing. In Proceedings of the 35th International Conference on Machine Learning,
pages 4095–4104, 2018.

[46] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le. Regularized evolution for image classifier

architecture search. In Proceedings of the AAAI Conference on Artificial Intelligence, pages
4780–4789, 2019.

15

https://github.com/microsoft/nni

[47] E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu, J. Tan, Q. V. Le, and A. Kurakin. Large-

scale evolution of image classifiers. In Proceedings of the 34th International Conference on
Machine Learning, pages 2902–2911, 2017.

[48] D. Salinas, V. Perrone, O. Cruchant, and C. Archambeau. A multi-objective perspective on

jointly tuning hardware and hyperparameters. In 2nd Workshop on Neural Architecture Search
at ICLR 2021, 2021.

[49] R. Schmucker, M. Donini, V. Perrone, M. B. Zafar, and C. Archambeau. Multi-objective multi-

fidelity hyperparameter optimization with application to fairness. In NeurIPS Workshop on
Meta-Learning, 2020.

[50] R. Schmucker, M. Donini, M. B. Zafar, D. Salinas, and C. Archambeau. Multi-objective

asynchronous successive halving. arXiv:2106.12639, 2021.

[51] L. Schneider, F. Pfisterer, M. Binder, and B. Bischl. Mutation is all you need. In 8th ICML
Workshop on Automated Machine Learning, 2021.

[52] L. Schneider, F. Pfisterer, J. Thomas, and B. Bischl. A collection of quality diversity opti-

mization problems derived from hyperparameter optimization of machine learning models.

arXiv:2204.14061, 2022.

[53] C. Schorn, T. Elsken, S. Vogel, A. Runge, A. Guntoro, and G. Ascheid. Automated design of error-

resilient and hardware-efficient deep neural networks. Neural Computing and Applications,
32:18327–18345, 2020.

[54] J. Snoek, H. Larochelle, and R. P. Adams. Practical Bayesian optimization of machine learning

algorithms. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors, Advances in
Neural Information Processing Systems, volume 25, 2012.

[55] D. Stamoulis, R. Ding, D. Wang, D. Lymberopoulos, B. Priyantha, J. Liu, and D. Marculescu.

Single-Path NAS: Designing hardware-efficient ConvNets in less than 4 hours. In U. Brefeld,

E. Fromont, A. Hotho, A. Knobbe, M. Maathuis, and C. Robardet, editors, Machine Learning
and Knowledge Discovery in Databases, pages 481–497, 2020.

[56] C. White, W. Neiswanger, S. Nolen, and Y. Savani. A study on encodings for neural architecture

search. In Advances in Neural Information Processing Systems, 2020.

[57] C. White, W. Neiswanger, and Y. Savani. BANANAS: Bayesian optimization with neural

architectures for neural architecture search. In Proceedings of the AAAI Conference on Artificial
Intelligence, 2021.

[58] C. White, S. Nolen, and Y. Savani. Exploring the loss landscape in neural architecture search.

In Uncertainty in Artificial Intelligence, pages 654–664, 2021.

[59] C. White, A. Zela, B. Ru, Y. Liu, and F. Hutter. How powerful are performance predictors

in neural architecture search? In Proceedings of the 35th International Conference on Neural
Information Processing Systems, 2021.

[60] B. Wu, X. Dai, P. Zhang, Y. Wang, F. Sun, Y. Wu, Y. Tian, P. Vajda, Y. Jia, and K. Keutzer. Fbnet:

Hardware-aware efficient convnet design via differentiable neural architecture search. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
10734–10742, 2019.

16

[61] C. Ying, A. Klein, E. Christiansen, E. Real, K. Murphy, and F. Hutter. NAS-Bench-101: Towards

reproducible neural architecture search. In Proceedings of the 36th International Conference on
Machine Learning, pages 7105–7114, 2019.

[62] Y. Zhou, S. Ebrahimi, S. Ö. Arık, H. Yu, H. Liu, and G. Diamos. Resource-efficient neural

architect. arXiv:1806.07912, 2018.

[63] B. Zoph and Q. V. Le. Neural architecture search with reinforcement learning. In Proceedings
of the International Conference on Learning Representations, 2017.

[64] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le. Learning transferable architectures for scalable

image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 8697–8710, 2018.

17

A Niches in NAS

In the classical QDO literature, niches are assumed to be pairwise disjoint. This implies that each

architecture 𝐴 ∈ A yields feature function values 𝑓𝑖 (𝐴), 𝑖 ≥ 2 that map to a single niche (or none).

In practice, this does not necessarily have to be the case though, as an architecture can belong to

multiple niches. For example, when considering memory or latency constraints, a model with lower

latency or lower memory requirements can always be used in settings that allow for accommodating

slower or larger models. This is illustrated in Figure 4. Note that we index niches in the disjoint

scenario in Figure 4 with two indices, to highlight that some niches share the same boundaries

on a given feature function (e.g., 𝑁1,1 and 𝑁2,1 share the same latency boundaries and only differ

with respect to the memory boundaries). In this paper, we mainly investigated the scenario of

nested niches. The setting for QDO in the NAS context as described in Figure 1 in the main paper

is given by the search of models for deployment on multiple different end-user devices. Similarly,

qdNAS can also be applied in the context of searching for models for deployment on a single

end-user device, meeting different constraints, e.g., as illustrated in Section 5 (Benchmarks on the

MobileNetV3 Search Space) in the main paper. Typically, relevant boundaries of feature functions

that form niches naturally arise given the target device(s) and concrete application at hand.

𝑁1,5

𝑁1,4

𝑁1,3

𝑁1,2

𝑁1,1

𝑁2,5

𝑁2,4

𝑁2,3

𝑁2,2

𝑁2,1

𝑁3,5

𝑁3,4

𝑁3,3

𝑁3,2

𝑁3,1

𝑁4,5

𝑁4,4

𝑁4,3

𝑁4,2

𝑁4,1

𝑁5,5

𝑁5,4

𝑁5,3

𝑁5,2

𝑁5,1

Memory

L
a
t
e
n
c
y

𝑁1

𝑁2

𝑁3

𝑁4

𝑁5

Memory

L
a
t
e
n
c
y

Figure 4: Disjoint (left) and nested (right) niches.

B Optimizers

In this section, we provide additional information on optimizers used throughout this paper.

Algorithm 2 illustrates a generic iterative single-objective optimizer in pseudo code.

qdHB Algorithm 3 presents qdHB in pseudo code. qdHB requires only 𝑅 (maximum fidelity)

and [(scaling parameter) as input parameters and proceeds to determine the maximum number of

brackets 𝑠max and the approximate total resources 𝐵 which each bracket is assigned. In each bracket

𝑠 , the number of configurations 𝑛 and the fidelity 𝑟 at which they should be evaluated is calculated

and these parameters are used within the SH subroutine. The central step within the SH subroutine

is the selection of the ⌊𝑛𝑖/[⌋ configurations that should be promoted to the next stage. Here, the

topk_qdo function (highlighted in grey) works as follows: We iteratively select one of the niches

uniformly at random and choose the best configuration within this niche observed so far that has

yet not been selected for promotion. This procedure is repeated until ⌊𝑛𝑖/[⌋ configurations have
been selected in total. If not enough configurations belonging to a specific niche have been observed

so far, we choose any configuration uniformly at random over the set of all configurations that

have yet to be promoted. Note that feature functions and thereupon derived niche membership are

assumed to be unaffected by the multifidelity parameter. Niche membership is determined by the

18

Algorithm 2: Generic pseudo code for an iterative single-objective optimizer.

Input : 𝑓1, Ddesign, 𝑛total
Result :𝐴∗

1 D← Ddesign

2 𝐴∗ ← argmin𝐴∈D 𝑓1(𝐴) # initial incumbent based on archive

3 for 𝑛 ← 1 to 𝑛total do
4 Propose a new candidate 𝐴★

5 Evaluate 𝑦 ← 𝑓1(𝐴★)
6 if 𝑦 < 𝑓1(𝐴∗) then
7 𝐴∗ ← 𝐴★

update incumbent

8 end
9 D← D ∪

{(
𝐴★, 𝑦

)}
10 end

get_niche_membership function which simply checks for each niche whether feature values of an

architecture are within the respective niche boundaries. Moreover, we assume that all evaluations

are written into an archive similarly as in Algorithm 1 in the main paper which allows us to

return the best configuration per niche as the final result. Note that in practice, evaluating all

stages of brackets with the same budget instead of iterating over brackets (like in the original HB

implementation) can be more efficient. We use this scheduling variant throughout our benchmark

experiments and application study. More details regarding our implementation can be obtained via

https://github.com/slds-lmu/qdo_nas.

Algorithm 3: Quality Diversity Hyperband (qdHB).

Input :𝑅, [# maximum fidelity and scaling parameter

Result :Best configuration per niche

1 𝑠max = ⌊log[(𝑅)⌋, 𝐵 = (𝑠max + 1)𝑅
2 for 𝑠 ∈ {𝑠max, 𝑠max − 1, . . . , 0} do
3 𝑛 = ⌈𝐵

𝑅

[𝑠

(𝑠+1) ⌉, 𝑟 = 𝑅[−𝑠

4 # begin SH with (𝑛, 𝑟) inner loop
5 A = sample_configuration(𝑛)
6 Z = {(𝑓𝑖 (𝐴), . . . , 𝑓𝑘 (𝐴)) : 𝐴 ∈ A, 𝑖 ∈ {2, . . . , 𝑘}} # evaluate feature functions
7 N = get_niche_membership(A,Z)
8 for 𝑖 ∈ {0, . . . , 𝑠} do
9 𝑛𝑖 = ⌊𝑛[−𝑖⌋
10 𝑟𝑖 = 𝑟[𝑖

11 Y = {𝑓1(𝐴, 𝑟𝑖) : 𝐴 ∈ A} # evaluate objective function
12 A = topk_qdo(A,Y,N, ⌊𝑛𝑖/[⌋)
13 end
14 end

BOP-ElitesHB In Algorithm 4 we describe the sampling procedure (for a single configuration)

used in BOP-ElitesHB in pseudo code. In contrast to the original BOHB algorithm, we use random

forest as surrogate models, similarly as done in SMAC-HB [33]. Throughout our benchmark

experiments and application study we set 𝜌 = 0. Furthermore, we employ a variant that directly

proposes batches of size 𝑛. This can be done by simply sorting all candidate architectures obtained

via local mutation of the incumbent architectures of each niche within the acquisition function

19

https://github.com/slds-lmu/qdo_nas

optimization step by their EJIE values and selecting the top 𝑛 candidate architectures. Note that

surrogate models are fitted on all available data contained in the current archive (this includes

the multifidelity parameter) and predictions are obtained with respect to the fidelity parameter

set to the current fidelity level. More details regarding our implementation can be obtained via

https://github.com/slds-lmu/qdo_nas.

Algorithm 4: Sampling procedure in BOP-ElitesHB.

Input : 𝜌 # fraction of configurations sampled at random

Result :Next configuration to evaluate

1 if rand() < 𝜌 then
2 return sample_configuration(1)
3 else
4 𝐴★← argmax𝐴∈A 𝛼EJIE(𝐴) # Equation (1)

5 return 𝐴★

6 end

ParEGO* ParEGO [28] is a multi-objective model-based optimizer that at each iteration scalar-

izes the objective functions differently using the augmented Tchebycheff function. First, the 𝑘

objectives are normalized and at each iteration a weight vector _ is drawn uniformly at random

from the following set of

(
𝑠+𝑘−1
𝑘−1

)
different weight vectors

4
:{

_ = (_1, _2, . . . , _𝑘) |
𝑘∑︁
𝑖=1

_𝑖 = 1 ∧ _𝑖 =
𝑙

𝑠
, 𝑙 ∈ {0, . . . , 𝑠}

}
.

The scalarization is then obtained via 𝑓_ (𝐴) = max
𝑘
𝑖=1 (_𝑖 · 𝑓𝑖 (𝐴)) + 𝛾

∑𝑘
𝑖=1 _𝑖 · 𝑓𝑖 (𝐴), where 𝛾 is a

small positive value (in our benchmark experiments we use 0.05). In ParEGO* we use the same

truncated path encoding as in BOP-Elites* as well as a random forest surrogate modeling the

scalarized objective function. For optimizing the EI, we use a local mutation scheme similarly to

the one utilized by BANANAS [57], adapted for the multi-objective setting (conceptually similar to

the one proposed by [19]): For each Pareto optimal architecture in the current archive, we obtain

candidate architectures via local mutation and out of all these candidates we select the architecture

with the largest EI for evaluation. More details regarding our implementation can be obtained via

https://github.com/slds-lmu/qdo_nas.
moHB* moHB* [28] is an extension of HB to the multi-objective setting. The optimizer follows

the basic HB routine except for the selection mechanism of configurations that should be promoted

to the next stage: Configurations are promoted based on non-dominated sorting with hypervolume

contribution for tie breaking. For similar approaches, see [48, 49, 50, 19]. In our benchmark

experiments we again use a scheduling variant that evaluates all stages of brackets with the same

budget instead of iterating over brackets. More details regarding our implementation can be

obtained via https://github.com/slds-lmu/qdo_nas.
ParEGOHB ParEGOHB combines BO with moHB* by using the same scalarization as ParEGO*.

Instead of selecting configurations at random at the beginning of each moHB* iteration, ParEGOHB

proposes candidates that maximize the EI with respect to the scalarized objective. In our benchmark

experiments we again set 𝜌 = 0 (fraction of configurations sampled uniformly at random) and

employ a variant that directly proposes batches of size 𝑛. Note that surrogate models are fitted on

all available data contained in the current archive (this includes the multifidelity parameter) and

predictions are obtained with respect to the fidelity parameter set to the current fidelity level. More

details regarding our implementation can be obtained via https://github.com/slds-lmu/qdo_nas.

4
note that 𝑠 simply determines the number of different weight vectors

20

https://github.com/slds-lmu/qdo_nas
https://github.com/slds-lmu/qdo_nas
https://github.com/slds-lmu/qdo_nas
https://github.com/slds-lmu/qdo_nas

Table 4: Niches and their boundaries used throughout all benchmark experiments.

Benchmark Dataset Niches Niche Boundaries
Niche 1 Niche 2 Niche 3 Niche 4 Niche 5 Niche 6 Niche 7 Niche 8 Niche 9 Niche 10

NAS-Bench-101

Params
Cifar-10

Small [0, 5356682) [0,∞) - - - - - - - -

Medium [0, 650520) [0, 1227914) [0, 1664778) [0, 3468426) [0,∞) - - - - -

Large [0, 650520) [0, 824848) [0, 1227914) [0, 1664778) [0, 2538506) [0, 3468426) [0, 3989898) [0, 5356682) [0, 8118666) [0,∞)

NAS-Bench-201

Latency

Cifar-10

Small [0, 0.015000444871408) [0,∞) - - - - - - - -

Medium [0, 0.00856115) [0, 0.01030767) [0, 0.01143533) [0, 0.01363741) [0,∞) - - - - -

Large [0, 0.00856115) [0, 0.00893427) [0, 0.01030767) [0, 0.01143533) [0, 0.01250159) [0, 0.01363741) [0, 0.01429903) [0, 0.01500044) [0, 0.01660615) [0,∞)

Cifar-100

Small [0, 0.0159673188862048) [0,∞) - - - - - - - -

Medium [0, 0.00919228) [0, 0.01138714) [0, 0.01232998) [0, 0.01475572) [0,∞) - - - - -

Large [0, 0.00919228) [0, 0.00957457) [0, 0.01138714) [0, 0.01232998) [0, 0.01327515) [0, 0.01475572) [0, 0.01534633) [0, 0.01596732) [0, 0.01768237) [0,∞)

ImageNet16-120

Small [0, 0.014301609992981) [0,∞) - - - - - - - -

Medium [0, 0.00767465) [0, 0.0094483) [0, 0.01054566) [0, 0.01271056) [0,∞) - - - - -

Large [0, 0.00767465) [0, 0.00826192) [0, 0.0094483) [0, 0.01054566) [0, 0.01173623) [0, 0.01271056) [0, 0.01352221) [0, 0.01430161) [0, 0.01595311) [0,∞)

MobileNetV3

Latency
ImageNet

Small [0, 17.5) [0, 30) - - - - - - - -

Medium [0, 15) [0, 20) [0, 25) [0, 30) [0, 35) - - - - -

Large [0, 17) [0, 19) [0, 21) [0, 23) [0, 25) [0, 27) [0, 29) [0, 31) [0, 33) [0, 35)

MobileNetV3

Flops
ImageNet

Small [0, 150) [0, 400) - - - - - - - -

Medium [0, 150) [0, 200) [0, 250) [0, 300) [0, 400) - - - - -

Large [0, 150) [0, 175) [0, 200) [0, 225) [0, 250) [0, 275) [0, 300) [0, 325) [0, 350) [0, 400)

MobileNetV3

Latency × Size
ImageNet

Small [0, 20) × [0, 20) [0, 35) × [0, 20) - - - - - - - -

Medium [0, 20) × [0, 20) [0, 25) × [0, 20) [0, 30) × [0, 20) [0, 35) × [0, 20) [0, 40) × [0, 20) - - - - -

Large [0, 20) × [0, 20) [0, 23) × [0, 20) [0, 26) × [0, 20) [0, 29) × [0, 20) [0, 32) × [0, 20) [0, 35) × [0, 20) [0, 38) × [0, 20) [0, 41) × [0, 20) [0, 44) × [0, 20) [0, 47) × [0, 20)

2
1

C Additional Benchmark Details and Results
In this section, we provide additional details and analyses with respect to our main benchmark

experiments. Table 4 summarizes all niches and their boundaries used throughout our benchmarks

(including the additional ones on the MobileNetV3 search space).

The following results extends the results reported for the main benchmark experiments. Critical

differences plots (𝛼 = 0.05) of optimizer ranks (with respect to final performance) are given

in Figure 5. Friedman tests (𝛼 = 0.05) that were conducted beforehand indicated significant

differences in ranks for both the validation (𝜒2(6) = 53.46, 𝑝 < 0.001) and test performance

(𝜒2(6) = 52.14, 𝑝 < 0.001). However, note that critical difference plots based on the Nemenyi test

are underpowered if only few optimizers are compared on few benchmark problems.

(a) Validation error summed over niches. (b) Test error summed over niches.

Figure 5: Critical differences plots of the ranks of optimizers.

Figure 6 and Figure 7 show the average best validation and test performance for each niche for

each optimizer on each benchmark problem.

Table 5 summarizes results of a four way ANOVA on the average performance (validation

error summed over niches) of BOP-ElitesHB, BOP-Elites*, ParEGOHB, ParEGO* and Random after

having used half of the total optimization budget. Prior to conducting the ANOVA, we checked the

ANOVA assumptions (normal distribution of residuals and homogeneity of variances) and found

no violation of assumptions. The factors are given as follows: Problem indicates the benchmark

problem (e.g., NAS-Bench-101 on Cifar-10 with small number of niches), multifidelity denotes if

the optimizer uses multifidelity (TRUE for BOP-ElitesHB and ParEGOHB), QDO denotes whether

the optimizer is a QD optimizer (TRUE for BOP-ElitesHB and BOP-Elites*) and model-based denotes

whether the optimizer relies on a surrogate model (TRUE for BOP-ElitesHB, BOP-Elites*, ParEGOHB
and ParEGO*). All main effects are significant at an 𝛼 level of 0.05. We also computed confidence

intervals based on Tukey’s Honest Significant Difference method for the estimated differences

between factor levels: Multifidelity −12.45[−18.19− 6.72], QDO −9.34[−15.08,−3.61], model-based

−13.55[−20.57,−6.52]. Note that the negative sign indicates a decrease in the average validation

error summed over niches.

Table 5: Results of a four way ANOVA on the average performance (validation error summed over

niches) after having used half of the total optimization budget. Type II sums of squares.

Df Sum Sq Mean Sq F value Pr(>F)

Problem 11 1810569.79 164597.25 1410.16 0.0000

Multifidelity 1 2233.44 2233.44 19.13 0.0001

QDO 1 1293.41 1293.41 11.08 0.0017

Model-Based 1 2466.45 2466.45 21.13 0.0000

Residuals 45 5252.51 116.72

We conducted a similar ANOVA on the final performance of optimizers (Table 6). Prior to

conducting the ANOVA, we checked the ANOVA assumptions (normal distribution of residuals

and homogeneity of variances) and found no violation of assumptions. While the effects of QDO

22

Figure 6: Best solution found in each niche with respect to validation performance. Bars represent

standard errors over 100 replications.

and model-based are still significant at an 𝛼 level of 0.05, the effect of multifidelity no longer is,

indicating that full-fidelity optimizer caught up in performance (which is the expected behavior).

We again computed confidence intervals based on Tukey’s Honest Significant Difference method

for the estimated differences between factor levels: QDO −6.85[−10.12 − 3.58], model-based

−11.08[−15.08,−7.07].

Table 6: Results of a four way ANOVA on the average final performance (validation error summed

over niches). Type II sums of squares.

Df Sum Sq Mean Sq F value Pr(>F)

Problem 11 1724557.85 156777.99 4130.33 0.0000

Multifidelity 1 97.76 97.76 2.58 0.1155

QDO 1 695.13 695.13 18.31 0.0001

Model-Based 1 1648.94 1648.94 43.44 0.0000

Residuals 45 1708.10 37.96

We analyzed the ERT of the QD optimizers given the average performance of the respective

multi-objective optimizers after half of the optimization budget. For each benchmark problem, we

computed the mean validation performance of each multi-objective optimizer after having spent

half of its optimization budget and investigated the analogous QD optimizer. We then computed

the ratio of ERTs between multi-objective and QD optimizers (see Table 7).

23

Figure 7: Best solution found in each niche with respect to test performance. Bars represent standard

errors over 100 replications.

D Details on Benchmarks on the MobileNetV3 Search Space

In this section, we provide additional details regarding our benchmarks on the MobileNetV3 Search
Space. We use ofa_mbv3_d234_e346_k357_w1.2 as a pretrained supernet and rely on accuracy

predictors and latency/flops look-up tables as provided by [6]. The search space of architectures

is the same as used in [5]. For the model-based optimizers we employ the following encoding of

architectures: Given an architecture, we encode each layer in the neural network into a one-hot

vector based on its kernel size and expand ratio and we assign zero vectors to layers that are

skipped. Besides, we have an additional one-hot vector that represents the input image size. We

concatenate these vectors into a large vector that represents the whole neural network architecture

and input image size. This is the same encoding as used by [5]. Acquisition function optimization

is performed by sampling 1000 architectures uniformly at random.

E Details on Making Once-for-All Even More Efficient

In this section, we provide additional details regarding replacing regularized evolution with MAP-

Elites within Once-for-All. We use ofa_mbv3_d234_e346_k357_w1.2 as a pretrained supernet and

rely on accuracy predictors and latency look-up tables as provided by [6]. Seven niches were defined

via the following latency constraints (in ms): [0, 15), [0, 18), [0, 21), [0, 24), [0, 27), [0, 30), [0, 33).
Regularized evolution is run with an initial population of size 100 for 71 generations

5
resulting in

5
this is exactly ⌈(50100 − 7 · 100)/(7 ∗ 100)⌉ with 50100 being the budget MAP-Elites is allowed to use

24

Table 7: ERT ratios of multi-objective and QD optimizers to reach the average performance (after half

of the optimization budget) of the respective multi-objective optimizer.

Benchmark Dataset Niches ERT Ratio
ParEGOHB/ moHB*/ ParEGO*/

BOP-ElitesHB qdHB BOP-Elites*

NAS-Bench-101 Cifar-10

Small 3.94 1.19 1.99

Medium 0.76 1.43 1.85

Large 1.47 1.20 1.58

NAS-Bench-201

Cifar-10

Small 4.31 1.96 1.45

Medium 0.94 0.73 1.34

Large 1.04 0.72 1.35

Cifar-100

Small 4.82 1.77 1.46

Medium 1.35 0.67 1.42

Large 1.57 0.78 0.98

ImageNet16-120

Small 4.30 1.20 1.73

Medium 2.31 0.93 1.14

Large 2.11 1.15 0.96

7200 architecture evaluations per latency constraint and 50400 architecture evaluations in total.

We use a mutation probability of 0.1, a mutation ratio of 0.5 and a parent ratio of 0.25. MAP-Elites

searches for optimal architectures jointly for the seven niches and is configured to use a population

of size 100 and is run for 500 generations, resulting in 50100 architecture evaluations in total. The

number of generations for each regularized evolution run and the MAP-Elites run were chosen in a

way so that the total number of architecture evaluations is roughly the same for both methods. We

again use a mutation probability of 0.1. Note that the basic MAP-Elites (as used by us) does not

employ any kind of crossover. We visualize the best validation error obtained for each niche in

Figure 8 (left). MAP-Elites outperforms regularized evolution in almost every niche, making this

variant of Once-for-All even more efficient. In the scenario of using Once-for-All for new devices,

look-up tables do not generalize and the need for using as few as possible architecture evaluations

is of central importance. To illustrate how MAP-Elites compares to regularized evolution in this

scenario, we reran the experiments above but this time we used a population of size 50 and 100

generations for MAP-Elites (and therefore 14 generations for each run of regularized evolution).

Results are illustrated in Figure 8 (right). Again, MAP-Elites generally outperforms regularized

evolution.

F Details on Applying qdNAS to Model Compression

In this section, we provide additional details regarding our application of qdNAS to model compres-

sion. BOP-ElitesHB was slightly modified due to the natural tabular representation of the search

space. Instead of using a truncated path encoding we simply use the tabular representation of

parameters. To optimize the EJIE during the acquisition function optimization step we employ a

simple Random Search, sampling 10000 configurations uniformly at random and proposing the

configuration with the largest EJIE. Table 8 shows the search space used for tuning NNI pruners on

MobileNetV2.

G Analyzing the Effect of the Choice of the Surrogate Model and Acquisition Function
Optimizer

In this section, we present results of a small ablation study regarding the effect of the choice of

the surrogate model and acquisition function optimizer. In the main benchmark experiments, we

observed that our qdNAS optimizers sometimes fail to find any architecture belonging to a certain

25

Figure 8: Regularized evolution vs. MAP-Elites within Once-for-All. Left: Large budget of total

architecture evaluations. Right: Small budget of total architecture evaluations. Boxplots are

based on 100 replications.

Table 8: Search space for NNI pruners on MobileNetV2.

Hyperparameter Type Range Info

pruning_mode categorical {conv0, conv1, conv2, conv1andconv2, all}

pruner_name categorical {l1, l2, slim, agp, fpgm, mean_activation, apoz, taylorfo}

sparsity continuous [0.4, 0.7]

agp_pruning_alg categorical {l1, l2, slim, fpgm, mean_activation, apoz, taylorfo}

agp_n_iters integer [1, 100]

agp_n_epochs_per_iter integer [1, 10]

slim_sparsifying_epochs integer [1, 30]

speed_up boolean {TRUE, FALSE}

finetune_epochs integer [1, 27] fidelity

learning_rate continuous [1e-06, 0.01] log

weight_decay continuous [0, 0.1]

kd boolean {TRUE, FALSE}

alpha continuous [0, 1]

temp continuous [0, 100]

“agp_pruning_alg”, “agp_n_iters”, and “agp_n_epochs_per_iter” depend on “pruner_name” being “agp”. “slim_sparsifying_epochs” depends on “pruner_name”

being “slim”. “alpha” and “temp” depend on “kd” being “TRUE”. “log” in the Info column indicates that this parameter is optimized on a logarithmic scale.

niche (even after having used all available budget). This was predominantly the case for the very

small niches in the medium and large number of niches settings (i.e., Niche 1, 2 or 3). Figure 9

shows the relative frequency of niches missed by optimizers (over 100 replications). Note that for

the small number of niches settings, relative frequencies are all zero and therefore omitted. In

general, model-based multifidelity variants perform better than the full-fidelity optimizers and QD

optimizers sometimes perform worse than multi-objective optimizers.

We hypothesized that this could be caused by the choice of the surrogate model used for the

feature functions: A random forest cannot properly extrapolate values outside the training set and

therefore, if the initial design does not contain an architecture for a certain niche, the optimizer

may fail to explore relevant regions in the feature space. We therefore conducted a small ablation

study on the NAS-Bench-101 Cifar-10 medium number of niches benchmark problem. BOP-Elites*

was configured to either use a random forest (as before) or an ensemble of feed-forward neural

networks
6
(as used by BANANAS [57]) as a surrogate model for the feature function. Moreover, we

6
with an ensemble size of five networks

26

Figure 9: Relative frequency of niches missed by optimizers over 100 replications. For the small number

of niches settings, relative frequencies are all zero and therefore omitted.

varied the acquisition function optimizer between a local mutation (as before) or a simple Random

Search (generating the same number of candidate architectures but sampling them uniformly at

random using adjacency matrix encoding). Optimizers were given a budget of 100 full architecture

evaluations and runs were replicated 30 times. Figure 10 shows the anytime performance of these

BOP-Elites* variants. We observe that switching to an ensemble of neural networks as a surrogate

model for the feature function results in a performance boost which can be explained by the fact

that this BOP-Elites* variant no longer struggles with finding solutions in the smallest niche. The

relative frequencies of a solution for Niche 1 being missing are: 26.67% for the random forest +

Random Search, 16.67% for the random forest + mutation, 3.33% for the ensemble of neural networks

+ Random Search, and 3.33% for the ensemble of neural networks + mutation. Regarding the other

niches, a solution is always found. Results also suggest that the choice of the acquisition function

optimizer may be more important in case of using a random forest as a surrogate model for the

feature function.

H Judging Quality Diversity Solutions by Means of Multi-Objective Performance Indica-
tors

In this section, we analyze the performance of our qdNAS optimizers in the context of a multi-

objective optimization setting. As an example, suppose that niches were mis-specified and the

actual solutions (best architecture found for each niche) returned by the QD optimizers are no

longer of interest. We still could ask the question of how well QDO performs in solving the multi-

objective optimization problem. To answer this question, we evaluate the final performance of

all optimizers compared in Section 4 by using multi-objective performance indicators. Figure 11

shows the average Hypervolume Indicator (the difference in hypervolume between the resulting

Pareto front approximation of an optimizer for a given run and the best Pareto front approximation

found over all optimizers and replications). For these computations, the feature function was

transformed to the logarithmic scale for the NAS-Bench-101 problems. As nadir points we used

(100, log(49979275)) ′ for the NAS-Bench-101 problems and (100, 0.0283) ′ for the NAS-Bench-201
problems obtained by taking the theoretical worst validation error of 100 and feature function

upper limits as found in the tabular benchmarks (plus some additional small numerical tolerance).

27

Figure 10: Anytime performance of BOP-Elites* variants configured to either use a random forest

or an ensemble of neural networks as a surrogate model for the feature function crossed

with either using a local mutation or a Random Search as acquisition function optimizer.

NAS-Bench-101 Cifar-10 medium number of niches benchmark problem. Ribbons represent

standard errors over 30 replications. x-axis starts after 10 full-fidelity evaluations.

Note that for all optimizers which are not QD optimizers, results with respect to the different

number of niches settings (small vs. medium vs. large) are only statistical replications because

these optimizers are not aware of the niches. We observe that ParEGOHB and ParEGO* perform

well but BOP-ElitesHB also shows good performance in the medium and large number of niches

settings. This is the expected behavior, as the number and nature of the niches directly corresponds

to the ability of qdNAS optimizers to search along the whole Pareto front, i.e., in the small number

of niches settings, qdNAS optimizers have no intention to explore.

Figure 11: Average Hypervolume Indicator. Bars represent standard errors over 100 replications.

Critical differences plots (𝛼 = 0.05) of optimizer ranks (with respect to the Hypervolume

Indicator) are given in Figure 12. A Friedman test (𝛼 = 0.05) that was conducted beforehand

indicated significant differences in ranks (𝜒2(6) = 41.61, 𝑝 < 0.001). Again, note that critical

difference plots based on the Nemenyi test are underpowered if only few optimizers are compared

on few benchmark problems.

28

Figure 12: Critical differences plot of the ranks of optimizers with respect to the Hypervolume Indicator.

In Figure 13 we plot the average Pareto front (over 100 replications) for BOP-Elites*, ParEGO*

and Random. The average Pareto fronts of BOP-Elites* and ParEGO* are relatively similar, except for

the small number of niches settings, where ParEGO* has a clear advantage. Summarizing, qdNAS

optimizers can also perform well in a multi-objective optimization setting, but their performance

strongly depends on the number and nature of niches.

Figure 13: Average Pareto front (over 100 replications) for BOP-Elites*, ParEGO* and Random.

I Technical Details

Benchmark experiments were run on NAS-Bench-101 (Apache-2.0 License) [61] and NAS-Bench-

201 (MIT License) [11]. More precisely, we used the nasbench_full.tfrecord data for NAS-

Bench-101 and the NAS-Bench-201-v1_1-096897.pth data for NAS-Bench-201. Parts of our code
rely on code released in Naszilla (Apache-2.0 License) [56, 57, 58]. For our benchmarks on the

MobileNetV3 search space we used the Once-for-All library [6] released under the MIT License.

We rely on ofa_mbv3_d234_e346_k357_w1.2 as a pretrained supernet and accuracy predictors

and resource usage look-up tables as provided by [6]. NNI is released under the MIT License

[40]. Stanford Dogs is released under the MIT License [26]. Figure 1 in the main paper has been

designed using resources from Flaticon.com. Benchmark experiments were run on Intel Xeon

E5-2697 instances taking around 939 CPU hours (benchmarks and ablation studies). The model

compression application was performed on an NVIDIA DGX A100 instance taking around 3 GPU

29

Flaticon.com

days. Total emissions are estimated to be an equivalent of 72.30 kg CO2. All our code is available at

https://github.com/slds-lmu/qdo_nas.

30

https://github.com/slds-lmu/qdo_nas

	Introduction
	Theoretical Background and Related Work
	Formulating Neural Architecture Search as a Quality Diversity Optimization Problem
	Quality Diversity Optimizers for Neural Architecture Search

	Main Benchmark Experiments and Results
	Additional Experiments and Applications
	Conclusion
	Reproducibility Checklist
	Niches in NAS
	Optimizers
	Additional Benchmark Details and Results
	Details on Benchmarks on the MobileNetV3 Search Space
	Details on Making Once-for-All Even More Efficient
	Details on Applying qdNAS to Model Compression
	Analyzing the Effect of the Choice of the Surrogate Model and Acquisition Function Optimizer
	Judging Quality Diversity Solutions by Means of Multi-Objective Performance Indicators
	Technical Details

