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Development of gas sensor based on fractal substrate 

structures  
 

Anyan Jiang, Fengchun Tian, Member, IEEE, James Anthony Covington, Member, IEEE, Maogang Jiang and 

Zhiyuan Wu  

Abstract—Gas sensor plays a key role in many applications with 

sensitivity being a critical performance characteristic. Increasing 

the surface area of gas sensing material is one approach that can 

increase sensitivity. Fractal geometries, which have large specific 

surface area and special fractal dimension, have previously been 

successfully used in the design of macro and microstructures of gas 

sensors to improve their performance. In this paper, the influence 

of geometrical structure of the substrate on the gas sensor 

performance has been investigated. Two fractal structures (Koch 

snowflake and Menger sponge) and one traditional structure 

(Cylinder) were fabricated by 3D printing and coated in 

Ag:MWCNTs based sensing materials. The fabricated sensors 

were tested with nitrogen dioxide at different temperatures and 

humidity. Experimental results show that the sensitivity of gas 

sensors with fractal structures is increased more than twice that of 

those with traditional geometrical structures. 
Index Terms—Gas sensor, Fractal geometry, Specific surface 

area, Sensitivity, 3D printing technology. 

I. INTRODUCTION 

AS sensors have been widely used in many fields, 

including environmental monitoring [1], food safety 

[2] and medical diagnostics [3]. Commonly used gas 

sensors are based on semiconducting [4], electrochemical [5] 

and biosensing principles [6]. However, the sensitivity and/or 

LoD (Limit of Detection) of many kinds of gas sensors is not 

sufficient for some applications, requiring more sophisticated 

analytical techniques to be used [7, 8]. Many different 

approaches have been investigated to improve the sensor’s 

LoD. Depending on the sensing mechanism, it could include 

changing the microstructure of gas sensing film (e.g. grain size) 

[9] or adding dopants or impurities [10]. However, the search 

for new ways to improve the sensitivity/LoD remains an on-

going focus of gas sensor research. 

Previously, special structures, such as core/shell 

nanostructures [11, 12] and hollow nanoflowers [13], have been 

developed to improve the performance/sensitivity of gas 

sensors. A more recent approach is to use fractal geometry [28]. 

A remarkable feature of fractal geometry is its self-similarity, 
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i.e., the local shape/structure of a system is similar to its global 

shape/structure [14, 15]. This similarity makes the surface area 

of fractal bodies much greater than that of traditional Euclidean 

shapes. Therefore, fractal theory provides an opportunity to 

develop new gas sensor structures, which in turn, could improve 

sensitivity [16]. 

Most previous work has focused on creating sensing films 

with fractal features. For example, V. A. Moshnikov et al. [17, 

18] enhanced the sensitivity of a metal oxide sensing film by 

the formation of gas sensing layers with percolation cluster 

fractal structure near the percolation threshold. N. K. 

Plugotarenko et al. [19] investigated the gas sensing 

performance of SiO2⋅SnOx⋅CuOy nanofilms with different 

fractal structures, which indicated that the maximal gas 

sensitivity is obtained at the transition of one type fractal 

structure to another. Zelio Fusco et al. [20] enhanced the 

performance of their gas sensors by integrating tailored 

dielectric fractals of TiO2 nanoparticles on Au nanodisk 

surfaces.  

Different fractal structures have different effects on sensing 

films. Films with porous [21, 22] and core/shell [23, 24] fractal 

structures have a larger fractal dimension and specific surface 

area, which can result in higher sensitivity. For films with 

dendrite-like nanocrystals, a smaller fractal dimension 

corresponds to finer branches and smaller breakdown voltages, 

which results in a higher sensitivity [25]. For films with relief 

fractal structures, a lower fractal dimension corresponds to 

higher crystallinity, which again results in a higher sensitivity 

[26, 27]. 

The application of fractal structures to the substrate of a gas 

sensor is also a potential way to improve its sensitivity. 

Traditional gas sensor substrates are mainly of cylindrical or 

planar geometries, which do not have large specific surface 

areas, such as the sensors made by Figaro (Japan). Fig. 1 (a) 

illustrates the structure of a typical semiconductor gas sensor 

with micro-heating plate, while Fig. 1 (b) shows a zoom-in 

photo and illustration of a typical semiconductor gas sensor 
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with a cylindrical substrate.  

For planar sensors, the authors have previously used 

electrodes formed from fractal structures to enhance gas sensor 

performance [28]. In this paper, we report on the design of a 

new gas sensor substrate based on fractal geometry and 

compare it with traditional cylindrical geometries. 3D printing 

was used to fabricate the sensor substrates with different 

geometries. Ag doped multi-walled carbon nanotubes 

(Ag:MWCNTs) was synthesized as the sensing material to 

validate our concept, and nitrogen dioxide was selected as the 

test gas to verify the effectiveness of our sensor substrates. 

 
(a) 

 
(b) 

Fig. 1. Structure of a typical semiconductor gas sensor with 

micro-heating plate (a) and the zoom-in photo of a typical 

semiconductor gas sensor with a cylinder structure (Pin 1, 3, 4 

and 6 are sensing signal electrodes, pin 2 and 5 are heating 

electrodes) (b). 

II. FRACTAL GEOMETRY 

A. Fractal Structure 

There are many geometrical cubes with fractal structures, 

which have a wide range of characteristics. For example, the 

Koch snowflake has an infinite perimeter in a limited area, and 

the Menger sponge is a universal space curve, i.e., any curve is 

also a homeomorphous subset of itself. Menger sponge is also 

a bounded, closed set with zero Lebesgue measure, and its 

Hausdorff dimension is ln20/ln3. Among all the characteristics, 

the most useful feature of these structures is the large surface 

area under limited volume (or the large surface area to volume 

ratio). In most cases, the gas sensing material is coated on the 

surface of sensor substrate, and so the large surface area to 

volume will increase the contacting area between the sensing 

film and the target gas, which could potentially lead to a gas 

sensor with high sensitivity. 

Researchers have studied the area to volume ratio of several 

fractal geometries [16]. The surface area to volume ratio for 

Koch snowflake cube, Koch pyramid, Koch tetrahedron, 

Sierpinski tetrahedron, Menger sponge, and Cylinder in the k-

th iteration are shown in Fig. 2. It indicates that the fractal 

geometries have larger structural area than that of traditional 

Euclidean ones (e.g., cylinder and sphere), and that the Menger 

sponge has the largest surface area to volume ratio. In addition, 

the greater the number of iterations, the higher the surface area 

to volume ratio. The Koch snowflake cube and Menger sponge 

were used in this work and are shown in Fig. 3 with different 

iterations.  

 
Fig. 2. Ratio of surface area to volume of the seven typical 

cubes. 

 k=1 k=2 k=3 k=0 k=    Koch snowflake cube

(a) 

 
(b) 

Fig. 3. Construction processes of Koch snowflake cube (a) 

and Menger sponge (b) (k is the number of iterations). 

 

Assuming the initial side length of Menger sponge and Koch 

snowflake cube, and the number of iteration of fractal structure 

are a, a1 and k, respectively. The surface areas of these fractal 

structures can be defined as: 
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B. Sensor Substrate made by 3D Printing 

In our experiment, three kinds of sensor substrates (Koch 

snowflake cube and Menger sponge, as stated earlier, and a 

cylinder for reference) were designed. The ‘iteration times’ of 

Koch snowflake cube and Menger sponge were set as k=4 and 

k=3, respectively, and the initial side lengths were set as 19.6 

mm and 16.2 mm, respectively. The outer radius of Cylinder 
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was 9.1 mm. The height of these geometries was set at 16.2 mm. 

The Menger sponge, Koch snowflake cube and Cylinder 

substrates were designed by 3D modeling software and shown 

in Fig 4(a). The sensor substrates were fabricated by 3D 

printing using a nylon filament (P396, EOS, Germany), which 

has an accuracy/repeatability of 0.1mm. Only those substrates 

with group deviation less than 5% were chosen. Fig (b) shows 

a photo of these fabricated substrates.  

 
(a) 

 
(b) 

Fig. 4.  Models of Menger sponge, Koch snowflake cube and 

Cylinder (a) and a photo of 3D printed substrates.  

Generally, the volume is equal to bottom area times height. 

The volume of Koch snowflake cube, Menger sponge and 

Cylinder can be calculated as: 

2
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      (2) 

where a=16.2 mm, a1=19.6 mm and h=16.2 mm. 

The surface area to volume ratio of Menger sponge, Koch 

snowflake cube and Cylinder are given in Eq. (3), which 

indicate that the Menger sponge has the largest surface area. 
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where r2=9.1 mm, r1=8 mm and r=5.5 mm.  

III. EXPERIMENT 

A. Chemicals 

Silver nitrate (AgNO3) and Sodium citrate 

(C6H5Na3O7•2H2O) were purchased from Shanghai Aladdin 

Biochemical Technology Co., Ltd. All reagents used are of 

analytic purity and required no further purification. Deionized 

water was used in all synthesis and fabrication processes. 

Carbon nanotube dispersion were purchased from Chinese 

Academy of Sciences Chengdu Organic Chemistry Co., Ltd. 

and its main characteristics are shown in Table I. 

TABLE I 

PARAMETERS OF MULTI-WALLED CARBON NANOTUBES 

Characteristic Unit MWCNTs Characterization method 

Outer Diameter nm 8-15 HRTEM, Raman 

Purity wt% >95 TGA & TEM 

Length μm ~50 TEM 

Special Surface Area m2/g >140 BET 

ASH wt% <1.5 TGA 

B. Synthesis of Ag:MWCNTs Samples 

The classical Lee method was used to prepare the Ag sol [29]. 

The preparation process of Ag:MWCNTs is shown in Fig 5(a). 

In detail, 270 mL multi-walled carbon nanotubes (MWCNTs) 

dispersion with a concentration of 0.5 mg/mL was obtained and 

ultrasonic dispersed in a beaker for 10 minutes. Then 36 mg 

AgNO3 and 60 mg C6H5Na3O7•2H2O were added to the beaker. 

The as-obtained solutions were magnetically stirred at 95℃ for 

45 minutes, and then cooled naturally down to room 

temperature with continuous magnetic stirring. The resulting 

products were separated from the reaction medium by 

centrifuging at 15200 r/min for 1 hour and rinsed with 

deionized water. The centrifugation process was repeated twice, 

then 30 mL of deionized water was added for dilution, and 

ultrasonic dispersion was carried out for 15 minutes. 

C. Fabrication and Characterization of gas sensors  

Before gas testing, a pair of electrodes and wires were placed 

on each end of the 3D substrates. The electrodes and wires were 

then coated and connected by conductive silver paste 

(LUXIANZI, China). The Ag:MWCNTs solution and the 3D 

sensor substrates were transferred to a 100 mL Teflon-lined 

stainless steel autoclave, heated at 95 ℃ for 6 hours. Once the 

autoclave had cooled down to room temperature, the sensors 

were rinsed with deionized water and dried in an oven at 60℃ 

for 30 minutes. The fabrication process is shown in Fig 5(b). 

The morphological character and microstructure of as-prepared 

films were characterized by field emission scanning electron 

microscopy (FESEM, FEI Nova400) with an acceleration 

voltage of 20 kV, and an energy dispersive X-ray spectroscopy 

attached to the SEM. 
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(a) 

 
(b) 

Fig. 5. Preparation of Ag:MWCNTs (a) and fabrication process 

of sensors (b). 

D. Measurement of Sensor Performance 

Fig. 6 shows the setup used for sensor testing and the 

schematic diagram of the test circuit. In total, 15 sensors were 

used (5 of each type). Inside the test chamber (Teflon coated) a 

temperature & humidity sensor (SHT15, SENSIRION, 

Switzerland) was placed. The chamber was put into an electric 

drying oven (DHG-9053A, SuoKe, China), which was used to 

control the ambient temperature. A programmable linear DC 

power supply (SPD3303C, SIGLEVT, China) was used to 

provide a working voltage for the sensors and the output voltage 

was measured by a data acquisition card (USB3000, Art 

Technology, China), with the resultant data transferred and 

stored on a computer. To avoid oxidation of Ag by O2, we only 

used N2 as the carrier gas, as this study focuses on the sensor 

substrates. The sensors were first exposed to dry N2 for 10 

minutes, followed by injection of the target gas (NO2) for a 

further 10 minutes, then the oven was heated to 70 ℃ for 10 

minutes to accelerate the sensor desorption and then cooled 

down to the experimental temperature, till the sensor returned 

to its baseline resistance. In these experiments, NO2 was used 

at five different concentrations (0.25, 3, 6, 9, 12 ppm). The 

sensor response to NO2 was defined here as S=(Ra-Rg)/Ra, 

where Ra and Rg is the resistance of the sensing layer measured 

in N2 and NO2, respectively. Sensitivity is defined as the slope 

of the linear fitting equation of the response curve. 

  
(a) 

 
(b) 

Fig. 6. Setup of the sensor testing (a) and circuit (b). 

IV. RESULTS AND DISCUSSION 

The SEM and elemental mapping images of the 

Ag:MWCNTs film are shown in Fig 7. Fig 7(a) shows that the 

arrangement of MWCNTs is disordered and intertwined. The 

Ag nanoparticles, which are of spherical shape, are effectively 

modified on the outer wall of MWCNTs. Fig 7(b) shows that 

many Ag nanoparticles are adsorbed on the surface of 

MWCNTs. Although there are aggregations of Ag 

nanoparticles in some places, the overall distribution is 

relatively uniform. Fig. 8 shows the dynamic response of one 

of the Menger sponge upon exposure to NO2 (0.25, 3, 6, 9 and 

12 ppm) at 25 ℃ & 10% RH, which exhibits a NO2 

concentration dependent response. The sensor resistance 

gradually returns to its initial level, after the gas was removed. 

To speed up this process a heating cycle was also performed 

before the sensors were returned to the experimental 

temperature [30]. 

 
(a) 

  
(b) 

Fig. 7. SEM image (a) and Elemental mapping images (b) of 

the Ag:MWCNTs film. 
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  (a) 

 
        (b) 

Fig. 8. Dynamic response of a Menger sponge sensor to 9 ppm 

NO2 (a) and in different concentration (b) at 25℃, 10% RH. 

Fifteen sensors were used (with the three kinds of substrates: 

Menger sponge, Koch snowflake and Cylinder; Substrate 

number of each kind is 5) for performance (including repetition) 

test. Response curves of sensors to NO2 (0.25, 3, 6, 9 and 12 

ppm) at 25 ℃, 10% RH and corresponding piecewise linear 

fitting equation of different concentrations are shown in Fig 9. 

This shows that the response of the sensors with Menger sponge 

and Koch snowflake structures are better than those with 

Cylinder structures. Here, the sensitivity is proportional to the 

surface area to volume ratio [16]. Theoretically, the surface area 

to volume ratio of the Menger sponge, Koch snowflake cube 

and Cylinder are 1.528, 0.919 and 0.439 respectively. This 

indicates that the sensors with Menger sponge structures and 

Koch snowflake structures could potentially have 3.48 times 

and 2.09 times, respectively, greater sensitivity compared to the 

Cylinder structure. Fig. 9 (b) shows that sensors with Koch 

snowflake structures have around 2.18 times the sensitivity 

compared to the Cylinder structure, at 3~12ppm NO2. However, 

the sensors with Menger sponge structures are no better than 

those with Koch snowflake structures, with an increase in 

sensitivity of around 2.05 compared to the Cylinder structure. 

Potential reasons for this, maybe a limitation of the 3D printer, 

which cannot fully fabricate the internal pore structure. Also, 

the inner pore structure of the Menger sponge may increase the 

time taken for the target gas to contact the sensing material, and 

thus the sensors may not have fully responded by the end of the 

experimental period. In the future, we will use a micron level 

printing approaches and update our gas testing system to reduce 

the time taken for the target gas to arrive at the internal gas 

sensing surfaces. In addition, this micron level printing may 

allow us to attain even higher surface area to volume ratios, 

which theoretically may be 105 greater than that of Cylinder 

(Fig. 2). It can be speculated that much higher sensitivity can 

be obtained with these substrate structures.  

 
                                  (a)    

 
(b) 

Fig. 9. Response curves (a) and the averaged response 

curves/fitting Eq. (b) of sensors to NO2 at 25 ℃, 10% RH. 

Gas sensor responses using carbon nanotubes can be affected 

by temperature and humidity [30]. Thus, experiments were 

repeated at 40 and 55℃ at 10% RH, with the corresponding 

results are shown in Fig. 10. The process of gas humidification 

is described in Fig. S1, Supporting Information. The resistance 

of the sensors decreased as the temperature increased (Fig. S2, 

Supporting Information). The responses increased at 40℃ and 

decreased further at 55℃. This is likely due to the change of 

adsorption and desorption rate with temperature. There was 

only one sensor (outlier), with a Cylinder structure that had a 

higher response than some other sensors with fractal structures 

(Fig. S3, Supporting Information). Fig. 10 shows that the 

averaged response of the sensors with Cylinder structure are 

lower than those with fractal structures. 

 
Fig. 10. Averaged response curves of the sensors to NO2 at 

25℃, 40℃ and 55℃ at 10% RH. 

The sensing tests of NO2 (0.25, 3, 6, 9 and 12 ppm) at 30℃, 

20% RH, 50% RH and 80% RH were also conducted, and the 

corresponding results are shown in Fig. 11. The sensor 

resistance and response increased as the humidity level was 

raised (Fig. S4, Supporting Information). The reason behind 

this is associated with the adsorption of water molecules. For 

MWCNTs, the main absorption route is physical and the 
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accumulation pores and outer surface of the accumulation, 

formed by intertwining of MWCNTs, are the main adsorption 

centers. The adsorption of water molecules weakens the van der 

Waals force between MWCNTs, which increases the gaps 

among MWCNTs. This in turn increases the porosity and 

enhances the adsorption performance. The results indicate that 

sensors with fractal structures have a higher response than those 

with a Cylinder structure, except one outlier (Fig. S5, 

Supporting Information). As can be seen in Fig. 11, the 

response and sensitivity of sensors with fractal structures are 

greater than those of Cylinder under different humidity 

conditions.  

 
Fig. 11. Averaged response curves of sensors to NO2 at 20% 

RH, 50% RH and 80% RH at 30℃.  

Fig. 12 shows the stability of one of the Menger sponge 

sensors at 25℃, 10% RH in N2 and 300 ppm NO2. The 

measurements were conducted for 7 days and the resistances in 

N2 and 300 ppm NO2 were recorded at daily intervals. In Fig. 

12, the baseline resistance changes between 3373 Ω and 3377 

Ω, while the response resistance varies between 2959 Ω and 

2982 Ω. It shows that the maximum deviation of the baseline 

and response resistances is less than 5% from the initial value, 

reflecting an excellent stability over the test period (Fig. S6, 

Supporting Information).  

 
(a) 

 
(b) 

Fig. 12. Week stability tests of sensors to 300 ppm NO2 at 25°C, 

10% RH: the dynamics response curve of one of the Menger 

sponge sensors to 300 ppm NO2 (a) and the corresponding 

baseline resistance Ra and response resistance Rg (b). 

This work has shown that using fractal substrate geometries 

does lead to an increase in response over traditional substrates, 

at the same scale. A limitation of this study is the dimensions of 

the substrates generated. However, using micron or even smaller 

level 3D printing with high accuracy (or similar manufacturing 

techniques) will produce much smaller substrates and 

potentially, result in much higher sensitivity and reproducibility. 

Another limitation of our study is that the structures were 

fabricated with nylon. It inhibits the use of materials with higher 

operating temperatures, such as metal-oxides. In our following 

work, we will investigate the use of 3D printing of ceramic 

structures to remove this limitation, including the integration of 

metal heater and electrode structures. 

V. CONCLUSION 

In this paper, the influence of substrate structure on gas 

sensor sensitivity was studied. Fractal theory was applied to the 

structural design of the gas sensor substrate. Sensors with 

Menger sponge, Koch snowflake and Cylinder substrate 

structures were fabricated by 3D printing and NO2 was used as 

the target gas to test their performance. Experimental results 

show that the sensors with fractal structures have a greater 

response and sensitivity than those sensors with a Cylinder 

structure. Our next steps will be to develop ceramic based 

fractal structures allowing much higher operating temperatures 

or selecting better gas sensing materials, such as metal oxide 

semiconductor [31] or polymer etc. [32]. 
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