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Abstract—Many methods for ground-based remote sensing
cloud detection learn representation features using the encoder-
decoder structure. However, they only consider the information
from single scale, which leads to incomplete feature extraction.
In this paper, we propose a novel deep network named Dual
Pyramid Network (DPNet) for ground-based remote sensing
cloud detection, which possesses an encoder-decoder structure
with Dual Pyramid Pooling Module (DPPM). Specifically, we
process the feature maps of different scales in the encoder
through dual pyramid pooling. Then, we fuse the outputs of
the dual pyramid pooling in the same pyramid level using
the attention fusion. Furthermore, we propose the Encoder-
Decoder Constraint (EDC) to relieve information loss in the
process of encoding and decoding. It constrains the values and
the gradients of probability maps from the encoder and the
decoder to be consistent. Since the number of cloud images in
the publicly available databases for ground-based remote sensing
cloud detection is limited, we release the TJNU Large-scale Cloud
Detection Database (TLCDD) which is the largest database in
this field. We conduct a series of experiments on TLCDD, and
the experimental results verify the effectiveness of the proposed
method.

Index Terms—ground-based remote sensing cloud detection,
Dual Pyramid Pooling Module, Encoder-Decoder Constraint.

I. INTRODUCTION

CLOUD is an important weather phenomenon, and it
has a great influence on the earth’s radiation budget

and climate change [1], [2]. Hence, cloud observation has
drawn a lot of attention from both academia and industry due
to its wide applications in weather forecasting and military
operations [3], [4]. Cloud observation is mainly classified
into the satellite cloud observation and the ground-based
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Fig. 1. The structures of (a) common-used deep network and (b) DPNet for
ground-based remote sensing cloud detection.

cloud observation [5]–[7]. The satellite cloud observation is
more suitable for describing large-scale cloud information and
changes, while the ground-based cloud observation is good at
reflecting local cloud information [8]–[11]. In addition, the
ground-based cloud observation has many advantages, such
as low equipment cost, simple operation, and easy acquisition
of data. The ground-based cloud observation mainly contains
three tasks, i.e., cloud shape, cloud cover and cloud base
height [12]. In this paper, we focus on ground-based remote
sensing cloud detection which is the key technology for
cloud cover estimation. There are two reasons for the urgent
need to develop an automatic ground-based remote sensing
cloud detection algorithm. Firstly, the detection results marked
by different weather observers may be inconsistent due to
their different skill levels. Secondly, manually labeling cloud
images for ground-based remote sensing cloud detection is
labour intensive and tedious, because this process is pixel-
level labeled. When the ground-based cloud data is huge, the
labeling process is very difficult.

Hence, many methods for ground-based remote sensing
cloud detection have been proposed, and they are roughly
divided into three categories, namely threshold-based methods,
texture-based methods, and deep learning methods. Some
threshold-based methods directly treat R and B values as
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the threshold to distinguish cloud and sky, or employ adap-
tive thresholds, for example, Ostu algorithm and superpixel
segmentation [13], [14]. The texture-based methods utilize
the texture features to describe the local regions of cloud
images [15], [16]. However, the performance of threshold-
based methods and texture-based methods is unsatisfactory,
because these methods are not learning-based, which is easily
affected by the environmental changes.

Recently, Convolutional Neural Network (CNN) achieves
extraordinary performance in many fields such as image
recognition, speech analysis and object detection because of its
deep network structure and changeable perception field [14],
[17], [18]. CNN is also introduced in the field of remote
sensing cloud detection, and many researchers [14], [18], [19]
design the deep network as a structure with the encoder and
the decoder as shown in Fig. 1(a). However, there are two
limitations for these methods. Firstly, in the encoding process,
they only consider the information from one scale, which leads
to incomplete feature extraction. Secondly, the feature maps
are conducted by max-pooling operations in the encoding
process, which results in information loss. Meanwhile, the
convolution operations have a negative impact on edge detail
information.

To overcome the first limitation, we propose a novel deep
network named Dual Pyramid Network (DPNet) for ground-
based remote sensing cloud detection, which possesses an
encoder-decoder structure with Dual Pyramid Pooling Module
(DPPM) as shown in Fig. 1(b). The proposed DPPM combines
the information from different scales of the encoder via fusing
dual pyramids. Specifically, we process the feature maps of
different scales in the encoder via spatial pyramid pooling.
Then, we fuse the feature maps in the same pyramid level from
different scales by learning attention weights which reflect the
importance of different elements in the feature maps. As a
result, we obtain completed features.

Furthermore, we propose the Encoder-Decoder Constraint
(EDC) to relieve information loss. The quality of probability
maps directly determines the performance of cloud detection,
and meanwhile the information communication between the
encoder and the decoder could fully utilize the information
of them. Hence, the proposed EDC constrains the probability
maps from the encoder and the decoder. In order to reflect the
detail information and the local boundary, EDC expects the
values and the gradients of probability maps from the encoder
and the decoder to be consistent, simultaneously.

A large-scale database is necessary for the development
of ground-based remote sensing cloud detection algorithms,
especially for deep learning based algorithms [20]. The large-
scale database could avoid model overfitting and improve the
generalization ability of deep model. However, the publicly
available databases on ground-based remote sensing cloud
detection contain insufficient cloud images, which is difficult
to meet actual demand. For example, Singapore All Weather
Segmentation (SWIMSEG) database [21], CloudSegmentation
database [13], Whole Sky Image SEGmentation (WSISEG)
database [22] and BENCHMARK database [23] have 1013,
100, 400 and 32 cloud images, respectively. In this paper,
we release the TJNU Large-scale Cloud Detection Database

(TLCDD) consisting of 5000 cloud images. To the best of our
knowledge, TLCDD is the largest database for ground-based
remote sensing cloud detection.

The contributions of this paper are summarized into three
aspects. Firstly, we propose DPNet to construct dual pyramids
in the encoder in order to fuse the information from different
scales. Secondly, we propose EDC to constrain the feature
maps of the encoder and the decoder so as to relieve infor-
mation loss. Finally, we release the largest cloud detection
database, i.e., TLCDD, and the proposed method achieves
better performance than other state-of-the-art methods on
TLCDD.

II. RELATED WORK

A. Ground-based Remote Sensing Cloud Detection

At present, more and more researchers are devoted to the
ground-based remote sensing cloud detection. These studies
are mainly composed of threshold-based methods, texture-
based methods, and deep learning methods. The threshold-
based methods usually adopt RGB color values as criteria to
distinguish cloud and sky. For example, Long et al. [2] and
Kreuter et al. [24] proposed to utilize the thresholds of 0.6
and 0.77 on R/B for cloud detection. When the ratio is over
0.6 or 0.77, the pixel is identified as cloud. Souzaecher et
al. [25] recommended to employ B-R for identifying cloud,
and the pixels with B-R>30 are classified as sky. The above
methods directly utilize the fixed threshold to detect cloud,
and easily affected by environmental changes. To overcome
the drawback, some researchers present adaptive threshold
algorithms. Yang et al. [26] calculated the adaptive threshold
based on the B-R feature image using the Otsu algorithm.
The superpixel segmentation algorithm [13], [27] was utilized
to divide the cloud image into a series of subregions, and
further detect cloud in each subregion. Furthermore, texture
feature extraction as a better kind of methods is used in
cloud detection. For example, Başeski et al. [15] applied the
Homogenous Texture Descriptor (HTD) as the complement of
color features for cloud detection. The HTD could describe
the regularity, directionality and coarseness of texture. Tulpan
et al. [16] proposed to utilize six kinds of image moments for
cloud detection, where the image moments include the area
of the image, two edge detectors, a cross detector, and the
elongation and direction of the image. The threshold-based
methods and the texture-based methods solve the difficulty
of manually labeling cloud pixels to a certain extent, but the
performance is unsatisfactory. Thus, the ground-based remote
sensing cloud detection algorithms still need to be improved.

CNN possesses the strong capability of feature represen-
tation, so it has been widely used in many research fields
with excellent performance [17], [19], [28], [29]. Inspired
by this, many researchers design different network structures
under the framework of CNN to improve the performance of
ground-based remote sensing cloud detection. For example,
Dev et al. [18] proposed the CloudSegNet where the basic
structure is designed as the encoder-decoder structure. In the
training stage, CloudSegNet is optimized by daytime and
nighttime cloud images. Xie et al. [14] presented the SegCloud
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Fig. 2. The framework of DPNet. S3 S4 and S5 are the feature maps from Scale3, Scale4 and Scale5 respectively, Y4i and Y5i are the outputs of pyramid
pooling and X1 is the feature maps of the decoder.

model which possesses a symmetric encoder-decoder struc-
ture followed by a softmax classifier. The softmax classifier
realizes the pixel classification and outputs the segmentation
results. Zhang et al. [30] proposed the Multi-scale Attention
Convolutional Neural Network (MACNN) for cloud detection
by exploiting multi-scale information and attention connection
between the encoder and the decoder.

B. Encoder-Decoder Structure for Semantic Segmentation

The task of cloud detection is to classify each pixel of
cloud image into cloud or sky, which is regarded as a two-
category segmentation problem. Hence, we introduce seman-
tic segmentation [31]–[34] in this subsection. The encoder-
decoder structure which mainly includes an encoder and
a decoder dominates the semantic segmentation task [18].
The encoder maps an image to a specific high-dimensional
feature to capture semantic information. The decoder gradually
transforms the high-dimensional feature into the score map for
the sequence segmentation, and it restores object detail and
spatial information. The high-dimensional feature is treated
as the bridge between the original image and the score map.
Furthermore, the skip connection is usually inserted into the
encoder-decoder structure, and it realizes the feature fusion
between the encoder and the decoder [35], which is beneficial
to preserve the detail information from the encoder [23], [36].

Long et al. [37] presented the Fully Convolutional Network
(FCN) for semantic segmentation, which could accept the
image with any size. It utilizes the deconvolution layer to
upsample the feature maps in the last layer in order to restore
to the size of input image. The widely used U-Net [23] is a

typical encoder-decoder network, in which the encoder con-
tains convolution and max-pooling operations and the decoder
restores the feature maps to the original resolution through
convolution and up-sampling operations. Some methods [28],
[34], [38] presented the spatial pyramid structure under the
framework of the encoder-decoder structure to aggregate the
context information based on different regions. However, most
existing encoder-decoder methods extract incomplete features
in the encoding processing, and meanwhile they suffer from
the information loss in the encoding and decoding process.
Therefore, we propose DPNet and EDC to overcome these
limitations.

III. APPROACH

In this section, we first present an overview of the proposed
DPNet as shown in Fig. 2. We then describe the major parts
of DPNet, i.e., encoder-decoder structure and DPPM. Finally,
we introduce how to implement EDC.

A. Overview of DPNet

Encoder-Decoder Structure. We apply the encoder-
decoder structure to conduct the pixel labeling in the cloud
image. The encoder is designed as the common used ResNet-
50 [39] which utilizes the max-pooling operations and the
convolution operations to continuously reduce the size of fea-
ture maps and increase the number of channels. The decoder
employs the up-sampling operations to increase the size of
feature maps, continuously.

Dual Pyramid Pooling Module. The proposed DPPM aims
to extract completed information from cloud images during
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TABLE I
THE STRUCTURE OF ENCODER.

Name Input Size Filters Output Size

Scale1 512× 512


3× 3, 64, s = 2

3× 3, 64, s = 1

3× 3, 128, s = 1

× 1 256× 256

Max-pooling 256× 256 3× 3, s = 2 128× 128

Scale2 128× 128


1× 1, 64, s = 1

3× 3, 64, s = 1

1× 1, 256, s = 1

× 3 128× 128

Scale3 128× 128


1× 1, 128, s = 1

3× 3, 128, s = 1

1× 1, 512, s = 1

× 4 128× 128

Scale4 64× 64


1× 1, 256, s = 1

3× 3, 256, s = 1

1× 1, 1024, s = 1

× 6 64× 64

Scale5 64× 64


1× 1, 512, s = 1

3× 3, 512, s = 1

1× 1, 2048, s = 1

× 3 64× 64

the encoding process. The feature maps from two scales are
conducted by the pyramid pooling to obtain different pyramid
levels. Afterwards, we apply attention mechanism to fuse the
feature maps from different scales under the same pyramid
level. In this way, each pixel is assigned to different attention
weight, which is beneficial to the subsequent decoding process.

Encoder-Decoder Constraint. The information loss occurs
in the process of encoding and decoding, and therefore we
exchange the information between them to overcome this
drawback. The proposed EDC contains two constraints which
expect the probability maps from the encoder and the decoder
to be consistent from different aspects.

B. Encoder-Decoder Structure

The proposed DPNet utilizes an asymmetric encoder-
decoder structure. The encoder consists of five scales, and each
scale contains several blocks. The detailed information of the
encoder is listed in Table I. Here, s represents the size of stride.
Scale2-Scale5 include 3, 4, 6, and 3 blocks respectively, and
each block contains three convolutional layers. Taking Scale5
as an example, it contains 3 blocks where each block consists
of three convolutional layers with the sizes of 1 × 1, 3 × 3
and 1 × 1, and the number of filters are 512, 512 and 2048,
respectively.

The decoder is composed of three up-sampling layers and
three convolutional blocks, and the structure is shown in
Table II. After each up-sampling layer, the size of feature
maps is doubled, and the decoder outputs the feature maps
which have the same size of the input image.

TABLE II
THE STRUCTURE OF DECODER.

Name Input Size Filters Output Size

Up-sampling 64× 64 2× 2, s = 2 128× 128

Conv 128× 128
[
3× 3, 1024, s = 1

]
× 2 128× 128

Up-sampling 128× 128 2× 2, s = 2 256× 256

Conv 256× 256
[
3× 3, 256, s = 1

]
× 2 256× 256

Up-sampling 256× 256 2× 2, s = 2 512× 512

Conv 512× 512


3× 3, 64, s = 1

3× 3, 64, s = 1

3× 3, 16, s = 1

3× 3, 1, s = 1

 512× 512

C. Dual Pyramid Pooling Module

The pyramid pooling [40] is usually inserted into the
segmentation networks, such as PSPNet to exploit contextual
information by pooling feature maps at different pyramid
levels. The pyramid pooling is formulated as:

Yi = P (S, ki), i = 1, 2, 3, 4 (1)

where P refers to the average pooling, S represents the feature
maps, and ki indicates the i-th pyramid level. Normally, there
are four pyramid levels (i = 1, 2, 3, 4), and the bin sizes
of four pyramid levels are 1 × 1, 2 × 2, 3 × 3, and 6 × 6,
respectively. However, the pyramid pooling only considers the
feature maps from one scale, and ignores the information from
different scales. Hence, we propose the dual pyramid pooling
which conducts the pyramid pooling on the feature maps from
different scales and fuse them via the attention fusion. It is
formulated as:

Zi = A(P (S4, ki), P (S5, ki)), i = 1, 2, 3, 4 (2)

where S4 and S5 are the feature maps from Scale4 and
Scale5, and A indicates the attention fusion.

From Eq. 2, we can see that the feature maps from different
scales should be fused together. Some segmentation networks,
such as U-Net [23] and FCN [37] are usually direct addition or
concatenation to fuse the feature maps. They treat all elements
in the feature maps equally, and ignore the importance of
different elements. Hence, we propose the attention fusion to
assign different weights to the elements in order to fuse the
feature maps from different scales after pyramid pooling. The
attention fusion is formulated as:

A(Y4i, Y5i) =WiY4i + Y5i (3)

where Wi is the attetion coefficient of the i-th pyramid level.
Fig. 3 shows the flowchart of attention fusion, where the fea-

ture maps Y4i and Y5i are the outputs of pyramid pooling from
Scale4 and Scale5 respectively. Y4i and Y5i are processed
by the up-sampling operation, the convolutional layer with
the kernel size of 1 × 1, and the rectified linear unit (ReLU)
activation, respectively. Afterwards, the obtained feature maps

Ground-based remote sensing cloud detection using dual pyramid network and encoder–decoder constraint
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are added in the element-wise manner, and then fed into the
convolutional layer with the kernel size of 1×1 and the ReLU
activation to obtain the attention coefficient Wi.

ReLU

ReLU

Conv1×1
Wi

ReLU

Conv1×1

Conv1×1Up-sampling

Up-sampling

Zi

+ +

×Y4i

Y5i

Fig. 3. The flowchart of the attention fusion.

D. Encoder-Decoder Constraint

The encoder-decoder structure dominates the field of cloud
detection, but this structure easily causes the information loss
due to the following two reasons. Firstly, the max-pooling in
the encoder reduces the size of feature maps, which results in
the information loss. Secondly, the convolutional layers have
a negative impact on edge detail information. Furthermore,
after a series of convolutional layers, it is hard to find the
corresponding position in the cloud image.

In order to solve the above-mentioned issues, we propose
EDC to constrain the probability maps, which consists of two
constraint terms. The first constraint term of EDC focuses on
constraining the probability maps from the encoder and the
decoder. Specifically, the feature maps S3 in the encoder are
fed into the up-sampling layer and the Sigmoid function, and
then we obtain the probability map S

′

3 which is the same size
as the input image. The feature maps X1 in the decoder are
input into the Sigmoid function to obtain the probability map
X

′

1. Then, this constraint expects that the probability maps
from the encoder and the decoder are consistent:

L1 =
1

H ×W
||S

′

3 −X
′

1||1 (4)

where H and W are the height and the width of the probability
maps respectively, and || · ||1 is the l1 norm of matrix.

The edge information is vital to the ground-based remote
sensing cloud detection, and therefore the second term of EDC
utilizes the gradients of probability maps of the encoder and
the decoder. It is formulated as:

L2 =
1

H ×W
||G(S

′

3)−G(X
′

1)||2 (5)

where || · ||2 is the l2 norm of matrix, and G is the Prewitt
operator [41] which is utilized to compute the gradient. G
consists of two templates Gx and Gy , where Gx detects
horizontal edges and Gy detects vertical edges. They are
defined as:

Gx =

 1, 0, −1
1, 0, −1
1, 0, −1

 (6)

Gy =

 1, 1, 1
0, 0, 0
−1, −1, −1

 (7)

The expressions of the probability maps S
′

3 and X
′

1 after
going through G are:

G(S
′

3) = Gx ∗ S
′

3 +Gy ∗ S
′

3 (8)

G(X
′

1) = Gx ∗X
′

1 +Gy ∗X
′

1 (9)

where ∗ represents the convolution operation.
The loss of EDC is expressed as:

LE = L1 + αL2 (10)

where α is the parameter to balance the two constraints.
Furthermore, we apply the binary cross-entropy loss after

the probability map X
′

1 to optimize the network:

LG = − 1

H ×W

H×W∑
i=1

yi lnxi + (1− yi) ln(1− xi) (11)

where yi is the ground-truth label, and xi is the element value
of X

′

1. In a word, the total loss of the proposed method is
formulated as:

L = LG + βLE (12)

where β is the parameter to balance the importance of different
components.

IV. EXPERIMENTS

In this section, we evaluate the performance of the proposed
method on TLCDD. We first introduce the TLCDD and the
implementation details of our experiments. Afterwards, we
show the experimental results to verify the superiority of the
proposed method.

A. TLCDD

The TLCDD which consists of 5000 cloud images is utilized
to study the ground-based remote sensing cloud detection.
There are 4208 images for training and 792 images for testing.
It has no cloud image overlap between the training set and
the test set. Each cloud image in the database corresponds
to a ground-truth cloud mask which is jointly annotated by
meteorologists and cloud-related researchers. The cloud image
is stored in PNG format with a pixel resolution of 512× 512.
The collection of all the images in the database lasted for
two years and came from nine provinces of China including
Tianjin, Anhui, Sichuan, Gansu, Shandong, Hebei, Liaoning,
Jiangsu, and Hainan. As a result, the TLCDD guarantees
the diversity of cloud images, which makes the experimental
results convincing. Fig. 4 illustrates the cloud images and the
corresponding ground-truth cloud masks.

Ground-based remote sensing cloud detection using dual pyramid network and encoder–decoder constraint
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Fig. 4. Several cloud samples in TLCDD.

B. Implementation Details and Evaluation Criterions

Before feeding the cloud images into the deep model, we
conduct the preprocessing operations. Specifically, the cloud
images are normalized by the mean values and the standard
deviation values. The horizontal flip is conducted with the
probability of 0.5. The size of images is 512 × 512. The
encoder of DPNet is initialized by the pre-trained ResNet-50.
Specifically, Scale2− Scale5 correspond to conv2x-conv5x
in the ResNet-50 model, respectively. The proposed deep
network is optimized by the SGD algorithm with the weight
decay of 10−9 and the momentum of 0.9. In the training phase,
the initial learning rate is set to 0.001 , and the number of
training epochs is set to 45. In addition, the hyper-parameter
α in Eq. 10 is equal to 1.1 , and β in Eq. 12 is equal to 0.4.

In order to verify the effectiveness of the proposed method,
five quantitative evaluation criterions, i.e., Precision (Pre),
Recall (Rec), F-score (F-s), Accuracy (Acc) and IoU are
applied. The Precision refers to the pixels that are correctly
predicted as the cloud accounting for the pixels that are
predicted as the cloud in the image. The Recall refers to the
proportion of pixels correctly predicted as cloud to all ground-
truth cloud pixels in the image. The F-score considers both
Recall and Precision, and it is interpreted as the harmonic
mean of Precision and Recall. The Accuracy refers to the
proportion of pixels that are correctly predicted as cloud and
sky to all pixels in the image. We also consider IoU in the
evaluation criterions for the cloud detection task. It quantifies
a ratio of overlap between the intersection and the union of

two sets. The two sets indicate the set of predicted cloud pixels
and the set of ground-truth cloud pixels. The ratio can also be
interpreted as the number of true positives over the sum of
true positives, false positives, and false negatives. In a word,
the five evaluation criterions are defined as:

Pre =
TP

TP + FP
(13)

Rec =
TP

TP + FN
(14)

F − s = 2× Pre×Rec
(Pre+Rec)

(15)

Acc =
TP + TN

TP + TN + FP + FN
(16)

IoU =
TP

TP + FP + FN
(17)

where TP, FP, TN and FN denote true positives, false positives,
true negatives and false negatives, respectively.

C. Experimental Results

1) Ablation Studies: The advantage of the proposed DPNet
is to learn rich and accurate features for cloud detection.
We conduct ablation studies to verify the role of different
components in DPNet, namely DPPM and EDC.

Framework1 only utilizes the encoder-decoder structure to
detect clouds, that is it does not apply DPPM and EDC.

Ground-based remote sensing cloud detection using dual pyramid network and encoder–decoder constraint
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TABLE III
COMPARISONS WITH DIFFERENT ABLATION METHODS.

Methods Pre (%) Rec (%) F-s (%) Acc (%) IoU (%)

Framework1 67.21 76.24 66.21 76.83 56.82

Framework2 68.35 78.19 67.46 78.61 57.27

Framework3 69.18 79.93 69.09 79.57 59.82

Framework4 70.12 81.07 71.12 81.43 62.07

Framework5 69.18 80.13 71.05 79.81 60.37

Framework6 69.02 79.07 70.12 79.43 60.66

Framework7 70.16 80.33 71.77 80.20 62.47

Ours 72.09 82.18 72.96 85.70 64.38

Framework2 employs the encoder-decoder structure with
one pyramid pooling to extract the information from one scale.
This structure is similar to PSPNet.

Framework3 applies dual pyramid pooling to extract the
features from different scales and directly concatenate them
without the attention fusion.

Framework4 uses the proposed DPPM to learn the features
in the encoder, where the proposed DPPM contains the dual
pyramid pooling and the attention fusion.

Framework5 conducts the cloud detection using the
encoder-decoder structure with the first constraint term of
EDC.

Framework6 inserts the second constraint term of EDC
into the encoder-decoder network.

Framework7 employs the proposed EDC to constrain the
encoder and the decoder.

The results of ablation studies are listed in Table III from
which we can draw four conclusions. Firstly, our method
achieves the best results because we combine the encoder-
decoder structure with DPPM and EDC. Secondly, the per-
formance of Framework2 and Framework3 is better than
that of Framework1, which demonstrates the pyramid pooling
strategy is effective to the cloud detection task. Meanwhile,
the performance of Framework3 is better than that of Frame-
work2, because the dual pyramid pooling could extract the
features from different scales while the pyramid pooling learns
features only from one scale. As a result, the dual pyramid
pooling obtains richer and more complete information which
is beneficial to ground-based remote sensing cloud detection.
Thirdly, Framework4 obtains better results than Framework3
due to the attention fusion which assigns different weights to
the elements of feature maps.

Finally, Framework5 and Framework6 are obtained by
adding the first and second constraints of EDC on the basis
of Framework1, respectively. They obtain better performance
than Framework1, which verifies the effectiveness of the
constraints between the encoder and the decoder. Furthermore,
the results of Framework7 are superior to Framework5 and
Framework6, which proves that the combination of the two
constraints, i.e., EDC has a further performance improvement.
Furthermore, we also study the influence of cloud image
preprocessing. The experimental results are listed in Table IV
where we can see that the results with preprocessing is better

than without preprocessing

TABLE IV
THE RESULTS OF THE INFLUENCE OF PREPROCESSING. “WITH PRE” AND

“WITHOUT PRE” INDICATE THE CLOUD IMAGE WITH PREPROCESSING
AND WITHOUT PROCESSING, RESPECTIVELY.

Methods Pre (%) Rec (%) F-s (%) Acc (%) IoU (%) Time (Hours)

WithPre 72.09 82.18 72.96 85.70 64.38 18.84

Without Pre 71.34 81.65 71.64 84.21 63.98 20.46

2) Comparisons with State-of-the-Art Methods: We com-
pare the proposed method with other methods and the results
of the evaluation criterions are listed in Table V. These
compared methods contain threshold-based methods and deep
learning methods. The threshold-based methods usually in-
clude R/B (0.77) [24], B-R (30) [25], and Otsu [26]. The first
two methods belong to the fixed threshold algorithms which
perform different operations on R channel and B channel.
Otsu is an adaptive threshold algorithm, which performs the
segmentation task on the grayscale image, such as B-R by
maximizing the inter-class variance.

We also compare the proposed method with the deep
learning methods, for example, FCN [37], U-Net [23], Cloud-
SegNet [18] and SegCloud [14]. FCN is the first network
with fully convolutional layers for pixel-wise prediction. It
utilizes five down-sampling blocks to extract the feature maps,
and three deconvolution layers to restore the feature maps.
It defines the skip architecture to combine deep-semantic
information and shallow-appearance information. U-Net is a
symmetrical encoder-decoder network which has four max-
pooling blocks and four up-sampling blocks. It also utilizes the
skip architecture on each corresponding convolutional block.
CloudSegNet is composed of the encoder including three
convolutional layers and three max-pooling layers, and the
decoder including four deconvolution layers and three up-
sampling layers. SegCloud consists of 10 convolutional layers
and 5 max-pooling layers in the encoder, and 5 up-sampling
layers and 10 convolutional layers in the decoder. Then, the
outputs of decoder are fed into a softmax classifier.

From Table V, we can draw the following conclusions. First-
ly, the proposed method achieves the best results. Specifically,
it outperforms the second highest results by 3.29%, 1.68%,
5.64%, 7.06% and 6.22% in Pre, Rec, F-s, Acc and IoU,
respectively. Secondly, the adaptive threshold method achieves
better performance than the fixed threshold methods, because
the adaptive threshold could vary with different cloud images.
Thirdly, the detection results of the deep learning methods
are better than those of the threshold-based methods. It is
because the deep learning methods automatically learn features
from cloud images through multiple layers. Meanwhile, the
threshold-based methods directly apply the thresholds on the
cloud images without feature learning, which is difficult to
adapt to the environmental changes.

In order to intuitively observe the effectiveness of the
proposed method, we show the predicted cloud masks of
different methods in Fig. 5. From the figure, it can be seen
that the detection results of the deep learning methods (column

Ground-based remote sensing cloud detection using dual pyramid network and encoder–decoder constraint
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

Fig. 5. The predicted cloud masks of different methods. (a) input images, (b) R/B (0.77) , (c) Otsu, (d) FCN, (e) U-Net, (f) SegCloud, (g) PSPNet, (h) Ours,
(i) ground-truth cloud masks.

TABLE V
THE EVALUATION RESULTS OF DIFFERENT METHODS ON TCLDD.

Methods Pre (%) Rec (%) F-s (%) Acc (%) IoU (%)

R/B (0.77) ( [24]) 65.88 22.55 25.54 69.11 18.95

B-R (30) ( [25]) 50.08 13.75 15.08 66.41 11.49

Otsu (B-R) ( [26]) 57.91 61.47 50.80 66.92 38.34

FCN ( [37]) 63.20 73.77 57.00 66.49 46.75

CloudSegNet ( [18]) 64.46 77.61 57.79 64.59 47.78

U-Net ( [23]) 68.80 80.43 67.32 74.13 58.16

SegCloud ( [14]) 68.35 80.50 66.95 73.06 57.76

PSPNet ( [26]) 68.74 77.75 67.00 78.64 57.43

Ours 72.09 82.18 72.96 85.70 64.38

(d) - (h)) are better than those of the threshold-based methods
(column (b) - (c)). The proposed method shows promising
performance in the difficult regions, for example the red
rectangles in column (b) - (i) .

3) Parameter Analysis: In this subsection, we evaluate the
the input of DPPM and the influence of the hyper-parameters
including the number of pyramid levels in DPPM, the coeffi-
cients α in Eq. 10 and β in Eq. 12.

The input of DPPM. In this paper, we propose the dual
pyramid pooling on the feature maps from two different scales.
However, which two scales are selected is important for the
detection results. We conduct the experiments with different
two scales and the results are illustrated in Fig. 6. From the
figure we can see that it is reasonable to choose Scale4 and
Scale5 as the input of DPPM.

The number of pyramid levels in DPPM. The number of

Methods Pre (%) Rec (%) F-s (%) Acc (%) IoU (%)

Prepro 72.09 82.18 72.96 85.7 64.38

No-Prepro 71.34 81.65 71.64 84.21 63.98

Precision Recall F-score Accurary IoU Precision Recall F-score Accurary IoU
2, 3 69.12 79.54 69.21 79.32 59.68 (1, 2) 69.53 79.42 70.72 80.78 61.87
2, 4 69.83 80.21 70.42 80.54 60.32 (1, 2, 3) 70.57 80.61 71.73 82.45 62.28

2, 5 70.61 81.04 71.01 81.16 62.8 (1, 2, 3, 4) 70.76 81.24 71.89 83.12 63.45
3, 4 70.24 81.7 71.98 81.93 62.04 (1, 2, 3, 6) 72.09 82.18 72.96 85.7 64.38
3, 5 71.09 80.56 72.74 83.39 63.11 (1, 2, 3, 6, 8) 70.49 81.41 72.06 83.23 63.44
4, 5 72.09 82.18 72.96 85.7 64.38

Precision Recall F-score Accurary IoU
Precision Recall F-score Accurary IoU 0.2 69.78 79.43 71.7 81.83 62.12
69.23 79.02 69.75 81.02 61.32 0.3 70.39 80.75 72.41 83.2 63.71

0.8 69.98 79.56 70.02 81.53 61.78 0.4 72.09 82.18 72.96 85.7 64.38
0.9 70.79 81.07 71.28 83.01 63.02 0.5 70.21 81.08 71.72 83.35 62.97
1 72.09 82.18 72.96 85.7 64.38 0.6 69.39 80.31 71.03 82.12 61.61
1.1 71.02 81.02 72.1 82.96 62.78
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Fig. 6. The detection results with different inputs of DPPM.

pyramid levels in DPPM is related to extract and aggregate
the feature maps, and therefore we conduct experiments with
different number of pyramid levels. The results are shown in
Fig. 7 where we can see that when the number of pyramid
levels in DPPM is set to 4 and the bin sizes are 1× 1, 2× 2,
3× 3 and 6× 6 respectively, the performance is the best.

The coefficient α in Eq. 10. The coefficient α is used
to balance the two constraints in EDC, and the detection
results with different α are listed in Fig. 8. The detection
results increase when α gets larger, while the detection results
decrease after 1.1. Hence, we set α to 1.1 in the experiments.

The coefficient β in Eq. 12. The detection results with
different β are illustrated in Fig. 9. It can be seen that when
β is equal to 0.4, the proposed method achieves the highest
detection results.

Ground-based remote sensing cloud detection using dual pyramid network and encoder–decoder constraint
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Methods Pre (%) Rec (%) F-s (%) Acc (%) IoU (%)

Prepro 72.09 82.18 72.96 85.7 64.38

No-Prepro 71.34 81.65 71.64 84.21 63.98

Precision Recall F-score Accurary IoU Precision Recall F-score Accurary IoU
2, 3 69.12 79.54 69.21 79.32 59.68 (1, 2) 69.53 79.42 70.72 80.78 61.87
2, 4 69.83 80.21 70.42 80.54 60.32 (1, 2, 3) 70.57 80.61 71.73 82.45 62.28

2, 5 70.61 81.04 71.01 81.16 62.8 (1, 2, 3, 4) 70.76 81.24 71.89 83.12 63.45
3, 4 70.24 81.7 71.98 81.93 62.04 (1, 2, 3, 6) 72.09 82.18 72.96 85.7 64.38
3, 5 71.09 80.56 72.74 83.39 63.11 (1, 2, 3, 6, 8) 70.49 81.41 72.06 83.23 63.44
4, 5 72.09 82.18 72.96 85.7 64.38

Precision Recall F-score Accurary IoU
Precision Recall F-score Accurary IoU 0.2 69.78 79.43 71.7 81.83 62.12
69.23 79.02 69.75 81.02 61.32 0.3 70.39 80.75 72.41 83.2 63.71

0.8 69.98 79.56 70.02 81.53 61.78 0.4 72.09 82.18 72.96 85.7 64.38
0.9 70.79 81.07 71.28 83.01 63.02 0.5 70.21 81.08 71.72 83.35 62.97
1 72.09 82.18 72.96 85.7 64.38 0.6 69.39 80.31 71.03 82.12 61.61
1.1 71.02 81.02 72.1 82.96 62.78
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Fig. 7. The detection results with different number of pyramid levels in
DPPM. The numbers in the bracket indicates the number of pyramid levels
and the bin sizes of pyramid levels. For example, (1, 2, 3) represents that
there are three pyramid levels and the bin sizes of the three pyramid levels
are 1× 1, 2× 2 and 3× 3, respectively.

Methods Pre (%) Rec (%) F-s (%) Acc (%) IoU (%)

Prepro 72.09 82.18 72.96 85.7 64.38

No-Prepro 71.34 81.65 71.64 84.21 63.98

Precision Recall F-score Accurary IoU Precision Recall F-score Accurary IoU
2, 3 69.12 79.54 69.21 79.32 59.68 (1, 2) 69.53 79.42 70.72 80.78 61.87
2, 4 69.83 80.21 70.42 80.54 60.32 (1, 2, 3) 70.57 80.61 71.73 82.45 62.28

2, 5 70.61 81.04 71.01 81.16 62.8 (1, 2, 3, 4) 70.76 81.24 71.89 83.12 63.45
3, 4 70.24 81.7 71.98 81.93 62.04 (1, 2, 3, 6) 72.09 82.18 72.96 85.7 64.38
3, 5 71.09 80.56 72.74 83.39 63.11 (1, 2, 3, 6, 8) 70.49 81.41 72.06 83.23 63.44
4, 5 72.09 82.18 72.96 85.7 64.38

Precision Recall F-score Accurary IoU
Precision Recall F-score Accurary IoU 0.2 69.78 79.43 71.7 81.83 62.12
69.23 79.02 69.75 81.02 61.32 0.3 70.39 80.75 72.41 83.2 63.71

0.8 69.98 79.56 70.02 81.53 61.78 0.4 72.09 82.18 72.96 85.7 64.38
0.9 70.79 81.07 71.28 83.01 63.02 0.5 70.21 81.08 71.72 83.35 62.97
1 72.09 82.18 72.96 85.7 64.38 0.6 69.39 80.31 71.03 82.12 61.61
1.1 71.02 81.02 72.1 82.96 62.78
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Fig. 8. The detection results with different α in Eq. 10.

V. CONCLUSION

In this paper, we have proposed DPNet for ground-based
remote sensing cloud detection. Specifically, we first learn the
feature maps from different scales using the encoder network,
and then we feed the feature maps of two scales into DPPM
which is composed of the dual pyramid pooling and the
attention fusion to obtain complete and discriminative features.
In order to solve the problem of information loss, we propose
EDC to constraint the information of probability maps from
the encoder and the decoder. In addition, we release the largest
ground-based cloud database TLCDD, which is necessary to
promote the research of ground-based remote sensing cloud
detection. The experiments on TLCDD have demonstrated the
effectiveness of the proposed method.
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