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A model developed by [1] is considered for film-to-

film surfactant transport around a meniscus within a

foam, with the transport rate dependent upon film-

to-film tension difference. The model is applied to

the case of a five-film device, in which motors are

used to compress two peripheral films on one side of

a central film and to stretch another two peripheral

films on the central film’s other side. Moreover it

is considered that large amounts of compression or

stretch are imposed on peripheral films, and also

that compression or stretch might be imposed at

high velocities (relative to a characteristic velocity

associated with physicochemical properties of the

foam films themselves). The actual strain that results

on elements within each film might differ from the

imposed strain, with the instantaneous film length

coupled to the actual strain determining the amount

of surfactant currently on each film (and hence

also the amount of surfactant that has transferred

either from or onto films). Quite distinct surfactant

transport behaviour is predicted for the stretched

film compared to the compressed one. In particular

when a film is stretched sufficiently at high enough

velocity, surfactant flux onto it is predicted to become

extremely “plastic”, increasing significantly.

1. Introduction

As well being familiar in everyday life [2–5] and useful in

myriad industrial processes [6–12], foams have long held

a fascination for physicists. The reason for this fascination

is well documented [13,14]: foams films reduce their

surface energy by reducing their surface area, meaning

that films are minimal surfaces subject to the constraint

that bubbles fill certain volumes [15–18].

Similar notions (i.e. constrained minimization of area)
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can also be used to study foam rheology [19]. Starting from a relaxed con�guration, the

boundaries of a foam can be subject to deformation, and the foam needs to �nd new minimal

surface states subject to those additional constraints on the boundary [20–24]. Generally this

involves higher energy cost than before. However for suf�cient deformation, it may be the case

that certain �lms shrink away to zero size, so bubbles formerly in contact will detach from

one another and other bubbles will come into contact in their place, forming new �lms [22].

This process, known as a topological transformation [13,25,26], helps the surface energy to relax

thereby allowing the foam to yield plastically [20,23,24], and subsequently to approach a new

mechanical equilibrium.

Despite the very valuable insights into foam physics and/or foam rheology that can thereby

be gained, the body of work described above neglects one important aspect of foams, namely

physical chemistry. In fact, aqueous foams are typically produced with the aid of chemical

additives i.e. surfactants [27]. As soon as one starts deforming the foam �lms, necessarily

surfactant starts moving around also [28–30]: physicochemical effects associated with surfactant

transport thereby couple with foam �ow and foam �lm deformation [31–38].

The behaviour of the foam then relies on the interplay between many different time scales [31,

32,39–45] involving at the very least a characteristic time scale for imposed deformation, a

characteristic time scale for mechanical relaxation of the foam, and a characteristic time scale

for physicochemical relaxation of the foam, i.e. a time scale associated with surfactant transport.

If there happen to be multiple mechanisms for surfactant transport [46], there may of course be

more than one physicochemical time scale.

In many ways these physicochemical aspects of foams are more dif�cult to deal with than the

physical (i.e. minimal surface) aspects are: foam �lm geometry can be easily observed directly,

but individual surfactant molecules cannot. Hence information about surfactant behaviour must

be inferred from other measurements [47,48], often utilising techniques that determine surface

tension [49,50]. What is known is that stretching the �lm depletes the amount of surfactant on the

surface, leading to an increase in �lm tension [51], a phenomenon known as Gibbs elasticity [52].

Although the in�uence of surfactants upon foam �lm surfaces is thereby well documented,

very often physical chemistry studies like these have focussed upon geometrically simple

systems, either the interface of a single droplet or a single bubble or indeed just a single

�lm [28,47,53–55]. Whilst studies like these do give valuable insights into surfactant transport

within and along individual �lm surfaces, they still fall short of understanding how surfactant

is transported within a foam as a whole. Indeed one mechanism that studies on individual �lms

cannot capture, but which must be relevant in foams (albeit neglected in at least one previous

study [38] owing to lack of an adequate model) is surfactant transport from a foam �lm to its

neighbouring �lms [56].

This mechanism certainly will be relevant in the aforementioned topological transformation

process [13,20,23]. Films that shrink and then disappear on the approach to the topological

transformation presumably must transport surfactant over to neighbours. Meanwhile new �lms

that are created during the topological transformation start out with small size, but are necessarily

stretched as the foam then relaxes mechanically. Stretching in isolation would cause the �lm to

deplete in surfactant, but this can be compensated if it receives surfactant from its neighbours.

Speci�cally this requires a surfactant �ux around the menisci joining any neighbouring �lms to

the newly formed �lm of interest.

There have been various hypotheses [57–59] for what the surfactant �ux should be around

such menisci, all based on the idea that Marangoni effects drag material from low tension (high

surfactant concentration on the surface) to high tension (low surfactant concentration on the

surface). Often though hypotheses like these have been largely empirical. Nevertheless a recent

study [1] (see also [60] for a brief commentary thereon) including both a rigorous �uid mechanical

analysis and an experimental study (using the same apparatus already introduced in [56]) has

now placed these sorts of hypotheses on a �rmer basis.
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The �uid mechanical analysis of [1] identi�ed clearly the main challenge with determining

�lm-to-�lm surfactant �uxes, namely so called geometrical frustration. At a meniscus, also known

in the context of foams as a Plateau border [13], three �lms meet. As a result, a �lm that is passing

surfactant to or receiving surfactant from one of its neighbours only communicates with that

neighbour on one side. The other side of the �lm in question contacts a different neighbour,

possibly in a very different state from the neighbour on the original side, and hence possibly

involving a different amount of surfactant transport. Close to a meniscus, a model therefore

ought somehow to account for different sides of an individual �lm having different amounts

of surfactant (a point we will return to in section 2(b)iii), even though further away from the

meniscus, such differences are less signi�cant.

Meanwhile, the experimental system studied by [1] whilst not quite the same as what happens

during a topological transformation, nor anywhere near as complex as a general foam, is

nevertheless far more complex than just a single �lm would be. Speci�cally it was a �ve-�lm

device (see e.g. Figure 1) with a central �lm connecting to four peripheral �lms, two on each side

of the central �lm. The system could be driven by motors, such that the two peripheral �lms on

one side of the central �lm are compressed, and the two peripheral �lms on the other side are

stretched. Surfactant could then be transported from the compressed �lm to the central �lm and

from the central �lm to the stretched �lm (more detail on this is given in section 2(a)). However

such transport is affected, as already alluded to above, by geometrical frustration (see Figure 1(c)).

The system permitted a constitutive relation between �lm-to-�lm tension difference and

surfactant �ux around the meniscus [1] to be proposed and tested (detailed discussion of the

relation itself is deferred to section 2(b)). Using this constitutive relation, equations were proposed

(again detailed discussion is given later, namely in section 2(c)) governing the evolution of how

much surfactant �nds its way from �lm to �lm, both while motors are switched on and after

they are switched off. However these equations were only solved by [1] in a limited scenario in

which just small amounts of compression or stretch were imposed (i.e. in a limit of small imposed

strains), and hence just small amounts of surfactant were transferred. Solutions for the surfactant

transport involving simple exponential decays then resulted.

The constitutive relation developed by [1] was not itself restricted to small imposed strains.

It is merely the case that when [1] developed a model for the �ve-�lm device as a whole (the

constitutive relation being just one of the ingredients of that model), solutions were only tackled

in the limit of small imposed compression or stretch. The purpose of the present work is to return

to the model of [1] but imposing larger amounts of compression or stretch, beyond the regime of

validity of the aforementioned simple exponential solutions. As we will see, surfactant manages

to escape from the compressed �lm, without accumulating excessively, even if the compression

is very strong. Meanwhile for the stretched �lm, if a signi�cant amount of stretch is imposed at

a suf�cient rate, the constitutive relation allows surfactant to be transported rather more quickly

onto the �lm. Even though the present work treats only the �ve-�lm device of [1] and not a

general foam, gaining insights into behaviours of �lms subject to large amounts of compression

or stretch is deemed of interest: the aforementioned topological transformations occurring in a

general foam do of course involve �lms subject to large amounts of compression or stretch.

The rest of this work is laid out as follows. In section 2 we review the constitutive relation

of [1] and surfactant transport equations that it implies. In section 3 we explain how to solve these

equations even in a scenario of large imposed strains. Results obtained from these solutions are

presented/discussed in section 4. Conclusions are given section 5. Some technical details of both

the model and the solution procedure are relegated to appendices (in supplementary material).

2. Model and governing equations

In this section we review the model and governing equations proposed by [1]. The presentation

is given within three subsections. The �rst of these (section 2(a)) looks at surfactant transport

around a meniscus. Then section 2(b) considers how to relate that transport to �lm-to-�lm tension

differences. After that section 2(c) then shows how to incorporate strains that are imposed on
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(a)

stretched

compressed

(b)

stretched
compressed

(c)

no motion

flow

flow

flow

no motion

stretched

flow

compressed

compressed stretched

(d)

initial time t

Figure 1. Sketch of the �ve-�lm device. (a) 3-D view. (b) 2-D view showing initial state (left), stretching or compression

by a motor (middle) and the state after motor motion is complete (right). (c) Zoomed view close to the meniscus for the

compressed �lm (left) and stretched �lm (right). This shows geometrical frustration, i.e. close to the meniscus, it is not

possible to have the same �ow on both sides of every �lm. (d) Lagrangian �lm elements (colour coded) which are used

to determine the amount of surfactant on each �lm in the �ve-�lm device. It is �rst identi�ed (via the colour coding) which

Lagrangian elements are on given �lm at a given time t subject to compression or stretch (right) and then the length

which those elements had initially, prior to any compression or stretching, is determined (left), from which the amount of

surfactant is then known.
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various �lms by the action of motors. In particular, section 2(c) is formulated in a fashion that

lends itself to dealing with large strains, involving a slightly different way of expressing the model

than the formulation that [1] used. The formulations are nonetheless equivalent. Readers already

familiar the work of [1] may wish to skip directly to section 2(c) and in particular equation (2.13)

which expresses the model in a compact and elegant form.

(a) Surfactant transport around a foam meniscus

Considering the compressed �lm in the �rst instance, the amount of surfactant on the �lm at any

instant is represented by a quantity L�

0 , which is de�ned as follows. Accounting just for the �lm

elements that are currently on the compressed �lm, not those that have already been transferred

from the compressed �lm to the central �lm (see Figure 1(d) for an illustration), the value of L�

0

represents the length that these elements had before the structure was set into motion.

If we happen to know the instantaneous velocity U� at the meniscus (in the direction from

the compressed �lm to the central �lm), then we can determine how L�

0 evolves with time t.

Speci�cally it was proposed [1]

dL�

0 =dt=�U�=(1 + "�) (2.1)

where "� is the instantaneous strain in the compressed �lm upstream of the meniscus. Here "� is

negative (�1<"� < 0), i.e. the �lm is compressed. Thus jdL�

0 =dtj exceeds the value of U�, which

follows because, for a given velocity at the meniscus, a greater surfactant �ux results if surfactant

has been concentrated due to the �lm elements having been already compressed.

An analogous relationship applies for the stretched �lm

dL+
0 =dt=U+=(1 + "+); (2.2)

which we interpret as follows. The value of L+
0 refers to the original length (before the structure

was set into motion) of all the �lm elements that are currently on the stretched �lm. Not all

these elements will have originated on the stretched �lm however. Instead some of them might

have arrived from the central �lm (again see Figure 1(d) for an illustration). Moreover the

instantaneous velocity U+ is de�ned at the meniscus in the sense from the central �lm to the

stretched �lm. Also the strain "+ in the stretched �lm downstream of the meniscus is positive. A

consequence is that dL+
0 =dt is smaller than U+. For a given velocity at the meniscus, surfactant

�ux is less if surfactant is depleted due to having stretched �lm elements.

To complete the model of [1], it is necessary to provide constitutive relations to determine the

velocities U� and U+. These are discussed in the next section.

(b) Constitutive relations for velocities at the menisci

Velocities U� and U+ at the menisci were taken by [1] to be functions of the differences in

tensions between adjacent �lms (with �lm tensions being twice the surface tension here, as

�lms have two sides). Accordingly differences in �lm tensions are discussed in section 2(b)i. The

amounts of surfactant �ux that these tension differences then manage to produce are discussed in

section 2(b)ii (compressed case) and section 2(b)iii (stretched case). As we will see, the stretched

case turns out to be somewhat more complicated than the compressed one.

(i) Differences in �lm tensions

The tension differences required are respectively between the central �lm and the compressed

�lm, and between the stretched �lm and the central �lm, and will be denoted ��c� and �c+�.

Both of these tension differences (central to compressed, and stretched to central) are expected

to be positive because the compressed �lm should have the lowest tension of all, the central �lm

should have an intermediate tension and the stretched �lm should have the highest tension. It

was argued by [1] that on symmetry grounds the central �lm does not undergo either stretching
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or compression to any signi�cant degree, and hence is assumed to have a tension that is always

close to an equilibrium tension �e. It follows then that

��c� = ��e�
� (2.3)

�c+� = �e�
+ (2.4)

where �e�
� is the deviation from equilibrium tension in either the compressed or stretched �lm.

This should be negative in the compressed �lm, but positive in the stretched �lm, i.e. it should

have the same sign as the �lm strain "�. A Gibbs elasticity model was then invoked by [1] relating

the �lm tension deviation from equilibrium to the �lm strain. This gave

�e�
� =2E "�=(1 + "�) (2.5)

where the factor 2 recalls that �lms have two sides, and where E is the Gibbs elasticity parameter.

Although the value of E could in principle itself vary with strain, it was treated by [1] as

being constant. As we will see (in section 2(c)), this turns out to be convenient mathematically

as it makes the system somewhat easier to solve. Physically what equation (2.5) means is as

follows: although �e�
� is clearly nonlinear in "�, if it is plotted instead against the surfactant

concentration on the �lms, a straight line plot then results [1] as surfactant concentration turns

out to scale inversely with 1 + "�, and also �e�
� � 2E � 2E=(1 + "�).

Moreover in the experimental work carried out by [1], �lm strains could be determined by

measuring �lm thickness (using interferometric techniques): the more �lm elements are stretched,

the thinner they become. Meanwhile �lm tension differences could be determined experimentally

by measuring the angles at which �lms meet at a meniscus, these angles being found in turn via

the displacement of the meniscus relative to its equilibrium position: �lms meeting at unequal

angles imply unequal tension. Since �lm strains and �lm tensions can thereby be determined via

the above mentioned measurements, and the values thus obtained compared with equation (2.5),

experimental support is available for using equation (2.5) with E treated as constant. As alluded

to earlier, this makes the system easier to solve.

To summarise we reiterate the signs of various terms. Recalling that "� < 0 in the compressed

�lm, it follows from equation (2.5) that �e�
� < 0, i.e. tension is less than equilibrium as we

expect. On the other hand, for the stretched �lm "+ > 0, so that �e�
+ > 0, i.e. tension exceeds

equilibrium. Via equations (2.3)–(2.4) it then follows that ��c� and �c+� have the correct

signs (both positive) to drive surfactant �ux around the menisci in the expected directions (from

compressed �lm to central �lm and from central �lm to stretched �lm), and so we can proceed to

consider constitutive relations expressed in terms of these tension differences.

(ii) Constitutive relation for compressed �lm

In the �rst instance, the compressed �lm is considered. By examining numerous sets of

data, it was found [1] that there was a proportionality relationship between U� and ��c�

or equivalently a proportionality relationship between U� and a dimensionless quantity

��c�=(2E), remembering here that E is treated as being constant. The coef�cient of

proportionality, which has units of velocity, was denoted U�. This coef�cient can be thought of as

a property of the foam �lm, but is independent of how quickly the �lm is compressed. A formula

was also proposed [1] for how U� should depend on various physicochemical properties of the

�lm (see appendix A), and by using it, different data sets could be collapsed together well. In

the case of the compressed �lm, proportionality between U� and ��c�=(2E) could continue to

apply even for ��c�=(2E) values well in excess of unity, i.e. U� well in excess of U�. The only

restriction was an obvious physical one, i.e. the central �lm remains by assumption at equilibrium

tension whilst the compressed �lm can have a much smaller tension, so that ��c� can never

exceed the equilibrium tension (denoted �e) but may well exceed 2E.

Given that tension difference and strain are related via equation (2.5), it turns out to be

convenient to rewrite U� in terms of strain, remembering also here that "� is a negative quantity.
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Via equation (2.3) and equation (2.5) it follows

U� =�U�"�=(1 + "�) (2.6)

and thence (via equation (2.1))

dL�

0 =dt=U�"�=(1 + "�)2: (2.7)

We will revisit this equation later on (see equation (2.12)). Note that [1] did not formally derive

this equation in the speci�c form shown here, but it turns out to be very useful in the large strain

limit that we will consider later on.

(iii) Constitutive relation for stretched �lm

Now we return to the stretched �lm. Examining numerous sets of data, a proportionality

relationship was again found [1] between U+ and �c+�=(2E), with the proportionality

coef�cient being the same U� as before. This led via analogous arguments using now

equation (2.4) and equation (2.5) to

U+ =U�"+=(1 + "+) (2.8)

and thence (via equation (2.2))

dL+
0 =dt=U�"+=(1 + "+)2 (2.9)

which, although again being an equation not formally derived by [1], will be useful later on.

It was argued by [1] that the relationship between meniscus velocity and tension difference

in the stretched case is more constrained than before. The value of �c+�=(2E) (which via

equation (2.4) is equal to �e�
+=(2E)) was not allowed to exceed 1=2, or equivalently (via

equation (2.5)), "+ was not allowed to exceed unity. If "+ ever did attain the value unity, then

U+ would take whatever value was needed, even a value well in excess of the prediction U�=2

now obtained from equation (2.8), in order to prevent "+ from exceeding unity and thereby in

turn preventing �e�
+=(2E)) from exceeding 1=2. Thus the strain "+ = 1 corresponds to the �ow

U+ at the meniscus suddenly becoming very plastic, which then helps to transport surfactant

onto the stretched �lm.

At �rst sight it seems surprising that the system becomes plastic when �e�
+=(2E) reaches

the value 1=2. After all, according to equation (2.5), the value �e�
+=(2E) could reach up to unity

for an even more strongly stretched �lm ("+ � 1). However the explanation why �e�
+=(2E) is

capped at 1=2 has been provided by [1] as being due to geometrical frustration (already alluded to

in the introduction). Even though conventionally we think of the two sides of a �lm as being the

same in terms of their surface tension, so the �lm tension is exactly twice the surface tension on

either side, and this is indeed true over most of the �lm length, suf�ciently close to the meniscus

this rule does not apply (see Figure 1(c)). Locally �ow might be different on different sides of a

�lm, and that impacts surface tension. Film tension remains the sum of the surface tensions either

side of the �lm, albeit the tensions either side need not be the same.

For instance in the �ve-�lm device (see Figure 1 and in particular Figure 1(c)), one side of

the stretched �lm communicates with the central �lm (and can receive a supply of surfactant

from it), while the other side is in contact only with another stretched �lm. This latter side is

then the one which can deplete in surfactant but, as a result of even very strong depletion, at

most its individual surface tension can increase by an amount E relative to equilibrium, at least

in the model of [1] assuming a constant Gibbs elasticity parameter. This then also sets the cap

on the amount that �lm tension can increase above equilibrium. Moving slightly away from the

meniscus, it was explained by [1] that the two surfaces of the �lm adjust (whilst keeping the same

overall �lm tension) such that the surface tension on each side (and likewise the surface strain

on each side) come into balance, and that then is the strain used to determine the �lm tension

in equation (2.5). The important point as far as the present work is concerned is then as follows.

As long as the correct cap on �lm tension and hence on �lm strain is applied, the constitutive
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equation determining the �lm-to-�lm surfactant �ux can be utilised, even without having full

details of the geometrical frustration induced behaviour at the meniscus itself.

(c) Model incorporating imposed strains in �ve-�lm device

Using the constitutive relations described above that govern U� and U+, a model could be

proposed [1] for the behaviour of the �ve-�lm device. The model developed (see equation

(2.13) below) is a “lumped parameter” model. What this means is that it treats the strain in

the compressed or stretched �lms as being spatially uniform (at least away from the meniscus)

but different from the strain in the central �lm, which (as already alluded to in section 2(b)) by

assumption vanishes. We comment that in what follows, the equations are presented slightly

differently from the way in which [1] chose to present them: speci�cally we work in terms of

�lm strains rather than �lm tensions. This slightly different (albeit mathematically equivalent)

presentation helps to elucidate the mathematical structure of the model, which then makes it

clearer how to solve it (see section 3), particularly when large strains are involved as we consider

here. As mentioned already, even though the constitutive relation of [1] can cope with large

strains, the lumped parameter model for the �ve-�lm device itself was only tackled by [1] in

the small strain limit.

The model begins from the de�nition of the “lumped” strain on the �lms

L� = (1 + "�)L�

0 (2.10)

where L� is the instantaneous length of either the compressed or stretched �lm, and "� and L�

0

are as given previously. We differentiate this with respect to time t to obtain

dL�=dt= (1 + "�)dL�

0 =dt+ L�

0 d"�=dt: (2.11)

We now eliminate terms in L�

0 and dL�

0 =dt from the right hand side of equation (2.11). Using

equation (2.10), it follows L�

0 =L�=(1 + "�). Meanwhile equation (2.7) and (2.9) give us the

expression for dL�

0 =dt which is

dL�

0 =dt=�U�=(1 + "�) =U�"�=(1 + "�)2 (2.12)

noting however that in the case of stretching in particular, the second equality in equation (2.12) is

only valid when "+ < 1. If instead "+ reaches the value unity and stays �xed there, equation (2.10)

gives dL+
0 =dt= (1=2)dL+=dt. In the case when "+ =1, equation (2.2) gives dL+

0 =dt=U+=2 and

hence it follows U+ =dL+=dt. This relation holds instead of U+ satisfying equation (2.8), which

for "+ =1 would give instead a value of U�=2. Thus as long as dL+=dt exceeds U�=2, a jump in

U+ must occur once "+ = 1. The surfactant transport rate dL+
0 =dt likewise jumps from U�=4 to

the aforementioned value (1=2)dL+=dt once "+ = 1.

In the �rst instance though, we consider "+ < 1. Upon multiplying equation (2.11) through by

1 + "�, and substituting from equation (2.12), this leads to

(1 + "�)dL�=dt=U�"� + L� d"�=dt: (2.13)

Now in the �ve-�lm device, L� is a known function of t. Speci�cally if L�

i
is the initial

�lm length (which generally is not the same for the compressed and stretched �lms, see e.g.

Figure 1(b)), and V is the velocity at which the motor compresses or stretches the �lms, we have

L� =L�

i
� V t (2.14)

from which it also follows dL�=dt=�V . Note that the strain imposed on the �lms by the motor

is (L� �L�

i
)=L�

i
��V t=L�

i
. However, owing to �lm-to-�lm surfactant transport, this imposed

strain is in general different from the strain "� that develops on the �lms themselves as given by

equation (2.10).

An important observation is that equation (2.13) now takes the form of an inhomogeneous,

linear, �rst order differential equation, albeit with variable coef�cients, and this is the basis upon

which we can solve it. The fact that the equation still turns out to be linear despite large strains
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being imposed on the �lms, relies in turn upon the �lm tension model in equation (2.5) and

also the linear relation between meniscus velocity and deviation in �lm tension. Solutions of the

system as obtained by [1] assumed small imposed strains or equivalently V t�L�

i
so in effect

approximated the variable coef�cient model by a constant coef�cient one, leading to solutions in

terms of exponentials. However that approximation will not be employed here.

Even without that approximation, there is still a scenario in which a constant coef�cient case is

recovered. The motor is only actually switched up to some time tm. After that, L� is held �xed at a

value L�
m �L�

i
� V tm whereas dL�=dt vanishes: equation (2.13) then reverts to having constant

coef�cients. Thus the model involves an initial motor driving phase followed by a subsequent

relaxation phase, and solutions for both of these phases are required. The way in which to obtain

solutions is outlined next.

3. Obtaining solutions of the model

Details of how to solve the model are given in appendix B, so only a brief outline will be

given here. Solutions of the model are more conveniently expressed in dimensionless form

(see appendix B(a)). Speci�cally we de�ne dimensionless �lm lengths L� =L�=L�

i
, and also

dimensionless measures of the amount of surfactant on the �lms L�

0 =L�

0 =L�

i
, along with

dimensionless times �� =U�t=L�

i
. The dimensionless compression or stretch velocity v is

de�ned as v= V=U�. As appendix A explains, typical values of U� (a physicochemical parameter

of the foam �lms) are well within the range of velocities V that a typical motor could attain.

Hence it is possible to contemplate v� 1 for a motor operating far below its maximum velocity,

but also v� 1 for a motor operating closer to maximum velocity. Strains "� are of course already

dimensionless. However it is important to remember that "� here denotes the actual strain

developed on the �lm elements themselves, accounting for �lm-to-�lm surfactant transport. As

already mentioned (see section 2(c)), these strains differ from the strains imposed on the �lms

by the action of the motors, which turn out to be �V t=L�

i
or equivalently (in dimensionless

variables) �v ��. Indeed the actual strains only become the same as the imposed strains when

�lm-to-�lm surfactant transport is neglected. In general however, during motor motion, actual

strains turn out to be smaller in magnitude than the imposed ones.

From here onward we work in terms of dimensionless variables. With the above de�nitions for

these variables, solutions of the model can now be obtained (see appendix B(b)). The method for

obtaining solutions relies on replacing the dimensionless time �� by a modi�ed time T� which

depends on both �� and v: within appendix B(b), see equations (B.13) and (B.18) along with

Figure B1 and Figure B2. These equations for T� are reproduced below

T� = �
1

j"�
l
j
log(1� v ��) (3.1)

T+ =
1

"+
l

log(1 + v �+): (3.2)

These equations involve a limiting strain "�
l

, which is the actual strain on the �lms that would be

realised in the limit of large T�, corresponding to signi�cant amounts of either compression or

stretch being imposed, albeit in the stretching case not yet accounting for �ux possibly becoming

plastic. The values of "�
l

(see equations (B.11) and (B.16)) depend on the velocity v, with smaller

v leading to smaller magnitude limiting strain. These equations for "�
l

are reproduced below

"�
l

= �v=(1 + v) (3.3)

"+
l

= v=(1� v): (3.4)

In the compressed case, the value of "�
l

, turns out to be negative, so we often write �j"�
l
j to

make its sign explicit. Meanwhile in the stretched case, the formula for "+
l

becomes problematic

as v approaches and eventually exceeds unity. Solutions of the model then need to take a slightly

different form in that case: details are given in appendix C.
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When written in terms of modi�ed time T�, it turns out that the variable coef�cient differential

equation (2.13) converts to a constant coef�cient one, so even though imposed strains no

longer need to be small, solutions just involve exponentials but in terms of T� not ��: see

equations (B.14) and (B.19). These equations for "� are reproduced below

"� = �j"�
l
j(1� exp(�T�)) (3.5)

"+ = "+
l
(1� exp(�T+)): (3.6)

As has been mentioned already, in the compressed case, strains are negative. In the stretched

case, strains are positive, but we can encounter circumstances in which "+ reaches the value

of unity, at which point �lm-to-�lm surfactant transport becomes very plastic (as section 2(b)iii

explained). This occurs at a modi�ed time that we denote T+
pl

or equivalently at an imposed strain

that we denote v �+
pl

. Formulae for T+
pl

and v �+
pl

are easy to derive starting from (3.6) and also (3.2)

(equivalently (B.19) and (B.18)). The relevant formulae are given in equations (B.21) and (B.22),

and ultimately just depend on v. As one might expect, increasing v causes "+ to attain the value

of unity sooner, as will be veri�ed shortly.

The above mentioned approach de�ning a modi�ed time T� is only needed as long as motors

are driving the system. Motors are however stopped at some well-de�ned time ��m or equivalently

some well-de�ned imposed strain v ��m , corresponding to �lm lengths L�
m and instantaneous

strains in the �lms "�m. The system is then allowed to relax by exchanging surfactant even though

�lm lengths are now held �xed. A solution for "� directly in terms of �� is then available. Again

exponential solutions occur: see equation (B.23) within appendix B(b)iii. This equation is also

reproduced below

"� = "�m exp(�(�� � ��m)=L�
m): (3.7)

Once "� is known via either equation (3.5), (3.6) or (3.7), it is simple to �nd the amount of

surfactant on �lms L�

0 , using the value of "� and also the �lm length L�. The equations needed

are dimensionless analogues of (2.10) and (2.14): see equations (B.2)–(B.3) and (B.5)–(B.6).

This completes our brief outline of how solutions are obtained. Results showing how the

various solutions behave are described next.

4. Results

This results section is divided up into three subsections. The �rst of these presents results for the

compressed �lm case (section 4(a)), while the second presents the stretched �lm case (section 4(b)).

Finally systems are considered that are allowed to relax after being either compressed or stretched

(section 4(c)).

(a) Compressed �lm

In the compressed �lm case, we present data �rst for the strain on �lm (section 4(a)i) and then for

the resulting amount of surfactant on the �lm (section 4(a)ii).

(i) Strain during compression

Data for compressive strains "� (or more precisely for "� relative to j"�
l
j) are presented in

Figure 2. Speci�cally in Figure 2(a) we plot this against dimensionless time ��, although an

indication of what this represents in terms of dimensional time is discussed in appendix D. Note

that (see Figure B1(a) in appendix B) for a given time ��, increasing v, leads to an increased T�,

and hence a "� that (according to equation (3.5) or equivalently equation (B.14)) in relative terms

is closer to the limiting strain �j"�
l
j. This then is what we see in Figure 2(a). The case that is in

relative terms furthest away from from �j"�
l
j for longest is the limiting case v! 0, corresponding

to a very slow stretch. In this particular case "� takes quite some time to evolve from zero to �j"�
l
j.

However in fact "� barely changes at all in absolute terms, because j"�
l
j is itself vanishingly small

in the v! 0 limit.
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(a)

ε
ε

τ

(b)

ε
ε

τ

∞

Figure 2. Compressed film: (a) ε−/|ε−
l
| versus τ−, (b) ε−/|ε−

l
| versus v τ−.

Rather than plotting data against τ−, it is also possible to plot against v τ− (see Figure 2(b)). As

has been mentioned, physically v τ− represents an imposed strain, i.e. the length change imposed

on the compressed film divided by its initial length. For a given v τ− (i.e. a given imposed strain),

increasing v leads to a smaller T− (see Figure B1(b) in appendix B) and hence a ε− that in

relative terms is further away from −|ε−
l
|. That is what we see in Figure 2(b). Note however that

Figure B1(b) also shows that for v τ− close to unity (corresponding, according to equation (B.2),

to a film compressed to a tiny fraction of its initial length), the value of T− is always very large,

regardless of the value of v. In that limit then (again according to equation (3.5) or equivalently

equation (B.14)), ε− always approaches −|ε−
l
| for any v, which again is seen in Figure 2(b).

(ii) Surfactant on film during compression

In Figure 3 we show the evolution of L−

0 ≡L−/(1 + ε−). This measures the amount of surfactant

on the compressed film, or more specifically, in the dimensionless system considered here, it

measures the amount of surfactant on the compressed film at any given instant relative to the

amount that was on the film initially. Clearly the evolution of L−

0 is sensitive to the imposed

velocity v: to evaluate it, equation (3.5) (equivalently equation (B.14)) is required along with

equation (B.2). In all cases, the initial rate of change of L−

0 vanishes (which follows since ε−

vanishes initially, meaning there is no film tension difference to drive surfactant transport).

However in cases with small v, we see L−

0 start to change significantly even after small imposed

strains (i.e. even for relatively small v τ−) and after that L−

0 tends to follow the evolution of

the film length L−: indeed in the case v→ 0, the value of L−

0 always equals L− for any specified

imposed strain. On the other hand, for larger v, the value of L−

0 remains high even out to imposed

strains v τ− that are not so far from unity. However, even for these larger v values, in the limit

as v τ− → 1 (such that, according to equation (B.2), the compressed film length L− becomes
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ε
τ

Figure 3. Compressed film: L−

0 ≡L−/(1 + ε−) versus v τ−.

exceedingly small), we also see small L−

0 values, i.e. all surfactant can be eventually driven off

the film, rather than simply accumulating on it.

(b) Stretched film

Now we turn to the stretched case, starting off by presenting data for the strain (section 4(b)i).

Strains can however sometimes become large enough for the surfactant flux to become plastic,

so conditions for this to occur are considered in section 4(b)ii. The amount of surfactant on the

stretched film is analysed in section 4(b)iii.

(i) Strain during stretching

In the case of a film subjected to stretching, data for strain ε+ are shown in Figure 4. Data

in Figure 4(a) are plotted against dimensionless time τ+, although appendix D indicates what

this represents in dimensional time. For any fixed τ+, it is found that increasing the value of v,

decreases the value of T+ (see Figure B2 in appendix B) and hence (according to equation (3.6)

or equivalently equation (B.19)) moves ε+ in relative terms further from the limiting strain ε+
l

, as

seen in Figure 4(a).

As well as plotting against time τ+, it is also possible (see Figure 4(b)) to plot data against

imposed strain v τ+, which physically is the change in stretched film length divided by its initial

length. In fact, at fixed v τ+ (i.e. fixed imposed strain), increasing v also tends to decreaseT+ (as is

evident from equation (3.2) along with equation (3.4), or equivalently equation (B.18) along with

equation (B.16)). Hence based on equation (3.6) or equivalently equation (B.19), in relative terms,

ε+ decreases compared to the limiting strain ε+
l

. However ε+
l

itself increases with v according to

equation (3.4) or equivalently equation (B.16). Hence even though (due to the decreased T+), ε+

is further from ε+
l

in relative terms, it still might increase in absolute terms as v increases, which

is what we see in Figure 4(b) in the various cases with v≤ 1/2 say.

Indeed it is only for very small v, such that limiting strains ε+
l

are likewise small, that film

strains ε+ are always small in absolute terms regardless of the strain imposed v τ+: the solutions

of [1] would then apply. However those solutions cease to apply if v increases. In that case, note

also that, even if v τ+ � 1, then the value of T+ which according to equation (3.2) or equivalently

equation (B.18) grows only logarithmically, need not be exceedingly large. Thus again ε+ need not

be exceedingly close to ε+
l

. This is particularly evident in Figure 4(b) in the case v=1/2 which

exhibits a slow approach to a limiting ε+
l

value, which for this specific velocity turns out to be

unity in line with predictions of equation (3.4) or equivalently equation (B.16). The slow fashion

in which ε+ approaches unity when v= 1/2 is captured by equation (B.20).
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(a)

ε
ε

τ

(b)

ε

τ

∞

Figure 4. Stretched film: ε+/ε+
l

versus τ+ (a) for stretching velocities v≤ 1/2 only, (b) ε+ versus v τ+ including some

larger v values.

Yet another feature of Figure 4(b) are the cases with v > 1/2. These are seen to reach ε+ =1

after some finite imposed strain, and surfactant transport then becomes plastic in order to keep

ε+ fixed at that value thereafter. This situation is discussed further in the next section.

(ii) Conditions for surfactant flux to become plastic

The imposed strain v τ+
pl

required for the system to become plastic (as given by equation (B.22) or

equation (C.7) depending on the v value) is plotted in Figure 5 as a function of v in the domain

v > 1/2. Very large strains need to be imposed if v is only slightly greater than 1/2, but as v

increases, the value of v τ+
pl

falls. The smallest possible value of v τ+
pl

is unity and is reached only

when v→∞. Having now identified which conditions do not allow the surfactant transport to

become plastic, and which conditions do allow this, we can proceed to examine the surfactant

content on stretched films.

(iii) Surfactant on film during extension

The value of L+
0 ≡L+/(1 + ε+) is a measure of the surfactant on the stretched film: specifically

the dimensionless quantity L+
0 is the amount of surfactant currently on the film relative to the

amount on it initially. This is plotted in Figure 6 as a function of imposed strain v τ+ for various

stretching velocities v. To evaluate this, equation (3.6) (equivalently equation (B.19)) is required

along with equation (B.5). In all cases, in the limit of very small imposed strain, the initial rate

of change of L+
0 vanishes owing to lack of any initial tension difference (see also equation (B.9)).

However moving towards larger imposed strains we start to see L+
0 increasing.

There are however two generic behaviours. The first behaviour exhibited for v < 1/2 (seen

clearly in the zoomed out view in Figure 6(a)) is that even after a fairly small imposed strain, L+
0
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τ

Figure 5. Imposed strain v τ+
pl

versus v. Specifically, v τ+
pl

is the strain that, when imposed on the stretched film, causes

ε+ to reach unity, and the surfactant flux onto the film then becomes plastic, transferring thereafter as much surfactant as

is needed to keep ε+ fixed.

(a)

ε

τ

∞

(b)

ε

τ

∞

Figure 6. Stretched film: L+
0 ≡L+/(1 + ε+) versus v τ+. (a) Zoomed out view, (b) Zoomed in view, considering also

some larger values for stretching velocity v.

asymptotes to a straight line behaviour. The value of L+
0 does not grow quite as fast as that of

L+ but is close to it. Only for v→ 0 do we obtain L+
0 =L+. The second behaviour exhibited for

v > 1/2 (seen clearly in the zoomed in view in Figure 6(b)) is that L+
0 grows slowly with v τ+ at

first, until eventually it is only half as large as L+. We then see a sudden change in the rate of

change of L+
0 , maintaining L+

0 =L+/2 thereafter. This condition is achieved sooner for larger v,

but once it is achieved the value of L+
0 depends on the imposed strain, but not on the individual
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ε
τ

Figure 7. Compressed film: L−

0 ≡L−/(1 + ε−) versus τ− both during and after motor motion. The thinner straight

lines indicate the corresponding values of L−. The circled points represent the motor being switched off.

v. The case v= 1/2 is intermediate between these two aforementioned behaviours: it asymptotes

to the line L+
0 =L+/2 but never actually reaches it.

(c) Incorporating both driving and relaxation phase

The results presented thus far concerned just the driving phase when the motor is switched on. In

the present section, we consider both the driving phase and the subsequent relaxation phase. First

we consider compression followed by relaxation (section 4(c)i) and after that stretch followed

by relaxation (section 4(c)ii). Some additional discussion on how to compare the compression-

relaxation and stretch-relaxation results can be found in appendix D.

(i) Compressing a film and then relaxing

In Figure 7 we show evolution of L−

0 ≡L−/(1 + ε−) for a compressed film, with two different

compression velocities, v=0.25 and v= 1. In the figure, these L−

0 values (which measure the

amount of surfactant on the film) are contrasted with L− (measuring instantaneous film length).

To evaluate L−

0 , equation (3.5) (equivalently equation (B.14)) and equation (B.2) are required. For

both v values the motor is switched off when the film is compressed to 0.2 times its original length.

Equation (3.7) or equivalently equation (B.23) now applies, whilst L− is held fixed.

For both cases v= 0.25 and v=1, initially the rate of change L−

0 is zero (as noted already in

section 4(a)ii), but as the motor driving phase proceeds, the slope of the L−

0 curve shifts away

from zero and (particularly in the case v=0.25) tends towards a nearly constant slope. When the

driving phase ceases, the higher velocity (i.e. v=1) case has managed to retain more surfactant

on the film than the v=0.25 one does. In both cases however, L−

0 continues to decrease after

the motor motion ceases, eventually relaxing back to the same final value as L−. Moreover if we

compare the time scale for the driving phase (e.g. the time scale for L−

0 to reach a constant slope)

with the time scale for the relaxation phase, it is clear from Figure 7, that the relaxation time scale

is shorter. This follows from equation (3.7) (equivalently equation (B.23)) when L−
m (the final L−

value when the motor is switched off) is rather smaller than unity, corresponding to a rapid decay

of ε−, certainly more rapid than the evolution of ε− during the motor driving phase.

(ii) Stretching a film and then relaxing

In Figure 8 we show L+
0 ≡L+/(1 + ε+) in a a stretched film case, with the film now being

stretched to 5 times its original length, with the motor then being switched off. The velocities

considered v= 0.25 and v= 1 are the same as those in Figure 7.

We consider the v= 0.25 case first. Equation (3.6) (equivalently equation (B.19)) and

equation (B.5) apply up to the point that the motor is switched off. After motor switch off,
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Figure 8. Stretched film: L+
0 ≡L+/(1 + ε+) versus τ+ both during and after motor motion. The thinner straight lines

indicate the corresponding values of L+. In the case v= 0.25, the circled point represents the motor being switched

off. In the case v =1, the lower circled point represents the surfactant flux becoming plastic, and the upper circled point

represents the motor being switched off.

equation (3.7) or equivalently equation (B.23) applies instead, with L+ now held fixed. As already

noted in section 4(b)iii, at initial time, the rate of change of L+
0 is zero, but L+

0 soon evolves

(after some characteristic time scale) towards growing at a nearly constant rate. After the motor is

switched off, L+
0 continues to grow albeit by fairly modest amounts, relaxing towards L+

m (which

is the value of film length L+ when the motor is switched off). However the relaxation time scale

is now longer than the characteristic time scale during the motor driving phase. This is in line with

the predictions of equation (3.7) or equivalently equation (B.23) which suggest that the relaxation

time in this dimensionless system itself scales like L+
m a quantity which is now rather larger than

unity, hence implying slow relaxation.

The case v=1 is a little different. During the motor driving phase, the value of L+
0 does not

grow nearly as fast as that of L+. Equation (3.6) (equivalently (B.19)) and equation (B.5) still

apply during this stage, although for v=1, equation (3.6) simplifies to equation (C.8). However

this situation soon ceases to apply. Instead we see a sudden increase in the rate of change of L+
0

at the instant when L+
0 becomes only half of L+. However this increase in the rate of change

of L+
0 is undone when the motor motion stops, and the relaxation phase begins. In that case,

as has been mentioned equation (3.7) or equivalently equation (B.23) now applies with L+ held

fixed, and this predicts ε+ falling. Hence not only does L+
0 ≡L+/(1 + ε+) rise, but the ratio

L+
0 /L+ = 1/(1 + ε+), which was formerly equal to one half, must rise also.

We then see quite a long time scale relaxation, after which L+
0 eventually reaches the same

value as L+ (i.e. it reaches the value L+
m). When v= 1, the amount of increase in L+

0 during the

relaxation phase is very significant (i.e. very significant amounts of surfactant transport occur

even during this phase, which follows from equation (B.6) with L+ fixed but ε+ decaying all

the way from unity to zero during the relaxation phase). Indeed when v=1 more surfactant is

transported during the relaxation phase than during the motor driving phase.

A final comment we make is that both Figure 7 and Figure 8 are plotted in terms of

dimensionless time. These figures indicate that various different dimensionless time scales are

involved during compression, relaxation after compression, stretch and relaxation after stretch.

What the various time scales correspond to in dimensional variables is discussed in appendix D.

This now completes our analysis of the model of [1] considering the general case in which

the compression imposed or stretch imposed upon films is significant. To summarise, the model

admits very different behaviours between low imposed velocity and high imposed velocity,

between compression and stretching, and between motor driving and relaxation phases. Overall

conclusions are discussed in the next section.
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5. Conclusions

We have considered a model (originally proposed by [1]) for how surfactant is transported from

�lm to �lm around a meniscus within a foam. The key idea of the model is that there is a

relation (in effect a constitutive relation) between �lm-to-�lm surfactant transport rate and tension

differences between adjacent �lms. Tension differences are in turn related to �lm strains using a

Gibbs elasticity parameter. Although the Gibbs elasticity could in principle depend on strain, it is

treated here as constant which leads to a simple analytically tractable model.

The model has been applied to describe surfactant transport in a �ve-�lm device (two

compressed �lms on one side, two stretched �lms on the other, plus a central �lm joining them).

The model makes a distinction between the strain imposed on the �lms by a motor that drives

them and the actual strain developed on the �lm elements themselves. By assumption the central

�lm is not strained, but strains certainly develop in the compressed and stretched �lms. The

work of [1] restricted consideration, at least as far as solutions for the �ve-�lm device as a whole

were concerned, to situations in which the strain imposed on either the compressed or stretched

�lms and consequently also the actual strain developed on the �lm elements is small. This was

done despite the fact that the constitutive model employed could actually cope with large strains.

Indeed if the imposed strain is large enough and if it is also imposed rapidly enough, strain on the

�lm elements need not be small. This then is the case considered in the present work. Despite the

fact that strains can now be rather large, the model remains analytically tractable, albeit solutions

become more complicated than those presented by [1].

Knowing the instantaneous length of each �lm, and the instantaneous strain on the �lm

elements within it, gives a measure of the instantaneous amount of surfactant contained on each

�lm, and thereby also, the amount of surfactant that has been transported off the compressed

�lm and/or onto the stretched one. In particular in the case of the compressed �lm, even if it

is compressed down to just a tiny fraction of its original length, the strain within the �lm itself

remains limited at a value set by the compression velocity. The larger the compression velocity,

the larger magnitude of the limiting compressive strain. This then determines the amount of

surfactant retained by the compressed �lm, but much of the surfactant originally in place has

simply been transported off it.

The case of the stretched �lm is somewhat different. If the �lm is stretched slowly enough, the

strain on it reaches (as in the compressed case) a limiting value that depends on velocity. This

limiting value can be approached if the stretch that is imposed is large, but only if the velocity of

stretching is not too large. On the other hand, if the �lm is stretched fast enough for long enough,

it reaches a certain strain at which the behaviour suddenly changes. Surfactant �ux jumps to a

larger value than before to prevent the �lm strain (and the �lm tension that depends upon it)

from growing any further. The reason that strain cannot grow further is associated with so called

geometrical frustration: locally near the meniscus, different sides of a �lm behave differently, and

in particular strong stretching leads to very strong surfactant depletion, but only on one side of

the �lm. The strain we see moving slightly away from the meniscus is however not quite so large,

as the two sides adjust towards an average strain value. The �lm strain only begins to relax after

the imposed stretching is stopped. However signi�cant surfactant mass transfer onto the �lm

continues even as relaxation of the strain proceeds.

Although the model predicts interesting behaviour, it is worth re�ecting that, as formulated

here, it has only been studied for a �ve-�lm device, not for a more general foam. Nonetheless

the compression and stretching processes that occur in the �ve-�lm device do capture some

of the processes that also occur in a general foam. Speci�cally the topological transformations

(mentioned in the introduction) that occur very generally in foams involve certain �lms being

compressed and shrinking down until they vanish, whilst newly created �lms are strongly

stretched after they are formed. Moreover as a newly created �lm stretches, any �lms that

neighbour it must shrink to compensate. What is clear is that these topological transformation

processes do impose large strains on �lms participating in them. In that respect, the fact that the
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present work has managed to obtain model solutions involving large imposed strains seems to

be particularly signi�cant.

As formulated though, one of the issues with the model is that it is a lumped parameter

model, which allows strains (and �lm tensions that depend on them) to vary from �lm to �lm

but not along individual �lms. Thus the rate determining step for surfactant transport is in effect

assumed to be transport around the meniscus, rather than transport along the �lms themselves.

The relation proposed between surfactant �ux at the meniscus and �lm-to-�lm tension difference

should apply to a general foam (indeed there is no reason to suppose it applies only for the

�ve-�lm device). However, a challenge is to know whether the tension difference can always be

treated as a lumped parameter for an entire �lm, or whether instead some more local measure of

tension difference must be used. Addressing questions like this can then help to elucidate the role

that surfactant physical chemistry will have in determining foam rheology.
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