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Abstract—Unsupervised partial transfer 
fault diagnosis studies of rotating machinery 
have practical significance, which still exists 
some challenges, for example, the learned 
domain-specific statistics and parameters 
usually influence the learning effect of 
target-domain features to some degree, and 
the relatively scattered target-domain features 
will lead to negative transfer. To overcome 
those limitations and further improve partial transfer fault diagnosis performance, a clustering-guided novel 
unsupervised domain adversarial network is proposed in this paper. Firstly, a novel unsupervised domain adversarial 
network is constructed using domain-specific batch normalization to remove domain-specific information to enhance 
alignment between source and target domains. Secondly, embedded clustering strategy is designed to learn tightly 
clustered target-domain features to suppress negative transfer in partial domain adaptation process. Finally, a joint 
optimization objective function is defined to balance different losses to improve the training and diagnosis 
performance. Two experimental cases of bevel gearbox and bearing are used to validate the effectiveness and 
superiority of the proposed method in solving unsupervised partial transfer fault diagnosis problems. 

Index Terms—embedded clustering strategy; joint optimization objective function; novel unsupervised domain 
adversarial network; partial transfer fault diagnosis; rotating machinery 

I. Introduction
otating machines applied in modern industries are

becoming more safety-critical, and it is significant to 

prevent accidents by automatically and accurately identifying 

the health states of the components [1], [2]. In recent years, 

due to the excellent and automatic feature mining abilities, 

deep-learning-based techniques have attracted an increasing 

attention in intelligent fault diagnosis of rotating machines 

[3]-[6]. In most cases, the premise of existing 

deep-learning-based fault diagnosis methods is that the labeled 

training samples and testing samples should be sufficient and 

subject to the same distribution [7]. Nevertheless, in industrial 

situations, it is extremely difficult to acquire large amounts of 

labeled fault samples [8]. Thus, it remains a challenge on how 

to relax the premise to obtain a practical unsupervised fault 

diagnosis model.  

As a commonly used feature transfer learning strategy, 

unsupervised domain adaptation methods can align the 

distribution discrepancies of source and target domains to 

extract the domain-invariant features, enabling to provide a 

new insight for the abovementioned problems [9]-[11]. In 

2017, Wen et al. [12] applied maximum mean discrepancy 

(MMD) as a loss function in the sparse auto-encoder (SAE)

fault diagnosis model to reduce the distribution discrepancy of

the extracted features. In 2016, Lu et al. [13] adopted

convolutional neural network (CNN) using MMD to

strengthen the representative features. The effectiveness of the

approach was validated in rolling bearing datasets. In 2019,

Yang et al. [14] used the multi-Gaussian kernel-induced

MMD in the diagnosis model, which further improved the

robustness of MMD. In 2020, Jiao et al. [15] constructed a

novel residual adversarial network for unsupervised

cross-domain fault diagnosis, where the joint maximum mean

discrepancy is used to simultaneously reduce the joint

distribution shifts in the unsupervised domain adaptation

process. In 2021, Xu et al. [16] proposed an intelligent fault

diagnosis system, which constructs a domain discriminator

through adversarial training to develop an unsupervised

multisource transfer diagnosis approach. However, all of the

methods are under the presumption that the label spaces of

two domains are identical during the whole model training

process.

However, for more general engineering scenarios, it is 

almost impossible to collect all the fault states in advance [17], 
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i.e., the label space of the target domain is a subset of label

space of source domain, which is denoted as the partial

transfer learning problem [18]. Partial transfer fault diagnosis

of rotating machinery has attracted increased attentions since

2020 [19]-[22]. In 2020, Li et al. [23] used a class-weighted

adversarial network-based method for partial transfer

diagnosis, which added class-level weights on the

corresponding source categories to measure the importance of

each source category. In 2021, Li et al. [24] constructed a

multiple classification module to extract fault diagnosis

knowledge and two rolling bearing datasets are carried out for

validation. In 2021, Liu et al. [25] proposed a SAE based

weighted partial adversarial domain adaptation model to

classify fault states. In 2021, Deng et al. [26] presented a

novel adversarial network using two attention matrices to

tackle the partial transfer fault diagnosis issue.

Nevertheless, the existing studies on partial transfer fault 

diagnosis of rotating machinery, to the best of our knowledge, 

focus on extracting the domain-invariant features for 

achieving satisfactory diagnosis performance in presence of 

the source labels, which may cause the following problems: (1) 

The extracted target-domain features are relatively scattered, 

and some of them may be wrongly transferred to the nearby 

source-domain features whose labels are different in the 

domain adaptation process, leading to negative transfer. (2) 

The learned shared statistics and parameters usually exhibit 

specific information of the source domain, which will 

influence the learning effect of target-domain features to some 

degree and result in domain misalignment [27].  

In this article, to overcome the influence of negative 

transfer and improve partial transfer fault diagnosis 

performance, a clustering-guided unsupervised domain 

adversarial network is proposed. This article facilitates three 

significant contributions as follow. 

(1) A novel unsupervised domain adversarial network is

constructed using domain-specific batch normalization (DSBN) 

to remove domain-specific information to enhance alignment 

between source and target domain. 

(2) Embedded clustering strategy is designed to learn tightly

clustered target-domain features to suppress negative transfer 

in partial domain adaptation process.  

(3) A joint optimization objective function is defined to

balance different losses to improve the training and diagnosis 

performance. 

In section 2, the article presents a brief overview of partial 

transfer fault diagnosis of rotating machinery. Section 3 

presents the proposed method, and result analyses of two cases 

are introduced in section 4. Section 5 presents conclusions and 

the future work. 

II. INTRODUCTION TO PARTIAL TRANSFER FAULT DIAGNOSIS
OF ROTATING MACHINERY 

Generally, a standard transfer learning task contains a 

source domain and a target domain, expressed as SD and

TD , respectively, where { , ( )}S
S SD X P X , 

{ , ( )}T
T TD X P X . The source domain 1{ , } SNS S S

i i iX x y 

contains SN sufficient labeled samples, where 
S

ix denotes 

the thi  sample of source domain, 
S

iy is the corresponding 

label of 
S

ix ; the label space of source domain SY contains 

different k  types of health states, i.e., {1,2,3,..., }SY k ; 

( )SP X is the marginal distribution of SX . Similarly, the

target domain 1{ , } TNT T T
i i iX x y  contains TN unlabeled 

samples and its label space TY contains the same k types of 

health states. It is important to note that the marginal 

distribution of target domain ( )TP X  is different from 

( )SP X , however, the knowledge of source domain could be 

transferred to the target domain to facilitate its training [28], 

[29].  

In this article, the partial transfer fault diagnosis model of 

rotating machinery is developed, in which TY is contained in 

SY , i.e., T SY Y . Furthermore, considering that the normal

state is easy to collect in real scenarios of industry, it is 

assumed that both SY and TY should contain the normal

state. 

III. THE PROPOSED METHOD

The proposed clustering-guided novel unsupervised domain 

adversarial network mainly contains four parts: construction of 

novel unsupervised domain adversarial network, design of 

embedded clustering strategy, definition of joint optimization 

objective function, and the general framework for the 

proposed method. 

A. Construction of Novel Unsupervised Domain 
Adversarial Network

In this paper, to remove domain-specific interference 
information within the network and further enhance alignment 
between two domains, DSBN [30] is applied to construct the 
novel unsupervised domain adversarial network shown in Fig. 
1, consisting of a feature generator, a domain discriminator 
and a classifier. DSBN uses two independent branches of BN, 
and each sample chooses one of the branches according to its 
domain in the network training phase [31]. More specifically, 
let D

ix denote the input sample of the domain adversarial 
network, where { , }D S T , ( S , S ) denotes the
domain-specific parameters of source domain, ( T , T )
denotes the domain-specific parameters of target domain, and 
then DSBN layer can be expressed as 

) ˆDSBN ; ,( D
D i D D D D

D
ixx      

 


]

[ ]
ˆ [D D

i i

D

D
i

i

x E x

Var x
x




 



where [ ]D
iE x and [ ]D

iVar x represent the mean value and 

standard deviation of D
ix , receptively. Before training phase, 

source and target samples are firstly simply split into different 
mini-batches. During the training phase, DSBN separately 
calculates each domain’s mean and variance. At the testing 
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process, each domain’s mean and variance are used for the 
samples in the corresponding domain. 

 
Fig. 1. Construction of novel unsupervised domain adversarial network 
using DSBN. 
 

B. Design of Embedded Clustering Strategy 
In this paper, in order to encourage feature generator to 

learn tightly clustered target-domain features and confirm that 
each cluster can be assigned to a unique class from the source 
domains in partial domain adaptation process, the following 
Kullback-Leibler divergence [32] is chosen as the embedded 
clustering loss to help soft assignment get close to the 
auxiliary target distribution, expressed as 

KL( ) log ij
c ij

i j ij

p
P Q p

q
 





where c  is the embedded clustering loss, Q  and P  are 
the soft assignment and auxiliary distributions, respectively, 

( )ij ijq q Q  denotes the probability of target sample i  being 
assigned to cluster j , ( )ij ijp p P  is a predefined 
high-confident-assignment target distribution.  

Assuming that the extracted feature of target domain 
( )T

if x  contains k  clusters with each centroid of 1{ }k
j j   

obtained by standard k-means technique, since we focus on 
the unsupervised partial transfer learning task, the labels of 
target samples are unavailable and a sub-set space of source 
domain labels are used instead. Therefore, it is hard to 
determine the value of k  and calculate the initial cluster 
centroids of target domain. Here, we design a simple strategy 
to augment the target domain with the help of a portion of 
source-domain samples. For example, for each batch, we 
randomly take 60% as target samples while 40% as source 
samples (without using labels) to guarantee that the label 
space of augmented target domain is the same as the source 
domain. In this way, the partial domain adaptation problem is 
shift to the pseudo domain adaptation problem, naturally, and 
k  is equal to the number of source classes. Besides, the 
embedded clustering strategy could make it difficult to 
distinguish the source and target samples, which can form a 
softer boundary for target set trained by the discriminator to 
reduce the effects of negative transfer. 

When calculating ijq , the student’s t distribution  [33] 
is used as an embedded kernel to measure the similarity 
between ( )T

if x  and j . Clearly, the closer to the cluster 
centroid j , the higher the probability ijq : 
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where   is the degree of freedom of student’s 
t distribution , ( )Sim  is Euclidean distance measurement 
to calculate the similarity of each ( )T

if x  and j . 
In order to normalize the loss contribution of each centroid 

and prevent the hidden feature space from being distorted by 
large clusters, during our experiments, we compute 

( )ij ijp p P  by first raising ijq  to the second power and 
then normalizing by frequency each cluster, which can be 
defined as follows, 

2

2(

/

/ )

ij ij
i
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ij ij

j i

q q
p

q q
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

 
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

where ij
i

q  means soft cluster frequencies. 

C.  Definition of Joint Optimization Objective Function 
In this paper, a joint optimization objective function is 

defined to balance different losses to improve the training and 
diagnosis performance, including embedded clustering loss, 
weighted domain classification loss, and weighted domain 
adaptation adversarial loss, expressed as: 

c clsc adv adv   



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

where  is the joint optimization objective function, c  
represents the embedded clustering loss, which is given in Eq. 
(1), cls  represents the weighted classification loss, adv  
represents the weighted domain adaptation adversarial loss, 

c  and adv  are the specifying parameters in the joint 
optimization objective function to balance the different losses, 
k  is the total number of possible classes, [ ]  is the indicator 
function, ( )G   and ( )C   are assumed to the generator and 
classifier, ( )D   means partial adversarial domain 

discriminator, ˆ t
iy  is the predicted label of target sample i  

through Softmax function,   is a k -dimensional weight 
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vector, which indicates the contribution of each source class 
[1]. s

iy  is the class weight of source sample S
ix ,   

denotes as a constant, as the epoch number increases,   
changes from 0 to 1 and adv  is progressive increasing from 
0 to 1 in the training phase [34]. Specially, it is noteworthy 
that the clustering loss C  is fixed as 0 at the initial training 
stage. When the number of training epochs reaches to the 
preset epoch value, C  is activated and selected as a 
nonnegative constant. The training procedure is presented in 
Algorithm 1. 
 
Algorithm 1. Training procedure of the clustering-guided novel 
unsupervised domain adversarial network 
Inputs: Labeled source-domain samples 1,{ } SNS S S

i i iX x y   , unlabeled 

target-domain samples SY , network architecture, balance factors C  and 

adv , batch size m , maximum epoch, preset epoch. 
Outputs: The trained unsupervised domain adversarial network. 
Begin: Randomly initialize the training parameter, training an initial network, 
while C  was fixed as 0 (epoch < preset epoch). 
While not converged do 

For epoch = preset epoch to maximum epoch do 
        Draw random minibatch 1{ , ( )}S S m

i S i ix P x   , 1{ }T m
i iX   

        Compute cls  by Eq. (8).  

        Compute c  by Eq. (1). 

        Compute adv  by Eq. (9). 

        Optimize  with respect to Eq. (7). 
End for 

D.  The Overall Framework of The Proposed Method 
Fig. 2 illustrates the framework of the proposed method, 

and the sequential diagnosis steps are given below. 
Step 1: Divide the collected signals into source and target 

domains. Specifically, source and target domains both contain 
the normal state, while the target domain only contains partial 
fault states. 

Step 2: Propose the clustering-guided novel unsupervised 
domain adversarial network for partial transfer fault diagnosis. 

Step 2.1: Construct the novel unsupervised domain 
adversarial network. Apply DSBN to remove domain-specific 
information within the network and enhance alignment 
between source and target domain. 

Step 2.2: Design the embedded clustering strategy to 
help learn tightly clustered target-domain features to suppress 
negative transfer in partial domain adaptation process. 

Step 2.3: Define the joint optimization objective 
function to balance different losses to improve the training and 
diagnosis performance. 

Step 3: Use source-domain and target-domain training 
samples to train and optimize the proposed network using 
Adam algorithm. 

Step 4: Feed the target-domain testing samples into the 
trained network for validation. 

 

 
Fig. 2. Framework of the proposed method. 

IV. CASE STUDY 
In this section, two cases of rotating machinery are 

implemented to validate the effectiveness and superiority of 
the proposed method. 

1. Case I: Partial Transfer Fault Diagnosis Experiment 
on Bevel Gearbox 

A.  Data description of bevel gearbox 
In Case I, the experimental acceleration signals are 

collected from a custom-built bevel gearbox fault simulation 
test rig shown in Fig. 3 [35]. Nine health states are simulated, 
including normal state, inner race fault states with different 
degrees, outer race fault states with different degrees and gear 
crack states with different degrees, as shown in Table I and 
Fig. 4. Two rotation speeds of the motor are 900 and 1200 rpm, 
respectively, and the sampling frequency is 10240 Hz. Each 
state from SD  and TD  has 210 samples and each sample 
consists of 1024 points. 1512 (168*9) samples are used as the 
total training samples while 378 (42*9) samples are used as 
the testing samples. The detailed settings of partial transfer 
learning tasks in Case I are presented in Table II. 
 

TABLE I 
DETAILS ABOUT THE NINE HEALTH STATES IN CASE I 
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Class label Fault location Fault size (mm) 

1 Normal \ 
2 Inner race fault 0.2 

3 Inner race fault 0.4 
4 Inner race fault 0.6 
5 Inner race fault 0.8 
6 Outer race fault 0.2 
7 Outer race fault 0.4 
8 Gear crack 1.6 
9 Gear crack 0.6 

 
TABLE II 

THE SETTING OF THE NINE PARTIAL TRANSFER LEARNING TASKS IN CASE I 
Task 
names 

Transfer speeds 
(rpm) Source classes SY  

Target classes 
TY   

A1 900 −> 1200 1,2,3,4,5,6,7,8,9 1,2,3,4,5,6,7,8,9 
A2 900 −> 1200 1,2,3,4,5,6,7,8,9 1,2,3,4,5,6,7,8 

A3 900 −> 1200 1,2,3,4,5,6,7,8,9 1,2,3,4,5,6,7 
A4 900 −> 1200 1,2,3,4,5,6,7,8,9 1,2,3,4,5,6 
A5 900 −> 1200 1,2,3,4,5,6,7,8,9 1,2,3,4 
A6 1200 −> 900 1,2,3,4,5,6,7,8,9 1,2,3,4,5,6,7,8,9 
A7 1200 −> 900 1,2,3,4,5,6,7,8,9 1,2,3,4,5,6,7,8 
A8 1200 −> 900 1,2,3,4,5,6,7,8,9 1,2,3,4,5,6,7 
A9 1200 −> 900 1,2,3,4,5,6,7,8,9 1,2,3,4 

 

 
Fig. 3. Bevel gearbox fault simulation test rig in Case I. ① Motor; ② 
Bevel gears; ③ Testing rolling bear; ④ Torque sensor; ⑤ Loading; 
⑥ Piezo-electric accelerometer. 
 

 

Fig. 4. Some pictures of the tested gears and bearings in Case I: (a) 
Label 2; (b) Label 3; (c) Label 6; (d) Label 7; (e) Label 8; (f) Label 9. 
 

B.  Comparisons with other partial transfer learning 
methods in Case I 

To test the effectiveness of the method, some existing 
popular partial transfer learning methods are used for 
comparison, which include domain adaptation with MMD 
(DA-MMD) [1], partial adversarial domain adaptation (PADA) 
[36], importance weighted adversarial network (IWAN) [37], 
and CNN. Besides, Proposed method without DSBN (replace 
DSBN with BN in the proposed method) and Proposed 
method without clustering (remove the embedded clustering 
strategy in the proposed method) are also added in the 
experiments. 
The partial transfer diagnosis performance of the proposed 
method for nine tasks is compared with the other six methods 
in Case I. To reduce the random error, each partial transfer 
diagnosis result is averaged over ten repeated validations. 
Specially, the average partial transfer diagnosis accuracies of 
each method reported after the last epoch (denoted as L) are 
shown in Table III. In addition, to quantitatively evaluate the 
negative transfer effect, maximum accuracies during the 
whole iterative process (denoted as M) are also listed in Table 
III. 

In view of the comparison results, it can be found that (1) 
the L of the proposed method in the nine transfer tasks are 
94.14%, 93.79%, 96.55%, 95.52%, 99.31%, 94.83%, 93.10%, 
95.52%, 98.97%,98.97%, respectively. The proposed method 
achieves outstanding diagnosis performance compared with 
the other four transfer learning methods (CNN, DA-MMD, 
PADA, IWAN) on the classical transfer diagnosis tasks (A1, 
A6) and partial transfer diagnosis tasks. (2) Compared with 
Proposed the method without clustering, the total average of 
the proposed method has improved 3.96%, i.e., 95.75%, which 
shows that the embedded clustering strategy can suppress 
negative transfer in partial domain adaptation process and 
improve the diagnosis performance. Besides, it is noteworthy 
that the transferability of DA-MMD, PADA and IWAN have 
been degraded largely for Task A8 because of negative transfer 
effect of private source samples (source samples whose label 
is not shared in the target). (3) Similarly, because DSBN can 
remove domain-specific information to enhance alignment 
between the two domains to some degree, the total average of 
the proposed method has improved 1.23% compared with 
Proposed method without DSBN. 
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TABLE III 

TESTING DIAGNOSIS ACCURACIES IN DIFFERENT TRANSFER TASKS IN CASE I 

Methods Task names Total 
average A1 A2 A3 A4 A5 A6 A7 A8 A9 

CNN 
L: 84.48  
M: 86.55 

L: 83.10 
M: 84.83 

L: 82.07 
M: 83.37 

L: 80.34 
M: 82.07 

L: 80.69 
M: 83.10 

L: 85.52 
M: 86.55 

L: 85.17 
M: 88.28 

L: 82.07 
M: 89.31 

L: 93.10 
M: 93.45 84.06 

DA-MMD L:96.55  
M: 96.55 

L: 95.17 
M: 96.21 

L: 90.34 
M: 94.48 

L: 91.72 
M: 95.52 

L: 85.86 
M: 90.34 

L: 93.10 
M: 94.83 

L: 92.76 
M: 94.14 

L: 92.76 
M: 95.52 

L: 95.86 
M: 97.93 92.68 

PADA L: 93.79  
M: 94.48 

L: 78.28 
M: 83.10 

L: 92.07 
M: 93.45 

L: 84.14 
M: 91.72 

L: 89.66 
M: 95.86 

L: 93.45 
M: 95.86 

L: 91.38 
M: 94.83 

L: 86.55 
M: 94.48 

L: 98.28 
M: 98.97 89.73 

IWAN L: 95.17 
M: 97.24 

L: 90.34 
M: 93.79 

L: 93.10 
M: 95.86 

L: 92.41 
M: 95.52 

L: 94.83 
M: 96.55 

L: 92.76 
M: 96.21 

L: 91.03 
M: 93.45 

L: 89.66 
M: 92.07 

L: 96.21 
M: 98.97 92.83 

Proposed method 
without DSBN 

L:93.79  
M: 95.52 

L: 90.69 
M: 93.45 

L: 95.17 
M: 96.55 

L: 94.14 
M: 95.17 

L: 97.59 
M: 98.62 

L: 94.83 
M: 94.83 

L: 92.07 
M: 93.79 

L: 94.48 
M: 96.90 

L: 97.93 
M: 98.62 94.52 

Proposed method 
without clustering 

L:93.79  
M: 95.29 

L: 83.81 
M: 87.62 

L: 94.12 
M: 96.76 

L: 88.57 
M: 93.57 

L: 92.38 
M: 96.19 

L: 94.52 
M: 96.43 

L: 91.67 
M: 94.52 

L: 89.05 
M: 95.24 

L: 98.28 
M: 98.62 91.79 

Proposed method L: 94.14 
M: 95.17 

L: 93.79 
M: 95.52 

L: 96.55 
M: 97.24 

L: 95.52 
M: 96.90 

L: 99.31 
M: 99.31 

L: 94.83 
M: 95.52 

L: 93.10 
M: 94.48 

L: 95.52 
M: 97.24 

L: 98.97 
M: 98.97 95.75 

Remarks: L represents the accuracies after the last epoch; M represents the maximum accuracies during the whole iterative process; Total average 
represents the average of “L” in the nine tasks.  

In order to show the class weights assignment in shared and 
private classes on partial transfer diagnosis tasks, Fig. 5 shows 
the histograms of class weights and confusion matrixes 
learned by PADA, Proposed method without clustering, and 
the proposed method on Task A4. For proposed method in Fig. 
5 (c), shared classes can be given a much higher weight than 
private classes (the source classes not included in target 
domain label space) in the training process. Specifically, the 
class weights of the three private classes are only 0.05, 0.16 
and 0.03, receptively. However, for Proposed method without 
clustering, the class weights of the private classes remain 
higher. The principal reason is that the embedded clustering 
strategy can tightly cluster the target-domain features in the 
same class while widen the relative distance between 
target-domain samples and private source-domain samples, 
thereby resulting in a great improvement of diagnosis 
accuracies. For PADA in Fig. 5 (a), the class weights of the 
three private classes are 0.26, 0.34 and 0.1, receptively. The 
private classes weights are still substantially larger than the 
proposed method. Furthermore, it can be found from the 
confusion matrix that PADA and Proposed method without 
clustering have categorized target-domain samples of Label-3, 
Label-7 and Lable-8 into one class, which greatly affects the 
transferability and even causes negative transfer because of 
the private source-domain samples. In Fig. 5 (c), the confusion 
matrix of the proposed method has best classification 
performance, which also demonstrates that the embedded 
clustering strategy can reduce the number of the target 
samples misclassified as private classes. 

To visualize the effectiveness of embedded clustering 
strategy in the proposed method, t-SNE [38] is used in the 
second convolution layer to map the feature representations. 
For Task A4, the visualizations of four methods are shown in 
Fig. 6 and Fig. 7. Some important points can be concluded: (1) 
in Fig. 6 (d), the proposed method obtains the best clustering 
performance for the transferable shared features. The same 
class of the two domains are completely merged into one 
cluster and each cluster has a clear boundary, which indicates 
that the embedded clustering strategy can effectively learn six 
tightly clustered target-domain features; In Fig. 7 (d), the two 
private classes, i.e., label-8 and label-9, are well separated 

from the shared classes, besides, only a few samples of label-7 
are overlapped with the target cluster of label-3, which 
outperforms the other three methods. A possible reason could 
be that the DSBN can remove the domain-specific information, 
leading a better adapt to the target domain. (2) some 
target-domain samples in Proposed method without clustering 
and IWAN are too scattered to form a clear cluster boundary 
with other classes features, causing poor classification 
performance, such as label-2 and label-4; Besides, the same 
class of the source and target domains are not fully merged 
into one cluster, such as label-1 in Fig. 6 (c); (3) For 
DA-MMD in Fig. 7 (a), there are a significant overlapping 
between different classes in the two domains. The private 
source-domain features seriously obstruct the domain 
adaptation process, which leads to poor clustering 
performance. 
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Fig. 5. Histograms of class weights and confusion matrixes on Task A4. 
(a) PADA; (b) Proposed method without clustering; (c) The proposed 
method. 

 
Fig. 6. Feature visualizations of the six transferable shared features in 
Task A4: (a) DA-MMD; (b) Proposed method without clustering; (c) 
IWAN; (d) The proposed method. “T” is the target-domain features. “S” 
is the source-domain features. 
 

 
Fig. 7. Feature visualizations of the target-domain features and private 
source-domain features in Task A4: (a) DA-MMD; (b) Proposed method 
without clustering; (c) IWAN; (d) The proposed method.  

2.  Case II: Partial Transfer Fault Diagnosis Experiment 
on Rolling Bearing Dataset 

C.  Data Description of Rolling Bearing 
In this case, the acceleration signals of rolling bearing data 

are collected from QPZZ-II fault simulation test rig displayed 
in Fig. 8 [39]. The label space of source domain SD  contains 
four health states: normal (N), inner race fault (IF), rolling 
race fault (RF) and outer race fault (OF). The local defects of 
fault bearings are given in Fig. 9. Five partial transfer learning 
tasks are taken and the detailed setting is given in Table IV. 
Four rotating speeds are collected from the motor drive, i.e., 
900, 1000, 1300 and 1500 rpm, respectively. In this case study, 
each state from SD  and TD  has 290 data samples and each 
sample contains 1024 sampling points. 928 (232*4) samples 

are used as the training samples while 232 (58*4) samples are 
used as the testing samples, respectively.  

 

 
Fig. 8. Fault simulation test rig in Case II. ① Motor; ② Drive belt; ③ 
Coupling; ④ Revolving shaft; ⑤ Accelerometer. 

TABLE IV 
THE SETTING OF THE FIVE PARTIAL TRANSFER LEARNING TASKS IN CASE II 

Task names Transfer 
speeds (rpm) 

Source classes 
SY  Target classes TY  

B1 900 −> 1500 N, IF, OF, RF N, IF, OF, RF 
B2 900 −> 1500 N, IF, OF, RF N, IF, OF 

B3 1300 −> 1000 N, IF, OF, RF N, IF, OF, RF 
B4 1300 −> 1000 N, IF, OF, RF N, IF, OF 
B5 1300 −> 1000 N, IF, OF, RF N, IF 
 

 
Fig. 9. Fault bearings states in Case II: (a) OF; (b) IF; (c) RF. 

D.  Result Analysis 
In Table V, we compare the partial transfer diagnosis 

performance of seven different methods. Based on the results, 
the proposed method achieves the highest L among the 
compared methods, which are 98.53%, 97.35%, 98.24%, 
99.41%, and 97.94% in the five transfer tasks, respectively. 
Moreover, these comparison results further prove the 
effectiveness and superiority of the embedded clustering 
strategy and DSBN in the proposed method. For example, the 
accuracies after the last epoch of the proposed method have 
improved 1.18%, 1.76%, 1.18% compared with Proposed 
method without DSBN in transfer Tasks B1, B2, B5, 
respectively. 

TABLE V 
TESTING DIAGNOSIS ACCURACIES IN DIFFERENT TRANSFER TASKS IN CASE 

II 

Methods Task names Total 
average B1 B2 B3 B4 B5 

CNN 
L: 70.58 
M: 72.35 

L: 57.65 
M: 58.82 

L: 74.11 
M: 78.24 

L: 84.41 
M: 85.29 

L: 73.24 
M: 77.06 72.00 

DA-MMD L: 93.53 
M: 94.12 

L: 77.41 
M: 87.94 

L: 98.53 
M: 98.53 

L: 73.82 
M: 84.71 

L: 52.94 
M: 94.71 79.25 

PADA L: 58.82 
M: 70.29 

L: 40.88 
M: 76.47 

L: 97.35 
M: 98.24 

L: 99.12 
M: 99.12 

L: 83.53 
M: 94.71 75.94 

IWAN L: 84.71 
M: 93.53 

L: 69.12 
M: 86.18 

L: 94.12 
M: 97.65 

L: 98.24 
M: 99.12 

L: 93.24 
M: 97.35 87.89 

Proposed 
method without 
DSBN 

L: 97.35 
M: 98.24 

L: 95.59 
M: 96.76 

L: 98.53 
M: 98.82 

L: 99.12 
M: 99.71 

L: 96.76 
M: 98.53 97.47 
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Proposed 
method without 
clustering 

L: 75.29 
M: 78.24 

L: 80.29 
M: 85.00 

L: 97.65 
M: 98.53 

L: 99.12 
M: 99.41 

L: 91.18 
M: 95.88 88.71 

Proposed 
method 

L: 98.53  
M: 99.12 

L: 97.35  
M: 97.94 

L: 98.24  
M: 99.12 

L: 99.41  
M: 99.41 

L: 97.94 
M: 99.12 98.29 

Remarks: L represents the accuracies after the last epoch; M 
represents the maximum accuracies during the whole iterative process; 
Total average represents the average of “L” in the five tasks. 
 

For more details, Fig. 10 shows the diagnosis accuracies of 
the compared methods by ten repeated validations in Task B1. 
Each result is averaged by ten trials. The specific standard 
deviations of the six methods are 3.24%, 2.09%, 4.57%, 
7.92%, 1.08%, and 0.84%, respectively. The proposed method 
obtains the minimum standard deviation, which demonstrates 
that the proposed method has good stability. Fig. 11 is the 
confusion matrices of the tenth validation of DA-MMD, 
PADA, IWAN and the proposed method. Moreover, Fig. 11 
gives detailed information about misclassified states. 

 
Fig. 10. Diagnosis accuracies of compared methods by ten repeated 
validations in Task B1. 

 
Fig. 11. Confusion matrices for the tenth repeated validation of Task B2. 
(a) DA-MMD; (b) PADA; (c) IWAN; (d) The proposed method. 
 

The above tasks are executed on a computer equipped with 
GeForce GTX 1650Ti, Intel Core i5-10400 and Pytorch 1.2 
platform. The setting of the network structure is listed in Table 
VI, and the training parameters are given below. 

The batch size is chosen from 64 to 256, initial learning rate 
is chosen from { 410 , 310 , 210 , 110 }, epoch number is 

300, preset epoch is 20, the Adam optimization algorithm is 
chosen for training. Besides, we empirically find that setting 
the preset epoch to 20 leads to a good initialization point for 
the embedded clustering loss.  

Furthermore, the influence of the balance parameter c  
in the total optimization objective on the diagnosis 
performance of partial transfer learning tasks is studied. The 
balance parameter c  is searched from {0.6, 0.8, 1.0, 1.2, 1.4, 
1.6}. Form the Fig. 12, as long as the balance parameter c  
is within a reasonable range, the diagnosis performance of 
partial transfer learning tasks does not change significantly, 
which demonstrates that the proposed method has a robust 
convergence for the balance parameter c .  

TABLE VI 
THE ARCHITECTURE OF THE PROPOSED NETWORK 

Network 
modules Layers Parameters Operations 

Feature 
extractor 

Input 1024 × 1 / 
Convolutional layer Kernels: 15 × 1, Channel:16 / 
DSBN / / 

Max pooling layer Kernels: 2, stride: 2 Rectified 
Linear Unit 

Convolutional layer Kernels: 3 × 1, Channel:32 / 
DSBN / / 
Max pooling layer Kernels: 2, stride: 2 / 

Fully connection layer Output: 256 × 1 Rectified 
Linear Unit 

Classifier Fully connection layer Output: k  × 1 Softmax 

Domain 
Discriminator 
 

Fully connection layer Output:128× 1 
Rectified 
Linear Unit, 
Dropout 0.3 

Fully connection layer Output:64× 1 
Rectified 
Linear Unit, 
Dropout 0.3 

Fully connection layer Output:2× 1  

 
Fig. 12. Influence of c  on the five transfer tasks. 

V. CONCLUSIONS 
In order to alleviate the effects of negative transfer and 

improve the discriminative of extracted target-domain in 
partial transfer fault diagnosis of rotating machinery, we 
propose a clustering-guided novel unsupervised domain 
adversarial network. Novel unsupervised domain adversarial 
network is constructed and DSBN is applied to remove 
domain-specific information to enhance alignment between 
two domains. Embedded clustering strategy is designed to 
learn tightly clustered target-domain features to suppress 
negative transfer in partial domain adaptation process. Finally, 
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a joint optimization objective function is defined to balance 
different losses to improve the training and diagnosis 
performance.  

A total of 14 partial transfer fault diagnosis tasks from two 
experimental datasets have verified that the proposed method 
can better reduce the influence of negative transfer in partial 
domain adaptation process, and achieve higher diagnosis 
accuracy compared to existing methods, which proves its 
potential applications in solving unsupervised partial transfer 
fault diagnosis problems. Future work will explore on how to 
accurately diagnosis fault modes under open-set domain 
adaptation and how to further design more robust embedded 
clustering strategies. 
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