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Abstract
Many countries seek to secure efficiency in health spending through establishing explicit priority setting institutions (PSIs). 
Since such institutions divert resources from frontline services which benefit patients directly, it is legitimate and reasonable 
to ask whether they are worth the money. We address this question by comparing, through simulation, the health benefits and 
costs from implementing two alternative funding approaches – one scenario in which an active PSI enables cost-effectiveness-
threshold based funding decisions, and a counterfactual scenario where there is no PSI. We present indicative results for 
one dataset from the United Kingdom (published in 2015) and one from Malawi (published in 2018), which show that the 
threshold rule reliably resulted in decreased health system costs, improved health benefits, or both. Our model is implemented 
in Microsoft Excel and designed to be user-friendly, and both the model and a user guide are made publicly available, in 
order to enable others to parameterise the model based on the local setting. Although inevitably stylised, we believe that our 
modelling and results offer a valid perspective on the added value of explicit PSIs.

Keywords  Priority setting institutions · Health technology assessment · Cost-effectiveness thresholding · Portfolio decision 
analysis · Simulation

Highlights 

•	 Portfolio simulation of health intervention funding deci-
sions provides a quantitative evaluation of the value 
delivered by health care priority setting institutions 
(PSIs)

•	 Funding criteria that prioritise interventions based on their cost-
effectiveness are compared with counterfactual funding criteria

•	 A range of cost-effectiveness-based decision rules are 
investigated, aiming to provide practical insights to PSIs 
using alternative funding approaches

•	 Potential insights on operationalising a PSI include the 
expected effectiveness of different funding strategies and 
on how these are best implemented

•	 This modelling approach could be used by policy makers and 
governments to justify and inform the establishment of new 
PSIs and to evaluate the effectiveness of established PSIs

1  Introduction

Modern medicine offers greater potential for alleviating 
human suffering and expanding the lifespan than ever 
before. In a world of limited resources, however, hard 
choices have to be made about what to fund [9]. In rich 
countries, population ageing means that there are increased 
demands on health systems, which leaves little headroom 
for financing medical innovation. For these countries, ris-
ing expectations about availability and quality of services 
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and financial protection of patients exceed the resources flow-
ing into the system by a considerable margin.

Many countries have responded to this challenge by estab-
lishing Priority Setting Institutions (PSIs) [7]. The philosophy 
behind these priority setting agencies is that decisions about pri-
ority setting should be made in a transparent and accountable 
way, drawing on best evidence and clearly articulating the under-
pinning values. As well as being in line with established wisdom 
about good practice in health system governance, such explicit 
priority setting has the advantage that it sends a clear signal to 
manufacturers about the value of particular product character-
istics, enabling them to better steer their R&D portfolios [11].

Historically, explicit priority setting in this manner is a 
relatively new idea, seen in the context of the centuries-long 
history of health services. For much of history, health ser-
vices were delivered largely through the market on an out-
of-pocket basis, with public or philanthropic funds allocated 
largely on the basis of the urgency of the need, or the deserv-
ingness or poverty of the recipient. In the first few decades of 
the UK’s National Health Services, cost control was achieved 
largely through local budgets and capacity restrictions deter-
mined on the basis of precedent, with waiting lists being used 
effectively as a demand management tool.

Against this backdrop, the establishment of PSIs repre-
sents a huge step forward in the application of the tools of 
epidemiological and clinical science to the management of 
health systems in order to secure the efficient and equitable 
delivery of health services [28]. Nevertheless, running such 
agencies is not costless, and the contribution which the staff 
of such agencies make to the health system is less visible to 
the general public than that of staff on the frontline.

In this paper we present a novel methodology which can give 
valuable insights into the contribution of PSIs to the nation and 
its health system. The remainder of the paper is organised as 
follows: In the Background section we provide more detailed 
motivation for our approach and outline the questions which we 
will address; in the Methodology section we outline the struc-
ture of the simulation model and the datasets which we use to 
parameterise the model; in the Results section we show how, 
while our results do generally suggest that PSIs add significant 
value, the precise quantum of the gain is influenced by modelling 
assumptions and situational factors; and in the Discussion and 
Conclusion sections, we draw the implications of our work for the 
practice of priority setting, and suggest some directions forward.

2 � Background

2.1 � Assessing the contribution of priority setting 
agencies

Several studies (reviewed in more detail in a companion 
paper [19]) have assessed the contribution of priority setting 

agencies in various countries, including the UK, Canada, 
Australia, the United States and the Netherlands [1, 24]. 
Existing studies can be classified as deploying either one 
of two broad methodological approaches, or deploying a 
mixture of these: modelling studies use economic models 
developed within the priority setting process itself to quan-
tify the scale of the financial and health impact from inter-
ventions which have received a positive recommendation 
from the priority setting agency; whereas implementation 
studies examine whether changes in clinical practice have 
followed such positive recommendations. Such studies are 
illuminating and leave no doubt about the important role 
which PSIs play in the health systems of the countries in 
question.

Nevertheless, a weakness of most (or all) existing work is 
that it does not address directly the question of the counter-
factual, that is, what would have happened in the absence of 
a PSI. The value of a PSI can only be gauged by the extent to 
which it recommends the acceptance of interventions which 
would otherwise be rejected, or the rejection of interventions 
which would otherwise be accepted.

One way to study the impact of PSIs which addresses 
the issue of the counterfactual would be to take a case–con-
trol approach, identifying countries which have instituted 
some form of PSI and comparing them with others at a 
similar stage of development which have not. Indeed, the 
argument which many advocates of explicit priority set-
ting make is to compare the overall system costs in the US 
market with system costs in the likes of Canada and the 
larger European countries (many of the smaller European 
countries effectively avoid the expense of implementing a 
PSI by following the lead of either one larger country or 
a basket of these). However, it is highly doubtful that any 
such differences can solely be attributed to the presence or 
absence of a PSI as the US differs from other rich country 
health systems on multiple dimensions of system structure 
and political economy (e.g., health funding models and 
governance structure).

2.2 � Summary of modelling approach

The approach we take in this paper is a simulation approach, 
in which we simulated a random collection of healthcare 
interventions. We then model two alternative scenarios in 
which decisions on funding these interventions are made 
– one scenario in which a PSI has been established and 
decides which interventions should be funded, and a coun-
terfactual scenario in which there is no PSI and funding 
decisions are made on some other basis. For consistency, 
we will refer to these two funding scenarios as “PSI-active” 
and “PSI-absent”, respectively. The performance of each 
funding scenario is then compared according to financial 
and health-based metrics.



What is the value of explicit priority setting for health interventions? A simulation study﻿	

1 3

To represent the PSI-active scenario, we assume that the 
core PSI feature influencing funding decisions is the ability 
to conduct cost-effectiveness studies for a given intervention. 
Furthermore, we assume that only a PSI can provide such 
information in order to make decisions on this basis. We 
therefore model funding decisions in the PSI-active scenario 
as being based on a funding rule centred on a minimum 
threshold for the cost-effectiveness ratio (CER). To represent 
the counterfactual PSI-absent scenario, we assume that there 
is no access to cost-effectiveness information, and that fund-
ing decisions are reached independently of this information. 
We model the CER-independence of the counterfactual deci-
sions by funding interventions on a first-come-first-served 
(FCFS) basis (that is, according to the random order in 
which interventions are sampled).

We recognise that, in practice, a PSI-absent scenario 
could avoid the effort and expense of explicitly setting pri-
orities, yet still perform substantially better than funding 
interventions with a random collection of cost-effectiveness. 
We anticipate, however, that many counter-examples will in 
fact feature some degree of random selection, CER informa-
tion (at some level), or a combination of these. For example, 
funding decisions on the basis of burden of illness would 
prioritise interventions which target the most substantial 
health gains (per individual or across a population). In the 
absence of information on the health gains that are actually 
delivered, however, this strategy can be assumed to fund 
interventions which achieve a random collection of CERs. 
Another counter-example is to fund interventions based on 
common-sense or expert knowledge, however, it could be 
expected that either of these would in fact draw upon some 
level of cost-effectiveness information – potentially from 
a PSI in another country. Indeed smaller PSIs may oper-
ate effectively by following CER advice from an external 

PSI; however this does not enable local characteristics to be 
incorporated into the decision-making process. Therefore, 
while we recognise that our modelling approach is obviously 
idealised, we believe that using a counterfactual setting 
which represents the true absence of information on CERs 
gives a new perspective on the question of the value of a PSI.

Furthermore, we recognise that the CER-threshold fund-
ing rule is an idealised implementation of the funding deci-
sions that are made by PSIs in practice. We therefore con-
sider various extensions to the CER-threshold funding rule, 
that are intended to more closely model aspects of how a PSI 
would operate in reality. These extensions broadly relate to 
budgetary considerations, and include considering: the total 
budget available for funding, focusing the funding on those 
interventions which will have the largest budgetary impact, 
and growing the available budget through time as the PSI 
becomes more established.

Specifically, we conduct the comparison of the PSI-active 
scenario against the PSI-absent scenario through four inves-
tigations – each with a different decision rule under which a 
PSI might operate, and an appropriate counterfactual deci-
sion rule (see Table 1). Case (i) reflects a PSI which oper-
ates using a cost-effectiveness threshold as its decision rule 
(somewhat similar to NICE in England). Case (ii) models a 
PSI which uses both cost-effectiveness and budget impact 
in its decision making (similar to HITAP in Thailand). Case 
(iii) adds some practicality to the previous case, since typi-
cally not all new technologies are subject to formal analysis: 
only those with the largest health or financial footprint are. 
For this Case, the number of technologies subject to formal 
analysis is assumed to be static, unchanging from year to 
year. In contrast, Case (iv) models the situation where a new 
PSI has been implemented, analysing an increasing num-
ber of technologies each year. The final column of Table 1 

Table 1   Summary of the comparison investigations analysed in Section 4

Name of case Description of PSI rule Description of counterfactual rule Corresponding 
equations (refer to 
Section 3)

(i) Threshold rule Fund interventions with cost-effective-
ness ratio below the threshold

Fund random selection of interventions (5) and (3)

(ii) Threshold rule with budget con-
straint

Fund interventions with cost-effective-
ness ratio below the threshold and 
within the limited budget

Fund random selection of interventions 
within limited budget

(6) and (4)

(iii) Threshold rule with limited analy-
sis capacity

Fund interventions with cost-effective-
ness ratio below the threshold within 
the limited budget and with static 
limit on application of threshold rule

Fund random selection of interventions 
within limited budget

(7) and (4)

(iv) Threshold rule with phased run-in Fund interventions with cost-effective-
ness ratio below the threshold within 
the limited budget and with limit on 
application of threshold rule relaxing 
over time

Fund random selection of interventions 
within limited budget

(8) and (4)
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cross-refers to the mathematical expression of the decision 
rules deployed under the PSI-active and PSI-absent scenar-
ios, as defined in Section 3.

We structure our findings by presenting analysis first for 
two base case data-sets, based on available data for the UK 
and Malawi. As our simulation is a stochastic simulation, 
analysis of these base cases allows us to explore the distri-
bution of outcomes for fixed parameters. We follow this up 
by presenting sensitivity analyses (Appendix 4) which allow 
us to show how expected increases in benefit or cost savings 
vary depending on the cost-effectiveness threshold or the 
budget constraint used in the decision rules. An important 
driver of the results is the level of correlation between the 
costs and the benefits at the level of the interventions and we 
use the sensitivity analysis to explore that as well.

2.3 � Review of relevant literature for the modelling 
approach

To the best of our knowledge, there have not previously been 
any published works utilising economic modelling to quan-
tify the contribution of a PSI. The simulation model pre-
sented here implements a portfolio decision analysis (PDA) 
framing to the PSI decision problem. PDA is a collection 
of methods, where the focus is on constructing a portfolio 
of “projects” from a larger pool, and the chosen portfolio 
is optimal with respect to one or more criteria. Typically 
a number of constraints restrict the projects which can be 
included in the portfolio, such as limited resources. Salo 
et al. [25] present a useful overview of PDA, with discussion 
of the underpinning theory and of a diverse range of appli-
cations. With two criteria – such as cost and benefit – the 
PDA problem equates to selecting those projects which pre-
sent the best value for money. Phillips and e Costa [22] also 
provide a useful introduction to PDA and value-for-money 
project selection for two criteria, with discussion of the dis-
tinction between resource allocation and resource prioritisa-
tion. Morton et al. [21] present a PDA model for portfolio 
selection against multiple criteria, and also provide a survey 
of applications of PDA. Recent examples applying PDA in 
a variety of settings include prioritising strategic ecological 
interventions to monitor or manage different species or habi-
tats [3], prioritising safety measures to avoid system failures 
[16, 17], prioritising the portfolio of monitoring systems 
to improve the reliability of power transmission networks 
[4], prioritising siting locations for offshore wind farms [5], 
prioritising maintenance programmes for bridges [18], and 
prioritising research and development funding for national 
energy programmes [15].

The approach taken here is inspired by the approach intro-
duced by Keisler [13], who applied simulation in a PDA 
setting to explore the impact that additional information on 
a project’s uncertain value has on the value of the selected 

portfolio. Several alternative selection criteria were consid-
ered, and these were compared with a random selection deci-
sion, akin to our counterfactual, PSI-absent, FCFS decision 
rule. In our setting, the candidate healthcare interventions rep-
resent the “projects” from which a portfolio must be selected, 
the funding budget (when incorporated within a decision rule) 
represents the available resource, the criteria by which inter-
ventions are measured are the implementation cost and the 
health benefit gain, and the decision to be optimised is the 
composition of the portfolio of funded interventions. Finally, 
we observe that in the commentary by Angelis et al. [2] on 
methods to integrate alternative measures of benefit provided 
by a healthcare intervention when assessing the value of these 
in a health technology assessment (HTA) context, there is 
recognition that PDA would be a useful tool to maximise the 
benefits gained from a selection of these. This paper presents a 
first attempt to explore this, with consideration of the practical 
issues which arise when formulating the PSI-active funding 
decision rules, based on cost-effectiveness.

3 � Methodology

The simulation model is intended to represent the decision-
making process that a funding body, such as a national health 
department, would undertake in each funding cycle in order to 
identify which health interventions should be allocated fund-
ing. The individual interventions are selected from a collec-
tion of potential candidates, and are characterised by the size 
of the population they would impact, as well as the costs and 
expected health benefits per case. In each simulation a new 
collection of candidate interventions is randomly generated. 
For each funding scenario – PSI-active and PSI-absent – the 
relevant funding decision rule (as defined in Table 1) is then 
applied to this collection, and the portfolio of interventions 
selected for funding under each scenario can be compared. 
This is repeated over many simulations, generating many ran-
dom collections of candidate interventions, and producing a 
distribution of outcomes under each funding scenario.

Mathematically speaking, we model the set of N candidate 
interventions in a given simulation of a funding cycle (of fixed 
length) as IA = {I1, I2,… , IN} ; the i th intervention is defined as 
the tuple of random variables Ii = (Pi,Ci,Qi) , where Pi repre-
sents the size of the population impacted by the intervention, and 
the costs and expected health benefits per case that is allocated 
this intervention are represented by Ci and Qi , respectively.

To explore the value which could potentially be returned 
from a PSI, we consider the cases of two countries at different 
stages of establishing universal healthcare (UHC) systems: 
one country with well-established UHC (the UK) and one 
country with more fledgling UHC (Malawi). We use pub-
lished data on healthcare interventions in the UK [10] and 
Malawi [23], respectively, to represent these two countries. 
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Note that we only use these data-sets to provide indicative 
descriptions of the type of interventions which would be con-
sidered for funding in established UHC and fledgling UHC 
countries. We do not assume that the interventions described 
in these data-sets are fully representative of the specific fund-
ing decisions made in either the UK or Malawi. Furthermore, 
we do not assume that the results presented in the following 
section specifically represent the outcomes which could be 
expected from a PSI in either the UK or Malawi. The data-
sets used are presented in Appendix 1 for clarity.

From the outset, the intention has been to provide an 
online release of the simulation model to facilitate dis-
semination to end-users, and that this should be techni-
cally accessible for non-quantitative users. Intended end-
users include health policy makers and funders considering 
establishing PSIs, who would benefit from gaining an under-
standing of the potential value a PSI could deliver in com-
parison to existing approaches to fund health technology 
interventions, as well as the potential impact of different 
approaches by which a PSI makes those decisions. Addition-
ally, end-users could include directors of established PSIs, 
who would benefit from being able to estimate the value that 
the institution delivers to a national health programme. For 
example, Kingkaew et al. [14] present an application of the 
simulation model to the case of Thailand, to demonstrate the 
positive impact that HTA in Thailand has had on national 
health expenditure. This end-user consideration has driven 
various modelling choices, in particular the distributional 
form of the input data, and the dependency modelling of 
the output data.

Following a preliminary analysis of the indicative data-
sets (see Appendix 3 for details), the number of cases treated 
by each intervention, the incremental costs of administering 
each intervention per treated case, and the incremental health 
benefits returned per case treated with the intervention, are 
each assumed to be log-normally distributed, and are speci-
fied respectively as P ∼ LogN(�P, �P

2) , C ∼ LogN(�C, �C
2) 

and Q ∼ LogN(�Q, �Q
2) , where � and � represent the mean 

and standard deviation of each distribution, and the sub-
scripts correspond to the respective random variables. These 
stochastic model parameters are summarised in Table 3, and 
the distribution parameters and other inputs are defined in 
Table 2.

The simulation model incorporates statistical depend-
ence between costs and benefits by generating samples 
which have a specified level of linear correlation, which we 
define as �CQ . The details of the approach to achieve cor-
related samples is outlined in Appendix 2. For a correlation 
close to one, the costs and benefits of an intervention will 
have a strong linear dependence, and the most expensive 
interventions are more likely to deliver the largest health 
benefit gains. In contrast, for a correlation close to zero, the 
costs and benefits will be largely independent and the most 

expensive interventions will be as likely to deliver large or 
small health benefit gains. For reference, the costs and benefits 
for the indicative data-sets (see Appendix 1) have a correlation 
of 0.164 for Malawi and 0.998 for the UK. Statistical depend-
ence is a somewhat abstract concept, and would be challeng-
ing for many users to quantify or accurately measure without 
a significant amount of data. To mitigate this, the simulation 
model therefore automatically runs under three different levels 
of correlation: a low correlation (�CQ = 0.2) where the costs 
and benefits are largely independent, a medium correlation 
(�CQ = 0.5) where there is some dependence between costs 
and benefits, and a high correlation (�CQ = 0.8) where the 
costs and benefits have a strong dependence. Note that the 
correlation values �CQ = {0.2, 0.5, 0.8} specify the correla-
tion between the untransformed costs and benefits. This pro-
vides a simple mechanism to demonstrate to users the potential 
impact of dependency between costs and benefits in terms of 
the model outputs.

Application of each funding decision rule D yields a sub-
set of IA , comprising those interventions which satisfy the 
particular funding requirements of the decision rule. For-
mally these are written as

for the portfolio of interventions funded through counterfac-
tual PSI-absent decision rule DC, and

for the portfolio of interventions funded through the CER-
threshold-based PSI-active decision rule DT  . Below, we 
investigate and compare several variants of the PSI-absent 
and PSI-active decision rules, in order to explore the per-
formance of the PSI-active funding scenario under various 
alternative approaches to implement a PSI in practice.

Two counterfactual PSI-absent decision rules are consid-
ered. Firstly, a count-based FCFS rule, defined for the i th 
intervention as

where n represents the number of interventions funded. 
Secondly, a budget-based FCFS rule, defined for the i th 
intervention as

where l represents a budget limit.

(1)ICF = {I ∈ IA|DC(I) = 1},

(2)ITH = {I ∈ IA|DT (I) = 1},

(3)DC
C

(
Ii, n

)
=

{
1 if i ≤ n, for n ∈ N|n ≤ N,

0 otherwise,

(4)DC
B

�
Ii, l

�
=

⎧
⎪⎨⎪⎩

1 if
i∑

j=1

Cj ≤ l, for l ∈ R,

0 otherwise,
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The simplest PSI-active decision rule consists of a 
requirement to meet a CER threshold, defined for the i th 
intervention as

(5)DT
R

(
Ii, t

)
=

{
1 if

Ci

Qi

≤ t, for t ∈ R,

0 otherwise,

where t represents the threshold. This rule is then iteratively 
increased in complexity. Firstly, incorporating a budget limit 
l gives for the i th intervention

(6)DT
B

�
Ii, t, l

�
=

�
1 if

Ci

Qi

≤ t,
∑i

j=1
Cj ≤ l, for t, l ∈ R,

0 otherwise.

Table 2   Input parameters used for the Section 4 investigations

Intervention measure Country data-set Relevant data for calculation and source Symbol Input parameter value

Intervention QALY increment UK Qi per intervention, as shown in Table 9 
and extracted from Guthrie et al. [10]

�Q (Mean) 0.62

�Q (Std. dev.) 1.18
Malawi QTi∕Pi per intervention, each as shown 

in Table 10 and extracted from Ochalek 
et al. [23]

�Q (Mean) 7.05

�Q (Std. dev.) 16.93
Intervention cost increment UK Ci per intervention, as shown in Table 9 

and extracted from Guthrie et al. [10]
�C (Mean) £9.14k  

�C (Std. dev.)  £19.05k
Malawi CTi∕Pi per intervention, each as shown 

in Table 10 and extracted from Ochalek 
et al. [23]

�C (Mean) $20

�C (Std. dev.) $30

Number of cases per intervention 
(thousands)

UK Pi per intervention, as shown in Table 9 
and extracted from Guthrie et al. [10]

�P (Mean) 540.22

�P (Std. dev.) 595.41
Malawi Pi per intervention, as shown in Table 10 

and extracted from Ochalek et al. [23]
�P (Mean) 1464.74

�P (Std. dev.) 2910.67
Number of interventions considered for 

funding
UK Taken from Guthrie et al. [10], see Appen-

dix 1
N 74

Malawi See Appendix 1 40
CER threshold required for funding UK Taken from Guthrie et al. [10], see Appen-

dix 1
t  £20k 

Malawi See Appendix 1 $2

Annual budget limit to fund interven-
tions

UK See Appendix 1 l £75,000M  

Malawi $120M

Number of interventions funded annu-
ally

UK n 48

Malawi 14
Annual percentage of high-value inter-

ventions assessed using the threshold
Both pa 20%

Total number of years of phased 
increases to the PSI capability

Y 5 Years  

Target percentage of interventions 
assessed by the PSI in the final year of 
phased increases

pY 100%



What is the value of explicit priority setting for health interventions? A simulation study﻿	

1 3

An alternative PSI-active rule is that the cost-effectiveness 
analysis would only be applied to a limited number of interven-
tions – specifically those interventions which would be the most 
expensive to implement. The motivation for this rule is that the 
PSI has limited resources, and therefore has to be selective in 
which interventions require review. A natural approach to this 
scenario would therefore be to focus on those interventions which 
will have the largest impact on the available funding and apply 
the CER threshold decision rule to these interventions. All other 
interventions are simply funded according to the counterfactual 
rule on a FCFS basis. For the ith intervention this rule is defined as

where Ppa
Cpa

 is the (100 − pa) th percentile of the set 
{P1C1,P2C2,… ,PNCN} . The decision parameter pa there-
fore sets the annual proportion of highest budget-impacting 
interventions that a CER assessment is applied to. A final 
alternative PSI-active rule is to implement a phased increase 
of the PSI capability, such that over a number of years the 
PSI will gradually increase the proportion of interventions 
which are reviewed, until a mature state of operation is 
achieved. The motivation for this addition is that the exper-
tise, resourcing and funding for a PSI may be increased over 
time as the institute establishes itself. As such, it is only 
possible to review a portion of all interventions which seek 
funding, and in a similar approach to the previous rule, the 
focus is placed on those interventions which will have the 
largest impact on the available funding budget. For lower-
value interventions, the funding decision is again determined 
by a budget-based FCFS rule. For the ith intervention this 
rule is defined as

where PrCr is the (100 − r) th percentile of the set 
{P1C1,P2C2,… ,PNCN} , Y  represents the total number of 
years of phasing, and y represents the current year within 
this phased-approach. Defining r in this way controls the 
percentage of interventions each year which are funded 
based on a CER threshold decision. In the first year the 
pY∕Y% of interventions with largest P × C are funded based 
on a CER threshold decision, and in year Y this has increased 
to the largest pY % of interventions.

Intervention portfolio ICF is determined through Eq. (1), 
with the counterfactual PSI-absent decision rule DC = DC

C
 or 

DC = DC
B
 , as given by Eqs. (3)-(4). Similarly, portfolio ITH is 

determined through Eq. (2), with the PSI-active decision rule 

(7)

DT
P

�
Ii , t, l, pa

�
=

⎧⎪⎪⎨⎪⎪⎩

1 if PiCi ≥ Ppa
Cpa

,
∑i

j=1
Cj ≤ l,

Ci

Qi

≤ t, for t, l, pa ∈ R, 0 ≤ pa ≤ 100,

1 if PiCi < Ppa
Cpa

,
∑i

j=1
Cj ≤ l, for l, pa ∈ R, 0 ≤ pa ≤ 100,

0 otherwise,

(8)DT
Y

�
Ii, t, l, pY , y,Y

�
=

⎧⎪⎨⎪⎩

1 if PiCi ≥ PrCr ,
∑i

j=1 Cj ≤ l,
Ci

Qi
≤ t, where r =

pY y

Y
, for t, l, pY ∈ R, y,Y ∈ N, 0 ≤ pY ≤ 100, 1 ≤ y ≤ Y ,

1 if PiCi < PrCr ,
∑i

j=1 Cj ≤ l, where r =
pY y

Y
, for l, pY ∈ R, y,Y ∈ N, 0 ≤ pY ≤ 100, 1 ≤ y ≤ Y ,

0 otherwise,

either DT = DT
R
 , DT = DT

B
 , DT = DT

P
 , or DT = DT

Y
 , as given 

by Eqs. (5)-(8). Each simulation generates a new set of candi-
date interventions IA , and thus new portfolios ICF and ITH. The 
decision rules Eq. (4) - Eq. (8) correspond respectively to the 
Case (i) - Case (iv) investigations, as summarised in Table 1.

In a given simulation, various metrics can be utilised to 
compare portfolios ICF and ITH , in order to communicate 
the differences between implementing the PSI-absent and 
PSI-active decision rules across the simulations. The met-
rics used here are largely built upon two key measures: the 
difference in total costs between all interventions in each 
portfolio, and the difference in total benefits between all 
interventions in each portfolio. These differences are for-
mally defined as

and

respectively. The additional metrics used in Section 4 which 
follow from these, are the net health benefit (NHB), defined 
for CER threshold t as

and the incremental cost-effectiveness ratio (ICER), defined 
as

The model outputs communicate the differences between 

implementing the PSI-absent and PSI-active decision rules 
across the simulations. Costs and benefits are presented at a 
population level per funding cycle, and the impact on these 
is explored separately and also in combination.

The input parameters used for the investigations on the 
indicative UK and Malawi data-sets are presented in Table 2, 
along with details of sources and calculations as relevant. 
Table 3 completes the parameterisation of the decision rules 
(3)-(8), with details of the stochastic model parameters and 
how these relate to the inputs.

To summarise the modelling process, first the compari-
son investigation is selected (Case (i) – (iv) as detailed in 
Table 1). This determines which of the funding decision 

(9)ΔC

(
ITH , ICF

)
=

∑
Ii∈ITH

Ci −
∑
Ii∈ICF

Ci,

(10)ΔQ

(
ITH , ICF

)
=

∑
Ii∈ITH

Qi −
∑
Ii∈ICF

Qi,

(11)NHB(ITH , ICF, t) = ΔQ

(
ITH , ICF

)
−

1

t
ΔC

(
ITH , ICF

)
,

(12)ICER(ITH , ICF) =
ΔC

(
ITH , ICF

)

ΔQ

(
ITH , ICF

)
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rules (3)-(8) are applied for the PSI-active and PSI-absent 
funding scenarios. The parameters for the relevant deci-
sion rules are fixed according to Table 2. For each com-
parison investigation, 1000 simulation runs are completed. 
In each simulation the set of candidate interventions (IA) 
are sampled, according to the sampling parameters defined 
in Table 3 and relevant distribution input parameters from 

Table 2. The relevant decision rules are applied to the set 
of interventions IA , and various output performance meas-
ures (including Eqs. (9)-(12)) are calculated. At the next 
simulation, a new set of interventions is sampled and the 
process repeats. The intervention components Q , C and P 
(see Table 3) are the only stochastic parameters, varying 
between simulations.

Table 3   Stochastic model 
parameters (describing each 
intervention within each 
simulation) used for the 
Section 4 and Appendix 4 
investigations

Sampled components of i th intervention (Ii)   Symbol Distribution Parameterisation

QALY increment of i th intervention Qi Log-normal Qi ∼ LogN(�Q, �Q
2)

Cost increment of i th intervention Ci Log-normal Ci ∼ LogN(�C, �C
2)

Number of cases impacted by i th intervention Pi Log-normal Pi ∼ LogN(�P, �P
2)

Table 4   Summary results 
from the Case (i) simulations 
comparing the PSI-absent 
(Absent) and PSI-active 
(Active) funding scenarios. 
Input data is parameterised 
from the indicative UK and 
Malawi data-sets as presented 
in Appendix 1. For each 
performance measure and 
each correlation level, the best 
performing scenario is marked 
in bold

Indicative data-set Output measure Correlation Funding approach

Absent Active

UK Average total cost (£M) 0.2 237,772 115,182
0.5 229,362 151,748
0.8 235,271 215,584

Average total QALY (thousands) 0.2 16,444 20,759
0.5 15,713 19,475
0.8 16,034 19,571

Average number of interventions funded 0.2 48 44.58
0.5 48 47.6
0.8 48 54.27

Expected ICER per funding cycle 0.2 15.75 5.78
0.5 15.24 7.93
0.8 14.88 11.05

Expected NHB of PSI-active scenario com-
pared to PSI-absent scenario (thousand 
QALYs per funding cycle)

0.2 10,445

0.5 7,643
0.8 4,522

Malawi Average total cost ($M) 0.2 333 192
0.5 333 241
0.8 339 289

Average total DALY (thousands) 0.2 146,278 299,245
0.5 144,431 265,199
0.8 151,685 223,009

Average number of interventions funded 0.2 14 15.51
0.5 14 13.64
0.8 14 10.03

Expected ICER per funding cycle 0.2 0.0032 0.0007
0.5 0.0029 0.001
0.8 0.0026 0.0014

Expected NHB of PSI-active scenario com-
pared to PSI-absent scenario (thousand 
DALYs per funding cycle)

0.2 223,483

0.5 166,718
0.8 96,028
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4 � Results for the base case

The four investigations outlined in Table 1 are presented 
in Sections 4.1–4.4 respectively. Appendix 4 presents addi-
tional analysis on these investigations, as the parameters of 
the PSI-active decision rules are varied.

4.1 � Case (i): Performance of threshold rule

The simulation model was run on each of the indicative data-
sets with 1000 simulation runs. Table 4 shows a summary com-
parison of the outputs generated for the Case (i) investigation 
under the PSI-absent and PSI-active funding scenarios (see 
Table 1 for definitions and Table 2 for parameterisations of 
the decision rules). Comparing both scenarios at a particular 
level of correlation for either data-set reveals that the PSI-active 
scenario will spend less funding, will deliver higher health ben-
efits, will achieve a lower ICER (– comparing to a situation 
before the funding is spent), and will fund more interventions.

Comparing results across different levels of correlation, 
it is clear that with higher correlation the performance of 
the PSI-active scenario reduces. This reduction is due to the 
fact that with higher correlation levels the health benefits are 
more proportional to the costs. While this largely mitigates 
the risk of funding an expensive intervention which will 
deliver little health benefit, it also diminishes the opportu-
nities for funding low cost interventions which deliver sub-
stantial benefits. Even with higher correlation, however, it is 
clear that the PSI-active funding scenario is still superior to 
the PSI-absent scenario. For brevity, only the mid-level case 
with correlation equal to 0.5 will be analysed in the remain-
der of this section. This provides a comparison between the 
PSI-active and PSI-absent funding scenarios when there is 
some dependence between the intervention costs and ben-
efits – if that dependence reduces then the performance of 
the PSI-active scenario improves, and if that dependence 
increases then the performance of the PSI-active scenario 
degrades. Note that the Appendix 4 sensitivity analysis pro-
vides further comparison between the correlation levels as 
the decision rules are varied.

Comparing between data-sets, the indicative Malawi data 
shows larger benefits to be gained under the PSI-active sce-
nario. The NHB represents a larger percentage of the average 
total health benefit returned under each level of correlation, 
and even with high correlation between costs and benefits 
the expected ICER for the PSI-active scenario is only 54% 
of that for the PSI-absent scenario.

The total expenditure per funding cycle is displayed in 
Fig. 1 for each funding scenario on each indicative data-set. 
The distribution of results across all simulations are summa-
rised as a box-plot, with the central notches on each box-plot 
representing a confidence interval around the median. The 

contrasting square on each box-plot represents the mean. 
Similarly, Fig. 2 shows the distribution across simulations 
of the total health benefit per funding cycle for each funding 
scenario on each indicative data-set.

The findings discussed above for Table 4 are portrayed 
in more detail in Figs. 1 and 2 for the total costs and ben-
efits, respectively. In each case, and across both data-sets, 
the data are shown to have a relatively focused distribution 
in terms of the overall range of each variable. The median 
total cost is slightly higher for the PSI-absent scenario with 
both data-sets, and the median total QALY gain is higher for 
the PSI-active scenario with both data-sets.

Figure 3 plots the differences ΔQ

(
ITH , ICF

)
 in each simu-

lation against the corresponding differences ΔC

(
ITH , ICF

)
 

across all simulations. It is clear that the majority of recorded 
differences for each data-set demonstrate an increase in 
health benefits under the PSI-active scenario, in addition 
to a decrease in implementation costs. Figure 3 shows that 
the largest mass for each bi-variate distribution is focused 
on slightly reduced costs and slightly improved health ben-
efits, although the distribution for each data-set is reason-
ably spread. An important observation is that, although some 
simulations demonstrate that under the PSI-active scenario 
the benefits increased but required more funding, and in a 
few cases the benefits reduced but required less funding, 
there are no cases where costs increase and benefits decrease 
when comparing the PSI-active scenario to the PSI-absent 
scenario. This is demonstrated further in Table 5, which 
classifies simulations according to whether the cost- and 
health benefit increments are positive or negative.

4.2 � Case (ii): Performance of threshold rule 
with budget constraint

The impact of the budget restricted decision rules (4) and (6) 
(for the PSI-active and PSI-absent scenarios, respectively) is 
displayed in Fig. 4. There is a much greater performance dif-
ference between the two data-sets in this case. For the indic-
ative Malawi data, the largest concentration of the data is 
once again at slight reductions in costs with slight increases 
in benefits, however, the differences within each simula-
tion have a more disperse distribution than for the Case (i) 
decision rules. For the indicative UK data, the largest con-
centration of the data is also at slightly increased benefits, 
with the cost differences spread between slight increases and 
slight reductions. There are, however, a small number of 
simulations which are shown to result in increased costs and 
reduced benefits. Further exploration of these cases reveals 
that these outcomes are caused by lost funding opportuni-
ties, as a result of applying the funding decision rules on a 
case-by-case basis with random ordering of interventions. 
Consider for example each funding approach being applied 
to a particular list of interventions, and the PSI-active 
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scenario has insufficient budget remaining to fund a specific 
(very low CER) intervention; in contrast, under the PSI-
absent scenario, previous funding decisions have resulted 

in a larger budget remaining. The low CER intervention is 
therefore funded, and as a result the PSI-absent scenario 
achieves lower overall costs and higher health benefit. Table 6 

Fig. 1   Distribution of total 
incremental expenditure per 
funding cycle for each decision 
rule. (a) Indicative UK data, (b) 
Indicative Malawi data

(a) (b)

Fig. 2   Distribution of total 
incremental QALY gain per 
funding cycle for each decision 
rule. (a) Indicative UK data, (b) 
Indicative Malawi data

(a) (b)

Fig. 3   Distribution of the differ-
ence in the total cost of funded 
interventions (Eq. (9)) against 
the difference in the total health 
benefit gain of funded interven-
tions (Eq. (10)), per funding 
cycle for each decision rule. (a) 
Indicative UK data, (b) Indica-
tive Malawi data

(a) (b)
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highlights that this only applies to a minimal number of simula-
tions for either data-set, and that the vast majority of simulations 
result in improved health benefits under the PSI-active scenario, 
and with also reduced costs in the majority of simulations.

4.3 � Case (iii): Performance of threshold rule 
with limited analysis capacity

Figure 5 explores the performance of the PSI-active fund-
ing rule (7) against the PSI-absent rule (4). Again, there are 
substantial differences in performance between both data-
sets. For the indicative UK data, the differences between the 
funding scenarios is much more widely distributed. There 

are a substantial number of cases where costs increase and 
benefits decrease under the PSI-active scenario; however, the 
most frequently observed difference is shown to be slightly 
improved health benefits with larger increases to the imple-
mentation costs. For the indicative Malawi data, there is a 
reasonably disperse distribution of the observed differences 
between the two funding scenarios, however, the most fre-
quently observed differences show slightly reduced costs for 
a range of health benefit improvements (Table 7).

4.4 � Case (iv): Performance of threshold rule 
with phased run‑in

Finally, the phased increase scenario (given by the PSI-
active funding rule (8)) is considered, with Y = 5 funding 
cycles and p = 100% of interventions funded based on the 
CER threshold at the end of this period. The percentage of 
interventions reviewed by the PSI will therefore increase 
by 20% in each cycle over this period. The results from this 
comparison are shown in Fig. 6. For the indicative UK data, 
overall costs over this period are shown to typically increase, 
however, the health benefits which would be returned are 
also shown to increase substantially. For the indicative 
Malawi data, the most frequently observed result is that the 
overall costs reduce and overall benefits increase, and this 
difference is observed in the vast majority of cases (Table 8).

5 � Discussion

The investigations presented in Section 4 explore the poten-
tial impact of a PSI, when the mechanism by which the PSI 
reviews interventions is varied. An idealised scenario would 
be that any intervention which satisfies the cost-effectiveness 

Table 5   Classification of the total cost increment (Eq.  (9)) and the 
total health benefit increment (Eq.  (10)) per simulation for the Case 
(i) investigation, for the indicative UK and Malawi data-sets. For each 
data-set, the percentage of simulations with a positive cost increment 
(that is, the funded interventions are more expensive in the PSI-active 
scenario) and also a negative health benefit increment (that is, the 
funded interventions produce fewer health benefits in the PSI-active 
scenario) is marked in bold

Classification ΔQ

(
ITH , ICF

)
< 0

(%)
ΔQ

(
ITH , ICF

)
≥ 0

(%)
Totals 
(%)

UK ΔC

(
ITH , ICF

)
≥ 0

(%)
0 11.2 11.2

ΔC

(
ITH , ICF

)
< 0

(%)
16 72.8 88.8

Totals (%) 16 84 100
Malawi ΔC

(
ITH , ICF

)
≥ 0

(%)
0 31.7 31.7

ΔC

(
ITH , ICF

)
< 0

(%)
18.3 50 68.3

Totals (%) 18.3 81.7 100

Fig. 4   Distribution of the differ-
ence in the total cost of funded 
interventions (Eq. (9)) against 
the difference in the total health 
benefit gain of funded interven-
tions (Eq. (10)), per funding 
cycle for each decision rule, 
with budget limits. (a) Indica-
tive UK data, (b) Indicative 
Malawi data

(a) (b)
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ratio threshold would be funded (see Case (i) investigation). 
It is clear that under this approach substantial net savings 
would be realised, with a net surplus greater than the initial 
investment observed on average for both data-sets with a 
mid-level of correlation between the intervention costs and 
benefits.

In practice, however, it is likely that a funding budget will 
exist and that all interventions which satisfy the threshold 
rule will not necessarily be funded (see Case (ii) investiga-
tion). The implication of this is that inclusion of a budget 
limit implicitly introduces a FCFS nature to the threshold 
rule approach. As a consequence, there is potential that 

opportunity loss will result in a net loss when the thresh-
old rule is compared with a budget-limited counterfactual 
rule. With both data-sets analysed in Section 4 these occur-
rences are found to be rare, and the expected scenario is 
that the threshold rule will still deliver substantial net sav-
ings. Restricting the PSI further such that the threshold rule 
is only applied to high-value interventions (see Case (iii) 
- Case (iv) investigations), the scale of each funding deci-
sion subjected to the threshold rule increases. The scale of 
net losses which can potentially occur through opportunity 
loss also therefore increases, and in Section 4 these losses 
are observed with a higher frequency for each data-set. 
Transitioning between these two funding approaches (from 
limited application of threshold rule to application of the 
threshold rule to all interventions), and the net surplus which 
would be returned by applying the threshold rule transitions 
accordingly.

The simple decision rules considered here may not accu-
rately represent the full complexity of a PSI decision making 
process in practice. Indeed, for some PSIs decisions may not 
be driven by a threshold-based rule (see Millar et al. [19] for 
further discussion on this). The healthcare funding context 
modelled here is also a simplification. For example, in many 
LMICs, healthcare funding comes from national budgets 
as well as various other donor sources. Donors may target 
funding towards specific diseases and interventions accord-
ing to their own agendas, rather than focusing specifically on 
the CER of interventions and making funding decisions on 
this basis. The modelling approach presented here could be 
employed separately by each funding source in order to priori-
tise its own intervention funding decisions – allowing for the 
potential that there is a prior down-selection of interventions 
according to external prioritisation considerations (see for 

Table 6   Classification of the total cost increment (Eq.  (9)) and the 
total health benefit increment (Eq.  (10)) per simulation for the Case 
(ii) investigation, for the indicative UK and Malawi data-sets. For 
each data-set, the percentage of simulations with a positive cost incre-
ment (that is, the funded interventions are more expensive in the PSI-
active scenario) and also a negative health benefit increment (that is, 
the funded interventions produce fewer health benefits in the PSI-
active scenario) is marked in bold

Classification ΔQ

(
ITH , ICF

)
< 0

(%)
ΔQ

(
ITH , ICF

)
≥ 0

(%)
Totals 
(%)

UK ΔC

(
ITH , ICF

)
≥ 0

(%)
0.2 25.5 25.7

ΔC

(
ITH , ICF

)
< 0

(%)
0.3 74 74.3

Totals (%) 0.5 99.5 100
Malawi ΔC

(
ITH , ICF

)
≥ 0

(%)
0.1 4.7 4.8

ΔC

(
ITH , ICF

)
< 0

(%)
7.3 87.9 95.2

Totals (%) 7.4 92.6 100

Fig. 5   Distribution of the differ-
ence in the total cost of funded 
interventions (Eq. (9)) against 
the difference in the total 
health benefit gain of funded 
interventions (Eq. (10)), per 
funding cycle for each decision 
rule, with limited application 
of threshold rule. (a) Indicative 
UK data, (b) Indicative Malawi 
data

(a) (b)
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example Glassman et al. [8] and Teerawattananon et al. [26] 
for practical examples of CER-driven decisions on this basis). 
At present, however, our approach would require development 
to support funding decisions across multiple funding sources.

The value of our modelling approach, however, is that 
estimates of the expected net benefits returned from a 
threshold rule can be quantified. This provides a clear nor-
mative benchmark for an idealised implementation of a PSI, 
and so the impact of any deviations from this implementa-
tion can also be quantified. Summarising the analysis of 
Section 4, either type of restriction to the application of 
the threshold rule is likely to result in a reduced net sav-
ing, and imposing any such restriction should be carefully 
assessed in terms of the justification for pursuing a less 

economically prudent approach. This quantified assessment 
therefore enables reasoned and evidence-based discussions 
on the mechanisms by which a PSI can implement interven-
tion funding decisions.

The analysis that is set out in Section 4 and Appendix 
4 is focused specifically on the portfolio of interventions 
(in terms of total costs and benefits) that would be funded 
under PSI-active and PSI-absent scenarios. That is, the 
focus is on the impact of the decision-making process 
in each scenario. A key consideration in order to fully 
address the title question of this paper (on the value of 
priority setting), is to account also for the cost of the 
decision-making process itself, under the PSI-active and 
PSI-absent scenarios. That is, to account for the addi-
tional cost in a PSI-active scenario of making each HTA. 
Glassman and Chalkidou [6] present an overview on the 
costs per HTA at a number of national PSIs. These range 
from $3,000 (as a lower limit in Uruguay) to $600,000 
(as an upper limit in Germany). Using a current exchange 
rate, the upper limit for each UK HTA is approximately 
£300,000 ($400,000). Applying this cost to 74 HTAs 
per funding cycle for the UK data, this would comprise 
between 0.01% and 0.02% of the average total costs pre-
sented in Table 4. Using the Uruguay data as a proxy for 
the Malawi cost per HTA, then applying this cost to 40 
HTAs per funding cycle would comprise between 0.04% 
and 0.06% of the average total costs presented in Table 4. 
While it is important to consider the additional HTA costs 
required to facilitate decision-making in a PSI-active 
scenario, this brief analysis therefore indicates that the 
potential for returned benefits would dwarf any decision-
making costs. When applying our modelling approach 
to the case of Thailand, Kingkaew et al. [14] explicitly 
account for the additional cost for performing each HTA, 
and it is evident that these costs comprise less than 0.2% 

Table 7   Classification of the total cost increment (Eq.  (9)) and the 
total health benefit increment (Eq.  (10)) per simulation for the Case 
(iii) investigation, for the indicative UK and Malawi data-sets. For 
each data-set, the percentage of simulations with a positive cost incre-
ment (that is, the funded interventions are more expensive in the PSI-
active scenario) and also a negative health benefit increment (that is, 
the funded interventions produce fewer health benefits in the PSI-
active scenario) is marked in bold

Classification ΔQ

(
ITH , ICF

)
< 0

(%)
ΔQ

(
ITH , ICF

)
≥ 0

(%)
Totals 
(%)

UK ΔC

(
ITH , ICF

)
≥ 0

(%)
10.6 47.1 57.7

ΔC

(
ITH , ICF

)
< 0

(%)
7 35.3 42.3

Totals (%) 17.6 82.4 100
Malawi ΔC

(
ITH , ICF

)
≥ 0

(%)
4 42.4 46.4

ΔC

(
ITH , ICF

)
< 0

(%)
9.6 44 53.6

Totals (%) 13.6 86.4 100

Fig. 6   Distribution of the differ-
ence in the total cost of funded 
interventions (Eq. (9)) against 
the difference in the total 
health benefit gain of funded 
interventions (Eq. (10)), per 
funding cycle for each decision 
rule, with phased increase of 
the application of the threshold 
rule. (a) Indicative UK data, (b) 
Indicative Malawi data

(a) (b)
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of the total cost estimates. An additional consideration is 
that the decision-making process in a PSI-absent scenario 
is not necessarily without cost itself, and the returned 
benefits estimated under the PSI-active scenario may 
therefore be conservative.

The threshold rule with limited analysis capacity (Case 
(iii) investigation, presented in Section 4.3) assumes that 
the available analysis would be deployed to evaluate those 
technologies which have the largest budgetary impact. In 
practice, however, the approach to deploying analysis may 
be more complex, and may include topic selection that 
identifies illness burdens to be prioritised for analysis. 
The pathway to scale-up the analytical capability then 
becomes more complex, and this is something we hope 
to investigate in future work. The final decision rule com-
parison presented in Section 4 (Case (iv) investigation, 
for a threshold rule with phased run-in) touches on the 
dynamic nature of the influence a PSI can make to inter-
vention funding decisions. The full extent of this, however, 
is far more complex. Once an intervention is approved for 
funding, it will typically continue to be funded for many 
subsequent years, with any budget saving and health bene-
fit gain realised year after year. The budget for intervention 
funding in a given year will therefore consist of funding 
for both newly approved and legacy interventions. Each 
year after the introduction of the PSI, the UHC system 
incrementally progresses towards a more sustainable and 
efficient state, in terms of the net savings accrued from 
cost reductions and monetised health benefit gains. The 
full influence of a PSI on annual intervention funding is 
therefore likely to be in a state of flux over a long period 
of time. This will only stabilise when the saturation of 
PSI-approved interventions is such that an intervention 

newly approved for funding by a PSI will replace a legacy 
intervention which was approved by the PSI in a previ-
ous funding cycle. While it has not yet been possible to 
extend the current model to represent this situation, such 
an extension would provide a more accurate understand-
ing of the cumulative benefits which are gained from a 
PSI through time.

Another factor which is not incorporated into the 
current model is the potential influence which a PSI 
can have on upstream negotiation with a manufacturer/
producer of a new intervention. A threshold-based 
approach is completely transparent, and therefore pre-
sents manufacturers with a specific performance target 
(in terms of both costs and health benefits) which they 
must achieve in order to receive funding approval for 
their intervention. This scenario gives the PSI a clear 
negotiating position with the manufacturers, and puts 
the onus on the manufacturers to construct a more 
attractive product offering if they cannot satisfy the 
threshold (for example through reducing profit mar-
gins, or providing societal benefits through alternative 
mechanisms).

The methodology and analysis presented here only rep-
resent an overview of the contribution simulation models 
could make to support funding decisions related to both 
new and established PSIs. Such models could be used to 
understand the impact of a wide variety of funding choices, 
providing quantified measures of the effectiveness of these. 
The two indicative data-sets considered for analysis demon-
strate the potential variations in performance which could 
be realised for different inputs to the simulation model. This 
highlights the importance of carefully parameterising the 
model inputs, and for appropriate selection and interpreta-
tion of the distributional models and dependence structure 
of the data.

Of course, many of the benefits of implementing 
PSIs cannot be captured in a quantitative simulation 
such as this, and in a sister study we focus on the qual-
itative benefits [19]. For example, having a rigorous 
assessment process ensures that clinical guidelines can 
be written in a clear and practical way, and can easily be 
implemented by clinicians. The information collected 
by the PSI also improves the general understanding 
of intervention outcomes, making it easier to conduct 
equity analysis. Additionally, the transparency associ-
ated with taking a formal evaluation approach also less-
ens the scope for corruption in decision making, where 
funding decisions are not being made on a fair and 
equitable basis. The random intervention selection that 
is modelled through our PSI-absent scenarios (where 
interventions are not funded on the basis of costs or 
benefits) may be broadly reflective of an unfair deci-
sion making process, although formally modelling this 

Table 8   Classification of the total cost increment (Eq.  (9)) and the 
total health benefit increment (Eq.  (10)) per simulation for the Case 
(iv) investigation, for the indicative UK and Malawi data-sets. For 
each data-set, the percentage of simulations with a positive cost incre-
ment (that is, the funded interventions are more expensive) and also 
a negative health benefit increment (that is, the funded interventions 
produce fewer health benefits) is marked in bold

Classification ΔQ

(
ITH , ICF

)
< 0

(%)
ΔQ

(
ITH , ICF

)
≥ 0

(%)
Totals 
(%)

UK ΔC

(
ITH , ICF

)
≥ 0

(%)
2.1 80.3 82.4

ΔC

(
ITH , ICF

)
< 0

(%)
0.3 17.3 17.6

Totals (%) 2.4 97.6 100
Malawi ΔC

(
ITH , ICF

)
≥ 0

(%)
0.1 18.6 18.7

ΔC

(
ITH , ICF

)
< 0

(%)
0.4 80.9 81.3

Totals (%) 0.5 99.5 100
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behaviour would be difficult to parameterise. In either 
case, taking a qualitative perspective on the impact of 
unfair decisions may provide more useful insights. A 
potential limitation of purely CER-based decisions is 
that these may deteriorate health equity across popula-
tion groups. To mitigate this, a PSI may include a topic 
selection process prior to cost-efficiency assessments 
(see for example Youngkong et al. [29] for the case of 
Thailand). Modelling topic selection could readily be 
incorporated into the Section 3 model, by including an 
extra dimension to the intervention specification and 
decision criteria.

6 � Conclusion

Simulation methods are underused in quantifying the eco-
nomic and health impact of priority setting institutionalisa-
tion. This study represents a first step along the road that 
would help convince governments to invest in PSI (espe-
cially in LMICs, as HIC governments have widely recog-
nised the importance of PSI), and to show the potential of 
simulation methods to answer policy relevant questions. 
There are many ways to refine the simulation results but our 
overall finding is consistent with other literature: the benefits 
of explicit priority setting are substantial in both resource-
limited and resource-rich settings. To help others build on 
the work, we provide a useable spreadsheet tool and make it 
publicly available [20] so we encourage readers to download 
the tool and explore the simulations for themselves.

Appendix 1

The indicative data-set for UK health interventions is taken 
from Guthrie et al. [10], and is shown in Table 9.

The authors state the total number of health interventions 
considered for funding over a 10 year period as 740, and 

from this the average number per year (N) is assumed to be 
74. The authors also discuss the widely-used UK thresh-
old of the cost-effectiveness ratio for funding approval (t) as 
£20,000. The remaining decision parameters for the Case 
(i)—Case (iv) investigations are selected such that the exten-
sions to the decision rules have an observable impact on the 
simulation outputs. To define these decision parameters, an 
initial run of the Case (i) PSI-active scenario with the middle 
correlation level (�CQ = 0.5) is simulated, and is used as a 
benchmark investigation for setting the decision parameters 
in other investigations. For the Case (i) PSI-absent scenario, 
the number of funded interventions is set to the average num-
ber of interventions funded under the benchmark investiga-
tion (n = 48). For the Case (ii) investigations, the available 
budget limit (l) is chosen such that fewer interventions will 
be funded (that is, ensuring that the budget limit is an active 
funding constraint). For both Case (ii) funding scenarios, the 
available budget limit is set to l=£75,000M, approximately 
50% of the average total cost of funded interventions per 
simulation for the benchmark investigation. For the Case (iii) 
PSI-active scenario investigation, the annual proportion of 
highest budget-impacting interventions that a CER assess-
ment is applied to is set to pa = 20% – this value was chosen 
to impose a further reduction on the number of interventions 
that would be funded under the Case (ii) investigation. For 
the Case (iv) PSI-active scenario investigation, the number 
of years Y is set to 5 such that in year 5 pY = 100% , and all 
interventions are subject to the CER assessment.

The indicative data-set for Malawi health interventions 
is taken from Ochalek et al. [23], and is shown in Table 10. 
Data could not be obtained on the number of interventions 
considered for funding per cycle (N) , and for the purposes of 
modelling this was set to 40 per year to represent a smaller set 
of interventions than for the UK data. Ochalek et al. [23] state 
that in Malawi the accepted threshold of the cost-effectiveness 
ratio for funding approval is at least $61. Using this threshold, 
however, would result in the vast majority of interventions 
being funded. In order to investigate the differences which 

Table 9   Table of indicative 
heath interventions considered 
for funding in the UK, extracted 
from Guthrie et al. [10]

i   Study Authors QALY increment 
(Qi)  

Cost increment (2012 
prices) (Ci)  

Number of 
cases in the UK 
(Pi)  

1 Peek et al. (2010) 3.66 59,415.7 350
2 Carroll et al. (2011) 0.58 7952 14,479
3 Vickers et al. (2004) 0.021 252.4 723,236
4 Gilbert et al. (2004) 0.07 92.85 260,000
5 McCarthy et al. (2004) 0 -8 1,322,709
6 Cochrane et al. (2005) 0.024 0.08 1,763,613
7 Lamb et al. (2010) 0.099 196 598,000
8 Pandor et al. (2013) 0.1038 992 504,689
9 Orlando et al. (2013) 1.6239 22,528 947
10 Kitchener et al. (2009) 0 -14 214,138
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Table 10   Table of indicative heath interventions considered for funding in Malawi, extracted from Ochalek et al. [23]

i   Intervention Total DALYS 
averted (QTi)

Total cost 
($1000 s) (CTi)

Cases per 
annum 
(1000 s) (Pi)

1 Male circumcision 39,634 146,730 4073
2 Management of obstructed labour 2497 1100 92
3 Isoniazid preventive therapy for HIV + no TB 1118 80 55
4 First-line treatment for new TB cases for adults 1045 178 14
5 First-line treatment for new TB cases for children 888 117 12
6 Management of pre-eclampsia (magnesium sulfate) 535 45 20
7 Clean practices and immediate essential newborn care (home) 237 416 671
8 Households owning at least one ITN/LLIN 228 13,737 6752
9 Caesarean section 327 672 34
10 Mass media 150 7609 16,879
11 Labour and delivery management 170 1281 918
12 PMTCT of HIV 157 600 53
13 First-line treatment for retreatment TB cases for adults 131 100 2
14 Caesarean section (with complication) 137 172 5
15 First-line treatment for retreatment TB cases for children 111 66 2
16 Malaria treatment: first trimester— uncomplicated 109 1025 305
17 Malaria treatment: Second trimester—uncomplicated 109 235 305
18 Voluntary counselling and testing 167 36,309 8031
19 Tetanus toxoid (pregnant women) 104 115 918
20 Measles vaccine 107 528 651
21 Rotavirus vaccine 88 3097 651
22 Antenatal care (four visits) 90 11,230 918
23 Malaria treatment: uncomplicated (adult, < 36 kg) 59 3463 4372
24 Malaria treatment: uncomplicated (adult, > 36 kg) 59 4267 4372
25 Malaria treatment: uncomplicated—second line (adult, > 36 kg) 59 1186 4372
26 Malaria treatment: uncomplicated—second line (adult, < 36 kg) 59 593 4372
27 Vaginal delivery, skilled attendance 67 5181 918
28 Isoniazid preventive therapy for children in contact with patients with TB 45 7 2
29 Interventions focused on men who have sex with men 232 1256 34
30 Pregnant women sleeping under an ITN 50 2990 1469
31 Newborn sepsis—full supportive care 60 417 81
32 Management of severe malnutrition (children) 199 2437 51
33 Vitamin A supplementation in pregnant women 33 125 124
34 Antenatal corticosteroids for preterm labour 47 406 165
35 Interventions focused on female sex workers 161 655 23
36 Cotrimoxazole for children 0 220 127
37 Malaria treatment: uncomplicated (children, < 15 kg) 14 4576 1042
38 Malaria treatment: uncomplicated (children, > 15 kg) 14 4768 1042
39 Malaria treatment: uncomplicated—second line (children, < 15 kg) 14 35 1042
40 Malaria treatment: uncomplicated—second line (children, > 15 kg) 14 71 1042
41 Under five children who slept under ITN/LLIN 17 1006 494
42 Schistosomiasis mass drug administration 24 77 389
43 Antibiotics for pPRoM 30 39 64
44 Blood safety 12 1626 40
45 Vaginal delivery, with complication 10 804 138
46 Maternal sepsis case management 20 2731 64
47 Malaria treatment: pregnant Women —complicated 6 140 16
48 Case management of MDR TB cases 5 12 0.4
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could arise between implementing counterfactual and thresh-
old decision rules, the cost-effectiveness ratio threshold for 
funding approval (t) was substantially reduced, to $2 which 
is the average cost-effectiveness ratio of the interventions 
listed in Table 10. As for the UK data, the remaining decision 
parameters are selected such that these have an observable 
impact on the simulation outputs, and an initial simulation run 
of the Case (i) PSI-active scenario with the middle correlation 
level ( �CQ = 0.5 ) is used as a benchmark investigation for 
setting these decision parameters. For the Case (i) PSI-absent 
scenario, the number of funded interventions is again set to 
the average number of interventions funded under the bench-
mark investigation ( n = 14 ). For the Case (ii) investigations, 
the available budget limit is again set to approximately 50% of 
the average total cost of funded interventions per simulation 
for the benchmark investigation ( l = $150M ). The decision 
parameters for the Case (iii) and Case (iv) PSI-active scenario 
investigations are set to the values for the UK data.

Appendix 2

Consider two independent standard normal variables, 
Z1 ∼ N(0, 1) and Ẑ ∼ N(0, 1) . An additional standard nor-
mal variable Z2 ∼ N(0, 1)  is then defined such that

Z2 = �
X
Z1 +

√
(1 − �

X
2)Ẑ.

The variable Z2 is therefore a linear combination of the inde-
pendent variables Z1 and Ẑ , such that the value of Z2 consists 
of a weighting �X of Z1 . That is, a proportion �X of the value of 
Z2 is associated with the value of Z1 and the remainder is inde-
pendent of this, driven by the value of Ẑ. This definition of Z2 
therefore imposes a linear correlation of �X between Z1 and Z2 . 
These standard normal variables are translated into correlated 
normal variables with specified distributions by defining

such that Xi ∼ N
(
�Xi

, �Xi

2
)
 for i = 1, 2 . That is, X1 and X2 

are normally distributed with mean �X1
 and �X2

 , respectively, 
and standard deviation �X1

 and �X2
 , respectively. Note that the 

properties of the normal distribution are such that the level 
of correlation between X1 and X2 is also �X.

The correlated normal variables are transformed into cor-
related log-normal variables by defining

Expanding this gives

and

X1 = �X1
+ Z1�X1

X2 = �X2
+ Z2�X2

,

Y1 = exp
(
X1

)
Y2 = exp

(
X2

)
.

Y1 = exp
(
�X1

+ Z
1
�X1

)

Table 10   (continued)

i   Intervention Total DALYS 
averted (QTi)

Total cost 
($1000 s) (CTi)

Cases per 
annum 
(1000 s) (Pi)

49 GIT tract cancer 0 3 0.4
50 Cervical cancer (first line) 0 162 2
51 Ischaemic heart disease 0 4 128
52 IPT of malaria (pregnant women) 0 35 735
53 Diabetes, type I 0 4304 23
54 High cholesterol 1 6703 223
55 Basic psychosocial support, advice and follow-up, plus antiepileptic medication 1 1266 506
56 Treatment of depression 0 332 169
57 Diabetes, Type II 0 4211 138
58 Treatment of acute psychotic disorders 0 958 169
59 Treatment of bipolar disorder 0 10,362 523
60 Treatment of schizophrenia 0 13,413 2363
61 Hypertension 44 1338 846
62 Zinc (diarrhoea treatment) 244 1788 7455
63 ORS 147 937 8662
64 Condoms 482 22,883 8031
65 ART for men 1005 21,159 332
66 ART for women 1541 32,440 509
67 Paediatric ART​ 1556 7657 107



	 E. Barlow et al.

1 3

The correlation between any two random variables Y1 and 
Y2 is defined as

where Cov(Y1, Y2) denotes the covariance between Y1 and 
Y2 . This can be written in terms of the arithmetic moments 
of the variables as

where E[Y] and SD[Y] respectively represent the arithmetic 
mean and standard deviation of a variable Y . As Y1 and Y2 
are log-normally distributed, then these arithmetic moments 
are well defined [12], and the correlation can be written as

This reduces to

Suppose that two log-normal variables are defined as 
Y1 ∼ LogN(�Y1

, �Y1
2) and Y2 ∼ LogN(�Y2

, �Y2
2) , such that Y1 

and Y2 have means �Y1
 and �Y2

 , respectively, and standard 
deviations �Y1 and �Y2 , respectively. Suppose further that the 
level of correlation between these variables is specified as 
�Y . Then, defining

for i = 1, 2 and

the above process can be implemented to generate random 
samples from the distributions of Y1 and Y2 which will have 
the desired correlation of �Y . This process was used to gen-
erate the samples of implementation cost and health benefit 
for a set of interventions, which have a specified level of 
correlation.

Y2 = exp

(
�X2

+ �X2

(
�XZ1 +

√
(1 − �X

2)Ẑ

))
.

�Y =
Cov(Y1, Y2)

�Y1�Y2
,

�Y =
E
[
Y1Y2

]
− E

[
Y1
]
E
[
Y2
]

SD
[
Y1
]
SD

[
Y2
] ,

�Y =
exp

(
�X1

+ �X2
+ 0.5(�X1

2 + �X2

2 + 2�X1
�X2

�X)
)
− exp

(
�X1

+ 0.5�X1

2
)
exp

(
�X2

+ 0.5�X2

2
)

exp
(
�X1

+ 0.5�X1

2
)√(

exp
(
�X1

2
)
− 1

)
exp

(
�X2

+ 0.5�X2

2
)√(

exp
(
�X2

2
)
− 1

) .

�Y =
exp

(
�X1

�X2
�X

)
− 1

√(
exp

(
�X1

2
)
− 1

)√(
exp

(
�X2

2
)
− 1

) .

�Xi

2 = ln

(
1 +

�Yi
2

�Yi
2

)
and �Xi

= ln
(
�Yi

)
− 0.5�Xi

2

�X =

ln

(
�Y

√(
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(
�X1

2
)
− 1

)(
exp

(
�X2

2
)
− 1

)
+ 1

)

�X1

2�X2

2
,

Appendix 3

A preliminary analysis of the indicative data-sets demon-
strates that, per intervention, the incremental costs of admin-
istering each intervention per treated case, the incremental 
health benefits returned per case treated with the interven-
tion, and the number of cases treated by each intervention, 
each have a positive-skewed distribution when analysed 
across the interventions in each country. Each of these char-
acteristics are also predominantly positive, and the log-nor-
mal is therefore a natural choice to model the distributions in 
each case. Furthermore, the log-normal distribution can be 
fully parameterised with only the mean and standard devia-
tion of each characteristic, which are comparatively straight-
forward and intuitive properties to extract from data or to 
elicit. Figure 7 shows Q-Q plots (see for example Thode 
[27]) comparing the (log-transformed) indicative data-sets 
with the theoretical quantile values expected for normally 
distributed data. Overall, the data points show a reasonable 

fit to the line of perfect fit, particularly given the relatively 
small sample size for the UK data. We therefore assume 
that each of these intervention characteristics is log-nor-
mally distributed, and specify these as P ∼ LogN(�P, �P

2) , 
C ∼ LogN(�C, �C

2) and Q ∼ LogN(�Q, �Q
2) , where � and � 

represent the mean and standard deviation of each distribu-
tion, and the subscripts correspond to the respective random 
variables. These stochastic model parameters are summa-
rised in Table 3, and the distribution parameters and other 
inputs are defined in Table 2.

A limitation with this assumption is demonstrated by the 
small number of points shown along the bottom edge of the 
plots, which represent data values less than or equal to zero, 
that cannot be represented by the strictly-positive log-normal 
distribution. However, this limitation only applies to a rela-
tively small portion of the indicative data – comprising 20% 
of the UK “Cost” data, 20% of the UK “Health” data, and 
16% of the Malawi “Health” data. Additionally, these data 
values are incorporated into the mean and standard deviation 
calculations for each data-set (see Table 2), and therefore still 
have an influence on the shape of the distribution. The impact 
of this limitation is that the samples of these stochastic model 
parameters (see Table 3) can be expected to be marginally 
greater than is true to the distribution of the data, and the 
overall effect on the model outputs is expected to be mini-
mal. A further limitation with this assumption is that the log-
normal distribution will generate continuous samples for the 
discrete population impact per intervention. The population 
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impact in both indicative data-sets, however, is typically in 
the thousands. Additionally, the role of the population impact 
is to scale the intervention’s health benefits and implementa-
tion costs to a population level, and so the impact of non-
integer samples for the population impact can be expected to 
be negligible.

Appendix 4

Given the indicative nature of the UK and Malawi datasets, and 
the differences observed between the analysis of the decision 
rules as applied to these, it is of interest to explore the impact 
of varying the decision rule parameters. Furthermore, it is of 
interest to investigate these impacts as the level of correlation 
between the intervention costs and benefits varies. Each set of 
figures below represents an investigation varying a single deci-
sion parameter, and repeats this for three levels of correlation �CQ 
between intervention costs and health benefits, and for both the 
indicative UK and Malawi data-sets. The set of values explored 
for each decision parameter are provided in Table 11. The can-
didate set IA consists of 100 randomly sampled interventions in 
each simulation. For each combination of decision parameter and 
correlation level 1000 simulations are run, and the distribution of 
selected outputs across all simulations are summarised with box-
plots. The highest and lowest 1% of values from each collection 
of distributions are removed from the plots to provide a clearer 
understanding of the mass of the distributions. The NHB is used 
as the output metric to compare the decision rules.

Case (i): Sensitivity analysis for the threshold rule

In Fig.8, decision rules (3) and (5) are compared as the CER 
threshold t, below which interventions are funded, is var-
ied. The overall trend across both data-sets is that initially 
as t increases the NHB decreases (doing so more rapidly for 
higher �CQ ) but eventually the NHB becomes relatively con-
stant (again, this stable NHB occurs more rapidly for higher 
�CQ ). The range of the NHB distributions, interquartile ranges 
(IQRs), and the confidence interval around the median follow 
the same trend, in each case decreasing as t and �CQ increase. 
Prior to stabilising, the confidence intervals around the medi-
ans indicate that these are significantly different. Increasing t 
will result in additional interventions being funded, and these 
additional interventions will represent a poorer cost-effective-
ness return, particularly with lower �CQ as higher costs will be 
less likey to deliver higher benefits. A noticeable feature of 
Fig. 8 is that, with a high correlation level, the NHB displays 
a minimum value (for t approximately equal to £20k for the 
indicative UK data and $2 for the indicative Malawi data).

Case (ii): Sensitivity analysis for the threshold rule 
with budget constraint

Figure 9 compares decision rules (4) and (6) as thresh-
old t varies, and the same decision rules are compared in 
Fig. 10 as the available funding budget limit l varies. The 
trends observed in Fig. 9 are broadly comparable to those 
observed in Fig. 8, although with a budget limit in place the 

Fig. 7   Comparison of the 
(log-transformed) indicative 
Malawi and UK data-sets with 
normally distributed data. For 
each country, the plots show 
the indicative data on the three 
aspects of an intervention: the 
incremental costs of administer-
ing each intervention per treated 
case (Cost), the incremental 
health benefits returned per case 
treated with the intervention 
(Health), and the number of 
cases treated by each interven-
tion (Population). The indica-
tive Malawi and UK data-sets 
are taken from Ochalek et al. 
[23] and Guthrie et al. [10], 
respectively, and are presented 
in Appendix 1
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realized values of NHB are noticeably reduced in Fig. 9 (as 
some interventions will go unfunded). The trends observed 
in Fig. 10 are to be expected, with incremental changes to 
the budget limit resulting in incremental changes to the NHB 

value; if the budget was increased further the gains in NHB 
would be expected to plateau as the value tends towards the 
non-budgeted case (decision rule (5)).

Table 11   Input parameters used for the Appendix 4 investigations. For reference, the values marked in bold represent the parameter value used 
in Section 4

Investigation Input parameter (symbol) Country data-set Set of investigated 
input parameter 
values

Units

Case (i) CER threshold required for funding (t) UK
{

10, 15, 20, 25,
30, 35, 40

}
£k  

Malawi {1.0, 1.5, 2.0, 2.5,
3.0, 3.5, 4.0}

$  

Case (ii) CER threshold required for funding (t) UK
{

10, 15, 20, 25,
30, 35, 40

}
 £k 

Malawi {1.0, 1.5, 2.0, 2.5,
3.0, 3.5, 4.0}

$  

Budget limit for funding interventions (l) UK
{

30, 45, 60, 75,
90, 105, 120

}
£Mx103  

Malawi {60, 80, 100, 120,
140, 160, 180}

$M  

Case (iii) Percentage of high-value interventions assessed using the threshold 
rule (p)

Both {5, 10, 15, 20,
25, 30, 35}

%

Case (iv) Target percentage of interventions assessed by the PSI in the final 
year of phased increases (p)

Both {40, 50, 60, 70,
80, 90, 100}

%

Total number of years of phased increases to the PSI capability (Y) Both {2, 3, 4, 5, 6, 7, 8} Years

Fig. 8   NHB(ITH , ICF , t) as 
defined in Eq. (11), with 
portfolio ITH determined using 
threshold funding decision rule 
(5) and portfolio ICF determined 
using counterfactual rule (3), 
recorded as threshold t  var-
ies in (5), for three levels of 
correlation �CQ . (a) Indicative 
UK data: full distributions, (b) 
Indicative Malawi data: full 
distributions, (c) Indicative UK 
data: median values, (d) Indica-
tive Malawi data: median values

(a) (b)

(c) (d)
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Fig. 9   NHB(ITH , ICF , t) as 
defined in Eq. (11), with 
portfolio ITH determined using 
threshold funding decision rule 
(6) and portfolio ICF determined 
using counterfactual rule (4), 
recorded as threshold t  var-
ies in (6), for three levels of 
correlation �CQ . (a) Indicative 
UK data: full distributions, (b) 
Indicative Malawi data: full 
distributions, (c) Indicative UK 
data: median values, (d) Indica-
tive Malawi data: median values

(a) (b)

(c) (d)

Fig. 10   NHB(ITH , ICF , t) as 
defined in Eq. (11), with 
portfolio ITH determined using 
threshold funding decision rule 
(6) and portfolio ICF determined 
using counterfactual rule (4), 
recorded as budget limit l 
varies in (6), for three levels of 
correlation �CQ . (a) Indicative 
UK data: full distributions, (b) 
Indicative Malawi data: full 
distributions, (c) Indicative UK 
data: median values, (d) Indica-
tive Malawi data: median values

(a) (b)

(c) (d)
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Case (iii): Sensitivity analysis for the threshold rule 
with limited analysis capacity

In Fig. 11, decision rules (4) and (7) are compared as the 
percentage pa of high-value interventions assessed using 
the threshold rule increases. The overall trend is that as 
pa increases the NHB increases, and with more interven-
tions assessed in terms of a CER a natural conclusion is 
that the NHB would increase. Increasing pa has a diminish-
ing impact on the NHB, for higher levels of correlation, the 
gains returned from increasing pa are negligible.

Case (iv): Sensitivity analysis for the threshold rule 
with phased run‑in

Figures 12 and 13 compare decision rules (4) and (8); Fig. 12 
demonstrating the impact of varying the final target percentage 
pY , and Fig. 13 demonstrating the impact of varying the num-
ber of funding cycles Y. In Fig. 12 the two data-sets are broadly 
comparable, however, the level of correlation �CQ is again shown 
to have a substantial impact on the variation of the NHB value. 
Similar to Fig. 11, there is a diminishing impact from increas-
ing pY , and for higher correlation levels the final percentage pY 
is shown to have a relatively minor impact on NHB. Figure 13 
indicates that there is little observable impact on the realized NHB 
(calculated as an average per funding cycle) when the number of 
funding cycles used to reach a steady operating state are varied. 

Comparison of the confidence intervals around the median for 
each box-plot reveals that there is much overlap between these, 
which indicates that there is limited evidence of statistical differ-
ences between the medians. What is evident, however, is that the 
range and IQR of the NHB distributions reduces as the number 
of funding cycles increases.
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Fig. 11   NHB(ITH , ICF , t) as 
defined in Eq. (11), with 
portfolio ITH determined using 
threshold funding decision rule 
(7) and portfolio ICF determined 
using counterfactual rule (4), 
recorded as percentage pa 
varies in (7), for three levels of 
correlation �CQ . (a) Indicative 
UK data: full distributions, (b) 
Indicative Malawi data: full 
distributions, (c) Indicative UK 
data: median values, (d) Indica-
tive Malawi data: median values

(a) (b)

(c) (d)
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Fig. 12   NHB(ITH , ICF , t) as 
defined in Eq. (11), with 
portfolio ITH determined using 
threshold funding decision rule 
(8) and portfolio ICF determined 
using counterfactual rule (4), 
recorded as percentage pY 
varies in (8), for three levels of 
correlation �CQ . (a) Indicative 
UK data: full distributions, (b) 
Indicative Malawi data: full 
distributions, (c) Indicative UK 
data: median values, (d) Indica-
tive Malawi data: median values

(a) (b)

(c) (d)

Fig. 13   NHB(ITH , ICF , t) as 
defined in Eq. (11), with 
portfolio ITH determined using 
threshold funding decision rule 
(8) and portfolio ICF determined 
using counterfactual rule (4), 
recorded as the number of 
funding cycles Y  varies in (8), 
for three levels of correlation 
�CQ . (a) Indicative UK data: 
full distributions, (b) Indicative 
Malawi data: full distributions, 
(c) Indicative UK data: median 
values, (d) Indicative Malawi 
data: median values (a) (b)

(c) (d)
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