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Summary

Large amounts of data are generated by structural health monitoring systems

continuously. Data-driven methods can transform the available data into valu-

able information for decision makers. However, these methods for structural

health monitoring of bridges are usually developed and tested by analysing a

finite element model of the bridge, where the uncertainties affecting an in-field

bridge are usually omitted. Modal parameters of the bridge are usually used to

monitor the health state of the bridge, but it can be a difficult and time-

consuming process to extract these parameters from the bridge vibration data

in a reliable manner. Conversely, when the raw vibration behaviour of the

bridge is monitored, promising results for bridge condition monitoring and

damage diagnostics can be obtained in a fast way. In this paper, we propose a

data-driven methodology to assess the health state of bridges, by analysing

their vibration behaviour. The aim of the first step of the method is to extract

statistical, frequency-based and vibration-based features from the measured

bridge vibration. The second step is used to define a set of bridge Health Indi-

cators by assessing the trend of these extracted features over time. The main

novelty of this work lies in the use of the empirical mode decomposition

method to assess the trend of the extracted features over time, rather than to

analyse the dynamic behaviour of the structure directly. Finally, a Neuro-

Fuzzy classifier, which is trained using a supervised process, is used to assess

the health state of the bridge automatically. The proposed method is validated

and tested by monitoring the vibration behaviour of an in-field bridge, which

is subjected to a progressive damage process.
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1 | INTRODUCTION

Structural health monitoring (SHM) strategies are used to monitor the behaviour of critical infrastructure, such as brid-
ges, tunnels and buildings, with the aim of guaranteeing the safety, reliability and availability of the infrastructure.1 In
fact, the analysis of static and dynamic responses of the infrastructure can provide information about the infrastructure
health state to bridge managers. Such information can help in finding an optimal maintenance schedule, which would
result in minimizing the whole life cycle cost of the asset.2 SHM techniques are widely adopted in the transportation
framework, composed of highway and railway networks, due to the continuous deterioration process of their assets
(e.g., bridges), affected by ageing, traffic loads and environmental effects.3,4 The SHM of bridges is of particular interest
because in Europe there are more than one million of bridges, and this number is expected to increase.5 Bridges need
SHM strategies to (i) identify the ongoing degradation mechanisms of the bridge materials and avoid unexpected and
catastrophic failure of the asset6 and to (ii) ensure the safety of the workforce and understand whether the infrastruc-
ture behaviour during the work activities (such as maintenance and renewal activities) is within the predicted safety
limits.7 The behaviour of a bridge is monitored by installing a measurement system (such as GPS receivers, accelerome-
ters, strain gauges and cameras) on the bridge infrastructure.8–10 A large amount of data is generated by these sensors
continuously, and thus, data-driven methods are required to assess the health state of the infrastructure automatically,
accurately and rapidly.11

Several data-driven SHM methods for condition monitoring and damage detection of bridges are presented in litera-
ture, such as clustering techniques, principal component analysis (PCA), support vector machine (SVM) and artificial
neural network (ANN) models.4,9,12 In recent years, several authors proposed supervised and unsupervised clustering
techniques by analysing either the bridge raw acceleration data (or slightly processed, such as sorted acceleration or
symbolic representation of the acceleration) or the bridge modal parameters.13–16 These methods showed promising
performance in classifying the health state of the bridge correctly, and good performance was achieved when raw bridge
acceleration (or slightly processed data) was used to assess the bridge health state. However, misclassifications were
obtained due to changes of environmental conditions of the bridge, and the need of supervised classification technique
was pointed out.16 Similarly, PCA and its modification with time varying windows, known as Moving PCA (MPCA),
were proposed to monitor and assess the health state of bridges.17–19 Modal parameters of the bridge are usually used as
an input to the PCA. ANN is the most used data-driven method for bridge condition monitoring and damage
detection.20–22 Raw bridge data, such as acceleration and displacement, modal parameters and materials properties of
the bridge, are used as inputs to the ANNs, and good performance has been achieved. However, the accuracy of the
ANN method strongly depends on the number of hidden layers and nodes, which are selected by using a trial and error
procedure, and finite element models (FEMs) are often used to validate these methods.9

The health state of bridge is often assessed by monitoring modal parameters of the bridge.23,24 However, false alarms
and misleading results can be achieved due to the fact that lower modal parameters of the bridge, i.e., the first natural
frequencies and mode shapes, can be strongly influenced by changes in environmental conditions and they have low
sensitivity to bridge infrastructure damage. Higher modal parameters of the bridge are more sensitive to damage, but
they are also more difficult to extract from the measured bridge data in a reliable manner.25,26 At the same time, the
data-driven methods proposed in literature are often verified using an FEM, which is unable to reproduce data noise
and uncertainties affecting an in-field bridge behaviour.27

In this paper, a data-driven methodology is presented to monitor and assess the health state of in-field bridges, by
detecting bridge unexpected behaviour and diagnosing its causes. The proposed methodology consists of three main
steps: (i) extraction of statistical, frequency-based and vibration-based features from the bridge vibration behaviour
(i.e., acceleration), by reducing the dimension of the bridge behaviour data into valuable information, with respect to
the bridge health state28,29; (ii) assessment of trends of extracted features and of bridge Health Indicators (HIs), by
applying the Empirical Mode Decomposition (EMD) method30 to the extracted features and (iii) automatic classification
of the bridge health state by using a Neuro-Fuzzy Classifier (NFC) method.31 The main novelty of the method lies in
the second step of the methodology (ii). Generally, the EMD is adopted in the SHM framework to identify structural
changes by analysing the bridge dynamic behaviour directly; i.e., the dynamic behaviour of the bridge is used as an
input to the EMD process.32 Such applications have shown good results when an FEM is analysed33–35; conversely, mis-
classifications of the bridge health state were observed due to a mode-mixing problem when an in-field large structure
was monitored.36,37 Variations of the EMD process, such as Ensemble EMD (EEMD) and Multivariate EMD (MEMD),
can be adopted in order to overcome the mode-mixing problem and achieve good assessment of the bridge condi-
tion.38,39 The application of the EEMD and the MEMD to a large bridge structure provides better results than the EMD,
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by being able to detect changes of the bridge health state (but not to diagnose the nature of the occurred damages) and
reducing the mode-mixing problem. However, the EEMD and the MEMD require higher computational time than the
EMD, and the mode-mixing problem is not fully addressed.36,40 For these reasons, we adopt the EMD method to assess
the trend of the extracted features of the bridge behaviour. Indeed, several studies showed that the trend of statistical,
frequency-based and vibration-based features can provide valuable information with respect to the level of degradation
of components of rotary machinery.41

Finally, an automatic assessment of the bridge health state is proposed in the method by the means of NFC, which
is trained in a supervised manner by using a dataset of bridge behaviour in different health states.31 The NFC is adopted
to automatically assess the health state of the bridge by using an optimal subset of HIs as an input to the NFC. The opti-
mal subset of HIs is retrieved by using an optimization differential evolution algorithm.42 The NFC is selected among
the machine learning classifiers due to the fact that it combines fuzzy classification techniques with learning capabili-
ties of the Neural Networks. As a consequence, the network structure is developed by the means of if-then fuzzy rules,
which are initially defined by using a K-means clustering algorithm.43 Conversely to ANNs, which require the optimi-
zation of the number of hidden layers and hidden nodes, the NFC requires only the optimization of the number of clus-
ters of the K-means algorithm, and the performance of the NFC is slightly influenced by the number of the cluster.
Moreover, good performance can also be achieved with a small dataset of the system behaviour.31 NFC has been
adopted to diagnose the health state of system components, such as wind turbine blades44 and rotor bars,45 but not for
bridge damage diagnostics, where ANNs and clustering techniques have been mostly applied. Hence, the NFC can be
used to automatically assess the health state of the bridge by providing robust results without requiring a time-
consuming trial and error procedure to optimize its parameters, as the step needed in the ANN method. The proposed
method of automatic health state identification based on the NFC also contributes to the novelty of this paper.

The proposed method is illustrated by analysing the behaviour of a real highway posttensioned concrete bridge.46

The bridge is subjected to a progressive damage process; i.e., the infrastructure of the bridge is damaged in order to
study the behaviour of the bridge in different health states and to analyse sudden severe degradation (damage) of the
bridge materials. The posttensioned concrete bridge is excited only by changing environmental conditions; i.e., no vehi-
cle is running over the bridge. The performance of the proposed methodology in monitoring the bridge behaviour, by
detecting damages of the bridge elements and diagnosing their causes, is compared with a study that adopted modal
parameters to assess the health state of the bridge, presented in Siringoringo et al.46

The remainder of the paper is organized as follows: Section 2 presents the proposed data-driven methodology for
bridge condition monitoring and damage diagnostics; Section 3 illustrates the application of the proposed methodology
to the in-field bridge; conclusions and future challenges are discussed in Section 4.

2 | THE PROPOSED DATA-DRIVEN METHODOLOGY

SHM methods are developed for monitoring the health state of infrastructure, by pointing out and diagnosing anoma-
lies in infrastructure behaviour. Data-driven SHM methods can be used to monitor the condition of bridges continu-
ously, without requiring the time-consuming development of an FEM of the structure. The feature extraction process is
usually adopted for monitoring the health state of industrial system components,29 such as wind turbine blades44 and
rotary machinery.41 In bridge monitoring, this process is not commonly adopted due to the use of bridge modal parame-
ters.33,37,40 However, when the health state of a bridge has been evaluated by monitoring raw behaviour of the bridge,
or slightly processed (e.g., transformation of the bridge acceleration to symbolic values based on a frequentist analy-
sis13), promising results were obtained in a fast and reliable way.14,16 For these reasons, in this paper, we propose a
data-driven method based on HIs that are defined by assessing the trend of the extracted features, in order to monitor
the health state of bridge infrastructure, by detecting unexpected behaviour of the bridge and diagnosing its causes.

In what follows, the proposed methodology is presented, and each step of the methodology is discussed in the fol-
lowing subsections.

2.1 | Overview of the methodology

The proposed methodology for condition monitoring and damage diagnostics is depicted in Figure 1. The vibration
behaviour (i.e., acceleration) of the bridge is recorded by a measurement system (accelerometers) that is installed on
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the bridge infrastructure. Every time when a new set of raw bridge acceleration is provided by the sensors, the raw
acceleration is pre-processed with the aim of removing outliers of the data (i.e., the noise) and obtaining the free vibra-
tion behaviour of the bridge. The free vibration behaviour of the bridge allows to assess the health state of the bridge by
avoiding any potential noise from excitation sources.47,48 A feature extraction process is then developed, to reduce the
dimensionality of the free-vibration bridge behaviour. Indeed, the sensors can provide thousands of values of the bridge
acceleration at each time second, whereas features can extract relevant information regarding the bridge health state,
by merging the thousands sensor values into a lumped assessment. Statistical features (such as mean value, standard
deviation, kurtosis and root mean square), frequency-domain features (such as peaks and amplitudes of the bridge fre-
quencies that are obtained by using the fast Fourier transform [FFT]) and vibration parameters (such as peak ground
acceleration, Arias intensity and cumulative absolute velocity) are assessed at each τ time step in order to extract infor-
mation from the free-vibration behaviour of the bridge.28,41,49 The assessment of reliable features can be susceptible to
the non-stationarity of the bridge vibrations. In fact, the noisy vibrations of the bridge can lead to misleading and noisy
features, and thus, a robust and reliable assessment of the bridge health state can be threatened. As a consequence, a
further step of data processing is introduced in this paper with the aim of improving the reliability of the health assess-
ment of the bridge, by reducing the noise of the extracted features. Hence, each extracted feature is used as an input to
an EMD process with the aim of assessing the trend over time of the feature. Particularly, the residual of the EMD pro-
cess for each feature is used to evaluate the trend of the feature over time. A set of bridge HIs, which provides informa-
tion with respect to the level of degradation of the monitored bridge, can be then obtained by calculating statistical
parameters (such as standard deviation and skewness) of the trend of extracted features. Before using the data as an
input to the NFC, an optimization algorithm is used in order to identify the optimal HIs to monitor and assess the
health state of the bridge. In this way, the misleading and noisy features that do not allow to assess the health state of
the bridge reliably are not used as an input to the NFC. Finally, the optimal HIs are used as an input to an NFC in order
to assess the health state of the bridge automatically.

2.2 | Step 1: Data cleansing

The bridge behaviour is measured by sensors that are installed on the bridge infrastructure. The data provided by the
sensors can contain noise due to defective sensors, poor quality of the data transmission from the sensors to the final
database, etc.11 The analysis of such noisy bridge behaviour can lead to false alarms and misleading bridge condition
assessment. A data cleansing process (also known as pre-processing) is required to remove noise from the raw bridge
behaviour.4 Several methods are presented in literature to reduce the measurement noise, such as PCA,50 singular-value
decomposition (SVD),51 wavelet analysis,52 machine learning method11 and signal reconstruction process.53 In this
paper, the median filtering statistical process is used to detect and correct outliers, due to its fast and robust analysis in
detecting and correcting outliers.54 Given the data of the raw bridge behaviour X from the sensors and the size of a time
interval k, the median filtering process can be defined as follows:

if xi�mij j> nst �σ ) xi ¼mi, ð1Þ

where mi and σ represent the local median and the standard deviation of the data belonging to a time window of size
2 k+ 1, respectively. nst represents the number of standard deviations by which a data xi of X must differ from the local
median to be considered an outlier. The median (mi) and the standard deviation (σ) are defined as follows:

FIGURE 1 Flowchart of the proposed methodology
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mi ¼median xi�k,xi�kþ1,…,xi,…,xiþk�1,xiþkð Þ, ð2Þ

σ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPiþk

j¼i�k
xj� x
� �2
n�1

vuuut
: ð3Þ

Equation 1 shows that a value xi that differs from the median (mi) by more than nst standard deviations is recog-
nized as an outlier and replaced with the median (mi) of that time window of size 2k + 1. The size of the time interval
k is defined by the user depending on the nature of the considered case study; e.g., the sampling rate of the sensors
influences the definition of k: A higher sampling rate would require a smaller size of k. Indeed, the higher the number
of data points provided by the sensors, the higher the number of possible outliers that can influence the assessment of
the local median (mi). The number of standard deviations (nst) that defines the acceptable deviation of a point from the
local median is defined by the user, according to the chosen confidence interval.11

2.3 | Step 2: Identification of the bridge free-vibration behaviour

The free-vibration behaviour of the bridge is analysed with the aim of assessing the bridge health state. The forced
vibration response of the bridge is not considered due to the fact that (i) the robustness of the extracted feature can
decrease due to highly non-stationary and usually quite short duration of the forced vibration and (ii) the assessment of
the bridge health state can be influenced by the excitation source, which can give a misleading condition assess-
ment.47,48 The bridge free-vibration, which can be defined as the vibration of the bridge that decays in an approximately
exponential form following an external excitation, can be extracted from the vibration data by analysing the available
information: (i) If a bridge is excited by a moving vehicle, the free-vibration behaviour can be identified by knowing
when the vehicle leaves the bridge,47 and (ii) if the bridge is excited by changing environmental condition, such as
wind, the free-vibration behaviour of the bridge can be identified as the decreasing bridge vibration behaviour that fol-
lows a peak value of the bridge vibration behaviour.55 This second approach can also be used when information about
moving vehicles is not available. Finally, it should be noted that free-vibration data can be time consuming to be
extracted when a bridge is stressed by heavy traffic. However, in this case two solutions are possible, (i) the free-
vibration can be extracted when the traffic on the bridge is light or absent, and (ii) the free-vibration extraction is auto-
mated, as shown in Section 3.1.1.

2.4 | Step 3: Feature extraction

Large data storage capacity and high computational power are required to efficiently store and analyse the data pro-
vided by the sensors: Each sensor provides N values of the bridge behaviour for each second; i.e., each sensor has a sam-
pling rate of N Hz.41 Conversely, the dimension of the bridge behaviour data can be reduced into more valuable
information, with respect to the bridge health state, by extracting features from the acceleration data. For this reason,
18 features are extracted from the free-vibration behaviour of the bridge every τ seconds, by reducing the dimensional-
ity of the data from N • τ to 18 for each sensor; i.e., every τ seconds, the 18 features are evaluated for each sensor and
stored to monitor the evolution of the bridge condition over time. τ can be defined by optimizing the accuracy of the
NFC during the training phase. The features are extracted from both time domain (such as mean value and standard
deviation) and the frequency domain by using an FFT approach (such as amplitude and peak of the first harmonic). In
this way, statistical, frequency-based and vibration parameters of the bridge are evaluated in order to assess the health
state of the bridge. In fact, changes in statistical and vibration features of the bridge behaviour can identify a damage of
the bridge structure: An increase of the bridge vibration behaviour can be caused by a reduction of bridge stiffness,
which leads to a lower structural ability in resisting to external excitation in a static and stable manner.28 Similarly, a
change in the frequency-based feature, which estimates modal and vibration characteristics of the bridge, can represent
changes in bridge physical characteristics, such as stiffness and mass.33,37,40 Furthermore, the statistical features can be
influenced by noisy measurement of the bridge acceleration, and consequently, the robustness of the bridge health state
analysis can be improved by introducing a heterogeneous set of features (i.e., statistical, frequency-based and vibration
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parameters), alongside the data cleansing process. The 18 features are chosen due to their ability in describing the
health state of a system during different system health states.28,41

The 18 features are defined as follows in Table 1.

2.5 | Step 4: Assessment of the features trend

The extracted features contain information about the health state of the bridge; however, the assessment of the health
state of the bridge can be jeopardized by the high level of oscillations in the features. For example, Mosallam et al.41

and Cannarile et al.58 have shown that a robust and reliable assessment of the system health state can be threatened if
noisy features are evaluated. Similarly, the assessment of the bridge health state can be threatened by evaluating fea-
tures that show oscillation. Hence, in this paper, a further step of data processing is introduced, which consists of using
the extracted features as an input to the EMD process. The EMD is able to provide a smooth monotonic trend of the fea-
tures, and as a consequence, the health state of the bridge can be identified more clearly. In fact, the extracted features
are expected to provide information about the health state of the bridge (e.g., when the stiffness of the bridge decreases,
a reduction of the bridge frequency is expected). However, the continuous assessment of the features every time interval
τ can be impacted by the noise of the recorded in-field bridge behaviour. A reliable assessment of the bridge health state
can be then threatened by relying on the extracted features directly (e.g., when the stiffness of the bridge decreases, the
decrease of the bridge frequency might not be pointed out clearly due to noise of the data). Therefore, when the features
that are extracted during an interval [0, τ*] are used as an input to the EMD process, the feature trend over time is eval-
uated by relying on the residuals of the EMD: As a consequence, a more reliable assessment of the health state of the
bridge can be achieved (e.g., the decreasing trend of the bridge frequency can be pointed out by the EMD residuals,
when the bridge stiffness is decreasing). The interval [0, τ*] is chosen to monitor the health state of the bridge continu-
ously; i.e., the trend of the features is evaluated and updated every τ* interval, when new features are extracted from
the free vibration of the bridge. The value of τ* can be identified by maximizing the accuracy of the NFC during the
training process.

The EMD is a data-driven decomposition method that is able to decompose the feature pattern (F) in the interval τ*
into multiple simple harmonics of various frequencies, called Intrinsic Mode Functions (IMFs) [30n]. The process to
obtain the IMFs is known as shifting process, and it is performed until a monotonic function remains or a stopping cri-
terion is reached. This final time series is known as residuals (r) which represent the trend of the decomposed feature
pattern. In this paper, the shifting process of the EMD is stopped when the difference between residuals of successive
IMFs is lower than a predetermined threshold, which equal to 0.2.

TABLE 1 Features extracted from the processed acceleration data

Statistical features Frequency-based features Vibration-based features

Mean value Peak of first harmonic Cumulative velocity of the bridge

Standard deviation Amplitude of first harmonic Peak ground acceleration

Skewness Mean period of the bridge beaviour22

Tm ¼
P

i
A2
i

1=f i

� �
P

i
A2
i

for 0:25Hz≤ f i ≤ 20Hz (4)

Peak ground displacement

Kurtosis Mean frequency of the bridge behaviour ARIAS56

IA ¼ π
2g

Rt
0
a tð Þ2dt (5)

Root mean square (RMS) Damage Potential Indicator (DPI)57

Dpi ¼
π
2g

Rt
0

a tð Þ2dt

υ20
(6)

Median Cumulative Absolute Velocity (CAV)
CAV ¼ R t0 a tð Þj j2dt (7)

Coefficient of variation

Euclidean norm
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The EMD decomposition can be represented as shown in Equation 8: The feature pattern, denoted as F, in the inter-
val τ* is decomposed into multiple IMFs (hi) and a residual curve (r).

F¼
XM
i¼1

hiþ r, ð8Þ

where M is the number of IMFs.

2.6 | Step 5: Definition of health indicators

The trend of the proposed feature over time provides information about the health state of the bridge by pointing out
such information from the noisy extracted features. The residual of the EMD can be lumped into a set of HIs, which
represent the health state of the bridge by merging a number of parameters.41 The HIs are defined by evaluating two
statistical parameters of each feature trend: (a) the standard deviation of the trend (HI1), in order to take account of the
variability of the feature trend, and (b) the normalized cumulative sum of the feature trend (HI2), to take account of the
positive/negative monotonicity of the feature trend. A set of 36 HIs (18 feature trends and 2 statistical parameters for
each trend) is computed each time τ* when a new assessment of the feature trend is carried out.

2.7 | Step 6: The NFC

The NFC is adopted due to its stable performance when the parameters (e.g., the number of cluster of the K-means clus-
tering algorithm) are modified, and due to its ability of merging fuzzy classification techniques with the learning capa-
bilities of a neural network. The NFC requires a database of historical behaviour of the bridge in different health states,
in order to perform the training process. The NFC is trained by using a supervised process; that is, the health state of
the bridge is known when the database of bridge behaviour is analysed. The NFC is trained with the HIs values that
represent each health state experienced by the bridge. In this way, when a new set of unknown HIs is available, it is
used as an input to the NFC, which is able to assess the health state of the bridge automatically. Not all the HIs contain
valuable information about the health state of the bridge. An HIs selection process is necessary to find, among the HIs,
a subset of optimal HIs that are informative with respect to the health state of the bridge.44 In what follows, the main
steps of the NFC are presented in Section 2.7.1, whereas the HIs selection process is presented in Section 2.7.2.

2.7.1 | The main steps of the NFC

The detail description of the NFC is out of the scope of this paper, and an interested reader can find more information
in Cetişli and Barkana.31,43 An example of the NFC structure is depicted in Figure 2, for an NFC with 3 fuzzy rules
(clusters of the K-means algorithm) and two classes. In what follows, the main steps of the NFC (Figure 2) are
presented:

1. A database of set of HIs is used as an input to the NFC. A supervised training process is carried out in this paper.
2. A K-means clustering method is applied to the HI data of each class with the aim of defining fuzzy if-then rules.
3. The weight of each cluster of each class is assessed by evaluating the ratio between the size of each cluster with

respect to the size of that class.
4. A Gaussian probability density membership function is defined for each cluster, by using the centre of each cluster

as the mean value of the Gaussian distribution, whereas the standard deviation of the membership function is equal
to the standard deviation of the HIs that belong to that cluster.

5. A fuzzification process is developed by assessing the membership value of each HI to each Gaussian probability
distribution.

6. A defuzzification and normalization process is finally carried out in order to assign each HI to a class; i.e., each HI is
assigned to the class with the higher membership value.
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7. The accuracy of the process is assessed, by counting the number of correct classifications, i.e., the number of HI
values that have been assigned to the correct class.

8. The performance of the NFC is assessed by computing an objective function, which represents the inverse of the
accuracy of the NFC. Steps 4 to 7 are repeated iteratively with the aim of minimizing the objective function, maxi-
mizing the accuracy of the NFC and identifying the optimal value of the mean and standard deviation of the mem-
bership functions.

When the training process of the Neuro-Fuzzy classifier is complete, the NFC can be tested on a new and unknown
set of bridge behaviour data. The testing process is also used to select the optimal subset of HIs that allows to maximize
the accuracy of the NFC.

2.7.2 | The HI selection process using an optimization algorithm

The accuracy of the NFC is influenced by the quality of the HIs, because some of the 36 HIs can be redundant or non-
informative in respect to the health state of the bridge.44 An HI selection process is carried out to find a subset of HIs
that guarantee high accuracy of the NFC, by minimizing false alarms and the degree of misclassification. An optimiza-
tion algorithm is adopted by using a Modified Binary Differential Evolution (MBDE) algorithm.42 The optimization
algorithm allows to select a subset of HIs iteratively and assess the accuracy of the NFC by using only the selected sub-
set of HIs as an input to the NFC both during the training and testing phase, as shown in Figure 3. A multi-objective
optimization process is performed to minimize the fitness function, which is defined as follows:

fit¼
PTTrain

i¼1 LTrainReal �LTrainNFC

� ��100

TTrain

 !�1

,

PTTest
i¼1 LTestReal�LTestNFC

� ��100

TTest

 !�1( )
, ð9Þ

where TTrain and TTest represent the size of the target vectors for the training and test processes, respectively and LTrainReal

and LTest
Real represent the real health state of the bridge for each bridge behaviour belonging to the training and testing

target vectors, respectively. LTrainNFC and LTest
NFC represent the health state assigned to each bridge behaviour by the NFC

during the training and testing process, respectively. Equation 9 shows that the fitness function is minimized when the

FIGURE 2 Example of NFC algorithm
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performance of the NFC is maximized; i.e., the higher the number of correct classification of the NFC, the lower the
value of the fitness function. The training process is carried out in a supervised manner, whereas the test process is car-
ried out by analysing a new and unknown set of bridge data. The optimization algorithm proceeds iteratively until a
maximum number of iterations are reached, the accuracy of the NFC is maximized and the optimal subset of HIs is
fixed. The optimal set of HIs can then be used to validate the proposed NFC, by monitoring the health state of the
bridge when new and unknown behaviour of the bridge is provided by the sensors.

It is worth noting that if the data for different health states are not available at the beginning of the analysis, the
proposed NFC method can be still adopted by relying on (i) the HIs for identifying different classes of the bridge health
state and train the NFC accordingly; (ii) an FEM model to simulate the bridge behaviour in different health states and
(iii) an initial training of the NFC that relies mainly on the healthy behaviour of the bridge, and subsequent retraining
of the NFC every time when a new health state of the bridge is identified by the NFC via outliers. In this case, however,
the NFC training can be imbalanced due to a large number of healthy measurement data, in comparison to those in
other states. Therefore, the performance of the NFC algorithm can be evaluated considering multiple parameters, such
as its accuracy, precision and recall.

In the next sections, the proposed methodology is tested in monitoring and assessing the health state of an in-field
bridge.

3 | APPLICATION OF THE PROPOSED METHODOLOGY

The performance of the proposed data-driven methodology is verified by monitoring and assessing the health state of a
posttensioned concrete bridge.46 The bridge is subjected to a damage test; i.e., the infrastructure of the bridge is inten-
tionally damaged in order to study how the bridge behaves in different health states. The posttensioned concrete bridge
is excited by changing environmental conditions. The aim of the proposed methodology is to monitor the behaviour of
the bridge and detect and diagnose its damage.

The results of the proposed methodology are presented and discussed in the subsection of Section 3.1.

FIGURE 3 Optimization algorithm to select the optimal HIs
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3.1 | Analysis of the posttensioned concrete bridge

The posttensioned concrete bridge has the main span of 32 m, side spans of 12 m, and its width is 6.6 m (Figure 4a). The
bridge was subject to a vibration measurement test before being demolished in order to obtain the bridge behaviour in
different health states. The acceleration of the bridge was monitored by a measurement system made of two reference
sensors and four sensors that were moved periodically along the bridge length to obtain a complete modal description of
the bridge. In this paper, we consider the acceleration provided by the two reference sensors, which were kept fixed
throughout the duration of the test. The sampling rate of the sensors was 100 Hz, and they were installed at location
shown by circles in Figure 4b. The main excitation source of the bridge was due to changing environmental conditions,
such as wind and the traffic passing on the highway underneath the bridge. A progressive damage test was performed by
cutting a pier of the bridge, as shown in Figure 4c. A detailed description of the damage test can be found in Siringoringo
et al.46 The bridge acceleration of six different classes of the bridge health state were monitored (Figure 4c):

• Class 1: The undamaged (healthy) condition of the bridge was monitored for 50 min.
• Class 2: The pier was cut by 5 cm, and a steel column was installed to have a temporary support of the bridge, while

studying different damage scenarios. This state was monitored for 5 min.
• Class 3: The pier was cut by five additional centimetres, and the bridge health state during this scenario was moni-

tored for 20 min.
• Class 4: The steel column was lowered by 1 cm, and the bridge deck was settled at 1 cm lower of its starting position.

This scenario was monitored for 20 min.
• Class 5: The steel column was further lowered by 1 cm, and the bridge deck was settled at 2 cm lower of its starting

position. The acceleration of the bridge during this scenario was recorded for 50 min.
• Class 6: The steel column was lowered by 3 cm, and the bridge deck was settled at 2.7 cm lower of its starting posi-

tion. The bridge acceleration was monitored during this scenario was recorded for 20 min.

The behaviour of the bridge in the different scenarios was recorded for different time intervals. For this reason,
Class 2 is not considered in this paper due to the low amount of data available, which does not allow to adequately

FIGURE 4 The posttensioned concrete bridge46
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train, test and validate the NFC. Furthermore, 20 min of acceleration data is considered for each remaining class, in
order to analyse scenarios that have the same amount of data and to verify the ability of the proposed method in identi-
fying different health states of the bridge. The retrieved database of bridge behaviour is divided in three smaller groups
of data: (a) the first group (group 1) contains 10 min of data and is used to train the NFC; (b) the second group (group
2) is made of 3 min of data, and it is used to test the NFC and select the optimal set of HIs in order to monitor the
health state of the bridge; (c) the third set of data (group 3) made of 7 min of data, which are used to verify the proposed
methodology. This third group of data is not labelled; i.e., the class of the data is not known a priori, and thus, the abil-
ity of the proposed NFC in assessing the health state of the bridge automatically is verified.

Finally, all groups of data are used as an input to the proposed methodology, in order to remove the data noise (step
1), extract the features (step 2), define the features (step 3) and their trend (step 4) and compute the bridge HIs set (step
5). Then, the HIs are used as an input to the NFC that assesses the health state of the bridge (step 6).

3.1.1 | Steps 1 and 2: Data cleansing and free-vibration bridge behaviour identification

The bridge is excited randomly by unknown changes in wind and traffic, which is passing on the road under the bridge.
As a result, the bridge acceleration can show sudden spikes due to external unknown sources of excitation. For exam-
ple, Figure 5 (top) shows the raw data of the bridge acceleration provided by a sensor during a time interval of 300 s.
The raw acceleration shows high level of noise, such as sudden increases and spikes, e.g., the spike at time 240 s, where
the acceleration of the bridge reaches 10 cm/s2 for few measurements before returning to an equilibrium position. The
noise of the acceleration is reduced by applying the median filtering statistical process, presented in Section 2.2.
Figure 5 (bottom) shows the processed acceleration of the bridge, i.e., after the outlier removal process. The response of
the bridge to external excitations is not changed; i.e., the induced acceleration of the bridge is not changed in terms of
time position, but rather, the noise of such induced acceleration is reduced.

The next step (step 2) of the methodology aims to identify the free vibration of the bridge, with the aim of analysing
the bridge behaviour without considering the potential influence in the external excitation source. The free vibration of
the bridge is identified by looking for peaks in the acceleration. In fact, when an external force excites the bridge, the
bridge usually shows its maximum vibration when the external force is acting (or just acted) on the bridge, whereas the
bridge behaviour decays by following an exponential function when the action of the external force is ended. Figure 6
shows the typical behaviour of the bridge when an external force acts on the bridge structure: The bridge is in an equi-
librium position up to 2 s, then an external force excites the bridge and the acceleration of the bridge increases. When
the influence on the bridge is over, the acceleration decreases towards the equilibrium point. The dots in Figure 6 repre-
sent the extreme values of the bridge acceleration, which are removed from the acceleration data; i.e., the acceleration

FIGURE 5 Raw and processed acceleration of the bridge
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data within the dotted-box are removed. In this way, any potential effect from the external source of vibration is not
considered in the assessment of the bridge health state.

3.1.2 | Step 3: Feature extraction

The feature extraction process allows to extract the valuable information about the health state of the bridge from its
free-vibration behaviour. Therefore, the 18 features are extracted from the free-vibration behaviour of the bridge every τ
seconds. For example, Figure 7 shows the evolution over time of three (out of 18) features, when τ is equal to 3 s, and
10 min of data for each class is considered. The value of τ is optimized during the NFC training process, as shown in
Section 3.1.4. The three features in Figure 7 represent a statistical feature (kurtosis), a frequency-based feature (fre-
quency of the first harmonic) and a vibration feature (Arias intensity). Each class of the bridge health state is depicted
in Figure 7, by the means of (i) a cross-marked line to represent class 1 (healthy state of the bridge); (ii) a circle-marked
line to represent class 3; (iii) a dot-marked line to represent class 4; (iv) a diamond-marked line to depict class 5 and
(v) a square-based line to show class 6. Although the features show some outliers when the bridge is damaged, on aver-
age, the three features of the different classes are overlapping and noisy, and they have a high level of oscillations. A
robust and reliable assessment of the bridge is not possible by analysing such features directly. For this reason, a further
step of data processing is introduced by using the EMD, in order to retrieve the HIs of the bridge.

3.1.3 | Steps 4 and 5: Feature trend and HI definition

The trend of the features during an interval [0, τ*] is assessed by using the features as an input to the EMD process. The
trend of the features is then lumped into the two HIs of the bridge health state, presented in Section 2.6. Figure 8 shows
the evolution of the two HIs of the three features depicted in Figure 7, when τ* is equal to 20 τ. Particularly, Figure 8a
shows the HIs that are extracted by using the kurtosis of the vibration of the bridge as an input to the EMD; Figure 8b
shows the HIs that are retrieved from the trend of the first harmonic of the bridge; Figure 8c shows the HIs that are
defined by using the Arias intensity of the bridge as an input to the EMD. It worth noting that the HIs allow to identify
the different classes of the bridge health state clearly, particularly the HIs of the kurtosis in Figure 8a allow to point out
the different health states of the bridge. Therefore, the use of the EMD to extract the trend of the statistical, frequency-
domain and vibration-based features, which is the main novel aspect of the proposed methodology, is able to point out
the different health states of the bridge in a clear and well-separated manner. At the same time, however, some HIs are
not able to identify the different bridge health states (e.g., HIs of Arias intensity Figure 8c shows almost a constant
value throughout the monitored interval). Therefore, an accurate assessment of the bridge health state might not be
achieved by monitoring the evolution of such an HI. This latter result explains the reason why an HI selection process
in needed during the testing step of the NFC. Indeed, the HI selection process allows to identify a subset of HI that

FIGURE 6 Identification of the bridge free-vibration behaviour
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optimize the accuracy of the NFC in evaluating and monitoring the health state of the bridge. In this way, non-
informative HIs that lead to misclassifications of the bridge health state are not considered.

3.1.4 | Step 6: NFC for automatic assessment of bridge health state

NFC training
The NFC is adopted in order to automatically assess the health state of the bridge, by analysing the extracted HIs. The
data of group 1 are used to train the NFC in a supervised manner; i.e., the health state of the bridge during the training
process is known, and it is used as target results for the NFC. The training process aims to set the NFC parameters
(number of clusters, mean and standard deviation of the Gaussian membership functions) to optimize the accuracy of
the classification process. The number of clusters is assumed to be equal to the number of classes (5) in this case, and it
is kept constant during the analysis. At the same time, the parameters τ and τ* are optimized during the training pro-
cess: the HIs of the data in group 1 are used as an input to the NFC by modifying either τ or τ*, as shown in Figure 9.
For example, when τ* is equal to 30 τ, the NFC shows higher accuracy. The highest accuracy is achieved when τ is
equal to 2 s, which is chosen as the optimal τ. The optimal values of τ* and τ are then used for the HIs selection process,
to train the NFC with a dataset of 100 values of each HIs and to monitor the health state of the bridge.

FIGURE 7 Example of feature extracted from the free-vibration behaviour of the bridge
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HI selection process
The selection process of the HIs is carried out by adopting the MBDE optimization algorithm, presented in Section 2.7.2.
The MBDE performs an iterative optimization by selecting a subset of HIs and evaluating the NFC performance by
using the selected subset of HIs as an input to the NFC during both training and testing phases. The testing process is
performed by using unlabelled data of group 2, which are used as an input of the proposed method in order to assess
the HIs values during these time intervals. The iterative process of the MBDE terminates when a maximum number of
2,500 iterations is reached. The MBDE parameters (weighting factor, control parameter and size of the population42)

FIGURE 8 HIs evolution of the features showed in Figure 7

14 of 20 VAGNOLI AND REMENYTE-PRESCOTT



are chosen by performing a trial and error procedure and are equal to 0.8, 0.3 and 20, respectively, whereas 2,500 itera-
tions are chosen as trade-off between the high computational-time required by the MBDE and the number of iteration
performed.

The evolution of the inverse of the fitness function of Equation 9 is depicted in Figure 10: The higher the number of
iterations, the higher the accuracy of the NFC (the lower the fitness function of the MBDE). Therefore, the MBDE is
able to select subsets of HIs that lead to an improvement of the NFC accuracy. The dotted line in Figure 10 shows the
improvement in the performance of the NFC during the testing phase: The accuracy of the NFC during the first itera-
tion of the MBDE, when the subset of HIs is randomly selected by the MBDE, is 27%, whereas at generation 2,500, it is
77%, due to the MBDE search that is able to select the possible optimal HIs. Furthermore, the dotted line in Figure 10
shows a rapid increase of the NFC accuracy during the first 400 iterations, which is followed by a ca. 1,000 iterations
that do not improve the accuracy of the NFC. This result can be due to the definition of the MBDE parameters that lead
the optimization research into a local minimum of the fitness function. The local minimum is erroneously identified as
a global minimum of the MBDE fitness function, and the population of the selected HIs is slightly modified during
these iterations. However, at iteration 1,500, the MBDE is able to leave the local minimum, and the NFC accuracy

FIGURE 9 τ and τ* optimization process.

FIGURE 10 Evolution of the fitness function during the HIs selection process
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increases accordingly. Finally, at iteration 2,300, a new subset of HIs that allows to increase the accuracy of the NFC is
found.

The accuracy of the NFC during the supervised training phase is always close to 98%. This latter performance of the
NFC can be explained by considering the fact that, for each subset of HIs chosen by the MBDE, the NFC is able to set
the value of its parameters in order to optimize the classification of the data during the training phase. The optimal sub-
set of HIs is identified during the testing phase, as shown in Figure 11. The optimization algorithm, which is
implemented in Matlab, requires 1 h and 10 min to be completed by using an Intel core i3–4130 with CPU @ 3.4 Hz.

Figure 11 shows the subset of selected optimal HIs (shadowed areas in Figure 11). HI1 is the most selected HI by
being selected for 6 features (out of 18), and HI2 is selected for 5 features. This result of two HIs is expected due to the
fact that both HIs show good performance in identifying the different health states of the bridge, as shown in Figure 8.
Particularly, Figure 11 shows that the optimal HIs are related to those extracted features that are able to capture the
effect of the reduction of stiffness caused by the inflicted damages: increase of the bridge vibration and reduction of the
bridge frequency. For example, the HIs of the kurtosis (4) and those of the amplitude of the first harmonic (11) are
selected among the best HIs for assessing the health state of the bridge. The kurtosis HIs represent an increase of the
outliers of the bridge acceleration, which can be expected due to the cut of the pier of the bridge. Similarly, the HIs of
the amplitude of the first harmonic represent a change in bridge frequency, which can be caused by the reduced stiff-
ness of the bridge.

It should be noted that the set of the 36 HIs is comprehensively represented by 236–1 possible combinations, and the
MBDE might not have reached the best subset of HIs due to the large number of possible combinations of the HIs.
However, the optimal subset of HIs in Figure 11 is identified by reaching a balance between computational time and
accuracy of the NFC. This subset of HIs of Figure 11 is used to verify the proposed methodology in analysing unknown
and unlabelled data of the bridge behaviour.

3.1.5 | Results of the proposed methodology for bridge condition monitoring and damage
diagnostics

The unlabelled data of group 3 are used to verify the accuracy of the proposed methodology. The acceleration of the
bridge of group 3 is used in the methodology in the chronological order, i.e., the 7 min of acceleration of the healthy
bridge (class 1), followed by the 7 min of acceleration of class 3. In this way, the real-time monitoring of the bridge is

FIGURE 11 Selected HIs by using the optimization algorithm for bridge condition monitoring and damage diagnostics
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simulated. A dataset of 70 values for each optimal HI is used to assess the performance of the NFC. The accuracy of the
methodology is assessed by comparing the health state of the bridge assigned by the NFC with the real bridge health
state.

Table 2 shows the results of the accuracy of the NFC as a condition monitoring and diagnostic tool. The overall
accuracy of the NFC is 78.3%; i.e., 78.3% of the considered scenarios of group 3 are correctly identified by the proposed
NFC. The lowest accuracy of the NFC is obtained for classes 3 and 5, i.e., the fully cut of the pier and when the pier is
fully cut and the deck is settled 2 cm lower of its starting position, respectively. The fully cut of the bridge pier (class 3)
is correctly recognized with 66.67% accuracy, and as a result, 37.4% of class 3 scenarios are misclassified as class 4 sce-
narios. Class 5 is misclassified 41.6% of times to be either class 3 or 6. Therefore, the NFC is able to identify the damage
of the bridge structure; however, some misclassifications of the nature of the damage are shown due to small changes
of the bridge structural behaviour during these scenarios, i.e., a small loss of stiffness of the bridge, as pointed out by
the modal analysis of the bridge by Siringoringo et al.46

Table 2 suggests that the proposed NFC can be used as both bridge condition monitoring and damage diagnostic
tool, in order to identify anomalies in bridge behaviour and point out their causes. In fact, the accuracy of identifying
the presence of the damage is higher than 90% (class 1), whereas the nature of the bridge damage is correctly identified
75% of times (average of results for classes 3 and higher).

3.1.6 | Discussion of the results

The proposed data-driven methodology allows to monitor the health state of the posttensioned concrete bridge by rely-
ing on the data analysis of its vibration behaviour. Statistical, frequency-based and vibration-based features are
extracted from the data, and the trend of these features is assessed by the means of the EMD approach. HIs of the bridge
are evaluated by computing four statistical parameters of the features trend. Different health states of the bridge are
identified by the proposed HIs, and therefore, the NFC method is developed to automatically assess the health state of
the bridge by relying on the assessment of an optimal subset of HIs. The NFC for bridge condition monitoring and dam-
age diagnostics, i.e., where both the healthy and damaged states of the bridge are monitored, showed a good accuracy
in identifying and diagnosing the damages of the bridge structure automatically. It should be noted that an overall accu-
racy of 78.3% is a good result in monitoring the health state of an in-field bridge due to the unknown source of uncer-
tainty and changing environmental conditions. Indeed, similar machine learning methods, which are based on ANNs
and verified on FEMs by adding white Gaussian noise to the simulated bridge behaviour, have shown an average accu-
racy of 65%,21,22,59 whereas clustering techniques, which were verified on in-field bridges, have shown an average accu-
racy of 68%, with a maximum accuracy of 75%.14 At the same time, Siringoringo et al.46 performed a modal analysis of
the bridge during each health state of the bridge and showed that the modal parameters of the bridge are slightly modi-
fied by the first inflicted damages (classes 2 to 5), whereas the most severe damage (class 6) modify the modal parame-
ters of the bridge significantly, and as a consequence, it is possible to identify such damage clearly and the accuracy for
class 6 is high.

The performance of the NFC strongly depends on the quality and amount of data available for the training process,
which is limited in this case study. As a consequence, the performance of the proposed NFC is expected to improve by
increasing the size and quality (in terms of different behaviour of the bridge) of the training set (group 1). Similarly, the
performance of the proposed methodology is expected to increase if the number of both extracted features and HIs is
reduced, by considering only the most informative features. In this way, the number of possible combinations of HIs is
reduced, and the MBDE can identify the best subset of HIs in a shorter time period.

Finally, it is worth mentioning that the main novelty of the proposed methodology, i.e., the use of the EMD
to assess the trend of the extracted features, is the ability to identify and diagnose different health states of the
bridge by providing the NFC method with HIs that separate well the behaviour between the different states of the
bridge.

TABLE 2 Performance of the NFC for bridge condition monitoring and damage diagnostics

Case study Overall accuracy Class 1 Class 2 Class 3 Class 4 Class 5 Class 6

Condition monitoring and diagnostics 78.3% 91.67% n/a 66.67% 83.33% 58.34% 91.67%
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4 | CONCLUSION

Large amounts of data are generated by SHM techniques that are adopted to monitor the behaviour of bridges. There-
fore, data-driven methods can allow to assess the health state of the bridge automatically, accurately and rapidly.
Although data-driven methods have been presented in the literature, these methods are often verified on an FEM, which
usually do not consider all the data noise and uncertainties affecting an in-field bridge. In this paper, a data-driven meth-
odology has been presented by analysing an in-field posttensioned concrete bridge, which is subjected to a progressive
damage test. First, the proposed methodology is used to remove outliers from the raw vibration behaviour of the bridge
and to identify the free-vibration behaviour of the bridge. Then, HIs of the bridge can be assessed by computing the trend
over time of statistical, frequency-based and vibration-based features, which have been extracted from the free-vibration
behaviour of the bridge. The trend of the extracted features is assessed by adopting the EMD method. The proposed HIs
extraction method has shown the ability to identify different health states of the bridge. Finally, the NFC method has
been introduced to automatically assess the health state of the bridge by relying on the analysis of an optimal subset of
HIs, which has been identified by using a MBDE optimization algorithm. The NFC has shown good performance in
bridge condition monitoring and damage diagnostics. It must be noted, however, that bridge behaviour data in known
healthy and degraded states are needed in order to train the NFC method with a supervised approach. This source of
bridge behaviour data might not be easily accessible for in-field monitoring of a new bridge. In this case, the NFC
method can be adopted by following one of the two approaches: (i) The NFC can be trained by using an unsupervised
approach; i.e., the behaviour of the bridge in different health states of the bridge is not known, and the proposed method
is adopted to automatically point out the different health states; (ii) an FEM of the bridge can be developed to simulate
the expected behaviour of the bridge in healthy and degraded bridge states, and thus, the NFC can be trained accord-
ingly. It is expected that in the unsupervised approach, (i) the NFC method would still have the damage detection ability
(i.e., does the damage exist or not), as the proposed data pre-processing could be carried out before data were used within
the NFC method. The damage diagnostics ability (i.e., identification of damage location and magnitude), however, would
decrease, since the method would not be trained to distinguish between the different states of degradation.

Future work should consider two aspects: (i) the direct usage of HIs in a bridge damage detection method, alterna-
tive to the NFC approach, and (ii) further analysis of the performance of the NFC method by using a large dataset of
(simulated) bridge data in different health states of the bridge. In this way, the damage detection and diagnostics ability
of the NFC method applied to the in-field bridge, which has been demonstrated to be suitable, could be further tested
in different scenarios.
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