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A B S T R A C T

The use of guided waves to identify damage has become a popular method due to its robustness and fast
execution, as well as the advantage of being able to inspect large areas and detect minor structural defects.
When a travelling wave on a plate interacts with a defect, it generates a scattered field that will depend on
the defects geometry. By analysing the scattered field, one can thus characterize the type and size of the
plate damage. A Bayesian framework based on a guided waves interaction model for damage identification of
infinite plate for the first time is presented here. A semi-analytical approach based on the lowest order plate
theories is adopted to obtain the scattering features for damage geometries with circular symmetry, resulting in
an efficient inversion procedure. Subsequently, ultrasound experiments are performed on a large aluminium
plate with a circular indentation to generate wave reflection and transmission coefficients. With the aid of
signal processing techniques, the effectiveness and efficiency of the proposed approach are verified. A full
finite element model is used to test the damage identification scheme. Finally, the scattering coefficients are
reconstructed, reliably matching the experimental results. The framework supports digital twin technology of
structural health monitoring.
1. Introduction

Plate like structures are widely applied in a range of systems includ-
ing wind turbines, aircrafts, and ships. After the initial damage occurs,
factors such as fatigue load will cause the damage to accumulate, which
may lead to catastrophic failure of the entire system. Therefore, early
damage detection is crucial for safety critical components of a structure.
A step further is to characterize the damage by identifying its parame-
ters such as the length and depth of a crack. In the context of structural
health monitoring (SHM), online detection and characterization leads
to a condition-based maintenance approach where the reliability of
the structure can be quantified and maintenance procedures only per-
formed when necessary. This is a cost-effective method of operation
but requires reliable monitoring and inference techniques which can
provide accurate parameters of the damage.

There are numerous established techniques for SHM [1–3]; ul-
trasonic guided waves are one such technique suitable for damage
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detection and identification in thin plate like structures [4–6]. They
are guided by the traction free surfaces of the structure and are able
to travel large distances with relatively little attenuation. Moreover,
they interact with any inhomogeneity in the structure and generate
scattering waves. These scattering waves are unique to the type of
damage and can be used to identify and characterize the shape of the
damage. There are two main numerical approaches to damage iden-
tification using the signature of the damage: the data-based approach
and the model-based approach [7,8]. The former is based on machine
learning and advanced pattern recognition algorithm to identify the
damage, which is built entirely upon modelling and/or experimental
data [9–12]. Seventekidis et al. [9] updated finite element model based
only on an initial experimental cost, then generated all data through
the finite element calculated responses. Next, the data derived from
the optimal FE model is able to train an accurate Deep Learning
Convolutional Neural Network classifier that can predict adequately the
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Nomenclature

𝒥 (𝜆𝜆𝜆,𝒟 ) the goodness-of-fit function
𝛼𝑖𝑗 , 𝛽𝑖𝑗 the matrix elements
𝐞 the error terms of the scattering coefficients
𝐬𝒟 the scattering coefficients from the experi-

ments
𝐬ℳ(𝜆𝜆𝜆) the scattering coefficients from the physical

model
𝒟 the available data (i.e. the scattering coef-

ficients)
ℳ the model class
𝜔 frequency
𝜙, 𝜓 the scalar potential function
𝜆𝜆𝜆 the damage characterization parameters
𝜌 Density
𝛴𝑒 the covariance matrix
𝜎𝑒 standard deviation
𝜎𝑟𝑟, 𝜎𝑟𝜃 the stress components
𝜐 Poisson’s ratio
𝑎 the radius of partly through-thickness hole
𝑎𝑚 − ℎ𝑚 the unknown expansion coefficients
𝑏 the half thickness of the plate below the

hole
𝑐1 the wave velocity of the 𝑆0
𝑐𝑇 the wave velocity of the shear mode
𝐸 Elastic stiffness
ℎ the half thickness of the plate
𝐻𝑚 the Hankel function of the first kind
𝐼𝑚 the modified Bessel function of the second

kind
𝐽𝑚 the Bessel functions of the first kind
𝑘1 the wavenumber of the 𝑆0
𝑘2 the wavenumber dependent on the plate

thickness
𝐾𝑚 the modified Bessel function of the second

kind
𝑘𝑇 the wavenumber of the shear mode
𝐿𝑥, 𝐿𝑦 the dimensions of plate
𝑀𝑟𝑟, 𝑀𝑟𝜃 the moments
𝑁𝑟𝑟, 𝑁𝑟𝜃 the forces
𝑢𝑟, 𝑢𝜃 , 𝑤 the displacement components
𝑉𝑟 the generalized Kirchhoff stress

experimental benchmark states. Deraemaeker et al. [10] extracted two
types of features from ambient vibration data to do damage detection;
factor analysis is used to consider the environmental factors. There
are also many experimental approaches for damage detection using
guided waves but they are not the focus of this research [13]. However,
due to practical limitations, data acquisition from actual expected
damage is still a great challenge. Therefore, model-based approaches
are increasingly attracting attention.

The use of efficient physics-based models embedded in a statistical
inference framework is popular where the experimentally derived dam-
age features are directly used to solve an inverse problem to charac-
terize the damage. Numerous researchers employed Bayesian inference
for wave propagation-based damage detection [14–17]. Huang [18]
summarized the fundamental principles of Bayesian analysis and com-
putation and reviewed recent state-of-the-art practices of Bayesian
2

inference in system identification and damage assessment for civil
infrastructure. A multilevel Bayesian framework was presented to do
the localization and identification based on a transient wave propaga-
tion model without any baseline comparison [19]. The method used
complete time-domain ultrasound signals directly, which could reduce
additional uncertainty; the influence of measurement noise was also
considered, but real experiment data were not involved [19]. How-
ever, Bayesian inference approaches are faced considerable challenges
regarding computation time. Chiachio [20] presented a new approxi-
mate Bayesian computation technique (ABC), which can alleviate the
computational cost of repeated physical model runs via bypassing the
expensive evaluation of the likelihood function. Yan [21] constructed a
Bayesian inference framework for damage identification in composite
beam structures based on the hybrid wave finite element method; a
cheap and fast Kriging surrogate model [22,23] was used to generate a
database in advance, which can avoid using the physical model in the
inverse procedure, thus enhancing the efficiency of the presented ap-
proach. However, the surrogate model will inevitably introduce errors
into the calculation results and increase the uncertainty of the physical
model.

For the inversion technique described above, the calculation of the
scattered wavefield is required, which is similar to the tomographic
technique. Using the scattering properties of Lamb waves, that is, the
relationship between thickness variation and wave velocity, guided
wave tomography reconstructs wave velocity from ultrasound measure-
ments, and then reconstructs thickness from the reconstructed wave
velocity [24]. Huthwaite [25] improved the accuracy of reconstructions
of the small, high contrast defects expected from corrosion by using an
iterating Hybrid Algorithm for Robust Breast Ultrasound Tomography.
Rao et al. [26] developed a guided-wave tomography method based on
full-waveform inversion (FWI) of isotropic plates; the finite difference
method was used to solve the full-wave equation in frequency do-
main, and higher-order effects were considered. FWI was investigated
further on the reconstruction accuracy of guided wave tomography
in [27]. However, compared to probabilistic inverse problems, guided
wave tomography is unable to account for modelling and experimental
uncertainties.

Wave damage interaction models serve as the foundation of the
Bayesian inference framework for damage characterization in ultra-
sonic measurements. They are not only expected to pull Bayesian
inversion out of the time-consuming quagmire, but are also the key
to improving the accuracy of inversion procedures. Soleimanpour [28]
proposed a three-dimensional finite element model to predict the prop-
agation of nonlinear Lamb waves induced by delamination in composite
laminates. A generic finite element based computational scheme is
presented for quantifying frequency-dependent interaction effects of
guided waves with localized structural nonlinearities within complex
composite structures [29]. Wilcox [30] described wave damage inter-
action based on a finite element model by constructing the scattering
coefficient matrix, the 𝑆-matrix. This matrix describes the far-field
scattered amplitudes as a function of the incident and scattered angle,
the frequency and the incident and scattered mode as well as mode
conversion. The 𝑆-matrix thus completely characterizes the scattering
characteristics of ultrasonic waves at defects [31,32]. Malik [33] pro-
posed a wave finite element based approach for complete transient
simulation of ultrasonic guided waves in one-dimensional wave guides.
A model reduction strategy is adopted to select the wave propagation
mode based on the energy conservation of the finite size defects in the
structure, thereby reducing the calculation time. However, numerical
methods usually bring a huge computational burden which increases
with frequency. They have thus severe limits in modelling guided wave
scattering and defect interaction mechanisms especially in fully two
or three dimensional simulations [34]. Analytical or semi-analytical
methods can reduce the computational burden, and are thus good
candidates for serving as a physical model in the inversion procedure.

The interaction of guided waves with damage is a complex problem
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where analytical models only exist for simple, regular damage ge-
ometries [35–39]. They are derived by normal-mode expansion and
boundary condition matching. Scattering of guided waves by through-
thickness and flat-bottomed cavities with irregular shapes were studied
in [38,39]. Scattering of guided waves from part-depth circular holes
was presented in [40]. Here, two different models are used to model
the scattering phenomena, that is, a lower order plate theory and
a 3D elasticity model. The lower order plate theory model is valid
only in the low frequency regime but computationally efficient. The
3D elasticity model is more generally applicable but computationally
intensive. A similar low-frequency scattering model for a through-
thickness hole for the fundamental 𝑆0 mode was presented in [41].
Generally speaking, the numerical model is versatile, but the calcula-
tion takes a long time. Analytical or semi-analytical models have high
computational efficiency, but are restricted to simple geometries or
rely on approximations. Therefore, it is very important to choose an
appropriate physical model that can not only have high computational
efficiency, but also provide reliable damage characterization features
for probabilistic models.

To address the above-mentioned critical issues, we develop and
present for the first time a dedicated physics-based Bayesian framework
for extracting damage characteristics from ultrasound measurements
in plate like structures. A semi-analytical forward model is employed
to perform rapid computations on wave/damage interactions including
wave reflection, transmission and conversion which provides key ele-
ments for damage characterization. The presented approach is based
on a combination of the Kirchhoff plate theory for flexural motion
and the elementary Poisson theory for extensional motion under the
assumption of spherical problem. The presented wave interaction dam-
age model investigates the scattering of the lowest order symmetric
Lamb mode from a circular hole of varying depth in a plate, and is
used to efficiently generate the scattering coefficients corresponding to
different defect parameters in the inversion process. By making full
use of efficient semi-analytical model, a fast inversion framework is
achieved. The likelihood function of Bayesian inference is formulated
efficiently based on scattering contour in the frequency domain derived
from the physical model directly, which can choose the excitation
frequency reasonably and eliminate the influence of noise spectrum
information on the inversion results. Implemented damage is identified
within satisfactory confidence intervals for the experimental as well as
the numerical case studies. The signal processing technique to extract
scattering coefficients from ultrasonic measurements is provided in
detail. The reflection coefficients of the lowest order symmetric Lamb
mode are obtained from the raw ultrasound signals. The framework is
also verified with numerical examples in different damage configura-
tions. In general, the proposed Bayesian inversion is able to identify
both the depth and the radius of a circular notch within the plate
like structures using our fast wave scattering simulation scheme, while
accounting for the modelling uncertainties and measurement errors in
the inversion process.

The paper is organized as follows: the semi-analytical model for
damage interaction simulation based on guided wave scattering prop-
erties is presented in Section 2. A signal processing technique is pre-
ented to obtain scattering coefficients in Section 3. The Bayesian

inference framework for damage identification is introduced in Sec-
tion 4. Section 5 provides a numerical example and an experimental
case-study to illustrate the efficiency of the proposed methodology.
Finally, concluding remarks are provided in Section 6.

2. Wave damage interaction model

Ultrasonic guided waves have the ability to travel across a structure
and interact with damage. This interaction causes scattered waves that
strongly depend on the geometric characteristics of the defect. The
scattered field can be used to fully characterize the defect. In order
to create a reliable damage identification framework, thousands of
3

computations are needed to generate a database containing measured
structural responses. This makes the inversion procedure computation-
ally expensive [9,21]. Yan [21] introduced an ultrafast hybrid wave
finite element scheme, which was trained by a cheap and fast Kriging
surrogate model to overcome the computational challenges. However,
the surrogate model will inevitably introduce errors into the calculated
results and increase the uncertainty of the physical model. Here, we
present a semi-analytical approach fully using the symmetries in the
problem to compute the scattering filed of the lowest order symmetric
Lamb mode from a circular notch penetrating a plate. The model used
in this paper is based on previous work by Grahn [40] wherein the
scattering profile of a partially through-thickness hole is analysed. The
methodology is presented in this section, and all the key equations are
given.

Consider a homogeneous, isotropic, linearly elastic plate of thick-
ness 2ℎ, spanning the infinite domain in 𝑥 and 𝑦. With standard material
properties 𝐸, 𝜌 and 𝜈. At the origin is a hole of depth 2(ℎ − 𝑏) and
radius 𝑎, as illustrated in Fig. 1. We consider a plane 𝑆0 wave incident
on the hole and determine the scattered field. Due to the asymmetry
of the plate in the thickness direction, theories of extensional and
flexural motion need to be combined to solve for the scattered field.
For the extensional motion we use Poisson theory and for the flexural
motion, Kirchhoff theory. These theories make the model reliable only
in the low frequency regime, but remain valid for our purposes. Low
frequency domain is defined on the plate as the wavelength divided
by the thickness of the plate. In this study, the wavelength is much
greater than the thickness of the plate, so the presented approach
is valuable. More specifically, the upper limit of the low frequency
regime depends on the thicknesses of plates and material properties, the
frequency-thickness (fh) product. Higher-order modes are not excited
below the cutoff fh product [42,43]. Wave finite element [33] or
dispersion calculator [44] can be used to calculate the cutoff frequency.
Based on these theories, the methodology is set up using the following
4 steps. (1) We begin by defining the scalar potentials across the entire
plate for a given frequency, as well as the vertical displacement of the
plate. (2) We use the defined scalar potential to determine the in-plane
displacement field both inside and outside the hole. (3) With the plate
displacements determined, the stresses and thus the resulting forces
and moments across the plate can be found. (4) Once these quantities
are determined, the boundary conditions at the hole edge are enforced
allowing for the scattering profile to be determined. Below, these 4
steps are described in more detail giving an explicit recipe for their
implementation.

(1) Consider the two scalar potentials 𝜙 and 𝜓 for a given frequency
that satisfy Helmholtz equation:

∇2𝜙 + 𝑘21𝜙 = 0, where 𝑘21 =
𝜔2

𝑐21
, 𝑐21 = 𝐸

𝜌(1 − 𝜈2)
,

∇2𝜓 + 𝑘2𝑇𝜓 = 0, where 𝑘2𝑇 = 𝜔2

𝑐2𝑇
, 𝑐2𝑇 = 𝐸

2𝜌(1 − 𝜈2)
.

(1)

Where 𝑐1 and 𝑐𝑇 represent the wave velocity of the S0 and shear
mode respectively. Assuming the plate is thin, or the frequency low,
the vertical displacement component 𝑤 is governed by:

∇4𝑤 − 𝑘42𝑤 = 0, where 𝑘42 =
2𝜌ℎ𝜔2

𝐷
, 𝐷 = 8𝐸ℎ3

12(1 − 𝜈2)
. (2)

With the above equations in mind, consider the incident S0 wave as
having potential defined as a linear superposition of Bessel functions of
the first kind (𝐽𝑚), expressed in cylindrical coordinates (𝑟, 𝜃).

𝜙𝑖𝑛𝑐(𝑟, 𝜃) = ℎ
∞
∑

𝑚=−∞
i𝑚𝐽𝑚(𝑘1𝑟)ei𝑚𝜃 . (3)

Here, ℎ is the half plate thickness and normalizes the function. Due

to the different plate thicknesses the fields need to be split into inside
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Fig. 1. Ultrasonic guided waves propagation and interaction scheme.
and outside the hole. The solutions outside the hole (𝑟 > 𝑎) are

𝜙>(𝑟, 𝜃) = ℎ
∞
∑

𝑚=−∞
𝑎𝑚𝐻𝑚(𝑘1𝑟)ei𝑚𝜃 , 𝜓>(𝑟, 𝜃) = ℎ

∞
∑

𝑚=−∞
𝑏𝑚𝐻𝑚(𝑘𝑇 𝑟)ei𝑚𝜃 ,

𝜔>(𝑟, 𝜃) = ℎ
∞
∑

𝑚=−∞

{

𝑐𝑚𝐻𝑚(𝑘ℎ2𝑟) + 𝑑𝑚𝐾𝑚(𝑘
ℎ
2𝑟)

}

ei𝑚𝜃 ,

(4)

where𝐻𝑚 is the Hankel function of the first kind and 𝐾𝑚 is the modified
Bessel function of the second kind. Note the superscript on 𝑘ℎ2 which
indicated the plate thickness outside the hole. The solutions inside the
hole (𝑟 < 𝑎) can be written in the form

𝜙<(𝑟, 𝜃) = ℎ
∞
∑

𝑚=−∞
𝑒𝑚𝐽𝑚(𝑘1𝑟)ei𝑚𝜃 , 𝜓<(𝑟, 𝜃) = ℎ

∞
∑

𝑚=−∞
𝑓𝑚𝑗𝑚(𝑘𝑇 𝑟)ei𝑚𝜃 ,

𝜔<(𝑟, 𝜃) = ℎ
∞
∑

𝑚=−∞

{

𝑔𝑚𝐽𝑚(𝑘𝑏2𝑟) + ℎ𝑚𝐼𝑚(𝑘
𝑏
2𝑟)

}

ei𝑚𝜃 ,

(5)

where 𝐼𝑚 is the modified Bessel function of the first kind. Note the
superscript on 𝑘𝑏2 which indicated the plate thickness inside the hole.
The coefficients in the above two equations, 𝑎𝑚 to ℎ𝑚, determine the
scattered field.

(2) Now that the scalar potential fields have been defined inside
and outside the hole, the displacement field can be determined by the
following expressions.

𝑢𝑝𝑟 =
𝜕𝜙𝑝

𝜕𝑟
+ 1
𝑟
𝜕𝜓𝑝

𝜕𝜃
− 𝑧 𝜕𝑤

𝑝

𝜕𝑟
,

𝑢𝑝𝜃 =
1
𝑟
𝜕𝜙𝑝

𝜕𝜃
−
𝜕𝜓𝑝

𝜕𝑟
− 𝑧
𝑟
𝜕𝑤𝑝

𝜕𝑟
,

𝑢𝑝𝑧 = 𝑤𝑝,

(6)

where 𝑝 = (𝑖𝑛𝑐, >, <), represents the region being referred to, and
𝑧 ∈ (−ℎ, ℎ) for waves outside (>) the hole and 𝑧 ∈ (−𝑏, 𝑏) for waves
inside (<) the hole.

(3) The non-zero stresses are obtained from these displacements by
the relation

𝜎𝑝𝑟𝑟 =
𝐸

1 − 𝜈2
[( 𝜕
𝜕𝑟

− 𝜈
𝑟

)

𝑢𝑝𝑟 +
𝜈
𝑟
𝜕
𝜕𝜃
𝑢𝑝𝜃
]

𝜎𝑝 = 𝐸 [( 𝜕 − 1) 𝑢𝑝 + 1 𝜕 𝑢𝑝
] (7)
4

𝑟𝜃 2(1 + 𝜈) 𝜕𝑟 𝑟 𝜃 𝑟 𝜕𝜃 𝑟
This can in turn be used to determine the forces on the plate, that
is,

𝑁𝑝
𝑟𝑟 = ∫

ℎ

−ℎ
𝜎𝑝𝑟𝑟𝑑𝑧, 𝑁𝑝

𝑟𝜃 = ∫

ℎ

−ℎ
𝜎𝑝𝑟𝜃𝑑𝑧, (8)

with moments

𝑀𝑝
𝑟𝑟 = ∫

ℎ

−ℎ
𝑧𝜎𝑝𝑟𝑟𝑑𝑧, 𝑀𝑝

𝑟𝜃 = −∫

ℎ

−ℎ
𝑧𝜎𝑝𝑟𝜃𝑑𝑧, (9)

where the domain of integration depends on the location on the plate.
The final important quantity is the generalized Kirchhoff stress 𝑉𝑟 that
is determined by the twisting moment 𝑀𝑟𝜃 , defined as

𝑉 𝑝
𝑟 = −𝐷 𝜕

𝜕𝑟
(

𝛥2𝑤𝑝
)

− 1
𝑟
𝜕𝑀𝑝

𝑟𝜃
𝜕𝜃

. (10)

(4) Finally having solved for the displacements, forces, moments
and stresses, the coefficients 𝑎𝑚…ℎ𝑚 for the scattered field can be
determined, by enforcing the boundary conditions at 𝑟 = 𝑎. The first
boundary conditions to be enforced is the continuity condition of the
in-plane displacements about the line 𝑧′ = 0,

𝑢𝑖𝑛𝑐𝑟 +
𝜕𝜙>

𝜕𝑟
+ 1
𝑟
𝜕𝜓>

𝜕𝜃
+ (ℎ − 𝑏) 𝜕𝜔

>

𝜕𝑟
=
𝜕𝜙<

𝜕𝑟
+ 1
𝑟
𝜕𝜓<

𝜕𝜃
,

𝑢𝑖𝑛𝑐𝜃 + 1
𝑟
𝜕𝜙>

𝜕𝜃
−
𝜕𝜓>

𝜕𝑟
+ (ℎ − 𝑏) 1

𝑟
𝜕𝜔>

𝜕𝜃
= 1
𝑟
𝜕𝜙<

𝜕𝜃
−
𝜕𝜓<

𝜕𝑟
.

(11)

We also enforce continuity of the plates vertical displacement as
well as its gradient

𝜔> = 𝜔<,
𝜕𝜔>

𝜕𝑟
= 𝜕𝜔<

𝜕𝑟
.

(12)

Finally, the forces, moments and stresses are balanced, we have

𝑁 𝑖𝑛𝑐
𝑟𝑟 +𝑁>

𝑟𝑟 = 𝑁<
𝑟𝑟,

𝑁 𝑖𝑛𝑐
𝑟𝜃 +𝑁>

𝑟𝜃 = 𝑁<
𝑟𝜃 .

(13)

This continuity is not effected by the asymmetry due to the hole,
however this asymmetry plays a role in the continuity of the gener-
alized Kirchhoff stress and the bending moment. For this reason, the
forces, moments and stresses are balanced as

𝑉 >
𝑟 + 1

𝑟
𝜕
𝜕𝜃

((ℎ − 𝑏)𝑁<
𝑟𝜃) = 𝑉 <

𝑟 ,
> < <

(14)

𝑀𝑟𝑟 + (ℎ − 𝑏)𝑁𝑟𝑟 =𝑀𝑟𝑟.
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⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

t

𝑁
s
s
d
o
r
c
i
b
f

𝐬

d
p
b
s

𝑝

w
r

4

b
w
p
s
𝒟

𝑝

By satisfying the above 8 boundary conditions we can solve for all
8 unknown coefficients 𝑎𝑚,… , ℎ𝑚 for every value of 𝑚 by solving:

𝛼11 𝛼12 𝛼13 𝛼14 𝛼15 𝛼16 0 0
𝛼21 𝛼22 𝛼23 𝛼24 𝛼25 𝛼26 0 0
0 0 𝛼33 𝛼34 0 0 𝛼37 𝛼38
0 0 𝛼43 𝛼44 0 0 𝛼47 𝛼48
𝛼51 𝛼52 0 0 𝛼55 𝛼56 0 0
𝛼61 𝛼62 0 0 𝛼65 𝛼66 0 0
0 0 𝛼73 𝛼74 𝛼75 𝛼76 𝛼77 𝛼78
0 0 𝛼83 𝛼84 𝛼85 𝛼86 𝛼87 𝛼88
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. (15)

The terms 𝛼𝑖𝑗 and 𝛽𝑖𝑗 are given explicitly in the appendix.
After solving for all 8 unknown coefficients 𝑎𝑚,… , ℎ𝑚 for a fixed 𝑚

value, the scattered field of each wave mode can be determined. The
scattered field is represented by 𝐬ℳ(𝜆𝜆𝜆), which will be used in the next
section to construct a Bayesian inference framework. Here, 𝜆𝜆𝜆 refers to
unknown model parameters, including the radius and depth of the hole.

As mentioned at the beginning of this section, the inversion frame-
work is computationally expensive. We performed the wave damage
interaction model on a multicore server with Intel Xeon E5-1620 v4
Processor (3.50 GHz) and 32 GB of installed RAM. It is worth em-
phasizing that the presented semi-analytical approach only takes a few
milliseconds per run to produce scattering features, which can greatly
improve the calculation efficiency of the entire inversion process.

3. Description of scattering feature extraction

In physical experiments and finite element simulations, only raw
signals are provided. Signal processing techniques need to be used to
extract damage features. In this section, a signal processing technique
for extracting scattering coefficients from ultrasonic signals is intro-
duced. The scattering coefficients will be used as the available data 𝒟
in Bayesian inversion.

Here, we take the signal from the physics experiment as an example
to illustrate the signal processing part of the procedure. In order to
explain it clearly, only one actuator and one sensor are considered,
shown in Fig. 2. The red dot and blue square represent actuator and
sensor, respectively. The purple dot represents a notch. 𝑑1, 𝑑2 and
𝑑3 represents distance between different points. When the excitation
frequency is 300 kHz, the time domain signal received by the sensor
in the original state and the damaged state with the marked timeline
of the Lamb wave is shown in Fig. 3. One can locate the modes
by calculating the time for different modes to reach the sensor and
the damage, which is shown on the vertical line in Fig. 3. One can
determine the time-of-flight (ToF) 𝛥𝑡 of certain modes by dividing the
distance by the propagation speed of a certain mode wave:

𝛥𝑡 = 𝑑
𝑉(𝑆0∕𝐴0)

(16)

where 𝑉(𝑆0∕𝐴0) and 𝑑 denote the speed of S0 or A0 modes and the
distance, respectively. When calculating the ToF of incident waves, the
distance is taken as 𝑑1. When calculating the ToF of the scattered wave,
he distance is taken as the sum of 𝑑2 and 𝑑3. When the material param-

eters and excitation frequency are known, the speed of different waves
can be calculated using the Dispersion Calculator [44]. The scattered
S0 and A0 waves are clearly separated, which helps in calculating the
scattering coefficient more accurately.

The scattering coefficients can be calculated in the time or fre-
quency domain [21,45,46]. In this study, the frequency domain tech-
nique is adopted. The coefficients were computed by dividing the
frequency spectra of the reflected/transmitted part of the signal by
that of the incident part. It is straightforward to obtain the frequency
spectra of the incident waves. For the scattering part, the difference in
propagation time of different types of wave modes is used to identify
the corresponding scattering bands. Then, the scattering bands in the
time domain were transformed with fast Fourier transform. The above
5

process was repeated on each sensor (see Fig. 4). To this end, the
scattering contour was obtained, which contains the information of the
defects. The extracted features will be used in the next section to infer
the size of the damages.

4. Damage characterization

Bayesian inference provides a rigorous probabilistic framework for
solving inverse problems with quantified uncertainties. More specifi-
cally, measurement noise and modelling errors can be quantified, and
one can fully make use of prior information (for example, ultrasonic
monitoring data) through this framework [47]. The Bayesian frame-
work for identifying the radius and depth of a hole in plate like
structures is presented based on frequency-domain data derived from
Section 2.

4.1. Probabilistic model class construction

The deterministic wave damage interaction model ℳ presented in
Section 2 provides the scattering coefficients, denoted as 𝐬ℳ(𝜆𝜆𝜆) ∈ R𝑁𝑠 .
𝑠 refers to the dimension of scattering coefficients. The experimental

cattering coefficients 𝐬𝒟 ∈ R𝑁𝑠 are derived from the output of ultra-
onic experiment and contain the necessary information to characterize
amage by identifying its damage parameters. The model is dependent
n a set of unknown model parameters 𝜆𝜆𝜆 ∈ 𝜣 ⊂ R𝑁𝜽 , including the
adius and depth of damage. 𝑁𝜽 refers to the dimension of scattering
oefficients. The probabilistic damage interaction model is defined by
ntroducing an error term 𝐞 ∈ R𝑁𝑠 that accounts for the discrepancy
etween the modelled coefficients 𝐬ℳ(𝜆𝜆𝜆) and the coefficients derived
rom experiments, that is 𝐬𝒟 , as follows:

𝒟 = 𝐬ℳ(𝜆𝜆𝜆) + 𝐞. (17)

A zero mean Gaussian distribution with covariance matrix 𝛴𝑒 =
iag(𝜎2𝑒,1, 𝜎

2
𝑒,1,… , 𝜎2𝑒,𝑁𝑠 ) is selected to model the error term in order to

roduce the largest prediction uncertainty, i.e., 𝐞 ∼ 𝒩 (0, 𝛴𝑒). This is
ased on the principle of Maximum Information Entropy [48,49]. The
tochastic version of the model is given by a Gaussian distribution

(

𝐬𝒟 |𝐬𝑀 , 𝜆𝜆𝜆,ℳ
)

=
(

2𝜋𝜎2𝑒
)−𝑁𝑠

2 exp

(

−1
2

(

𝒥 (𝜆𝜆𝜆,𝒟 )
𝜎𝑒

)2
)

, (18)

where 𝒥 (𝜆𝜆𝜆,𝒟 ) is a goodness-of-fit function which is selected to be the
𝐿2-norm of the experimental and modelled data defined as

𝒥 (𝜆𝜆𝜆,𝒟 ) =
(

𝑁𝑠
∑

𝑖=1
(𝑠ℳ,𝑖 − 𝑠𝒟 ,𝑖)2

)1∕2
(19)

ith 𝑠ℳ,𝑖 and 𝑠𝒟 ,𝑖 being the 𝑖th element of the vectors 𝐬 and 𝐬𝒟 ,
espectively.

.2. Bayesian inference

The posterior probability is the state of knowledge of the distri-
ution of the model parameters after updating the prior information
ith the measurement data 𝒟 . The posterior distribution of the model
arameters 𝑝(𝜆𝜆𝜆|𝒟 ,ℳ) can be obtained from the prior probability den-
ity function (PDF) 𝑝(𝜆𝜆𝜆|ℳ) by applying Bayes’ theorem, given the data
≜ 𝐬𝒟 , that is,

(𝜆𝜆𝜆|𝒟 ,ℳ) =
𝑝 (𝒟 |𝜆𝜆𝜆,ℳ) 𝑝(𝜆𝜆𝜆|ℳ)

𝑝(𝒟 |ℳ)
, (20)

where 𝑝(𝒟 |𝜆𝜆𝜆,ℳ) is the likelihood function given by Eq. (18) and the
denominator 𝑝(𝒟 |ℳ) is known as the evidence and is a measure of how
well the model explains the data 𝒟 . It acts as a normalization constant
in Bayes’ theorem. The prior PDF 𝑝(𝜆𝜆𝜆|ℳ) is the state of knowledge
before any measurement is available.
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Fig. 2. Actuator and sensor allocation with geometry information. The red dot, blue square, and purple dot represent actuator, sensor and notch, respectively. 𝑑1, 𝑑2 and 𝑑3
represents distance between different points.
Fig. 3. Time domain signal of pristine and damage state in 300 kHz in 0.9 mm aluminium plate with marked timelines of Lamb wave. The timelines are calculated according to
Eq. (16), which can used to locate and separate different Lamb wave modes. Note that the signals are obtained by ultrasonic guided waves tests.
The evaluation of Eq. (20) requires the calculation of
multi-dimensional integrals which is not possible in practical applica-
tions. Markov Chain Monte Carlo (MCMC) methods [50] have been
widely used for their ability to estimate the posterior PDF while
this approach makes it possible to obtain samples directly from the
posterior distribution and bypassing the computation of the evidence.
Out of the vast amount of MCMC algorithms available in the literature,
the Metropolis–Hastings (M–H) algorithm [51,52] is used here as
a stochastic simulation method given its versatility and its ease of
implementation [47]. It is worth noting that a Gaussian distribution
𝑞(𝜆𝜆𝜆′|𝜆𝜆𝜆𝜁 ) is chosen as the proposal in the M–H algorithm, which can
influence the speed of convergence of the algorithm, see Appendix A for
more details. In an M–H algorithm, the posterior PDF is characterized
by the posterior samples 𝜆𝜆𝜆𝜁 . The value range of 𝜁 is 1 to 𝑇𝑠. 𝑇𝑠 refers to
the number of samples. Based on this, the multi-dimensional integral
can be approximated by the following expression:

𝑝
(

𝜆𝜆𝜆′|𝒟 ,ℳ
)

≈ 1
𝑇𝑠

𝑇𝑠
∑

𝜁=1
𝑝
(

𝜆𝜆𝜆′ ∣ 𝝀(𝜁),𝒟 ,ℳ
)

. (21)

For the sake of clarity, a generic algorithmic implementation is
provided in Fig. 5.
6

5. Case studies

5.1. Numerical example

In this section, a numerical case study of a steel plate with a
part-depth circular hole is presented. The experimental data 𝒟 is
generated by performing a full finite element simulation in Abaqus
and post-processing the output displacements to obtain the scattering
coefficients. The schematic for the numerical simulation is shown in
Fig. 6.

The dimension of the specimen is 𝐿𝑥 = 900 mm 𝑥 𝐿𝑦 = 800 mm
in size and 2 mm in thickness. The material properties for steel are as
follows: elastic modulus 𝐸 = 210 GPa, density 𝜌 = 8100 kg/m3 and
Poisson ratio 𝜈 = 0.3. A 1 mm deep circular indentation is modelled at
the centre of the plate with radius 5 mm. An incident plane wave of
fundamental S0 mode is generated by applying a transient force to the
entire boundary as shown in Fig. 6. The forcing function is a 6 cycle
Hanning windowed sinusoid with a central frequency of 100.514 kHz
and a time duration of 60 μs. The model is meshed by using 8-node
general purpose linear brick elements (C3D8R) [53], with reduced
integration and maximum element edge length of 1mm.
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Fig. 4. Scheme of signal processing to obtain scattering coefficients. Note that the signal data can be obtained by numerical (e.g. FEM) or experimental methods (e.g. using PZT
transducers, a signal generator, and an oscilloscope).
Fig. 5. General workflow of Bayesian inference for damage identification.
A circular monitoring contour is specified in the vicinity of the
damage. This consists of nodes at which the displacement components
are observed. The radius of the monitoring contour must be large
enough to ensure at least one wavelength separation from the damage.
Then the displacements recorded at these nodes can be considered
in the far-field of the damage. There are two simulations necessary
with this approach. First a plate without damage is simulated and
the displacements components are stored. After that a simulation is
executed with damage in the plate and again the displacements are
stored. The same signal processing method describe in Section 3 is
dopted here to obtain scattering coefficients. The scattered portion of
he displacements is obtained by subtracting the displacements from
he two simulations. The normalized far-field displacement components
n the cylindrical coordinate system are the scattering coefficients used
s the experimental data 𝒟 .
7

Table 1
Identified results of the numerical case.

Parameters True value MAP Mean Std COV(%)

𝑎 (mm) 5.0 4.9238 4.9369 1.7248e−4 2.9751e−06
𝑏 (mm) 0.5 0.4959 0.5003 1.9927e−5 3.9709e−08
𝜎𝑒 – 0.0317 0.0333 0.0043 1.8614e−03

A uniform prior distribution was used with bounds [0.0035 mm,
0.0065 mm] for radius 𝑎, [0.00001 mm, 0.001 mm] for depth 𝑏 and
[0.0001, 0.1] for standard deviation 𝜎𝑒. Similarly, samples from the
posterior PDFs of each set of model parameters are obtained through
the M–H algorithm (refer to the Appendix) using 100,000 samples and
a Gaussian proposal distribution. The resulting marginal posterior PDFs
are described in Table 1 by their maximum a posteriori value (MAP),
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Fig. 6. Schematic of the finite element simulation model for extraction of scattering coefficients. Two simulations (pristine and damage state) are required with this approach.
The signal obtained by the simulation will be processed according to the method in Section 3.
Fig. 7. Posterior distribution of different parameters and contours of two-dimensional simulation densities inferred from full finite element model. Diagonal plots indicate the
marginal distributions of the inferred parameters.
their mean, their standard deviation (Std), and their coefficients of
variation (COV). Fig. 7 shows the posterior distribution of identified
parameters and contours of two-dimensional simulation densities.

For the numerical case, in terms of MAP, the corresponding errors
of the radius and the depth are 1.52% and 0.82% respectively. The
inferred radius and depth has a good correlation to the true value. The
comparison of the reconstructed scattering coefficients of S0 and SH0
mode using the MAP values of the posterior PDFs and the numerical
8

data is shown in Fig. 8. As shown, the model is able to reconstruct the
contours of S0 and SH0. For S0 mode, between the values of 180 ◦ and
60◦ the reconstructed scattering coefficients are greater than the true
value, below these values the opposite is true. Again, there is strong
correlation between the reconstructed and true values, while a phase
difference occurs for SH0 mode.

The Bayesian inference procedure is performed on a multicore
server with the same scenarios mentioned in Section 2. The time
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Fig. 8. Reconstruction of the scattering coefficients of S0 and SH0 mode based on the MAP values of the posterior PDF.
onsumption of the whole Bayesian inversion is around 340 s. The
emi-analytical method adopted in this paper narrows the scope of
pplication to the problem of spherical symmetry. Therefore, compared
ith the traditional explicit finite element method, the calculation
fficiency has been greatly improved. One can use the explicit finite
lement model as a benchmark to highlight the high efficiency of the
roposed framework. The time taken for a single run of the explicit
inite element model is around 95 min. If the full finite element model
s used as the physical model to construct the Bayesian inversion
ramework, giving a total time taken of 9.5 million minutes (around
597 days) for 100,000 samples. The framework used in this work is
bout 1,676,470 times more efficient than the one based on explicit
inite element model. The framework eliminates the quagmire of time-
onsuming damage characterization based on the Bayesian method
f physical model. In addition, it will significantly reduce the time
xpended for practical engineering application, such as determining
aintenance strategies faster based on how the severity of identified
amage. The main limitation of the proposed framework is that the
dentified damage is assumed to be spherically symmetric, so the
umerical modelling of the Hankel and Bessel functions can be reduced
o a fixed index ‘m’, leading to a low dimensional matrix problem; but
uch defect forms are very representative in metal structures. In the
ollowing work, we will explore the generalization of the method using
on-uniform depth profiles.

.2. Experimental study and damage identification through a digital-twin
pproach

In this section, an experimental case study of an aluminium plate
ith a part-depth circular hole is presented to validate the proposed

ramework in a hybrid cyber–physical environment. The experimental
ata 𝒟 are generated by performing ultrasonic experiments.

The plate has the dimensions 𝐿𝑥 = 1000 mm, 𝐿𝑦 = 1000 mm
and a depth of 0.9 mm with the properties of the aluminium plate
detailed in Table 2. The defect is located in the centre of the plate
to ensure dissipation of the reflected waves from the boundaries. The
configuration of different piezoelectric (PZT) sensors is shown in Fig. 9.
The red PZT has been used to generate a sinusoidal burst, and the rest
of the PZT sensors received the reflected and scattered signals. PZT
9

sensors are 7 mm in diameter and 0.2 mm in thickness with radial
Table 2
Mechanical properties of aluminium plate.

Thickness (mm) Young’s modulus (GPa) Poisson’s ratio Density (kg∕m3)

0.9 69 0.33 2705

mode vibration and a resonant frequency of 300 kHz. PZT sensors
are mounted on the structure’s surface radially with equal spacing. A
Keysight 33512B arbitrary waveform generator was used to generate
a five-cycle sine tone-burst centred in a specific frequency range, and
a DSOX2014 A oscilloscope was used to digitize the signals using a
sampling frequency of 9.6 MHz and averaging 32 measurements to
increase the signal-to-noise ratio. The experimental setup is shown in
Fig. 10.

The semi-analytical method presented in Section 2 considers the
excitation with an S0 wave, and the scattered field as S0, A0 and SH0
waves. In order to more accurately characterize the interaction between
different modal waves and defects, the strengthening of the incident S0
mode and the weakening of other incident modes is required for the
experiment to verify the theoretical model.

In this paper, the impact of A0 was minimized by using three
complimentary methods. First, avoid appearance of higher modes and
enhance the incident S0 mode. As mentioned in Section 2, the ex-
citation frequency is lower than the cutoff frequency to avoid the
appearance of higher-order modes, however, the choice of the excita-
tion mode (S0 and A0) is an important task. Different approaches are
used to select guided wave modes, including dual PZT excitation [54,
55], PZT array excitation [56,57], choosing frequency range [58,59]. In
our experiments, the exciting frequency range from 120 kHz to 300 kHz
is explored. The time domain signal of the sensor closest to the actuator
in 120 kHz, 180 kHz, 240 kHz, 300 kHz are shown in Fig. 11. The time-
of-arrival is used to locate incident S0 and A0. It is observed that with
the increase of frequency, the amplitude of incident S0 is enhanced;
at 300 kHz, the maximum amplitude of S0 is more than twice that
of A0. Note that mode selection approaches can be used to enhance
a specific Lamb wave mode at a given frequency while minimizing the
contribution of others modes, but they cannot remove a wave mode in
a signal completely [54]. Therefore, 300 kHz is finally selected as an
exciting frequency. Besides, to ensure that the scattered S0 and A0 are
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Fig. 9. (a) Plate geometry and sensor allocation. (b) experimental configuration (units in mm). PZT sensors are mounted on the structure’s surface radially with equal spacing.
The square and red dot represent sensors and notch, respectively.
Fig. 10. Experiment setup used comprising a laptop, an arbitrary waveform generator and an oscilloscope connected to the PZT transducers attached to the aluminium plate.
separated, there is a limit to the minimum distance between the sensor
and the defect:
𝑑minimum
𝑉𝐴0

−
𝑑minimum
𝑉𝑆0

≥ 𝑛 ∗ 1
𝑓

(22)

where 𝑑𝑚𝑖𝑛𝑖𝑚𝑢𝑚 represents the minimum distance between the sensor
and the defect. 𝑛 represents the exciting cycle. 𝑓 represents the exciting
frequency. For example, under the condition of an incident wave with
3 cycles at 300 kHz, calculated according to Eq. (22), the minimum dis-
tance is 47.29 mm. In our set-up, the distance between the sensor and
the defect is 200 mm, which is greater than the minimum distance; as
shown in Fig. 3, scattered A0 and S0 are clearly separated. Furthermore,
as mentioned in Section 3, frequency domain scattering coefficient cal-
culation method is adopted. The coefficients are calculated by dividing
the peak value of the frequency spectrum of the reflected part of the
signal by the peak value of the frequency spectrum of the incident
part [45,46], see Fig. 4. As mentioned above, the maximum amplitude
of S0 is much greater than that of A0, so the impact of A0 is minimized
as much as possible.
10
The scattering coefficients obtained from the physical experiments
of the aluminium panel with a circular notch is assessed with the
proposed Bayesian framework to identify the radius and the depth
thus validating the feasibility of the framework in real applications. A
uniform prior distribution was used with bounds [0.0015 m, 0.0045
m] for radius 𝑎, [0.0001 m, 0.0004 m] for depth 𝑏 and [0.01, 0.1] for
standard deviation 𝜎𝑒. Samples from the posterior PDFs of each set of
model parameters are obtained through the M–H algorithm (refer to the
Appendix) using 100,000 samples and a Gaussian proposal distribution.
The identified results including mean values, MAP(maximum a posteri-
ori value), standard deviation(Std) and COV(Coefficients of variation)
are presented in Table 3. Fig. 12 shows the posterior distribution
of identified parameters and contours of two-dimensional simulation
densities. The identified radius of the circular hole are very close to
the true values. The corresponding errors of the radius and the depth
in terms of MAP are 1.68% and 25.0% respectively. However, there is
the discrepancy between the identified hole depth and the measured
hole depth. It should be pointed out that in real tests, the bottom of
the defect is rarely flat. Therefore, the true value of the defect depth
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a

Fig. 11. Time domain signal of pristine and damage state in 0.9 mm aluminium plate in (a) 120 kHz, (b) 180 kHz, (c) 240 kHz and (d) 300 kHz; the incident wave S0 and A0
re highlighted.
Table 3
Identified results of the physical experiment.

Parameters True value MAP Mean Std COV(%)

𝑎 (mm) 3.25 3.3045 3.2606 1.6769e−04 2.8121e−06
𝑏 (mm) 0.2 0.2499 0.2505 4.4010e−6 1.9369e−09
𝜎𝑒 – 0.02605 0.0329 0.0120 1.4482e−02

here is the average value of the defect depth, which has an impact on
the accuracy of the inversion depth. After the further extension of the
semi-analytical method adopted in this paper, the above case can also
be simulated. While the current characterization results already have
practical guiding significance, further methods will not be discussed
here.

In addition, the MAP values of the posterior PDF are used to
reconstruct the scattering coefficients of the S0 mode, and these coeffi-
cients are compared with the numerical data (see Fig. 13). Discrepancy
between the reconstructed scattering coefficients and the measured
values is observed. Whilst the shape is quite similar, there is a more
distinct difference as the angle approaches zero. This difference is due
to model errors caused by the inconsistency between the ideal structure
model in the semi-analytical approach and the actual specimen in the
experiment, such as the difference in material properties, the difference
in damping and dispersion, and the difference between the hole shape
11

and the actual one. However, this is expected in a practical scenario,
but that the actual characterization of the defect is sufficiently accu-
rate for most of the applications with the errors being in the order
of 0.1 mm. Overall, the Bayesian inference framework based semi-
analytical approach yielded sufficient damage identification capability
to warrant further investigation into field application.

6. Conclusions

In summary, a Bayesian inference framework for damage identifi-
cation of plate structures with spherical symmetry is presented where
a guided waves interaction model is used based on a semi-analytical
approach. It combines Poisson theory and Kirchhoff theory producing
the scattered field when a plane S0 wave forms the incident wave
on a plate defect. The proposed framework is finally validated by a
physical experiment and a full finite element model. The high-efficient
framework shows excellent promise to build a fast digital twin that
will be connected to the physical twin to support real-time engineering
decisions by capturing the impact of detected damage on structural
performance and remaining useful life. The following conclusions are
draw from this paper:

• A fast Lamb-wave based physics-informed damage identification
framework in 2D structures for the first time is proposed, which
can identify the geometry of a partly through-thickness circular
hole in plate-like structures. The scattering coefficients of Lamb
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Fig. 12. Posterior distribution of different parameters and contours of two-dimensional simulation densities inferred from physical experiments. Diagonal plots indicate the marginal
distributions of the inferred parameters.
Fig. 13. Reconstruction of the scattering coefficients of S0 mode based on the MAP
values of the posterior PDF.

wave modes are reconstructed, and there is strong correlation
between the reconstructed and true values.
12
• Compared with a traditional finite element model and similar
methods, the presented semi-analytical approach can greatly im-
prove the robustness and efficiency of the inversion procedure
for a spherically symmetry damage without introducing more
epistemic uncertainty.

• Physical ultrasound experiments for large Aluminium plate are
conducted to extract wave reflection, transmission coefficients
with the aid of signal processing techniques. The use of features in
the frequency domain have clear physical meaning and are more
computationally efficient than the time domain approaches.

CRediT authorship contribution statement

W. Wu: Conceptualization, Methodology, Software, Validation, For-
mal analysis, Writing – original draft, Writing – review & editing,
Visualization. M.K. Malik: Conceptualization, Methodology, Software,
Writing – review & editing, Supervision. S. Cantero-Chinchilla: Con-
ceptualization, Methodology, Software, Writing – review & editing,
Supervision. T. Lawrie: Conceptualization, Methodology, Writing – re-
view & editing, Supervision. W.J. Yan: Conceptualization, Supervision.
G. Tanner: Writing – review & editing, Supervision. R. Remenyte-
Prescott: Funding acquisition, Project administration, Supervision. D.
Chronopoulos: Conceptualization, Funding acquisition, Resources, In-
vestigation, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.



Ultrasonics 125 (2022) 106773W. Wu et al.

ka-

-

p
a
r
a
m

𝑟

t
o
p
1

𝛼

Acknowledgements

This project has received funding from the European Union’s Hori-
zon 2020 research and innovation programme under the Marie Skłodows
Curie grant agreement No. 859957, No. 721455, and the Science and
Technology Development Fund, Macau SAR (File no.:
FDCT/0101/2021/A2, FDCT/001/2021/AGJ and SKL-IOTSC(UM)-2021
2023).

Appendix A. Metropolis–Hastings simulation for Bayesian updat-
ing

The M–H algorithm generates samples from a specially constructed
Markov chain whose stationary distribution is the required posterior
PDF 𝑝(𝜆𝜆𝜆|𝒟 ,). By sampling a candidate model parameter 𝜆𝜆𝜆′ from a
roposal distribution 𝑞(𝜆𝜆𝜆′|𝜆𝜆𝜆𝜁 ), the M–H obtains the state of the chain
t 𝜁 + 1, given the state at 𝜁 , specified by 𝜽𝜁 . The candidate pa-
ameter 𝜆𝜆𝜆′ is accepted (i.e., 𝜆𝜆𝜆𝜁+1 = 𝜆𝜆𝜆′) with probability min{1, 𝑟},
nd rejected (i.e., 𝜆𝜆𝜆𝜁+1 = 𝜆𝜆𝜆𝜁 ) with the remaining probability 1 −
in{1, 𝑟}, where:

=
𝑝(𝒟 |𝜆𝜆𝜆′,)𝑝(𝜆𝜆𝜆′|)𝑞(𝜆𝜆𝜆𝜁−1|𝜆𝜆𝜆′)

𝑝(𝒟 |𝜆𝜆𝜆𝜁−1,)𝑝(𝜆𝜆𝜆𝜁−1|)𝑞(𝜆𝜆𝜆′|𝜆𝜆𝜆𝜁−1)
(A.1)

The process is repeated until 𝑇𝑠 samples have been generated so that
he monitored acceptance rate (ratio between accepted M–H samples
ver total amount of samples) reaches an asymptotic behaviour. A
seudo-code description of this method is provided below as Algorithm
.

Algorithm 1: M–H algorithm
1 Initialize 𝜆𝜆𝜆𝜁=0 by sampling from the prior PDF: 𝜆𝜆𝜆0 ∼ 𝑝(𝜆𝜆𝜆|);
2 for 𝜁 = 1 to 𝑇𝑠 do
3 Sample from the proposal: 𝜆𝜆𝜆′ ∼ 𝑞(𝜆𝜆𝜆′ |𝜆𝜆𝜆𝜁−1);
4 Compute 𝑟 from Eq. (A.1);
5 Generate a uniform random number: 𝛼 ∼  [0, 1];
6 if 𝑟 ⩾ 𝛼 then
7 Set 𝜆𝜆𝜆𝜁 = 𝜆𝜆𝜆′ ;
8 else
9 Set 𝜆𝜆𝜆𝜁 = 𝜆𝜆𝜆𝜁−1;

10 end
11 end

Appendix B. Coefficients required for the wave damage interac-
tion model

The expansion coefficients in Eq. (15) are shown below. These
parameters are used to solve all 8 unknown coefficients and obtain a
scattered field.

𝛼11 = (𝑘1𝑎)𝐻 ′
𝑚(𝑘1𝑎), 𝛼12 = 𝑖𝑚𝐻𝑚(𝑘𝑇 𝑎), 𝛼13 =

(

1 − 𝑏
ℎ

)

(𝑘ℎ2𝑎)𝐻
′
𝑚(𝑘

ℎ
2𝑎),

𝛼14 =
(

1 − 𝑏
ℎ

)

(𝑘ℎ2𝑎)𝐾
′
𝑚(𝑘

ℎ
2𝑎), 𝛼15 = −(𝑘1𝑎)𝐽 ′

𝑚(𝑘1𝑎), 𝛼16 = −𝑖𝑚𝐽𝑚(𝑘𝑇 𝑎).

(B.1)

21 = 𝑖𝑚𝐻𝑚(𝑘1𝑎), 𝛼22 = −(𝑘𝑇 𝑎)𝐻 ′
𝑚(𝑘𝑇 𝑎), 𝛼23 = 𝑖𝑚

(

1 − 𝑏
ℎ

)

𝐻𝑚(𝑘ℎ2𝑎),

𝛼24 = 𝑖𝑚
(

1 − 𝑏
ℎ

)

𝐾𝑚(𝑘ℎ2𝑎), 𝛼25 = −𝑖𝑚𝐽𝑚(𝑘1𝑎), 𝛼26 = (𝑘𝑇 𝑎)𝐽𝑚(𝑘𝑇 𝑎).

(B.2)

𝛼33 = 𝐻𝑚(𝑘ℎ2𝑎), 𝛼34 = 𝐾𝑚(𝑘ℎ2𝑎), 𝛼37 = −𝐽𝑚(𝑘𝑏2𝑎), 𝛼38 = −𝐼𝑚(𝑘𝑏2𝑎).

(B.3)
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𝛼43 = (𝑘ℎ2𝑎)𝐻
′
𝑚(𝑘

ℎ
2𝑎), 𝛼44 = (𝑘ℎ2𝑎)𝐾

′
𝑚(𝑘

ℎ
2𝑎), 𝛼47 = −(𝑘𝑏2𝑎)𝐽

′
𝑚(𝑘

𝑏
2𝑎),

𝛼48 = −(𝑘𝑏2𝑎)𝐼
′
𝑚(𝑘

𝑏
2𝑎).

(B.4)

𝛼51 =
(

𝑚2 −
(𝑘1𝑎)2

1 − 𝜈

)

𝐻𝑚(𝑘1𝑎) − (𝑘1𝑎)𝐻 ′
𝑚(𝑘1𝑎),

𝛼52 = 𝑖𝑚[(𝑘𝑇 𝑎)𝐻 ′
𝑚(𝑘𝑇 𝑎) −𝐻𝑚(𝑘𝑇 𝑎)],

𝛼55 = − 𝑏
ℎ

[(

𝑚2 −
(𝑘1𝑎)2

1 − 𝜈

)

𝐽𝑚(𝑘1𝑎) − (𝑘1𝑎)𝐽 ′
𝑚(𝑘1𝑎)

]

,

𝛼56 = −𝑖𝑚 𝑏
ℎ
[(𝑘𝑇 𝑎)𝐽 ′

𝑚(𝑘𝑇 𝑎) − 𝐽𝑚(𝑘𝑇 𝑎)].

(B.5)

𝛼61 = 𝑖𝑚[(𝑘1𝑎)𝐻 ′
𝑚(𝑘1𝑎) −𝐻𝑚(𝑘1𝑎)],

𝛼62 =
(

(𝑘𝑇 𝑎)2

2
− 𝑚2

)

𝐻𝑚(𝑘𝑇 𝑎) + (𝑘𝑇 𝑎)𝐻 ′
𝑚(𝑘𝑇 𝑎),

𝛼65 = −𝑖𝑚 𝑏
ℎ
[(𝑘1𝑎)𝐽 ′

𝑚(𝑘1𝑎) − 𝐽𝑚(𝑘1𝑎)],

𝛼66 = − 𝑏
ℎ

[(

(𝑘𝑇 𝑎)2

2
− 𝑚2

)

𝐽𝑚(𝑘𝑇 𝑎) + (𝑘𝑇 𝑎)𝐽 ′
𝑚(𝑘𝑇 𝑎)

]

.

(B.6)

𝛼83 = −2
3

[(

𝑚2 −
(𝑘ℎ2𝑎)

2

1 − 𝜈

)

𝐻𝑚(𝑘ℎ2𝑎) − (𝑘ℎ2𝑎)𝐻
′
𝑚(𝑘

ℎ
2𝑎)

]

,

𝛼84 = −2
3

[(

𝑚2 +
(𝑘ℎ2𝑎)

2

1 − 𝜈

)

𝐾𝑚(𝑘ℎ2𝑎) − (𝑘ℎ2𝑎)𝐾
′
𝑚(𝑘

ℎ
2𝑎)

]

,

𝛼85 = 2
(

1 − 𝑏
ℎ

) 𝑏
ℎ

[(

𝑚2 −
(𝑘1𝑎)2

1 − 𝜈

)

𝐽𝑚(𝑘1𝑎) − (𝑘1𝑎)𝐽 ′
𝑚(𝑘1𝑎)

]

,

𝛼86 = 2
(

1 − 𝑏
ℎ

) 𝑏
ℎ
𝑖𝑚

[

(𝑘𝑇 𝑎)𝐽 ′
𝑚(𝑘𝑇 𝑎) − 𝐽𝑚(𝑘𝑇 𝑎)

]

,

𝛼87 =
2
3

( 𝑏
ℎ

)3
[(

𝑚2 −
(𝑘𝑏2𝑎)

2

1 − 𝜈

)

𝐽𝑚(𝑘𝑏2𝑎) − (𝑘𝑏2𝑎)𝐽
′
𝑚(𝑘

𝑏
2𝑎)

]

,

𝛼88 = −2
3

( 𝑏
ℎ

)3
[(

𝑚2 +
(𝑘𝑏2𝑎)

2

1 − 𝜈

)

𝐼𝑚(𝑘𝑏2𝑎) − (𝑘𝑏2𝑎)𝐼
′
𝑚(𝑘

𝑏
2𝑎)

]

.

(B.7)

𝛽11 = −𝑖𝑚(𝑘1𝑎)𝐽 ′
𝑚(𝑘1𝑎), 𝛽21 = −𝑚𝑖𝑚+1(𝑘1𝑎)𝐽𝑚(𝑘1𝑎),

𝛽51 = −𝑖𝑚
[(

𝑚2 −
(𝑘1𝑎)2

1 − 𝜈

)

𝐽𝑚(𝑘1𝑎) − (𝑘1𝑎)𝐽 ′
𝑚(𝑘1𝑎)

]

,

𝛽61 = −𝑚𝑖𝑚+1[(𝑘1𝑎)𝐽 ′
𝑚(𝑘1𝑎) − 𝐽𝑚(𝑘1𝑎)].

(B.8)
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