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We describe simulations of active Brownian particles carried out to explore how dynamics and
clustering are influenced by particle shape. Our particles are composed of four disks, held together
by springs, whose relative size can be varied. These composite objects can be tuned smoothly from
having a predominantly concave to a convex surface. We show that even two of these composite par-
ticles can exhibit collective motion which modifies the effective Peclet number. We then investigate
how particle geometry can be used to explain the phase behaviour of many such particles.

There is currently significant interest in the dynamics
of active matter and the modelling of collective biological
motion [1]. Active particles take their energy from their
surroundings to induce directed motion. Natural exam-
ples of collective motion in active systems include the
flocking of birds, shoals of fish and clustering in bacterial
colonies [2]. Within the Physics community, active mat-
ter represents a statistical system driven far from equi-
librium which can can exhibit non-equilibrium ordering
and phase transitions [3]. However, to date, there is no
overarching framework to describe such phenomena.

Much of the theoretical work in this field has focused
on collections of freely rotating disks or spheres [4, 5].
Under appropriate conditions, such systems can exhibit
clustering, often referred to as motility induced phase
separation (MIPS) [6]. This transition results from a
competition between the rate of arrival of particles in a
region of space and the ability of particles to rotate and
leave [7, 8]. In these systems the addition of aligning
interactions is known to enhance clustering [9], whilst
attractive interactions can significantly influence the col-
lective behaviour [10, 11].

These ideas have been explored in more complex
systems via experiments and simulations to investi-
gate asymmetric active particles including rods [12–14],
dumbbells [15] and composite or continuum systems [16–
18]. It is now realised that particle shape can have a
significant influence on the collective dynamics.

One further feature that active systems have in com-
mon is the strong coupling between the particles’ dy-
namics and their interaction with boundaries [19]. It is
known that active systems can drive non-equilibrium in-
terfacial fluctuations [20], exhibit non-ideal pressure vari-
ations [21] and show clustering effects induced by the
presence of a boundary [22]. Intriguingly the convex or
concave nature of the boundary can have a pronounced
effect on the clustering that is observed [23].

In this Article we describe simulations of an active par-
ticle system in which the shape of the particles can be
changed continuously. Specifically, we consider particle
shapes which have surfaces that possess both concave and
convex regions. We investigate how this structure influ-
ences the dynamics of a small number of particles and
the collective behaviour of many such particles.

Our basic active particle is constructed out of four
disks, as illustrated in the insets to Fig. 1. The disks are

held together by five springs so that the composite par-
ticle, referred to as a ‘diamond’, moves as a solid body.
The head (blue) and tail (red) particles have a radius
R = 1 which defines the natural length scale. The two
side disks (green) have radius a that is varied to alter
the shape of the diamonds. The diamonds are assumed
to be governed by over damped dynamics. Whilst this
approach does not consider a full hydrodynamic treat-
ment of the problem, it approximates the motion of a
non-spherical particle in a viscous liquid. The equation
of motion of disk i within a diamond is

dri
dt

= V0n̂i + µ
∑
j

Fij , (1)

where ri is the coordinate of the disk, V0 is the speed
due to the active force, n̂i is a unit vector from the tail
to the head, µ is the mobility parameter and Fij is the
radial harmonic interaction force −k(|ri−rj |−Ri−Rj)r̂ij
between pairs of disks. This force maintains a fixed sep-
aration between disks within a diamond. Here Ri and
Rj are the radii of the disks, k is the spring constant and
r̂ij is a unit vector from disk j to disk i. In our simula-
tions we have defined V0 = 1, and used values of µ = 1,
k = 100 and a time step ∆t = 10−3 time units. Reduc-
ing the timestep did not strongly influence the observed
behaviour.

The active force that acts on each disk results in a
speed V0 for the diamond as a whole. In order to ensure
solid body motion, we have assumed that the mobility
parameter µ that relates force to velocity is the same for
all disks, irrespective of their size or position within the
diamond. If a constant torque, τr, is applied to the dia-
mond then the resulting constant angular velocity, ω, is
readily shown to be given by ω = µτr/2(R + a)2. Even
though inertia is ignored in this over damped limit, there
is resistance to rotation that is shape dependent. This
behaviour arises because larger side particles are located
further from the centre of the diamond. For a given ro-
tational speed they must therefore move faster, thus in-
creasing the required torque.

In order to introduce rotational diffusion, an additional
random force is added in Eqn. 1 to the head and tail
disks; each force component ηα is assumed to be Gaus-
sian with correlator < ηα(t)ηβ(t′) >= 2Dfδα,βδ(t − t′),
where α and β are Cartesian coordinates and Df is a lin-
ear diffusion constant that characterises the fluctuation



2

FIG. 1. The insets show the configuration of two composite
particle ‘diamonds’ with different values of the shape param-
eter a/R, as indicated by their positions on the x-axis. The
springs ensure that the diamonds move as solid objects. An
active force is added to each disk in the direction from the
tail (red) to the head (blue). A random force is added to
the head and tail disks to induce angular diffusion. The main
panel shows the variation of the ratio of the angular and linear
diffusion coefficients as a function of a/R.

of the applied force. The resulting angular fluctuations
can be measured and are found to be diffusive with an-
gular diffusion constant Dθ. From simulations of single
diamonds, we find that Dθ and Df are related to the ra-
tio a/R as shown in the main panel of Fig 1. In what
follows we define a linear Peclet number resulting from
the applied random force Pef = V0R/Df . The corre-

sponding angular Peclet number Peθ = V0/RDθ can be
obtained from the data shown in Fig. 1. In our simula-
tions we keep V0 = 1 fixed and vary the noise strength
to change the Peclet number.

A single diamond behaves as an active Brownian par-
ticle with speed V0 and angular diffusion Dθ. If two
diamonds collide, they are assumed to repel due to re-
pulsive springs which act radially between overlapping
disks. The response to these forces is also treated in the
over damped limit, with the size-independent mobility
parameter µ and the spring constant k as above.

A distinctive feature of this study is that the diamonds,
as a result of their shape, can lock together exhibiting col-
lective dynamics of as few as two particles. For example,
consider the configurations shown in Fig. 2. The individ-
ual diamonds are constructed from disks with a size ratio
a/R = 2/3. This is the closest shape that mimics a sin-
gle disk; namely, a circle of radius 2R just enclosing the
diamond. In the left hand configuration, Fig. 2a, the two
diamonds lock together in such a way that the pair move
together at a constant speed but the angular fluctuations

FIG. 2. The upper panel shows two possible configurations for
a pair of diamonds: (a) glider configuration, (b) spinner con-
figuration. The glider is stable and propagates in the direction
of the two head particles. The spinner does not propagate but
rotates on the spot. The survival time distributions for stable
rotation are shown in the insets to (c) and (d), for a range of
Peclet numbers and a/R. The observed exponential decay can
be characterised by a lifetime τ shown in the main panels to
(c) and (d). The stability of the spinners grows exponentially
with increasing Peclet number and grows even more strongly
with increasing a/R. The horizontal line in (d) shows when
the lifetime of a spinner becomes comparable with the time
taken for a diamond to travel from one cluster to the next, as
discussed in the main text.

are somewhat suppressed. Such an object travels around
a periodic system indefinitely, resembling a ‘glider’ con-
figuration in Conway’s Game of Life [24]. The effective

Peθ is much increased because of the suppression of an-
gular fluctuations due to the rotational resistance.

On the other hand, the right hand configuration, Fig.
2b, allows the pair of particles to remain in contact
and rotate on the spot, suppressing translational motion.
Such a configuration is long lived due to the lack of iner-
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FIG. 3. Snapshots taken from simulations in the steady state
for different values of the shape parameter a/R: (a) 1/20 (b)
1/4 (c) 2/3 (d) 4/5.

tia in the over damped limit. These ‘spinners’ eventually
separate with a survival time that is given by an exponen-
tial distribution. The lifetime is found to depend on the
Pef , as shown in Fig. 2c. The exponential growth of the
lifetime with Pef exhibits an Arrhenius behaviour with
the noise playing the role of an effective temperature.
High Pef spinners thus remain stable in these configu-
rations for longer resulting in a reduced effective Peclet
number compared with an isolated diamond. Figure 2d
also shows how the lifetime of a spinner depends on the
shape parameter a/R. The dependence is even greater
than exponential. Given this strong influence of particle
shape on few-body systems, we now ask how shape ef-
fects influence the collective behaviour of many-particle
systems.

The shape of the diamond is controlled by the ratio
a/R. For a/R < 1/4 the side surface is concave; in the
limit a/R → 0 the diamond resembles a dumbbell. For
a/R = 1/4 the diamond has sides that are relatively flat,
mimicking a short rod. As noted above, for a/R = 2/3,
the diamond corresponds as closely as possible to a circle,
whereas for a/R > 2/3 the side-lobes start to dominate.
We have simulated multiple diamonds for a range of a/R.
Each system has 2500 diamonds and the region has a size
L so that a 50% by area filling fraction is maintained.
This definition ignores small variations due to excluded
area affects. Periodic boundary conditions are employed
in both directions.

Figure 3 shows a series of snapshots taken in the steady
state for four different values of a/R, all at Pef = 20.
Figure 3a is for a/R = 1/20. Here a dense crystalline

cluster forms which slowly rotates about its centre. Fig-
ure 3b is for a/R = 1/4. In this case there are only short-
lived transient clusters and the system remains homoge-
neous on the average over time. In Fig. 3c, a/R = 2/3,
and a dynamic, fluid-like cluster persists with accompa-
nying swirling motion. Finally, Fig. 3d is for a/R = 4/5
in which the tendency to form large clusters appears less
pronounced than for a/R = 2/3. It is also striking that
in between the clusters there are significant numbers of
spinners like the ones investigated in Fig 2. For movies
see the supplemental information [25].

In active systems with no attractive interactions, clus-
tering results from steric hindrance and a competition
between the rate at which particles arrive in and leave
from a region of space (MIPS). For simple disks, MIPS is
controlled by the filling fraction and the Peclet number.

In order to quantify the observed behaviour in the di-
amond model, we have defined an order parameter to
measure density fluctuations. Specifically, we calculate a
coarse-grained density map based on the centre of each
diamond. We divide the system into 400 square regions,
i, and count the number of diamonds in each region at a
particular time t, Ni,t. The system is allowed to relax for
9000 time units and we then calculate the time-averaged
variance of these number fluctuations over the next 1000
time units, 〈N2

i,t〉 − 〈Ni,t〉2, where the angular brackets
denote the average over spatial regions and time. Such
a measure is sensitive to the overall structure but is not
influenced by collective motion of the clusters.

In the case of our non-circular particles, the ability
of a diamond to push past a neighbouring diamond or
to leave a cluster depends on the particle geometry. In
addition, the tendency of a particle to propagate can be
hindered by local ordering as, for example, in the case
of the spinners. Consequently, the phase diagram has a
rich structure.

Figure 4 shows the phase diagram in the space of
(a/R, Pef ) for a fixed filling fraction of 50%. At small
a/R the particles enter a crystallised arrangement which
persists up to a a/R of 0.2. A crystal represents the high-
est density packing of particles composed of 2 spheres.
This high density suppresses fluctuations resulting in a
very stable configuration that enhances MIPS by prevent-
ing the rearrangement of particles. Figure 3a illustrates
this, where particles once joined to the main cluster re-
main attached. Such behaviour is similar to that ob-
served in active dumbbells [15]. The addition of small
side particles does not disrupt the possibility of this con-
figuration provided a/R ≤ 0.2. This is because the side
particles are not big enough to prevent a close packed ar-
rangement of the larger particles. There is therefore no
strain applied to the crystal configuration. As the side
particles increase slightly above a/R = 0.2 (the sides are
still concave at this point) the large particles are forced
slightly further apart. This creates a strain in the crys-
tal, which decreases the stability of the packing. Fluctu-
ations due to particle noise allow the relative position of
particles to move more easily.
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FIG. 4. Phase diagram showing the degree of clustering as a
function of Peclet number, Pef , and shape parameter, a/R.
The colour scheme goes from low (light) to high (dark) degrees
of clustering, as measured by the order parameter defined
in the main text. The yellow circle represents the expected
onset of MIPS for circular disks. The green triangle shows
where the spinner lifetime is approximately equal to the time
taken to travel between clusters at Pef = 20. The dotted
blue lines represent expected transitions in behaviour based
on geometrical arguments (see details in the main text). The
black dots represent individual simulation runs.

The limiting case for this crystallization occurs when
a/R ∼ 0.25. At this point the edge of the small particle
is aligned with the tangent to the two larger particles. As
two particles come together they cannot interlock, simply
sliding past one another. The phase diagram in Fig. 4
indicates that this coincides with a dramatic decrease in
stable clustering. The left hand side of this diagram can
therefore be understood in purely geometrical terms.

As a/R → 2/3, the diamonds, as closely as possible
within this model, resemble disks and a transition anal-
ogous to MIPS for disks results. The onset of clustering
occurs at a value of the Peθ in close agreement with that
obtained in disk simulations [4]. The yellow dot in Fig.
4 shows this point in terms of the corresponding Pef

obtained from Fig.1. Around this value of a/R there is
an extended region in the phase diagram of MIPS-like
clustering. However, if circular particles are made even
slightly ellipsoidal, it is known that the MIPS mechanism
breaks down [18]. This occurs because any non-circular
shape experiences a torque about its centre of mass that
disrupts the polar boundary layer. In contrast, our di-
amonds can maintain a polar boundary layer. We now
demonstrate that this difference arises due to the surface
of a diamond having both concave and convex regions,
allowing interlocking of particles.

The boundary between rod-like (transient clusters)
and disk-like (MIPS) behaviour can be estimated by con-
sidering the time taken for one diamond to move past
another. From simple trigonometry, the distance a side-
lobe protrudes beyond the tangent to the two large disks
(Fig. 1) is ∆ = R|(2α + α2)

1
2 + α − 1|, where α = a/R.

Over a time t the sideways motion is diffusive, so to

travel a distance ∆ requires a time given by the equa-
tion ∆2 = 2Df t. This time can be compared with the
one required for two diamonds to travel passed one an-
other (t = 2R/V0). This comparison gives an estimate
of the boundary between sliding and locking motion. In
terms of Pef we find Pef = 4/((2α+α2)

1
2 +α−1)2. This

simple model, with no adjustable parameters, is shown
by the right hand dotted blue line on Fig. 4, in good
agreement with the simulated data.

Increasing a/R further results in a weakening of the
tendency to cluster, this despite the apparent increase
in stability of the two diamond configurations with in-
creasing a/R. In Fig. 3d and the corresponding supple-
mentary movies one does not observe a significant num-
ber of the glider configuration (cf Fig. 2a). Though the
more stable of the two diamond configurations, any glid-
ers that form quickly disintegrate as they collide with
larger clusters. However, a large number of the spinning
configurations, together with other small clusters of 3 or
4 are observed. Once a pair of diamonds forms a spinner
they no longer propagate, as shown in Fig. 2d, thus re-
ducing the effective Peclet number of the entire system.
This reduction in number of free particles contributes to
a decreased stability of the larger clusters.

To test this idea we estimate where the spinner survival
time might start to become significant when compared to
the time taken for a diamond to propagate between clus-
ters. To determine a typical distance between clusters, we
assume that all particles occupy a circular region with fill-
ing fraction of 0.8 (for loosely packed disks). If the total
area filling fraction is φ = 1/2 then the area of the cluster

is Ac = φL2/0.8 giving a radius Rc = (φL2/0.8π)
1
2 . The

corresponding distance between clusters is L−2Rc ≈ 24.
From Fig. 2d this gives an a/R value of about 0.7 as
shown by the green triangle in Fig. 4, confirming the
significance of localised spinning clusters for the decrease
in degree of clustering for higher values of a/R.

Our simulations highlight the importance of shape in
active matter systems. The topology of our diamonds
give rise to a range of novel collective behaviours. It
is shown that even two particles can result in spinning
clusters with lifetimes that exhibit an Arrhenius-like de-
pendence on the Peclet number and a strong dependence
on the shape parameter a/R. MIPS induced clustering
is observed for a wide range of a/R and can be pre-
dicted using simple scaling arguments. The fact that
MIPS is suppressed for high a/R also shows the role of
few-body interactions; small clusters can form but they
do not propagate, reducing the effective Peclet number.
Convex and concave particle shapes may be particularly
relevant in soft active matter, where interparticle forces
can result in complex deformations. Phase behaviour in
such systems is likely to differ significantly from that of
the simple particle geometries more commonly studied.
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