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Abstract: Wireless Body Area Networks (WBANSs) are a key application underpinned by advances
in electronic textiles (e-textiles). Achieving higher throughput, data-rate, network capacity, and
delivering wireless power to miniaturized devices requires WBANSs to operate at millimeter-wave
5G+ frequencies. This, however, imposes significant challenges on the antenna design to cope
with the additional losses introduced by textile substrates. In this paper, the performance of a
novel, high-efficiency, textile-based millimeter-wave antenna is investigated for wireless links with a
wearable device. Indoor “real-world” channel gain measurements are used to evaluate the antenna’s
performance compared to anechoic gain measurements. Based on the measured channel gain between
textile antennas, it is concluded that high-speed wireless links in the 24-30 GHz 5G+ spectrum could
be realized with over one meter range using e-textile antennas.

Keywords: wearable sensor; antenna sensor; RF breathing sensor; wireless sensors; textile sensors;
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1. Introduction

Wireless Body Area Networks (WBANSs) are widely regarded as the most scalable and
convenient method of connecting wearable devices. On-body WBANSs, where wearables
communicate between each other on the same body, as well as off-body WBANSs, where
the wearables communicate with a gateway away from the body, have attracted significant
research interest [1].

Recently adopted for 5G communications, millimeter-wave (mmWave) bands are ex-
pected to enable high data-rate communications as well as energy-efficient networks based
on wireless power transmission (WPT) [2]. Nevertheless, at mmWave frequencies, antennas
are typically fabricated on low-loss, dielectric-stable substrates to achieve high gain and
radiation efficiency. Recently, a range of textile-based antennas have been proposed for
mmWave wearable applications [3,4]. A range of e-textile fabrication methods, includ-
ing the laser ablation of copper films [3], photolithography on polyimide flexible circuit
filaments [4], as well as screen printing combined with heat transfer [5], have been used
to realize mmWave components such as antennas, transmission lines, and capacitors on
textile substrates. While the radiation efficiency of textile-based mmWave antennas remains
below their non-textile counterparts, the antennas’ gains, characterized through anechoic
radiation pattern measurements, show the potential for high-speed communications and
WPT. In most mmWave network architectures, directional antenna arrays with high gain are
used [1]. Therefore, it is essential to experimentally characterize the link budget between
e-textile, wearable mmWave antennas, where the highly dynamic and mobile body-centric
environment may hinder effective communication between mmWave wearables.
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In this paper, a state-of-the-art, textile-based mmWave microstrip antenna imple-
mented on a woven polyester substrate is investigated for wearable applications in line
of sight and non-line of sight cases. Through empirical channel gain measurements, it is
shown that e-textile mmWave antennas are suitable for operation in this environment.

2. E-Textile mmWave Antenna Fabrication

The key requirements for maintaining a low conductor loss in mmWave bands are
high conductivity and low roughness [3,5]. To explain, skin-depth-induced losses increase
with frequency. Therefore, rough conductors are expected to introduce additional atten-
uation compared to those of smooth lines. This can be attributed to the low quality and
homogeneity of the surface of the conductor, where most of the currents are confined in
microwave and mmWave bands [5]. Therefore, to realize a high-efficiency antenna with
minimal conductive losses, the photolithography of commercially available, flexible copper
laminates is used to fabricate the antenna. The fabrication steps are summarized in Figure 1.
The flexible copper laminates are based on a low-loss (mmWave dissipation factor < 0.01)
polyimide film. The textile substrate used is woven polyester with a relative permittivity
er = 1.95 and dissipation factor tand = 0.026. Following the patterning of the copper sheets
to create the antenna’s radiating top layer, the flexible polyimide antenna can be laminated
onto different textile substrates, including rough fabrics unsuitable for direct printing [5],

as shown in Figure le.
@
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Figure 1. Fabrication process of e-textile mmWave antennas for 5G+ applications based on etched
polyimide copper laminates: (a) 25 pm-thick copper-clad Kapton; (b) photoresist deposition; (c) UV
exposure through a film mask; (d) antenna traces following etching; (e) antenna traces adhered to fabric.

The antenna used in this work is based on a modified microstrip patch antenna with an
inset feed, designed to maintain a matched input impedance over two resonant transverse
magnetic (TM) second-order modes, to achieve a wider beamwidth than a conventional
first-order mode microstrip antenna [6]. Figure 2a shows the layout and dimensions of the
antenna, optimized for the woven polyester substrate. The bottom layer of the antenna is
composed of a conductive ground plane, which can be realized using low-cost, breathable
conductive fabrics [2] or a printed silver layer [3]. Figure 2b,c are photographs of the
fabricated prototype, demonstrating its flexibility.

(a) | (b)

Figure 2. The Kapton-on-woven polyester mmWave antenna (a) layout and dimensions (in mm);
(b) the fabricated device; (c) applied to a surface with approximate bend radius of 5 mm.

3. mmWave E-Textile Antenna Characterization

The fabricated prototype was characterized experimentally to evaluate its bandwidth
and radiation properties. A key requirement of a mmWave antenna is the maintenance
of a broad bandwidth [4]. To explain, a key advantage of operating at mmWave frequen-
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cies is the wider spectrum availability compared to sub-6 GHz bands [2]. For example,
mmWave 5G uses the 26 and 28 GHz bands, with a combined bandwidth of over 4 GHz.
To measure the antenna’s response, a solder-terminated 1.85 mm connector was added to
the microstrip feed. The antenna’s reflection coefficient was measured using an Agilent
E8361A PNA Vector Network Analyzer (VNA), calibrated using a standard electronic
calibration kit. Figure 3 shows the measured reflection coefficient of the antenna as well as
the simulated response, obtained through full-wave numerical electromagnetic simulation
in CST Microwave Studio Suite.
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Figure 3. Simulated (no marker) and measured (solid with markers) reflection coefficient (511) of the
antenna, showing an S11 < —10 dB bandwidth from 24.2 to 31.1 GHz.

As observed in Figure 3, the antenna fulfills the bandwidth requirement of a 5G
wearable antenna, where both the measured and simulated S11 responses indicate that
over 90% of the power will be accepted by the antenna, demonstrating its suitability for
integration in mmWave 24.2-30 GHz transceiver RF chains including amplifiers.

To evaluate the antenna’s far-field properties and subsequent performance in real-
world, on-body mmWave links, the antenna’s radiation patterns were experimentally
measured. The polarized radiation pattern measurements were performed relative to a
standard 20 dBi gain waveguide horn antenna in an anechoic chamber. The total efficiency
of the textile antenna (inclusive of impedance mismatch losses) was calculated relative to
the horn antenna [4]. Figure 4a shows the measured 3D radiation patterns of the antenna,
where it can be seen that the antenna maintains two main lobes, in line with a standard
second-order mode microstrip patch antenna.
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Figure 4. The far-field performance of the e-textile mmWave antenna: (a) measured 3D spherical

radiation patterns; (b) measured channel gain between symmetric antennas on-body, with and
without main beam alignment at a 60 cm distance.
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The total efficiency of the antenna, with respect to the reference horn, was found to be
around 60% (£5%). The antenna was experimentally characterized through channel gain
measurements to show its suitability for on-body mmWave communications. In Figure 4b,
it can be seen that over —55 dB forward transmission can be maintained between two
symmetric textile antennas along the body with and without main beam alignment. Such a
link budget would enable this e-textile antenna to integrate with recently reported, short-
range, high-data-rate mmWave transceivers, such as low-power, high-speed backscattering
modulators printed on flexible substrates [7].

4. Conclusions

In this paper, the performance of a mmWave e-textile antenna was characterized,
demonstrating its suitability for short-range, high-speed communication in 5G mmWave
bands. It is anticipated that low-profile and high-efficiency mmWave textile-based antennas,
such as the microstrip patch considered in this study, will enable future WBAN:Ss to leverage
the mmWave spectrum to improve their throughput and end-to-end efficiency.
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