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Abstract 

Human thought is highly flexible, achieved by evolving patterns of brain activity across groups of cells. Neuroscience 

aims to understand cognition in the brain by analysing these intricate patterns. We argue this goal is impeded by the 

time format of our data – clock time. The brain is a system with its own dynamics and regime of time, with no intrinsic 

concern for the human-invented second. Here, we present the Brain Time Toolbox, a software library that retunes 

electrophysiology data in line with oscillations that orchestrate neural patterns of cognition. These oscillations 

continually slow down, speed up, and undergo abrupt changes, introducing a disharmony between the brain’s internal 

regime and clock time. The toolbox overcomes this disharmony by warping the data to the dynamics of coordinating 

oscillations, setting oscillatory cycles as the data’s new time axis. This enables the study of neural patterns as they unfold 

in the brain, aiding neuroscientific inquiry into dynamic cognition. In support of this, we demonstrate that the toolbox 

can reveal results that are absent in a default clock time format.



Studying dynamic cognition 

Everyday tasks involve a plethora of cognitive functions that 

operate dynamically in tandem. Something as mundane as 

taking notes during a meeting or battling your friend in a video 

game requires attention, motor activity, perception, memory, 

and decision-making, each evolving over time. How does the 

brain achieve dynamic cognition? To answer this question, 

neuroscientists closely study how brain activity unfolds from 

one moment to the next using temporally precise neuroimaging 

methods. These include electroencephalography (EEG), 

magnetoencephalography (MEG), and single and multi-unit 

recordings – grouped together under the term electrophysiology. 

 

Seconds are foreign to the brain 

In a typical electrophysiology study, neuroscientists first probe 

cognition by introducing an experimental manipulation. For 

example, an attention researcher might introduce a set of 

moving dots. Then, to understand cognition in the brain, they 

perform a series of analyses on the recorded data. They might 

study changes in scalp topography over a second of data, apply 

machine learning to characterize how the representation of the 

dots evolves, or perform any other time-dependent analysis. 

 Critically, from the raw output of neuroimaging 

devices to the analysis of recorded brain signals, time is 

operationalized as clock time – sequences of milliseconds.  We 

claim that clock time, with all its benefits for human affairs, is 

generally inappropriate for neuroscience. This is because clock 

time is defined by us and for us, based on how long it takes for 

Earth to rotate its axis. The brain itself, however, employs its 

own regime of time, dictated by its own dynamics. As such, the 

brain is indifferent to how many milliseconds, seconds, minutes, 

or hours have passed unless it is expressly relevant for specific 

behaviour, such as maintaining circadian rhythms [1] or 

tracking a time-dependent reward [2]. Instead, the brain is 

concerned with coordinating communication between cells in a 

delicate time-sensitive manner, such as sending information at 

one moment and receiving feedback signals at the next. Hence, 

the brain’s intrinsic time format – brain time – is dictated by the 

internal processes that clock brain activity (for an explanation 

of key terms, see the Glossary in Table 1). 

 

Cycles as the brain’s native unit 

How is brain activity organized? A defining feature of the brain 

is that its activity waxes and wanes [3], pointing to a central role 

of brain oscillations. Brain oscillations are well-geared to 

structure brain activity. For one, each cycle of an oscillation 

contains a window of excitability where cells are more likely to 

fire [4,5]. Moreover, oscillations vary in their frequency, 

meaning the excitability windows vary in duration. The 

functional role of oscillations has been shown across a wide 

array of cognitive functions, including attention [6,7,8], 

perception (auditory [9,10], visual [11,12], tactile [13,14]), 

action [15,16], memory [17,18,19], and decision-making 

[20,21]. Together, this situates brain oscillations as the brain’s 

clocking mechanism, clustering brain activity in flexible ways 

to organize dynamic cognition. The brain’s base unit of time 

then, are the cycles of oscillations that coordinate neural firing, 

not the milliseconds with which we format our data. 

 

Clock and brain time are usually out of tune 

Why does it matter that we use a foreign time format? When 

neuroscientists study dynamic cognition, they repeat 

measurements across trials, resetting their stopwatch at the start 

of each. However, some oscillations do not reset [22,23]. Even 

when most do, oscillations evolve continuously in frequency 

and show jumps in phase (Figure 1). Thus, besides a potential 

mismatch between clock and brain time from the get-go caused 

by variable starting phases, the disharmony between the 

dimensions accumulates due to frequency drift and phase jumps. 

These are prime examples of eccentricities in brain dynamics, 

formally called non-stationarities (and there are more [24]). 

Their presence makes clock time an ill-suited format to study 

temporal patterns of dynamic cognitive function – it distorts 

how the brain itself carries information forward in time. 

 To demonstrate this point, take again the case of spatial 

attention. Studies show that alpha oscillations (8 to 12 Hertz; 

Hz) in parietal regions orchestrate the dynamics of spatial 

attention [25,8]. If these oscillations vary in their starting phase 

across trials, then the neural patterns of spatial attention will 

vary along with it. Likewise, if the oscillations slow down in 

frequency, the patterns slow down too. If a researcher is 

interested in, say, decoding the locus of covert attention in the 

visual field over time, it would muddy the waters to do so in 

clock time, ticking away with its equal periods. The slowing 

down of alpha oscillations means brain time falls behind relative 

to clock time, so analysing the data in its default format yields 

a sped-up readout of attention’s true pattern. Instead, we argue 

the dynamics of clocking oscillations should heavily inform 

data analysis. As a general mantra, the optimal approach to 

analyse the brain, like any other system, is with recourse to its 

own dynamics – from inside out [26,27] (Figure 2). 

The problem of disharmony does not end here. 

Neuroscientists repeat measurements across participants to 

establish whether effects found in the data are representative 

and statistically robust. But different brains have different 

dynamics, resulting in disharmony across brains too. In the 

attention experiment, it is highly relevant that the clocking alpha 

oscillations differ in frequency from person to person [29] as it 

means the patterns differ too. Looking for evolving patterns of 

spatial attention by averaging across participants is like asking 

when spring turns summer in a solar system that contains 

diverse planets – it only makes sense after correcting for 

individual dynamics (Figure 2). 

 

Approaches to factor in brain time 

Disharmony between clock and brain time impedes scientific 

analysis within and across brains. To overcome this problem, 

approaches have been developed that factor in brain dynamics. 

At minimum, the phase of oscillations can be tracked to explain 

some of the variance in brain data [19] or behaviour [30,31], 

and analyses can be locked selectively to oscillatory peaks or 

troughs [32]. Then there are more expansive techniques, where 

the electrophysiological data is restructured before any analysis 

is carried out. These include organizing the data with phase as 

the time axis [33], as well as linear time warping approaches 

that transform a template signal based on trial-by-trial variations 

in brain dynamics [34]. 

Such approaches can reveal brain patterns of interest 

that are otherwise obstructed by clock time’s distorting effects. 

For example, the phenomenon of phase precession has been 

extended from rodents to humans when using phase as the time 

axis, with no such effect visible in clock time [33]. As another 

example, linear time warping uncovers oscillatory brain 

patterns on the trial average by correcting for differences in 

brain time across trials [34]. 

While these approaches come a long way in factoring 

in brain dynamics, each is limited in their scope. Using phase to 

explain variance in the data or locking analyses to peaks or 

troughs provides insights about selective data samples but does 

little to enable the readout of dynamic patterns. Setting the time 

axis to phase may not always be possible and departs 

significantly from the original data structure – such that unique 

phase-based analyses are needed. Linear time warping can 



equalize brain time across trials but is less equipped to deal with 

non-stationarities throughout the trial due to its linear nature. 

 

A dynamic and holistic way to factor in brain time 

Here, we introduce brain time warping as a method to account 

for the disharmony between clock and brain time. This approach 

overcomes previous limitations in the following way. First, it 

identifies segments throughout each trial where clock and brain 

time fall out of tune. Then, it adapts the data to reduce their 

difference – winding back clock to brain time sample by sample 

(Figure 3). Brain time warping incorporates an algorithm called 

dynamic time warping (DTW), which characterizes the 

similarity of two signals [35,36]. DTW computes a warping 

path, which shows how the samples of each signal need to be 

transformed to optimize their alignment. For brain time warping, 

those signals are clock and brain time (Figure 3A). 

 How are clock and brain time operationalized? Brain 

time can be characterized as the phase of the oscillations 

hypothesized to orchestrate a process’ dynamics, with its 

variable starts, drift, and phase jumps. Clock time can be 

characterized as the phase of a stationary sine wave, fluctuating 

away faithfully to seconds. Such a signal is what brain time 

would look like without the three sources of disharmony; here 

milliseconds and cycles map directly onto each other. (For 

example, in Figure 3A, multiples of 100 milliseconds 

correspond to each zero-crossing of the clock time signal.)  
DTW highlights during which samples clock and brain 

time fall into disharmony, and this warping path can be used to 

transform the original data. Concretely, at samples where the 

warping path suggests brain time needs to repeat itself before 

ramping back up to clock time, brain time warping repeats 

samples in the original data (Figure 3C). Looping back to our 

attention example, at segments where DTW indicates alpha 

oscillations slow down, brain time warping stretches the data by 

repeating samples in an attempt to bring its structure closer to 

the true dynamics of spatial attention. 

Brain time warping loops over trials, continuously 

correcting disharmony by applying the warping path cycle by 

cycle. In effect, brain time warping adapts data to the dynamics 

of an oscillation of interest in a data-driven way. The result is a 

dataset in brain time rather than clock time, and as such, the time 

axis has changed from seconds to cycles. As the data is 

referenced to individual dynamics, it also becomes easier to 

look for temporal patterns across brains. Here, we introduce the 

Brain Time Toolbox 

(https://github.com/sandervanbree/braintime, Supplementary 

Methods), a toolbox built for MATLAB (The MathWorks, 

Natick, Massachusetts, USA) that implements brain time 

warping and tests its effect. This software library was built for 

electrophysiology data analysis, including EEG, MEG, and 

single and multi-unit recordings. The toolbox lets users select a 

brain time signal from one or more warping sources (e.g., 

channels or independent components extracted from a data 

structure; Supplementary Methods, Toolbox, section 2.2.1). 

This signal then serves as the basis for brain time warping as 

laid out in Figure 3. In the upcoming section, we 

methodologically validate brain time warping – utilizing the 

toolbox throughout. 

 

Results 

We tested the algorithm’s effects across three electrophysiology 

datasets. In the first dataset (N = 10 participants), we simulated 

a basic attentional spotlight model, giving us full control over 

the ground truth brain patterns (Figure 4A). Briefly, we placed 

one conducting dipole in the right parietal cortex, which exerted 

top-down control over the phase of two follower dipoles, one 

located in each visual cortex. We generated two conditions, one 

where attention was oriented to the left hemifield, and one to 

the right. These conditions systematically differed in their 

underlying brain activity. Specifically, the conducting dipole 

always forced its contralateral follower to the same phase while 

setting an anti-phase relation with its ipsilateral follower 

(drawing upon experimental findings [37,38,39]). In addition, 

the conducting dipole inhibited the contralateral follower dipole, 

reducing its amplitude [40]. We then injected the data with 

variable starting phases and frequency drift to mimic natural 

brain activity. 

 In a second dataset (N = 7 sessions), we warped 

intracranial data from rodents navigating through a square field 

(Figure 4B; data obtained from [41]). Here, we were interested 

in characterizing the dynamics of the local field potential (LFP) 

and grid cell firing patterns in the entorhinal cortex. Just like in 

the simulation, we again formatted the data into two conditions. 

Specifically, the data was split based on whether the animal was 

travelling through a field coded by the grid cell or through 

another location not coded by the grid cell. 

In a third dataset (N = 16 participants), we warped 

EEG data recorded while human participants observed moving 

dots (Figure 4C; data obtained from [42]). The two conditions 

were set around the motion direction of dots – with one 

condition comprising trials with leftward motion, and the other 

comprising rightward motion. In Supplementary Methods 

(Datasets, section 1), we report additional details on each 

dataset. 

 

Basic analyses 

In basic analyses, we asked whether warping recovers 

oscillatory neural activity for each dataset by comparing clock 

and brain time on a number of measures. For these analyses, we 

pooled across conditions – focusing on general effects of brain 

time warping on electrophysiology data and ignoring cognition 

for the moment. First, we tested whether warping increases the 

oscillatory structure of event-related potentials of channels near 

the predicted location of coordinating brain oscillations. This 

analysis provides a qualitative indication on the question of 

whether brain time warping overcomes non-stationarities. 

 Second, we performed a time frequency analysis 

across all channels and tested whether warped data reveal a 

higher peak at the predicted frequency of interest in the power 

spectrum. This quantifies the degree to which brain time 

warping is able to overcome frequency drift and phase jumps in 

the data. 

 Third, we compared the intertrial coherence (ITC) 

across all channels between clock and brain time. This measure 

tests for the consistency of oscillatory phase across trials and 

thereby additionally taps into the degree to which the algorithm 

overcomes variable starting phases (which ordinarily reduce 

ITC by jittering the phase relation across trials). We predicted 

that brain time warping increases ITC at the predicted frequency 

of interest by equalizing brain time across trials. 

 

Brain time warping recovers oscillatory activity 

In the simulated dataset, the event-related average of clock time 

data shows no robust oscillatory shape. After warping, the 

oscillatory structure hidden in the data becomes qualitatively 

uncovered (Figure 5A). Moreover, we found that the algorithm 

sharpens the power spectrum selectively around the warping 

frequency (Figure 5B), and, in line with our hypothesis, 

increases the peak’s magnitude. Third, the ITC in clock time 

shows comparatively low values around simulated alpha rates – 

with only weak clustering at low alpha (Figure 5C). ITC is 

enhanced by brain time warping, revealing a strong cluster at 

participants’ warping frequency. We find similar results for the 

rodent dataset (Supplementary Results, section 3.2.1). For the 

https://github.com/sandervanbree/braintime


human data, we found a prominent increase in ITC at the 

warping frequency, but not in the peaks of the power spectrum 

(Supplementary Results, section 3.3.1). Together, these results 

demonstrate that warping can reveal oscillatory activity that is 

lost due to clock time’s distorting effects on the data. 

 

Advanced analyses 

In advanced analyses, we tested whether brain time warping 

unveils dynamic patterns of cognition. For each dataset, the 

conditions were set up such that their contrast was expected to 

yield a difference in brain activity that makes for a neural 

signature of cognition. For example, in the human dataset, the 

difference in neural activity between leftward and rightward 

motion trials estimates the neural signature of spatial attention 

because activity unrelated to attending to one or other spatial 

direction is factored out. If oscillations of interest dynamically 

clock the neural processes underlying cognition, this should 

cause the neural signature to vary along with the oscillations. 

 Pattern classifiers capitalize on neural signatures to 

make predictions about condition (i.e., class) membership of 

untrained data. As such, classifier performance makes for a 

useful index of the fidelity of neural signatures of cognition –

with fluctuations of classifier performance indicating 

fluctuations in the neural signature (periodicity; [43]). Building 

off these assumptions, we predicted that brain time warping 

enhances periodicity of these neural signatures by adapting for 

non-stationarities in the data. 

To test this, we used a linear discriminant analysis 

(LDA) to classify condition in each dataset. We trained the LDA 

on each timepoint and tested how well it generalized to all other 

timepoints [44]. This resulted in a two-dimensional temporal 

generalization matrix (TGM) that provides a robust map of 

classification performance over time (and so too of the fidelity 

of the neural signature). In summary, we assumed periodicity in 

TGMs is a high-level measure to detect periodic brain patterns 

of cognition, and we predicted that brain time warping would 

increase such patterns by factoring in the dynamics of clocking 

oscillations. 

 

Quantifying periodicity 

For the advanced analyses, we quantified TGM periodicity by 

applying a Fast Fourier Transform (FFT) over each row and 

column of TGMs. Then, we averaged the resulting spectra into 

a single spectrum – the periodicity spectrum. This spectrum 

quantifies how much the neural signature fluctuates at different 

frequencies. To test our hypothesis that brain time warping 

increases the oscillatory structure of neural signatures, we 

contrasted the spectra obtained from clock and brain time data 

against each other – comparing the periodicity at predicted 

frequencies of interest. 

 Moreover, to aid visual inspection of periodicity, we 

also report autocorrelation maps of TGMs for each dataset. 

These maps are generated by correlating TGMs with iteratively 

shifted versions of itself, resulting in a representation of its self-

similarity that brings out latent periodic structure [45]. 

 

Statistically testing periodicity 

To evaluate which frequencies in the periodicity spectrum are 

statistically reliable, we compared the empirically derived 

spectrum with periodicity spectra obtained under the null 

hypothesis that there is no fluctuating neural signature of 

cognition. To do so, we created a pool of TGMs obtained from 

an LDA trained using randomly permuted classification labels. 

This procedure destroys the true class structure inherent to the 

data [46], leaving the classifier with pseudo neural signatures 

that do not contain generalizable information about the 

cognitive process under investigation. To establish statistical 

reliability, we compared the magnitude of peaks in empirically 

derived TGMs with the distribution of magnitudes in TGMs 

obtained with permuted labels – both for clock time and brain 

time data. For more details on basic and advanced analyses, see 

Supplementary Methods (section 1.1.1 and 1.1.2). 

 

Brain time warping recovers neural patterns of cognition 

In the simulation, the neural signature provided by the classes 

reflected attention. The simulated patterns of this signature were 

not detectable in a default clock time format but did emerge 

after brain time warping (Figure 6). 

 In the rodent data, the difference in activity between 

classes reflected whether the animal was in a place field coded 

by grid cells, yielding a signature of the neural basis for spatial 

navigation [49]. In clock time, no periodicity is evident over 

time (Figure 7A; top) despite grid cells strongly phase locking 

to theta oscillations ([50]; Supplementary Results, section 3.2.3). 

Importantly, brain time warping the firing rates of grid cells to 

theta oscillations obtained from the LFP does result in 

periodicity (Figure 7A; bottom). 

In the human data, the neural signature reflected spatial 

attention, provided by the difference in brain activity to left- and 

rightward motion. While the clock time data qualitatively shows 

some periodicity at alpha, the peaks do not stand out reliably 

from the peaks in periodicity spectra obtained with permuted 

labels (Figure 7B; top). In contrast, brain time warping reveals 

prominent and reliable periodicity at participants’ individual 

alpha frequency (Figure 7B; bottom). Together, the basic and 

advanced results indicate that brain time warping is a promising 

tool to repair disharmony between clock and brain time, 

facilitating the study of the dynamic cognitive brain.   

 

Discussion 

Is retuning using brain time warping circular? 

A potential concern with brain time warping could be that it 

trivially imposes oscillatory structure onto the data. The worry 

here is that the algorithm makes data patterns fluctuate at the 

warped frequency no matter which frequency is selected. In this 

section we argue when the algorithm is on safe grounds, and 

when vigilance is needed. 

First, as a note of clarification, the path used for brain 

time warping does not contain oscillatory structure. That is to 

say, if the path were applied to a random time series, it would 

not mould it to increase its oscillatory shape. This is because the 

path is instead designed to show when the oscillation used for 

warping undergoes non-stationary behaviour. Nevertheless, an 

important concern remains. Brain time warping applies the path 

to the data in order to align it with brain dynamics, so if the 

warping signal is within the data, its stationarity will increase – 

introducing some oscillatory structure after all. Whether 

circularity is a problem depends on two factors: the type of 

analysis carried out, and the dependence between warping 

signal and warped data. We discuss these points in turn, first 

covering each type of analysis. 

 

Basic analyses 

Brain time warping is expected to enhance oscillatory structure 

in the ERP, power spectrum, and ITC at least somewhat because 

there are usually at least some oscillations at any frequency to 

begin with. So, warping to a random frequency will cause those 

oscillations to have their non-stationarities reduced, affecting 

subsequent results. Hence, any increase around warping 

frequencies in basic analyses should not be taken as evidence 

that those frequencies are critical for cognition – there needs to 

be a further relation to independent measures (such as cognitive 

or orthogonal neural variables). In this sense, brain time 

warping can be used as a pre-processing step to aid subsequent 



high-level approaches that are sufficiently independent (to 

avoid circular inference [51]). 

With that said, we find that warping to weak simulated 

oscillations results in only weak frequency-specific 

enhancements compared to warping to strong oscillations – 

speaking to the specificity of brain time warping even before 

cognition enters the scene (Supplementary Methods, section 

1.2.2). 

 

Advanced analyses 

We have presented the advanced classification analysis as a 

circularity-free high-level approach – and it is the central 

analysis implemented in the Brain Time Toolbox. By tapping 

into neural signatures of cognition rather than oscillations 

themselves, warping-induced changes are nontrivial. 

Specifically, only warping to those oscillations which 

coordinate the underlying activity relevant for cognition is 

expected to yield fluctuations in cognition’s neural signature. In 

support of this, we performed a control analysis where we warp 

to control frequencies [52], resulting in no evidence of 

periodicity (Supplementary Methods, section 1.2.2). A further 

safeguard of the advanced analysis is that the obtained null 

distributions benefit equally from any trivially imposed 

oscillatory structure as the empirical distribution. 

 

Data dependence 

Beyond the type of analysis that is used, the dependence 

between warping source and transformed data is another factor 

to consider. After all, if the cause for circularity lies chiefly in 

changes to the warping signal, then removing it from the warped 

data reduces circularity concerns. We report suggestions on how 

to achieve data independence for each electrophysiology 

method, describing how they can be implemented before or 

after warping (Supplementary Methods, Toolbox, section 2.4.1). 

We also report cases in which independence between warping 

source and data is impossible. Here, it is important to determine 

on a case-by-case basis whether circularity is a concern based 

on the previous points (i.e., are subsequent analyses orthogonal 

or not?). To aid this process, the toolbox tracks dependence 

between warping source and warped data and raises a warning 

when circularity could become an issue. 

 

Statistical false positives 

With these reflections in mind, we finally emphasize that brain 

time warping is a hypothesis-driven method that capitalizes on 

the temporally coordinating nature of oscillations. Hence, we 

recommend warping only using oscillations predicted to fit that 

bill to avoid false positive results by chance, or to apply multiple 

testing correction when re-warping to a different signal in the 

data. To enable hypothesis-driven warping, the Brain Time 

Toolbox computes a variety of information about warping 

signals – including their time frequency characteristics, 

waveshape, and topographical profile – allowing users to make 

informed decisions about which signal they wish to designate as 

brain time. 

 

When is retuning clock and brain time necessary? 

The need to use brain time warping or other methods to retune 

depends on (1) the degree to which clock and brain time are in 

disharmony, and (2) the degree to which such disharmony 

interferes with analyses. Below, we elaborate on both criteria. 

The degree to which disharmony is present depends on 

the levels of processing involved in the employed experimental 

paradigm. Take once again the spatial attention study. Between 

the moving dots’ light hitting the participant’s retina and their 

pressing of the button to indicate motion direction, a vast 

amount of subcortical and cortical processing transpires. While 

internal dynamics start to coordinate stimulus processing as 

early as the thalamus [53,54], or even earlier [55], disharmony 

is most prevalent in higher level regions – where processes such 

as attention and decision-making operate in full swing. This is 

because at this late stage, information has passed through many 

cell ensembles where different oscillations have each exerted a 

temporal footprint. As these footprints add up, clock time falls 

increasingly out of tune with brain time. As a result, we lose 

track of brain dynamics and the information they provide about 

cognition, such as whether dots make it to awareness [56] or 

whether features of the dots (such as their colour) are available 

to working memory [57]. Thus, there is a gradation in clock 

time’s distorting effect which depends on the extent of cortical 

processing. Research that restricts analyses to low-level 

subcortical processing or very early evoked potentials benefits 

comparatively little from retuning, while retuning may be a vital 

step to understand brain patterns in late stages – with at least 

one exception: retuning is unnecessary for analyses that do not 

rely on temporal variations of the neural signature. For example, 

a researcher may want to study the trial-average activity in 

parietal regions as a function of the proportion of dots that 

moved, or map aggregate differences in network connectivity 

between participants. Here it is true as ever that brain dynamics 

play their part in the subprocesses involved, but the analyses are 

insensitive to time variations, leaving them unafflicted by 

oscillations’ footprint. 

In short, retuning clock and brain time is necessary 

depending on the degree to which both the mechanisms of study 

and the employed analyses depend on the brain’s internal 

dynamics. On the whole, few electrophysiology studies are 

exempt from clock time’s distorting effects. 

 

Brain time is not unitary 

The phrase “brain time” is used to emphasize the conceptual 

departure from a format extrinsic to the brain. We do not mean 

to suggest that there is a single brain time. Rather, different 

cognitive processes are clocked by different groups of 

oscillations, each with their own frequency and source. In this 

sense, brain time is analogous to a concept like “Earth time”, 

which contrasts itself with time on other planets whilst further 

decomposing into different time zones. Finally, brain time in the 

present context does not refer to timekeeping in the brain. 

Instead, it refers to the oscillatory dynamics by which the brain 

coordinates cognition generally, of which temporal cognition is 

a specific instance [58]. 

 

Conclusion 

Where does this leave us? We believe that rather than imposing 

a foreign unit of time onto the brain while studying its function, 

the brain is best understood as a system with its own dynamics 

and temporal organization. Upon inspection, the brain operates 

rhythmically, with brain oscillations as a key player. This has 

important consequences for scientific analysis. If it is true that 

oscillations clock brain activity to coordinate cognition, then 

their dynamics should heavily inform how we study evolving 

data patterns. In contrast, analysing such patterns in the default 

clock time format is likely to yield a distorted readout as the 

brain’s internal dynamics do not scale linearly to sequences of 

(milli)seconds. We introduce brain time warping as a method to 

account for disharmony in brain data, dynamically transforming 

electrophysiology data structures in a way that brings them in 

line with brain dynamics. The Brain Time Toolbox implements 

brain time warping, facilitating analysis on the oscillatory 

dynamics of the cognitive brain. 

 

Data availability 



We re-structured and re-analysed the data of [41], and simulated 

new data, which are available in the Brain Time Toolbox at 

https://github.com/sandervanbree/braintime. We re-analysed 

the data of [42], which is available at https://osf.io/bpexa/. 

 

Code availability 

Code for the brain time analysis of the rodent and simulated data 

is included in the Brain Time Toolbox at 

https://github.com/sandervanbree/braintime. Custom code for 

analysis of the human data is available from the corresponding 

author upon request.  
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Figure Legends/Captions 
Figure 1: Sources of disharmony between clock and brain time 

Brain oscillations are non-stationary, which causes a non-correspondence or 

“disharmony” between the brain’s internal dynamics and clock time. (A) An 
oscillation shows frequency drift and a spontaneous jump in phase, resetting 

itself. (B) Two oscillations with different starting phases. The blue oscillation 

starts with a rising phase, while the sand-coloured oscillation starts with a falling 
phase. The top rows of each panel show the amplitude fluctuations of 

oscillations, while the bottom rows show the phase. 

 

Figure 2: What is the best way to study a foreign system? 

(Left) Imagine a planet with seasonal dynamics radically different from Earth’s, 

where the duration of each season differs substantially (as a real-world example, 

planet Kepler-413b has erratic seasons due to its eccentric orbit [28]). To 

understand the system, we measure a variable of interest across time, such as 

surface temperature. Critically, how do we define time here? If we plot 

temperature as a function of Earth’s seasons (Earth time), the data will be 

heavily distorted, hampering interpretation. Instead, if we were to study the 

system with recourse to its own dynamics (system time), the same temporal 

patterns in the data become interpretable. 

(Right) As neuroscientists, we are in an analogous position – we are studying a 

foreign system with its own dynamics. So, in the same vein, we should interpret 

data patterns with reference to the brain’s dynamics, enabling an accurate 

readout of evolving patterns of information. 

 

Figure 3: Brain time warping between clock and brain time 

(A) Brain time starts in its rising phase and slows down its frequency over the 

course of the trial, both causing a mismatch to clock time (defined as a stationary 

signal fluctuating in sync with a researcher’s stopwatch). (B) To facilitate 

warping, the phase of clock and brain time are unwrapped, meaning phase is 

computed without cycle resets. (C) DTW calculates a warping path that 

minimizes the difference between the dimensions. Cycle by cycle, the path is 

applied to the input electrophysiology data, transforming its dynamics in 

accordance with the brain’s dynamics. To enable alignment of brain time across 

trials, the data of each cycle is resized to a constant number of samples. The 

previous steps are repeated for all remaining trials. Upon completion, the data’s 

time axis is changed from seconds to cycles of brain time. The data is no longer 

in clock time, but in brain time. 

Figure 4: Electrophysiology datasets used to validate brain time warping 

(A) Simulated electroencephalography (EEG) data (N = 10 virtual participants). 

We developed a basic attentional spotlight model with dipoles oscillating at 

alpha frequencies (8 to 12 Hertz [Hz]). One parietal conductor dipole controlled 

two follower dipoles, one in each visual cortex. Two conditions differed in brain 

activity due to the phase relation across dipoles and the suppressed amplitude 

of the contralateral follower dipole, together yielding attention’s neural 

signature. To introduce disharmony between clock and brain time, we added 

frequency drift and variable starting phases to the data. We brain time warped 

to alpha oscillations in visual regions (right). (B) Rodent single and multi-unit 

data (N = 7 sessions). Long-Evans rats navigated through a square field while 

single units and local field potentials (LFP) were recorded from the entorhinal 

cortex. We identified grid cells and cut the data depending on whether the 

animal was traveling through a location coded by a grid cell (condition 1) or not 

(condition 2). We display cell spike locations in the field, its smoothed 

representation (rate map), and this representation’s autocorrelation. We then 

brain time warped grid cell firing patterns to theta oscillations (4 to 8 Hz) 

measured in LFP recordings (bottom right). (C) Human EEG data (N = 16 

participants). Participants viewed random dot kinematograms, with dots moving 

at one of two levels of coherence (25.6% or 51.2%) in a direction ranging from 

1° to 360°. We pooled the levels of coherence and binarized direction toward 

left- (condition 1) or rightward (condition 2) motion. We then brain time warped 

the EEG data to parietal alpha oscillations (bottom right). 

Figure 5: Results of basic analyses in the simulated dataset 

(A) Event related potentials (ERPs) in the left visual cortex of one example 

virtual participant. In clock time, averaging across trials destroys the simulated 

oscillatory structure. By repairing disharmony, brain time warping recovers this 

structure. (B) Power spectra averaged across all channels and participants. Brain 

time warping increases the power of alpha oscillations at the simulated rate for 

each participant. Brain time results are always re-referenced to individual 

participants’ brain time rate (
𝑐𝑙𝑜𝑐𝑘 𝑡𝑖𝑚𝑒 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

𝑤𝑎𝑟𝑝𝑖𝑛𝑔 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦
) . This sets 1 Hz as each 

participant’s warping frequency (and e.g., 0.5 Hz as half the warping frequency). 

We removed the aperiodic (1/f) component of the power spectrum using the 

FOOOF toolbox [47]. (C) Intertrial coherence (ITC) averaged across all 

channels and participants. Brain time warping increases ITC at the (ground 

truth) alpha frequency. The analysis window was restricted to 1 to 2 seconds to 

reduce artefacts. We equalized the y-axis in (B) and the colour axis in (C) 

between clock and brain time based on maximum values to enable a visual 

comparison between dimensions (this step is performed in all figures). 

 

Figure 6: Results of advanced analyses in the simulated dataset 

We tested for periodic patterns in the classifier’s temporal generalization matrix 

(TGM), which provides an index of neural signatures of cognition by 

demonstrating how the classifier’s performance generalizes across time. (A) An 

example participant’s TGM shows no periodic structure in clock time (top). 

After brain time warping, the simulated periodic structure in the neural signature 

is recovered – as evidenced by the checkerboard pattern (bottom). (B) The 

difference between clock and brain time becomes qualitatively striking in the 

TGM’s autocorrelation maps. (C) We quantified periodicity by applying a fast 

Fourier transform over all rows and columns of TGMs. Then, we perform 

second-level statistics by comparing empirical periodicity with permuted 

periodicity (obtained by shuffling class labels). Only brain time spectra show 

significant periodicity at the warping frequency (p < 0.001) and its first 

harmonic (p < 0.05), demonstrating brain time warping corrects for disharmony 

and unveils ground truth neural signature dynamics (bottom and top). Each 

participant showed periodicity peaks selectively at their warping frequency. We 

corrected for multiple comparisons (using false discovery rate; FDR [48]), 

except at specific frequencies in the brain time spectra at which we hypothesized 

classifier periodicity (0.5 Hz, 1 Hz, 2 Hz; 1 Hz remains significant when 

applying FDR). In Supplementary Methods, we report the full methods (section 

1.2). In Supplementary Results, we provide additional plots, including all TGMs, 

autocorrelation maps, and periodicity spectra (section 3.1). 

 

Figure 7: Results of advanced analyses in the rodent and human dataset 

(A) Warping the rodent data to LFP theta unveils statistically robust periodicity 

around the warping frequency and its first harmonic (p < 0.001), while the clock 

time spectrum shows no significant peaks. (B) In the human dataset, brain time 

warping reveals periodic patterns around the warping frequency (p < 0.001), 

indicating the neural signature of attention fluctuates during motion perception. 

For the rodent data, each session showed periodicity peaks selectively at their 

warping frequency. For the human data, not all participants showed periodicity 

peaks, and there was some variance in the brain time frequency of peaks. The 

insets display autocorrelation maps of TGMs from example sessions (for the 

rodent dataset) or example participants (for the human dataset). In 

Supplementary Methods we report the full methods (section 1.3 and 1.4). In 

Supplementary Results, we provide additional plots (section 3.2 and 3.3). These 

https://github.com/sandervanbree/braintime
https://osf.io/bpexa/
https://github.com/sandervanbree/braintime


plots include TGMs, autocorrelation maps, periodicity spectra, grid cell maps, 

and spike-field coupling between theta and single unit spikes 

 

Table 1: Glossary 

Term Description 

Anti-phase Two oscillations are in anti-phase when they stand 

in opposite relation to each other – for example 
when the peak in one oscillation co-occurs with the 

other’s trough 

Brain oscillations Rhythmic fluctuations of brain activity generated 

by populations of cells 

Brain time      Time as sequences of cycles of a coordinating brain 

oscillation 

Brain time warping Algorithm that employs dynamic time warping to 
transform electrophysiology data in accordance 

with brain time dynamics 

Brain time toolbox Software library that implements brain time 

warping and tests its effects 

Clock time Time as sequences of seconds 

Dynamic time 

warping (DTW) 
Algorithm that can measure the similarity between 

signals and minimize their difference 

Frequency Number of cycles per time window (typically a 

second) 

Linear Discriminant 

Analysis (LDA) 

Machine learning method that maximizes the 

separability between two classes of data by 

applying linear transformations to it 

Local Field 

Potential (LFP) 

The electric potential recorded from extracellular 

space around cells  

Neural signature Brain activity that systematically correlates with, in 

the present context, a cognitive process 

Non-stationarity A signal is non-stationary when it undergoes 

spectral changes over time. We focus on frequency 

drift, variable starting phases, and phase jumps 

Periodicity Fluctuating patterns of a neural signature 

Phase Metric to indicate the specific point in the cycle of 

an oscillation. Two oscillations are in phase when 

(for example) their peaks align 

Phase precession Phenomenon where place cells fire at progressively 

earlier phases of theta oscillations as an animal 

moves across a trajectory 

Temporal 
Generalization 

Matrix (TGM) 

Representation of how a classifier trained to 
separate classes of data on one timepoint performs 

on other timepoints. When a classifier generalizes, 

it indicates the neural signature remains stable 

Warping path Representation of how two signals need to be 

resampled to minimize their difference 

Warping source Data structure containing potential coordinating 

brain oscillations used for brain time warping 
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