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Abstract 
Touch is a complex sensing modality owing to large number of receptors (mechano, 
thermal, pain) non-uniformly embedded in the soft skin all over the body. These receptors 
can gather and encode the large tactile data, allowing us to feel and perceive the real world. 
This efficient somatosensation far outperforms the touch sensing capability of most of the 
state-of-the-art robots today and suggests the need for neural-like hardware for electronic 
skin (e-Skin). This could be attained either through innovative schemes for developing 
distributed electronics or repurposing the neuromorphic circuits developed for other 
sensory modalities such as vision and audio. This review article highlights the hardware 
implementations of various computational building blocks for e-Skin and the ways they can 
be integrated to potentially realize human skin-like or peripheral nervous system-like 
functionalities. The neural-like sensing and data processing are discussed along with 
various algorithms and hardware architectures. The integration of ultra-thin neuromorphic 
chips for local computation, and the printed electronics on soft substrate utilized for the 
development of e-Skin over large areas are expected to advance robotic interaction as well 
as open new avenues for research in medical instrumentation, wearables electronics and 
neuroprosthetics. 

One-Sentence Summary: The paper reviews the computational building blocks for e-Skin 
to potentially realize peripheral nervous system-like functionalities. 

Introduction 
The sense of touch is crucial to cope with the everyday challenges related to interaction 
with objects, to safely manipulate and explore them to understand their physical properties 
(1), and for perception and self-awareness (2). When deprived of reliable tactile information 
(e.g., through the numbness of anaesthetized or cold fingers (3, 4)), people become clumsy, 
and accidents are prone to occur. Similarly, tactile sensing or haptics also has a vital role 
in the development of cognitive and intelligent robotic systems since it allows them to 
autonomously explore their surroundings. Robotic systems of the future thus need touch 
sensing to safely interact in dynamic, unstructured, and often uncertain environments. As 
a result, during the past several decades, researchers have explored numerous ways to 
create an artificial sense of touch through various types of sensors in bendable and 



stretchable form factors (5-8) (e.g., resistive (9), piezoresistive (10, 11), capacitive (12), 
optical (13), piezoelectric (14, 15), acoustic (16))– either individually or as a stack (17), and 
yet we are far from the tactile sensing capabilities possessed by humans. Some of the key 
developments for tactile sensing or electronic skin (e-Skin) in robotics are shown in Figure 
1. 
For a robot to have human-level perceptual capability, it is important to associate the tactile 
sensors with similar data processing system in the way that receptors work in the peripheral 
nervous system (PNS). This requires physically distributed computing hardware on soft 
substrates, along with tactile sensors. While the tactile sensors have received significant 
attention in the past, the data encoding and processing using dedicated hardware has not 
been explored as much. The tactile information processing in robotics so far has mainly 
involved analytical or data-driven approaches, using a software platform (18). Analytical 
approaches exploit physics-based models to obtain tactile information such as object 
properties and action commands, from the raw tactile data. However, these models often 
rely on structured interactions and do not provide accurate information needed for control 
or robust perception. The alternative is to use data-driven methods which learn mappings 
from raw sensory data, or lower-level features, to high-level object properties and action 
commands. In this regard, supervised, unsupervised, and reinforcement learning can be 
explored. Hierarchical representations, such as neural networks, are often used to learn 
multiple levels of features (19, 20). Flexible representations allow the robot to adapt the 
learned model to the specific task based directly on data. The analytical, data-driven or 
algorithmic approaches can be more effective with distributing computing in tactile skin 
(21). In few cases, the neural-like hardware developed for other sensory modalities such 
as vision and audio, or the chips developed to imitate the working of central nervous system 
(CNS) (22-24) have been repurposed for tactile data processing. However, such solutions 
are not ideal for tactile sensing, as unlike other sensory modalities, tactile sensing is 
physically distributed all over the body and requires mechanical softness to interact with 
other objects. 



 

 
Figure 1. The tactile sensation and perception in human skin and the evolution of 
artificial tactile skin in robots. Skin is the major component of human Peripheral Nervous 
system (PNS) (left) which has inspired robotic tactile skin research over the years. The 
tactile sensing technologies have advanced from single touch sensor to large area skin 
(centre) covering whole body of a robot (right). This poses challenges in data handling and 
energy consumption. The images (from bottom to top) in the timeline (centre) are adapted 
from refs. (25), (26), (27), (28), (29), (30) with permissions. Copyright © 1984, IEEE. 
Copyright © 2001, IEEE. Copyright © 2007, IEEE. Copyright © 2011, IEEE. Distributing 
computing in tactile skin can further boost the interaction capabilities of robots. The block 
diagram below shows the key steps to attain the same and outlines the structure of this 
paper. The image of the robot on the right-hand side is an adaptation from the open-source 
iCub robot project. 

Robotics has considerably advanced from using few sensors in the hands to using large 
number of sensors all over the body (Figure 1) to meet the requirements of emerging tasks 
which exploit the large area or whole-body contact to manipulate objects or navigate 
through unstructured or cluttered environments. With increasing number of sensors, the 
amount of tactile data they generate can rapidly approach the practical limits such as 
occupying the communication bandwidth. As such, it is impractical to send all the data to 
the robot’s centralized computing hardware (an equivalent of the brain). Likewise, the 
power requirements can be considerably high. This calls for e-Skin to have efficient data 
handling capability and it could be achieved through distributed low-power electronic 
hardware for computing. This notion aligns with the way the PNS compliments the CNS.  
 



Focusing on the computing hardware for e-Skin, this review complements previous review 
articles which have presented topics such as various types of tactile sensors (31-34), 
techniques and materials (for example, using liquid metal and hydrogel) to realize sensors 
in soft and flexible form factors (35, 36), identification of object properties and interactions 
(37), and distributed energy (38, 39). This article also complements previous reviews 
covering neuro-/bio-inspired e-Skin (40-42), providing a systematic and comprehensive 
discussion on the computing element in tactile sensing. In this regard, this review article is 
distinct and timely. The discussion starts from a biological perspective, summarizing the 
state-of-art viewpoints related to tactile data encoding and processing in PNS. The 
discussion also highlights the key message for the hardware implementation of neural-like 
processing in e-Skin. This is followed by the discussion on various building blocks for 
hardware implementations. Although some of these building blocks are not developed for 
e-Skin, they can be repurposed to develop one to address the challenges stated above. 
The pathways for the integration of these building blocks with possible algorithms, leading 
to the development of computational e-Skin are discussed afterwards. We then present 
how the implementation of large-area computational e-Skin could gain from the advances 
in flexible and printed electronics technologies. The intelligent robotic skin capable of 
extracting low-level information from the abundant tactile data could also open new 
application avenues in areas such as medical instruments, wearables, neuroprosthetics, 
and therefore researchers working in these diverse areas will benefit from this article. 
 
Tactile Sensation and Perception in Human Skin 
Constructing a robust perceptual system for robots based on the tactile sensory information 
is a critical but challenging task. As humans manage this almost effortlessly, the human 
body is an excellent reference to follow. This section presents some fundamental but vital 
features in the tactile sensation and perception in human body, especially at the PNS level 
with a view to realizing computational e-Skin for the next generation of robots.  

The human body acquires the tactile sensory information through thousands of 
mechanoreceptors distributed over the skin (Table 1), as shown in Figure 2A. This large 
number of receptors ensures a reliable sensation but poses challenges in data 
transmission. For this, the biological solution is to use action potentials, sometimes with 
adaptation, to encode, communicate and control the body (43). Such a manner is highly 
beneficial in terms of reducing power consumption and data latency.  

Reverse engineering to develop the e-Skin requires knowledge beyond neuroscience 
principles. For example, from a structure viewpoint, the skin is soft and present over a large 
area. With a large number of receptors (of varying thresholds) distributed at different 
depths, the skin can respond to the stimuli of various frequencies (fast adapting and slow 
adapting (FA and SA)) (44). Moreover, each subtype of receptors shows a different size of 
receptive field; they overlap with each other and are interconnected locally (45-47). Such 
an intricate nature forms the foundation of the fine spatial sensitivity of the skin. Towards 
this, several works have reported various sensors that provide similar functionalities as SA 
and FA receptors and also suggest their stacking to mimic the mechanoreceptors 
arrangement in the skin (Figure 2A) (17, 48, 49).  



  

  

Figure 2: The neural pathways for tactile data processing in human skin and their 
simple implementation schemes using basic devices and circuits. (A) Neural pathway 
for tactile data processing. The sensing data is collected in the sensory neuron (first order) 
and passed to the cuneate neuron (second order) and finally sent to the higher levels of 
the nervous system. The key components (mechanoreceptors, neurons, synapses) of 
human body involved in tactile data encoding and the illustrations of their simple 
implementations through electronic devices and circuits. The slow and fast adapting 
mechanoreceptors are usually mimicked by a stack of capacitive and piezoelectric sensors 
(17) (i). The RC circuit (ii) emulates the action potential of the spiking neuron (50). 
Memristors or similar devices (iii) can be used for the implementation of various synaptic 
functions such as time-based and rate-based learning rules. The rate-based learning rule 
refers to BCM (Bienenstock, Cooper, and Munro) learning rule). (B) Possible tactile data 
processing at the first-order neuron (51, 52). Reprinted with permission from ref. (51). 
Copyright © 2010, IEEE (C) Possible tactile data processing at the second-order neuron. 
Reprint from ref. (53) with permission. Copyright © 2009, Springer Nature. 



Compared to tactile sensation, the understanding of the tactile perception is far less 
developed. The general view is that the perception starts at the cuneate (second-order 
tactile) neuron (in the spinal cord) while the first-order neuron (sensory neuron) is solely 
responsible for the tactile sensing (44). But it is also argued that the mechanical properties 
such as the softness of skin may also be related to the perception process. Some level of 
computing takes place in the skin itself owing to the location-specific tactile sensing 
characteristics inside the receptive field of sensory neuron and the soft nature of the skin, 
which deforms during contact (52, 54) (Figure 2B). In this regard, the spiking pattern from 
the first-order neuron could contain some information of the edge orientation. Although 
more similar studies are needed to unravel the perceptual element of tactile sensing in 
biological skin, hardware implementation of some level of computation in the artificial skin 
will be beneficial. It is because, unlike bio-system where hyperconnectivity is regular, the 
electronic system usually has a much lower fan-out/fan-in ratio, with one fan-in leading to 
3-4 fan-out on average in digital electronics (55). The realization of a hyperconnected 
electronic system is challenging from both a design and a fabrication perspective. Another 
reason is that the flexible, stretchable nature of the artificial skin poses a significant hurdle 
to reliable data transmission. The large number of receptors confined in a limited area could 
drastically increase the difficulty of data transmission without losing fidelity. Instead, 
achieving edge computing at the skin level itself could greatly lower the data transmission 
burden. Like the audio and vision, it is also argued that the tactile sensory data is processed 
via time-division: The firing pattern of several neurons at the same time would trigger the 
firing of the next level neuron, and in turn strengthen the afferent synapse (Figure 2C) (53). 
By doing so the tactile sensation aroused by an object is correlated with the firing of one 
(or multiple) second-order neuron(s), and the generated spiking patterns are sent for further 
processing (Figure 2C). This lays the foundation for tactile signal computing using the 
spiking-time-dependent plasticity (STDP) learning rule. Nevertheless, this is not the only 
rule available. Other possible learning rules, whether or not they are biomimetic, can be 
implemented in the e-Skin to enable the intelligent data processing. This is discussed in 
the Section: Neural System Implementation and Algorithms. 

Table 1. Typical properties of the human skin (56-67) 

*Denotes that the data is anticipated according to the value from other areas of the skin. †Spatial acuity denotes the two-
point discrimination threshold. 

 

Computational Building Blocks and their Hardware Implementations 
To fully mimic the functionality of the biological skin and the associated PNS, the building 
blocks that can function as sensors, neurons and synapse are required (Figure 2A). This 
section reviews the hardware devices mimicking sensory neurons and cuneate neurons, 
and the synaptic devices needed in between these two sets of neurons. The functionalities 

Location Relative area (%) 
Ref. (56, 57, 66) 

Strain (%) 
Ref. (59-64) 

No. of mechanoreceptors 
Ref. (58, 65) 

Spatial acuity (cm)† 
Ref. (67)  

Finger ~1.3 35~45 ~13350 ~0.2 
Foot ~6.1 <30* 1000~5000 0.8~1.8 

Chest ~12.8 <30* ~13000 ~3.2 
Back ~13.9 <30* 2000~14000 ~1.3 

Shoulders ~1.9 NA ~4000 ~3 
Abdomen ~3.6 NA ~4000 ~3.6 

Thigh ~18.3 <30* ~30000 ~2.3 
Wrist ~0.7 10~40 ~1500 ~4.2 
Knee ~1.2 30~40 ~2000 ~4.7 
Elbow NA 60 NA ~4.2 



required from the individual building blocks, along with their preliminary integration in a 
neural pathway for robotic applications is discussed in the subsequent subsections. 

Artificial Neuron 
The neuron is the basic processing unit in the biological neural system where analog 
incoming signals are integrated and converted into action potentials, when the 
spatiotemporal summation exceeds the firing threshold of the neuron. Previous studies 
have identified approximately twenty typical spiking features in the biological system, such 
as tonic spiking, tonic bursting, phasic spiking (68). Among them, some features have been 
widely observed and play important roles in somatosensation. The capability of delivering 
such spiking features, for example, frequency adaptation, should be one of the criteria for 
the hardware implementation of neuron block for the e-Skin. Here we review the state-of-
the-art strategies that have been developed for sensory neuron (that is, neuromorphic 
sensors) and then the neuron circuits in general, which can be used for the realization of 
the second-order tactile neuron. 

Sensory Neuron (neuromorphic sensor): The sensory neuron is the first-order neuron in the 
tactile neural pathway. The sensors designed for the computational e-Skin should output 
the spiking signal and to this end, the two hardware implementation approaches have been 
explored so far. One is to integrate the sensor with oscillating and edge-detection circuits, 
as illustrated in Figure 3A (69-72) and the second is to interface the sensor with the neuron 
circuits, as shown in Figure 3B (73, 74). Both these approaches could provide biological 
features such as spiking rate dependency (Class-1 excitable) and event-driven sensing. 
However, the shape of the spiking signal they generate are different. Since the first strategy 
uses an AND gate, it generates square-shaped spikes (Figure 3A); in contrast, the 
conventional neuron circuits using Si complementary-metal-oxide-semiconductor (CMOS) 
can deliver biologically plausible spiking patterns including the hyperpolarization and 
depolarization stages, refractory period (Figure 3B). As the shape of the spike governs the 
plasticity-based learning of artificial synapses, the synaptic devices need to be identified 
and designed carefully along with the associated neurons. From the engineering point of 
view, the first strategy relies on the digital circuit and can be more robust to disturbance. In 
this regard, some parts have been successfully demonstrated on flexible substrates using 
printed techniques. However, considering the whole neural system, the simplified spiking 
signal generated by the oscillating circuits cannot offer some of the vital spiking features 
observed in biology. To realize a system with rich neural dynamics, the second strategy 
may be required. 

Considering the open and unpredictable environment the skin typically experiences, the 
sensors need to exhibit excellent specificity/selectivity, particularly because the e-Skin 
requires multimodal sensing to detect various parameters such as stress, pressure and 
temperature. This can be challenging since the electronic systems themselves are 
temperature sensitive. Nevertheless, there are many encouraging works showing excellent 
specificity regardless of ambient variations (75-79). Alternatively, one could use low 
specificity sensors and calibrate later, for example, at the second order neuron stage.  

Cuneate Neuron: This subsection discusses the strategies for the hardware implementation 
of spiking neuron and their evaluation in terms of the biological plausibility, that is, the 
number of the biologically observed spiking features, and the implementation cost 
measured by the active devices required in the design. The neuron circuit discussed here 
can be used to realize the second-order tactile neuron for the computational e-Skin. From 
the model point of view, several mathematical equations have been proposed to describe 
the neuron spiking process. These include leaky integrate-and-fire (LIF) model (80), 



Hodgkin-Huxley (HH) (81), Izhikevich model (82). These neuron models can be 
implemented using one or two capacitors with leaky resistors to emulate the important 
features observed in biological neurons (50) (Figure 2A), such as spatiotemporal 
integration, all-or-none rule. In this regard, the components showing a leaky resistance are 
the key to the hardware implementation of neuron circuits. 
One way to emulate the leaky component is to use phase change devices (Figure 3C). The 
resistance of such a device remains high under a low voltage bias, owing to an insulating 
phase, and an abrupt transition to a low resistance state (metallic phase) when sufficiently 
high bias voltage is available. Such a transition is reversible depending on the voltage bias. 
A highly biomimetic neuron circuit can be realized with only two leaky phase change 
devices: each controls a capacitor, thus mimicking the neuron’s opening and closing of the 
sodium and potassium channels gated by voltage. Such a design can emulate almost all 
the spiking features discovered in biological neurons including tonic and phasic spiking, 
tonic and phasic bursting, frequency adaptation (Figure 3C) (83), thus can be used to 
realize a neural system with rich neural dynamics. It is also possible to implement a neuron 
circuit with only one phase change device (84-86), although in this case the spiking signal 
generated cannot fully mimic the biological spiking features. Overall, the phase change 
device-based design offers the lowest hardware complexity (Figure 3F). 

The leaky resistive device can also be realized with volatile resistive memristors (87, 
88), whose resistance switching is governed by the voltage bias across the device (Figure 
3D). From a fabrication viewpoint, it is relatively easier to fabricate the resistive memristors 
and thus they hold more promise for the large-area implementations on soft substrates. 
A more common strategy is to use CMOS circuits (89-94). In this case, the subthreshold 
behaviour of Metal–Oxide–Semiconductor Field-Effect Transistor (MOSFET) is used to 
emulate the resistance change. Unlike phase change and memristive devices, the 
MOSFETs are three-terminal devices whose channel resistance is controlled by the gate 
voltage. The CMOS neuron requires a complicated layout to control the resistance of the 
MOSFETs channel, to mimic the leaky behaviour. The comparison between the hardware 
complexity and the biological plausibility for each strategy has been illustrated in Figure 3F.  
The spiking-based computing system consumes significantly less power. For example, the 
energy required for the neuron circuit based on phase-change device can be as low as 100 
fJ/spike (95). This value can be even lower for CMOS neurons (~4fJ) (90). Assuming a 
moderate firing rate of 100 Hz, the energy required per neuron per second is in the order 
of pico-Joule. For a direct comparison, we use the power consumption of Intel Core i7-920 
microprocessor as a reference. This microprocessor consumes a power of 85 W with 731 
million transistors. This corresponds to ~100 nJ energy consumption per second for a single 
transistor or several hundreds of nano-Joules for a single gate - this is significantly higher 
than the power consumption of a neuron circuit.  



 

 

Figure 3: The hardware implementation of an artificial neuron. (A) and (B) show the 
strategies to develop a neuromorphic sensor. (A) An oscillating circuit based neuromorphic 
sensor. This strategy uses digital circuits, thus is easier for the hardware implementation 
on soft substrates as demonstrated in (69-72). (B) A neural circuit based neuromorphic 
sensor (73). Such a strategy is able to provide a more biomimetic spiking signal. However, 
it is still a challenge for the hardware implementation in soft platforms, especially over large 
areas. (C) and (D) show the strategies to develop spiking neuron circuit in general. (C) the 
phase-change device based spiking neuron (83). (D) The volatile resistive memory based 
spiking neuron (88). (E) The strategy to implement the non-spiking neuron using a multi-
gate transistor. Adapted from ref. (57). Open access (F) The performance comparison of 
various spiking neurons, with data extracted from (83-94, 96, 97). The criteria of the 
biological plausibility is based on the spiking patterns discussed in (68). As can be seen 
from the figure, the neuron circuits based on novel materials/devices require a smaller 
number of active devices compared to the CMOS-based neurons. 



Non-Spiking Neuron: The non-spiking neuron is another alternative where a continuous 
function represents the firing rate and thus presents a simplified activation function. Both 
digital and analog circuits have been explored for implementation of non-spiking 
functionalities, although they usually have a complex layout and consume high power. 
Attempts have been made to seek alternatives such as on VO2-based Mott devices (98)  
and nanowire-based neural FETs (57) to achieve rectified linear unit (ReLU) and threshold 
function, respectively (Figure 3E). The benefits of using a non-spiking neuron include easy 
and highly accurate training of the associated neural network. However, their relatively 
higher power requirements compared with the spiking neuron is a major drawback. Thus, 
the selection of spiking or non-spiking neurons as the building block for the computational 
e-Skin may vary with the application. 

Artificial Synapse 
As the core building block of a neural network, the synapse has two main functionalities: 
the synaptic efficacy (the ability to pass the signal) and the synaptic plasticity (the ability to 
adapt the weight according to various learning rules). To replicate such functionalities in 
hardware, CMOS circuits and novel electronic devices (99-103) have been explored, both 
for artificial neural network (ANN) and spiking neural network (SNN).  

For the proposed computational e-Skin, the hardware implementation over large areas with 
flexible/stretchable substrates is desired and the incompatibility of CMOS devices with soft 
and conformable materials raises some challenges. Alternatives such as memristive 
devices on flexible substrates have been explored to realize compact artificial synapse. A 
variety of organic and inorganic materials have been explored to develop resistive random 
access memory (RRAM) (104, 105), phase change memory (PCM) (106-108), magnetic 
random access memory (MRAM) (109), and ferroelectric random access memory (FeRAM) 
(110), leading to 2-terminal and 3-terminal structures. Such devices exploit the change in 
physical properties of the material in response to external electrical stimuli to mimic the 
general synaptic behaviour (Figures 4A). The memristive crossbar arrays (111) is a concise 
and attractive route for implementation of synapses (Figure 4B). For ANN, the operation of 
synapse is usually achieved by using a single pulse signal, with the aim to achieve a long 
retention time with multilevel weight tuning (Figure 4C). Contrary to ANN, the SNN is more 
biologically plausible as it operates the synaptic devices using a pair of pulses (pre- and 
post-) following various biological learning rules, for example, STDP (Figure 2A) (112-116). 
Figure 4D illustrates some examples of hardware-implemented large-scale artificial 
synapses: they are in the rigid form factor. The future development of large-scale synapses 
for e-Skin should be carried out on soft substrates. 

While crossbar arrays provide a concise architecture, it could lead to several potential 
problems as well. For example, the sneak path issue is a well-known bottleneck for the 
large-area implementation of memristive crossbar arrays. In addition, the requirement of 
electrical forming process for each memristor pixel could enhance the hardware complexity, 
which may make the filamentary memristive devices less suitable for the large-area 
implementation. Selector devices such as transistor (117) or self-selective (passive) 
memristive crossbar (118) have been investigated to overcome the sneak path issues. 
Recently, a passive crossbar array was directly implemented with CMOS circuit allowing 
online learning and vector matrix multiplications, thus providing operational neuromorphic 
computing hardware (119). The hardware implementation of high-performance, high-yield 
and uniform one transistor-one memristor (1T1M) crossbar arrays for convolutional neural 
networks (CNN) is another example of energy-efficient large-scale networks (120). Using 
transistors as selector devices leads to 1T1M structure (121), which may be used for 
synaptic functionality in e-Skin. However, their large form factor needs to be considered as 
well. To this end, one solution is to merge the selector device with RRAM (122) (123), which 
allows a higher lateral and vertical integration than the conventional 1T1M configuration.  



Despite several reports on RRAM based artificial synapses, their hardware realization is 
limited possibly because of challenges such as poor resistance tuning, spatial and temporal 
variability, device yield and non-linearity/asymmetry. These issues negatively affect the 
learning and classification accuracy of neuromorphic computing (124). On the other hand, 
the floating gate transistors offering better uniformity are actively being explored for 
synaptic functionalities (125-128), which are considered as a more mature technology due 
to their compatibility with CMOS fabrication process. Emerging synaptic transistors with 
various working mechanism like electrochemical (129), charge trapping/detrapping (130) 
and light assistive reaction (131, 132) have also been reported along with their application 
in neuromorphic tactile sensing and processing system (133, 134). Some hardware 
implementations of these devices are worthwhile, however, efforts are needed to achieve 
the response uniformity over a large area, with desired retention and endurance (135). As 
mentioned above, for robotic skin, the flexibility/stretchability of artificial synapse is critical 
and in this regard the flexible synaptic transistors (136-138) and flexible memristors (139, 
140) are relevant. Flexible high-performance synaptic transistors have been reported to 
mimic the native biological synapses. Likewise, based on flexible memristors, a 3D artificial 
synaptic network has been reported to enable direct correlated learning and trainable 
memory capability (141). A new class of flexible memristors based on 2D materials (142) 
are also very attractive, with compatibility of solution processing and printing technology. 
The thickness of 2D materials in sub-nanometer range further facilitates low operating 
voltages and switching speed (135), but it is still lacking in terms of large-area scalability 
and uniformity. Recent reports on flexible (141) and stretchable (138, 143) artificial 
synapses are encouraging as these devices are suitable for large-area robotic skin.  

The performance of an artificial synaptic device is typically assessed in terms of multilevel 
states, linearity, retention, endurance, dynamic range, variability, device area, device yield 
and energy consumption. However, not all of these device metrics are critical to every 
application and they can depend on the training algorithm and specific task. A comparison 
of some of the hardware implemented synaptic devices is demonstrated in Table 2. The 
technology for such novel neuromorphic devices is at an infancy and despite their 
advantages, they are unable to replace CMOS technology at the commercial hardware 
level, currently. In this regard, a hybrid design, for example, memristor based analog 
computing along with CMOS based digital computing, maybe the solution in the near future. 
 
Table 2: Hardware-integrated artificial synapse devices 
Ref Memristive device 

configuration 
Cell dimension 
(µ m2) 

Size of crossbar 
Array 

Energy 
Consumption 

Application of hardware system 

(144) 1M 10 × 10  15 × 6 0.31 uJ Recognition of printed digits 

(120) 1T1M 0.5 × 0.5 128 × 16 371.89 pJ MNIST image recognition 

(145) 1M   < 0.5 × 0.5 32 × 32 719.0 µJ Pattern matching and natural image processing 

(119) 1M 0.5 × 0.5 54 × 108 1.12 pJ Demonstration of different computing models  

(115) 1M - 20 × 20 - Coincidence detection 

Peripheral Neural Pathway for Robots 
Robots require sensory-motor fusion and adaptive interaction with the environment. 
Specifically, skin-like tactile sensing has been used in robotics for tactile-based 
environmental exploration, physical human-robot interaction and collaboration, objects’ 
physical properties recognition, tool manipulation and locomotion (18, 146, 147). However, 
most of these demonstrations are achieved by software approaches in a centralized 
computing unit, that is, the equivalent of brain. And these platforms usually use digital 
circuitries which adds on the latency of the process. Instead, in organism, localized 
sensory-motor coordination and integration has been widely observed (148). Such a 
decentralized, analog processing significantly reduces the data latency for robots. For this, 



the building blocks discussed above, can be used to construct the localized computing 
platform needed for tactile sensing, opening avenues for next-generation robots (Figure 
4E).  

For example, the agent-environment interaction is required for the exploration and learning 
of robots. As shown in Figure 4E(ⅰ), reinforcement learning could be done in a localized 
manner using distributed synaptic circuits to learn the maze exploration by the robots (149). 
Similarly, robots need to work in unknown environments with the potential to sense the 
impending hazard. This can be achieved by the correlation between the sensory and motor 
signal, allowing the robot to identify the pain signal and respond to it (150). Owing to the 
use of the synaptic device (Figure 4E(ⅱ)), the withdrawal reflex behaviour could be 
mimicked in a concise manner. The above examples show how decentralized computing 
can be constructed in a simple neural configuration, benefiting the next-generation robots. 
In the next section,  possible neural network structures are discussed, which could 
potentially be used for carrying out more complicated tasks for robots. 

 



 

 
Figure 4: Hardware Implementation of artificial synapse (A) Various 2-terminal and 3-
terminal devices as artificial synapses including RRAM, PCM, floating gate transistor and 
Fe-FET. The RRAM, PCM and Floating-gate transistor are adapted from ref. (151) with 
permission. Copyright © 2019, Springer Nature. (B) Matrix vector multiplication in crossbar 
arrays with both active and passive memristive devices. Potentiation and depression 
characteristics of analog memristive devices. (C) Synaptic behaviour as excitatory and 
inhibitory with long- and short-term plasticity. (D) Hardware implementation of some 
memristor based artificial synapse in D(ⅰ) ANN (Reprint from ref. (119) with permission. 
Copyright © 2019, Springer Nature.) with integration of memristor crossbars and CMOS 
chips on wire bonded pin-grid array package. Inset shows the testing set-up. and D(ⅱ) 
SNN (Reprint from ref. (115) with permission. Copyright © 2018, Springer Nature.) using 
printed circuit board with passive memristor switching matrix. Inset shows the Scanning 
electron image of memristor crossbar. (E) Localized Neural Pathway for Robots E(ⅰ) 



Distributed sensorimotor merging which leads to the learning of the maze exploration of the 
robot. Adapted from ref. (149) with permission. Copyright © 2021, The American 
Association for the Advancement of Science. E(ⅱ) Distributed sensorimotor correlation 
which leads to the acquisition of the pain reflex. Reprint from ref. (150) with permission. 
Copyright © 2022, The American Association for the Advancement of Science. 

 

Neural System Implementation and Algorithms 
The Neural Network Structure 
This section presents the possible neural system structure for the computational e-Skin 
along with its training algorithms. This includes one layer of sensory neurons and one layer 
of cuneate neurons, connected via synapses (Figure 5A). As discussed in the Section: 
Tactile Sensation and Perception in Human Skin, the subtypes of mechanoreceptors have 
different sizes of receptive fields, which overlap and  are interconnected to form the basis 
for the spatial sensitivity of the skin (46, 152). We present a similar concept for the proposed 
neural network (Figure 5A). The stimulation of one neuron could influence other 
neighbouring neurons and thus it is possible to map the incoming tactile signal to a higher-
dimensional space in the first layer; the output is fed into the second layer for further 
processing. the proposed neural network is similar to the reservoir computing. However, 
owing to soft tissues, the native skin is more complex: the receptive fields of the 
neighbouring mechanoreceptors are modulated by the external tactile stimuli (Figure 2B) 
(153, 154). This is one of the unique aspects of tactile sensing (52) and mimicking the same 
could be a future direction of e-Skin research. The proposed neural network is capable of 
carrying out various tasks required by robots, such as local tactile feature recognition, 
contact/slippage detection. Nevertheless, it is also necessary to consider what kinds of 
tasks are suitable for localized processing at the skin level. A possible answer is that such 
a higher-level arrangement can be made similar to the observation from the organisms in 
nature. For example, as discussed in earlier, differentiating the edge orientation of a tactile 
stimulus is a task processed in the skin level for human (54) and similar tactile perception 
could be realized with the computational e-Skin as well. 

The Learning Algorithms 
Implementing the proposed neural network using the hardware building blocks is another 
important aspect to consider. various learning strategies including supervised, 
unsupervised and reinforcement learning are available. However, developing an all-
hardware based supervised learning system can be costly in terms of devices or circuits 
needed (117, 155, 156) and will thus not be discussed for the e-Skin. On the other hand, 
the plasticity-based learning rule, STDP, is the fundamental learning rule in spiking neural 
networks and leads to unsupervised learning (157, 158) (Figure 5B). The implementation 
of such a learning rule is hardware-friendly, especially with the previously mentioned 
synaptic devices. The change of the synaptic weight is only subjected to the time correlation 
between paired spikes from the pre- and post- neurons, under various pairing schemes 
such as “nearest neighbour takes all”, “nearest neighbour takes more”, or “all spike pairs 
count equally”(158) (Figure 5B). This could be potentially promising for implementation on 
the soft computational e-Skin. For example, for memristor based synapses, the pre- and 
post- neuron signals are fed into the two ends of the memristor devices. The net bias across 
the memristor device is therefore the temporal subtraction of the pre- and post- neuron 
spikes (159) (Figure 5D). Thus, the difference in the spike timing between the pre- and 
post- neurons would lead to a net bias of reverse polarity and varying amplitude (Figure 
5C). Depending on the relationship between the potentiation/depression threshold and the 



net bias across the device, the synaptic weight is modified accordingly. From the functional 
viewpoint, the implementation of STDP learning rule could lead to the correlation between 
two neurons, and further possible sensorimotor correlation for robots.  

While unsupervised learning has several benefits, such a learning strategy alone may be 
insufficient. A method to strengthen the desired behaviour and weaken the undesired 
behaviour, based on the environmental feedback, for example, using reinforcement 
learning, may also be required. In terms of the hardware , reinforcement learning has been 
demonstrated in the example shown in Figure 4E and other works using memristor crossbar 
(or synaptic transistors) and digital circuitry (160). However, with respect to the more 
biologically plausible scenario, spiking neural network, the hardware implementation has 
not been realized. Possible examples may also exist in the biological nervous system: the 
synaptic plasticity could be influenced by a global neuromodulators signal. For example, 
dopamine can lead to facilitation and Acetylcholine can lead to depression. Several 
computational studies have shown that they could lead to a higher learning accuracy for 
various tasks (161-164). In this regard, efforts are needed in the hardware demonstration 
of the “three factor STDP behaviour” using the artificial synaptic devices and the devices 
offering multiple approaches to control the synaptic behaviour (chemical, light, (165)) could 
be beneficial.  

Power Consumption  
Since there are currently no  studies on power consumption of e-Skins, we try to extract 
data from other scenarios for comparison. For example, the neuromorphic chip 
“SpiNNaker” contains ~250 thousand neurons and 82 million synapses (166). It consumes 
36 W in total or 20 nJ per synaptic event, at an average firing rate of 22Hz. The chip 
“TrueNorth” contains ~1 million neurons and 128 million active synapses, consuming an 
average of 26 pJ per synaptic event at a firing rate of ~20Hz (22). The e-Skin targeting 
human-level tactile performance would require a similar number of sensory neurons in the 
first layer as in the case of human skin (~100 thousand, see Table 1), but with a much less 
recurrency as compared to “SpiNNaker” or “TrueNorth”. Assuming a smaller portion (~1/10) 
of cuneate neurons in the second layer, the power consumption of the proposed e-Skin 
should be in the order of several Watts at a moderate firing rate (~20 Hz).  

In addition to the power consumption, there are several other problems to consider for 
developing a computational e-Skin. For example, the way to address and send the sensing 
signal is an aspect for study, as the active or passive matrix manner cannot support the 
high spatial- and temporal- resolution at the same time. Another aspect is the method to 



guarantee the system reliability, as the continuous interaction between the skin and the 
external environment could possibly lead to localized damages (167, 168).  

  

  

Figure 5: The neural network structure and learning algorithms for the proposed 
computational e-Skin. (A) The neural network structure and the potential tasks it should 
address.  A network similar to reservoir computing has been proposed. However, for e-
Skin, it should be more complicated since the weights in the first layer along with the 
receptive fields of the sensory neurons are dependent on the mechanical stimuli. (B) 
Plasticity-based learning rule, STDP, for unsupervised learning. Various forms of STDP 
have been identified. Typical examples include asymmetry Hebbian learning, asymmetry 
anti-Hebbian learning, symmetric Hebbian learning. Reprint from ref. (158). Open access. 
(C) Waveform engineering is one popular strategy for achieving hardware realization of the 
STDP learning rule using novel devices such as memristors and synaptic transistors shown 
in d i) and ii). For this, the principle is to take advantage of the net bias across the device, 
Vpre-Vpost under various timing. When the net bias is larger than the threshold of the device 
needed to trigger the synaptic behaviour (potentiation or depression), the weigh 
(conductance) of the device would be changed. (D) The possible circuit layout for realizing 



STDP learning for 2-terminal memristor and 3-terminal synaptic transistor. Adapted from 
ref. (159). Copyright © 2021, Elsevier. 

Towards Computational e-Skin Implementation 
Flexible PCB and Chip Thinning Technology 
E-Skin needs to be fabricated on the soft substrates to mimic the mechanical properties of 
the biological skin. Initial progress has been made by integrating off-the-shelf sensors and 
electronic components onto flexible printed circuit boards (PCBs), ranging from hand-based 
manipulation to the whole-body area, as shown in Figure 1. Similar approaches could be 
adopted for computational e-Skin by interfacing sensors with neuromorphic chips (Figures 
6A and 6B). The neuromorphic chips offer a platform of dense, interconnected neural 
network which can carry out various computing tasks required by robots (27, 29). Such an 
arrangement will enable “in-hardware” computing capability in the e-Skin using deep neural 
networks. This is different from the strategy we have discussed so far to develop the “skin-
type” tactile functionality, since the achievement of the human-level tactile sensation and 
perception relies on the intricate interplay between the softness of the skin and the spiking 
response of the neurons, using a “shallow” network of two layers. 

The integration of soft and rigid materials limits the bendability. Furthermore, the mismatch 
in their mechanical properties increases the chances of failure during extended use. As a 
result, it is challenging to use hybrid devices on sensitive body parts such as fingertips of a 
robot, where high-density tactile feedback is required for interaction and manipulation. This 
can be potentially mitigated through wafer thinning technology using ultra-thin chip (UTC) 
(169-172), as shown in Figure 6C. The thin chips bonded onto flexible PCBs could offer 
greater flexibility. With this strategy, one critical challenge is the lack of suitable bonding 
techniques to gain access to the circuitry on thin chips from a soft platform. The 
conventional chip bonding methods are not suitable since they are likely to introduce cracks 
in the  chips. These issues could be resolved by methods such as bonding by printing (173-
177). The challenges related to reliable interconnects could be addressed by mechanically 
flexible conductive materials such as liquid metals (178). Overall, despite these challenges 
and limitations, using UTCs with flexible PCB is possibly the quickest route towards the 
realization of the computational e-Skin.  

Printed Electronics on Soft Substrates 
The proposed e-Skin can also be fabricated directly on soft platforms, using printing 
technology with both inorganic (179, 180) and organic (179, 181) materials (Figure 6D). 
This will also be an attractive direction for future electronics, as resource-efficient 
manufacturing could help to reduce the electronic waste and contribute to sustainability. 
Further, it is easier to process biodegradable materials using printing technology so that 
the printing technology also holds promise for future transient electronics (182-184). 
Several printing techniques are available today include inkjet printing (138, 185-187), 
transfer printing (180, 188-191), contact printing (192-195), and screen printing (196-200). 
Specifically, the transfer and contact printing techniques are promising for high-
performance electronics and also compatible with roll-to-roll manufacturing (201). Figure 
6d shows an example of roll-to-roll printed multi-gate devices (Figure 3E) on the flexible 
substrate along with various other building blocks required for the computational e-Skin 
mentioned in Section: Computational Building Blocks and their Hardware Implementation. 
Specifically, the synaptic device can be made from printed metal-oxide nanowires (Figure 
6D(ⅲ)) (195) and the channel of the multi-gate devices (as non-spiking neuron) can be 

made of Si nanoribbons (202) shown in the Figures 6D(ⅰ) and 6D(ⅱ) (inset). The multi-
gate device has the inputs fed from the readout circuit from various sensors, showing a 



simple tactile sensing scheme capable of delivering linear summation on the flexible 
substrate. The low temperature processing from the printed electronics is naturally 
compatible with the thermally sensitive soft substrates. However, it should be noted that 
the printed electronics is still mainly developed within laboratories with limited device 
metrics such as device density, uniformity, mobility. Taking the fabrication of FETs as an 
example, the largest number of printed FETs on the flexible or stretchable substrates is in 
the order of a few thousand (203). Using standard microfabrication techniques, this number 
can be in the order of tens of thousands (204). At present, printing technology could 
possibly be used to produce those parts of the e-Skin that require lower device density, 
which corresponds to the part of the skin with a lower density of mechanoreceptors or 
spatial acuity.  

 

  

Figure 6: The technological advances to implement large-area computational e-Skin 
on flexible substrates. (A) The energy autonomous e-Skin with graphene based 



transparent touch sensing layer on robotic hand and on flexible solar cells. The back side 
of the solar cells shows rigid off-the-shelf chips. Figures adapted from (205). Open access. 
(B) The neuromorphic chip, TrueNorth, with one million spiking neurons implemented using 
digital electronics. Adapted from ref. (22). Copyright © 2014, The American Association for 
the Advancement of Science. (C) Ultra-thin chip technology could be used to obtain a 
flexible version of neuromorphic chips and hence the computational e-Skin with greater 
flexibility. Adapted from refs. (169, 206). Open access. (D) The roll-to-roll printing of various 
computing building blocks for the future e-Skin. The feasibility of such e-Skin is evident 
from the examples of printed electronic layers and devices: D(ⅰ-ⅱ) transfer printed Si 
nanoribbons and transistor made from them. Reprint from ref. (180, 195). Open access D 
(ⅲ) Contact printed nanowires based devices. Reprint from ref. (195). Open access. 

Conclusion 
Next-generation robots are expected to be highly intelligent and autonomous, and the 
sense of touch is critical for them to safely interact in dynamic, unstructured, and often 
uncertain environments. For intelligent systems to have human levels of performance, it is 
vital to develop a sensitive tactile sensory system that provides at least similar information. 
To attain this, there is a need to expand the e-Skin research towards perception and 
learning. Currently, most of the e-Skin research still focuses on the tactile sensation and 
their integration on substrates which can conform to curvy surfaces of robotic body. We 
address this need in this review article by focusing on the computational aspect of the skin 
and the associated PNS to efficiently process the tactile data. The e-Skin that can mimic 
the biological tactile neural pathway could offer the desired preliminary perception 
capability, drastically decreasing the cognitive load on their central control units. This is 
analogous to the PNS complementing the functionality of the CNS in humans. We 
discussed the possible building blocks of the tactile neural pathways and the integration 
which could imitate their functionality. It is highlighted that the mechanical properties of the 
skin  and the neurological behaviours  are correlated both in tactile sensation and 
perception. Furthermore, we have also discussed how the e-Skin development could 
benefit from advances in areas such as printed and flexible electronics. By revisiting the 
discoveries from diverse disciplines and reviewing the state-of-the-art in tactile sensing and 
neuromorphic computing hardware, it is hoped that this article will inspire future advances 
for the e-Skin research, rendering them human-like responsiveness.  
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