The association of objectively measured physical activity and sedentary behavior with skeletal muscle strength and muscle power in older adults: a systematic review and meta-analysis

Keenan A. Ramsey, Anna G.M. Rojer, Luke D'Andrea, René H.J. Otten, Martijn W. Heymans, Marijke C. Trappenburg, Sjors Verlaan, Anna C. Whittaker, Carel G.M. Meskers, Andrea B. Maier

PII: S1568-1637(21)00013-1

DOI: https://doi.org/10.1016/j.arr.2021.101266

Reference: ARR 101266

- To appear in: Ageing Research Reviews
- Received Date: 24 September 2020
- Revised Date: 4 January 2021

Accepted Date: 2 February 2021

Please cite this article as: { doi: https://doi.org/

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier.

The association of objectively measured physical activity and sedentary behavior with skeletal muscle strength and muscle power in older adults: a systematic review and meta-analysis

Keenan A. Ramsey^a, BSPH, Anna G.M. Rojer^a, MD, Luke D'Andrea^b, BSc, René H.J. Otten^c, MSc, Martijn W. Heymans^d, PhD, Marijke C. Trappenburg^{e,f}, MD, PhD, Sjors Verlaan^g, PhD, Anna C. Whittaker^{h,i}, PhD, Carel G. M. Meskers^{a,g}, MD, PhD, Andrea B.

Maier^{a,b}, MD, PhD

^a Department of Human Movement Sciences, @AgeAmsterdam, Amsterdam Movement Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

^b Department of Medicine and Aged Care, @AgeMelbourne, The Royal Melbourne Hospital, The University of Melbourne, Victoria, Australia

^c Medical Library, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

^d Department of Epidemiology and Biostatistics Amsterdam University Medical Center, VU

University Medical Center, Amsterdam, The Netherlands

Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Rehabilitation Medicine,

Amsterdam Movement Sciences, Amsterdam, The Netherlands

^e Department of Internal Medicine, Section of Gerontology and Geriatrics, VU University

Medical Center, Amsterdam, The Netherlands

^f Department of Internal Medicine, Amstelland Hospital, Amstelveen, The Netherlands

^g Department of Rehabilitation Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam,

Amsterdam Movement Sciences, Amsterdam, The Netherlands

^h School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, England, United Kingdom

ⁱ Faculty of Health Sciences and Sport, University of Stirling, Scotland, United Kingdom

Corresponding Author

Prof. Andrea B. Maier, Department of Medicine and Aged Care, @Age, Department of Human Movement Sciences, Amsterdam Movement Science, Vrije Universiteit Amsterdam, van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands

E: <u>a.b.maier@vu.nl</u>; T: +31 20 5982000

Abstract word count: 305

Manuscript word count: 5,080

Number of tables: 5

Number of figures: 12

Highlights

- High physical activity (PA) is associated with better muscle strength and power
- Low sedentary behavior (SB) is associated with better muscle strength and power
- PA/SB are stronger associated with lower body muscle strength and power than upper
- Strongest associations were found for PA/SB with chair stand test performance
- Confounding does not affect the association of PA/SB with muscle strength/power

Abstract

Background: Engaging in physical activity (PA) and avoiding sedentary behavior (SB) are important for healthy ageing with benefits including the mitigation of disability and mortality. Whether benefits extend to key determinants of disability and mortality, namely muscle strength and muscle power, is unclear.

Aims: This systematic review aimed to describe the association of objective measures of PA and SB with measures of skeletal muscle strength and muscle power in community-dwelling older adults.

Methods: Six databases were searched from their inception to June 21st, 2020 for articles reporting associations between objectively measured PA and SB and upper body or lower body muscle strength or muscle power in community dwelling adults aged 60 years and older. An overview of associations was visualized by effect direction heat maps, standardized effect sizes were estimated with albatross plots and summarized in box plots. Articles reporting adjusted standardized regression coefficients (β) were included in meta-analyses. **Results:** A total of 112 articles were included representing 43,796 individuals (range: 21 to 3,726 per article) with a mean or median age from 61.0-88.0 years (mean 56.4% female). Higher PA measures and lower SB were associated with better upper body muscle strength (hand grip strength), upper body muscle power (arm curl), lower body muscle strength, and lower body muscle power (chair stand test). Median standardized effect sizes were consistently larger for measures of PA and SB with lower compared to upper body muscle strength and muscle power. The meta-analyses of adjusted β coefficients confirmed the associations between total PA (TPA), moderate-to-vigorous PA (MVPA) and light PA (LPA) with hand grip strength (β =0.041, β =0.057, and β =0.070, respectively, all p≤0.001), and TPA and MVPA with chair stand test (β =0.199 and β =0.211, respectively, all p≤0.001). **Conclusions:** Higher PA and lower SB are associated with greater skeletal muscle strength and muscle power, particularly with the chair stand test.

Keywords: physical activity; sedentary behavior; accelerometry; muscle strength; muscle contraction; aged

1. Introduction

Low physical activity (PA) and high sedentary behavior (SB) present a global health challenge and they are particularly important in older adult populations as PA declines and SB increases with increasing age (Arnardottir et al., 2013; Ortlieb et al., 2014; Reid and Fielding, 2012). PA is defined as any bodily movement produced by skeletal muscle that requires energy expenditure (Caspersen et al., 1985), while SB is defined as periods of waking activity that produce little or no energy expenditure (Tremblay, 2012; Tremblay et al., 2017). Both PA and SB can be most accurately captured by objective devices such as accelerometers or pedometers, which can capture the incidental, unstructured, and lightintensity movement characterizing the majority of PA in older adults that can otherwise be subject to significant bias when self-reported (Amagasa et al., 2017; Lee and Shiroma, 2014; Lohne-Seiler et al., 2014). PA and SB are closely related but distinct behaviors (van der Ploeg and Hillsdon, 2017) that are each independent determinants of adverse outcomes such as morbidity, disability, poor quality of life, and mortality (Cunningham et al., 2020; Fornias et al., 2014; Rojer et al., 2020; Tak et al., 2013; Vagetti et al., 2014). The degree to which objectively measured habitual PA and SB are associated with other determinants of these adverse outcomes, namely skeletal muscle strength and muscle power (Katzmarzyk and Craig, 2002; Rantanen, 2003), has remained to be unexplored by a systematic review.

Skeletal muscle strength (the amount of force a muscle can produce with a single maximal effort) and muscle power (the ability to exert maximal force in a short time) (Beaudart et al., 2019) decline with chronological age (Beenakker et al., 2010; Chodzko-Zajko et al., 2009; Reid et al., 2014) and are not only functionally important (Wang et al., 2020) but are also key determinants of adverse outcomes such as morbidity, disability, poor quality of life, and mortality (Ling et al., 2010; Meskers et al., 2019; Taekema et al., 2010). Muscle strength and muscle power may therefore play a role in the relationship between

PA/SB and adverse outcomes. Establishing and quantifying the association between PA and SB with muscle strength and muscle power is thus a priority for informing potential lifestyle guidelines, interventions and, ultimately, mitigating poor health outcomes.

The aim of this systematic review was to describe and quantify the associations of objectively measured PA and SB with muscle strength and muscle power in community-dwelling older adults.

2. Methods

2.1 Information sources and search

The protocol for this review was registered in the PROSPERO International prospective register of systematic review (registration number: CRD42018103910). PubMed, EMBASE, the Cochrane Library (via Wiley), CINAHL, PsycINFO, and SPORTDiscus (via EBSCO) were systematically searched according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) statement (Moher et al., 2009) by two independent assessors (AR and RO) to identify articles published from inception to June 21st, 2020 investigating PA and SB in older adults. The full search strategy is presented in Appendix A and included the keywords: 'active or inactive lifestyle'; 'motor activity'; 'people over 60 years of age'. Articles investigating PA and SB in relation to muscle strength and muscle power were organized and managed using EndNote (Version X8.2 Clarivate Analytics, Philadelphia, USA) and Rayyan (Ouzzani et al., 2016).

2.2 Eligibility criteria

Articles were considered eligible using the following criteria: 1) English language original article in full text, 2) observational or experimental design, 3) mean or median age of the study population \geq 60 years old, 4) study population consisting of community-dwelling individuals (exclusively institutionalized populations were excluded), 5) objective PA/SB measured with an instrument (accelerometer or pedometer), 6) skeletal muscle strength or muscle power reported, 7) the association of objective PA/SB measures and muscle strength/muscle power was reported, 8) associations were reported in control group or using baseline data of intervention studies.

2.3 Article selection

The title and abstract of articles were assessed by two independent reviewers (KR and EvdR), for potential eligibility. The subsequent full text screening was performed in duplicate by two

independent reviewers (KR and LD or AR). Disagreement was resolved by an additional reviewer (AM). The references of all included articles as well as relevant systematic reviews (Cunningham et al., 2020; Mañas et al., 2017; Osthoff et al., 2013) were screened for additional articles.

2.4 Data extraction

Data were extracted in duplicate independently by two reviewers (KR and LD or AR): first author; year of publication; number of participants; study population characteristics; country(s); study design; follow-up period (if applicable); mean age; sex; accelerometer or pedometer device for objective assessment of PA/SB; wearing location of device; minimum wearing duration to constitute a valid day; number of valid days assessed; number of valid days required for inclusion in analysis; mean device wear time; measures used to assess PA/SB and their definitions; mean (standard deviation (SD)) or median [interquartile range] capacity recorded as upper body or lower body and muscle strength or muscle power; measures used to assess muscle strength/muscle power and their definitions; mean (SD) or median [IQR] muscle strength/muscle power; analysis used to study association(s); adjustment model(s); effect size(s) and significance.

2.5 Study quality & risk of bias

Study quality and risk of bias of the included articles were independently assessed by two reviewers (KR and LD or AR) using the nine-point Newcastle-Ottawa Scale (NOS) adapted for cross-sectional studies and longitudinal studies as presented in Appendix B (Wells et al., 2000; Wells GA et al., 2012). Articles were assessed by the following domains: 1. selection (representativeness of cohort and ascertainment of exposure), 2. comparability (adjustments), 3. outcome (assessment of outcome measure). Additional outcome criteria assessed for longitudinal studies were duration of follow up period and adequacy of participant retention

after follow-up period. High quality versus low quality of articles was defined as \geq or < 4/7 stars for cross-sectional studies and \geq or < 5/9 stars for longitudinal studies, respectively.

2.6 Statistical analysis and data visualization

Associations between measures of PA/SB and upper body muscle strength, upper body muscle power, lower body muscle strength and lower body muscle power were reported in tables and synthesized in the following ways in accordance with Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) (Liberati et al., 2009) and Synthesis Without Meta-Analysis (SWiM) guidelines (Campbell et al., 2020): 1. an overview of all associations was qualitatively visualized in effect direction heat maps (Thomson and Thomas, 2013), 2. albatross plots provided visualization and quantification of estimated effect sizes (Harrison et al., 2017), and 3. meta-analyses were performed to obtain a pooled estimate of exclusively adjusted associations. Main PA/SB measures and units were continuous steps (#/day), activity counts (#/day), and PA (total PA (TPA), moderate-tovigorous PA (MVPA), and light PA (LPA)) and SB duration in (all units of time/day). Intensity-based accelerometer measures and PA and SB frequency and accumulation (bouts) were included in supplementary tables. If PA/SB measures were reported in different units or as categorical variables, these were used instead. When more than one statistical test was used, the following hierarchy was applied for reporting each association for all methods of synthesis: 1. adjusted linear regressions, 2. adjusted logistic regressions (for articles reporting ordinal determinants, p-trend was used and if not, p-values comparing relatively best versus worst categories of PA were used), 3. partial correlations, 4. unadjusted regression/Pearson's correlations 5. Spearman's or Biserial correlations 6. ANOVA or ANCOVA 7. Mann U-Whitney, t-test, or chi-squared. Isotemporal substitution models were not included. Data were reported based on the following order of adjustment models: 1. age and sex, 2. age and sex + additional factors, 3. age or sex + additional factors, 4. neither age nor sex, only other factors

5. unadjusted. The direction of effect was defined as positive when higher PA and lower SB were associated with better muscle strength or muscle power and negative when associations indicated worse muscle strength or muscle power. Positive and negative effect directions were represented by an upwards or downwards triangle in effect direction heat maps and points on the right side (positive effect) or left side (negative effect) of albatross plots. If pvalues were not reported, they were calculated using the following methods: for linear regression analyses, the upper and lower limits of the 95% confidence interval (CI) and regression coefficient were used to calculate the standard error (SE) [(upper limit of CI – lower limit of CI)/3.92], which was used to calculate the absolute value of the z-statistic (regression coefficient/SE), and finally the calculated p-value (p(calc))=exp(-0.717 (z) - (z))(0.416 (z²)) (Altman and Bland, 2011). For Pearson's, partial, Spearman's and point-biserial correlations, the sample size (n) and coefficients (Rs) (including, Pearson's R, partial R, Spearman's Rho, and point-biserial R (Rpb)) were used to calculate the t-statistic using the following formula: t-statistic= $R\sqrt{[(n-2)/(1-R)]}$. The absolute value of the t-statistic and degrees freedom (n-2) were compared to the 2-tailed Student's t-distribution using Microsoft Excel to obtain the p-value. If R^2 was reported, the square root was calculated and treated as a correlation to calculate the p-value. P-values that were reported as p>0.05 or p<0.05 and could not be calculated using the above methods were conservatively estimated as $p \ge 0.25$ (when reported as non-significant) or 0.01 (when reported as significant) to beincluded in the effect direction heat maps and were not included in albatross plots. The following color scheme was used in the effect direction heat maps: p<0.001 (darkest blue filled triangle), $0.001 \le p < 0.01$ (blue filled triangle), 0.01 (light blue filled triangle), $0.05 (light grey empty triangle), <math>0.1 (grey empty triangle), and <math>p \ge 0.25$ (dark grey empty triangle). Albatross plots were created using Stata Statistical Software: Release 16.0 (StataCorp LLC, College Station, Texas, United States) to assess the approximate

9

magnitude of associations as a function of sample size against two-sided p-values stratified by the observed direction of the effect. Contour lines were superimposed on the plot to evaluate the hypothetical effect sizes, designated as standardized regression coefficients (β s) and were derived from the following equation: $N=(1-\beta^2/\beta^2)Z_p$ (where Z_p is the z value for the associated 2-sided p-value) (Harrison et al., 2017). Albatross plots were made for each association between PA/SB measures and outcomes if reported in at least four studies. Albatross plots were visually interpreted for scatter of β coefficients relative to three displayed contour lines and β coefficients were summarized in box plots that were made using Plotly (Plotly Technologies Inc., Montreal, Québec, Canada). Articles were included in the meta-analyses if the associations between PA or SB measures and hand grip strength or chair stand test were expressed as adjusted (order of adjustment models as given above) standardized regression coefficients (β) and their 95% CI or SE or when these could be calculated. PA/SB measures for meta-analyses were grouped into total PA (TPA), moderateto-vigorous PA (MVPA) duration, and light PA (LPA) duration. TPA included TPA duration, inverse SB duration, steps per day and number of breaks in sedentary behavior (BST). β coefficients were inversed for outcomes where a lower score indicated better performance. Adjusted unstandardized regression coefficients (B) were converted to β coefficients using the following formulas:

$$\beta = \frac{SD_x}{SD_y} B$$
 and SE (β) = $\frac{SD_x}{SD_y}$ SE(B)

Where SD_x and SD_y are the standard deviations of PA (x) and hand grip strength or chair stand test (y), respectively (Nieminen et al., 2013). If SDs were not reported, they were calculated from the SE (or 95% CI) using the following formula: $SD=\sqrt{n}$ (SE) (*Cochrane Handb. Syst. Rev. Interv.*, 2019). If SE (B) was not reported, it was calculated from the 95% CI of B using the previously mentioned formula. Correlation data from articles that did not

perform a linear regression analysis, but reported all intercorrelations between PA/SB, hand grip strength or chair stand test, and age and/or sex Pearson's r (i.e. correlation matrices) and their calculated SE were used to calculate the age and/or sex adjusted β (SE β) using the following formulas:

SE of correlations: SE(r) =
$$\sqrt{\frac{1-r^2}{n-2}}$$

One covariate model: $\beta_{x_1.x_2} = \frac{r_{yx_1} - r_{yx_2}r_{x_1x_2}}{1 - r_{x_1x_2}^2}$ and $SE(\beta_{x_1.x_2}) = \frac{SE(r_{yx_1}) - SE(r_{yx_2})SE(r_{x_1x_2})}{1 - SE(r_{x_1x_2}^2)}$

Two covariate model:
$$\beta_{x_1.x_2x_3} = \frac{(1-r_{x_2x_3}^2)r_{yx_1}+(r_{x_1x_3}r_{x_2x_3}-r_{x_1x_2})r_{yx_2}+(r_{x_1x_2}r_{x_2x_3}-r_{x_1x_3})r_{yx_3}}{1-r_{x_1x_2}^2-r_{x_1x_3}^2-r_{x_2x_3}^2+2r_{x_1x_2}r_{x_1x_3}r_{x_2x_3}}$$
 and

$$SE(\beta_{x_1.x_2x_3}) \frac{(1-SE(r_{x_2x_3}^2)SE(r_{yx_1})+(SE(r_{x_1x_3})SE(r_{x_2x_3})-SE(r_{x_1x_2}))r_{yx_2}+(SE(r_{x_1x_2})SE(r_{x_2x_3})-SE(r_{x_1x_3})))SE(r_{yx_3})}{1-SE(r_{x_1x_2}^2)-SE(r_{x_1x_3}^2)-SE(r_{x_2x_3}^2)+2SE(r_{x_1x_2})SE(r_{x_1x_3})SE(r_{x_2x_3})}$$

Where r is Pearson's correlation coefficient, n is the sample size, x_1 is the PA/SB variable (independent variable), x_2 is age or sex in the one-covariate model and x_2 and x_3 are age and sex in the two-covariate model (independent variables being held constant for adjustment), and y is hand grip strength or chair stand test (dependent variable) (Cohen et al., 2003; Fernández-Castilla et al., 2019). All formulas and required data were entered manually and calculations were performed using Microsoft Excel (Version 16.16.22). A random-effects model was used due to heterogeneity between studies and results were visualized by forest plots. Heterogeneity was assessed using I² statistics; an I² value above 25% was considered as low, above 50% as moderate and above 75% as high heterogeneity. Funnel plots, depicting β coefficient against SE, were used for visual evaluation and Egger's regression test for statistical detection of publication bias (p<0.05 indicating publication bias) (Egger et al., 1997). Meta-analyses were performed in Comprehensive Meta-Analysis (CMA) software (Biostat, Englewood, New Jersey, United States).

3. Results

3.1 Search results and study characteristics

A total of 18,086 articles were identified and 9,660 were left after removal of duplicates. Full texts were assessed of 1,017 articles and 112 articles were included (Figure 1); all extracted data are provided in tables in Appendix C (Tables C1-5), which are synthesized in figures 2-4 and in figures in Appendix D (Figures D1-8). Included articles represent a total of 43,796 individuals (range across articles: 21 to 3,726) with an average of 56.4% female and the study populations' mean or median age ranged from 61.0 to 88.0 years. Sixty-two articles reported exclusively on community dwelling older adults or community-based samples from the general population. Other articles included community dwelling populations selected for specific disease (or health conditions) and included chronic obstructive pulmonary disorder (n=14), osteoarthritis (n=6), diabetes (n=3), limited mobility (n=3), any chronic disease (n=1), HIV (n=1), interstitial lung disease (n=1), peripheral artery disease (n=1), global cognitive impairment (n=1), aortic stenosis (n=1), stroke (n=1), chronic idiopathic axonal polyneuropathy (n=1), and polio (n=1). All articles reported cross-sectional associations except for four reporting longitudinal associations (Demeyer et al., 2019; Scott et al., 2011; Semanik et al., 2015; Yuki et al., 2019) (Table C1). According to the NOS scale, 81 out of 112 articles were high quality (Table C2).

3.2 Measures of physical activity and sedentary behavior

PA and SB were measured by use of an accelerometer in 92 of articles, while in 20 articles a pedometer was used. PA was expressed as number of steps (or walking duration), number of activity counts, TPA duration (or standing + walking duration, time on feet, and non-sedentary time), MVPA duration (or vigorous PA and moderate PA duration, individually), and SB was expressed as SB duration (or lying, sitting, basal activity, and inactive time). Intensity-based accelerometer measures were number of vector magnitude units (VMU), total

volume (metabolic equivalent tasks/hour), energy-expenditure (EE) (or physical activity level (PAL) (EE/sleeping metabolic rate)), and intensity gradient (intensity vs. time). Measures of PA and SB frequency and accumulation (bouts) were reported as number and duration of PA bouts, number of breaks in SB (BST), number of breaks per sedentary hour (SB break rate), number and duration of SB bouts, and number and duration of long SB bouts (Table C3).

3.3 Associations of PA and SB with muscle strength and muscle power

Table C4 describes muscle strength and muscle power measurement; Table C5 provides all associations, which are visualized by effect direction heat maps in Figure 2, Figure D1 and Figure D2; Figure 3 summarizes β s (median [IQR]) obtained from the albatross plots in Figure D3-7; and meta-analyses of adjusted β s are presented in Figure 4 with corresponding funnel plots in Figure D8.

3.3.1 Upper body muscle strength

Hand grip strength was reported in 41 articles. Higher TPA (median [IQR], β =0.100 [0.090-0.116]), MVPA (β =0.081 [0.059-0.125]), activity counts (β =0.082 [0.077-0.110]), LPA (β =0.066 [0.024-0.109]), steps (β =0.070 [-0.013-0.156]), and lower SB β =0.066 [0.044-0.092]) were associated with higher hand grip strength (Figure 3 and Figure D3). However, the association of steps and hand grip strength was inconsistent in direction of effect and significance (Figure 2). Positive associations were confirmed in the pooled meta-analysis of adjusted β s for the associations of TPA and hand grip strength including 10 articles representing 6,995 individuals (β =0.041, 95% CI: 0.017-0.065, p=0.001, I²=52.2); MVPA and hand grip strength including four articles representing 3,215 individuals (β =0.057, 95% CI: 0.024-0.090, p=0.001, I²=0.0) (Figure 4). Intensity-based accelerometer measures of PA were inconsistently associated with hand grip strength (Figure D1) and measures of PA and SB frequency and accumulation (bouts) were

not associated with hand grip strength (Figure D2). All PA/SB measures were associated with greater shoulder press strength; steps and activity counts were not associated with chest press strength (Figure 2).

3.3.2 Upper body muscle power

The number of arm curls completed within 30 seconds was reported in nine articles. Associations between higher steps and lower SB with arm curl were positive and significant, while associations of MVPA with arm curl were positive (β =0.077 [0.069-0.170]) but only significant in one out of four associations (Figure 2 and Figure 3). Activity counts were not associated with chest press power (Figure 2).

3.3.3 Lower body muscle strength

Knee extension strength was reported in 24 articles, leg press strength in seven, leg strength in six, knee flexion strength in four, knee extension torque in three, hip strength in one, toe grasping strength in one, and calf strength in one. Higher steps (β =0.244 [0.118-0.316]), MVPA (β =0.206 [0.175-0.386]), TPA (β =0.193 [0.160-0.250]), activity counts (β =0.207 [0.046-0.263]), and LPA (β =0.105 [0.040-0.234]) were associated with better lower body strength (Figure 3 and Figure D5). While the positive direction of effect of lower SB with better lower body muscle strength was consistent for all associations (β =0.140 [0.033-0.205]), results were only statistically significant in one of nine associations (Figure 2, Figure 3, and Figure D5). Intensity-based accelerometer measures, EE and VMU, were positively associated with lower body muscle strength, while MET was not (Figure D1)

3.3.4 Lower body muscle power

Chair stand tests were reported in 51 articles. Higher PA and lower SB were consistently associated with better chair stand test performance (Figure 2 and Figure D1), with the exception of measures of PA and SB frequency and accumulation (Figure D2). The largest effect size was identified for steps (β =0.277 [0.254, 0.348]) with chair stand test and followed

respectively by activity counts (β =0.225 [0.167-0.291]), MVPA (β =0.239 [0.145-0.326]), LPA (β =0.173 [0.0078-0.228]), and SB (β =0.169 [0.072-0.275]) (Figure 3 and Figure D6). Pooled adjusted β s of TPA and MVPA with chair stand test included ten articles representing 3,495 individuals and five articles representing 2,486 individuals, respectively and both TPA (β =0.199, 95% CI: 0.132-0.266, p=0.000, I²=61.21) and MVPA (β =0.211, 95% CI: 0.103-0.319, p=0.000, I²=80.00) were significantly associated with better chair stand test performance (Figure 3). Leg press power at varying percentages of an individual's 1RM and/or peak power was reported in five articles, and leg extensor power (Nottingham Power Rig), jumping power, the calf raise test (# of calf raises/30s), and the squat jump test were each reported in one article. Associations between PA and SB with these lower body muscle power measures were not consistently significant (Figure 2, Figure D1, Figure D2). The median magnitude of effect for MVPA and lower body muscle power (β =0.220 [0.125-0.269]) was consistent with that of chair stand test (Figure 3 and Figure D7).

3.3.5 Longitudinal associations

Seven articles reported longitudinal associations. Neither baseline nor change in PA was associated with changes with hand grip strength in two articles: non-significant associations were found between steps, MVPA, and SB, and change in steps with change in hand grip strength after 2.6 years in a COPD population (Demeyer et al., 2019) and non-significant associations were found between steps, LPA, and MVPA with development of low hand grip strength after 4.2 years in a community dwelling population (Yuki et al., 2019). Bidirectional positive associations of PA and lower body muscle strength were identified in three articles: a highly significant association was found between steps and change in leg strength over 2.6 years in females (B=1.06, 95% CI: 0.31, 1.31) but not males (B=-0.28, 95% CI: -1.27, 0.72) in a general population (Scott et al., 2011); a highly significant association was found between change in lower extremity strength after 4 years and the course of change in steps

over four different time points spanning a total follow-up of 4 years (B=-1782, 95% CI: -3348, -217) in a population with chronic idiopathic axonal polyneuropathy (van Oeijen et al., 2020); KES was associated with change after 1 year in MET and VMU (B=-0.001 (SE=6.00E-4) and B=-0.005 (SE=0.002), respectively), but not with steps or MVPA in a COPD population (Boutou et al., 2019). Two articles, including participants from the Osteoarthritis Initiative, showed a highly significant association between SB and change in chair stand test after 2 years (B=-0.58, 95% CI: -0.92, -0.24) (Semanik et al., 2015) in 1,659 participants but not for meeting guidelines for MVPA and change in chair stand test after 4 years 687 participants (Hopkins, 2019).

3.3.6 Influence of population

Stratification of the associations of PA/SB and muscle strength and muscle power by population showed similar distributions of effect directions, p-values, and β coefficients (Figures 2-4 and Figure D1-7).

3.3.7 Publication bias in meta-analyses

Funnel plots were visually evaluated and did not show asymmetry, indicating no evidence for the presence of publication bias in meta-analyses, except for a positive skew in the meta-analysis of TPA and hand grip strength. Egger's regression tests confirmed that no evidence for publication bias (all p>0.05) was present, except of the TPA and hand grip strength meta-analysis (p=0.000) (Figure D8).

4. Discussion

This systematic review highlights the association between higher PA and lower SB with greater skeletal muscle strength and muscle power. Specifically, strongest associations were with lower body muscle strength and muscle power, and evidence was most consistent for the performance of the chair stand test. The associations were independent of the population studied. Meta-analyses of adjusted associations confirmed these results for hand grip strength and chair stand test. Longitudinal findings indicated bidirectional associations between PA and SB with lower body muscle strength and SB with chair stand test, but, contrastingly, a lack thereof with hand grip strength. These findings were in line with cross-sectional results, which identified larger effect sizes and more frequently significant associations for lower body muscle strength and muscle power than hand grip strength.

Higher PA and lower SB, using various objective measures, were associated with greater muscle strength and muscle power. MVPA was the most often reported measure and often positively associated with muscle strength and muscle power, which was an anticipated finding as MVPA is a strong determinant and predictor of health outcomes (Adelnia et al., 2019; Hupin et al., 2015; Menai et al., 2017). The positive association of activity counts with muscle strength and muscle power is in accordance with our findings for MVPA, as higher activity counts reflect higher intensity. Additional positive associations identified for LPA and negative associations for SB with muscle strength and muscle power are important in light of the substantial amount of time older adults spend in these two behaviors (Amagasa et al., 2017; Arnardottir et al., 2017; Harvey et al., 2015). However, the relatively strongest effect sizes for all outcomes were with steps and TPA, suggesting that all levels of physical activity can contribute to the positive associations with muscle strength and muscle power.

Evidence for the association of higher PA and lower SB with greater hand grip strength was present for all measures, except for PA and SB bout measures, and was most

17

consistent for MVPA and activity counts. Hand grip strength is the most often used measure of muscle strength in clinical practice because of its practical advantages and clinical relevance (Beaudart et al., 2019; Reijnierse et al., 2017) and was also the most often reported measure in this review. Clear positive associations of MVPA and activity counts with hand grip strength can likely be explained by the incorporation for upper body muscle strength in high intensity PA. However, previous studies have cautioned the use of hand grip strength as a proxy for overall muscle strength and highlighted the need for lower body muscle strength measures (e.g. knee extension strength) as part of geriatric assessments (Yeung et al., 2018), which is in accordance with the present findings.

PA and SB were most associated with lower body muscle strength and muscle power measures, particularly, the performance of the chair stand test, which is a highly relevant finding given lower body muscle power, compared to muscle strength, is more important for activities of daily living (Foldvari et al., 2000; Wang et al., 2020) and thus the ability to remain living independently (Luppa et al., 2010; Mlinac and Feng, 2016). Muscle power is most affected by ageing with an annual decline of approximately 3% compared to muscle strength and muscle mass with annual decline of approximately 2% and 1%, respectively (Reid et al., 2014). Furthermore, lower body muscle strength and muscle power decline faster during ageing compared to upper body measures (Hughes et al., 2001). This supports our longitudinal findings that, bidirectionally, PA and SB are associated with lower body muscle strength. However, we identified inconsistent longitudinal results for chair stand test: in 1,659 participants from the Osteoarthritis Initiative, there was a highly significant association between SB and change in chair stand test over 2 years which persisted after additional adjustment for MVPA (Semanik et al., 2015); on the other hand, in 687 participants from the same cohort, meeting MVPA guidelines was not associated with better chair stand test at 4 years follow-up (Hopkins, 2019). While there were substantial differences in loss to follow

up in these two articles (13% vs. 64%, respectively), results may reiterate the distinction between PA and SB and indicate that, independent of MVPA, sedentary behavior is a stronger determinant of future muscle power than MVPA. This is an important finding given the increasing evidence of the distinct and deleterious effects of SB on future health status. This highlights the importance to design interventions to prevent or slow the decline in lower body muscle strength and power over time with consideration of differences between PA and SB.

Increasing habitual PA has well-established benefits to health (Bravata et al., 2007; Füzéki et al., 2017; Haider et al., 2019). However, inconclusive results on the ability of exercise interventions (structured PA) to improve muscle strength or muscle power have been reported (Clemson et al., 2012; Haider et al., 2019; Liu et al., 2014). Interventions to increase habitual PA in older adults typically include aerobic, balance and strength components. When these multicomponent interventions include resistance exercises, greater increases in muscle strength and muscle power are found (Ferreira et al., 2012; Liu et al., 2014). This is in line with the evidence that progressive resistance exercise training is very effective at increasing muscle strength and muscle power in older adults (Chodzko-Zajko et al., 2009; Guizelini et al., 2018; Straight et al., 2016). However, integrating exercise into lifestyle post-intervention remains a challenge and subsequently improvements in PA are often not sustained (McEwan et al., 2020; Sansano-Nadal et al., 2019). Behavioral change interventions that are complimentary to PA and SB behaviors in daily life, including strength activities such as squatting, lunging and wall sitting, may be more suitable than structured exercise interventions for long-term and sustainable increases in PA and maintenance of muscle strength and muscle power. These behavioral change interventions have been proven feasible in middle aged individuals (Schwenk et al., 2019; Taraldsen et al., 2019) and effective in

19

improving PA, muscle strength, and reducing the number of falls in older individuals (Clemson et al., 2012, 2010).

4.1 Strengths and limitations

To the best of our knowledge, this is the first systematic review summarizing the associations between objective measures of PA and SB with skeletal muscle strength and muscle power in older adults. The primary strength of this review is the broad array of PA, SB, muscle strength and muscle power measures included which led to a high number of articles included. The use of exclusively objective measures of PA and SB represents a strength of this review as questionnaires may not capture unstructured PA or LPA (i.e. shuffling) (Amagasa et al., 2017; Manns et al., 2012) and older adults are susceptible to overreport PA and under-report SB (Colbert et al., 2011; Dyrstad et al., 2014; Van Cauwenberg et al., 2014). However, it is important to acknowledge that objective measures of PA and SB are limited in their capacity to measure the mode or type of PA or SB including resistance loading during activities, which presents a limitation. Furthermore, the inclusion of diverse and disease populations strengthens the generalizability of our results, but a limitation was our inclusion of only English-language articles. We identified considerable heterogeneity in study design, measures of PA/SB and muscle strength and muscle power and their definitions and statistical analyses used to present the associations. This posed methodological challenges to comparing and synthesizing our results. Nonetheless, we were able to show standardized effect estimates in albatross plots for all associations. This also enhanced the synthesis by avoiding reliance on p-values which are heavily driven by sample size regardless of the magnitude of true underlying effects (Sullivan and Feinn, 2012). Furthermore, we performed a meta-analysis for included articles reporting adjusted standardized regression data that confirmed our overall results.

4.2 Implications

20

There is both a clinical and public health urgency to identify the degree to which PA and SB can affect health (Taylor, 2014). Given the consequences of low muscle strength and muscle power including increased risk of falls, disability, and mortality and the subsequent public health burden of their high prevalence worldwide (Borges et al., 2020; Manini and Clark, 2012; Mitchell et al., 2012), the current study has significant implications for policy making. This systematic review quantifies the relative impact of higher duration, intensity, and frequency of PA and lower SB on muscle strength and muscle power, and thus provides a foundation to inform interventions; absolute quantification is a priority for future lifestyle guidelines and the management of modifiable risk factors.

5. Conclusion

Higher PA and lower SB are associated with greater skeletal muscle strength and muscle power in older adults, particularly with the chair stand test. Future research should investigate habitual resistance exercise components, while increasing PA and decreasing SB, and seek to identify specific thresholds as actionable targets to maintain and improve skeletal muscle strength and muscle power.

6. Acknowledgements

We would like to thank Eva van de Rijt, Elvira Amaral Gomes, Waner Zhou, and Alec Tollev for their contributions to this project. We would also like to thank all members of the PANINI consortium: Anna C. Whittaker, School of Sport, Exercise & Rehabilitation Sciences, University of Birmingham, UK; Evans A. Asamane, School of Sport, Exercise & Rehabilitation Sciences, University of Birmingham, UK; Justin Aunger, School of Sport, Exercise & Rehabilitation Sciences, University of Birmingham, UK; Kally Bhartti, School of Sport, Exercise & Rehabilitation Science, University of Birmingham, UK; Maria Giulia Bacalini, Institute of Neurological Sciences (IRCCS), Bologna, Italy; Dmitriy Bondarev, Gerontology Research Center & Faculty of Sport and Health Sciences, University of Jyväskylä, Finland; Bart Bongers, Department of Epidemiology, Faculty of Health, Medicine and Life Sciences, Maastricht University, The Netherlands; Andrea Cabbia, Department of Biomedical Engineering, Eindhoven University of Technology, Netherlands; Massimo Delledonne, Personal Genomics, University of Verona, Italy; Paul Doody, School of Sport, Exercise & Rehabilitation Sciences, University of Birmingham, UK; Taija Finni, Neuromuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Finland; Claudio Franceschi, Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy; Paolo Garagnani, Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy; Noémie Gensous, Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy; Carolyn Greig, School of Sport, Exercise & Rehabilitation Sciences & MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research, University of Birmingham, UK; Peter Hilbers, Department of Biomedical Engineering, Eindhoven University of Technology, The Netherlands; Barbara Iadarola, Personal Genomics, University of Verona, Italy; Victor

23

Kallen, The Netherlands Organisation for Applied Scientific Research, The Netherlands; Katja Kokko, Gerontology Research Center & Faculty of Sport and Health Sciences, University of Jyväskylä, Finland; Anna Elisa Laria, Personal Genomics, University of Verona, Italy; Janet Lord, Institute of Inflammation and Ageing, Medical School & MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research, University of Birmingham, UK; Andrea B. Maier, Department of Human Movement Sciences, Amsterdam Movement Sciences, VU University Amsterdam, The Netherlands & Department of Medicine and Aged Care, Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia; Carel G.M. Meskers, Department of Rehabilitation Medicine, VU University Medical Center & Amsterdam Movement Sciences, Amsterdam, The Netherlands; Paola Pazienza, Personal Genomics, University of Verona, Italy; Esmee M. Reijnierse, Department of Medicine and Aged Care, Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia; Belina Rodrigues, School of Medicine, University of Minho, Portugal; Nadine Correia Santos, Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, and ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; Nuno Sousa, Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, and ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; Sarianna Sipila, Gerontology Research Center & Faculty of Sport and Health Sciences, University of Jyväskylä, Finland; Keenan A. Ramsey, Department of Human Movement Sciences, Amsterdam Movement Sciences, VU University Amsterdam, Muhammad Rizwan Tahir; The Netherlands Organisation for Applied Scientific Research, The Netherlands; Marijke C Trappenburg, Department of Internal Medicine, VU University Medical Center & Amstelland Hospital, The Netherlands; Janice L. Thompson, School of Sport, Exercise & Rehabilitation Sciences, University of Birmingham, UK; Nico van Meeteren, Health~Holland, The Hague, & Faculty of Health,

Medicine and Life Sciences, Maastricht University, The Netherlands; Natal van Riel, Department of Biomedical Engineering, Eindhoven University of Technology, The Netherlands; Suey Yeung, Department of Human Movement Sciences, Amsterdam Movement Sciences, VU University Amsterdam, The Netherlands.

7. Funding

This work was supported by the European Union's Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement [675003].

http://www.birmingham.ac.uk/panini

8. Declarations of interest:

None.

Appendix B: Newcastle-Ottawa Scale (NOS)

Newcastle-Ottawa Scale (NOS): adapted for cross-sectional and longitudinal studies

The NOS was adapted for cross-sectional and longitudinal studies, respectively, using the identical methods as the with the addition of two outcome criteria regarding follow-up for longitudinal studies. For cross-sectional studies (maximum score of 7 stars) a score greater than or equal to 4 is classified as high and less than 4 as low. For longitudinal studies (maximum score of 9 stars) a score greater than or equal to 5 is classified as high and a score less than 5 is classified as low quality.

Selection (max. 3 stars)

1. Representativeness of the sample: community-dwelling older adults

- a. Truly representative of sample population. Age, gender distribution, country, and kind of population is reported *
- b. Not representative based on factors mentioned above
- c. No description

2. Ascertainment of exposure: physical activity (PA)/sedentary behavior (SB)

- a. Ascertainment of all physical activity measures reported is clearly and described by name of device, location, and clear cut-off points are reported when appropriate *
- b. Methodological criteria of PA/SB data were clearly described and all of the following information: total wear time and assessment of valid days (mandatory hours/day and number of valid days) *
- c. No description

Comparability (max. 3 stars)

3. Comparability of cohorts on the basis of the design or analysis

- a. The study controls for the most important factors, age and sex, for at least one association *
- b. The study adjusted for other or additional factor, e.g. level of education, comorbidities, accelerometer wear time, physical activity for at least one association *
- c. No controlling for any factors
- d. No description
- 4. Statistical test: method of quantifying relationship of PA/SB and muscle strength/ power
 - a. The statistical test used to analyze the data is clearly described and appropriate and the measurement of the association is presented clearly including effect size with confidence intervals, p-value (unless p<0.001), or standard error for at least one association *
 - b. The statistical test is not appropriate or incomplete
 - c. No description

Outcome (max. 1 star for cross-sectional studies, 3 stars for longitudinal studies)

5. Assessment of outcome measure: muscle strength/muscle power

- a. Clear description of an established method for assessing muscle strength/muscle power with measurement device reported (if applicable) for all measures *
- b. No description

----- The following are additional criteria assessed for longitudinal studies only ------

6. Was follow-up long enough for outcome to occur?

- a. Yes \geq 3 months *
- b. No <3 months
- c. Not reported

7. Adequacy of follow-up of cohorts

- a. Complete follow up with all subjects accounted for or small number lost (<20 %) *
- b. Large number lost ($\geq 20\%$)
- c. Not reported

Note Quality was assessed for all articles as described regardless if hypothesized exposureoutcome were reversed (meaning if exposure was muscle strength/muscle power and outcome was PA/SB

References

- Abe, T., Mitsukawa, N., Thiebaud, R.S., Loenneke, J.P., Loftin, M., Ogawa, M., 2012. Lower body site-specific sarcopenia and accelerometer-determined moderate and vigorous physical activity: The HIREGASAKI study. Aging Clin. Exp. Res. 24, 657–662. https://doi.org/10.3275/8758
- Abe, T., Thiebaud, R.S., Loenneke, J.P., Mitsukawa, N., 2015. Association between toe grasping strength and accelerometer-determined physical activity in middle-aged and older women. J. Phys. Ther. Sci. 27, 1893–1897. https://doi.org/10.1589/jpts.27.1893
- Adelnia, F., Urbanek, J., Osawa, Y., Shardell, M., Brennan, N.A., Fishbein, K.W., Spencer,
 R.G., Simonsick, E.M., Schrack, J.A., Ferrucci, L., 2019. Moderate-to-Vigorous
 Physical Activity Is Associated With Higher Muscle Oxidative Capacity in Older
 Adults. J. Am. Geriatr. Soc. https://doi.org/10.1111/jgs.15991
- Aggio, D.A., Sartini, C., Papacosta, O., Lennon, L.T., Ash, S., Whincup, P.H.,
 Wannamethee, S.G., Jefferis, B.J., 2016. Cross-sectional associations of objectively
 measured physical activity and sedentary time with sarcopenia and sarcopenic obesity in
 older men. Prev. Med. (Baltim). 91, 264–272.
 https://doi.org/10.1016/j.ypmed.2016.08.040
- Alcazar, J., Rodriguez-Lopez, C., Ara, I., Alfaro-Acha, A., Rodríguez-Gómez, I., Navarro-Cruz, R., Losa-Reyna, J., García-García, F.J., Alegre, L.M., 2018. Force-velocity profiling in older adults: An adequate tool for the management of functional trajectories with aging. Exp. Gerontol. 108, 1–6. https://doi.org/10.1016/j.exger.2018.03.015
- Altman, D.G., Bland, J.M., 2011. Statistics notes: How to obtain the P value from a confidence interval. BMJ. https://doi.org/10.1136/bmj.d2304
- Alzahrani, M.A., Dean, C.M., Ada, L., Dorsch, S., Canning, C.G., 2012. Mood and Balance are Associated with Free-Living Physical Activity of People after Stroke Residing in the

community. Stroke Res. Treat. 2012, 1-8. https://doi.org/10.1155/2012/470648

- Amagasa, S., Fukushima, N., Kikuchi, H., Takamiya, T., Oka, K., Inoue, S., 2017. Light and sporadic physical activity overlooked by current guidelines makes older women more active than older men. Int. J. Behav. Nutr. Phys. Act. 14, 59. https://doi.org/10.1186/s12966-017-0519-6
- Andersson, M., Slinde, F., Grönberg, A., Svantesson, U., Janson, C., Emtner, M., 2013.
 Physical activity level and its clinical correlates in chronic obstructive pulmonary disease: a cross-sectional study. Respir. Res. 14, 128. https://doi.org/10.1186/1465-9921-14-128
- André, H.-I., Carnide, F., Moço, A., Valamatos, M.-J., Ramalho, F., Santos-Rocha, R.,
 Veloso, A., 2018. Can the calf-raise senior test predict functional fitness in elderly
 people? A validation study using electromyography, kinematics and strength tests. Phys.
 Ther. Sport 32, 252–259. https://doi.org/10.1016/j.ptsp.2018.05.012
- André, H., Carnide, F., Borja, E., Ramalho, F., Santos-Rocha, R., Veloso, A., 2016. Calfraise senior: a new test for assessment of plantar flexor muscle strength in older adults: protocol, validity, and reliability. Clin. Interv. Aging 11, 1661–1674. https://doi.org/10.2147/CIA.S115304
- Aoyagi, Y., Park, H., Watanabe, E., Park, S., Shephard, R.J., 2009. Habitual Physical Activity and Physical Fitness in Older Japanese Adults: The Nakanojo Study. Gerontology 55, 523–531. https://doi.org/10.1159/000236326
- Arnardottir, N.Y., Koster, A., Van Domelen, D.R., Brychta, R.J., Caserotti, P., Eiriksdottir, G., Sverrisdottir, J.E., Launer, L.J., Gudnason, V., Johannsson, E., Harris, T.B., Chen, K.Y., Sveinsson, T., 2013. Objective measurements of daily physical activity patterns and sedentary behaviour in older adults: Age, Gene/Environment Susceptibility-Reykjavik Study. Age Ageing 42, 222–229. https://doi.org/10.1093/ageing/afs160

Arnardottir, N.Y., Oskarsdottir, N.D., Brychta, R.J., Koster, A., van Domelen, D.R.,
Caserotti, P., Eiriksdottir, G., Sverrisdottir, J.E., Johannsson, E., Launer, L.J., Gudnason,
V., Harris, T.B., Chen, K.Y., Sveinsson, T., 2017. Comparison of Summer and Winter
Objectively Measured Physical Activity and Sedentary Behavior in Older Adults: Age,
Gene/Environment Susceptibility Reykjavik Study. Int. J. Environ. Res. Public Health
14, 1268. https://doi.org/10.3390/ijerph14101268

- Ashe, M.C., Eng, J.J., Mller, W.C., SOON, J.A., 2007. Disparity between Physical Capacity and Participation in Seniors with Chronic Disease. Med. Sci. Sport. Exerc. 39, 1139– 1146. https://doi.org/10.1249/mss.0b013e31804d2417
- Ashe, M.C., Liu-Ambrose, T.Y.L., Cooper, D.M.L., Khan, K.M., McKay, H.A., 2008. Muscle power is related to tibial bone strength in older women. Osteoporos. Int. 19, 1725–1732. https://doi.org/10.1007/s00198-008-0655-6
- Aubertin-Leheudre, M., Anton, S., Beavers, D.P., Manini, T.M., Fielding, R., Newman, A., Church, T., Kritchevsky, S.B., Conroy, D., McDermott, M.M., Botoseneanu, A., Hauser, M.E., Pahor, M., Gill, T., Fragoso, C., Fielding, R., Hauser, M.E., Pahor, M., Guralnik, J.M., Leeuwenburgh, C., Caudle, C., Crump, L., Holmes, L., Lee, J., Lu, C. ju, Miller, M.E., Espeland, M.A., Ambrosius, W.T., Applegate, W., Beavers, D.P., Byington, R.P., Cook, D., Furberg, C.D., Harvin, L.N., Henkin, L., Hepler, M.J., Hsu, F.C., Lovato, L., Roberson, W., Rushing, J., Rushing, S., Stowe, C.L., Walkup, M.P., Hire, D., Rejeski, W.J., Katula, J.A., Brubaker, P.H., Mihalko, S.L., Jennings, J.M., Hadley, E.C., Romashkan, S., Patel, K. V., Bonds, D., McDermott, M.M., Spring, B., Hauser, J., Kerwin, D., Domanchuk, K., Graff, R., Rego, A., Church, T.S., Blair, S.N., Myers, V.H., Monce, R., Britt, N.E., Harris, M.N., McGucken, A.P., Rodarte, R., Millet, H.K., Tudor-Locke, C., Butitta, B.P., Donatto, S.G., Cocreham, S.H., King, A.C., Castro, C.M., Haskell, W.L., Stafford, R.S., Pruitt, L.A., Berra, K., Yank, V., Fielding, R.A.,

- Nelson, M.E., Folta, S.C., Phillips, E.M., Liu, C.K., McDavitt, E.C., Reid, K.F., Kirn,
- D.R., Pasha, E.P., Kim, W.S., Beard, V.E., Tsiroyannis, E.X., Hau, C., Manini, T.M.,
- Pahor, M., Anton, S.D., Nayfield, S., Buford, T.W., Marsiske, M., Sandesara, B.D.,
- Knaggs, J.D., Lorow, M.S., Marena, W.C., Korytov, I., Morris, H.L., Fitch, M.,
- Singletary, F.F., Causer, J., Radcliff, K.A., Newman, A.B., Studenski, S.A., Goodpaster,
- B.H., Glynn, N.W., Lopez, O., Nadkarni, N.K., Williams, K., Newman, M.A., Grove,
- G., Bonk, J.T., Rush, J., Kost, P., Ives, D.G., Kritchevsky, S.B., Marsh, A.P., Brinkley,
- T.E., Demons, J.S., Sink, K.M., Kennedy, K., Shertzer-Skinner, R., Wrights, A., Fries,
- R., Barr, D., Gill, T.M., Axtell, R.S., Kashaf, S.S., de Rekeneire, N., McGloin, J.M.,
- Wu, K.C., Shepard, D.M., Fennelly, B., Iannone, L.P., Mautner, R., Barnett, T.S.,
- Halpin, S.N., Brennan, M.J., Bugaj, J.A., Zenoni, M.A., Mignosa, B.M., Williamson, J.,
- Sink, K.M., Hendrie, H.C., Rapp, S.R., Verghese, J., Woolard, N., Espeland, M.,
- Jennings, J., Wilson, V.K., Pepine, C.J., Ariet, M., Handberg, E., Deluca, D., Hill, J.,
- Szady, A., Chupp, G.L., Flynn, G.M., Gill, T.M., Hankinson, J.L., Vaz Fragoso, C.A.,
- Groessl, E.J., Kaplan, R.M., 2017. Dynapenia and Metabolic Health in Obese and Nonobese Adults Aged 70 Years and Older: The LIFE Study. J. Am. Med. Dir. Assoc. 18, 312–319. https://doi.org/10.1016/j.jamda.2016.10.001
- Balducci, S., D'Errico, V., Haxhi, J., Sacchetti, M., Orlando, G., Cardelli, P., Di Biase, N.,
 Bollanti, L., Conti, F., Zanuso, S., Nicolucci, A., Pugliese, G., 2017. Level and
 correlates of physical activity and sedentary behavior in patients with type 2 diabetes: A
 cross-sectional analysis of the Italian Diabetes and Exercise Study_2. PLoS One 12,
 e0173337. https://doi.org/10.1371/journal.pone.0173337
- Bann, D., Hire, D., Manini, T., Cooper, R., Botoseneanu, A., McDermott, M.M., Pahor, M.,Glynn, N.W., Fielding, R., King, A.C., Church, T., Ambrosius, W.T., Gill, T., 2015.Light Intensity Physical Activity and Sedentary Behavior in Relation to Body Mass

Index and Grip Strength in Older Adults: Cross-Sectional Findings from the Lifestyle Interventions and Independence for Elders (LIFE) Study. PLoS One 10, e0116058. https://doi.org/10.1371/journal.pone.0116058

- Barbat-Artigas, S., Plouffe, S., Dupontgand, S., Aubertin-Leheudre, M., 2012. Is functional capacity related to the daily amount of steps in postmenopausal women? Menopause 19, 541–548. https://doi.org/10.1097/gme.0b013e318238ef09
- Bartlett, D.B., Duggal, N.A., 2020. Moderate physical activity associated with a higher naïve/memory T-cell ratio in healthy old individuals: potential role of IL15. Age Ageing 49, 368–373. https://doi.org/10.1093/ageing/afaa035
- Bassey, E.J., Bendall, M.J., Pearson, M., 1988. Muscle strength in the triceps surae and objectively measured customary walking activity in men and women over 65 years of age. Clin. Sci. 74, 85–89. https://doi.org/10.1042/cs0740085
- Beaudart, C., Rolland, Y., Cruz-Jentoft, A.J., Bauer, J.M., Sieber, C., Cooper, C., Al-Daghri, N., Araujo de Carvalho, I., Bautmans, I., Bernabei, R., Bruyère, O., Cesari, M., Cherubini, A., Dawson-Hughes, B., Kanis, J.A., Kaufman, J.M., Landi, F., Maggi, S., McCloskey, E., Petermans, J., Rodriguez Mañas, L., Reginster, J.Y., Roller-Wirnsberger, R., Schaap, L.A., Uebelhart, D., Rizzoli, R., Fielding, R.A., 2019.
 Assessment of Muscle Function and Physical Performance in Daily Clinical Practice: A position paper endorsed by the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO). Calcif. Tissue Int. 105, 1–14. https://doi.org/10.1007/s00223-019-00545-w
- Beenakker, K.G.M., Ling, C.H., Meskers, C.G.M., de Craen, A.J.M., Stijnen, T., Westendorp, R.G.J., Maier, A.B., 2010. Patterns of muscle strength loss with age in the general population and patients with a chronic inflammatory state. Ageing Res. Rev. https://doi.org/10.1016/j.arr.2010.05.005

- Bogucka, A., Kopiczko, A., Głębocka, A., 2018. The effects of selected lifestyle components on the risk of developing dynapenia in women – a pilot study. Anthropol. Rev. 81, 289– 297. https://doi.org/10.2478/anre-2018-0023
- Bollaert, R.E., Motl, R.W., 2019. Physical and Cognitive Functions, Physical Activity, and Sedentary Behavior in Older Adults With Multiple Sclerosis. J. Geriatr. Phys. Ther. 42, 304–312. https://doi.org/10.1519/JPT.000000000000163
- Borges, V.S., Lima-Costa, M.F.F., Andrade, F.B. de, 2020. A nationwide study on prevalence and factors associated with dynapenia in older adults: ELSI-Brazil. Cad. Saude Publica 36. https://doi.org/10.1590/0102-311x00107319
- Boutou, A.K., Raste, Y., Demeyer, H., Troosters, T., Polkey, M.I., Vogiatzis, I., Louvaris, Z., Rabinovich, R.A., van der Molen, T., Garcia-Aymerich, J., Hopkinson, N.S., 2019.
 Progression of physical inactivity in COPD patients: the effect of time and climate conditions a multicenter prospective cohort study. Int. J. Chron. Obstruct. Pulmon. Dis. Volume 14, 1979–1992. https://doi.org/10.2147/COPD.S208826
- Bravata, D.M., Smith-Spangler, C., Sundaram, V., Gienger, A.L., Lin, N., Lewis, R., Stave, C.D., Olkin, I., Sirard, J.R., 2007. Using Pedometers to Increase Physical Activity and Improve Health. JAMA 298, 2296. https://doi.org/10.1001/jama.298.19.2296
- Campbell, M., McKenzie, J.E., Sowden, A., Katikireddi, S.V., Brennan, S.E., Ellis, S.,
 Hartmann-Boyce, J., Ryan, R., Shepperd, S., Thomas, J., Welch, V., Thomson, H., 2020.
 Synthesis without meta-analysis (SWiM) in systematic reviews: Reporting guideline.
 BMJ 368, 1–6. https://doi.org/10.1136/bmj.16890
- Carrasco Poyatos, M., Navarro Sánchez, M.D., Martínez González-Moro, I., Reche Orenes,
 D., 2016. Daily physical activity impact in old women bone density and grip strength.
 Nutr. Hosp. 33, 1305–1311. https://doi.org/10.20960/nh.775

Caspersen, C.J., Powell, K.E., Christenson, G.M., 1985. Physical Activity, Exercise and

Physical Fitness Definitions for Health-Related Research. Public Health Rep.

- Chastin, S.F.M., Ferriolli, E., Stephens, N.A., Fearon, K.C.H., Greig, C., 2012. Relationship between sedentary behaviour, physical activity, muscle quality and body composition in healthy older adults. Age Ageing 41, 111–114. https://doi.org/10.1093/ageing/afr075
- Chmelo, E., Nicklas, B., Davis, C., Miller, G.D., Legault, C., Messier, S., 8AD. Physical activity and physical function in older adults with knee osteoarthritis. J Phys Act. Heal. 10, 777–783.
- Chodzko-Zajko, W.J., Proctor, D.N., Fiatarone Singh, M.A., Minson, C.T., Nigg, C.R., Salem, G.J., Skinner, J.S., 2009. Exercise and physical activity for older adults. Med. Sci. Sports Exerc. 41, 1510–1530. https://doi.org/10.1249/MSS.0b013e3181a0c95c
- Clemson, L., Fiatarone Singh, M.A., Bundy, A., Cumming, R.G., Manollaras, K., O'Loughlin, P., Black, D., 2012. Integration of balance and strength training into daily life activity to reduce rate of falls in older people (the LiFE study): Randomised parallel trial. BMJ 345, 1–15. https://doi.org/10.1136/bmj.e4547
- Clemson, L., Singh, M.F., Bundy, A., Cumming, R.G., Weissel, E., Munro, J., Manollaras, K., Black, D., 2010. LiFE Pilot Study: A randomised trial of balance and strength training embedded in daily life activity to reduce falls in older adults. Aust. Occup. Ther. J. 57, 42–50. https://doi.org/10.1111/j.1440-1630.2009.00848.x
- Cochrane Handbook for Systematic Reviews of Interventions, 2019. , Cochrane Handbook for Systematic Reviews of Interventions. https://doi.org/10.1002/9781119536604
- Cohen, J., Cohen, P., West, S.G., Aiken, L.S., 2003. Applied multiple regression/correlation analysis for the behavioral sciences, 3rd ed., Applied multiple regression/correlation analysis for the behavioral sciences, 3rd ed. Lawrence Erlbaum Associates Publishers, Mahwah, NJ, US.
- Colbert, L.H., Matthews, C.E., Havighurst, T.C., Kim, K., Schoeller, D.A., 2011.

Comparative validity of physical activity measures in older adults. Med. Sci. Sports Exerc. 43, 867–876. https://doi.org/10.1249/MSS.0b013e3181fc7162

Cooper, A.J.M., Simmons, R.K., Kuh, D., Brage, S., Cooper, R., Hardy, R., Pierce, M., Richards, M., Abington, J., Wong, A., Adams, J.E., Machin, M., Stephens, A.M., Bonar, K., Bryant, S., Cole, D., Nip, W., Ambrosini, G., Pellerin, D., Chaturvedi, N., Hughes, A., Ghosh, A., March, K., Macfarlane, P., Inglis, L., Friberg, P., Osika, W., Ekelund, U., Mayle, S., Westgate, K., Deanfield, J., Donald, A., Kok, S., Masi, S., Phalora, R., Woodside, J., Bruce, I., Harwood, N., Oughton, E., Chapman, A., Khattar, R.S., Nair, S.B., Franklyn, J., Palmer, S., Boardman, K., Crabtree, N., Clements, R., Suvari, M., Steeds, R., Craig, K., Howard, E., Morley, T., Scanlon, M., Petit, R., Evans, W., Fraser, A., Edwards, J., Reece, E., Newby, D., Marshall, F., Hannan, J., Miller, C., White, A., MacAllister, R., Harris, J., Singzon, R., Ell, P., Townsend, C., Demetrescu, C., Chowienczyk, P., Darroch, P., McNeill, K., Spector, T., Clements, G., Jiang, B., Lessof, C., Cheshire, H., 2015. Physical activity, sedentary time and physical capability in early old age: British birth cohort study. PLoS One 10, 1–14. https://doi.org/10.1371/journal.pone.0126465

- Cunningham, C., O' Sullivan, R., Caserotti, P., Tully, M.A., 2020. Consequences of physical inactivity in older adults: A systematic review of reviews and meta-analyses. Scand. J. Med. Sci. Sports 1–12. https://doi.org/10.1111/sms.13616
- Davis, M.G., Fox, K.R., Stathi, A., Trayers, T., Thompson, J.L., Cooper, A.R., 2014.
 Objectively Measured Sedentary Time and its Association With Physical Function in
 Older Adults. J. Aging Phys. Act. 22, 474–481. https://doi.org/10.1123/JAPA.2013-0042
- de Melo, L.L., Menec, V., Porter, M.M., Ready, A.E., 2010. Personal Factors, Perceived Environment, and Objectively Measured Walking in Old Age. J. Aging Phys. Act. 18,

280-292. https://doi.org/10.1123/japa.18.3.280

- de Melo, L.L., Menec, V.H., Ready, A.E., 2014. Relationship of Functional Fitness With Daily Steps in Community-Dwelling Older Adults. J. Geriatr. Phys. Ther. 37, 116–120. https://doi.org/10.1519/JPT.0b013e3182abe75f
- Demeyer, H., Donaire-Gonzalez, D., Gimeno-Santos, E., Ramon, M.A., De Battle, J., Benet, M., Serra, I., Guerra, S., Farrero, E., Rodriguez, E., Ferrer, J., Sauleda, J., Monso, E., Gea, J., Rodriguez-Roisin, R., Agusti, A., Antó, J.M., Garcia-Aymerich, J., 2019.
 Physical Activity Is Associated with Attenuated Disease Progression in Chronic Obstructive Pulmonary Disease. Med. Sci. Sport. Exerc. 51, 833–840.
 https://doi.org/10.1249/MSS.000000000001859
- Distefano, G., Standley, R.A., Zhang, X., Carnero, E.A., Yi, F., Cornnell, H.H., Coen, P.M., 2018. Physical activity unveils the relationship between mitochondrial energetics, muscle quality, and physical function in older adults. J. Cachexia. Sarcopenia Muscle 9, 279–294. https://doi.org/10.1002/jcsm.12272
- Dogra, S., Clarke, J.M., Copeland, J.L., 2017. Prolonged sedentary time and physical fitness among Canadian men and women aged 60 to 69. Heal. reports 28, 3–9.
- Dohrn, I.-M., Gardiner, P.A., Winkler, E., Welmer, A.-K., 2020. Device-measured sedentary behavior and physical activity in older adults differ by demographic and health-related factors. Eur. Rev. Aging Phys. Act. 17, 8. https://doi.org/10.1186/s11556-020-00241-x
- Dos Santos, V.R., Diniz, T.A., Batista, V.C., Freitas, I.F., Gobbo, L.A., 2019. Practice of physical activity and dysmobility syndrome in community-dwelling older adults. J. Exerc. Rehabil. 15, 294–301. https://doi.org/10.12965/jer.1938034.017
- Duncan, M.J., Minatto, G., Wright, S.L., 2016. Dose-response between pedometer assessed physical activity, functional fitness, and fatness in healthy adults aged 50-80 years. Am.J. Hum. Biol. 28, 890–894. https://doi.org/10.1002/ajhb.22884

- Dyrstad, S.M., Hansen, B.H., Holme, I.M., Anderssen, S.A., 2014. Comparison of selfreported versus accelerometer-measured physical activity. Med. Sci. Sports Exerc. 46, 99–106. https://doi.org/10.1249/MSS.0b013e3182a0595f
- Edholm, P., Nilsson, A., Kadi, F., 2019. Physical function in older adults: Impacts of past and present physical activity behaviors. Scand. J. Med. Sci. Sports 29, 415–421. https://doi.org/10.1111/sms.13350
- Egger, M., Smith, G.D., Schneider, M., Minder, C., 1997. Bias in meta-analysis detected by a simple, graphical test. Br. Med. J. https://doi.org/10.1136/bmj.316.7129.469
- Fernández-Castilla, B., Aloe, A.M., Declercq, L., Jamshidi, L., Onghena, P., Natasha Beretvas, S., Van den Noortgate, W., 2019. Concealed correlations meta-analysis: A new method for synthesizing standardized regression coefficients. Behav. Res. Methods 51, 316–331. https://doi.org/10.3758/s13428-018-1123-7
- Ferreira, M.L., Sherrington, C., Smith, K., Carswell, P., Bell, R., Bell, M., Nascimento, D.P., Máximo Pereira, L.S., Vardon, P., 2012. Physical activity improves strength, balance and endurance in adults aged 40-65 years: A systematic review. J. Physiother. 58, 145– 156. https://doi.org/10.1016/S1836-9553(12)70105-4
- Foldvari, M., Clark, M., Laviolette, L.C., Bernstein, M.A., Kaliton, D., Castaneda, C., Pu, C.T., Hausdorff, J.M., Fielding, R.A., Singh, M.A.F., 2000. Association of Muscle Power With Functional Status in Community-Dwelling Elderly Women. Journals Gerontol. Ser. A Biol. Sci. Med. Sci. 55, M192–M199.
 https://doi.org/10.1093/gerona/55.4.M192
- Foong, Y.C., Chherawala, N., Aitken, D., Scott, D., Winzenberg, T., Jones, G., 2016. Accelerometer-determined physical activity, muscle mass, and leg strength in community-dwelling older adults. J. Cachexia. Sarcopenia Muscle 7, 275–283. https://doi.org/10.1002/jcsm.12065

- Fornias, L., Rodrigues, M., Rey-López, J., Keihan, V., Carmo, O., 2014. Sedentary Behavior and Health Outcomes: An Overview of Systematic Reviews. PLoS One 9, 105620. https://doi.org/10.1371/journal.pone.0105620
- Füzéki, E., Engeroff, T., Banzer, W., 2017. Health Benefits of Light-Intensity Physical Activity: A Systematic Review of Accelerometer Data of the National Health and Nutrition Examination Survey (NHANES). Sport. Med. 47, 1769–1793. https://doi.org/10.1007/s40279-017-0724-0
- Gennuso, K.P., Thraen-Borowski, K.M., Gangnon, R.E., Colbert, L.H., 2016. Patterns of sedentary behavior and physical function in older adults. Aging Clin. Exp. Res. 28, 943– 950. https://doi.org/10.1007/s40520-015-0386-4
- Gerdhem, P., Dencker, M., Ringsberg, K., Åkesson, K., 2007. Accelerometer-measured daily physical activity among octogenerians: results and associations to other indices of physical performance and bone density. Eur. J. Appl. Physiol. 102, 173–180. https://doi.org/10.1007/s00421-007-0571-z
- Guizelini, P.C., de Aguiar, R.A., Denadai, B.S., Caputo, F., Greco, C.C., 2018. Effect of resistance training on muscle strength and rate of force development in healthy older adults: A systematic review and meta-analysis. Exp. Gerontol. 102, 51–58. https://doi.org/10.1016/j.exger.2017.11.020
- Haider, S., Grabovac, I., Dorner, T.E., 2019. Effects of physical activity interventions in frail and prefrail community-dwelling people on frailty status, muscle strength, physical performance and muscle mass—a narrative review. Wien. Klin. Wochenschr. 131, 244– 254. https://doi.org/10.1007/s00508-019-1484-7
- Hall, K.S., Cohen, H.J., Pieper, C.F., Fillenbaum, G.G., Kraus, W.E., Huffman, K.M.,Cornish, M.A., Shiloh, A., Flynn, C., Sloane, R., Newby, L.K., Morey, M.C., 2016.Physical Performance Across the Adult Life Span: Correlates With Age and Physical

Activity. Journals Gerontol. Ser. A Biol. Sci. Med. Sci. 72, glw120.

https://doi.org/10.1093/gerona/glw120

- Harada, Kazuhiro, Lee, Sangyoon, Lee, Sungchul, Bae, S., Harada, Kenji, Suzuki, T.,
 Shimada, H., 2016. Objectively-measured outdoor time and physical and psychological function among older adults. Geriatr. Gerontol. Int. 17, 1455–1462.
 https://doi.org/10.1111/ggi.12895
- Harrison, S., Jones, H.E., Martin, R.M., Lewis, S.J., Higgins, J.P.T., 2017. The albatross plot:
 A novel graphical tool for presenting results of diversely reported studies in a systematic review. Res. Synth. Methods 8, 281–289. https://doi.org/10.1002/jrsm.1239
- Hartley, A., Gregson, C.L., Hannam, K., Deere, K.C., Clark, E.M., Tobias, J.H., 2018.
 Sarcopenia Is Negatively Related to High Gravitational Impacts Achieved From Day-today Physical Activity. Journals Gerontol. Ser. A 73, 652–659.
 https://doi.org/10.1093/gerona/glx223
- Harvey, J.A., Chastin, S.F.M., Skelton, D.A., 2015. How sedentary are older people? A systematic review of the amount of sedentary behavior. J. Aging Phys. Act. 23, 471–487. https://doi.org/10.1123/japa.2014-0164
- Hasegawa, J., Suzuki, H., Yamauchi, T., 2018. Impact of season on the association between muscle strength/volume and physical activity among communitydwelling elderly people living in snowy-cold regions. J. Physiol. Anthropol. 37, 1–6. https://doi.org/10.1186/s40101-018-0186-6
- Hernandes, N.A., Probst, V.S., Silva Jr, R.A. Da, Januário, R.S.B., Pitta, F., Teixeira, D.C., 2013. Physical activity in daily life in physically independent elderly participating in community-based exercise program. Brazilian J. Phys. Ther. 17, 57–63. https://doi.org/10.1590/s1413-35552012005000055

Hernández, M., Zambom-Ferraresi, F., Cebollero, P., Hueto, J., Cascante, J.A., Antón, M.M.,

2017. The Relationships Between Muscle Power and Physical Activity in Older Men With Chronic Obstructive Pulmonary Disease. J. Aging Phys. Act. 25, 360–366. https://doi.org/10.1123/japa.2016-0144

- Hopkins, C., 2019. Physical Activity and Future Physical Function: Data From the Osteoarthritis Initiative. J. Aging Phys. Act. 27, 367–370.https://doi.org/10.1123/japa.2018-0136
- Hughes, V.A., Frontera, W.R., Wood, M., Evans, W.J., Dallal, G.E., Roubenoff, R.,
 Fiatarone Singh, M.A., 2001. Longitudinal muscle strength changes in older adults:
 Influence of muscle mass, physical activity, and health. Journals Gerontol. Ser. A Biol.
 Sci. Med. Sci. 56, 209–217. https://doi.org/10.1093/gerona/56.5.B209
- Hupin, D., Roche, F., Gremeaux, V., Chatard, J.C., Oriol, M., Gaspoz, J.M., Barthélémy, J.C., Edouard, P., 2015. Even a low-dose of moderate-to-vigorous physical activity reduces mortality by 22% in adults aged ≥60 years: A systematic review and meta-analysis. Br. J. Sports Med. https://doi.org/10.1136/bjsports-2014-094306
- Iijima, H., Fukutani, N., Isho, T., Yamamoto, Y., Hiraoka, M., Miyanobu, K., Jinnouchi, M., Kaneda, E., Aoyama, T., Kuroki, H., Matsuda, S., 2017. Relationship Between
 Pedometer-Based Physical Activity and Physical Function in Patients With
 Osteoarthritis of the Knee: A Cross-Sectional Study. Arch. Phys. Med. Rehabil. 98, 1382-1388.e4. https://doi.org/10.1016/j.apmr.2016.12.021
- Ikenaga, M., Yamada, Y., Takeda, N., Kimura, M., Higaki, Y., Tanaka, H., Kiyonaga, A., Nakagawa Study Group, 2014. Dynapenia, gait speed and daily physical activity measured using triaxial accelerometer in older Japanese men. J. Phys. Fit. Sport. Med. 3, 147–154. https://doi.org/10.7600/jpfsm.3.147
- Iwakura, M., Okura, K., Shibata, K., Kawagoshi, A., Sugawara, K., Takahashi, H., Shioya,T., 2016. Relationship between balance and physical activity measured by an activity

monitor in elderly COPD patients. Int. J. Chron. Obstruct. Pulmon. Dis. Volume 11, 1505–1514. https://doi.org/10.2147/COPD.S107936

- Jantunen, H., Wasenius, N., Salonen, M.K., Perälä, M.M., Osmond, C., Kautiainen, H., Simonen, M., Pohjolainen, P., Kajantie, E., Rantanen, T., Von Bonsdorff, M.B., Eriksson, J.G., 2017. Objectively measured physical activity and physical performance in old age. Age Ageing 46, 232–237. https://doi.org/10.1093/ageing/afw194
- Jeong, J.N., Kim, S.H., Park, K.N., 2019. Relationship between objectively measured lifestyle factors and health factors in patients with knee osteoarthritis: The STROBE Study. Medicine (Baltimore). 98, e16060. https://doi.org/10.1097/MD.00000000016060
- Johnson, L.G., Butson, M.L., Polman, R.C., Raj, I.S., Borkoles, E., Scott, D., Aitken, D., Jones, G., 2016. Light physical activity is positively associated with cognitive performance in older community dwelling adults. J. Sci. Med. Sport 19, 877–882. https://doi.org/10.1016/j.jsams.2016.02.002
- Katzmarzyk, P.T., Craig, C.L., 2002. Musculoskeletal fitness and risk of mortality. Med. Sci. Sports Exerc. 34, 740–744. https://doi.org/10.1097/00005768-200205000-00002
- Kawagoshi, A., Kiyokawa, N., Sugawara, K., Takahashi, H., Sakata, S., Miura, S.,
 Sawamura, S., Satake, M., Shioya, T., 2013. Quantitative assessment of walking time and postural change in patients with COPD using a new triaxial accelerometer system.
 Int. J. COPD 8, 397–404. https://doi.org/10.2147/COPD.S49491
- Keevil, V.L., Cooper, A.J.M., Wijndaele, K., Luben, R., Wareham, N.J., Brage, S., Khaw,
 K.-T., 2016. Objective Sedentary Time, Moderate-to-Vigorous Physical Activity, and
 Physical Capability in a British Cohort. Med. Sci. Sport. Exerc. 48, 421–429.
 https://doi.org/10.1249/MSS.0000000000000785

Kim, M., 2015. Isotemporal Substitution Analysis of Accelerometer-derived Sedentary

Behavior, Physical Activity Time, and Physical Function in Older Women: A Preliminary Study. Exerc. Sci. 24, 373–381. https://doi.org/10.15857/ksep.2015.24.4.373

- Kim, M., Yoshida, H., Sasai, H., Kojima, N., Kim, H., 2015. Association between objectively measured sleep quality and physical function among community-dwelling oldest old Japanese: A cross-sectional study. Geriatr. Gerontol. Int. 15, 1040–1048. https://doi.org/10.1111/ggi.12396
- Lai, T.-F., Lin, C.-Y., Chou, C.-C., Huang, W.-C., Hsueh, M.-C., Park, J.-H., Liao, Y., 2020.
 Independent and Joint Associations of Physical Activity and Dietary Behavior with
 Older Adults' Lower Limb Strength. Nutrients 12, 443.
 https://doi.org/10.3390/nu12020443
- Lee, I.-M., Shiroma, E.J., 2014. Using accelerometers to measure physical activity in largescale epidemiological studies: issues and challenges. Br. J. Sports Med. 48, 197–201. https://doi.org/10.1136/bjsports-2013-093154
- Lee, J., Chang, R.W., Ehrlich-Jones, L., Kwoh, C.K., Nevitt, M., Semanik, P.A., Sharma, L., Sohn, M.W., Song, J., Dunlop, D.D., 2015. Sedentary behavior and physical function:
 Objective evidence from the osteoarthritis initiative. Arthritis Care Res. 67, 366–373. https://doi.org/10.1002/acr.22432
- Lerma, N.L., Cho, C.C., Swartz, A.M., Miller, N.E., Keenan, K.G., Strath, S.J., 2018.
 Isotemporal Substitution of Sedentary Behavior and Physical Activity on Function.
 Med. Sci. Sport. Exerc. 50, 792–800. https://doi.org/10.1249/MSS.00000000001491
- Liao, Y., Hsu, H.H., Shibata, A., Ishii, K., Koohsari, M.J., Oka, K., 2018. Associations of total amount and patterns of objectively measured sedentary behavior with performancebased physical function. Prev. Med. Reports 12, 128–134. https://doi.org/10.1016/j.pmedr.2018.09.007

- Liberati, A., Altman, D.G., Tetzlaff, J., Mulrow, C., Gotzsche, P.C., Ioannidis, J.P.A., Clarke, M., Devereaux, P.J., Kleijnen, J., Moher, D., 2009. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 339, b2700–b2700. https://doi.org/10.1136/bmj.b2700
- Ling, C.H.Y., Taekema, D., De Craen, A.J.M., Gussekloo, J., Westendorp, R.G.J., Maier, A.B., 2010. Handgrip strength and mortality in the oldest old population: The Leiden 85-plus study. Cmaj 182, 429–435. https://doi.org/10.1503/cmaj.091278
- Liu, C., Shiroy, D.M., Jones, L.Y., Clark, D.O., 2014. Systematic review of functional training on muscle strength, physical functioning, and activities of daily living in older adults. Eur. Rev. Aging Phys. Act. 11, 95–106. https://doi.org/10.1007/s11556-014-0144-1
- Lohne-Seiler, H., Hansen, B.H., Kolle, E., Anderssen, S.A., 2014. Accelerometer-determined physical activity and self-reported health in a population of older adults (65–85 years): a cross-sectional study. BMC Public Health 14, 284. https://doi.org/10.1186/1471-2458-14-284
- Lohne-Seiler, H., Kolle, E., Anderssen, S.A., Hansen, B.H., 2016. Musculoskeletal fitness and balance in older individuals (65–85 years) and its association with steps per day: a cross sectional study. BMC Geriatr. 16, 6. https://doi.org/10.1186/s12877-016-0188-3
- Luppa, M., Luck, T., Weyerer, S., Konig, H.-H., Brahler, E., Riedel-Heller, S.G., 2010. Prediction of institutionalization in the elderly. A systematic review. Age Ageing 39, 31–38. https://doi.org/10.1093/ageing/afp202
- Mador, M.J., Patel, A.N., Nadler, J., 2011. Effects of Pulmonary Rehabilitation on Activity Levels in Patients With Chronic Obstructive Pulmonary Disease. J. Cardiopulm.
 Rehabil. Prev. 31, 52–59. https://doi.org/10.1097/HCR.0b013e3181ebf2ef

Mañas, A., del Pozo-Cruz, B., García-García, F.J., Guadalupe-Grau, A., Ara, I., 2017. Role

of objectively measured sedentary behaviour in physical performance, frailty and mortality among older adults: A short systematic review. Eur. J. Sport Sci. 17, 940–953. https://doi.org/10.1080/17461391.2017.1327983

- Manini, T.M., Clark, B.C., 2012. Dynapenia and aging: An update. Journals Gerontol. Ser. A Biol. Sci. Med. Sci. 67 A, 28–40. https://doi.org/10.1093/gerona/glr010
- Manns, P.J., Dunstan, D.W., Owen, N., Healy, G.N., 2012. Addressing the Nonexercise Part of the Activity Continuum: A More Realistic and Achievable Approach to Activity Programming for Adults With Mobility Disability? Phys. Ther. 92, 614–625. https://doi.org/10.2522/ptj.20110284
- Master, H., Thoma, L.M., Christiansen, M.B., Polakowski, E., Schmitt, L.A., White, D.K., 2018. Minimum Performance on Clinical Tests of Physical Function to Predict Walking 6,000 Steps/Day in Knee Osteoarthritis: An Observational Study. Arthritis Care Res. (Hoboken). 70, 1005–1011. https://doi.org/10.1002/acr.23448
- Matkovic, Z., Tudoric, N., Cvetko, D., Esquinas, C., Rahelic, D., Zarak, M., Miravitlles, M., 2020. Easy to Perform Physical Performance Tests to Identify COPD Patients with Low Physical Activity in Clinical Practice. Int. J. Chron. Obstruct. Pulmon. Dis. Volume 15, 921–929. https://doi.org/10.2147/COPD.S246571
- McDermott, M.M.G., Greenland, P., Ferrucci, L., Criqui, M.H., Liu, K., Sharma, L., Chan, C., Celic, L., Priyanath, A., Guralnik, J.M., 2002. Lower extremity performance is associated with daily life physical activity in individuals with and without peripheral arterial disease. J. Am. Geriatr. Soc. 50, 247–255. https://doi.org/10.1046/j.1532-5415.2002.50055.x
- McEwan, D., Rhodes, R.E., Beauchamp, M.R., 2020. What Happens When the Party is Over?: Sustaining Physical Activity Behaviors after Intervention Cessation. Behav.
 Med. 0, 1–9. https://doi.org/10.1080/08964289.2020.1750335

- McGregor, D.E., Carson, V., Palarea-Albaladejo, J., Dall, P.M., Tremblay, M.S., Chastin, S.F.M., 2018. Compositional analysis of the associations between 24-h movement behaviours and health indicators among adults and older adults from the Canadian health measure survey. Int. J. Environ. Res. Public Health 15. https://doi.org/10.3390/ijerph15081779
- Meier, N.F., Lee, D., 2020. Physical activity and sarcopenia in older adults. Aging Clin. Exp. Res. 32, 1675–1687. https://doi.org/10.1007/s40520-019-01371-8
- Menai, M., Van Hees, V.T., Elbaz, A., Kivimaki, M., Singh-Manoux, A., Sabia, S., 2017.
 Accelerometer assessed moderate-To-vigorous physical activity and successful ageing:
 Results from the Whitehall II study. Sci. Rep. 8, 1–9. https://doi.org/10.1038/srep45772
- Meskers, C.G.M., Reijnierse, E.M., Numans, S.T., Kruizinga, R.C., Pierik, V.D., van Ancum,
 J.M., Slee-Valentijn, M., Scheerman, K., Verlaan, S., Maier, A.B., 2019. Association of
 Handgrip Strength and Muscle Mass with Dependency in (Instrumental) Activities of
 Daily Living in Hospitalized Older Adults -The EMPOWER Study. J. Nutr. Health
 Aging 23, 232–238. https://doi.org/10.1007/s12603-019-1170-5
- Mitchell, W.K., Williams, J., Atherton, P., Larvin, M., Lund, J., Narici, M., 2012.
 Sarcopenia, Dynapenia, and the Impact of Advancing Age on Human Skeletal Muscle
 Size and Strength; a Quantitative Review. Front. Physiol. 3, 1–18.
 https://doi.org/10.3389/fphys.2012.00260
- Mlinac, M.E., Feng, M.C., 2016. Assessment of Activities of Daily Living, Self-Care, and Independence. Arch. Clin. Neuropsychol. 31, 506–516. https://doi.org/10.1093/arclin/acw049
- Moher, D., Liberati, A., Tetzlaff, J., Altman, D.G., 2009. Academia and Clinic Annals of Internal Medicine Preferred Reporting Items for Systematic Reviews and Meta-Analyses : Ann. Intern. Med. 151, 264–269.

- Monteiro, A.M., Silva, P., Forte, P., Carvalho, J., 2019. The effects of daily physical activity on functional fitness, isokinetic strength and body composition in elderly communitydwelling women. J. Hum. Sport Exerc. 14. https://doi.org/10.14198/jhse.2019.142.11
- Morie, M., Reid, K.F., Miciek, R., Lajevardi, N., Choong, K., Krasnoff, J.B., Storer, T.W., Fielding, R.A., Bhasin, S., LeBrasseur, N.K., 2010. Habitual Physical Activity Levels Are Associated with Performance in Measures of Physical Function and Mobility in Older Men. J. Am. Geriatr. Soc. 58, 1727–1733. https://doi.org/10.1111/j.1532-5415.2010.03012.x
- Nagai, K., Tamaki, K., Kusunoki, H., Wada, Y., Tsuji, S., Ito, M., Sano, K., Amano, M., Shimomura, S., Shinmura, K., 2018. Isotemporal substitution of sedentary time with physical activity and its associations with frailty status. Clin. Interv. Aging 13, 1831– 1836. https://doi.org/10.2147/CIA.S175666
- Nawrocka, A., Mynarski, W., Cholewa, J., 2017. Adherence to physical activity guidelines and functional fitness of elderly women, using objective measurement. Ann. Agric. Environ. Med. 24, 632–635. https://doi.org/10.5604/12321966.1231388
- Nawrocka, A., Polechoński, J., Garbaciak, W., Mynarski, W., 2019. Functional Fitness and Quality of Life among Women over 60 Years of Age Depending on Their Level of Objectively Measured Physical Activity. Int. J. Environ. Res. Public Health 16, 972. https://doi.org/10.3390/ijerph16060972
- Nicolai, S., Benzinger, P., Skelton, D.A., Aminian, K., Becker, C., Lindemann, U., 2010.
 Day-to-day variability of physical activity of older adults living in the community. J.
 Aging Phys. Act. 18, 75–86. https://doi.org/10.1123/japa.18.1.75
- Nieminen, P., Lehtiniemi, H., Vähäkangas, K., Huusko, A., Rautio, A., 2013. Standardised regression coefficient as an effect size index in summarising findings in epidemiological studies. Epidemiol. Biostat. Public Heal. 10 (n, 1–15.

https://doi.org/https://doi.org/10.2427/8854

- Ofei-Dodoo, S., Rogers, N.L., Morgan, A.L., Amini, S.B., Takeshima, N., Rogers, M.E.,
 2018. The Impact of an Active Lifestyle on the Functional Fitness Level of Older
 Women. J. Appl. Gerontol. 37, 687–705. https://doi.org/10.1177/0733464816641390
- Ortlieb, S., ra, , Gorzelniak, L., Nowak, D., Strobl, R., Grill, E., Thor, , Barbara, , Peters, A., Kuhn, K.A., Karrasch, S., Horsch, A., er, ,, Schulz, H., 2014. Associations between multiple accelerometry-assessed physical activity parameters and selected health outcomes in elderly people--results from the KORA-age study. PLoS One 9, e111206.
- Orwoll, E.S., Fino, N.F., Gill, T.M., Cauley, J.A., Strotmeyer, E.S., Ensrud, K.E., Kado,
 D.M., Barrett-Connor, E., Bauer, D.C., Cawthon, P.M., Lapidus, J., 2019. The
 Relationships Between Physical Performance, Activity Levels, and Falls in Older Men.
 Journals Gerontol. Ser. A 74, 1475–1483. https://doi.org/10.1093/gerona/gly248
- Osthoff, A.K.R., Taeymans, J., Kool, J., Marcar, V., Van Gestel, A.J.R., 2013. Association between peripheral muscle strength and daily physical activity in patients with COPD: A systematic literature review and meta-analysis. J. Cardiopulm. Rehabil. Prev. 33, 351– 359. https://doi.org/10.1097/HCR.0000000000022
- Osuka, Y., Yabushita, N., Kim, M., Seino, S., Nemoto, M., Jung, S., Okubo, Y., Figueroa, R., Tanaka, K., 2015. Association between habitual light-intensity physical activity and lower-extremity performance: A cross-sectional study of community-dwelling older Japanese adults. Geriatr. Gerontol. Int. 15, 268–275. https://doi.org/10.1111/ggi.12268
- Ouzzani, M., Hammady, H., Fedorowicz, Z., Elmagarmid, A., 2016. Rayyan-a web and mobile app for systematic reviews. Syst. Rev. https://doi.org/10.1186/s13643-016-0384-4
- Park, H., Park, W., Lee, M., Ko, N., Kim, E., Ishikawa-takata, K., Park, J., 2018. The association of locomotive and non-locomotive physical activity measured by an

accelerometer with functional fitness in healthy elderly men: a pilot study. J. Exerc. Nutr. Biochem. 22, 41–48. https://doi.org/10.20463/jenb.2018.0007

- Perkin, O.J., McGuigan, P.M., Thompson, D., Stokes, K.A., 2018. Habitual physical activity levels do not predict leg strength and power in healthy, active older adults. PLoS One 13, 1–12. https://doi.org/10.1371/journal.pone.0200089
- Pitta, F., Troosters, T., Spruit, M.A., Probst, V.S., Decramer, M., Gosselink, R., 2005.
 Characteristics of physical activities in daily life in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 171, 972–977.
 https://doi.org/10.1164/rccm.200407-855OC
- Puthoff, M.L., Janz, K.F., Nielsen, D.H., 2008. The Relationship between Lower Extremity Strength and Power to Everyday Walking Behaviors in Older Adults with Functional Limitations. J. Geriatr. Phys. Ther. 31, 24–31. https://doi.org/10.1519/00139143-200831010-00005
- Rantanen, T., 2003. Muscle strength, disability and mortality. Scand. J. Med. Sci. Sport. 13, 3–8. https://doi.org/10.1034/j.1600-0838.2003.00298.x
- Rapp, K., Klenk, J., Benzinger, P., Franke, S., Denkinger, M.D., Peter, R., ActiFE Ulm Study Group, 2012. Physical performance and daily walking duration: associations in 1271 women and men aged 65-90 years. Aging Clin. Exp. Res. 24, 455–60. https://doi.org/10.3275/8264
- Rausch-Osthoff, A.-K., Kohler, M., Sievi, N.A., Clarenbach, C.F., van Gestel, A.J., 2014.
 Association between peripheral muscle strength, exercise performance, and physical activity in daily life in patients with Chronic Obstructive Pulmonary Disease.
 Multidiscip. Respir. Med. 9, 37. https://doi.org/10.1186/2049-6958-9-37
- Rava, A., Pihlak, A., Kums, T., Purge, P., Pääsuke, M., Jürimäe, J., 2018. Associations of distinct levels of physical activity with mobility in independent healthy older women.

Exp. Gerontol. 110, 209–215. https://doi.org/10.1016/j.exger.2018.06.005

- Reid, K.F., Fielding, R. a, 2012. Skeletal Muscle Power. Exerc. Sport Sci. Rev. 40, 4–12. https://doi.org/10.1097/JES.0b013e31823b5f13
- Reid, K.F., Pasha, E., Doros, G., Clark, D.J., Patten, C., Phillips, E.M., Frontera, W.R.,
 Fielding, R.A., 2014. Longitudinal decline of lower extremity muscle power in healthy and mobility-limited older adults: Influence of muscle mass, strength, composition, neuromuscular activation and single fiber contractile properties. Eur. J. Appl. Physiol. https://doi.org/10.1007/s00421-013-2728-2
- Reid, N., Healy, G.N., Gianoudis, J., Formica, M., Gardiner, P.A., Eakin, E.E., Nowson,
 C.A., Daly, R.M., 2018. Association of sitting time and breaks in sitting with muscle mass, strength, function, and inflammation in community-dwelling older adults.
 Osteoporos. Int. 29, 1341–1350. https://doi.org/10.1007/s00198-018-4428-6
- Reijnierse, E.M., de Jong, N., Trappenburg, M.C., Blauw, G.J., Butler-Browne, G.,
 Gapeyeva, H., Hogrel, J.-Y., McPhee, J.S., Narici, M. V., Sipilä, S., Stenroth, L., van
 Lummel, R.C., Pijnappels, M., Meskers, C.G.M., Maier, A.B., 2017. Assessment of
 maximal handgrip strength: how many attempts are needed? J. Cachexia. Sarcopenia
 Muscle 8, 466–474. https://doi.org/10.1002/jcsm.12181
- Rojer, A.G.M., Ramsey, K.A., Trappenburg, M.C., van Rijssen, N.M., Otten, R.H.J., Heymans, M.W., Pijnappels, M., Meskers, C.G.M., Maier, A.B., 2020. Instrumented measures of sedentary behaviour and physical activity are associated with mortality in community-dwelling older adults: A systematic review, meta-analysis and metaregression analysis. Ageing Res. Rev. 61, 101061.

https://doi.org/10.1016/j.arr.2020.101061

Rojer, A.G.M., Reijnierse, E.M., Trappenburg, M.C., van Lummel, R.C., Niessen, M., van Schooten, K.S., Pijnappels, M., Meskers, C.G.M., Maier, A.B., 2018. Instrumented

Assessment of Physical Activity Is Associated With Muscle Function but Not With Muscle Mass in a General Population. J. Aging Health 30, 1462–1481. https://doi.org/10.1177/0898264317721554

Rosenberg, D.E., Bellettiere, J., Gardiner, P.A., Villarreal, V.N., Crist, K., Kerr, J., 2015.
Independent Associations between Sedentary Behaviors and Mental, Cognitive,
Physical, and Functional Health among Older Adults in Retirement Communities.
Journals Gerontol. - Ser. A Biol. Sci. Med. Sci. 71, 78–83.
https://doi.org/10.1093/gerona/glv103

- Rowlands, A. V., Edwardson, C.L., Davies, M.J., Khunti, K., Harrington, D.M., Yates, T., 2018. Beyond Cut Points: Accelerometer Metrics that Capture the Physical Activity Profile, Medicine and Science in Sports and Exercise. https://doi.org/10.1249/MSS.00000000001561
- Safeek, R.H., Hall, K.S., Lobelo, F., del Rio, C., Khoury, A.L., Wong, T., Morey, M.C., McKellar, M.S., 2018. Low Levels of Physical Activity Among Older Persons Living with HIV/AIDS Are Associated with Poor Physical Function. AIDS Res. Hum. Retroviruses 34, 929–935. https://doi.org/10.1089/aid.2017.0309
- Sánchez-Sánchez, J.L., Mañas, A., García-García, F.J., Ara, I., Carnicero, J.A., Walter, S., Rodríguez-Mañas, L., 2019. Sedentary behaviour, physical activity, and sarcopenia among older adults in the TSHA: isotemporal substitution model. J. Cachexia. Sarcopenia Muscle 10, 188–198. https://doi.org/10.1002/jcsm.12369
- Sansano-Nadal, Giné-Garriga, Brach, Wert, Jerez-Roig, Guerra-Balic, Oviedo, Fortuño,
 Gómara-Toldrà, Soto-Bagaria, Pérez, Inzitari, Solà, Martin-Borràs, Roqué, 2019.
 Exercise-Based Interventions to Enhance Long-Term Sustainability of Physical Activity
 in Older Adults: A Systematic Review and Meta-Analysis of Randomized Clinical
 Trials. Int. J. Environ. Res. Public Health 16, 2527.

https://doi.org/10.3390/ijerph16142527

Santos, D.A., Silva, A.M., Baptista, F., Santos, R., Vale, S., Mota, J., Sardinha, L.B., 2012. Sedentary behavior and physical activity are independently related to functional fitness in older adults. Exp. Gerontol. 47, 908–912. https://doi.org/10.1016/j.exger.2012.07.011

Sardinha, L.B., Santos, D.A., Silva, A.M., Baptista, F., Owen, N., 2015. Breaking-up Sedentary Time Is Associated With Physical Function in Older Adults. Journals Gerontol. Ser. A Biol. Sci. Med. Sci. 70, 119–124. https://doi.org/10.1093/gerona/glu193

- Schwenk, M., Bergquist, R., Boulton, E., Van Ancum, J.M., Nerz, C., Weber, M., Barz, C., Jonkman, N.H., Taraldsen, K., Helbostad, J.L., Vereijken, B., Pijnappels, M., Maier, A.B., Zhang, W., Becker, C., Todd, C., Clemson, L., Hawley-Hague, H., 2019. The adapted lifestyle-integrated functional exercise program for preventing functional decline in young seniors: Development and initial evaluation. Gerontology 65, 362–374. https://doi.org/10.1159/000499962
- Scott, D., Blizzard, L., Fell, J., Jones, G., 2011. Prospective associations between ambulatory activity, body composition and muscle function in older adults. Scand. J. Med. Sci. Sport. 21, 168–175. https://doi.org/10.1111/j.1600-0838.2010.01229.x
- Scott, D., Blizzard, L., Fell, J., Jones, G., 2009. Ambulatory activity, body composition, and lower-limb muscle strength in older adults. Med. Sci. Sports Exerc. 41, 383–389. https://doi.org/10.1249/MSS.0b013e3181882c85
- Scott, D., Johansson, J., Gandham, A., Ebeling, P.R., Nordstrom, P., Nordstrom, A., 2020. Associations of accelerometer-determined physical activity and sedentary behavior with sarcopenia and incident falls over 12 months in community-dwelling Swedish older adults. J. Sport Heal. Sci. 00, 1–9. https://doi.org/10.1016/j.jshs.2020.01.006

Semanik, P.A., Lee, J., Song, J., Chang, R.W., Sohn, M.-W., Ehrlich-Jones, L.S., Ainsworth,

B.E., Nevitt, M.M., Kwoh, C.K., Dunlop, D.D., 2015. Accelerometer-Monitored
Sedentary Behavior and Observed Physical Function Loss. Am. J. Public Health 105, 560–566. https://doi.org/10.2105/AJPH.2014.302270

- Silva, F.M., Petrica, J., Serrano, J., Paulo, R., Ramalho, A., Lucas, D., Ferreira, J.P., Duarte-Mendes, P., 2019. The Sedentary Time and Physical Activity Levels on Physical Fitness in the Elderly: A Comparative Cross Sectional Study. Int. J. Environ. Res. Public Health 16, 3697. https://doi.org/10.3390/ijerph16193697
- Spartano, N.L., Lyass, A., Larson, M.G., Tran, T., Andersson, C., Blease, S.J., Esliger, D.W., Vasan, R.S., Murabito, J.M., 2019. Objective physical activity and physical performance in middle-aged and older adults. Exp. Gerontol. 119, 203–211. https://doi.org/10.1016/j.exger.2019.02.003
- Straight, C.R., Lindheimer, J.B., Brady, A.O., Dishman, R.K., Evans, E.M., 2016. Effects of Resistance Training on Lower-Extremity Muscle Power in Middle-Aged and Older Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Sport. Med. 46, 353–364. https://doi.org/10.1007/s40279-015-0418-4
- Sullivan, G.M., Feinn, R., 2012. Using Effect Size—or Why the P Value Is Not Enough. J. Grad. Med. Educ. 4, 279–282. https://doi.org/10.4300/JGME-D-12-00156.1
- Taekema, D.G., Gussekloo, J., Maier, A.B., Westendorp, R.G.J., de Craen, A.J.M., 2010. Handgrip strength as a predictor of functional, psychological and social health. A prospective population-based study among the oldest old. Age Ageing 39, 331–337. https://doi.org/10.1093/ageing/afq022
- Tak, E., Kuiper, R., Chorus, A., Hopman-Rock, M., 2013. Prevention of onset and progression of basic ADL disability by physical activity in community dwelling older adults: A meta-analysis. Ageing Res. Rev. https://doi.org/10.1016/j.arr.2012.10.001

Tang, Y., Green, P., Maurer, M., Lazarte, R., Kuzniecky, J.R., Hung, M.Y., Garcia, M.,

Kodali, S., Harris, T., 2015. Relationship between Accelerometer-Measured Activity and Self-Reported or Performance-Based Function in Older Adults with Severe Aortic Stenosis. Curr. Geriatr. Reports. https://doi.org/10.1007/s13670-015-0152-7

- Taraldsen, K., Stefanie Mikolaizak, A., Maier, A.B., Boulton, E., Aminian, K., Van Ancum, J., Bandinelli, S., Becker, C., Bergquist, R., Chiari, L., Clemson, L., French, D.P., Gannon, B., Hawley-Hague, H., Jonkman, N.H., Mellone, S., Paraschiv-Ionescu, A., Pijnappels, M., Schwenk, M., Todd, C., Yang, F.B., Zacchi, A., Helbostad, J.L., Vereijken, B., 2019. Protocol for the PreventIT feasibility randomised controlled trial of a lifestyle-integrated exercise intervention in young older adults. BMJ Open 9. https://doi.org/10.1136/bmjopen-2018-023526
- Taylor, D., 2014. Physical activity is medicine for older adults. Postgrad. Med. J. 90, 26–32. https://doi.org/10.1136/postgradmedj-2012-131366
- Thomson, H.J., Thomas, S., 2013. The effect direction plot: visual display of nonstandardised effects across multiple outcome domains. Res. Synth. Methods 4, 95–101. https://doi.org/10.1002/jrsm.1060
- Trayers, T., Lawlor, D.A., Fox, K.R., Coulson, J., Davis, M., Stathi, A., Peters, T., 2014. Associations of objectively measured physical activity with lower limb function in older men and women: Findings from the older people and active living (OPAL) study. J. Aging Phys. Act. 22, 34–43. https://doi.org/10.1123/JAPA.2012-0087
- Tremblay, M., 2012. Letter to the editor: Standardized use of the terms "sedentary" and "sedentary behaviours." Appl. Physiol. Nutr. Metab. https://doi.org/10.1139/H2012-024

Tremblay, M.S., Aubert, S., Barnes, J.D., Saunders, T.J., Carson, V., Latimer-Cheung, A.E.,
Chastin, S.F.M., Altenburg, T.M., Chinapaw, M.J.M., Aminian, S., Arundell, L.,
Hinkley, T., Hnatiuk, J., Atkin, A.J., Belanger, K., Chaput, J.P., Gunnell, K., Larouche,
R., Manyanga, T., Gibbs, B.B., Bassett-Gunter, R., Biddle, S., Biswas, A., Chau, J.,

Colley, R., Coppinger, T., Craven, C., Cristi-Montero, C., de Assis Teles Santos, D., del

Pozo Cruz, B., del Pozo-Cruz, J., Dempsey, P., do Carmo Santos Gonçalves, R.F.,

Ekelund, U., Ellingson, L., Ezeugwu, V., Fitzsimons, C., Florez-Pregonero, A., Friel,

C.P., Fröberg, A., Giangregorio, L., Godin, L., Halloway, S., Husu, P., Kadir, M.,

Karagounis, L.G., Koster, A., Lakerveld, J., Lamb, M., LeBlanc, A.G., Lee, E.Y., Lee,

P., Lopes, L., Manns, T., Ginis, K.M., McVeigh, J., Meneguci, J., Moreira, C., Murtagh,

E., Patterson, F., da Silva, D.R.P., Pesola, A.J., Peterson, N., Pettitt, C., Pilutti, L.,

Pereira, S.P., Poitras, V., Prince, S., Rathod, A., Rivière, F., Rosenkranz, S., Routhier,

F., Santos, R., Smith, B., Theou, O., Tomasone, J., Tucker, P., Meyer, R.U., van der

Ploeg, H., Villalobos, T., Viren, T., Wallmann-Sperlich, B., Wijndaele, K., Wondergem,
R., 2017. Sedentary Behavior Research Network (SBRN) - Terminology Consensus
Project process and outcome. Int. J. Behav. Nutr. Phys. Act.
https://doi.org/10.1186/s12966-017-0525-8

Vagetti, G.C., Barbosa Filho, V.C., Moreira, N.B., de Oliveira, V., Mazzardo, O., de Campos, W., 2014. Association between physical activity and quality of life in the elderly: A systematic review, 2000-2012. Rev. Bras. Psiquiatr. https://doi.org/10.1590/1516-4446-2012-0895

- Van Cauwenberg, J., Van Holle, V., De Bourdeaudhuij, I., Owen, N., Deforche, B., 2014.
 Older adults' reporting of specific sedentary behaviors: Validity and reliability. BMC
 Public Health. https://doi.org/10.1186/1471-2458-14-734
- van der Ploeg, H.P., Hillsdon, M., 2017. Is sedentary behaviour just physical inactivity by another name? Int. J. Behav. Nutr. Phys. Act. 14, 1–8. https://doi.org/10.1186/s12966-017-0601-0
- Van Gestel, A.J.R., Clarenbach, C.F., Stöwhas, A.C., Rossi, V.A., Sievi, N.A., Camen, G., Russi, E.W., Kohler, M., 2012. Predicting Daily Physical Activity in Patients with

Chronic Obstructive Pulmonary Disease. PLoS One 7, e48081.

https://doi.org/10.1371/journal.pone.0048081

- Van Lummel, R.C., Walgaard, S., Maier, A.B., Ainsworth, E., Beek, P.J., van Dieën, J.H., 2016. The Instrumented Sit-to-Stand Test (iSTS) Has Greater Clinical Relevance than the Manually Recorded Sit-to-Stand Test in Older Adults. PLoS One 11, e0157968. https://doi.org/10.1371/journal.pone.0157968
- van Oeijen, K., Teunissen, L.L., van Leeuwen, C., van Opstal, M., José van der Putten, M., Notermans, N.C., van Meeteren, N.L.U., Schröder, C.D., 2020. Performance and Selfreported Functioning of People With Chronic Idiopathic Axonal Polyneuropathy: A 4-Year Follow-up Study. Arch. Phys. Med. Rehabil. 101, 1946–1952. https://doi.org/10.1016/j.apmr.2020.06.017
- Van Sloten, T.T., Savelberg, H.H.C.M., Duimel-Peeters, I.G.P., Meijer, K., Henry, R.M.A., Stehouwer, C.D.A., Schaper, N.C., 2011. Peripheral neuropathy, decreased muscle strength and obesity are strongly associated with walking in persons with type 2 diabetes without manifest mobility limitations. Diabetes Res. Clin. Pract. 91, 32–39. https://doi.org/10.1016/j.diabres.2010.09.030
- Walker, P.P., Burnett, A., Flavahan, P.W., Calverley, P.M.A., 2008. Lower limb activity and its determinants in COPD. Thorax 63, 683–689. https://doi.org/10.1136/thx.2007.087130
- Wang, D.X.M., Yao, J., Zirek, Y., Reijnierse, E.M., Maier, A.B., 2020. Muscle mass, strength, and physical performance predicting activities of daily living: a meta-analysis.
 J. Cachexia. Sarcopenia Muscle 11, 3–25. https://doi.org/10.1002/jcsm.12502
- Ward, C.L., Valentine, R.J., Evans, E.M., 2014. Greater Effect of Adiposity Than Physical Activity or Lean Mass on Physical Function in Community-Dwelling Older Adults. J. Aging Phys. Act. 22, 284–293. https://doi.org/10.1123/japa.2012-0098

- Waschki, B., Spruit, M.A., Watz, H., Albert, P.S., Shrikrishna, D., Groenen, M., Smith, C., Man, W.D.C., Tal-Singer, R., Edwards, L.D., Calverley, P.M.A., Magnussen, H., Polkey, M.I., Wouters, E.F.M., 2012. Physical activity monitoring in COPD: Compliance and associations with clinical characteristics in a multicenter study. Respir. Med. 106, 522–530. https://doi.org/10.1016/j.rmed.2011.10.022
- Watz, H., Waschki, B., Boehme, C., Claussen, M., Meyer, T., Magnussen, H., 2008.
 Extrapulmonary Effects of Chronic Obstructive Pulmonary Disease on Physical Activity. Am. J. Respir. Crit. Care Med. 177, 743–751.
 https://doi.org/10.1164/rccm.200707-10110C
- Wells, G., Shea, B., O'Connell, D., Peterson, J., 2000. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses [WWW Document]. Ottawa, Ottawa Hosp. Res. Inst.
- Wells GA et al., 2012. The Newcastle-Ottawa Scale (NOS) for assessing the quality if nonrandomized studies in meta-analyses. Evid. based public Heal. https://doi.org/10.2307/632432
- Westbury, L.D., Dodds, R.M., Syddall, H.E., Baczynska, A.M., Shaw, S.C., Dennison, E.M., Roberts, H.C., Sayer, A.A., Cooper, C., Patel, H.P., 2018. Associations Between Objectively Measured Physical Activity, Body Composition and Sarcopenia: Findings from the Hertfordshire Sarcopenia Study (HSS). Calcif. Tissue Int. 103, 237–245. https://doi.org/10.1007/s00223-018-0413-5
- Wickerson, L., Mathur, S., Helm, D., Singer, L., Brooks, D., 3AD. Physical activity profile of lung transplant candidates with interstitial lung disease. J Cardiopulm Rehabil Prev 33, 106–112.
- Winberg, C., Flansbjer, U.-B., Rimmer, J.H., Lexell, J., 2015. Relationship Between Physical Activity, Knee Muscle Strength, and Gait Performance in Persons With Late Effects of

Polio. PM R 7, 236–244.

- Yamada, M., Arai, H., Nagai, K., Uemura, K., Mori, S., Aoyama, T., 2011. Differential determinants of physical daily activities in frail and nonfrail community-dwelling older adults. J. Clin. Gerontol. Geriatr. 2, 42–46. https://doi.org/10.1016/j.jcgg.2011.02.004
- Yasunaga, A., Shibata, A., Ishii, K., Koohsari, M.J., Inoue, S., Sugiyama, T., Owen, N., Oka, K., 2017. Associations of sedentary behavior and physical activity with older adults' physical function: an isotemporal substitution approach. BMC Geriatr. 17, 280. https://doi.org/10.1186/s12877-017-0675-1
- Yeung, S.S.Y., Reijnierse, E.M., Trappenburg, M.C., Hogrel, J.Y., McPhee, J.S., Piasecki, M., Sipila, S., Salpakoski, A., Butler-Browne, G., Pääsuke, M., Gapeyeva, H., Narici, M. V., Meskers, C.G.M., Maier, A.B., 2018. Handgrip Strength Cannot Be Assumed a Proxy for Overall Muscle Strength. J. Am. Med. Dir. Assoc. https://doi.org/10.1016/j.jamda.2018.04.019
- Yoshida, D., Nakagaichi, M., Saito, K., Wakui, S., Yoshitake, Y., 2010. The Relationship between Physical Fitness and Ambulatory Activity in Very Elderly Women with Normal Functioning and Functional Limitations. J. Physiol. Anthropol. 29, 211–218. https://doi.org/10.2114/jpa2.29.211
- Yuki, A., Otsuka, R., Tange, C., Nishita, Y., Tomida, M., Ando, F., Shimokata, H., Arai, H., 2019. Daily Physical Activity Predicts Frailty Development Among Community-Dwelling Older Japanese Adults. J. Am. Med. Dir. Assoc. 20, 1032–1036. https://doi.org/10.1016/j.jamda.2019.01.001

Figure 1 Flowchart of the article selection process

Figure 2 Effect direction heat maps of the associations between physical activity and sedentary behavior with upper (A, B, C, D) and lower body (E, F, G) muscle strength and muscle power

D. UB MP - other Steps Coult PA SUPP ISA Morie 2010 n - 82^d Monteiro 2019 n-60

 ∇

<u>Journal Pre</u>-proof

Figure 3 Effect sizes of physical activity and sedentary behavior with muscle strength and muscle power derived from albatross plots, expressed as standardized regression coefficients (β)

Figure 4 Forest plots and meta-analysis of adjusted standardized regression coefficients (β) and 95% CI of the associations between of physical activity measures with hand grip strength (A, B, C) and chair stand test (D, E), respectively

^aBann 2015 reported approximate gender distribution and sample sizes were subsequently

estimated for males and females from the total population, respectively

^bRowlands 2018 reported determinant and outcome driven sample size as a range and the

median was subsequently used as the estimate for sample size

Figure D1 Effect direction heat maps of the associations between intensity-based accelerometer measures of physical activity with upper body

(A, B) and lower body (C, D, E) measures of muscle strength and muscle power

Figure D2 Effect direction heat maps of the associations between physical activity and sedentary behavior frequency and accumulation with

upper (A, B) and lower body (C, D) measures of muscle strength and muscle power

<u>Journal Pre-proof</u>

Figure D3 Albatross plots depicting the magnitude of the association (contours lines represent standardized regression coefficients (β)) of higher physical activity measures (A, B, C, D, E) or lower sedentary behavior (F) with hand grip strength (upper body muscle strength)

Figure D4 Albatross plots depicting the magnitude of the association (contours lines represent standardized regression coefficients (β)) of higher

moderate-to-vigorous physical activity (A) with arm curl (upper body muscle power)

Figure D5 Albatross plots depicting the magnitude of the association (contours lines represent standardized regression coefficients (β)) of higher physical activity measures (A, B, C, D, E) or lower sedentary behavior (F) with lower body muscle strength

Figure D6 Albatross plots depicting the magnitude of the association (contours lines represent standardized regression coefficients (β)) of higher physical activity measures (A, B, C, D) or lower sedentary behavior (E) with chair stand test (lower body muscle power)

Figure D7 Albatross plots depicting the magnitude of the association (contours lines represent standardized regression coefficients (β)) of higher

moderate-to-vigorous physical activity (A) with lower body muscle power

Figure D8 Funnel plots of standard error by standardized regression coefficient (β) for the associations of physical activity measures with hand grip strength (A, B, C) and chair stand test (D, E), respectively

<u>Journal Pre-proof</u>

B. Moderate-to-vigorous physical activity and hand grip strength (Egger's test: p=0.489)

C. Light physical activity and hand grip strength (Egger's test: p=0.162)

<u>Journal Pre-proof</u>

E. Moderate-to-vigorous physical activity and chair stand test (Egger's test: p=0.064)

Appendices

Appendix A: Full search strategy

Appendix A Full search strategy (June 21, 2020)

PubMed

PubMed		
#	Query	Results
#14	#10 AND #13	5.729
#13	#11 OR #12	2.085.084
#12	 "Motor Activity" [Mesh: NoExp] OR "Exercise" [Mesh] OR "Sports" [Mesh] OR "Physical Exertion" [Mesh] OR "Early Ambulation" [Mesh] OR "Exercise Therapy" [Mesh] OR "Exercise Movement Techniques" [Mesh] OR "Locomotion" [Mesh] OR "Motor Activit*" [tiab] OR "Physical Activit*" [tiab] OR "Locomotor Activit*" [tiab] OR "Exercis*" [tiab] OR "Physical Exercis*" [tiab] OR "Exercis*" [tiab] OR "Isometric Exercis*" [tiab] OR "Actorit*" [tiab] OR "training" [tiab] OR "Sports" [tiab] OR "training" [tiab] OR "stretching" [tiab] OR "Physical endurance" [tiab] OR "movement therap*" [tiab] OR "Physical fitness" [tiab] OR "Physical endurance" [tiab] OR "movement therap*" [tiab] OR "fitness training" [tiab] OR "Physical [tiab] OR "Stretch-Shortening" [tiab] OR "Weight-Lifting" [tiab] OR "weight-Bearing" [tiab] OR "jogging" [tiab] OR "walk*" [tiab] OR "bicycle" [tiab] OR "mobil*" [tiab] OR "bicycling" [tiab] OR "mobil*" [tiab] OR "physical] OR "physical] OR "physical] OR "mobil*" [tiab] OR "physical] OR "physical] OR "mobil*" [tiab] OR "physical] OR "physical] OR "mobil*" [tiab] OR "physical] OR "physical] OR "physical] OR "mobil*" [tiab] OR "physical] OR "physical] OR "physical] OR "mobil*" [tiab] OR "physical] OR "physical	2.061.636
#11	"Sedentary Behavior" [Mesh] OR "sedent*" [tiab] OR "sitting" [tiab] OR "physical inactivit*" [tiab]	61.174
#10	#3 OR #5 OR #9	10.790
#9	#1 AND #8	4.320
#8	#6 AND #7	19.226
#7	"Monitoring, Physiologic"[Mesh:NoExp] OR "Monitoring, Ambulatory"[Mesh:NoExp] OR "monitoring"[tiab]	528.186
#6	"Heart Rate"[Mesh:NoExp] OR "cardiac rate*"[tiab] OR "heart rate*"[tiab] OR "pulse rate*"[tiab] OR "cardiac frequency"[tiab] OR "heart frequency"[tiab]	246.877
#5	#1 AND #4	868
#4	"pedomet*"[tiab]	2.755
#3	#1 AND #2	5.977
#2	"Accelerometry"[Mesh] OR "Acceleromet*"[tiab] OR "actigra*"[tiab]	23.701

#1	("Aged"[Mesh] OR "Aged, 80 and over"[Mesh] OR "Frail Elderly"[Mesh] OR "Geriatrics"[Mesh] OR "Geriatric Psychiatry"[Mesh] OR "Geriatric Nursing"[Mesh] OR "Geriatric Dentistry"[Mesh] OR "Dental Care for Aged"[Mesh] OR "Health Services for the Aged"[Mesh]) OR ("elder*"[tw] OR "eldest"][tw] OR "frail*"[tw] OR "geriatri*"[tw] OR "old	3.334.172
	age*"[tw] OR "oldest old*"[tw] OR "senior*"[tw] OR "senium"[tw] OR "very old*"[tw] OR "septuagenarian*"[tw] OR "octagenarian*"[tw] OR "centenarian*"[tw] OR "centenarian*"[tw] OR	
	"supercentenarian*"[tw] OR "older people"[tw] OR "older subject*"[tw] OR "older patient*"[tw] OR "older age*"[tw] OR "older adult*"[tw] OR "older man"[tw] OR "older men"[tw] OR "older male"[tw] OR "older woman"[tw] OR "older women"[tw] OR "older female"[tw] OR "older population*"[tw] OR "older person*"[tw])	
Embase.co	m	

Embase.com

#	Query	Results
#15	#10 AND #14	6.801
#14	#11 OR #12 OR #13	2.695.910
#13	((motor NEXT/1 activit*):ab,ti,kw) OR ((physical NEXT/1 activit*):ab,ti,kw) OR locomot*:ab,ti,kw ORexercis*:ab,ti,kw OR training:ab,ti,kw OR stretching:ab,ti,kw OR ((physical NEXT/1 condition*):ab,ti,kw) OR 'physicalfitness':ab,ti,kw OR 'physical endurance':ab,ti,kw OR ((movement NEXT/1 therap*):ab,ti,kw) OR plyometric:ab,ti,kw OR'stretch shortening':ab,ti,kw OR 'weight lifting':ab,ti,kw OR 'weight bearing':ab,ti,kw OR running:ab,ti,kw ORjogging:ab,ti,kw OR walk*:ab,ti,kw OR bicycle:ab,ti,kw OR cycle:ab,ti,kw OR bicycling:ab,ti,kw OR cycling:ab,ti,kw OROR rowing:ab,ti,kw OR swim*:ab,ti,kw OR ambulation:ab,ti,kw OR mobil*:ab,ti,kw OR pilates:ab,ti,kw ORyoga:ab,ti,kw	2.314.193
#12	'motor activity'/de OR 'exercise'/exp OR 'sport'/exp OR 'mobilization'/exp OR 'kinesiotherapy'/exp OR 'physical activity'/exp OR 'fitness'/exp OR 'locomotion'/exp	951.571
#11	'sedentary lifestyle'/exp OR 'sitting'/exp OR 'physical inactivity'/exp OR sedent*:ab,ti,kw OR sitting:ab,ti,kw OR ((physical NEXT/1 inactivit*):ab,ti,kw)	91.488
#10	#3 OR #5 OR #9	12.541
#9	#1 AND #8	4.407
#8	#6 AND #7	25.596
#7	'physiologic monitoring'/exp OR 'ambulatory monitoring'/exp OR monitoring:ab,ti,kw	709.204
#6	'heart rate'/de OR 'heart rate variability'/de OR 'resting heart rate'/de OR 'cardiac rate':ab,ti,kw OR 'heart rate':ab,ti,kw OR 'pulse rate':ab,ti,kw OR 'cardiac frequency':ab,ti,kw OR 'heart frequency':ab,ti,kw	318.213
#5	#1 AND #4	1.097

#4	'pedometer'/exp OR 'pedometry'/exp OR pedomet*:ab,ti,kw	4.154
#3	#1 AND #2	7.844
#2	'accelerometry'/exp OR 'accelerometer'/exp OR 'actimetry'/exp OR 'actigraph'/exp OR acceleromet*:ab,ti OR actigra*:ab,ti	36.929
#1	 'aged'/exp OR 'geriatrics'/exp OR 'elderly care'/exp OR elder*:de,ab,ti OR eldest:de,ab,ti OR frail*:de,ab,ti OR geriatri*:de,ab,ti OR ((old NEXT/1 age*):de,ab,ti) OR ((oldest NEXT/1 old*):de,ab,ti) OR senior*:de,ab,ti OR senior*:de,ab,ti OR ((very NEXT/1 old*):de,ab,ti) OR septuagenarian*:de,ab,ti OR octagenarian*:de,ab,ti OR octagenarian*:de,ab,ti OR octogenarian*:de,ab,ti OR nonagenarian*:de,ab,ti OR centenarian*:de,ab,ti OR supercentenarian*:de,ab,ti OR 'older people':de,ab,ti OR ((older NEXT/1 subject*):de,ab,ti) OR ((older NEXT/1 patient*):de,ab,ti) OR ((older NEXT/1 age*):de,ab,ti) OR ((older NEXT/1 adult*):de,ab,ti) OR 'older man':de,ab,ti OR 'older men':de,ab,ti OR 'older male':de,ab,ti OR 'older woman':de,ab,ti OR 'older female':de,ab,ti OR ((older NEXT/1 population*):de,ab,ti) OR ((older NEXT/1 person*):de,ab,ti)) 	3.432.221

The Cochrane Library (via Wiley)

#	Query	Results
#14	#10 and #13	920
#13	#11 or #12	238.188
#12	((motor NEXT activit*) or (physical NEXT activit*) or locomot* or exercis* or training or stretching or (physical NEXT condition*) or (physical NEXT fitness) or (physical NEXT endurance) or (movement NEXT therap*) or plyometric or (stretch NEXT shortening) or (weight NEXT lifting) or (weight NEXT bearing) or running or jogging or walk* or bicycle or cycle or bicycling or cycling or rowing or swim* or ambulation or mobil* or pilates or yoga):ti,ab,kw	233.754
#11	(Sedent* or sitting or (physical NEXT inactivit*)):ti,ab,kw	14.465
#10	#3 or #5 or #9	1.334
#9	#1 and #8	406
#8	#6 and #7	6.983
#7	monitoring:ti,ab,kw	59.019
#6	((cardiac NEXT rate):ab,ti,kw or (heart NEXT rate):ab,ti,kw or (pulse NEXT rate):ab,ti,kw or (cardiac NEXT frequency):ab,ti,kw or (heart NEXT frequency)):ti,ab,kw	59.143
#5	#1 and #4	247

#4	pedomet*:ti,ab,kw	1.712
#3	#1 and #2	780
#2	(acceleromet* or actigra*):ti,ab,kw	5.965
#1	(elder* or eldest or frail* or geriatri* or (old NEXT age*) or (oldest NEXT old*) or senior* or senium or (very NEXT old*) or septuagenarian* or octagenarian* or octogenarian* or nonagenarian* or centarian* or centenarian* or supercentenarian* or (older NEXT people) or (older NEXT subject*) or (older NEXT patient*) or (older NEXT age*) or (older NEXT adult*) or (older NEXT man) or (older NEXT men) or (older NEXT male) or (older NEXT woman) or (older NEXT women) or (older NEXT female) or (older NEXT population*) or (older NEXT person*)):ti,ab,kw	76.361

CINAHL (via EBSCO)

#	Query	Results
S14	\$10 AND \$13	2,995
S13	S11 OR S12	592,088
S12	 ((MH "Motor Activity") OR (MH "Exercise+") OR (MH "Sports+") OR (MH "Early Ambulation") OR (MH "Therapeutic Exercise+") OR (MH "Locomotion+")) OR TI (("motor activit*" OR "physical activit*" OR locomot* OR exercis* OR training OR stretching OR "physical condition*" OR "physical fitness" OR "physical endurance" OR "movement therap*" OR plyometric OR "stretch shortening" OR "weight lifting" OR "weight bearing" OR running OR jogging OR walk* OR bicycle OR cycle OR bicycling OR cycling OR rowing OR swim* OR ambulation OR mobil* OR pilates OR yoga)) OR AB (("motor activit*" OR "physical endurance" OR "movement therap*" OR "physical fitness" OR "physical activit*" OR locomot* OR exercis* OR training OR stretching OR "physical activit*" OR locomot* OR exercis* OR training OR stretching OR "physical activit*" OR locomot* OR exercis* OR training OR stretching OR "physical activit*" OR locomot* OR exercis* OR training OR stretching OR "physical activit*" OR locomot* OR exercis* OR training OR stretching OR "physical condition*" OR "physical endurance" OR "movement therap*" OR plyometric OR "stretch shortening" OR "weight bearing" OR running OR jogging OR walk* OR bicycle OR cycle OR bicycle OR cycle OR weight lifting" OR "weight bearing" OR running OR jogging OR walk* OR bicycle OR cycle OR bicycling OR rowing OR swim* OR ambulation OR mobil* OR pilates OR yoga)) 	582,203
S11	((MH "Life Style, Sedentary") OR (MH "Sitting")) OR TI ((sedent* OR sitting OR "physical inactivit*")) OR AB ((sedent* OR sitting OR "physical inactivit*"))	26,571
S10	S3 OR S5 OR S9	4,531
S9	S1 AND S8	1,003
S8	S6 AND S7	4,480
S7	(MH "Monitoring, Physiologic") OR TI monitoring OR AB monitoring	111,399
S 6	(MH "Heart Rate") OR TI (("cardiac rate" or "heart rate" or "pulse rate" or "cardiac frequency" or "heart frequency")) OR AB (("cardiac rate" or "heart rate" or "pulse rate" or "cardiac frequency" or "heart frequency"))	47,141
S5	S1 AND S4	643
S4	(MH "Pedometers") OR TI pedomet* OR AB pedomet*	2,279
S 3	S1 AND S2	3,047

S2	((MH "Accelerometry+") OR (MH "Accelerometers") OR (MH "Actigraphy")) OR TI ((acceleromet* or actigra*)) OR AB ((acceleromet* or actigra*))	11,526
S1	 MH "Aged+" OR MH "Aged, 80 and Over" OR MH "Frail Elderly" OR MH "Geriatrics" OR MH "Geriatric Psychiatry" OR MH "Gerontologic Nursing+" OR MH "Gerontologic Care" OR MH "Health Services for the Aged" OR TI (elder* OR eldest OR frail* OR geriatri* OR "old age*" OR "oldest old*" OR senior* OR senium OR "very old*" OR septuagenarian* OR octagenarian* OR nonagenarian* OR centarian* OR centenarian* OR supercentenarian* OR "older men" OR "older man" OR "older woman" OR "older female" OR "older population*" OR "older person*") OR AB (elder* OR eldest OR frail* OR geriatri* OR "old age*" OR "olde age*" OR "oldest old*" OR senior* OR senium OR "very old*" OR septuagenarian* OR septuagenarian* OR cotagenarian* OR cotagenarian* OR "older women" OR "older female" OR "older population*" OR "older person*") OR AB (elder* OR eldest OR frail* OR geriatri* OR "old age*" OR "oldest old*" OR senior* OR senium OR "very old*" OR septuagenarian* OR octagenarian* OR octagenarian* OR cotagenarian* OR centarian* OR centarian* OR senior* OR senium OR "very old*" OR "older men" OR "older man" OR "older men" OR "older man" OR "older begrint*" OR "older women" OR "older population*" OR "older geriatri* OR "older women" OR "older population*" OR "older dault*" OR "older men" OR "older man" OR octagenarian* OR octagenarian* OR cotagenarian* OR centarian* OR centarian* OR centarian* OR centarian* OR centarian* OR "older men" OR "older man" OR "older men" OR "older men" OR "older man" OR "older man" OR "older man" OR "older men" OR "older man" OR "o	919,735

APA PsychINFO (via EBSCO)

#	Query	Results
S17	\$13 AND \$16	1,097
S16	\$14 OR \$15	527,097
S15	 (DE "Physical Activity" OR (DE "Exercise" OR DE "Aerobic Exercise" OR DE "Weightlifting" OR DE "Yoga") OR DE "Physical Fitness" OR (DE "Sports" OR DE "Baseball" OR DE "Basketball" OR DE "Football" OR DE "Judo" OR DE "Martial Arts" OR DE "Soccer" OR DE "Swimming" OR DE "Tennis" OR DE "Weightlifting") OR DE "Locomotion" AND #DE "Training" OR DE "Athletic Training" OR DE "Locomotion") OR TI (("motor activit*" OR "physical activit*" OR locomot* OR exercis* OR training OR stretching OR "physical condition*" OR "physical fitness" OR "physical endurance" OR "movement therap*" OR plyometric OR "stretch shortening" OR rowing OR swim* OR ambulation OR mobil* OR pilates OR yoga)) OR AB (("motor activit*" OR "physical activit*" OR "physical condition*" OR "physical condition*" OR "physical condition*" OR "physical condition OR mobil* OR "physical condition*" OR "physical fitness" OR "physical fitness" OR "physical Condition*" OR "physical condition OR mobil* OR pilates OR yoga)) OR AB (("motor activit*" OR "physical endurance" OR "movement therap*" OR "physical fitness" OR "physical activit*" OR bicycle OR cycle OR "physical condition*" OR "physical fitness" OR "physical endurance" OR "movement therap*" OR bicycle fitness" OR "physical activit*" OR locomot* OR exercis* OR training OR stretching OR "physical condition*" OR "physical fitness" OR "physical endurance" OR "movement therap*" OR plyometric OR "stretch shortening" OR "weight lifting" OR "weight bearing" OR plyometric OR "stretch shortening" OR swim* OR ambulation OR mobil* OR pilates OR yoga)) 	522,065
S14	TI (sedent* OR sitting OR "physical inactivit*") OR AB (sedent* OR sitting OR "physical inactivit*")	13,285
S13	S6 OR S8 OR S12	1,802
S12	S4 AND S11	131
S11	S9 AND S10	1,175
S10	DE "Monitoring" OR TI monitoring OR AB monitoring	58,460
S 9	DE "Heart Rate" OR TI ("cardiac rate" or "heart rate" or "pulse rate" or "cardiac frequency" or "heart frequency") OR AB ("cardiac rate" or "heart rate" or "pulse rate" or "cardiac frequency")	28,295

S8	S4 AND S7	246
S7	TI pedomet* OR AB pedomet*	860
S6	S4 AND S5	1,478
S 5	(DE "Actigraphy") OR TI (acceleromet* OR actigra*) OR AB (acceleromet* OR actigra*)	6,322
S4	S1 OR S2 OR S3	401,336
\$3	TI (elder* OR eldest OR frail* OR geriatri* OR "old age*" OR "oldest old*" OR senior* OR senium OR "very old*" OR septuagenarian* OR octagenarian* OR nonagenarian* OR centarian* OR centenarian* OR supercentenarian* OR "older people" OR "older subject*" OR "older patient*" OR "older age*" OR "older adult*" OR "older man" OR "older men" OR "older male" OR "older woman" OR "older women" OR "older female" OR "older population*" OR "older person*") OR AB (elder* OR eldest OR frail* OR octogenarian* OR octogenarian* OR octagenarian* OR octogenarian* OR octagenarian* OR octogenarian* OR centenarian* OR senior* OR senium OR "very old*" OR septuagenarian* OR octagenarian* OR octogenarian* OR nonagenarian* OR centarian* OR centenarian* OR supercentenarian* OR "older people" OR "older subject*" OR "older subject*" OR "older subject*" OR "older subject*" OR "older female" OR "older age*" OR "older man" OR "older men" OR "older men" OR "older men" OR "older male" OR "older men" OR "older men	174,582
S2	DE "Geriatrics"	12,654
S1	Limiters - Age Groups: Aged (65 yrs & older)	325,601

SPORTDiscus (via EBSCO)

#	Query	Results
S16	\$12 AND \$15	544
S15	\$13 OR \$14	513,139
<u>S13</u> S14	DE "PHYSICAL activity" OR (DE "EXERCISE" OR DE "ABDOMINAL exercises" OR DE "AEROBIC exercises" OR DE "ANAEROBIC exercises" OR DE "AQUATIC exercises" OR DE "ARM exercises" OR DE "BACK exercises" OR DE "ANAEROBIC exercises" OR DE "AQUATIC exercises" OR DE "ARM exercises" OR DE "BACK exercises" OR DE "BREATHING exercises" OR DE "BREEMA" OR DE "BUTTOCKS exercises" OR DE "CALISTHENICS" OR DE "CHAIR exercises" OR DE "CHEST exercises" OR DE "CIRCUIT training" OR DE "COMPOUND exercises" OR DE "DO-in" OR DE "EXERCISE Immunological aspects" OR DE "EXERCISE adherence" OR DE "EXERCISE for children" OR DE "EXERCISE for girls" OR DE "EXERCISE for men" OR DE "EXERCISE for older people" OR DE "EXERCISE for people with disabilities" OR DE "EXERCISE for women" OR DE "EXERCISE for youth" OR DE "EXERCISE therapy" OR DE "EXERCISE video games" OR DE "FACIAL exercises" OR DE "HATHA yoga" OR DE "FOOT exercises" OR DE "GYMNASTICS" OR DE "ISOLATION exercises" OR DE "ISOMETRIC exercise" OR DE "ISOTONIC exercise" OR DE "KNEE exercises" OR DE "LEG exercises" OR DE "ILANGONG" OR DE "METABOLIC equivalent" OR DE "MULAN quan" OR DE "MUSCLE strength" OR DE "PLYOMETRICS" OR DE "PLATES method" OR DE "PLYOMETRICS" OR DE "QI gong" OR DE "REDUCING exercises" OR DE "PLATES method" OR DE "STRENGTH training" OR DE "STRESS management exercises" OR DE "TAI chi"	503,410

	OR DE "TREADMILL exercise" OR DE "WHEELCHAIR workouts" OR DE "YOGA") OR (DE "PHYSICAL fitness" OR DE "HYSICAL fitness for older people") OR (DE "SPORTS" OR DE "AGENODYNAMICS in sports" OR DE "AGE sports" OR DE "AGE sports" OR DE "AAMATEUR sports" OR DE "ANITISEMITISM in sports" OR DE "AQUATIC sports" OR DE "BALL games" OR DE "CONTACT Sports" OR DE "AQUATIC sports" OR DE "COLLEGE sports" OR DE "COMMUNICATION in sports" OR DE "CONTACT sports" OR DE "CROSS-training Sports" OR DE "DISC golf" OR DE "DISCRIMINATION in sports" OR DE "CONTACT sports" OR DE "CROSS-training Sports" OR DE "DISC golf" OR DE "EXTREME sports" OR DE "FANTASY sports" OR DE "DOPING in sports" OR DE "ENDURANCE sports" OR DE "AQUMPHOBIA in sports" OR DE "GOODWILL Games" OR DE "GYMNASTICS" OR DE "HOCKEY" OR DE "HOMOPHOBIA in sports" OR DE "LGBT people & sports" OR DE "MINORITIES in sports" OR DE "KNIFE throwing" OR DE "LGBT people & sports" OR DE "MINORITIES in sports" OR DE "MASCULINITY in sports" OR DE "MASS media & sports" OR DE "MATIONAL socialism & sports" OR DE "MASCULINITY in sports" OR DE "MOTOSPORTS" OR DE "PHOTOGRAPHY of sports" OR DE "PLYSICS in sports" OR DE "PARCONG" OR DE "PROFESSIONAL Sports" OR DE "PLYSICS in sports" OR DE "RACING" OR DE "PARCONG" OR DE "ROBE "RACKET games" OR DE "RODESON OR DE "RODESON OR DE "RODESON OR DE "SPORTS" OR DE "SPORTS & sports" OR DE "SPORTS & state" OR DE "SPORTS & sports" OR DE "SPORTS & state" OR DE "SPORTS & state" OR DE "SPORTS & state" OR DE "SPORTS & sports" OR DE "SPORTS & state"	
S13	DE "SEDENTARY lifestyles" OR DE "SEDENTARY behavior" OR DE "SEDENTARY people" OR DE "SEDENTARY women" OR TI (sedent* OR sitting OR "physical inactivit*") OR AB (sedent* OR sitting OR "physical inactivit*")	18,283
S12	S3 OR S5 OR S11	902
S11	S1 AND S10	101
S10	S8 OR S9	3,691
S9	DE "HEART rate monitoring"	2,229
S8	S6 AND S7	1,724
S7	DE "Patient Monitoring" OR TI monitoring OR AB monitoring	15,144

6

DE "PULSE (Heart beat)" OR DE "HEART beat" OR TI ("cardiac rate" or "heart rate" or "pulse rate" or "cardiac frequency"	30,490
or "heart frequency") OR AB ("cardiac rate" or "heart rate" or "pulse rate" or "cardiac frequency" or "heart frequency")	
S1 AND S4	214
DE "PEDOMETERS" OR TI pedomet* OR AB pedomet*	1,882
S1 AND S2	652
(DE "ACCELEROMETERS" OR DE "SPEEDOMETERS") OR (TI ((acceleromet* OR actigra*)) OR AB ((acceleromet* OR actigra*)))	6,650
 ((DE "OLDER people" OR DE "EXERCISE for older people" OR DE "OLDER people Recreation" OR DE "PHYSICAL education for older people" OR DE "PHYSICAL fitness for older people" OR DE "SPORTS for older people") OR DE "GERIATRICS") OR (TI (elder* OR eldest OR frail* OR geriatri* OR "old age*" OR "oldest old*" OR senior* OR senium OR "very old*" OR septuagenarian* OR octagenarian* OR octogenarian* OR nonagenarian* OR centarian* OR centenarian* OR "older people" OR "older subject*" OR "older patient*" OR "older age*" OR "older female" OR "older man" OR "older men" OR "older male" OR eldest OR frail* OR geriatri* OR geriatri* OR "older women" OR "older female" OR "older female" OR "older population*" OR "older person*") OR AB (elder* OR eldest OR frail* OR geriatri* OR "olde geriatri* OR "oldest old*" OR senior* OR senium OR "very old*" OR septuagenarian* OR octagenarian* OR octagenarian* OR nonagenarian* OR nonagenarian* OR centarian* OR centenarian* OR supercentenarian* OR eldest OR frail* OR geriatri* OR "older geriatri* OR "oldest old*" OR senior* OR senium OR "older person*") OR AB (elder* OR eldest OR frail* OR geriatri* OR "old age*" OR "oldest old*" OR senior* OR senium OR "very old*" OR septuagenarian* OR octagenarian* OR octogenarian* OR nonagenarian* OR centarian* OR centenarian* OR "older people" OR "older people" OR "older subject*" OR "older patient*" OR "older age*" OR "older age*" OR "older man" OR "older subject*" OR "older woman" OR "older age*" OR "older man" OR "older man	57,686
	or "heart frequency") OR AB ("cardiac rate" or "heart rate" or "pulse rate" or "cardiac frequency" or "heart frequency") S1 AND S4 DE "PEDOMETERS" OR TI pedomet* OR AB pedomet* S1 AND S2 (DE "ACCELEROMETERS" OR DE "SPEEDOMETERS") OR (TI ((acceleromet* OR actigra*)) OR AB ((acceleromet* OR actigra*)) OR DE "CACCELEROMETERS") OR DE "SPEEDOMETERS") OR (TI ((acceleromet* OR actigra*)) OR DE "PHYSICAL education for older people" OR DE "EXERCISE for older people" OR DE "OLDER people Recreation" OR DE "PHYSICAL education for older people" OR DE "PHYSICAL fitness for older people" OR DE "SPORTS for older people") OR DE "GERIATRICS") OR (TI (elder* OR eldest OR frail* OR geriatri* OR "old age*" OR "oldest old*" OR senior* OR senium OR "very old*" OR septuagenarian* OR octogenarian* OR nonagenarian* OR centarian* OR centarian* OR "older men" OR "older men" OR "older male" OR "older woman" OR "older female" OR "older female" OR "older population*" OR "older person*") OR AB (elder* OR eldest OR frail* OR geriatri* OR "old age*" OR "oldest old*" OR senior* OR "older female" OR "older population*" OR "older person*") OR AB (elder* OR eldest OR frail* OR geriatri* OR "older woman" OR "older female" OR "older female" OR "older population*" OR "older person*") OR AB (elder* OR eldest OR frail* OR geriatri* OR "old age*" OR "oldest old*" OR senior* OR "older people" OR Senior* OR "older people" OR "older people" OR "older temale" OR "older population*" OR "older person*") OR AB (elder* OR eldest OR frail* OR geriatri* OR "old age*" OR "oldest old*" OR senior* OR "older people" OR "older people" OR "older subject*" OR "older patient*" OR "older people" OR "older

Appendix C: Tables (Table C1-5)

Appendix D: Figures (Figure D1-8)

Author year	Cohort	Country	Population selection ^a	Sample size (N)	Age in years mean (SD)	F %	PA/SB measures	Muscle strength/muscle power measures	
Abe 2015	N/A	JP	-	57	66.3 (6.8)	100	Steps, MVPA, LPA-to-MPA	KES, toe grasping strength	
Abe 2012	N/A	JP	Healthy	48	65.7 (6.4)	100	Steps, VPA, MPA, LPA, EE	KES, knee flexior strength	
Aggio 2016	BRHS	GB	-	1286 (Non- sarcopenia: 1033; Sarcopenia: 183; Severe sarcopenia: 70)	<i>Non-sarcopenia:</i> 7.6 (4.1); <i>Sarcopenia:</i> 79.7 (4.7); <i>Severe</i> <i>sarcopenia:</i> 83.1 (5.2)	0.0	MVPA, LPA, SB, BST	HGS	
Alcazar 2018	N/A	ES	-	31	75.8 (4.7)	54.8	MVPA, SB	Leg press strength, leg press power	
Alzahrani 2012	N/A	N/R	After stroke	42	70 (10)	31.0	Activity counts, TPA, MVPA	KES	
Andersson 2013	N/A	SE	COPD	72	65 (7)	61.1	EE (PAL)	KES	
Andre 2018	N/A	РТ	Healthy	29	73.2 (6.6)	50.0	MVPA	Calf raise	
Andre 2016	N/A	PT	Healthy	28	73.9 (7.7)	56.1	MVPA	Calf raise	
Aoyagi 2009	Nakanojo	JP		170	72.7 (4.6)	55.3	Steps, TPA	HGS, knee extension torque	
Ashe 2008	N/A	N/R	-	73	68.8 (3)	100	Activity counts, MVPA	KES, leg press power	
Ashe 2007	N/A	N/R	Chronic disease	200	74.4 (5.7)	65.0	Steps	HGS, KES	
Aubertin- Leheudre 2017	LIFE	US	Mobility limited and sedentary	1453 (Non- obese non- dynapenic: 402; Non-obese dynapenic: 381; Obese non- dynapenic: 414; Obese dynapenic: 256)	78.8 (5.3)	66.0	Steps, activity counts, TPA	HGS	

Table C1 Characteristics of articles assessing the association of physical activity and sedentary behavior with muscle strength and muscle power in older adults

Cohort Population F % PA/SB Author year Country Sample size (N) Age in years Muscle selection^a mean (SD) strength/muscle measures power measures Balducci 2017 N/A Diabetes 300 61.6 (9.9) 38.7 MVPA, LPA, IT Shoulder press SB strength, leg press strength Bann 2015 *M*: 79.3 (5.3); *F*: 78.5 N/R ~67 HGS LIFE US Mobility 1130 (*M*: N/R; TPA, LPA, SB limited and *F*: N/R) (5.3)sedentary CN 61 (5) 100 Steps, TPA HGS, KES, 20s **Barbat-Artigas** N/A Post-57 (Sedentary: 2012 menopausal 19: *Moderate* CST active: 20; Active: 18) N/A N/R Healthy HGS Bartlett 2020 50 Sedentary: 63.4 (4.4); Sedentary: Steps Active: 67.0 (6.0) 52; Active: 56 53.6 GB Steps Bassev 1988 N/A 125 *M*: 71 (4); *F*: 72 (4) Calf strength Post-Bogucka 2018 PL 46 (Dynapenic: 100 HGS N/A 71.4 (5.6) Steps 10: Nonmenopausal dynapenic: 36) Bollaert 2017 80 (*MS*: 40; MS: 65.3 (4.3); HC: 62.5 N/A US MS and HC MVPA, LPA, 5x CST *HC*: 40) 66.5 (6.7) SB, PA bouts, SB bouts, long SB bouts GB, NL, COPD 157 **Boutou 2019 PROactive** 67.2 (7.8) 24.2 Δ Steps, KES GR, BE Δ MVPA, $\Delta MET, \Delta VMU$ Carrasco N/A ES 42 (MPA group: 70.1 (4.5) 100 VPA, MVPA, HGS Poyatos 2016 19; VPA group: MPA 15) N/A GB 30 SB. SB break Chastin 2012 Healthy *F*: 79.3 (3.4); *M*: 79.0 46.7 Leg extension (3.6)rate power Chmelo 2013 IDEA US 160 69.0 Steps, MVPA KES OA. high 66 (6) BMI, and LPA, EE sedentary Cooper 2015 GB 63.3 {60.3-64.9} HGS, 10x CST MRC NSHD 1727 MVPA, SB, EE 51.5 -**OPAL** GB 5x CST **Davis 2014** 217 78.1 (5.8) 50.2 MVPA, SB, -

 Table C1 Continued

BST

K

Author year	Cohort	Country	Population selection ^a	Sample size (N)	Age in years mean (SD)	F %	PA/SB measures	Muscle strength/muscle power measures
De Melo 2010	N/A	CN	-	60	77 (7.3)	75.0	Steps	30s CST
De Melo 2014	N/A	CN	-	60	77 (7.3)	75.0	Steps	Arm curl, 30s CST
Demeyer 2018	PAC-COPD	ES	COPD	114	70 (8)	N/R	ΔSteps, steps, MVPA	ΔHGS
Distefano 2018	N/A	US	-	29 (Active: 10;	Active: 67.5 (2.7);	Active: 20.0;	Steps	KES, 5x CST
				Sedentary:19)	Sedentary: 70.7 (4.7)	Sedentary: 42.1		
Dogra 2017	N/A	CN	-	1157	64 (95% CI: 64-64)	46.6	BST, long SB bouts	HGS
Dohrn 2020	SNAC-K	SE	-	656	73.3 (9.0)	64.0	Steps	5x CST
Dos Santos 2019	N/A	BR	-	375	70 (7)	69.6	MVPA	HGS
Duncan 2016	N/A	GB	-	201	66.1 (7.7)	59.7	Steps	Arm curl, 30s CST
Edholm 2019	N/A	SE	-	60	67.5 (15)	100	Activity counts, MVPA	Squat jump test
Foong 2016	TASOAC	AU		636	66 (7)	50.8	Activity counts, VPA, MPA, LPA, SB	KES, leg strength
Gennuso 2016	N/A	US	0	44 (<i>M</i> : 16; <i>F</i> : 28)	<i>M:</i> 71 [69-74]; <i>F:</i> 70 [67-78]	63.6	SB, BST, SB break rate, SB bouts, long SB bouts	5x CST
Gerdhem 2008	OPRA	SE	≥80 years	57	80.1 (0.1)	100	Activity counts, MVPA	KES, Knee flexior strength
Hall 2016	MURDOCK	US	-	775 (60-69y: 196, 70-79y: 198, 80-90+y: 92)	62.1 (SD N/R) (60- 69y: 64.8, 70-79y: 73.6, 80-90+y: 83.6)	53.2 (60- 69y: 50.5, 70-79y: 49.5, 80- 90+y: 64.1)	Steps, MVPA, SB	30s CST
Harada 2017	NCGG	JP	Global cognitive impairment	192	76.2 (4.1)	44.7	Steps	5x CST
Hartley 2017	COSHIBA	GB	-	242	76.4 (2.6)	100	Activity counts	Jump strength, 5x CST, jump power
Hasegawa 2018	N/A	JP	-	50	77.8 (5.3)	74.0	Steps	30s CST

\$

Table C1 Continued

Author year	Cohort	Country	Population selection ^a	Sample size (N)	Age in years mean (SD)	F %	PA/SB measures	Muscle strength/muscle power measures
Hernandes 2013	N/A	BR	+/- exercise lifestyle	238 (Exercise: 134; Non- exercise: 104)	<i>Exercise:</i> 68 [64-71]; <i>Non-exercise:</i> 68 [64- 71]	Exercise: 39.1; Non- exercise: 69.3	Steps	HGS, 30s CST
Hernandez 2016	(moderate- severe)		70.3 (6.7)	0.0	TPA, MPA, LPA, SB	Quadriceps power at 50% and 70% 1RM, respectively		
<u>Hopkins 2019</u>	pkins 2019 OAI US OA 687 <i>I</i>		Inactive: 65.7 (0.44); Active: 61.3 (0.48)	Inactive: 69.8; Active 44.3	MVPA	Δ5x CST		
activity: 58; Limited activity: 79; Low Active: 45; Physically		Basal activity: 76.4 (8.89); Limited activity: 73.4 (6.83); Low Active: 70.0 (6.48); Physically active: 70.4 (6.00)	71.5	Steps	5x CST			
Ikenaga 2014	N/A	JP	-	178	73.7 (2.6)	0.0	Steps, MPA, LPA, SB	HGS, KES
Iwakura 2016	N/A	N/R	COPD	22	71.6 (6.9)	0.0	Steps	5x CST
Jantunen 2016	Helsinki Birth	FI	-	695	70.7 (2.7)	54.5	MET	Arm curl, 30s CS'
Jeong 2019	N/A	KR	_	52	60.3 (5.6)	90.4	Steps	Hip strength, KES
Johnson 2016	TASOAC	AU	-	188	64.0 (7.3)	53.7	VPA, MPA, LPA, SB	Leg strength
Kawagoshi 2013	N/A	JP	COPD	26	77 (6)	0.0	Steps, TPA, LPA, SB	KES
Keevil 2015	EPIC- Norfolk	GB	-	3726 (<i>M</i> : 1674; <i>F</i> : 2052)	<i>M</i> : 69.8 (7.6); <i>F</i> : 68.0 (7.5)	55.1	MVPA, SB	HGS, CST
Kim 2015a	N/A	JP	-	207	83.5 (2.6)	55.5	Activity counts	HGS, KES
Kim 2015b	2015b N/A JP - 101		101	81.4 (2.8)	100	Activity counts, MVPA, LPA, SB, long SB bouts	5x CST	
Lai 2020 N/A TW Independent 122 walking		69.9 (5.0)	71.3	MVPA	5x CST			

Author year	Cohort	Country	Population selection ^a	Sample size (N)	Age in years mean (SD)	F %	PA/SB measures	Muscle strength/muscle power measures	
			without assistive device						
Lee 2015 Lerma 2018	OAI	US US	Knee OA -	1168 91	66 (N/R) 70.7 (10.2)	55.0 60.0	SB MVPA, LPA, SB	5x CST 5x CST	
Liao 2018	N/A	JP	-	281	74.5 (5.2)	38.1	SB, SB break rate, long SB bouts	HGS	
Lohne-Seiler 2016	2 N/R cohorts	NO	-	161 (<i>M</i> : 76; <i>F</i> : 85)	<i>M</i> : 72.3 (4.8); <i>F</i> : 73.2 (5.4)	52.8	Steps	HGS	
Mador 2011	N/A	US	COPD	28	71.9 (7.7)	N/R	VMU	KES	
Master 2018	OAI	US	Knee OA	1925	65.1 (9.1)	55.0	Steps	5x CST	
Matkovic 2020	N/A	HR	COPD	111	67.7 (7.8)	31.5	Steps	HGS, 30s CST	
McDermott 2002	N/A	US	+/- PAD	346	71.2 (8.3)	41.6	Accelerations	5x CST	
McGregor 2018	CHMS	CN	-	1454	69.3 (0.3)	52.4	MVPA, LPA, SB	HGS	
Meier 2020	PAAS	US	-0	304	72.8 (5.8)	58.2	Steps	HGS, chest press strength, leg press strength	
Monteiro 2019	N/A	РТ	Caucasian	60	67.7 (5.3)	100	Activity counts	Arm curl, KES, knee flexion strength, 30s CST	
Morie 2010	N/A	US	Mobility limited & low testosterone	82	74.1 (5.3)	0.0	Activity counts	Chest press strength, chest press power, leg press strength, leg press power	
Nagai 2018	N/A	JP	-	886	73.6 (7.0)	70.0	MVPA, LPA, SB	HGS	
Nawrocka 2017	N/A	PL	-	61 (Not meeting PA guidelines: 39; Meeting PA	66.2 (4.4)	100	MVPA	Arm curl	

Table C1 Continued

Ś

Table C1 Continued

Author year	Cohort	Country	Population selection ^a	Sample size (N)	Age in years mean (SD)	F %	PA/SB measures	Muscle strength/muscle power measures
Nawrocka 2019	N/A	PL	-	213 (Not meeting PA guidelines: 108; Meeting PA guidelines: 105)	N/R	100	MVPA	HGS, Arm curl, 30s CST
Nicolai 2010	N/A	GB	-	44	80.8 (4.1)	N/R	Steps (<i>walking</i>), TPA (<i>standing</i>)	5x CST
Ofei-Doodoo 2016	N/A	US	Sedentary	101	75.0 (7.2)	100	MVPA	Arm curl, 30s CST
Orwoll 2019	MrOS	US		2741 (No falls: 1777; One fall: $327; \ge Two$ falls: 63)	78.8 (5)	0.0	MVPA, LPA	5x CST
Osuka 2015	N/A	JP	-	802	72.5 (5.9)	76.7	MVPA, LPA	5x CST
Park 2018	N/A	KR	-	22	71.5 (3.3)	0.0	Steps	HGS, 30s CST
Perkin 2018	N/A	GB	Healthy	50	69 (4)	46	MVPA, SB, EE	Leg press strength, leg press power
Pitta 2005	N/A	BE	COPD	50	77.3 (7.0)	28	Steps (<i>walking</i>), TPA (<i>standing</i>)	HGS, knee extension torque
Puthoff 2008	N/A	N/R	Mild- moderate functional limitations	30	77.3 (7.0)	83.3	Steps	Leg press strength, leg press power
Rapp 2012	ActiFE Ulm	DE	-	1271	<i>M</i> : 76.0 (6.46); <i>F</i> : 75.1 (6.58)	43.6	Steps (walking)	HGS, 5x CST
Rausch-Osthoff 2014	N/A	СН	COPD	27	62.3 (5.7)	40.7	Steps, EE, EE (PAL), MET	KES
Rava 2018	N/A	EE	-	81	73.1 (5.3)	100	VPA, MVPA, MPA, LPA, SB	5x CST
Reid 2018	N/A	AU	-	123	70.9 (4.2)	63	SB, BST	KES, leg press strength, 30s CST
Rojer 2017	Grey Power	NL	-	80	74.4 [72.4-78.0]	60.0	Steps, TPA, SB, PA bouts, SB bouts	HGS

K

	M1	C 1
Table		Continued

Author year	Cohort	Country	Population selection ^a	Sample size (N)	Age in years mean (SD)	F %	PA/SB measures	Muscle strength/muscle power measures
Rosenberg 2015	N/A	US	Retirement communities	307	83.6 (6.4)	72.3	SB	5x CST
Rowlands 2018	CODEC	GB	Type II diabetes	295	63.2 (9.7)	39.7	MVPA, accelerations, intensity gradient, PA bouts	HGS, 60s CST
Safeek 2018	N/A	US	HIV	21	66.1 (6.3)	33.3	Steps, MVPA, LPA, SB, EE	HGS, 30s CST
Sanchez-sanchez 2019	TSHA	ES	-	512	78.1 (5.7)	54.3	Activity counts, MVPA, LPA, SB	HGS
Santos 2012	N/A	PT	-	312	74.3 (6.6)	62.5	MVPA, SB	Arm curl, 30s CST
Sardinha 2015	N/A	PT	-	215	73.3 (5.9)	59.5	BST	Arm curl, 30s CST
Scott 2020	Healthy	SE	-	3334 (Non-	Non-sarcopenic:	Non-	MVPA, LPA,	HGS
	Ageing			sarcopenic:	70.01 (0.10);	sarcopenic:	SB	
	Initiative			3273;	Sarcopenic: 70.02	50.5;		
				Sarcopenic: 61)	(0.13)	Sarcopenic: 57.4		
Scott 2011	TASOAC	AU	-	697	61.9 (7.2)	49.5	Steps	Leg strength
Scott 2009	TASOAC	AU	-	982	62 (7)	51	Steps	Leg strength
<u>Semanik 2015</u>	OAI	US	OA	1659	64.8 (9.0)	54.7	SB	5x CST
Silva 2019	N/A	PT	Physically independent	83	72.14 (5.61)	67.5	MVPA, LPA, SB	Arm curl, 30s CST
Spartano 2019	FOS	US	-	1352	68.6 (7.5)	54.0	Steps, MVPA, SB	HGS, 5x CST
Tang 2015	N/A	US	Severe Aortic Stenosis	51	88 [85-90]	63	Activity counts	HGS
Trayers 2014	OPAL	GB	-	240	78 (6)	48	Steps, counts, MVPA	5x CST
Van Gestel 2012	N/A	SE	COPD	70	62.4 (7.4)	30.0	Steps	HGS, 60s CST
Van Lummel 2016	N/A	NL	-	57	84.0 (11.0)	82.5	TPA, PA bouts, SB bouts	5x CST

Author year	Cohort	Country	Population selection ^a	Sample size (N)	Age in years mean (SD)	F %	PA/SB measures	Muscle strength/muscle power measures
Van Oeijen 2020	N/A	NL	CIAP	92	65 (13.75)	27.2	Steps	Lower extremity strength
Van Sloten 2011	N/A	NL	Diabetes	100	64.5 (9.4)	31.0	Steps	HGS
Walker 2008	N/A	N/R	COPD	23	66 (9)	47.8	TPA	KES
Ward 2014	N/A	N/R	-	156	68.9 (6.7)	45.5	Activity counts, MVPA	30s CST
Waschki 2012	N/A	GB & NL	COPD	104	64.6 (7.2)	39.2	Steps, EE (PAL)	KES
Watz 2008	N/A	DE	COPD	170	64.0 (6.6)	24.7	Steps, EE (PAL)	HGS
Westbury 2018	HSS	GB	-	131 (<i>M</i> : 32; F: 99)	<i>M</i> : 78.6 (2.7); <i>F</i> : 78.9 (2.3)	75.6	TPA, MVPA, accelerations	HGS
Wickerson 2013	N/A	CN	Interstitial lung disease	24	62 [53-65]	41.7	Steps, MVPA	Knee extension torque
Winberg 2015	N/A	SE	Polio history	77	67 (6)	45.5	Steps	KES, knee flexion strength
Yamada 2011	N/A	JP	-	629 (Non-frail: 515; Frail: 114)	Non-frail: 77.0 (7.2); Frail: 76.1 (7.5)	67.5	Steps	5x CST
Yasunaga 2017	N/A	JP	-0-	287	74.4 (5.2)	37.3	MVPA, LPA, SB	HGS
Yoshida 2010	N/A	JP	Day care center attendees	147	82.8 (4.3)	100	Steps, TPA, MPA, LPA	HGS, KES
<u>Yuki 2019</u>	NILS-LSA	JP	-	401	71.1 (4.3)	44.4	Steps, LPA, MVPA	HGS

Table C1 Continued

Age in years is presented as mean (standard deviation) or otherwise median [interquartile range] or mean {range}. Gender distribution is presented as the percentage of females within the study population. Subgroups are presented in italics with their sample size (N) and any other reported information in parentheses. ^aPopulation selection refers to any specific for criteria for selection other than sex (e.g. disease or demographic characteristic), studies with no selection were selected from a community-based sample or the general population left blank with a dash.

N=sample size, M=male, F=female, N/R=not reported, N/A=not applicable, BRHS=British Regional Heart Study, LIFE=Lifestyle Interventions and Independence for Elders, IDEA=Intensive Diet and Exercise for Arthritis, MRC NSHD=Medical Research Council National Survey of Health and Development, OPAL=Older People and Active Living, PAC-COPD=Phenotype Characterization and Course of Chronic Obstructive Pulmonary Disorder, CIAP=chronic idiopathic axonal polyneuropathy,

TASOAC=Tasmanian Older Adult Cohort, OPRA=Osteoporosis Prospective Risk Assessment study, MURDOCK=The Measurement to Understand the Reclassification of Disease Of Cabarrus/Kannapolis, NCGG=National Center for Geriatrics and Gerontology-Study, COSHIBA=Cohort of Skeletal Health in Bristol and Avon, EPIC-Northfolk=European Prospective Investigation into Cancer in Northfolk, OAI=Osteoarthritis Initiative, CHMS=Canadian Health Measure Survey, MrOS=The Osteoporotic

Fractures in Men Study, ActiFE Ulm=Activity and Function in the Elderly in Ulm, CODEC=Chronotype of Patients with Type 2 Diabetes and Effect on Glycaemic Control, TSHA=Toledo Study of Healthy Aging, FOS=Framingham Offspring Study, HSS=Hertford Sarcopenia Study, NILS-LSA=National Institute for Longevity Sciences-Longitudinal Study of Aging, PAAS= Physical Activity and Aging Study, SNAC-K=National study on Aging and Care in Kungsholmen, JP=Japan, GB=Great Britain, ES=Spain, PT=Portugal, US=United States, IT=Italy, CN=Canada, PL=Poland, BR=Brazil, SE=Sweden, FI=Finland, AU=Australia, NO=Norway, DE=Germany, CH=Switzerland, EE=Estonia, NL=Netherlands, HR=Croatia, TW=Tawain, MS=multiple sclerosis, HC=healthy controls, OA=osteoarthritis, BMI=body mass index, COPD=chronic obstructive pulmonary disorder, PAD=peripheral artery disease, N=sample size, M=male, F=female,

TPA=total physical activity, MPA=moderate physical activity, VPA=vigorous physical activity, MVPA=moderate to vigorous physical activity, LPA=light physical activity, SB=sedentary behavior, EE=energy expenditure, PAL=physical activity units, BST=breaks in sedentary time, Δ =change, MET=metabolic equivalent of tasks, VMU=vector magnitude units, HGS=hand grip strength, KES=knee extension strength, CST=chair stand test, s=seconds, x=times (repetitions), 1RM=one repetition maximum

Q1 * *	*	22 _{a,b}		3a,b	bility Q4	Q5	Q6 ^L Q7		e Quality
*		-	*	_			X [×] X [×]		
	*			*	-	*		5/7	high
*		-	*	-	-	*		4/7	high
•	*	*	*	*	*	*		7/7	high
*	*	-	-	-	-	*		3/7	low
-	*		-	-	*	*		3/7	low
*	-		*	*	*	*		5/7	high
*	*	-	-	-	*	*		4/7	high
*	*	-	-	-	*	*		4/7	high
*	*	-	*	-	-	*		4/7	high
-	*	*	-	-	*	*		4/7	high
-	-	-	-	-	-	*		1/7	low
*	-	-	-	-	*	-		2/7	low
-	*	-	-	-	-	-		1/7	low
*	*	-	*	*	*	*		6/7	high
*	*	-	-	-	-	*		3/7	low
-	-	-	-	-	*	-		1/7	low
*	-	-	-	-	-	*		2/7	low
*	-	-	-	-	*	*		3/7	low
*	-	-	-	*	*	-		3/7	low
*	*	-	-	*	*	-	* _	5/9	high
-	-	*	-	-	*	*		3/7	low
*	*	-	-	-	*	-		3/7	low
*	*	-	-	-	*	-		3/7	low
*	*	*	*	*	*	*		7/7	high
*	*	*	*	*	*	*		7/7	high
*	-	-	-	*	*	*		4/7	high
*	-	-	*	*	*	*		5/7	high
	* - * * * * - * * - * * * * * * * * *	* - * * * * * - * * * * - * * * * - * * * * - * * * * * - *	* - * * * * * * * * * * * *					$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table C2 Assessment of methodological quality of included articles based on the adapted

 Newcastle-Ottawa Scale (NOS)

6

Author year	Sel	ectio	n	Com	para	bility		tcome	Score	Score Quality		
	Q1	Q2	2 _{a,b}	Q.	3 _{a,b}	Q4	Q5	Q6 ^L Q7 ^L				
Demeyer 2018	*	*	*	-	-	-	-	* _	4/9	low		
Distefano 2018	*	*	-	*		*	*		5/7	high		
Dogra 2017	*	*	-	*	*	*	*		6/7	high		
Dohrn 2020	*	*	*	*	*	*	*		7/7	high		
Dos Santos 2019	*	*	-	-	_	*	*		4/7	high		
Duncan 2016	*	*	-	_	-	*	*		4/7	high		
Edholm 2019	*	*	*	-	*	*	*		6/7	high		
Foong 2016	*	*	_	-	-	*	*		4/7	high		
Gennuso 2016	*	*	*	*	*	-	-		5/7	high		
Gerdhem 2008	*	*	*	-	-	*	*		5/7	high		
Hall 2016	*	_	*	-	-	*	*		4/7	high		
Harada 2017	*	*	-	-	-	*	*		4/7	high		
Hartley 2017	*	*	-	*	_	*	*		5/7	high		
Hasegawa 2018	*	*	-	*	_	*	*		5/7	high		
Hernandes 2013	*	*	-	-	_	-	*		3/7	low		
Hernandez 2016	*	*	-	-	*	*	*		5/7	high		
Hopkins 2019	*	-	-	*	*	-	*	* _	5/9	high		
Iijima 2017	*	-	-	*	*	*	*		5/7	high		
Ikenaga 2014	*	-	-	-	*	*	-		3/7	low		
Iwakura 2016	*	*	-	-	_	-	*		3/7	low		
Jantunen 2016	*	*	*	*	*	*	*		7/7	high		
Jeong 2019	*	*	_	_	-	-	*		3/7	low		
Johnson 2016	*	*	*	-	_	-	*		4/7	high		
Kawagoshi 2013	*	*	*	_	-	-	*		4/7	high		
Keevil 2015	*	*	*	*	*	*	*		7/7	high		
Kim 2015a	*	*	_	*	_	*	*		5/7	high		
Kim 2015b	*	*	*	*	*	*	*		7/7	high		
Lai 2020	*	*	*	*	*	*	*		7/7	high		
Lee 2015	*	*	*	*	*	*	*		7/7	high		

Author year	Selection			Com	para	bility	Outcor	e Quality	
•	Q1	Q	2 _{a,b}		3 a,b	Q4	Q5 Q6 ^L	Q7 ^L	
Lerma 2018	*	*	-	*	*	*	*	6/7	high
Liao 2018	*	*	*	*	*	*	*	7/7	high
Lohne-Seiler 2016	*	*	*	*	*	*	*	7/7	high
Mador 2011	*	-	*	-	-	*	*	4/7	high
Master 2018	*	*	-	*	*	*	*	6/7	high
Matkovic 2020	*	-	-	_	-	*	*	3/7	low
McDermott 2002	*	*	-	-	-	*	*	4/7	high
McGregor 2018	*	*	/	*	*	*	-	5/7	high
Meier 2020	*	-	-	*	*	*	*	5/7	high
Monteiro 2019	*	*	-	-	-	*	*	4/7	high
Morie 2010	*	*	-	-	-	-	*	3/7	low
Nagai 2018	*	*	*	-	-	-	*	4/7	high
Nawrocka 2017	*	*	-	-	-	*	*	4/7	high
Nawrocka 2019	-	*	-	-	-	*	*	3/7	low
Nicolai 2010	_	*	-	-	-	-	*	2/7	low
Ofei-Doodoo 2016	*	-	-	-	-	*	*	3/7	low
Orwoll 2019	*	*	-	-	-	*	*	4/7	high
Osuka 2015	*	*	*	*	*	*	*	7/7	high
Park 2018	*	*	-	-	-	-	-	2/7	low
Perkin 2018	*	*	-	-	-	-	*	3/7	low
Pitta 2005	*	*	-	-	-	*	*	4/7	high
Puthoff 2008	-	*	*	-	-	-	-	2/7	low
Rapp 2012	*	*	*	*	-	*	*	6/7	high
Rausch-Osthoff 2014	*	*	-	-	-	*	*	4/7	high
Rava 2018	*	*	-	*	*	-	*	5/7	high
Reid 2018	*	_	-	*	*	*	*	5/7	high
Rojer 2017	*	*	*	*	*	*	*	7/7	high
Rosenberg 2015	*	*	*	*	*	*	*	7/7	high
Rowlands 2018	*	*	*	*	*	*		6/7	high

Table C2 Continued

Author year	Se	lecti	on	Com	para	bility	O	utcor	ne	Score	e Quality
	Q1		2 _{a,b}		3 _{a,b}	Q4	Q5		Q7 ^L		Q
Safeek 2018	*	*	*	-	-	-	*	ž		4/7	high
Sanchez-sanchez 2019	*	*	*	*	*	*	*			7/7	high
Santos 2012	*	*	*	*	*	*	*			7/7	high
Sardinha 2015	*	*	*	*	*	-	*			6/7	high
Scott 2020	*	*	*	-	*	*	*			6/7	high
<u>Scott 2011</u>	*	*	*	-	*	*	*	*	*	8/9	high
Scott 2009	*	*	*	-	-	*	*			5/7	high
<u>Semanik 2015</u>	*	*	*	*	*	*	*	*	*	9/9	high
Silva 2019	*	*	*	-	-	*	*			5/7	high
Spartano 2019	*	*	*	*	*	*	*			7/7	high
Tang 2015	*	*	-	-	*	*	*			5/7	high
Trayers 2014	*	-	-	*	*	*	*			5/7	high
Van Gestel 2012	*	*	-	-	*	*	*			5/7	high
Van Lummel 2016	*	*	-	-	-	*	*			4/7	high
Van Oeijen 2020	*	-	-	-	-	*	-	*	-	3/9	low
Van Sloten 2011	*	*	-	-	-	*	-			3/7	low
Walker 2008	-	*	-	-	-	*	*			3/7	low
Ward 2014	*	*	-	*	*	*	*			6/7	high
Waschki 2012	*	*	*	*	*	*	*			7/7	high
Watz 2008	*	*	-	-	*	-	-			3/7	low
Westbury 2018	*	*	-	*	*	*	*			6/7	high
Wickerson 2013	*	*	-	-	-	*	*			4/7	high
Winberg 2015	*	*	-	*	*	-	*			5/7	high
Yamada 2011	*	*	-	*	*	-	*			5/7	high
Yasunaga 2017	*	*	*	*	*	*	*			7/7	high
Yoshida 2010	*	-	-	-	-	-	*			2/7	low
<u>Yuki 2019</u>	*	*	-	*	*	-	-	*	*	6/9	high

Table C2 Continued

Q=questions, L=questions applicable to longitudinal studies only, quality was assessed using a cut-off for high quality of $\geq 4/7$ for cross-sectional studies and $\geq 5/9$ for longitudinal studies, and otherwise articles were classified low quality

*represents point awarded, - (dash) represents no point awarded, blank represents N/A, <u>underlined</u> articles are longitudinal design **Q1:***Age, gender distribution, country, and kind of population is reported

 $Q2_a$:*Ascertainment of all physical activity measures reported is clearly and described by name of device, location, and clear cut-off points are reported when appropriate, $Q2_b$:*Methodological criteria of PA/SB data were clearly described and all of the following information: total wear time and assessment of valid days (mandatory hours/day and number of valid days) (2 possible * for Q2)

 $Q3_a$:*The study controls for the most important factors, age and sex, for at least one association, $Q3_b$:*The study adjusted for other or additional factor, e.g. level of education, comorbidities, accelerometer wear time, physical activity for at least one association (2 possible * for Q3)

Q4:*The statistical test used to analyze the data is clearly described and appropriate and the measurement of the association is presented clearly including effect size with confidence intervals, p-value (unless p<0.001), or standard error for at least one association

Q5:*Clear description of an established method for assessing muscle strength/muscle power with measurement device reported (if applicable) for all measures

Q6^L:*Follow-up \geq 3 months (applicable for longitudinal studies only)

Q7^L:*Complete follow up with all subjects accounted for or small number lost (<20 %) months (applicable for longitudinal studies only)

Author year		evice and we otocol	aring		Assessmen	nt of valid	days	Physical activity a	and sedentary	behavior	
	-	Name	Worn on		s Defined as minimum (h/day)	days	Wear time mean (SD) (min/day)	Reported measure(s) ^a	Units	Cut off values/definition	Mean (SD)
Abe 2015	A	Lifecorder EX	Hip	30	N/R	30	N/R	Steps MVPA LPA (<i>LPA-MPA</i>)	#/day Min/day Min/day	Device detected ≥3 MET <3-6 MET	7974 (3041) 23.7 (17.1) 82.2 (29.1)
Abe 2012	A	Lifecorder EX	Hip	30	N/R	30	N/R	Steps VPA MVPA (<i>MPA</i>) LPA EE	#/day Min/day Min/day Min/day Kcal/day	Device detected >6 MET 3-6 MET <3 MET Device detected	7996 (3180) 1.6 (1.6) 22.5 (16.8) 59.4 (20.8) 181 (85)
Aggio 2016	A	Actigraph GT3X	Hip	7	10	3	N/R	MVPA	Min/day	>1040 CPM	Non-sarcopenia: 42.1, (95% CI: 40.1, 44.0); Sarcopenia: 37.9 (95% CI: 32.8, 43.1); Severe sarcopenia: 19.8 (95% CI: 14.4, 25.1)
						0		LPA	Min/day	100-1040 CPM	Non-sarcopenia: 201.9 (95% CI: 198.1, 205.6); Sarcopenia: 196.4 (95% CI:187.1, 205.7); Severe sarcopenia: 169.2 (95% CI: 152.5, 185.9)
								SB	Min/day	<100 CPM	Non-sarcopenia: 610.9 (95% CI: 606.0, 615.7); Sarcopenia: 614.1 (95% CI: 602.1, 626.1); Severe sarcopenia: 650.6 (95% CI: 632.0, 669.2)
								BST	#/h	N/R	Non-sarcopenia: 7.3 (95% CI: 7.2, 7.4); Sarcopenia: 7.3 (95% CI: 7.0, 7.6); Severe sarcopenia: 6.6 (95% CI: 6.0, 7.1)
Alcazar 2018	B A	Acti Trainer	Hip	7	8	4	N/R	MVPA SB	% time/day % time/day	≥1952 CPM <100 CPM	N/R N/R

Table C3 Ascertainment and measurement characteristics of objectively measured physical activity and sedentary behavior

Author year		evice and we otocol	earing		Assessmen	t of valid	days	Physical activity a	nd sedentary b	ehavior	
		' Name	Worn on		s Defined as minimum (h/day)	days	Wear time mean (SD) (min/day)	Reported measure(s) ^a	Units	Cut off values/definition	Mean (SD)
Alzahrani 2012	A	IDEEA	Waist	2	N/R	N/R	10.8 (1.3) h/day	Activity counts	#/day	Total # of steps + stairs + sit to stands	
								TPA (On feet)	Min/day	Total duration of walking + stairs + standing + sit to stands	230 (115)
Anderson 2013	A	ActiReg	Waist, thigh, and chest	7	N/R	N/R	N/R	EE (PAL)	None	Calculated as EE from ActiReg/resting metabolic rate from indirect calorimetry	1.47 (0.19
Andre 2018	A	Actigraph GT1M	Hip	5	10 h/day or 3000 activity counts	4	N/R	MVPA	Min/day	≥1952 CPM	35.3 (28.8)
Andre 2016	A	Actigraph GT1M	Hip	7	10 h/day or 3000 activity counts	4	N/R	MVPA (less vs. more active)	Dichotomous min/day	$<$ vs. \ge 30 min/day	31.83 (28.3)
Aoyagi 2009	A	Kenz Lifecoder	Waist	1 year		N/R	N/R	Steps TPA	# /day Min/day	Device detected >3 MET	6574 (2715) 17.3 (11.9)
Ashe 2008	A	Actigraph GT1M	waist	N/R	10	4 ^a	6 (1) days	Activity counts MVPA	#/day Min/day	Device detected >574 CPM	244384 (116423) 156 (90)
Ashe 2007	Р	New Lifestyles Digiwalker		3	N/R	N/R	N/R	Steps Steps (high vs. low)	#/day Dichotomous #/day	Device detected < or > 7500 steps/day	6078 (4031)
Aubertin- Leheudre 2017	A	Actigraph GT3X	Hip	N/R	10	3	N/R	Steps	#/day	Device detected	Non-obese non-dynapenic: 2938 (1573); Non-obese dynapenic: 2703 (1703); Obese non-dynapenic: 2622 (1327); Obese dynapenic: 2406 (1199)
								Activity counts	#/day	Device detected	Non-obese non-dynapenic:

Table C3 Continued

Non-obese non-dynapenic: 95617 (49660); Non-obese dynapenic: 84046 (51892);

\$

Author year		evice and we otocol	aring		Assessmen	nt of valid o	days	Physical activity	and sedentary b	ehavior	
	A/ P	/ Name	Worn on		Defined as minimum (h/day)	days	Wear time mean (SD) (min/day)	Reported measure(s) ^a	Units	Cut off values/definition	Mean (SD)
								ТРА	Min/day	>500 CPM	<i>Obese non-dynapenic</i> : 94160 (49862); <i>Obese dynapenic</i> : 84995 (43571) <i>Non-obese non-dynapenic</i> : 55.8
									·		(36.6); <i>Non-obese dynapenic</i> : 46.0 (35.2); <i>Obese non- dynapenic</i> : 57.3 (38.3); <i>Obese</i> <i>dynapenic</i> : 49.8 (34.4)
Balducci	А	Му	Hip	7	N/R	N/R	N/R	MVPA	Min/day	≥1952 CPM	12.4 (4.6)
2017		Wellness						LPA	H/day	100-1951	3.93 (1.35)
		Key						SB	H/day	<100 CPM	11.6 (1.2)
Bann 2015	A	Actigraph GT3X	Hip	7	10	3	N/R	TPA	H/day	Device detected	<i>M</i> : 168.7 (67.0); <i>F</i> : 202.0 (67.9)
								Lower-LPA	H/day	100-1040 CPM	<i>M</i> : 152.6 (55.7); <i>F</i> : 187.5 (59.0)
								Higher-LPA	H/day	1041-1951 CPM	<i>M</i> : 12.1 (13.1); <i>F</i> : 12.1 (11.6)
								SB	H/day	<100 CPM	<i>M</i> : 663.1 (109.6); <i>F</i> : 634.3 (114.7)
Barbat- Artigas 2012		Suzuken Lifecorder PLUS	Waist	7	N/R	N/R	N/R	Steps	#/day	Device detected	Sedentary: 6178 (1381); Moderate active: 8624 (641); Active: 13524 (2553)
		NL2160						TPA	Min/day	≥3 MET (Subgroups – Sedentary: <7500; Moderate active: 7500- 10000; Active: >10000)	Sedentary: 14.84 (9.36); Moderate active: 24.81 (15.15); Active: 50.06 (23.45)
Bartlett 2020)A	Actigraph GT3X	N/R	7	N/R	N/R	N/R	Steps (Active vs. Sedentary)	#/day	Active: 10500-15000; Sedentary: 1518-4580	Active: 12019 (1412); Sedentary: 3657 (777)
Bassey 1988	A	N/R	Waist	7	N/R	N/R	N/R	Steps (step score)	#/day x 10^3	Device detected	<i>M</i> : 50 (37); <i>F</i> : 42 (28)
Bogucka 2018	Р	Onwalk 900 Geonaute)N/R	2	N/R	2	N/R	Steps	#/day	Device detected	Dynapenic: 5296 (2892); Non- dynapenic: 7259 (3849)

Table C3 Continued

Author year		evice and we otocol	aring		Assessmen	nt of valid	days	Physical activity a	nd sedentary b	ehavior	
	-	Name	Worn on		Defined as minimum (h/day)	days	Wear time mean (SD) (min/day)	Reported measure(s) ^a	Units	Cut off values/definition	Mean (SD)
Bollaert 2017	A	Actigraph GT3X	N/R	7	N/R	4	MS: 797.8 (97.8) HC: 851.8	MVPA LPA	% wear time % wear time	≥1723 CPM 1722-100 CPM	<i>MS:</i> 1.5 (0.02); <i>HC:</i> 4.2 (0.03) <i>MS:</i> 30.6 (0.09); <i>HC:</i> 33.0 (0.07)
							(79.3)	SB	% wear time	<100 CPM	<i>MS:</i> 67.9 (0.09); <i>HC:</i> 62.8 (0.08)
								PA bouts PA bouts	#/day Min/bout/day	>2 min PA >2 min PA	<i>MS:</i> 12.4 (4.9); <i>HC:</i> 13.4 (3.7) <i>MS:</i> 45.9 (29.5); <i>HC:</i> 43.4 (28.2)
								SB bouts SB bouts	#/day Min/bout/day #/day	>2min SB >2min SB >30 min SB	<i>MS</i> : 15.2 (3.2); <i>HC</i> : 15.7 (3.1) <i>MS</i> : 24.5 (7.3); <i>HC</i> : 22.9 (3.9)
<u>Boutou 2019</u>	A	Actigraphy	Hip	14	10	1	N/R	Long SB bouts Long SB bouts Actigraph measures	Min/bout/day	>30 min SB	<i>MS:</i> 5.9 (1.4); <i>HC:</i> 5.5 (1.9) <i>MS:</i> 51.4 (8.2); <i>HC:</i> 47.8 (6.0)
		GT3X and Dynaport MiniMod	and back	FU: 7				ΔSteps	#/day	Device detected	Baseline: 4284 (3533); 6- month FU: 3594 (3212); 12- month FU: 3533 (2930)
		(concurrent)					ΔΜVΡΑ	Ratio	Ratio of moderate to. vigorous PA	Baseline: 8.8 (18.8); 6-month FU: 7.4 (17.4); 12-month FU:
								ΔνΜυ	#/day	Vectorial sum of activity counts in three orthogonal directions	6.1 (15.7) Baseline: 374902.4 (265269); 6-month FU: 330420 (223152); 12-month FU: 336240 (214432)
								Dynaport measures			
								ΔSteps	#/day	Device detected	Baseline: 4690 (3708); 6- month FU: 4264 (3378); 12- month FU: 4359 (3425)
								Δ Steps (<i>Walking</i>)	Min/day	Device detected	Baseline: 59.1 (34.9); 6-month FU: 53.2 (34.4); 12-month FU: 56.9 (38.7)
								ΔΜΕΤ	G	Metabolic equivalents	Baseline: 0.183 (0); 6-month FU: 0.183 (0); 12-month FU: 0.181 (0)

Table C3 Continued

Assessment of valid days Author year Device and wearing Physical activity and sedentary behavior protocol Worn # days Defined as # valid Wear time Reported Units Mean (SD) A/ Name Cut off values/definition Р worn minimum days mean (SD) measure(s)^a on required (min/day) (h/day) Vectorial sum of Baseline: 286039.6 (237721); ΔVMU #/day activity counts in three 6-month FU: 265253.2 orthogonal directions (218109): 12-month FU: 259447.4 (199472) A Actigraph Wrist 7 5 N/R MVPA CPM >500 CPM MPA group: 20.6 (1.6); VPA Carrasco 10 Povatos 2016 GT3X (Subgroups – MPA group: 22.6 (1.1) group: 500-760 CPM; VPA group: >760 CPM) Chastin 2012 A ActivPAL Thigh 7 N/R N/R N/R SB H/day Device detected (sitting F: 16.8 (1.6); M: 17.7 (1.8) posture) N/R SB break rate #/sedentary h F: 3.3 (0.4): M: 2.6 (0.8) Chmelo 2013 A Kenz N/R N/R Device detected Waist 7 #/day 6209 (2554) N/R Steps Lifecorder **MVPA** Min/day \geq 3 MET 10.6 (8.9) LPA Min/dav <3 131 (39) EE Kcal/day Device detected 237 (124) Cooper 2015 A Acitheart Chest 7 **MVPA** 6 h per 2 5.03 [4.8-Min/day ≥ 3 MET *M*: 90.5 (64.9); *F*: 79.9 (54.9) quadrant of 5.2] SB H/day <1.5 MET *M*: 17.4 (2.2); *F*: 17.3 (2.0) EE Kj/kg/day Device detected *M*: 38.1 (15.7); *F*: 34.2 (13.3) day Davis 2014 A ActiGraph Waist 7 5 14.4 (1.4) **MVPA** >1951 CPM 0.9(1.3)10 Min/h GT1M h/day SB Min/h 0-99 CPM 42.8 (6.1) BST #/h Any transition from SB 5.0(1.0)P StepsCount N/R 3 N/R N/R N/R Device detected **De Melo** Steps #/day 5289 (4029) SC-01 2010 P StepCount N/R 3 De Melo N/R N/R N/R Steps (medium vs. Categorical ≥3000-6500 vs. ≥6500 5289 (4029) 2014 SC-01 high) #/day steps/day 89 (9) % of Δ Steps (persistently Categorical Demever A SenseWear Arm 7 70% of 3 Active at follow-up and N/R active, decline, 2018 Pro waking day; 6 (1) #/day baseline, declined at Armband hours 8ampersistently inactive) follow-up from baseline, days 10pm inactive at follow-up and baseline Device detected Steps #/day **MVPA** Min/day >3 MET

Table C3 Continued

Author year		evice and we otocol	aring		Assessmen	nt of valid (days	Physical activity a	nd sedentary b	ehavior	
	Ā/ P	Name	Worn on		s Defined as minimum (h/day)	days	Wear time mean (SD) (min/day)	Reported measure(s) ^a	Units	Cut off values/definition	Mean (SD)
								SB	Min/day	<1.5 MET	7362 (4589) 52 [22-91] 624 (118)
Distefano 2018	A	SenseWear Pro Armband	Arm	7	85% day	N/R	N/R	Steps	#/day	Device detected	Active: 8459 (2991); Sedentary: 4883 (2683)
Dogra 2017	A		Hip	7	10	4	N/R	BST	#/day	Transition from SB (<100 CPM) >1 min	44 (95% CI: 43, 45)
Dohrn 2020	A	ActivPAL 3	3 Thigh	7	10	4	852 (64)	Long SB bouts SB	% time/day Min/day	posture)	9 (95% CI: 8, 9) 512.1 (95% CI: 455.6, 571.7
								SB break rate SB bouts	#/sedentary h Min/all SB bouts	Sit to stand transition Midpoint of cumulative distribution of all SB bout durations	5.1 (95% CI: 4.0, 6.4) 30.1 (95% CI: 24.4, 39.1)
Dos Santos 2019	A	Actigraph GT3X	Waist	5	10	4	N/R	Long SB bouts MVPA (sufficient vs. insufficient)	Min Min/day	Longest sedentary bout \geq or <30 min MVPA (\geq 1041 CPM)	132.6 (95% CI: 106.4, 167.2) N/R
Duncan 2016	6P	Piezo Electric Pedometer New Lifestyles NL-2000	Waist	7	N/R	N/R	N/R	Steps (high, medium, low)	#/day	>7500, 5001-7500, 2501-5000 steps	N/R
Edholm 2019	9A		Waist	7	10	4	14.2 (1.0) h/day; 5.6 (6.0) days	Activity counts MVPA	#/min/day Min/day	Device detected >2020 CPM	307 (128) 32 (26)
Foong 2016	A	Actigraph GT1M	Waist	7	10	5	N/R	Activity counts VPA MVPA (MPA) LPA SB	10,000/day 10 min/day 10 min/day 10 min/day 10 min/day	Device detected ≥6 MET 3-5.9 MET 1.5-2.9 MET <1.5 MET	<i>F</i> : 27.7 (12.5); <i>M</i> : 31.5 (14.3) <i>F</i> : 0.5 (0.3); <i>M</i> : 1.2 (0.4) <i>F</i> : 27.9 (22.5); <i>M</i> : 36.3 (26.7) <i>F</i> : 226.7 (7.1); <i>M</i> : 227.1 (73.0)

Table C3 Continued

\$

Author year		vice and we otocol	earing		Assessmen	t of valid	days	Physical activity ar	nd sedentary b	ehavior	
	A/ P	Name	Worn on		s Defined as minimum (h/day)	days	Wear time mean (SD) (min/day)	Reported measure(s) ^a	Units	Cut off values/definition	Mean (SD)
						•					<i>F:</i> 582.6 (89.0); <i>M:</i> 585.1 (99.5)
Gennuso 2016	A	ActivPAL and	Thigh and	7	10	3	N/R	SB	H/day	Device detected (sitting or lying posture)	<i>M</i> : 9.6 [8.7-11.1]; <i>F</i> : 9.3 [7.9-10.3]
		Actigraph GT3X	hip					SB bouts	Min/day	Duration of SB bouts	<i>M</i> : 12.7 [10.7-16.0]; <i>F</i> : 10.7 [8.7-13.4]
								Long SB bouts (≥20min)	H/day	Duration of ≥20min SB bouts	<i>M</i> : 6.2 [5.2-7.1]; <i>F</i> : 5.7 [4.7-6.9]
								≥40min SB bouts	H/day	Duration of ≥40min SB bouts	<i>M</i> : 3.7 [3.1-5.0]; <i>F</i> : 3.8 [3.3-4.5]
								≥60min SB bouts	H/day	Duration of ≥60min SB bouts	<i>M</i> : 2.4 [1.8-3.1]; <i>F</i> : 2.4 [1.6-3.3]
								SB break rate	#/sedentary h	Disruption of SB	<i>M</i> : 4.7 [3.8-5.6]; <i>F</i> : 5.5 [4.5-6.9]
Gerdhem 2008	A	MTI AM 71256	Hip	7	8	5	N/R	Activity counts MVPA	#/min/day Min/day	Device detected >1952 CPM	18 [11-23] 13 [6-23]
Hall 2016	A	ActiGraph GT3X or GT3X+	Waist	7	10	4	N/R	Steps	#/day	Device detected	60-69y: 6311.0 (2668.4);70- 79y: 5275.5 (2717.0); 80-90+y: 3591.1 (2133.8) 60-69y: 33.7 (24.8); 70-
								MVPA	Min/day	N/R	79y: 24.7 (25.8); 80-90+y: 12.3 (15.4) 20.9 60-69: 96.0 (2.9); 70-79: 97.1 (2.9); 80-90+: 98.6* (1.8) 97.5
								SB	% time/day	N/R	
Harada 2017	γA	ACOS GT40-020	N/R	14	10	8	N/R	Steps	#/day	Device detected	6654.6 (2958.8)
Hartley 2017	Α	Gulf Coast Data Concepts x16-1c	Hip	7	10	N/R	N/R	Activity counts (low impact, medium impact, high impact)	band/day	0.5≤g<1.0, 1.0≤g<1.5, ≥1.5g	11457.8 [5779.1-18827.9], 452.6 [183.7-950.9], 51.8 [23.0-124.2]

Table C3 Continued

Author year		evice and we otocol	aring		Assessmen	t of valid (days	Physical activity an	nd sedentary b	ehavior	
	A/ P	' Name	Worn on		Defined as minimum (h/day)	days	Wear time mean (SD) (min/day)	Reported measure(s) ^a	Units	Cut off values/definition	Mean (SD)
Hasegawa 2018	Р	Misfit Shine 2	Hip	7	N/R	N/R	N/R	Steps	#/day	Device detected	6500 (3200)
Hernandes 2013	Р	Yamax SW-200 Digiwalker	Waist	7	12	8	N/R	Steps	#/day	Device detected	<i>Exercise:</i> 8314 [5971-10060]; <i>Non-exercise:</i> 6250 [4346-8207]
Hernandez 2016	A	Actigraph GT3X+	Hip	8	8	5	N/R	Steps TPA MVPA (MPA) LPA SB	#/day Min/day Min/day Min/day Min/day	Device detected Device detected 1952-5724 CPM 100-1951 CPM <100 CPM	8105.9 (3851.2) N/R 39.1 (33.9) 227.2 (89.9) 578.6 (86.2)
<u>Hopkins</u> 2019	A	Actigraph GT1M	N/R	7	10	4	N/R	MVPA (Meeting vs. not meeting guidelines)		≥ or <150 min MVPA (>2020 CPM)	N/R
(ijima 2017	Ρ	N/R	Leg	14	N/R	10	N/R	Steps	#/day	Device detected (Subgroups - Basal activity: <2500 steps; Limited activity: 2500- 4999 steps; Low active: 5000-7499 steps; Physically active: ≥7500 steps)	Basal activity: 1711 (591); Limited activity: 3718 (754); Low active: 5808 (701); Physically active: 9858 (2132)
lkenaga 2014		ACCtri Actimarker EW4800 x2 (concurrent		10	300 steps/day or 10 min/day of activity >2 MET		N/R	Steps MPA LPA SB	#/day Min/day Min/day Min/day	Device detected 3.0-5.9 MET 1.1-2.9 MET <1.1 MET	6523 (3797) 34.3 (27.0) 563.5 (125.4) 842.1 (129.8)
Iwakura 2016 Jantunen 2016		Lifecorder Sense Wear Pro 3			N/R 10	5 (Mon- Fri) 4 (Mon- Fri) + 1 (Sat-Sun)	1436.8 (6.0)	Steps MVPA)MET	#/day Min/day H/day	Device detected >3 MET Device detected	4546 (2992) 13.9 (14.0) 1779.6 (298.5)

Table C3 Continued

Author year		vice and we otocol	earing		Assessmer	nt of valid (days	Physical activity a	nd sedentary b	ehavior	
	Ā/ P	Name	Worn on		s Defined as minimum (h/day)	days	Wear time mean (SD) (min/day)	Reported measure(s) ^a	Units	Cut off values/definition	Mean (SD)
Jeong 2019	A	Fitbit charge 2	Wrist	7	10	4	N/R	Steps	#/day	Device detected	9907.6 (3641.8)
Johnson 2016	A	Actigraph GT1M	Hip	7	10	5	843.37 (75.587)	VPA MVPA (MPA) LPA SB	Min/day Min/day Min/day Min/day	≥6 MET 3-5.9 MET 1.5-2.9 MET <1.5 MET	0.390 (1.318) 31.490 (21.923) 228.560 (69.292) 581.670 (93.844)
Kawagoshi 2013	А	A-MES	Thigh and chest	7	12	2	4 (2) days	Steps (Walking) Standing	Min/day Min/day	Standing + vertical acceleration Trunk and thigh sensor vertical (not incl. walking)	118 (72)
								MVPA (Fast walking)	Min/day	Walking $\geq 2 \text{ km/h}$	36 (35)
								LPA (Slow walking) SB (Sitting)	Min/day Min/day	Walking <2 km/h Trunk sensor vertical, thigh sensor non- vertical	69 (30) 417 (116)
								Lying	Min/day	Thigh sensor non- vertical	107 (105)
Keevil 2015	A	Actigraph GT1M	Hip	7	10	4	<i>M:</i> 882 (70.5); <i>F:</i> 864 (64.7)	MVPA SB	Min/day H/day	≥1952 CPM <100 CPM	<i>M</i> : 39 (24.8); <i>F</i> : 35 (21.6) <i>M</i> : 701 (76.5); <i>F</i> : 669 (71.7)
Kim 2015a	A	Actigraph GT3X+	Wrist	7	N/R	5	N/R	Activity counts	#/min/day	Device detected	1771.8 (520.6)
Kim 2015b	A	Actigraph GT3X	Hip	10	10	5 (incl. 1 Sat-Sun)		Activity counts MVPA LPA SB Long SB bouts	#/min/day % time/day % time/day %. time/day Min/day	Device detected ≥1952 CPM 1951-100 CPM <100 CPM Duration >30 min SB bouts	174.7 (74.8) 2.7 (1.6) 12.6 (1.6) 84.6 (4.9) 53.9 (50.9)

Table C3 Continued

Table C3 Continued

Author year		evice and we otocol	aring		Assessmen	t of valid o	days	Physical activity an	nd sedentary b	ehavior	
	A/ P	Name			Defined as minimum (h/day)	days	Wear time mean (SD) (min/day)	Reported measure(s) ^a	Units	Cut off values/definition	Mean (SD)
Lai 2020	A	Actigraph wGT3X-B1	Waist	7	10	4 (incl. 1	15.4 (SD	MVPA (Meeting vs. not meeting guidelines)	Dichotomous min/day	≥30 min/day MVPA (>2020 CPM)	24.6 (23.2)
Lee 2015	A	Actigraph GT1M	Hip	7	10	4	14.8 (SD N/R) h/day	SB	H/day	<100 CPM	9.8 (1.5)
Lerma 2018	A	Actigraph GT3X	Hip	7	N/R	N/R	844.8 (75.8)	MVPA LPA SB	Min/day Min/day Min/day	≥1952 CPM 100-1951 CPM <100 CPM	25.0 (20.9) 283.1 (73.3) 536 (75.7)
Liao 2018	A	Active Style Pro HJA-350IT	r	7	10	4 (incl. 1 Sat-Sun)	900.9 (86.4)	Break rate	Min/day #/sedentary h	<1.5 METs Non-SB bout b/t two SE bouts	
								Long SB bouts Long SB bouts	#/day Min/day	# \geq 30 min SB bouts Duration \geq 30min SB bouts	4.4 (1.9) 233.0 (118.5)
Lohne-Seiler 2016	A	ActiGraph GT1M	Hip	7	10	1	6.6 (1.4) days; 14.0 (1.2) h/day	Steps	#/day	Device detected	N/R
Mador 2011	A	Actigraph GT1M	N/R	7	10	4		VMU	#/min/day	Device detected	116.5 (62.7)
Master 2018	A	Actigraph GT1M	Hip	7	10	4	N/R	Steps	#/day	Device detected	6166 (2924)
Matkovic 2020	A	StepWatch Activity Monitor	Ankle	7	8	N/R	N/R	Steps	#/day	Device detected	8059 (4757)
McDermott 2002	A		Waist	7	N/R	N/R	N/R	Accelerations (standardized)	#/day	Device detected normalized for age, sex height and weight	897.5 (533.4)
McGregor 2018	A	Actical	Hip	7	10	4	N/R	MVPA LPA SB	Log-ratio Log-ratio Log-ratio	≥1535 CPM 100-1534 CPM <100 CPM	N/R N/R N/R

Table C3 Continued

Author year		evice and we otocol	earing		Assessmen	nt of valid (days	Physical activity an	d sedentary be	chavior	
	A/ P	' Name	Worn on		Defined as minimum (h/day)	days	Wear time mean (SD) (min/day)	Reported measure(s) ^a	Units	Cut off values/definition	Mean (SD)
Meier 2020	Р	Omoron HJ-321	Waist	7	N/R	N/R	N/R		#/day #/day	Device detected ≥5000, 2500-4999, <2500	4943 (2632)
Monteiro 2019	A	Actigraph GT1M	Hip	7	8	3 (Mon- Fri)	N/R	Activity counts (terciles)	#/min/day	T1: ≤507.75 CPM, T2: 507.75-752.08 CPM, T3: ≥752.08 CPM	N/R
Morie 2010	A	Actigraph	Hip	7	N/R	5	6.6 (0.09) days	Activity counts	#/min/day x 10 5	Device detected	12.2 (7.0)
Nagai 2018	A	Actiband	Wrist	14	10	4	1015 (74)	LPA	Min/day Min/day Min/day	≥3 MET 1.5-2.9 MET <1.5 MET	42 (34) 463 (150) 510 (170)
Nawrocka 2017	A	Actigraph GT3X	Waist	7	10	N/R	N/R	MVPA (Meeting vs. not meeting guidelines)	Dichotomous min/day	≥150 min MPA (2020- 5998 CPM) or ≥75min VPA (>599 CPM) or equivalent combination of MVPA	N/R
Nawrocka 2019	A	Actigraph GT3X	Waist	7	10	N/R	N/R	MVPA (Meeting vs. not meeting guidelines)	Dichotomous min/day	≥150 min MPA (2020- 5998 CPM) or ≥75min VPA (>599 CPM) or equivalent combination of MVPA	N/R
Nicolai 2010	A	Physiolog BioAGM	Chest	7	N/R	N/R	N/R	1 (0/	Min/day Min/day	≥3 consecutive steps Upright standing <3 steps + walking	1.45 (0.07) 5.01 (0.18)
Ofei-Doodoo 2016	A	Kenz Lifecorder	Waist	14	N/R	N/R	N/R	MVPA	Min/day	Accelerometer intensity	≥30:00 min MVPA: 49:42 {31:24-2:17:07}; 20:00-29:59 min MVPA: 25:16 {20:00- 29:59}; 10:00-19:59 min MVPA: 14:51 {10:18-19:43}; 0:00-9:59 min MVPA: 3:33

{0:02-9:58}

Author year		vice and we otocol	aring		Assessmen	t of valid o	lays	Physical activity	and sedentary	behavior	
	-	Name	Worn on		s Defined as minimum (h/day)	days	Wear time mean (SD) (min/day)	Reported measure(s) ^a	Units	Cut off values/definition	Mean (SD)
Orwoll 2019	A	SenseWear Pro Armband	Arm	7	N/R		N/R	TPA (≥ <i>LPA</i>)	Min/day	≥1.51 MET	No falls: 160.8 (88.2); One fall: 156.4 (89.9); >Two falls: 141.9 (89.1)
								MVPA (≥ <i>MPA</i>)	Min/day	≥3 MET	<i>No falls</i> : 90.0 (61.5); <i>One fall</i> : 88.0 (62.0); ≥ <i>Two falls</i> : 77.8 (60.6)
Osuka 2015	A	Kenz Lifecorder	Hip	7	10	5	875.3 (92.4)	MVPA LPA	Min/day Min/day	≥3.6 MET 1.8-2.9 MET	17.6 (15.3) 57.1 (22.7)
Park 2018	A	Active style Pro HJA-	Waist	14	N/R	>3 (Mon- Fri) + 1	N/R	Steps TPA	#/day Min/day	Device detected ≥0.9 MET	7567.5 (3316.8) 807.3 (69.5)
		350IT				(Sat-Sun)		VPA MVPA MPA LPA SB	Min/day Min/day Min/day Min/day Min/day	≥6.0 MET ≥3.0 MET 3-5.9 MET 1.5-2.9 MET 0.9-1.5 MET	0.4 (1.6) 65.9 (29.7) 65.4 (29.7) 354.1 (71.7) 388.9 (81.3)
Perkin 2018	A	Actiheart	Chest	6	N/R	N/R	N/R	MVPA SB EE (PAL)	Min/day Min/day None	\geq 3.2 MET \leq 1.5 MET EE/basal metabolic rate	103 (49) 1058 (112)
Pitta 2005	A	DynaPort Activity Monitor	Waist and leg sensor		12	2	N/R	Steps (Walking) TPA (Standing)	Min/day Min/day	Device detected Device detected (not incl. walking)	44 (26) 191 (99)
Puthoff 2008 Rapp 2012			Ankle Thigh		8 24	6 >3 (Mon- Fri) +1 Sun	N/R N/R	Steps Steps (Walking)	#/day Min/day	Device detected Device detected	6384.4 (2370.8) <i>M</i> : 104.8 (41.0); <i>F</i> : 103.0 (39.4)
Rausch- Osthoff 2014		SenseWear Pro Armband	Arm	7	N/R	N/R	N/R	Steps EE EE (PAL) MET	#/day Kcal/day None Kcal/h/kg	Device detected Device detected Total EE/sleep EE Device detected	4097 (2325) 2222 (467) 1.44 (0.16) 30.3 (4.7)
Rava 2018	A	Actigraph	Hip	7	10	4	N/R	VPA MVPA	Min/day Min/day	≥ 5725 CPM ≥1954 CPM	1.5 (6.1) 56.2 (29.6)

6

Table C3 Continued

		aring		Assessmen	t of valid o	days	Physical activity a	and sedentary b	ehavior	Physical activity and sedentary behavior			
A/ P	Name	Worn on		minimum	days	mean (SD)		Units	Cut off values/definition	Mean (SD)			
					-	· · · · · ·	MPA	Min/day	1952- 5724 CPM	54.7 (29.1)			
							LPA	Min/day	100-1951 CPM	261.0 (69.7)			
								Min/day	<100 CPM	605.5 (106.5)			
А	ActivPAL 3	3 Thigh	7	10 (or	N/R	N/R		H/day	Device detecting (sitting	g9.7 (1.8)			
				waking			BST	10/day	+ lying posture)	47.8 (12.4)			
А	DynaPort	Waist		18	4	6.9	Steps	#/day	Device detected	7327 (2507)			
	Move Monitor					[6.8-7.0] h/day	TPA	Min/day	Device detecting (standing + locomotion)	256.7 (67.2)			
						-	SB	H/day	Device detecting (sitting	g19.0 (1.2)			
								·	+ lying)				
							PA bouts	#/day	N/R	1407 (426)			
							PA bouts	s/bout/day	N/R	11.3 (2.2)			
							SB bouts	#/day	N/R	132 [111-160]			
							SB bouts	Min/bout/day	N/R	8.9 (2.8)			
A	Actigraph GT3X+	Hip	6	10	1	days; 13.6	SB	H/day	<100 CPM	8.6 (1.0)			
А	GeneActiv	Wrist	7	16	3	N/R	MVPA	Min/day	Acceleration >125mg-	42.2 (32.8)			
				Ť			Accelerations	Mg-force	force	22.1 (7.5)			
							Intensity gradient	N/R	Device detected	3.11 (0.26)			
									Regression line from				
									log-log plot of intensity				
									(x) and minutes accumulated (y)				
							PA bouts (MVPA bouts)	Min/day	Acceleration >100mg- force accumulated in	9.3 (20.4)			
Δ	Actioraph	Waist	7	10	4	7 [1 00]	Steps	#/dav		3411.89 [4612.81]			
Π	GT3X	v aist	,	10	Ŧ	days; 15	MVPA	m/day Min/day	$\geq 2020 \text{ CPM}$	5.00 [9.13]			
						uuyo, 10	111 1 1 1 1	171111/ UU Y		2.0017.171			
						(SD N/R)	LPA	H/day	100-2019 CPM	3.69 [2.72]			
	Product A/P	protocol A/ Name P A ActivPAL 3 A DynaPort Move Monitor A Actigraph GeneActiv A Actigraph A Actigraph A Actigraph A Actigraph A Actigraph A Actigraph	A/ NameWornPon	protocolA/ NameWorn # days onAActivPAL 3 ThighADynaPort Move MonitorWaistADynaPort Move MonitorWaistAActigraph GT3X+HipAGeneActiv Wrist7	protocolWorn# daysDefined as minimum (h/day)AActivPAL 3 Thigh710 (or >80% of waking hours)ADynaPort Move MonitorWaist718AActigraph GT3X+Hip610AGeneActiv 	protocol Worn # days Defined as # valid on worn minimum days required A ActivPAL 3 Thigh 7 10 (or N/R >80% of waking hours) A DynaPort Waist 7 18 A Actigraph Hip 6 10 A GeneActiv Wrist 7 16 A GeneActiv Wrist 7 10 A Move Monitor 1	protocolA/ NameWorn# days wornDefined as minimum (h/day)# valid days requiredWear time mean (SD) (min/day)AActivPAL 3 Thigh710 (or >80% of waking hours)N/RN/RADynaPort Move Monitor710 (or >80% of waking hours)N/RN/RADynaPort Move MonitorWaist71846.9AActigraph GT3X+Hip61015.7 (1.48) days; 13.6 (1.3) h/dayAGeneActiv Wrist7163N/R	protocolA/ Name PWorn on# days worn minimum (h/day)Defined as minimum (h/day)# valid days requiredWear time mean (SD) (min/day)Reported measure(s)*AActivPAL 3 Thigh710 (or waking hours)N/RN/RSBADynaPort Move Monitor710 (or waking hours)N/RN/RSBADynaPort Move Monitor71846.9 (6.8-7.0) h/dayStepsAActigraph GT3X+Hip61015.7 (1.48) days; 13.6 (1.3) h/daySBAGeneActiv Wrist7163N/RMVPA Accelerations Intensity gradientAActigraph Waist 71047 [1.00]Steps	protocolA/ Name PWorn on# days worn minimum (h/day)Defined as days required# valid days (min/day)Wear time mean (SD)Reported measure(s)aUnitsAActivPAL 3 Thigh 710 (or vaking hours)N/RN/RN/RSBMin/day LPA SBMin/day Min/dayADynaPort Move MonitorWaist 71846.9Steps#/day TPAMin/day Min/dayADynaPort Move MonitorWaist 71846.9Steps#/day TPAAActigraph GT3X+Hip 61015.7 (1.48) days; 13.6 (1.3) h/daySBH/day SBAGeneActiv Wrist7163N/RMVPA Accelerations Intensity gradientMin/day Min/dayAActigraph Waist 71047 [1.00]Steps#/day	Protocol A/ Name Worn # days Defined as # valid mean (SD) Wear time mean (SD) Reported mean (SP) Units Cut off values/definition A ActivPAL 3 Thigh 7 10 (or N/R N/R MPA Min/day 1952-5724 CPM LPA SB Min/day 100-1951 CPM SB Min/day 2100 CPM A ActivPAL 3 Thigh 7 10 (or N/R N/R SB H/day Device detecting (sitting hours) A DynaPort Waist 7 18 4 6.9 Steps #/day Device detecting (sitting hours) A Move Movitor N/R SB H/day Device detecting (sitting hours) A Actigraph Hip 6 10 1 5.7 (1.48) SB H/day N/R A Actigraph Hip 6 10 1 5.7 (1.48) SB H/day <100 CPM			

Table C3 Continued

Author year		vice and we otocol	aring		Assessmen	t of valid o	lays	Physical activity	and sedentary k	oehavior	
	A/ P	Name	Worn on		Defined as minimum (h/day)	days	Wear time mean (SD) (min/day)	Reported measure(s) ^a	Units	Cut off values/definition	Mean (SD)
						-		EE	Kcal/day	Device detected	254.86 [345.58]
Sanchez-	А	ActiTrainer	Hip	7	8	4	84.39	Activity counts	#/day	Device detected	409365.62 (180677.01)
anchez 2019)						(16.03) h	MVPA	H/day	≥3 MET	1.02 (0.78)
								LPA	H/day	15-2.99 MET	5.01 (1.5)
								SB	H/day	<1.5 MET	6.98 (1.62)
Santos 2012	А	Actigraph	Hip	4	10	3 (incl. 1	819.6 (87.5)MVPA	Min/day	≥2020 CPM	26.0 (24.1)
		GT1M				Sat-Sun)		SB	Min/day	<100 CPM	579.9 (106.3
Sardinha 2015	A	ActiGraph GT1M	Hip	N/R	10	3 (incl. 1 Sat-Sun)	N/R	BST	#/day	Any interruption in SB defined as >100 CPM	78.9 (16.0)
Scott 2020	A	Actigraph GT3X	Hip	7	10	4	Non- sarcopenic:	MVPA	H/week	≥1952 CPM	<i>Non-sarcopenic:</i> 3.7 (3.0); <i>Sarcopenic:</i> 2.4 (2.5)
							91.8 (17.7) h/week;		H/week	100-1951	Non-sarcopenic: 29.3 (9.5); Sarcopenic: 27.5 (10.3)
							<i>Sarcopenic</i> . 89.4 (19.4) h/week	SB	H/week	<100 CPM	Non-sarcopenic: 58.7 (12.8) Sarcopenic:59.5 (15.3)
<u>Scott 2011</u>	Ρ	Baseline: Omron HJ- 003 & HJ- 102 6-month follow-up: Yamax SW-200	Leg	7	8	5	6.8 (0.2) days, 12.27 (0.17) h/day	Steps (<i>baseline</i>) Steps (<i>habitual</i>)	#/day x 10 ³ #/day x 10 ³	Device detected Mean of 3 time points (baseline, baseline+6 months, follow-up)	Baseline: 9002.7 (3250.4); 6 month FU: 7688.6 (3148.2)
Scott 2009	Р	Omron HJ- 003 or HJ- 102	Waist	7	8	5	Removal time: 0.44 (0.48) h/day	Steps	#/day	Device detected	9622 (4004)
<u>Semanik</u> 2015	A		Hip	7	10	4		SB	H/day	<100 CPM	9.8 (1.5)
Silva 2019	A	Actigraph GT1M	Back	5	10	2 (Mon- Fri) + 1 (Sat-Sun)	, ,	MVPA LPA SB	Min/day Min/day Min/day	≥2020 CPM 100-2019 CPM <100 CPM	33.46 (27.25) 291.16 (91.20) 458.10 (78.68)

Assessment of valid days Author year Device and wearing Physical activity and sedentary behavior protocol Wear time Reported A/ Name Worn # days Defined as # valid Mean (SD) Units Cut off mean (SD) measure(s)^a values/definition Р worn minimum days on required (min/day) (h/day) Hip #/day Device detected 6927 (3678) 8 **Spartano** A Actical 10 4 749 (71) Steps MVPA: >1486 CPM 2019 198-0200-MVPA Min/dav 19 (22) 00 SB % wear time <200 CPM 84.3 (6.3) Tang 2015 A Actigraph Wrist N/R N/R N/R 15.5 [9-Activity counts #/day Device detected for 10 h966,131 [720529-1267931] of day with highest 25.31 activity Trayers 2014A Actigraph N/R 7 Steps (low vs. high) #/day 10 5 N/R Device detected (lowest 181 (117) 1/3 vs. highest 2/3) GT1M Activity counts (low #/min/day Device detected (lowest 4456 (2478) vs. high) 1/3 vs. highest 2/3) MVPA (low vs. >1952 CPM (lowest 1/3 18.5 (20.2) Min/day vs. highest 2/3) high) Van Gestel A SenseWear Arm 7 N/R N/R N/R Steps Device detected 5273 (3319) #/day 2012 Pro Van Lummel A Dynaport Lower 7 N/R 6.8 (N/R) TPA (standing) Device detected 2.1 (0.9) N/R H/day days; 23.2 2016 back (standing posture) (SD N/R)# PA bouts #/day N/R 297.3 (150.7) h/day *(locomotion periods)* Device detected (sitting 5.7 (3.0) SB bout (*sitting* Min/bout/day periods) posture) Van Oeijen P Lifestyles N/R N/R N/R N/R Steps #/day Device detected Baseline: 5771.14 [4403.0]; 4y DigiWalker 2020 FU: 4493.93 [4203.46] Step Counter Van Sloten P Piezo-Waist 7 N/R N/R 14.9 (1.1) Steps #/day Device detected 6429 [45170-8573] 2011 electric h/day New Lifestyle 2000 Walker 2008 A Actiwatch Waist 3 N/R N/R For TPA (*time mobile*) % time/day % of 30s epochs where 50.0(2.7)evaluation: device level ≥ 1 and thigh 15.7 (0.2)

Author year			aring		Assessmer	nt of valid	days	Physical activity a	and sedentary l	behavior	
	-	otocol									
		' Name	Worn		s Defined as		Wear time		Units	Cut off	Mean (SD)
	Р		on	worn	minimum	•		measure(s) ^a		values/definition	
					(h/day)		(min/day)				
Ward 2014	А	Actigraph single-axis	Hip	7	10	5	N/R	Activity counts	#/min/day	Device detected	<i>F</i> : 2473.03 (111.50; <i>M</i> : 319.23 (131.0)
								MVPA	Min/week	>3 MET	<i>F:</i> 79.56 (96.82); <i>M:</i> 95.13 (91.90)
Waschki	А	SenseWear	Arm	8	22	5	Maastricht:	Steps	#/day	Device detected	4725 (3212)
2012		Armband					142h 17	EE (PAL)	None	EE/sleeping metabolic	1.45 (0.20)
							min <i>Liverpool:</i> 141h 1 min <i>London:</i> 142h 24	0		rate (device detected)	
							min				
T			A	5.0	22.5	F		C.	H/1.	D. L. Laurel	5992 (2694)
Watz 2008	А	SenseWear Armband	Arm	5-6	22.5	5	N/R	Steps EE (PAL)	#/day None	Device detected EE/sleeping metabolic rate (device detected)	5882 (3684) 1.50 (0.28)
Westbury 2018	А	GENEActiv	Wrist	7	N/R	7	N/R	TPA	Min/day	\geq 40mg-force	<i>M</i> : 137.8 [81.7-217.2]); <i>F</i> : 186.0 [122.1-240.4]
								MVPA	Min/day	≥100mg-force	<i>M</i> : 14.3 [1.8-30.2]; <i>F</i> : 9.5 [2.1-18.6]
								Accelerations	Mg-force	Device detected	<i>M</i> : 23.9 (7.6); <i>F</i> : 25.5 (6.8)
Wickerson	Α	Actigraph	Hip	7	8	N/R	4.5 (1.6)	Steps,	#/day	Device detected	2736 (1612)
2013		GT3X					h/day; 6.6 (1.0) days	MVPA (MPA)	Min/day	3-6 MET	3.6 [1.5-7.7]
Winberg 2015	Р	Yamax SW 200	Lower back	r 3	N/R	N/R	N/R	Steps	#/day	Device detected	6270 (3120)
Yamada 2011	Р	Yamax Power Walker EX 510	Leg	14	N/R	N/R	N/R	Steps	#/day	Device detected	Non-frail: 4414.4 (2726.3); Frail: 1585.0 (1012.6)
Yasunaga 2017	A	Active style Pro HJA- 350IT	e Waist	7	10	4 (incl. 1 Sat-Sun)	901.1 (87.5); 7.2	MVPA LPA SB	Min/day Min/day Min/day	≥3 MET >1.5 - <3 MET ≤1.5 MET	50.2 (33.5) 328.7 (101.4) 522.7 (113.4)

Table C3 Continued

Author year		vice and we otocol	aring		Assessmen	Assessment of valid days		Physical activity and sedentary behavior				
	A/ P	Name	Worn on	·	Defined as minimum (h/day)	days	Wear time mean (SD) (min/day)	Reported measure(s) ^a	Units	Cut off values/definition	Mean (SD)	
							(SD N/R) days					
Yoshida 2010	A	Active style Pro HJA	N/R	-	500 min/day	7	N/R	Steps	#/day	Device detected	<i>HFG:</i> 2416 (2055); <i>LFG:</i> 1275 (1313)	
								TPA	Min/day	Device detected	<i>HFG</i> : 36.8 (24.0); <i>LFG</i> : 24.4 (18.8)	
								MPA	Min/day	Device level 3-6 (~3-6 MET)	N/R	
								LPA	Min/day	Device level 1-2 (~<3 MET)	N/R	
Yuki 2019	А	Suzken	N/R	7	10	N/R	N/R	Steps	Min/day	Device detected	7204.1 (3500.3)	
		Lifecorder						LPA MVPA	Min/day Min/day	1.8-3 MET ≥3 MET	55.5 (22.8) 20.4 (19.2)	

Mean (standard deviation (SD)) of wear time and physical activity/sedentary behavior are presented unless otherwise reported as median [interquartile range], or mean {range}. *Subgroups* for stratified results are presented in italics. <u>Underlined</u> articles have a longitudinal design.

^aReported measures of PA and SB were classified as either steps, activity counts, TPA, MVPA, LPA, SB, PA bouts, SB bouts, long SB bouts, BST, SB break rate, accelerations, VMU, intensity gradient, EE; further details of reported measures are provided in parentheses and italic font when measures were originally described otherwise but were classified as one into one of the aforementioned categories.

A=accelerometer, p=pedometer, PA=physical activity, SB=sedentary behavior, N/R=not reported, TPA=total physical activity, MPA=moderate physical activity, VPA=vigorous physical activity, MVPA=moderate to vigorous physical activity, LPA=light physical activity, SB=sedentary behavior, EE=energy expenditure, PAL=physical activity units, BST=breaks in sedentary time, Δ =change, MET=metabolic equivalent of tasks, VMU=vector magnitude units, min=minutes, h=hours, CPM=counts per minutes, #=number, mg-force=miligrams-force (force of earth gravity acting on one milligram), Mon=Monday, Fri=Friday, Sat=Saturday, Sun=Sunday, vs=versus (compared to), MIDEEA=Intelligent Device for Energy Expenditure and Activity, HFG=high functioning group, LFG=low functioning group

Authon ween	Dovico/ogninmont	Definition and protocol	Moogures forme	Deported measure(~)	IIn:4a	Mean (SD) ^a
Author year	Device/equipment	Definition and protocol		Reported measure(s)		
Abe 2015	Biodex System 3	MVC isometric KES, 2-3 attempts, max/weight	LB MS	KES/weight	Kg/nm	105 (25)
	Dynamometer	used for analysis		T · / · 1 /	TZ /1	12 4 (2 5)
		Max toe grasping strength, 3 attempts for each	LB MS	Toe grasping/weight	Kg/kg	13.4 (3.5)
		foot, max of each foot averaged used				
	Dynamometer					
Abe 2012	Bidoex System 3	MVC isometric strength of knee flexors and	LB MS	KES	Nm	105 (25)
	Dynamometer	extensors, 2-3 attempts, max used for analysis	LB MS	Knee flexion strength	Nm	45 (9)
Aggio 2016	Jamar Hydraulic Hand Dynamometer	HGS, 3 attempts for each hand, max used	UB MS	HGS	Kg	<i>Non-sarcopenia:</i> 32.3 (9.9); <i>Sarcopenia:</i> 28.7 (10.1); <i>Severe sarcopenia:</i> 22.2 (6.1)
Alcazar 2018	Leg press E	Leg press 1RM, progressive reps increasing by	LB MS	Leg press strength	Ν	N/R
		10kg, force-velocity evaluation to determine max		Leg press power	W	N/R
		force (strength) and max power for analysis	LB MP	Leg press	W/kg	N/R
		I I I I I I I I I I I I I I I I I I I		power/weight	0	
Alzahrani 2012	Handheld Dynamomete	erMVC KES, 2 attempts, max used for analysis	LB MS	KES	Ν	116 (52)
	N/R	r a fina				
Anderson 2013	Steve Strong	MVC isometric KES strength, 3 attempts, recorded	dLB MS	KES	Kg	31.3 (11.2)
	Dynamometer	in N, max used and converted into kg			0	× ,
Andre 2018	N/A	Calf raise (heel rise) senior test, # of calf raises	LB MP	Calf raise (High vs.	#/30s	37.8 (13.4)
		(heel rises) in 30s, high: \geq 38 and low: $<$ 38		low)		
Andre 2016	N/A	Calf raise (heel rise) senior test, # of calf raises	LB MP	Calf raise	#/30s	31.79 (7.01)
		(heel rises) in 30s				
Aoyagi 2009	Smedlev Dynamometer	HGS, 2 attempts with dominant hand, max used	UB MS	HGS	Ν	262 (83)
	ES-100	for analysis				
	μTas Dynamometer	Isometric knee extension torque, 2 attempts, max	LB MS	Knee extension torque	e Nm/kg	1.34 (0.37)
	MF-01	used for analysis		1		
Ashe 2008	Keiser Air-pressured	1RM KES, progressive reps increasing by 10%,	LB MS	Leg press strength	Kg	325 (66)
2000	Digital Resistance Leg	max used for analysis	22 112	208 press suongui	8	
	Press Machine	Bilateral leg extension, reps at 40%, 50%, 60%,	LB MP	Leg press power	W	656 (193)
	i ress ividennie	70%, 80%, and 90% of individual's 1RM, max		Leg pless power	••	000 (190)
		power used for analysis				
Ashe 2007	Jamar JLW	HGS, 3 attempts with left hand, mean used	UB MS	HGS	Kg	24.2 (10.9)
A311C 2007	Dynamometer	KES, 3 attempts with left leg, mean normalized to		KES	Kg	18.2 (7.3)
	Nicolas MMT 11560	weight used for analysis		IXLO	ng	10.2 (1.3)
	handheld Dynamometer	1				

Table C4 Ascertainment and measurement characteristics of measures of upper body and lower body muscle strength and muscle power	

Ś

Table C4 Continued

Author year	Device/equipment	Definition and protocol		Reported measure(s)		Mean (SD) ^a
2017	e Jamar Dynamometer	HGS, 2 attempts, max used, non-dynapenic: ≥ 20 kg for F and ≥ 32 kg for M, dynapenic: ≤ 19.9 for F and ≤ 31.9 kg for M		HGS (dynapenic vs. non-dynapenic)	Kg	Non-obese non-dynapenic: 28.9 (9.1); Non-obsese dynapenic: 18.7 (6.5); Obese non-dynapenic: 29.7 (9.0); Obese dynapenic: 18.4 (5.8)
Balducci 2017	Digimax Mechatronic GmbH (strain gauge	MVC at shoulder press, 3 attempts, max used	UB MS	Shoulder press strength	Nm	254.8 (92.5)
	tensiometer) and Shoulder Press/Lat Pull OR Leg Press, Easy Line Technogym	MVC at leg press, 3 attempts, max used	LB MS	Leg press strength	Nm	161.1 (60.4)
Bann 2015	Jamar	HGS, 2 attempts, dominant arm max used	UB MS	HGS	Kg	<i>M</i> : 31.7 (10.2); <i>F</i> : 19.9 (6.3)
Barbat-Artigas 2012	Lafyette Instrument Hand Dynamometer	HGS, 3 attempts with each hand, maxed used	UB MS	HGS	Kg	Sedentary: 28.4 (3.9); Moderately active: 27.3 (4.3) Actively: 28.0 (4.4)
	Kim Com 5000 Dynamometer	Isometric KES, 3 attempts, max used	LB MS	KES	Ν	Sedentary: 438 (80); Moderately active: 400 (69); Active: 464 (116)
	N/A	# chair stands completed in 20s	LB MP	20s CST	#/20s	Sedentary: 13 (3); Moderately actively: 11 (3); Actively: 13 (3)
Bartlett 2020	N/R	N/R	UB MS	HGS	Kg	Sedentary: 29.02 (8.34); Active: 30.64 (10.11)
Bassey 1988	Bourdon Tube	MVC isometric plantar flexor strength of the triceps surae, 3 attempts, max used	LB MS	Calf strength	Ν	<i>M</i> : 1128 (206); <i>F</i> : 873 (177)
Bogucka 2018	Hydraulic Dynamometer	HGS, two attempts for each arm, mean for each hand calculated and mean of both hands used	UB MS	HGS	Kg	Dynapenic: 17.55 (2.6); Non- dynapenic: 25.9 (4.6)
Bollaert 2017	N/A	Time to complete 5 chair stands	LB MP	5x CST (0-4)	Points	MS: 2.0 (1.3); HC: 3.5 (0.7)
Boutou 2019	N/R	MVC KES (quadriceps) N/R	LB MS	KES	Kg	Baseline: 33.4 (32.4)
Carrasco Poyatos 2016	Takei Dynamometer TKK 5001	HGS, 3 attempts with each hand, mean of max in each hand used		HGS	Kg	21.22 (1.7)
Chastin 2012	Nottingham Power Rig	N/R	LB MP	Leg extension power	N/R	N/R
Chmelo 2013	Kin Com 125E Isokinetic Dynamomete	Concentric KES	LB MS	KES	Ν	229 (85)

\$

Author year	Device/equipment	Definition and protocol	Measure type	Reported measure(s)	Units	Mean (SD) ^a
Cooper 2015	Nottingham Electric Dynamometer	HGS, 3 attempts with each hand, max used	UB MS	HGS	Kg	<i>M</i> : 46.4 (11.5); <i>F</i> : 27.0 (7.5)
	N/A	Time to complete 10 chair stands	LB MP	10x CST	#/min	<i>M</i> : 26.2 (7.3); <i>F</i> : 24.9 (7.3)
Davis, 2014	N/A	Time to complete 5 chair stands, >16.70s=0 points 13.70-16.69s=1 point, 11.20-13.69s=3 points, <11.19s=4 points	s,LB MP	5x CST (0-4)	Points	2.7 (1.3)
De Melo 2010	N/A	# chair stands completed in 30s	LB MP	30s CST	#/30s	19.4 (5.4)
De Melo 2014	N/A	# of full flexion and extension of the elbow without moving the shoulder (arm curls) using dumbbells (<i>F</i> : 5 pounds, <i>M</i> :8 pounds) completed in 30s	UB MP	Arm Curl	#/30s	15.2 (3.7)
	N/A	# chair stands completed in 30s	LB MP	30s CST	#/30s	10.4 (5.4)
Demeyer 2018	N/R	Δ HGS, non-dominant hand, measured at baseline and after 2.6 (SD: 0.6) years	UB MS	ΔHGS	Ν	<u>Baseline:</u> 295 (87); <u>Follow</u> <u>up:</u> 272 (84); <u>Decline per</u> <u>year:</u> 7.84 (23)
Distefano 2018	Standard weight stack	1RM KES, left leg, progressive reps increasing by 10%, max used.	LB MS	KES	Kg	<i>Active</i> : 35.6 (2.5); <i>Sedentary</i> : 31.9 (1.7)
	N/A	Time to complete 5 chair stands	LB MP	5x CST	S	N/R
Dogra, 2017	Smedley Dynamometer	HGS, two attempts with each hand, sum of max from each hand used	UB MS	HGS	Kg	64 (95% CI: 62, 66)
Dohrn 2020	N/A	Ability to complete 5 chair stands	LB MP	5x CST (able vs. non-able)	None	N/R
Dos Santos 2019	Camry EH101 Digital Dynamometer	HGS, two attempts with dominant hand, max from each hand used, M : > or < 30 kg, F : > or < 20 kg	UB MS	HGS (low vs. high)	Kg	N/R
Duncan 2016	N/A	# of full flexion and extension of the elbow (arm curls) with dumbbells <i>F</i> : 5 pounds and <i>M</i> :8 pounds completed in 30s	UB MP	Arm curl	#/30s	Low: 13.7 (SE=0.61; Mediu <i>m</i> : 15.8 (SE=0.43); High: 18.4 (0.41)
	N/A	# chair stands completed in 30s	LB MP	30s CST	#/30s	Low: 13.3 (SE=0.81); <i>Medium:</i> 14.4 (SE=0.52); High: 16.9 (SE=0.51).
Edholm 2019	Kistler 9281 Force Platform	Concentric phase of jump on to force platform, 3 attempts, max used	LB MS	Squat jump test	N/kg	8.4 (1.8)
Foong 2016		MVC isometric KES, dominant leg MVC leg strength lifting a bar, both legs (simultaneously)	LB MS LB MS	KES Leg strength	Kg Kg	<i>M</i> : 39.3 (8.1); <i>F</i> : 28.2 (9.1) <i>M</i> : 129.0 (39.5); <i>F</i> : 56.4 (27.1)
Gennuso 2016	Dynamometer N/R N/A	N/R Time to complete 5 chair stands	UB MS LB MP	HGS 5x CST (0-4)	N/R Points	N/R

Ś

Table C4 Continued

Author year	Device/equipment	Definition and protocol	Measure type	Reported measure(s)	Units	Mean (SD) ^a
						M: 2.5 [1.0-3.5]; F: 2.5 [1.5-
						3.0]
Gerdhem 2008	Bidoex Computerized	Isometric KES, three attempts, max used	LB MS	KES	NmS	246 (71)
	Dynamometer 4.5.0.	Isometric knee flexion strength, three attempts, max used	LB MS	Knee flexion strength	NmS	117 (37)
Hall 2016	N/A	# chair stands completed in 30s	LB MP	30s CST	#/30s	60-69:15.8 (4.5); 70-79: 14.1 (4.9); 80-90+: 10.9 (4.8)
Harada 2017	N/A	Time to complete 5 chair stands	LB MP	5x CST	S	7.7 (2.2)
Hartley 2018	Jamar Dynamometer	HGS, 3 attempts with each hand, max used	UB MS	HGS	Kg	21.8 (4.9)
-	Mechanography Ground	1 One legged jump strength, 3 attempts, max used	LB MS	Jump strength	KiloN	1.3 (0.2)
	Reaction Force Platforn	nTwo legged jump power, three 3, maxed used	LB MP	Jump power	KiloW	1.4 (0.3)
	N/A	Time to complete 5 chair stands	LB MP	5x CST	S	12.9 (4.2)
Hasegawa 2018	N/A	# chair stands completed in 30s	LB MP	30s CST	#/30s	15.4 (4.3)
Hernandes 2013	Takei Dynamometer	HGS, 2 attempts with each hand, max used	UB MS	HGS	KgF	Exercise: 27 [23-33]; Non- exercise: 25 [22-34]
	N/A	# chair stands completed in 30s	LB MP	30s CST	#/30s	Exercise: 13 [12-15]; Non- exercise: 12 [10-13]
Hernandez, 2016	Bilateral Leg Press	1RM leg press KES, 4-5 attempts, max used	LB MS	KES	Kg	195.8 (76.8)
	Technogym	Quadriceps power at 50% and 70% of individual's	S LB MP	Quad power 50%	W	576.4 (250.4)
		1RM, 2 attempts, max used	LB MP	Quad power 70%	W	571.3 (245.9)
Hopkins 2019	N/A	Time to complete 5 chair stands	LB MP	5x CST	S	N/R
Iijima 2017	N/A	Time to complete 5 chair stands	LB MP	5x CST	S	Basal activity: 10.5 (3.42); Limited activity: 9.06 (2.33); Low active: 8.55 (2.86); Physically active: 7.90 (1.74)
Ikenaga 2014	Smedley Dynamometer TKK5401 GRIP-D	HGS, 2 attempts with both hands, max used	UB MS	HGS	Kg	35.4 (5.3)
	Dynamometer TKK5717 & TKK5710	HGS, 2 attempts, max used	LB MS	KES	Nm/kg	2.35 (0.54)
Iwakura 2016	N/A	Time to complete 5 chair stands	LB MP	5x CST	S	11.05 (3.19)
Jantunen 2016	N/A	# of full flexion and extension of the elbow (arm curls) with dumbbells <i>F</i> : 5 pounds and <i>M</i> : 8 pounds completed in 30s	UB MP	Arm Curl	#/30s	16.0 (3.5)
	N/A	# chair stands completed in 30s	LB MP	30s CST	#/30s	11.5 (2.3)
Jeong 2019	Lafayette Instrument Handheld Dynamomete	Isometric KES, 2 attempts with most OA rsymptomatic knee, 2 attempts, mean used divided by weight	LB MS	KES	N/kg	2.8 (0.8)

\$

Author year	Device/equipment	Definition and protocol		Reported measure(s)		Mean (SD) ^a
		Isometric hip abductor strength, 2 attempts on side		Hip strength	N/kg	0.7 (0.3)
		of most OA symptomatic knee, mean used divided				
		by weight				
Johnson 2016	TTM Muscular Meter	Isometric hip extensor and quadricep strength, 2	LB MS	Leg strength	Kg	97.58 (51.13)
	Dynamometer	attempts in both legs (simultaneously), max used				
Kawagoshi 2013		Isometric extension and contraction of quadriceps	LB MS	KES	N/R	N/R
V	160 Smodlay Dynamomotor	femoris	UD MC	UCS	Va	N/D
Keevil 2015		HGS, 2 attempts with each hand, max used	UB MS	HGS	Kg #/min	N/R N/R
	N/A	Time to complete 5 chair stands	UB MS	5x CST`	#/mm	N/K
Kim 2015a	Smedley Dynamometer	HGS, 2 attempts with each hand, max used	UB MS	HGS	Kg	23.4 (7.5)
	μTas Dynamometer F-1 ANIMA	Isometric KES, 2 attempts with dominant leg, max/weight used	LB MS	KES	N/kg	1.15 (0.33)
Kim 2015b	N/A	Time to complete 5 chair stands	LB MP	5x CST	S	8.9 (2.1)
Lai 2020	N/A	Time to complete 5 chair stands, M : > or < 6.95s, F : > or < 6.88s	LB MP	5x CST (high vs. low)) S	N/R
Lee 2015	N/A	Time to complete 5 chair stands	LB MP	5x CST	#/min	N/R
Lerma 2018	N/A	Time to complete 5 chair stands	LB MP	5x CST	S	15.2 (4.8)
Liao 2018	Jamar Dynamometer	HGS, 2 attempts with one hand, max used	UB MS	HGS	Kg	27.4 (8.4)
Lohne-Seiler 2016	Hydraulic	HGS, 3 attempts with dominant hand, max used	UB MS	HGS (adjusted for	Kg	33.5 (95% CI: 32.3, 34.8)
	Dynamometer			age, sex, test center)		
Mador 2011	HF Star	Quadriceps strength dynamic contractions against	LB MS	KES	Kg	48.03 (12.29)
		hydraulic resistance, 2 sets of 3 contractions at				
		highest resistance, max used				
Matkovic 2020	KERN MAP 80K1	HGS, 3 attempts with each hand, max used	UB MS	HGS	Kg	Right hand: 30.7 (10.1); Let
	Handheld Dynamomete					hand: 29.1 (9.2)
3.5 / 0010	N/A	# chair stands completed in 30s	LB MP	30s CST	#/30s	11 (3)
Master 2018	N/A	Time to complete 5 chair stands	LB MP	5x CST	S	10.5 (2.9)
McDermott 2002	N/A	Time to complete 5 chair stands	LB MP	5x CST	S	N/R
McGregor 2018	Hand Dynamometer	HGS, 2 attempts, max used	UB MS	HGS	Kg	N/R
Meier 2020	Jamar Plus+ Digital	HGS, 3 attempts with each hand, max used	UB MS	HGS	Kg	29.9 (10.3)
	Dynamometer N/R	1RM chest press, progressive reps increasing in weight, max used	UB MS	Chest press strength	Lbs	75.2 (37.2)
	N/R	1RM leg press, progressive reps increasing in weight, max used	LB MS	Leg press strength	Lbs	183.9 (78.0)

\$

Author year	Device/equipment	Definition and protocol		Reported measure(s)		Mean (SD) ^a
Monteiro 2019	N/A	# of full flexion and extension of the elbow (arm curls) with dumbbells <i>F</i> : 5 pounds and <i>M</i> :8 pounds completed in 30s	UB MP	Arm curl	#/30s	<i>T1:</i> 25.8 (9.75); <i>T2:</i> 30.50 (8.88); <i>T3:</i> 32.60 (8.36)
	Bidoex System 2 (custom)	Isokinetic KES, measured at 180°/sec, five attempts, max used Isokinetic knee flexion strength, measured at	LB MS	KES	Nm	<i>T1:</i> 57.65 (15.36); <i>T2:</i> 65.10 (15.24); <i>T3:</i> 69.93 (17.51)
	Bidoex System 2 (custom)	180°/sec, five attempts, max used # chair stands completed in 30s	LB MS	Knee flexion strength	Nm	<i>T1:</i> 33.39 (11.38) <i>T2:</i> 36.54 (12.24); <i>T3:</i> 42.02 (9.23)
	N/A		LB MP	30s CT	#/30s	<i>T1:</i> 20.55 (5.73); <i>T2:</i> 21.75 (7.33); <i>T3:</i> 25.10 (5.93)
Morie 2010	Jamar Dynamometer	HGS, 3 attempts with each hand, max used	UB MS	HGS	Kg	N/R
	Keiser A420 Pneumatic	Chest and leg press 1RM determined, 2 trials, max	UB MS	Chest press strength	N	N/R
	Resistance Machine	used and power at varying % of 1RM for chest	UB MP	Chest press power	W	N/R
		press and leg press assessed, max power used for	LB MS	Leg press strength	Ν	N/R
		analysis	LB MP	Leg press power	W	N/R
Nagai 2018	Smedley Dynamometer GRIP-A	N/R, M :> or <26kg and F :> or <18kg	UB MS	HGS (weak vs. not weak)	Kg	26.7 (7.6)
Nawrocka 2017	N/A	# of full flexion and extension of the elbow (arm curls) with dumbbells <i>F</i> : 5 pounds and <i>M</i> :8 pounds completed in 30s	UB MP	Arm curl	#/30s	N/R
	N/A	# chair stands completed in 30s	LB MP	30s CSTs	#/30s	N/R
Nawrocka 2019	Jamar Dynamometer	HGS, two attempts, max used # of full flexion and extension of the elbow (arm	UB MS	HGS	Kg	Not meeting PA guidelines: 22.87 (5.05); Meeting PA guidelines: 24.99 (5.60)
	N/A	curls) with dumbbells <i>F</i> : 5 pounds and <i>M</i> :8 pounds completed in 30s # chair stands completed in 30s	UB MP	Arm curl	#/30s	Not meeting PA guidelines: 16.04 (4.03); Meeting PA guidelines: 17.87 (3.76)
	N/A		LB MP	30s CST	#/30s	Not meeting PA guidelines: 14.36 (3.27); Meeting PA guidelines: 14.92 (3.59)
Nicolai 2010	N/A	Time to complete 5 chair stands	LB MP	5x CST	S S	Unadjusted Unadjusted
Ofei-Doodoo 2016	N/A	# of full flexion and extension of the elbow (arm curls) with dumbbells <i>F</i> : 5 pounds and <i>M</i> :8 pounds completed in 30s	UB MP	Arm curl	#/30s	N/R
	N/A	# chair stands completed in 30s	LB MP	30s CST	#/30s	N/R

Author year	Device/equipment	Definition and protocol		Reported measure(s)	Units	Mean (SD) ^a
Orwoll 2019	N/A	Time to complete 5 chair stands	LB MP	5x CST	S	<i>No falls:</i> 11.2 (3.2); <i>One</i> <i>falls:</i> 11.6 (3.3); ≥ <i>Two falls:</i> 12.3 (4.4)
Osuka 2015	N/A	Time to complete 5 chair stands	LB MP	5x CST	S	N/R
Park 2018	Dynamometer N/R	HGS, two attempts with each hand, max/weight x 100 used	UB MS	HGS	%	52.0 (7.8)
	N/A	# chair stands completed in 30s, 2 attempts, max used	LB MS	30s CST	#/30s	20.7 (4.2)
Perkin 2018	Keijzer A420	Leg press 1RM, force-velocity evaluation to	LB MS	Leg press strength	Ν	N/R
	·	determine max force (strength) and max power	LB MP	Leg press power	W	N/R
Pitta 2005	Jamar Dynamometer	Isometric HGS, 3 attempts with each hand, sum of max on each hand used, % predictive	UB MS	HGS	% pred	92 (24)
	Cybex Norm Jamar Dynamometers	Isometric knee extension torque, % predictive (pred)	LB MS	Knee extension torque	% pred	56 (10)
Puthoff 2008	Keiser 420 Leg Press	Leg press 1RM, peak power, power at 40% of	LB MS	Leg press strength	N/kg	15.5 (4.0)
		1RM, and power at 90% of 1RM assessed, 3	LB MP	Leg press power peak	W/kg	7.6 (2.7)
		attempts, max result for each used	LB MP	Leg press power 40%	W/kg	7.1 (2.7)
			LB MP	Leg press power 90%	W/kg	5.7 (2.4)
Rapp 2012	Jamar Dynamometer	HGS, two attempts in each hand, mean of each hand calculated and max used	UB MS	HGS	Kg	M: 38.8 (9.40); F: 23.7 (6.56
	N/A	Time to complete 5 chair stands	LB MP	5x CST	S	<i>M</i> : 11.1 (3.42); <i>F</i> : 11.6 (3.73
Rausch-Osthoff 2014	Ū.	MVC isometric KES, left leg, 3 attempts mean used	LB MS	KES	Nm	14.5 (5.2)
Rava, 2018	N/A	Time to complete 5 chair stands	LB MP	5x CST	S	9.6 (2.0)
Reid 2018		1RM KES, 2 attempts with each leg, max used	LB MS	KES	Kg	25.2 (11.2)
	1RM Bilateral Leg Pres		LB MS	Leg press strength	Kg	128/7 (51.2)
	N/A	# chair stands completed in 30s,	LB MP	30s CT	#/30s	12.3 (2.4)
Rojer 2017	Jamar Dynamometer	HGS, 3 attempts with each hand, max used	UB MS	HGS	Kg	31.5 (9.5)
Rosenberg 2015	N/A	Time to complete 5 chair stands	LB MP	5x CST	S	13.0 (3.4)
Rowlands 2018	N/R	HGS, 3 attempts with each hand, max used	UB MS	HGS		28.5 (10.1)
	N/A	# chair stands completed in 30s, 2 attempts, max used	LB MP	60s CST		22.1 (7.8)

\$

Table C4 Continued

Author year	Device/equipment	Definition and protocol	Measure type	Reported measure(s)) Units	Mean (SD) ^a
Safeek 2018	Jamar Dynamometer	HGS, 2 attempts with dominant hand, max used	UB MS	HGS	Kg	<i>M</i> : 38.00 [9.75]; <i>F</i> : 25.00
						[2.50]
	N/A	# chair stands completed in 30s, 2 attempts, max used	LB MP	30s CST	#/30s	14.00 [6.00]
Sanchez-sanchez 2019	Jamar Dynamometer	HGS, 3 attempts with each hand, max used	UB MS	HGS	Kg	22.26 (8.21)
Santos 2012	N/A	# of full flexion and extension of the elbow (arm curls) with dumbbells <i>F</i> : 5 pounds and <i>M</i> : 8 pounds completed in 30s	UB MP	Arm Curl	#/30s	16.3 (5.3)
	N/A	# chair stands completed in 30s	LB MP	30s CST	#/30s	13.7 (4.7)
Sardinha 2015	N/A	# of full flexion and extension of the elbow (arm curls) with dumbbells F: 5 pounds and M:8 pounds completed in 30s	UB MP s	Arm Curl	#/30s	16.9 (5.2)
	N/A	# chair stands completed in 30s	LB MP	30s CST	#/30s	14.4 (4.5)
Scott 2020	Patterson Medical Jama Dynamometer	arHGS, 2 attempts, max used	UB MS	HGS	Kg	<i>Non-sarcopenic:</i> 34.7 (10.6): <i>Sarcopenic:</i> 16.5 (5.8)
<u>Scott 2011</u>	TTM Muscular Meter Dynamometer	Isometric hip extensor and quadricep strength, 2 attempts in both legs (simultaneously), max used	LB MS	Leg strength	Kg	96.2 (49.4)
Scott 2009	TTM Muscular Meter Dynamometer	Isometric hip extensor and quadricep strength, 2 attempts in both legs (simultaneously), max used	LB MS	Leg strength	Kg	Sedentary: 84.3 (47.5); Low active: 4.4 (47.3); Somewhat active: 88.3 (48.8); Active: 99.4 (48.5); Highly active: 102.7 (51.1)
Semanik 2015	N/A	Time to complete 5 chair stands	LB MP	5x CST	#/min	30.6 (11.2)
Silva 2019	N/A	# of full flexion and extension of the elbow (arm curls) with dumbbells <i>F</i> : 5 pounds and <i>M</i> : 8 pounds completed in 30s	UB MP	Arm Curl	#/30s	20.07 (6.69)
	N/A	# chair stands completed in 30s	LB MP	30s CST	#/30s	15.04 (5.06)
Spartano 2019	Jamar Dynamometer	HGS, 3 attempts with each hand, max used	UB MS	HGS	Kg	<i>M</i> : 39.1 (8.7); <i>F</i> : 23.3 (5.7)
	N/A	Time to complete 5 chair stands	LB MP	5x CST	S	9.9 (2.6)
Tang 2015	Jamar Dynamometer	Isometric HGS, 3 attempts with each hand, mean used	UB MS	HGS	Kg	16.3 [11.3-20.2]
Trayers	N/A	Time to complete 5 chair stands	LB MP	5x CST (0-4)	Points	N/R
Van Gestel 2012	Bremshey Hand Dynamometer	Dominant hand	UB MS	HGS	Kg	37.3 (10.2)
	N/A	# chair stands completed in 60s	LB MP	60s CST	#/60s	20 (6)

Table C4 Continued

Author year	Device/equipment	Definition and protocol		Reported measure(s)	Units	Mean (SD) ^a
Van Lummel 2016	N/A	Time to complete 4.5 chair stands (ending seated)	LB MP	5x CST	S	14.9 (6.6)
Van Oeijen 2020	MicroFET Hand-held	"Make" test of the hip flexors, hip abductors, knee	LB MS	Lower extremity	Z-scores	sBaseline: -1.00 (1.15); FU:
-	Dynamometer	extensors and ankle dorsal flexors, N/R		strength		1.36 (1.06)
Van Sloten 2011	Jamar Dynamometer	HGS, 3 attempts with each hand, max used, sex specific 20 th percentiles used as cut off points for presence of low HGS	LB MS	HGS	Kg	<i>M</i> : 43.4 (9.87); <i>F</i> : 26.1 (4.9)
Walker 2008	Strain Gauge	MVC isometric quadriceps strength. 3 attempts,	LB MS	KES	Ν	315 (106)
	Transducer and MacLat	o max used				
	Bridge Amplifier					
Ward 2014	N/A	# chair stands completed in 30s	LB MP	30s CST	#/30s	<i>F</i> : 15.72 (4.13); <i>M</i> : 17.51 (5.89)
Waschiki 2012	Strain Gauge Dynamometer	MVC isometric quadriceps strength, mean used	LB MS	KES	Kg	32.0 (13.2)
Watz 2008	Handgrip dynamometer (N/R)	N/R	LB MS	HGS	Kg	35.3 (9.6)
Westbury 2018	Jamar hydraulic Dynamometer	HGS, 3 attempts with each hand, max used	UB MS	HGS	Kg	<i>M</i> : 34.8 (6.5); <i>F</i> : 20.7 (5.6)
Wickerson 2013	Isokinetic Dynamomete	rIsometric quadriceps torque	LB MS	Knee extension torque	Nm	120 (36)
Winberg 2015	Biodex Multi- Joint System 3 PRO	MVC knee extension and knee flexion strength, both legs (less affected leg and more affected leg	LB MS	KES	Nm	Less affected leg: 104 (43); More affected leg: 69 (43)
	Dynamometer	by polio), peak torques used	LB MS	Knee flexion strength	Nm	Less affected leg: 59 (25); More affected leg: 36 (24)
Yamada 2011	N/A	Time to complete 5 chair stands	LB MP	5x CST	S	Non-frail: 8.9 (3.6); Frail: 17.6 (8.5)
Yasunaga 2017	Smedley Dynamometer TKK5041	HGS, 1 attempt with dominant hand	UB MS	HGS	Kg	27.4 (8.3)
Yoshida 2010	Smedley Dynamometer	HGS, 2 attempts with each hand, mean calculated and max used		HGS	Kg	<i>HFG:</i> 17.9 (4.0); <i>LFG:</i> 15.1 (4.0)
		Isometric KES, two attempts with each leg, max or each leg added and multiplied by leg length converted into torque and divided by weight	f LB MS	KES	Nm/kg	<i>HFG</i> : 2.10 (0.69); <i>LFG</i> : 2.61 (0.87)
<u>Yuki 2019</u>	N/R	HGS, M : > or < 26 kg F : > or < 18 kg	UB MS	HGS (+/-weakness)	Kg	N/R

^aMean (standard deviation (SD)) of muscle strength and muscle power are presented unless reported as median [interquartile range], or mean {range}. *Subgroups* for stratified results are presented in italics.

<u>Journal Pre-proof</u>

UB=upper body, LB=lower body, MS=muscle power, MP=muscle strength, HGS=hand grip strength, KES=knee extension strength, KET=knee extension torque, CST=chair stand test, s=seconds, x=times (repetitions), #=number, quad=quadriceps, kg=kilogram, N=newton, Nm=newton-meter, W=watt, KgF=kilogram-force, KiloW=kilowatt, KiloN=kilonewton, MVC=maximum voluntary contraction, 1RM=one repetition maximum, max=maximum, /=divided by or per, Δ =change, %pred=% predictive, +/-=with or without, N/A=not applicable, N/R=not reported, M=male, F=female, HFG=high functioning group, LFG=low functioning group, OA=osteoarthritis. Underlined articles have a longitudinal design

Author year	Physical activity a behavior	nd sedentary	Muscle strength and m power	uscle	Adjustment	Effect size (95% CI) ^a	p-value used for analyses ^b	
	Reported measure(s)	Units	Reported measure(s)	Units			·	
Abe 2015	Steps	#/day	KES/weight	Kg/Nm	Age	Partial R=0.242 (p>0.05)	"Abe 2012"	
	MVPA	Min/day	KES/weight	Kg/Nm	Age	Partial R=0.233 (p>0.05)	"Abe 2012"	
	LPA (LPA-MPA)	Min/day	KES/weight	Kg/Nm	Age	Partial R=0.217 (p>0.05)	"Abe 2012"	
	Steps	#/day	Toe grasping/weight	Kg/kg	Age	Partial R=0.283 (0.01>p<0.05)	0.01>p<0.05	
	MVPA	Min/day	Toe grasping/weight	Kg/kg	Age	Partial R=0.228 (p>0.05)	p(calc)=0.881	
	LPA (LPA-MPA)	Min/day	Toe grasping/weight	Kg/kg	Age	Partial R=0.290 (0.01>p<0.05)	0.01>p<0.05	
Abe 2012	Steps	#/day	KES	Nm	Unadjusted	R=0.351 (p=0.015)	p=0.015	
	VPA	Min/day	KES	Nm	Age, sex, height, weight	Partial R=0.184 (p>0.05)		
	MVPA (MPA)	Min/day	KES	Nm	Age, sex, height, weight	Partial R=0.197 (p>0.05)	p(calc)=0.180	
	LPA	Min/day	KES	Nm	Age, sex, height, weight	Partial R=0.155 (p>0.05)	p(calc)=0.293	
	EE	Kcal/day	KES	Nm	Unadjusted	R=0.421(p=0.004)	p=0.004	
	Steps	#/day	Knee flexion strength	Nm	Age, sex, height, weight	Partial R=0.369 (p=0.014)	p=0.014	
	VPA	Min/day	Knee flexion strength	Nm	Age, sex, height, weight	Partial R=0.236 (p>0.05)	1	
	MPA	Min/day	Knee flexion strength	Nm	Age, sex, height, weight	Partial R=0.438 (p=0.003)	p=0.003	
	LPA	Min/day	Knee flexion strength	Nm	Age, sex, height, weight	Partial R=0.089 (p>0.05)	p(calc)=0.547	
	EE	Kcal/day	Knee flexion strength	Nm	Age, sex, height, weight	Partial R=0.409 (p=0.006)	p=0.006	
Aggio 2016	MVPA	Sqrt(min/day)	HGS	Kg	Age, waist circumference	B=0.58 (0.34, 0.82)	p<0.001	
88	LPA	Min/day	HGS	Kg	Age, waist circumference	B=0.21 (-0.06, 0.48)	p=0.125	
	SB	30 min/day	HGS	Kg	Age, waist circumference	B=-0.20 (-0.41, 0.01)	p=0.062	
	BST	#/h	HGS	Kg	Age, waist circumference	B=0.14 (-0.14, 0.42)	p=0.329	
Alcazar 2018	MVPA	% wear time	Leg press strength	Ň	Unadjusted	R=0.41 (p<0.05)	p(calc)=0.021	
	SB	% wear time	Leg press strength	N	Unadjusted	R=N/R (p>0.05)	p(N/R) > 0.25	
	MVPA	% wear time	Leg press power	W/kg	Unadjusted	R=0.59 (p<0.01)	p(calc)<0.001	
	SB	% wear time	Leg press power	W/kg	Unadjusted	R=N/R (p>0.05)	p>0.25	
Alzahrani 2012	Activity counts	#/day	KES	N	Unadjusted	R=0.03 (p=0.85)	p=0.85	
	TPA	Min/day	KES	N	Unadjusted	R=0.18 (p=0.25)	p=0.25	
Andersson 2013	EE (PAL)	None	KES	Kg	Age, sex, gait speed $+$ others	B=0.004 (0.000, 0.008)	p=0.242	
Andre 2018	MVPA	Min/day	Calf raise (high vs. low)		Unadjusted	*Cohen's $d=0.97$ (p=0.04)	p=0.04	
Andre 2016	MVPA (high vs. low)	Min/day	Calf raise	#/30s	Unadjusted	R=0.639 (p=0.001)	p=0.001	
Aoyagi 2009	Steps TPA	#/day Min/day	HGS HGS	N N	Age, sex Age, sex	Partial R=0.12 (p>0.05) Partial R=0.12 (p>0.05)	p(calc)=0.119 p(calc)=0.119	

 Table C5 Associations between physical activity and sedentary behavior with muscle strength and muscle power in older adults

\$

Author year	Physical activity ar behavior	nd sedentary	Muscle strength and mu power	scle	Adjustment	Effect size (95% CI) ^a	p-value used for analyses ^b
	Reported measure(s)	Units	Reported measure(s)	Units			·
	Steps	#/day	Knee extension torque	Nm/kg	Age, sex	Partial R=0.20 (p<0.05)	p(calc)=0.009
	TPĂ	Min/day	Knee extension torque	Nm/kg	Age, sex	Partial R=0.21 (p<0.05)	p(calc)=0.005
Ashe 2008	Activity counts	#/day	Leg press strength	Kg	Unadjusted	R=0.284 (p=0.025)	p=0.025
	MVPA	Min/day	Leg press strength	Kg	Unadjusted	R=0.174 (p=0.175)	p=0.175
	Activity counts	#/day	Leg press power	W	Unadjusted	R=0.373 (p=0.003)	p=0.003
	MVPA	Min/day	Leg press power	W	Unadjusted	R=0.260 (p=0.041)	p=0.041
Ashe 2007	Steps	#/day	HGS	Kg	Unadjusted	R=0.22 (p<0.01)	p(calc)=0.002
	Steps (high vs. low)	#/day	HGS	Kg	Unadjusted	*OR=2.04 (0.86, 4.79)	1 . ,
	Steps	#/day	KES	Kg	Unadjusted	R=0.31 (p<0.001)	p<0.001
Aubertin-Leheud	re Steps	#/day	HGS (dynapenic vs. non-	Kg	Unadjusted	<i>Non-obese</i> : T=N/R (+) (p=0.07)	p=0.07
2017		j	dynapenic)	0		<i>Obese:</i> T=N/R (+) (p=0.056)	p=0.056
	Activity counts	#/day	HGS (dynapenic vs. non-	Kg	Unadjusted	<i>Non-obese</i> : T=N/R (+) p=0.0008)	p=0.0008
	5	5	dynapenic)	0	3	<i>Obese:</i> T=N/R (+) (p=0.021)	p=0.021
	TPA	Min/day	HGS (dynapenic vs. non-	Kg	Unadjusted	<i>Non-obese:</i> T=N/R (+) (p=0.005)	p=0.005
			dynapenic)	0		<i>Obese:</i> T=N/R (+) (p=0.029)	p=0.029
Balducci 2017	MVPA	Min/day	Shoulder press strength	Nm	Unadjusted	Rho=0.397 (p<0.001)	p<0.001
	LPA	H/day	Shoulder press strength	Nm	Unadjusted	Rho=0.281 (p<0.001)	p<0.001
	SB	H/day	Shoulder press strength	Nm	Unadjusted	Rho=-0.235(p<0.001)	p<0.001
	MVPA	Min/day	Leg press strength	Nm	Unadjusted	Rho=0.412 (p<0.001)	p<0.001
	LPA	H/day	Leg press strength	Nm	Unadjusted	Rho=0.341 (p<0.05)	p<0.001
	SB	H/day	Leg press strength	Nm	Unadjusted	Rho=-0.299 (p<0.001)	p<0.001
Bann 2015	TPA	H/day	HGS	Kg	Age, sex, wear time	B=0.06 (-0.03, 0.16)	p=0.191
	Higher LPA	H/day	HGS	Kg	Age, sex, wear time	B=2.41 (0.16, 4.66)	I
	LPA (Lower LPA)	H/day	HGS	Kg	Age, sex, wear time	B=0.06 (-0.42, 0.54)	p=0.809
	SB	H/day	HGS	Kg	Age, sex, wear time	B=-0.13 (-0.55, 0.28)	p=0.527
Barbat-Artigas	Steps	#/day	HGS	Kg	Unadjusted	R = N/R (p > 0.05)	p(N/R) > 0.25
2012	TPA	Min/day	HGS	Kg	Unadjusted	R = N/R (p > 0.05)	p(N/R) > 0.25
	Steps	#/day	KES	N	Unadjusted	R = N/R (p > 0.05)	p(N/R) > 0.25
	TPA	Min/day	KES	N	Unadjusted	R = N/R (p > 0.05)	p(N/R) > 0.25
	Steps	#/day	20s CST	#/20s	Unadjusted	R = N/R (p>0.05)	p(N/R) > 0.25
	TPA	Min/day	20s CST 20s CST	#/20s	Unadjusted	R = N/R (p > 0.05) R=N/R (p>0.05)	p(N/R) > 0.25
Bartlett 2020	Steps (active vs. sedentary)	#/day	HGS	Kg	Unadjusted	T=N/R (+) (p=0.69)	p=0.69

\$

Table C5 Continued

Author year	Physical activity a behavior	nd sedentary	Muscle strength and m power	uscle	Adjustment	Effect size (95% CI) ^a	p-value used for analyses ^b	
	Reported measure(s)	Units	Reported measure(s)	Units				
Bassey 1988	Steps (step score)	#/day x 10^3	Calf strength	Ν	Unadjusted	<i>F:</i> Pearson's R=N/R (p>0.05) <i>M:</i> Pearson's R=0.30 (p<0.05)	p(N/R)>0.25 p(calc)=0.025	
Bogucka 2018	Steps	#/day	HGS	Kg	Unadjusted	<i>Dynapenic:</i> R=-0.12 (p=0.74) <i>Non-dynapenic:</i> R=0.16 (p=0.34)	p=0.74 p=0.34	
Bollaert 2017	MVPA	% wear time	5x CST (0-4)	Points	MS, SB, long SB bouts	B=9.07 (SE=5.14) β=0.18	p(calc)=0.077	
	LPA	% wear time	5x CST (0-4)	Points	Unadjusted	R=0.40 (p<0.01)	p(calc)<0.001	
	SB	% wear time	5x CST (0-4)	Points	MS, MVPA, long SB bouts	B=-2.98 (SE=1.46) β =-0.20s	p(calc)=0.041	
	PA bouts	#/day	5x CST (0-4)	Points	Unadjusted	R=0.34 (p<0.01)	p(calc)=0.002	
	PA bouts	Min/bout/day	5x CST (0-4)	Points	Unadjusted	R=0.15 (p>0.01)	p(calc)=0.184	
	SB bouts	#day	5x CST (0-4)	Points	Unadjusted	R=-0.01 (p>0.01)	p(calc)=0.930	
	SB bouts	Min/bout/day	5x CST (0-4)	Points	Unadjusted	R=-0.33 (p<0.01)	p(calc)=0.003	
	Long SB bouts	#/day	5x CST (0-4)	Points	Unadjusted	R=-0.32 (p<0.01)	p(calc)=0.004	
	Long SB bouts	Min/bout/day	5x CST (0-4)	Points	MS, MVPA, SB	B=-0.04 (SE=0.02) β=-0.25	p(calc)=0.045	
Boutou 2019	Actigraph measures	s:				· · · ·		
	∆Steps	#/day	KES	Kg	Age, 6MWD, climate + others	*B=-1.00E-4 (-0.004,0.005)		
	Δ MVPA	Ratio	KES	Kg	Age, 6MWD, climate + others	*B=-0.004 (-0.016, 0.009)	p=0.535	
	ΔVMU	#/day	KES	Kg	Age, 6MWD, climate + others	*B=-0.003 (-0.007, 0.001)		
	Dynaport measures							
	∆Steps	#/day	KES	Kg	Age, 6MWD, climate + others		p=0.932	
	Δ Steps (<i>Walking</i>)	Min/day	KES	Kg	Age, 6MWD, climate + others	*B=0.002 (-0.003, 0.067)		
	ΔΜΕΤ	G	KES	Kg	Age, 6MWD, climate + others	*B=-0.001 (SE=6.00E-4)	p=0.036	
	ΔVMU	#/day	KES	Kg	Age, 6MWD, climate + others		p=0.03	
Carrasco Poyatos	MVPA	CPM	HGS	Kg	Unadjusted	R=0.42 (p=0.01)	p=0.01	
2016								
Chastin 2012	SB	H/day	Leg extension power	N/R	Unadjusted	<i>M</i> : R=0.739 (p=0.003)	p=0.003	
						<i>F</i> : R=0.151 (p=0.678)	p=0.678	
	SB break rate	#/sedentary h	Leg extension power	N/R	Unadjusted	<i>M</i> : R=-0.683 (p=0.07)	p=0.07	
						<i>F</i> : R=-0.158 (p=0.663)	p=0.663	
Chmelo 2013	Steps	#/day	KES	Ν	Unadjusted	R=0.13 (p=0.15)	p=0.15	
	MVPA	Min/day	KES	Ν	Unadjusted	R=0.09 (p=0.33)	p=0.33	
	LPA	Min/day	KES	Ν	Unadjusted	R=-0.04 (p=0.66)	p=0.66	
	EE	Kcal/day	KES	Ν	Unadjusted	R=0.23 (p=0.01)	p=0.01	
Cooper 2015	MVPA	SDs	HGS	Kg	Sex	β=0.638 (0.166, 1.110)	p(calc)=0.008	
	SB	SDs	HGS	Kg	Sex	β=-0.588 (-1.062, -0.115)	p(calc)=0.015	

Author year	Physical activity ar behavior	nd sedentary	Muscle strength and m power	uscle	Adjustment	Effect size (95% CI) ^a	p-value used for analyses ^b
	Reported measure(s)	Units	Reported measure(s)	Units			·
	EE	SDs	HGS	Kg	Sex	$\beta = 0.632 (0.158, 1.105)$	p(calc)=0.009
	MVPA	SDs	10x CST	#/min	Sex	$\beta = 0.670(0.321, 1.018)$	p(calc)<0.001
	SB	SDs	10x CST	#/min	Sex	β =-0.550 (-0.898, -0.201)	p(calc) = 0.002
	EE	SDs	10x CST	#/min	Sex	β=0.943 (0.594, 1.292)	p(calc)<0.001
Davis, 2014	MVPA	Log(min/h)	5x CST (0-4)	Points	Age, sex, BMI, edu	B=0.851 (0.429, 1.272)	p<0.001
,	SB	Min/h	5x CST (0-4)	Points	Age, sex, BMI, edu, MVPA	B=-0.042 (-0.073, -0.011)	p=0.009
	BST	#/h	5x CST (0-4)	Points	Age, sex, BMI, edu, MVPA, SB	B=0.334 (0.178, 0.490)	p<0.001
De Melo 2010	Steps	#/day	30s CST	#/30s	Age, self-rate health, income	*RR=1.04 (1.00, 1.07)	"De Melo 2014"
De Melo 2014	Steps (medium vs. low)	#/day	Arm Curl	#/30s	Age, sex, morbidities	*OR=1.01 (0.77-1.32)	
	Steps (high vs. low)	#/day	Arm Curl	#/30s	Age, sex, morbidities	*OR=1.35 (1.00-1.82)	p=0.04
	Steps (medium vs. low)	#/day	30s CST	#/30s	Age, sex, morbidities	*OR=1.00 (0.82-1.18)	
	Steps (high vs. low)	#/day	30s CST	#/30s	Age, sex, morbidities	*OR=1.61 (1.17-2.21)	p=0.004
Demeyer 2018	Δ Steps (persistently active vs. decline)	#/day	ΔHGS	Ν	Baseline HGS	EMM(N/R) (p-trend=0.48)	-
	Δ Steps (persistently active vs. inactive)	#/day	ΔHGS	Ν	Baseline HGS	EMM(N/R) (p-trend=0.39)	
	Steps (active, somewhat active, inactive, very inactive)	#/day	ΔHGS	Ν	Baseline HGS	EMM(N/R) (p-trend=0.84)	p=0.84
	MVPA (quartiles)	Min/day	ΔHGS	Ν	Baseline HGS	EMM (N/R) (p-trend=0.32)	p=0.32
	SB (quartiles)	Min/day	ΔHGS	Ν	Baseline HGS	EMM (N/R) (p-trend=0.24)	p=0.24
Distefano 2018	Steps	#/day	KES	Kg/kg	Age, sex	Partial R=0.294 (p=0.154)	p=0.154
	Steps	#/day	5x CST	S	Age, sex	Partial R=-0.301 (p=0.153)	p=0.153
Dogra 2017	BST	#/day	HGS	Kg	Age, sex, BMI, edu, + others	β=0.068 (-0.011, 0.147)	p=0.09
	Long SB bouts	% time/day	HGS	Kg	Age, sex, BMI, edu, + others	β=-0.064 (-0.148, 0.021)	p=0.13
Dohrn 2020	SB	Min/day	5x CST (able vs. non-able)	None	Age, sex, BMI, edu, + others	OR=39.5 (p<0.05)	0.01 <p<0.05< td=""></p<0.05<>

Author year	Physical activity and sedentary behavior		Muscle strength and muscle power		Adjustment	Effect size (95% CI) ^a	p-value used for analyses ^b
	Reported measure(s)	Units	Reported measure(s)	Units			·
	SB break rate	#/sedentary H	5x CST (able vs. non- able)	None	Age, sex, BMI, edu, + others	OR=0.9 (p>0.05)	p(N/R)>0.25
	SB bouts	Min/all SB bouts	5x CST (able vs. non- able)	None	Age, sex, BMI, edu, + others	OR=4.8 (p<0.05)	0.01 <p<0.05< td=""></p<0.05<>
	Long SB bouts	Min	5x CST (able vs. non- able)	None	Age, sex, BMI, edu, + others	OR=11.8 (p>0.05)	p(N/R)>0.25
Dos Santos 2019	MVPA (sufficient vs. insufficient)	Min/day	HGS (high vs. low)	Kg	Unadjusted	OR=3.03 (1.38, 6.63)	p=0.004
Duncan 2016	Steps (high, medium, low)	#/day	Arm curl	#/30s	Age	Partial n ² =0.168 (p=0.001)	p=0.001
	Steps (high, medium, low)	#/day	30s CST	#/30s	Age	Partial n ² =0.095 (p=0.001)	p=0.001
Edholm 2019	Activity counts	#/min/day	Squat jump test	N/kg	Fat mass, self-reported past PA	A ANOVA (+) (p<0.001)	p<0.001
	MVPA	Min/day	Squat jump test	N/kg	Fat mass, self-reported past PA	A ANOVA (+) (p=0.081)	p=0.081
Foong 2016	Activity counts	#/10000	KES	Kg	Age residuals, sex	β=0.17 (0.12, 0.22)	p<0.001
	VPA	10 min/day	KES	Kg	Age residuals, sex	$\beta = 2.7 (1.0, 4.5)$	
	MVPA (MPA)	10 min/day	KES	Kg	Age residuals, sex	β=0.6 (0.3, 0.8)	p<0.001
	LPA	10 min/day	KES	Kg	Age residuals, sex	$\beta = 0.1 \ (0.02, \ 0.20)$	p=0.019
	SB	10 min/day	KES	Kg	Age residuals, sex	β=-0.03 (-0.1, 0.04)	p=0.415
	Activity counts	#/10000	Leg strength	Kg	Age residuals, sex	β=0.65 (0.46, 0.83)	p<0.001
	VPA	10 min/day	Leg strength	Kg	Age residuals, sex	β=7.5 (0.9, 14.1)	
	MVPA (MPA)	10 min/day	Leg strength	Kg	Age residuals, sex	$\beta = 1.6 \ (0.6, 2.7)$	p=0.002
	LPA	10 min/day	Leg strength	Kg	Age residuals, sex	$\beta = 0.4 \ (0.1, \ 0.8)$	p=0.023
	SB	10 min/day	Leg strength	Kg	Age residuals, sex	β=-0.1 (-0.4, 0.2)	p=0.438
Gennuso 2016	SB	H/day	HGS	N/R	Age, sex, wear time, MVPA	$\beta = N/R \ (p > 0.05)$	p(N/R)>0.25
	BST	#/day	HGS	N/R	Age, sex, wear time, MVPA	$\beta = N/R \ (p > 0.05)$	p(N/R)>0.25
	SB break rate	#/sedentary h	HGS	N/R	Age, sex, wear time, MVPA	$\beta = N/R \ (p > 0.05)$	p(N/R)>0.25
	SB bouts	Min/day	HGS	N/R	Age, sex, wear time, MVPA	$\beta = N/R \ (p > 0.05)$	p(N/R)>0.25
	Long SB bouts	H/day	HGS	N/R	Age, sex, wear time, MVPA	β=N/R (p>0.05)	p(N/R)>0.25
	≥40min SB bouts	H/day	HGS	N/R	Age, sex, wear time, MVPA	β=N/R (p>0.05)	p(N/R)>0.25
	≥60min SB bouts	H/day	HGS	N/R	Age, sex, wear time, MVPA	β=N/R (p>0.05)	p(N/R)>0.25
	SB	H/day	5x CST (0-4)	Points	Age, sex, wear time, MVPA	β =-0.21 (SE=0.11)	p(calc)=0.056
	BST	#/day	5x CST (0-4)	Points	Age, wear time, MVPA	<i>M</i> : β=0.06 (SE=0.02)	0.01 <p≤0.05< td=""></p≤0.05<>
						<i>F</i> : β=0.006 (SE=0.02)	p(calc)=0.77

Author year	Physical activity a behavior	and sedentary	Muscle strength and m power	nuscle	Adjustment	Effect size (95% CI) ^a	p-value used for analyses ^b	
	Reported measure(s)	Units	Reported measure(s)	Units				
	SB break rate	#/sedentary h	5x CST (0-4)	Points	Age, wear time, MVPA	<i>M</i> : β=0.60 (SE=0.19) <i>F</i> : β=0.04 (SE=0.12)	0.001 <p≤0.01 p(calc)=0.752</p≤0.01 	
	SB bouts	Min/day	5x CST (0-4)	Points	Age, sex, wear time, MVPA	$\beta = -0.10$ (SE=0.03)	0.001 <p<0.01< td=""></p<0.01<>	
	Long SB bouts	H/day	5x CST (0-4)	Points	Age, sex, wear time, MVPA	$\beta = -0.18$ (SE=0.08)	0.001 <p<0.01< td=""></p<0.01<>	
	≥40min SB bouts	H/day	5x CST (0-4)	Points	Age, sex, wear time, MVPA	β=-0.23 (SE=0.09)	_	
	≥60min SB bouts	H/day	5x CST (0-4)	Points	Age, sex, wear time, MVPA	$\beta = -0.29$ (SE=0.09)		
Gerdhem 2008	Activity counts	#/min/day	KES	NmS	Unadjusted	R=0.19 (p=0.209)	p=0.209	
	MVPA	Min/day	KES	NmS	Unadjusted	R=0.21 (p=0.160)	p=0.160	
	Activity counts	#/min/day	Knee flexion strength	NmS	Unadjusted	R=0.09 (p=0.564)	p=0.564	
	MVPA	Min/day	Knee flexion strength	NmS	Unadjusted	R=0.15 (p=0.307)	p=0.307	
Hall 2016	Steps	#/day	30s CST	#/30s	Unadjusted	60-69y: R=0.563 (p=0.000)	p(calc)<0.001	
	Steps	#/day	30s CST	#/30s	Unadjusted	70-79y: R=0.353 (p=0.001)	p=0.001	
	Steps	#/day	30s CST	#/30s	Unadjusted	80-90+y: R=0.451 (p=0.021)	p=0.021	
	MVPA	Min/day	30s CST	#/30s	Unadjusted	60-69y: R=0.367 (p=0.000)	p(calc)<0.001	
	MVPA	Min/day	30s CST	#/30s	Unadjusted	70-79y: R=0.192 (p=0.030)	p=0.030	
	MVPA	Min/day	30s CST	#/30s	Unadjusted	80-90+y: R=0.281 (p=0.068)	p=0.068	
	SB	% time/day	30s CST	#/30s	Unadjusted	60-69y: R=-0.359 (p=0.000)	p(calc)=0.001	
	SB	% time/day	30s CST	#/30s	Unadjusted	70-79y: R=-0.197 (p=0.026)	p=0.026	
	SB	% time/day	30s CST	#/30s	Unadjusted	80-90+y: R=-0.291 (p=0.059)	p=0.059	
Harada 2017	Steps	#/day	5x CST	S	Unadjusted	R=-0.25 (p<0.001)	p<0.001	
Hartley 2018	Activity counts (low)	#/impact/day	HGS	Kg	Age	*Low β=1.09 (0.97, 1.23)	p=0.14	
	Activity counts (med)	#/impact/day	HGS	Kg	Age	*Medium β=1.15 (0.97, 1.37)		
	Activity counts (high)	#/impact/day	HGS	Kg	Age	*High β=1.14 (0.95, 1.36)		
	Activity counts (low)	#/impact/day	Jump strength	kN	Age	*Low β=1.05 (0.90, 1.22)	p=0.53	
	Activity counts (medium)	#/impact/day	Jump strength	kN	Age	*Medium β=1.18 (0.95, 1.47)		
	Activity counts (high)	#/impact/day	Jump strength	kN	Age	*High β =1.26 (1.00, 1.57)		
	Activity counts (low)	#/impact/day	Jump power	kW	Age	*Low β=0.97 (0.83, 1.13)	p=0.71	

Author year	Physical activity a behavior	nd sedentary	Muscle strength and mo	uscle	Adjustment	Effect size (95% CI) ^a	p-value used for analyses ^b	
	Reported measure(s)	Units	Reported measure(s)	Units			·	
	Activity counts (medium)	#/impact/day	Jump power	kW	Age	*Medium β=1.14 (0.91, 1.42)		
	Activity counts (high)	#/impact/day	Jump power	kW	Age	*High β=1.08 (0.86, 1.36)		
	Activity counts (low)	#/impact/day	5x CST	S	Age	*Low β=0.80 (0.70, 0.91)	p(calc)<0.001	
	Activity counts (medium)	#/impact/day	5x CST	S	Age	*Medium β=0.69 (0.57, 0.83)		
	Activity counts (high)	#/impact/day	5x CST	S	Age	*High β=0.83 (0.68, 1.00)		
Hasegawa 2018	Steps	#/day	30s CST	#/30s	Age, sex	*β=0.20 (p=0.17)	p=0.17	
Hernandes 2013	Steps	#/day	HGS	KgF	Unadjusted	<i>Non-exercise:</i> Rho=-0.10(p>0.05) <i>Exercise:</i> Rho=-0.11 (p>0.05)	p(calc)=0.206 p(calc)=0.312	
	Steps	#/day	30s CST	#/30s	Unadjusted	<i>Non-exercise:</i> Rho=0.30 (p<0.05) <i>Exercise:</i> Rho=0.28 (p<0.05)	p(calc)=0.001 p(calc)<0.001	
Hernandez 2016	TPA	Min/day	KES	Kg	Unadjusted	R=0.30 (p=0.07)	p=0.07	
	LPA	Min/day	KES	Kg	Unadjusted	R=0.27 (p=0.11)	p=0.11	
	SB	Min/day	KES	Kg	Unadjusted	R=-0.16 (p=0.35)	p=0.35	
	Steps	#/day	Quad power 50% 1RM	W	Unadjusted	R=0.30 (p=0.07)	p=0.07	
	TPA	Min/day	Quad power 50% 1RM	W	BMI	*B=0.30 (0.19, 0.42) β=0.76	p<0.001	
	MVPA (MPA)	Min/day	Quad power 50% 1RM	W	Unadjusted	R=0.12 (p=0.48)	p=0.48	
	LPA	Min/day	Quad power 50% 1RM	W	BMI	*B=0.25 (0.13, 0.36) β=0.69	p<0.001	
	SB	Min/day	Quad power 50% 1RM	W	Unadjusted	R=-0.13 (p=0.44)	p=0.44	
	TPA	Min/day	Quad power 70% 1RM	W	Unadjusted	R=0.37 (p=0.027)	p=0.027	
	LPA	Min/day	Quad power 70% 1RM	W	BMI	*B=0.23 (0.10, 0.35) β=0.62	p=0.001	
	SB	Min/day	Quad power 70% 1RM	W	Unadjusted	R=0.14 (p=0.41)	p=0.41	
<u>Hopkins 2019</u>	MVPA (Meeting vs not meeting guidelines)	s. Min/day	Δ5x CST	S	Age, sex, race, BMI + others	B=-0.093 (p>0.05)	p(N/R)>0.25	
Iijima 2017	Steps	1000/day	5x CST (quartiles: Q1=worst performance)	S	Age, sex, BMI, OA grade	Ordinal logistic regression OR=1.2 (1.10, 1.36)	2 p<0.001	
Ikenaga 2014	Steps	#/day	HGS	Kg	Age, BMI, % body fat	ANCOVA (p-trend=0.160)	p=0.160	
0	MVPA (MPA)	Min/day	HGS	Kg	Age, BMI, % body fat	ANCOVA (p-trend=0.195)	p=0.195	
	LPA	Min/day	HGS	Kg	Age, BMI, % body fat	ANCOVA (p-trend=0.707)	p=0.707	

X

Table	C5	Continued

Author year	Physical activity an behavior	nd sedentary	Muscle strength and m power	uscle	Adjustment	Effect size (95% CI) ^a	p-value used for analyses ^b
	Reported measure(s)	Units	Reported measure(s)	Units			-
	SB	Min/day	HGS	Kg	Age, BMI, % body fat	ANCOVA (p-trend=0.869)	p=0.869
	Steps	#/day	KES		Age, BMI, % body fat	Partial R=0.167 (p=0.028)	p=0.028
	MVPA (MPA)	Min/day	KES	Nm/kg	Age, BMI, % body fat	Partial R=0.208 (p<0.01)	p(calc)=0.005
	LPA	Min/day	KES	Nm/kg	Age, BMI, % body fat	Partial R=N/R (p>0.05)	p(N/R)>0.25
	SB	Min/day	KES	Nm/kg	Age, BMI, % body fat	Partial R=-0.147 (0.053)	p=0.053
lwakura 2016	Steps	1000/day	5x CST	S	Unadjusted	R=-0.299 (p>0.05)	p(calc)=0.176
	MVPA	Min/day	5x CST	S	Unadjusted	R=-0.384 (p>0.05)	p(calc)=0.078
Jantunen 2016	MET	H/day	Arm curl	#/30s	Age, sex	$\beta = 0.02 \ (0.02, \ 0.04)$	p=0.021
	MET	H/day	30s CST	#/30s	Age, sex	$\beta = 0.06 \ (0.05, \ 0.07)$	p<0.001
Jeong 2019	Steps	#/day	KES	N/kg	Unadjusted	R=0.09 (p=0.53)	p=0.53
-	Steps	#/day	Hip strength	N/kg	Adjustment N/R	$\beta = 0.40, \hat{R}^2 = 0.16 (p < 0.01)$	p(calc)=0.003
Johnson 2016	VPA	Min/day	Leg strength	Kg	Unadjusted	R=0.184 (p<0.05)	. · · ·
	MVPA (MPA)	Min/day	Leg strength	Kg	Unadjusted	R=0.276 (p<0.01)	p(calc)<0.001
	LPA	Min/day	Leg strength	Kg	Unadjusted	R=0.120 (p>0.05)	p(calc)=0.101
	SB	Min/day	Leg strength	Kg	Unadjusted	R=-0.024 (p>0.05)	p(calc)=0.743
Kawagoshi 2013	Steps (Walking)	Min/day	KES	N/R	Unadjusted	R=0.46 (0.01 <p<0.05)< td=""><td>p(calc)=0.200</td></p<0.05)<>	p(calc)=0.200
-	Standing (only)	Min/day	KES	N/R	Unadjusted	R=0.26 (p>0.05)	. · · ·
	MVPA (Fast walking)	Min/day	KES	N/R	Unadjusted	R=0.60 (0.01 <p<0.05)< td=""><td>p(calc)=0.001</td></p<0.05)<>	p(calc)=0.001
	LPA (Slow Walking)) Min/day	KES	N/R	Unadjusted	R=0.33 (p>0.05)	p(calc)=0.100
	SB (Sitting)	Min/day	KES	N/R	Unadjusted	R=-0.24 (p>0.05)	p(calc)=0.237
	Lying	Min/day	KES	N/R	Unadjusted	R=-0.17 (p>0.05)	
Keevil 2015	MVPA (quartiles:	Min/day	HGS	Kg	Age, wear time	<i>F</i> : Q2vs.Q1 B=1.18 (0.56, 1.79),	p<0.001
	Q1=least MVPA)					Q3vs.Q1 B=0.92 (0.28, 1.55),	
						Q4vs.Q1 B=2.02 (1.36, 2.68) (p-	
						trend<0.001)	
						<i>M</i> : Q2vs.Q1 B=0.88 (-0.09, 1.85),	p<0.001
						Q3vs.Q1 B=1.83 (0.82, 2.83),	
						Q4vs.Q1 B=1.26 (0.22, 2.30), (p-	
						trend<0.001)	
	SB (quartiles:	H/day	HGS	Kg	Age, wear time	<i>F</i> : Q2vs.Q1 B=0.00 (-0.62, 0.62),	p<0.001
	Q1=most SB)	-		-	-	Q3vs.Q1 B=0.69 (0.05, 1.34),	-
						Q4vs.Q1 B=0.83 (0.11, 1.56) (p-	
						trend<0.001)	

Author year	Physical activity an behavior	nd sedentary	Muscle strength and muscle power		Adjustment	Effect size (95% CI) ^a	p-value used for analyses ^b
	Reported measure(s)	Units	Reported measure(s)	Units			
						<i>M</i> : Q2vs.Q1 B=-0.30 (-1.28, 0.68), Q3vs.Q1 B=1.00 (-0.03, 2.02), Q4vs.Q1 B=-0.01 (-1.14, 1.12) (p- trend=0.03)	p=0.03
	MVPA (quartiles: Q1=least MVPA)	Min/day	CST	#/min	Age, wear time	<i>F</i> : Q2vs.Q1 B=1.54 (0.54, 2.55), Q3vs.Q1 B=2.97 (1.93, 4.00), Q4vs.Q1 B=3.61 (2.55, 4.67) (p- trend<0.001)	p<0.001
						<i>M</i> : Q2vs.Q1 B=1.69 (0.53, 2.84), Q3vs.Q1 B=2.16 (0.98, 3.35), Q4vs.Q1 B=2.43 (1.22, 3.64) (p- trend<0.001)	p<0.001
	SB (quartiles: Q1=most SB)	H/day	CST	#/min	Age, wear time	<i>F</i> : Q2vs.Q1 B=1.10 (0.09, 2.10), Q3vs.Q1 B=1.53 (0.48, 2.57), Q4vs.Q1 B=2.21 (1.03, 3.38) (p- trend=0.003)	p=0.003
						<i>M</i> : Q2vs.Q1 B=1.36 (0.21, 2.51), Q3vs.Q1 B=0.97 (-0.23, 2.18), Q4vs.Q1 B=1.25 (-0.06, 2.57) (p- trend=0.21)	p=0.21
Kim 2015a	Activity counts Activity counts	#/min/day #/min/day	HGS KES	Kg N/kg	Age, sex Age, sex	Partial Rho=0.081 (p=0.251) Partial Rho=0.025 (p=0.463)	p=0.251 p=0.463
Kim 2015b	Activity counts MVPA LPA SB Long SB bout MVPA (Mosting vs	#/min/day % time/day % time/day % time/day % time/day	5x CST 5x CST 5x CST 5x CST 5x CST 5x CST 5x CST (bigb us, low)	S S S S	Age, BMI, morbidities + other Unadjusted Unadjusted Unadjusted Unadjusted	R=-0.400 (p<0.001) R=-0.203 (0.01 <p<0.05) R=0.292 (0.001<p<0.01) R=-0.049 (p>0.05)</p<0.01) </p<0.05) 	p(calc)=0.004 p<0.001 p(calc)=0.042 p(calc)=0.003 p(calc)=0.627 p=0.14
Lai 2020	MVPA (Meeting vs not meeting guidelines)		5x CST (high vs. low)		Age, sex, BMI, edu + others	OR=2.14 (0.79, 5.79)	p=0.14
Lee 2015	SB (quartiles: Q1=most SB)	%/day	5x CST	#/min	Age, sex, morbidities + others	Q2 vs Q1 B=1.85 (SE=0.90), Q3 vs Q1 B=1.46 (SE=0.96), Q4 vs.	p=0.0016

\$

Author year	Physical activity a behavior	nd sedentary	Muscle strength and muscle power		Adjustment	Effect size (95% CI) ^a	p-value used for analyses ^b
	Reported measure(s)	Units	Reported measure(s)	Units			·
						Q1=B=3.43 (SE=0.98), (mean of Q2-Q4 vs Q1 p=0.0016)	
Lerma 2018	MVPA	60min/day	5x CST	% s	Age, sex	$e^{\beta} = -4.433 (-7.21, -1.650)$	p(calc)=0.001
	LPA	60min/day	5x CST	% s	Age, sex	$e^{\beta} = -0.622 (-1.349, 0.104)$	p(calc)=0.093
	SB	60min/day	5x CST	% s	Age, sex	$e^{\beta} = 0.092 (-0.602, 0.786)$	p(calc)=0.807
Liao 2018	SB	Min/day	HGS	Kg	Age, sex, MVPA + others	$\beta = -0.083 (-0.199, 0.034)$	p=0.165
	SB break rate	#/sedentary h	HGS	Kg	Age, sex, MVPA, SB + others	$\beta = 0.004 (-0.115, 0.124)$	p=0.944
	Long SB bouts	#/day	HGS	Kg	Age, sex, MVPA, SB + others		p=0.575
	Long SB bouts	Min/day	HGS	Kg	Age, sex, MVPA, SB + others		p=0.237
Lohne-Seiler 2016		1000/day	HGS	Kg		B=-1.33 (SE=0.24) (-0.61, 0.34)	p=0.6
Mador 2011	VMU	#/min/day	KES	Кg	Unadjusted	*R=0.50 (p=0.013)	p=0.013
Master 2018	Steps	#/day	5x CST	ธั	Age, sex, morbidities + others		p(calc)<0.001
Matkovic 2020	Steps (<5000/day)	#/day	HGS	Kg	Unadjusted	*AUC=0.596 (0.491, 0.702)	p=0.082
	Steps (<5000/day)	#/day	30s CST	#/30s	Unadjusted	*AUC=0.676 (0.576, 0.776)	p=0.001
McDermott 2002	Accelerations	#/day	5x CST	S	Unadjusted	+ <i>PAD:</i> *B (NR) (+) (p-trend <0.0001)	p<0.001
	Accelerations	#/day	5x CST	S	Unadjusted	- <i>PAD</i> : *B=N/R (+) (p-trend <0.0001)	p<0.001
McGregor 2018	MVPA	Log-ratio	HGS	Kg	Age, sex, morbidity + others	$\gamma = -0.599 (p = 0.213)$	p=0.213
	LPA	Log-ratio	HGS	Кg	Age, sex, morbidity + others	$\gamma = 2.979 (p=0.028)$	p=0.028
	SB	Log-ratio	HGS	Kg	Age, sex, morbidity $+$ others	$\gamma = 0.003 \text{ (p} = 0.677)$	p=0.677
Meier 2020	Steps	1000/day	HGS	Кg	Age, sex, BMI, edu + others	B=0.01 (SE=0.16), R ² =0.58	p=0.53
	Steps (high, medium, low)	#/day	Chest press strength	Lbs	Unadjusted	ANOVA (+) (p=0.15) (+)	p=0.15
	Steps (high, medium, low)	#/day	Leg press strength	Lbs	Unadjusted	ANOVA (+) (p=0.17)	p=0.17
Monteiro 2019	Activity counts (terciles)	#/min/day	Arm curl	#/30s	Unadjusted	ANOVA (+) (p=0.058)	p=0.058
	Activity counts (terciles)	#/min/day	KES	Nm	Unadjusted	ANOVA (+) (p=0.060)	p=0.060
	Activity counts (terciles)	#/min/day	Knee flexion strength	Nm	Unadjusted	ANOVA (+) (p=0.051)	p=0.051
		#/min/day	30s CST	#/30s	Unadjusted	ANOVA (+) (p=0.073)	p=0.073

Author year	Physical activity an behavior	d sedentary	Muscle strength and mu power	scle	Adjustment	Effect size (95% CI) ^a	p-value used for analyses ^b
	Reported measure(s)	Units	Reported measure(s)	Units			-
	Activity counts						
	(terciles)						
Morie 2010	Activity counts (low vs. high)	•	HGS	Kg	Unadjusted	$T=N/R \ (p \ge 0.36)$	p≥0.36
	Activity counts (low vs. high)	-	Chest press strength	N	Unadjusted	T=N/R (p=0.710)	p=0.710
	Activity counts (low						
	vs. high) Activity counts (low		Chest press power	W	Unadjusted	T=N/R (p=0.945)	p=0.945
	vs. high) Activity counts (low	10 ⁻⁵ /min/day	Leg press strength	Ν	Age, BMI, medications	β =200, partial R ² =0.09 (p<0.01)	p(calc)=0.006
	vs. high)	10 ⁻⁵ /min/day	Leg press power	W	Unadjusted	T=N/R (p=0.359)	p=0.359
Nagai 2018	MVPA	Min/day	HGS (weak vs. not weak)	Kg	Unadjusted	Rpb=-0.12 (p<0.05)	p(calc)<0.001
	LPA	Min/day	HGS (weak vs. not weak)	Kg	Unadjusted	Rpb=-0.16 (p<0.05)	p(calc)<0.001
	SB	Min/day	HGS (weak vs. not weak)	Kg	Unadjusted	Rpb=0.14 (p<0.05)	p(calc)<0.001
Nawrocka 2017	MVPA (Meeting vs. not meeting guidelines)	Min/day	Arm curl	#/30s	Unadjusted	Mann-Whitney U (+) (p=0.587)	p=0.587
	MVPA (Meeting vs. not meeting guidelines)	Min/day	30s CST	#/30s	Unadjusted	Mann-Whitney U (+) (p=0.044)	p=0.044
Nawrocka 2019	MVPA (Meeting vs. not meeting guidelines)	Min/day	HGS	Kg	Unadjusted	Fischer's Exact (+) (p=0.010)	p=0.010
	MVPA (Meeting vs. not meeting	Min/day	Arm curl	#/30s	Unadjusted	Mann-Whitney U (+) (p=0.004)	p=0.004
	guidelines) MVPA (Meeting vs. not meeting	Min/day	30s CST	#/30s	Unadjusted	Mann-Whitney U (+) (p=0.162)	p=0.162
	guidelines)	N. / 1	5 COM	a	TT 1. / 1	DI 0.200 (0.000)	0.000
Nicolai 2010	Steps (Walking)	Min/day	5x CST	S	Unadjusted	Rho=-0.398 (p=0.008)	p=0.008
	TPA (<i>Time on feet</i>)	Min/day	5x CST	S	Unadjusted	Rho=-0.460 (p=0.002)	p=0.002
Ofei-Doodoo 2016	MVPA MVPA	Min/day Min/day	Arm curl 30s CST	#/30s #/30s	Unadjusted Unadjusted	R=0.174 (p=0.083) R=0.388 (p=0.000)	p=0.083 p(calc)<0.0001
	IVIVEA	will/uay	308 (31	#/308	Unaujusteu	к–0.300 (р=0.000)	p(caic) < 0.000

Author year	Physical activity and sedentary behavior		Muscle strength and muscle power		Adjustment	Effect size (95% CI) ^a	p-value used for analyses ^b
	Reported measure(s)	Units	Reported measure(s)	Units			·
Orwoll 2019	MVPA (MPA)	Min/day	5x CST	S	Unadjusted	R=-0.2 (p<0.001)	p<0.001
	LPA	Min/day	5x CST	S	Unadjusted	R=-0.2 (p<0.001)	p<0.001
Osuka 2015	MVPA	Min/day	5x CST (low vs. high)	S	Unadjusted	*Mann-Whitney U (+) (p<0.001)	p<0.001
	LPA	Min/day	5x CST	S	Age, sex, BMI + others	$\beta = -0.07 \ (p = 0.047)$	p=0.047
Park 2018	Steps	#/day	HGS/weight	%	Unadjusted	R=0.07 (p>0.05)	p(calc)=0.757
	TPA	Min/day	HGS/weight	%	Unadjusted	R=0.10 (p>0.05)	p(calc)=0.658
	VPA	Min/day	HGS/weight	%	Unadjusted	R=0.21 (p>0.05)	• · · ·
	MVPA	Min/day	HGS/weight	%	Unadjusted	R=-0.06 (p>0.05)	p(calc)=0.790
	MPA	Min/day	HGS/weight	%	Unadjusted	R=-0.07 (p>0.05)	1 · · · ·
	LPA	Min/day	HGS/weight	%	Unadjusted	R=0.20 (p>0.05)	p(calc)=0.372
	SB	Min/day	HGS/weight	%	Unadjusted	R=-0.08(p>0.05)	p(calc) = 0.723
	Steps	#/day	30s CST	#/30s	Unadjusted	R=0.36 (p>0.05)	p(calc) = 0.100
	TPĂ	Min/day	30s CST	#/30s	Unadjusted	R=0.25 (p>0.05)	p(calc)=0.262
	VPA	Min/day	30s CST	#/30s	Unadjusted	R=0.05 (p>0.05)	
	MVPA	Min/day	30s CST	#/30s	Unadjusted	R=0.29 (p>0.05)	p(calc)=0.190
	MPA	Min/day	30s CST	#/30s	Unadjusted	R=0.29 (p>0.05)	1 · · · ·
	LPA	Min/day	30s CST	#/30s	Unadjusted	R=0.04 (p>0.05)	p(calc)=0.860
	SB	Min/day	30s CST	#/30s	Unadjusted	R=0.06 (p>0.05)	p(calc)=0.791
Perkin 2018	MVPA	Min/day	Leg press strength	Ν	Unadjusted	$R^2 = N/R (p > 0.05)$	p(N/R)>0.25
	SB	Min/day	Leg press strength	Ν	Unadjusted	$R^2 = N/R$ (p>0.05	p(N/R) > 0.25
	EE (PAL)	None	Leg press strength	Ν	Unadjusted	$R^2 = -0.03 (p > 0.05)$	p(calc)=0.230
	MVPA	Min/day	Leg press power	W	Unadjusted	$R^2 = N/R (p > 0.05)$	p(N/R)>0.25
	SB	Min/day	Leg press power	W	Unadjusted	$R^2 = N/R$ (p>0.05)	p(N/R)>0.25
	EE (PAL)	None	Leg press power	W	Unadjusted	$R^2 = -0.03 (p > 0.05)$	p(calc)=0.230
Pitta 2005	Steps (Walking)	Min/day	HGS	%pred	Unadjusted	R=0.44 (0.001 <p<0.01)< td=""><td>0.001<p<0.01< td=""></p<0.01<></td></p<0.01)<>	0.001 <p<0.01< td=""></p<0.01<>
	TPA (Standing)	Min/day	HGS	%pred	Unadjusted	$R=0.28 (0.01 \le 0.5)$	0.01 <p≤0.5< td=""></p≤0.5<>
	Steps (Walking)	Min/day	KES	% pred	Unadjusted	R=0.45 (0.001 <p<0.01)< td=""><td>0.001<p≤0.1< td=""></p≤0.1<></td></p<0.01)<>	0.001 <p≤0.1< td=""></p≤0.1<>
	TPA (Standing)	Min/day	KES	%pred	Unadjusted	R=0.20 (p>0.5)	p(calc)=0.164
Puthoff 2008	Steps	#/day	Leg press strength	N/kg	Unadjusted	*B=184.15 (SE=107.86) β=0.31	p(calc) = 0.087
	Steps	#/day	Leg press power (peak)	W/kg	Unadjusted	*B=340.99 (SE=152.08) β=0.40	p(calc)=0.024
	Steps	#/day	Leg press power (40%)	W/kg	Unadjusted	*B=237.41 (SE=160.68) β=0.29	p(calc)=0.140
	Steps	#/day	Leg press power (90%)	W/kg	Unadjusted	*B=351.73 (SE=175.81) β=0.36	p(calc)=0.045

\$

Table C5 Continued

Author year	Physical activity a behavior	and sedentary	Muscle strength and m power	uscle	Adjustment	Effect size (95% CI) ^a	p-value used for analyses ^b
	Reported measure(s)	Units	Reported measure(s)	Units			
Rapp 2012	Steps (Walking)	Min/day	HGS	Kg	Unadjusted	* <i>M</i> 65-74y: B=-0.2 (-0.7, 0.3) * <i>M</i> 75-90y: B=-0.05 (-0.5, 0.4) * <i>F</i> 65-74y: B=0.3 (-0.4, 0.9)	p(calc)=0.441 p(calc)=0.839 p(calc)=0.372
	Steps (Walking)	Min/day	5x CST	S	Unadjusted	* <i>F</i> 75-90y: B=1.5 (0.7, 2.3) * <i>M</i> : β=-2.4 (-3.3, -1.6) * <i>F</i> : β=-3.2 (-4.0, -2.4)	p(calc)<0.001 p(calc)<0.001 p(calc)<0.001
Rausch-Osthof	Steps	#/day	KES	Nm	Unadjusted	$*\beta$ =-0.085 (-0.567, 0.387)	p=0.699
2014	EE	Kcal/day	KES	Nm	Unadjusted	*β=0.274 (-0.171, 0.749)	p=0.206
	EE (PAL)	None	KES	Nm	Unadjusted	*β=0.092 (-0.345, 0.516)	I
	MET	Kcal/day/kg	KES	Nm	Unadjusted	$*\beta=0.100(-0.371, 0.582)$	p=0.650
Rava 2018	VPA	Min/day	5x CST	S	Age, BMI	R=-0.06 (p>0.00625)	1
	MVPA	Min/day	5x CST	S	Age, BMI	R=-0.27 (p>0.00625)	p(calc)=0.015
	MPA	Min/day	5x CST	S	Age, BMI	R=-0.26 (p>0.00625)	1 \ /
	LPA	Min/day	5x CST	S	Age, BMI	R=-0.12 (p>0.00625)	p(calc)=0.286
	SB	Min/day	5x CST	S	Age, BMI	R=0.05 (p>0.00625)	p(calc)=0.658
Reid 2018	SB	#/day	KES	Kg	Age, sex	RR=1.02 (0.93, 1.12)	p(calc)=0.689
	BST	10/day	KES	Kg	Age, sex	RR=0.94 (0.82, 1.07)	p(calc)=0.368
	SB	#/day	Leg press strength	Kg	Age, sex	B=1.61 (-2.33, 5.56)	p(calc)=0.432
	BST	10/day	Leg press strength	Kg	Age, sex	B=-6.32 (-11.95, -0.69)	p(calc)=0.028
	SB	#/day	30s CST	#/30s	Age, sex	B=-0.28 (-0.51, -0.04)	p(calc)=0.019
	BST	10/day	30s CST	#/30s	Age, sex	B=0.10 (-0.24, 0.45)	p(calc)=0.259
Rojer 2017	Steps	1000/day	HGS (Z-score)	SD	Age, sex	B=0.052(SE=0.038)	p=0.173
	TPA	Min/day	HGS (Z-score)	SD	Age, sex	B=0.002 (SE=0.001)	p=0.279
	SB	H/day	HGS (Z-score)	SD	Age, sex	B=-0.091 (SE=0.081)	p=0.267
	PA bouts		HGS (Z-score)	SD	Age, sex	B=0.027 (SE=0.022)	p=0.231
	PA bouts	S/bout/day	HGS (Z-score)	SD	Age, sex	B=-0.023 (SE=0.043)	p=0.594
	SB bouts	100/day	HGS (Z-score)	SD	Age, sex	B=0.219 (SE=0.243)	p=0.370
	SB bouts	H/bout/day	HGS (Z-score)	SD	Age, sex	B=-0.041 (SE=0.035)	p=0.254
Rosenberg 2015	SB	H/day	5x CST	S	Age, sex, MVPA + others	B=1.02 (SE=0.21)	p<0.001
Rowlands 2018	MVPA	Min/day	HGS	Kg	Age, sex, body fat + others	B=0.02 (-0.02, 0.06)	p(calc)=0.332
	Accelerations	Mg-force	HGS	Kg	Age, sex, body fat + others	B=0.09 (-0.04, 0.23)	p(calc)=0.193
	Intensity gradient	N/R	HGS	Kg	Age, sex, body fat + others	B=4.44 (0.60, 8.27)	p(calc)<0.001
	PA bouts	Min/day	HGS	Kg	Age, sex, body fat + others	B=-0.01 (-0.07, 0.05)	p(calc)=0.757
	MVPA	Min/day	60s CST	#/60s	Age, sex, body fat + others	B=0.06 (0.02, 0.09)	p(calc)<0.001

\$

Table C5 Continued

Author year	Physical activity a behavior	and sedentary	Muscle strength and m power	Muscle strength and muscle power		Effect size (95% CI) ^a	p-value used for analyses ^b	
	Reported measure(s)	Units	Reported measure(s)	Units				
	Accelerations	Mg-force	60s CST	#/60s	Age, sex, body fat + others	B=0.25 (0.11, 0.40)	p(calc)=0.007	
	Intensity gradient	N/R	60s CST	#/60s	Age, sex, body fat $+$ others	B=8.83 (5.83, 11.83)	p(calc)<0.001	
	PA bouts	Min/day	60s CST	#/60s	Age, sex, body fat + others	B=0.07 (-0.02, 0.16)	p(calc)=0.127	
Safeek 2018	Steps	#/day	HGS	Kg	Unadjusted	R=-0.02 (p>0.05)	p(calc)=0.931	
	MVPA	Min/day	HGS	Kg	Unadjusted	R=-0.20 (p>0.05)	p(calc)=0.385	
	LPA	H/day	HGS	Kg	Unadjusted	R=0.15 (p>0.05)	p(calc)=0.516	
	SB	H/day	HGS	Kg	Unadjusted	R=0.15 (p>0.05)	p(calc)=0.516	
	EE	Kcal/day	HGS	Kg	Unadjusted	R=0.12 (p>0.05)	p(calc)=0.604	
	Steps	#/day	30s CST	#/30s	Unadjusted	R=0.30 (p>0.05)	p(calc)=0.186	
	MVPA	Min/day	30s CST	#/30s	Unadjusted	R=0.16 (p>0.05)	p(calc)=0.488	
	LPA	H/day	30s CST	#/30s	Unadjusted	R=0.24 (p>0.05)	p(calc)=0.295	
	SB	H/day	30s CST	#/30s	Unadjusted	R=-0.25 (p>0.05)	p(calc)=0.274	
	EE	Kcal/day	30s CST	#/30s	Unadjusted	R=0.16 (p>0.05)	p(calc)=0.488	
Sanchez-sanchez	Activity counts	SDs (#/day)	HGS	Kg	Age residuals, sex $+$ others	B=0.857 (0.312, 1.402)	0.001 <p<0.01< td=""></p<0.01<>	
2019	MVPA	H/day	HGS	Kg	Age residuals, sex $+$ others	B=0.933 (0.246, 1.620)	0.001 <p<0.01< td=""></p<0.01<>	
	LPA	H/day	HGS	Kg	Age residuals, sex $+$ others	B=0.428 (0.051, 0.805)	p(calc)=0.026	
	SB	H/day	HGS	Kg	Age residuals, sex $+$ others	B=-0.467 (-0.807, -0.128)	p(calc)=0.007	
Santos 2012	MVPA	Min/day	Arm curl	#/30s	Age, sex, register time	B=0.016 (-0.007, 0.039)	p(calc)=0.173	
	SB	Min/day	Arm curl	#/30s	Age, sex, register time	B=-0.010 (-0.016, -0.004)	p(calc)<0.001	
	MVPA	Min/day	30s CST	#/30s	Age, sex, register time	B=0.035 (0.014, 0.055)	p(calc)<0.001	
	SB	Min/day	30s CST	#/30s	Age, sex, register time	B=-0.013 (-0.018, -0.008)	p(calc)<0.001	
Sardinha 2015	BST	#/day	Arm curl	#/30s	Age, sex, BMI, SB + others	β=0.180 (0.039, 0.322)	p(calc)=0.013	
	BST	#/day	30s CST	#/30s	Age, sex, BMI, SB + others	$\beta = 0.181 (0.045, 0.318)$	p(calc)=0.797	
Scott 2020	MVPA	H/day	HGS (low vs. high)	Kg	Sex, BMI, LPA, SB + others	OR=0.80 (0.71, 0.91)	p(calc)<0.001	
	LPA	H/day	HGS (low vs. high)	Kg	Sex, BMI, MVPA, SB + others	OR=0.99 (0.96, 1.02)	p(calc)=0.526	
	SB	H/day	HGS (low vs. high)	Kg	Sex, BMI, MVPA, LPA + others	OR=1.00 (0.98,1.02)	p(calc)=1	
<u>Scott 2011</u>	Steps (baseline)	#/day x 10 ³	$\Delta Leg strength$	Kg	Age, weight, CVD + others	<i>M</i> : B=-0.28 (-1.27, 0.72) <i>F</i> : B=1.06 (0.31, 1.31)	p(calc)=0.593 p(calc)<0.001	
	Steps (habitual)	#/day x 10 ³	$\Delta Leg strength$	Kg	Age, weight, CVD + others	<i>M</i> : B=-0.21 (-1.24, 0.82) <i>F</i> : B=1.37(0.57, 2.17)	1 ~ /	
Scott 2009	Steps	#/day	Leg strength	Kg	Age	<i>M</i> : B=0.86 (-0.02, 1.74)	p=0.056	
	Steps	#/day	Leg strength	Kg	Age	<i>F</i> : B=071 (0.13, 1.29)	p=0.016	

Author year	Physical activity an behavior	d sedentary	Muscle strength and muscle power		Adjustment	Effect size (95% CI) ^a	p-value used for analyses ^b	
	Reported measure(s)	Units	Reported measure(s)	Units			-	
<u>Semanik 2015</u>	SB	H/day	Δ5x CST	#/min	Age, sex, baseline CST + others	B=-0.58 (-0.92, -0.24)	p<0.001	
Silva 2019	MVPA	Min/day	Arm curl	#/30s	Unadjusted	Rho=0.243 (p=0.027)	p=0.027	
	LPA	Min/day	Arm curl	#/30s	Unadjusted	Rho=-0.069 (p=0.538)	p=0.538	
	SB	Min/day	Arm curl	#/30s	Unadjusted	Rho=0.124 (p=0.264)	p=0.264	
	MVPA	Min/day	30s CST	#/30s	Unadjusted	Rho=0.163 (p=0.142)	p=0.142	
	LPA	Min/day	30s CST	#/30s	Unadjusted	Rho=-0.083 (p=0.458)	p=0.458	
	SB	Min/day	30s CST	#/30s	Unadjusted	Rho=0.167 (p=0.131)	p=0.131	
Spartano 2019	Steps	1000/day	HGS	Kg	Age, sex, wear time $+$ others	<i>M</i> : B=-0.16 (SE=0.09)	p=0.077	
	1	5		0		F; B=0.09 (SE=0.06)	p=0.125	
	MVPA	Log(min/day)	HGS	Kg	Age, sex, wear time + others	<i>M</i> : B=0.058 (SE=0.34)	p=0.090	
		. 8(0	8.,,	F: B=0.64 (SE=0.19)	p=0.0008	
	SB	% wear time	HGS	Kg	Age, sex, wear time + others	<i>M</i> : B=0.09 (SE=0.05)	p=0.088	
				0	8.,,	F: B=-0.05 (SE=0.04)	p=0.133	
	Steps	1000/day	5x CST	Log(s)	Age, sex, wear time + others	B=-0.010 (SE=0.002)	p<0.0001	
	MVPA	Log(min/day)	5x CST	Log(s)	Age, sex, wear time $+$ others	B=-0.057 (SE=0.006)	p<0.0001	
	SB	% wear time	5x CST	Log(s)	Age, sex, wear time $+$ others	B=0.006 (SE=0.001)	p<0.0001	
Fang 2015	Activity counts	#/day	HGS	Kg	SPPB score, 6min walk test	*B=23022 (-41988, -4055)	p=0.02	
Trayers 2014	Steps (low vs. high)	#/day	5x CST (0-4)	Points	Age, sex	*OR=7.2 (3.8, 13.6)	p<0.001	
	Activity counts (low vs. high)	#/day	5x CST (0-4)	Points	Age, sex	*OR=5.8 (3.2, 10.8)	p<0.001	
	MVPA (low vs. high)	Min/day	5x CST (0-4)	Points	Age, sex	*OR=7.8 (4.0, 15.0)	p<0.001	
an Gestel 2012	Steps	#/day	HGS	Kg	Unadjusted	R=0.21 (-0.03, -0.42)	p=0.19	
	Steps	#/day	60s CST	#/60s	BMI, partial pressure O ² , FEV	*B=155.38 (SE=73.15) β=0.28	p=0.041	
an Lummel 2016	TPA (standing)	Min/day	5x CST (fast vs. slow)	S	Unadjusted	*Mann-Whitney U (+) (p=0.230)	p=0.230	
	PA bouts	#/day	5x CST (fast vs. slow)	S	Unadjusted	*Mann-Whitney U (+) (p=0.218)	p=0.218	
	SB bouts	Min/bout/day	5x CST (fast vs. slow)	S	Unadjusted	*Mann-Whitney U (-) (p=0.042)	p=0.042	
/an Oeijen 2020	ΔSteps	#/day	Δ Lower extremity muscle strength	Z-score	Unadjusted	B=676.279 (SE=186.151)	p<0.000	
Van Sloten 2011	Steps	#/day	HGS (low vs. high)	Kg	Age, sex, BMI, neuropathy, PAD	*B=-1782 (-3348, -217)	p(calc)=0.02	

Table C5 Continued

Author year	Physical activity behavior	and sedentary	Muscle strength and muscle power		Adjustment	Effect size (95% CI) ^a	p-value used for analyses ^b
	Reported measure(s)	Units	Reported measure(s)	Units			·
Walker 2008	TPA	% time/day	KES	Ν	Unadjusted	R=0.4 (0.06, 0.55)	p=0.023
Ward 2014	Activity counts	#/min/day	30s CST	#/30s	Age, sex, morbidities, body fat	β=0.002 (-0.006, 0.009)	p(calc)=0.614
	MVPA	Min/week	30s CST	#/30s	Age, sex, morbidities	Partial R=0.147 (p>0.05)	p(calc)=0.067
Waschiki 2012	Steps	#/day	KES	Kg	Age, sex, BMI, study site	β=0.298 (p=0.022)	p=0.022
	EE (PAL)	None	KES	Kg	Age, sex, BMI, study site	β=0.350 (p=0.007)	p=0.007
Watz 2008	Steps	#/day	HGS	Kg	Edu, smoking, alcohol + others	s N/R (p>0.05)	p(N/R)>0.25
	EE (PAL)	None	HGS	Kg	Edu, smoking, alcohol + others	s N/R (p>0.05)	p(N/R) > 0.25
Westbury 2018	TPA	Min/day	HGS	Kg	Age, sex, height $+$ others	β=0.16 (-0.03, 0.34)	p=0.09
-	MVPA	Min/day	HGS	Kg	Age, sex, height + others	β=0.11 (-0.09, 0.31)	p=0.27
	Accelerations	Mg-force	HGS	Kg	Age, sex, height $+$ others	β=0.12 (-0.07, 0.30)	p=0.23
Wickerson 2013	Steps	#/day	Knee extension torque	Nm	Unadjusted	R=0.51 (p<0.01)	p(calc)=0.011
	MVPA	Min/day	Knee extension torque	Nm	Unadjusted	R=0.36 (p=0.08)	p=0.08
Winberg 2015	Steps	#/day	KES	Nm	Age, sex, BMI	*B=19 (p<0.01), R ² =0.18	p(calc)<0.001
	Steps	#/day	Knee flexion strength	Nm	Age, sex, BMI	*B=39 (p<0.01), R ² =0.19	p(calc)<0.001
Yamada 2011	Steps	#/day	5x CST	S	Age, sex, gait speed + others	β=-0.147 (p<0.01)	p(calc)<0.001
Yasunaga 2017	MVPA	10min/day	HGS	Kg	Age, sex, morbidities + others	B=0.092 (-0.135, 0.318)	p(calc)=0.434
-	LPA	10min/day	HGS	Kg	Age, sex, morbidities + others	B=0.058 (-0.024, 0.141)	p(calc)=0.169
	SB	10min/day	HGS	Kg	Age, sex, morbidities + others	B=-0.056 (-0.130, 0.017)	p(calc)=0.136
Yoshida 2010	Steps	#/day	HGS	Kg	Unadjusted	<i>HFG:</i> Rho=0.137 (p>.05)	p(calc)=0.301
						<i>LFG</i> : Rho=0.142 (p>.05)	p(calc)=0.187
	TPA	Min/day	HGS	Kg	Unadjusted	<i>HFG:</i> Rho=-0.091 (p>.05)	p(calc)=0.493
						<i>LFG</i> : Rho=0.102 (p>.05)	p(calc)=0.344
	MVPA (MPA)	Min/day	HGS	Kg	Unadjusted	<i>HFG:</i> Rho=0.206 (p>.05)	p(calc)=0.118
						<i>LFG:</i> Rho=0.146 (p>.05)	p(calc)=0.175
	LPA	Min/day	HGS	Kg	Unadjusted	<i>HFG:</i> Rho=-0.176 (p>.05)	p(calc)=0.182
						<i>LFG</i> : Rho=0.076 (p>.05)	p(calc)=0.482
	Steps	#/day	KES	Nm	Unadjusted	<i>HFG:</i> Rho=0.277 (p<.05)	p(calc)=0.034
						<i>LFG</i> : Rho=-0.018(p>.05)	p(calc)=0.868
	TPA	Min/day	KES	Nm	Unadjusted	<i>HFG</i> : Rho=-0.159 (p>.05)	p(calc)=0.229
		-				<i>LFG:</i> Rho=-0.034 (p>.05)	p(calc)=0.753
	MVPA (MPA)	Min/day	KES	Nm	Unadjusted	<i>HFG</i> : Rho=0.475 (p<.01)	p(calc)<0.001
		-				<i>LFG:</i> Rho=0.055 (p>.05)	p(calc)=0.67
	LPA	Min/day	KES	Nm	Unadjusted	HFG: Rho=0.028 (p>.05)	p(calc)=0.833
						<i>LFG</i> : Rho=-0.045 (p>.05)	p(calc)=0.611

Author year	Physical activity and sedentary behavior		Muscle strength and muscle power		Adjustment	Effect size (95% CI) ^a	p-value used for analyses ^b
	Reported measure(s)	Units	Reported measure(s)	Units			
Yuki 2019	Steps	#/day	HGS (weakness vs. no weakness)	Kg	Age, sex	*OR=N/R (p>0.05)	p(N/R)>0.25
	LPA	Min/day	HGS weakness vs. no weakness)	Kg	Age, sex	*OR=N/R (p>0.05)	p(N/R)>0.25
	MVPA	Min/day	HGS weakness vs. no weakness)	Kg	Age, sex	*OR=N/R (p>0.05)	p(N/R)>0.25

Table C5 Continued

^aIf effect sizes were not reported, when possible, the direction of effect was determined as either positive (+) when higher PA and lower SB was associated with better muscle strength/power or as negative (-) when associated with worse muscle strength/power. *Stars before effect size coefficient represent the use of muscle strength or muscle power as an independent variable and PA or SB as the dependent variable, all other associations presented describe PA and SB as independent variable and muscle strength and power as the dependent variable.

^bp-values of associations included in analyses (effect direction heat map and albatross plots) are presented as reported in article, calculated as p(calc) using formulas described in methods, or estimated conservatively as p(N/R) when p-value was not reported and could not be calculated (estimation described in methods). Associations with a blank space for p-value were not included as exposure-outcome associations were only represented once per article. If two articles reported the same exposure-outcome (PA/SB – muscle strength/power) association in the same population, adjusted data was used based on hierarchy of adjustment models or when adjustment models were the same, the data from the article with a larger sample sized was used and indicated by "author year". <u>Underlined</u> articles have a longitudinal design.

TPA=total physical activity, MPA=moderate physical activity, VPA=vigorous physical activity, MVPA=moderate to vigorous physical activity, LPA=light physical activity, SB=sedentary behavior, EE=energy expenditure, PAL=physical activity units, BST=breaks in sedentary time, Δ =change, MET=metabolic equivalent of tasks, VMU=vector magnitude units, min=minutes, h=hours, CPM=counts per minutes, #=number, mg-force=miligrams-force (force of earth gravity acting on one milligram), SD=standard deviation, log=log transformed, e=natural log, Partial R=partial correlation, R=Pearson's correlation, Rho=Spearman's correlation, Rp_b=point biserial correlation, B=unstandardized regression coefficient (unstandardized beta), β =standardized regression coefficient (standardized beta), RR=relative risk, OR=odds ratio, Partial η^2 = partial eta squared, ANOVA=analysis of variance, EMM=estimated marginal means, T=t-test (t-statistic), Q=quartile, p-trend=p for trend, HGS= hand grip strength, KES=knee extension strength, KET=knee extension torque, CST=chair stand test, s=seconds, x=times (repetitions), #=number, quad=quadriceps, kg=kilogram, N=newton, Nm=newton-meter, W=watt, KgF=kilogram-force, KiloW=kilowatt, KiloN=kilonewton, MVC=maximum voluntary contraction, 1RM=one repetition maximum, Lbs=pounds, max=maximum, /= divided by or per, Δ =change, %pred=% predictive, +/- = with or without, N/A=not applicable, N/R=not reported, M=male, F=female, HFG=high functioning group, LFG=low functioning group, BMI=body mass index, OA=osteoarthritis, O²=oxygen, FEV=forced expirator volume in one second in percent of predicted, + others=adjusted for other potential confounders