Journal Pre-proof

The association of objectively measured physical activity and sedentary behavior with skeletal muscle strength and muscle power in older adults: a systematic review and meta-analysis

Keenan A. Ramsey, Anna G.M. Rojer, Luke D'Andrea, René H.J. Otten, Martijn W. Heymans, Marijke C. Trappenburg, Sjors Verlaan, Anna C. Whittaker, Carel G.M. Meskers, Andrea B. Maier

PII:	S1568-1637(21)00013-1
DOI:	https://doi.org/10.1016/j.arr.2021.101266
Reference:	ARR 101266
To appear in:	Ageing Research Reviews
Received Date:	24 September 2020
Revised Date:	4 January 2021
Accepted Date:	2 February 2021

Please cite this article as: \{ doi: https://doi.org/

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
© 2020 Published by Elsevier.

The association of objectively measured physical activity and sedentary behavior with skeletal muscle strength and muscle power in older adults: a systematic review and meta-analysis

Keenan A. Ramsey ${ }^{\text {a }}$, BSPH, Anna G.M. Rojer ${ }^{\text {a }}$, MD, Luke D’Andrea ${ }^{\text {b }}$, BSc, René H.J. Otten $^{\text {c }}$, MSc, Martijn W. Heymans ${ }^{\text {d }}$, PhD, Marijke C. Trappenburg ${ }^{\text {e,f }}$, MD, PhD, Sjors Verlaan $^{\mathrm{g}}, \mathrm{PhD}$, Anna C. Whittaker ${ }^{\text {h,i, }}$, PhD, Carel G. M. Meskers ${ }^{\mathrm{a}, \mathrm{g}}$, MD, PhD, Andrea B. Maier ${ }^{\text {a,b }}, \mathrm{MD}, \mathrm{PhD}$
${ }^{\text {a }}$ Department of Human Movement Sciences, @ AgeAmsterdam, Amsterdam Movement Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
${ }^{\mathrm{b}}$ Department of Medicine and Aged Care, @ AgeMelbourne, The Royal Melbourne Hospital, The University of Melbourne, Victoria, Australia
${ }^{c}$ Medical Library, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
${ }^{\mathrm{d}}$ Department of Epidemiology and Biostatistics Amsterdam University Medical Center, VU University Medical Center, Amsterdam, The Netherlands

Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Rehabilitation Medicine, Amsterdam Movement Sciences, Amsterdam, The Netherlands
${ }^{\mathrm{e}}$ Department of Internal Medicine, Section of Gerontology and Geriatrics, VU University Medical Center, Amsterdam, The Netherlands
${ }^{\mathrm{f}}$ Department of Internal Medicine, Amstelland Hospital, Amstelveen, The Netherlands
${ }^{\mathrm{g}}$ Department of Rehabilitation Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
${ }^{\mathrm{h}}$ School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, England, United Kingdom

[^0]
Corresponding Author

Prof. Andrea B. Maier, Department of Medicine and Aged Care, @ Age, Department of Human Movement Sciences, Amsterdam Movement Science, Vrije Universiteit Amsterdam, van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands

E: a.b.maier@vu.nl; T: +31 205982000

Abstract word count: 305

Manuscript word count: 5,080
Number of tables: 5
Number of figures: 12

Highlights

- High physical activity (PA) is associated with better muscle strength and power
- Low sedentary behavior (SB) is associated with better muscle strength and power
- PA/SB are stronger associated with lower body muscle strength and power than upper
- Strongest associations were found for PA/SB with chair stand test performance
- Confounding does not affect the association of PA/SB with muscle strength/power

Abstract

Background: Engaging in physical activity (PA) and avoiding sedentary behavior (SB) are important for healthy ageing with benefits including the mitigation of disability and mortality. Whether benefits extend to key determinants of disability and mortality, namely muscle strength and muscle power, is unclear.

Abstract

Aims: This systematic review aimed to describe the association of objective measures of PA and SB with measures of skeletal muscle strength and muscle power in community-dwelling older adults.

Methods: Six databases were searched from their inception to June $21^{\text {st }}, 2020$ for articles reporting associations between objectively measured PA and SB and upper body or lower body muscle strength or muscle power in community dwelling adults aged 60 years and older. An overview of associations was visualized by effect direction heat maps, standardized effect sizes were estimated with albatross plots and summarized in box plots. Articles reporting adjusted standardized regression coefficients (β) were included in meta-analyses. Results: A total of 112 articles were included representing 43,796 individuals (range: 21 to 3,726 per article) with a mean or median age from 61.0-88.0 years (mean 56.4% female). Higher PA measures and lower SB were associated with better upper body muscle strength (hand grip strength), upper body muscle power (arm curl), lower body muscle strength, and lower body muscle power (chair stand test). Median standardized effect sizes were consistently larger for measures of PA and SB with lower compared to upper body muscle strength and muscle power. The meta-analyses of adjusted β coefficients confirmed the associations between total PA (TPA), moderate-to-vigorous PA (MVPA) and light PA (LPA) with hand grip strength ($\beta=0.041, \beta=0.057$, and $\beta=0.070$, respectively, all $p \leq 0.001$), and TPA and MVPA with chair stand test ($\beta=0.199$ and $\beta=0.211$, respectively, all $p \leq 0.001$).

Conclusions: Higher PA and lower SB are associated with greater skeletal muscle strength and muscle power, particularly with the chair stand test.

Keywords: physical activity; sedentary behavior; accelerometry; muscle strength; muscle contraction; aged

1. Introduction

Low physical activity (PA) and high sedentary behavior (SB) present a global health challenge and they are particularly important in older adult populations as PA declines and SB increases with increasing age (Arnardottir et al., 2013; Ortlieb et al., 2014; Reid and Fielding, 2012). PA is defined as any bodily movement produced by skeletal muscle that requires energy expenditure (Caspersen et al., 1985), while SB is defined as periods of waking activity that produce little or no energy expenditure (Tremblay, 2012; Tremblay et al., 2017). Both PA and SB can be most accurately captured by objective devices such as accelerometers or pedometers, which can capture the incidental, unstructured, and lightintensity movement characterizing the majority of PA in older adults that can otherwise be subject to significant bias when self-reported (Amagasa et al., 2017; Lee and Shiroma, 2014; Lohne-Seiler et al., 2014). PA and SB are closely related but distinct behaviors (van der Ploeg and Hillsdon, 2017) that are each independent determinants of adverse outcomes such as morbidity, disability, poor quality of life, and mortality (Cunningham et al., 2020; Fornias et al., 2014; Rojer et al., 2020; Tak et al., 2013; Vagetti et al., 2014). The degree to which objectively measured habitual PA and SB are associated with other determinants of these adverse outcomes, namely skeletal muscle strength and muscle power (Katzmarzyk and Craig, 2002; Rantanen, 2003), has remained to be unexplored by a systematic review.

Skeletal muscle strength (the amount of force a muscle can produce with a single maximal effort) and muscle power (the ability to exert maximal force in a short time) (Beaudart et al., 2019) decline with chronological age (Beenakker et al., 2010; ChodzkoZajko et al., 2009; Reid et al., 2014) and are not only functionally important (Wang et al., 2020) but are also key determinants of adverse outcomes such as morbidity, disability, poor quality of life, and mortality (Ling et al., 2010; Meskers et al., 2019; Taekema et al., 2010). Muscle strength and muscle power may therefore play a role in the relationship between
$\mathrm{PA} / \mathrm{SB}$ and adverse outcomes. Establishing and quantifying the association between PA and SB with muscle strength and muscle power is thus a priority for informing potential lifestyle guidelines, interventions and, ultimately, mitigating poor health outcomes.

The aim of this systematic review was to describe and quantify the associations of objectively measured PA and SB with muscle strength and muscle power in communitydwelling older adults.

2. Methods

2.1 Information sources and search

The protocol for this review was registered in the PROSPERO International prospective register of systematic review (registration number: CRD42018103910). PubMed, EMBASE, the Cochrane Library (via Wiley), CINAHL, PsycINFO, and SPORTDiscus (via EBSCO) were systematically searched according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) statement (Moher et al., 2009) by two independent assessors (AR and RO) to identify articles published from inception to June $21^{\text {st }}, 2020$ investigating PA and SB in older adults. The full search strategy is presented in Appendix A and included the keywords: 'active or inactive lifestyle’; 'motor activity'; 'people over 60 years of age'. Articles investigating PA and SB in relation to muscle strength and muscle power were organized and managed using EndNote (Version X8.2 Clarivate Analytics, Philadelphia, USA) and Rayyan (Ouzzani et al., 2016).

2.2 Eligibility criteria

Articles were considered eligible using the following criteria: 1) English language original article in full text, 2) observational or experimental design, 3) mean or median age of the study population ≥ 60 years old, 4) study population consisting of community-dwelling individuals (exclusively institutionalized populations were excluded), 5) objective PA/SB measured with an instrument (accelerometer or pedometer), 6) skeletal muscle strength or muscle power reported, 7) the association of objective $\mathrm{PA} / \mathrm{SB}$ measures and muscle strength/muscle power was reported, 8) associations were reported in control group or using baseline data of intervention studies.

2.3 Article selection

The title and abstract of articles were assessed by two independent reviewers (KR and EvdR), for potential eligibility. The subsequent full text screening was performed in duplicate by two
independent reviewers (KR and LD or AR). Disagreement was resolved by an additional reviewer (AM). The references of all included articles as well as relevant systematic reviews (Cunningham et al., 2020; Mañas et al., 2017; Osthoff et al., 2013) were screened for additional articles.

2.4 Data extraction

Data were extracted in duplicate independently by two reviewers (KR and LD or AR): first author; year of publication; number of participants; study population characteristics; country(s); study design; follow-up period (if applicable); mean age; sex; accelerometer or pedometer device for objective assessment of $\mathrm{PA} / \mathrm{SB}$; wearing location of device; minimum wearing duration to constitute a valid day; number of valid days assessed; number of valid days required for inclusion in analysis; mean device wear time; measures used to assess $\mathrm{PA} / \mathrm{SB}$ and their definitions; mean (standard deviation (SD)) or median [interquartile range] capacity recorded as upper body or lower body and muscle strength or muscle power; measures used to assess muscle strength/muscle power and their definitions; mean (SD) or median [IQR] muscle strength/muscle power; analysis used to study association(s); adjustment model(s); effect size(s) and significance.

2.5 Study quality \& risk of bias

Study quality and risk of bias of the included articles were independently assessed by two reviewers (KR and LD or AR) using the nine-point Newcastle-Ottawa Scale (NOS) adapted for cross-sectional studies and longitudinal studies as presented in Appendix B (Wells et al., 2000; Wells GA et al., 2012). Articles were assessed by the following domains: 1. selection (representativeness of cohort and ascertainment of exposure), 2. comparability (adjustments), 3. outcome (assessment of outcome measure). Additional outcome criteria assessed for longitudinal studies were duration of follow up period and adequacy of participant retention
after follow-up period. High quality versus low quality of articles was defined as \geq or $<4 / 7$ stars for cross-sectional studies and \geq or $<5 / 9$ stars for longitudinal studies, respectively.

2.6 Statistical analysis and data visualization

Associations between measures of PA/SB and upper body muscle strength, upper body muscle power, lower body muscle strength and lower body muscle power were reported in tables and synthesized in the following ways in accordance with Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) (Liberati et al., 2009) and Synthesis Without Meta-Analysis (SWiM) guidelines (Campbell et al., 2020): 1. an overview of all associations was qualitatively visualized in effect direction heat maps (Thomson and Thomas, 2013), 2. albatross plots provided visualization and quantification of estimated effect sizes (Harrison et al., 2017), and 3. meta-analyses were performed to obtain a pooled estimate of exclusively adjusted associations. Main PA/SB measures and units were continuous steps (\#/day), activity counts (\#/day), and PA (total PA (TPA), moderate-tovigorous PA (MVPA), and light PA (LPA)) and SB duration in (all units of time/day). Intensity-based accelerometer measures and PA and SB frequency and accumulation (bouts) were included in supplementary tables. If PA/SB measures were reported in different units or as categorical variables, these were used instead. When more than one statistical test was used, the following hierarchy was applied for reporting each association for all methods of synthesis: 1. adjusted linear regressions, 2. adjusted logistic regressions (for articles reporting ordinal determinants, p -trend was used and if not, p -values comparing relatively best versus worst categories of PA were used), 3. partial correlations, 4. unadjusted regression/Pearson's correlations 5. Spearman's or Biserial correlations 6. ANOVA or ANCOVA 7. Mann UWhitney, t -test, or chi-squared. Isotemporal substitution models were not included. Data were reported based on the following order of adjustment models: 1. age and sex, 2. age and sex + additional factors, 3. age or sex + additional factors, 4. neither age nor sex, only other factors
5. unadjusted. The direction of effect was defined as positive when higher PA and lower SB were associated with better muscle strength or muscle power and negative when associations indicated worse muscle strength or muscle power. Positive and negative effect directions were represented by an upwards or downwards triangle in effect direction heat maps and points on the right side (positive effect) or left side (negative effect) of albatross plots. If p values were not reported, they were calculated using the following methods: for linear regression analyses, the upper and lower limits of the 95% confidence interval (CI) and regression coefficient were used to calculate the standard error (SE) [(upper limit of CIlower limit of CI)/3.92], which was used to calculate the absolute value of the z -statistic (regression coefficient/SE), and finally the calculated p-value (p(calc))=exp (-0.717 (z) (0.416 ($\left.\mathrm{z}^{2}\right)$) (Altman and Bland, 2011). For Pearson's, partial, Spearman's and point-biserial correlations, the sample size (n) and coefficients (Rs) (including, Pearson's R, partial R, Spearman's Rho, and point-biserial $R(\mathrm{Rpb})$) were used to calculate the t-statistic using the following formula: t-statistic $=\mathrm{R} \sqrt{ }[(n-2) /(1-\mathrm{R})]$. The absolute value of the t -statistic and degrees freedom ($\mathrm{n}-2$) were compared to the 2 -tailed Student's t -distribution using Microsoft Excel to obtain the p -value. If R^{2} was reported, the square root was calculated and treated as a correlation to calculate the p -value. P -values that were reported as $\mathrm{p}>0.05$ or $\mathrm{p}<0.05$ and could not be calculated using the above methods were conservatively estimated as $\mathrm{p} \geq 0.25$ (when reported as non-significant) or $0.01<\mathrm{p}<0.05$ (when reported as significant) to be included in the effect direction heat maps and were not included in albatross plots. The following color scheme was used in the effect direction heat maps: $\mathrm{p}<0.001$ (darkest blue filled triangle), $0.001 \leq \mathrm{p}<0.01$ (blue filled triangle), $0.01<\mathrm{p}<0.05$ (light blue filled triangle), $0.05<\mathrm{p}<0.1$ (light grey empty triangle), $0.1<\mathrm{p}<0.25$ (grey empty triangle), and $\mathrm{p} \geq 0.25$ (dark grey empty triangle). Albatross plots were created using Stata Statistical Software: Release 16.0 (StataCorp LLC, College Station, Texas, United States) to assess the approximate
magnitude of associations as a function of sample size against two-sided p-values stratified by the observed direction of the effect. Contour lines were superimposed on the plot to evaluate the hypothetical effect sizes, designated as standardized regression coefficients ($\beta \mathrm{s}$) and were derived from the following equation: $N=\left(1-\beta^{2} / \beta^{2}\right) Z_{p}$ (where Z_{p} is the z value for the associated 2-sided p-value) (Harrison et al., 2017). Albatross plots were made for each association between PA/SB measures and outcomes if reported in at least four studies. Albatross plots were visually interpreted for scatter of β coefficients relative to three displayed contour lines and β coefficients were summarized in box plots that were made using Plotly (Plotly Technologies Inc., Montreal, Québec, Canada). Articles were included in the meta-analyses if the associations between PA or SB measures and hand grip strength or chair stand test were expressed as adjusted (order of adjustment models as given above) standardized regression coefficients (β) and their $95 \% \mathrm{CI}$ or SE or when these could be calculated. PA/SB measures for meta-analyses were grouped into total PA (TPA), moderate-to-vigorous PA (MVPA) duration, and light PA (LPA) duration. TPA included TPA duration, inverse SB duration, steps per day and number of breaks in sedentary behavior (BST). β coefficients were inversed for outcomes where a lower score indicated better performance. Adjusted unstandardized regression coefficients (B) were converted to β coefficients using the following formulas:
$\beta=\frac{S D_{x}}{S D_{y}} B \quad$ and $\quad \operatorname{SE}(\beta)=\frac{S D_{x}}{S D_{y}} \operatorname{SE}(B)$

Where SD_{x} and SD_{y} are the standard deviations of $\mathrm{PA}(\mathrm{x})$ and hand grip strength or chair stand test (y), respectively (Nieminen et al., 2013). If SDs were not reported, they were calculated from the SE (or $95 \% \mathrm{CI}$) using the following formula: $\mathrm{SD}=\sqrt{ } \mathrm{n}(\mathrm{SE})$ (Cochrane Handb. Syst. Rev. Interv., 2019). If SE (B) was not reported, it was calculated from the 95\% CI of B using the previously mentioned formula. Correlation data from articles that did not
perform a linear regression analysis, but reported all intercorrelations between $\mathrm{PA} / \mathrm{SB}$, hand grip strength or chair stand test, and age and/or sex Pearson's r (i.e. correlation matrices) and their calculated SE were used to calculate the age and/or sex adjusted β (SE β) using the following formulas:

SE of correlations: $\operatorname{SE}(\mathrm{r})=\sqrt{\frac{1-r^{2}}{n-2}}$

One covariate model: $\beta_{x_{1}, x_{2}}=\frac{r_{y x_{1}}-r_{y x_{2}} r_{x_{1} x_{2}}}{1-r_{x_{1}}^{2} x_{2}}$ and $\operatorname{SE}\left(\beta_{x_{1}, x_{2}}\right)=\frac{\operatorname{SE}\left(r_{y x_{1}}\right)-S E\left(r_{y x_{2}}\right) S E\left(r_{x_{1} x_{2}}\right)}{1-S E\left(r_{x_{1} x_{2}}\right)}$

Two covariate model: $\beta_{x_{1} \cdot x_{2} x_{3}}=\frac{\left(1-r_{x_{2} x_{3}}^{2}\right) r_{y x_{1}}+\left(r_{x_{1} x_{3}} r_{x_{2} x_{3}}-r_{x_{1} x_{2}}\right) r_{y x_{2}}+\left(r_{x_{1} x_{2}} r_{2} x_{2} x_{3}-r_{x_{1} x_{3}} r_{y x_{3}}\right.}{1-r_{x_{1} x_{2}}-r_{1}^{2} x_{3} x_{3}-r_{x_{2} x_{3}}+2 r_{x_{1} x_{2} x_{2} x_{1} x_{3} r_{x_{2}} x_{3}}}$ and $\operatorname{SE}\left(\beta_{x_{1} \cdot x_{2} x_{3}}\right) \frac{\left(1-S E\left(r_{x_{2}}^{2} x_{3}\right) S E\left(r_{y x_{1}}\right)+\left(S E\left(r_{x_{1} x_{3}}\right) S E\left(r_{x_{2} x_{3}}\right)-S E\left(r_{x_{1} x_{2}}\right)\right) r_{y x_{2}}+\left(S E\left(r_{x_{1} x_{2}}\right) S E\left(r_{x_{2} x_{3}}\right)-S E\left(r_{x_{1} x_{3}}\right)\right) S E\left(r_{y x_{3}}\right)\right.}{1-S E\left(r_{x_{1}}^{1} x_{2}\right)-S E\left(r_{x_{1}} x_{3}\right)-S E\left(r_{x_{2}}^{2} x_{3}\right)+2 S E\left(r_{x_{1} x_{2}}\right) S E\left(r_{x_{1} x_{3}}\right) S E\left(r_{x_{2} x_{3}}\right)}$

Where r is Pearson's correlation coefficient, n is the sample size, x_{1} is the PA/SB variable (independent variable), x_{2} is age or sex in the one-covariate model and x_{2} and x_{3} are age and sex in the two-covariate model (independent variables being held constant for adjustment), and y is hand grip strength or chair stand test (dependent variable) (Cohen et al., 2003; Fernández-Castilla et al., 2019). All formulas and required data were entered manually and calculations were performed using Microsoft Excel (Version 16.16.22). A random-effects model was used due to heterogeneity between studies and results were visualized by forest plots. Heterogeneity was assessed using I^{2} statistics; an I^{2} value above 25% was considered as low, above 50% as moderate and above 75% as high heterogeneity. Funnel plots, depicting β coefficient against SE, were used for visual evaluation and Egger's regression test for statistical detection of publication bias ($\mathrm{p}<0.05$ indicating publication bias) (Egger et al., 1997). Meta-analyses were performed in Comprehensive Meta-Analysis (CMA) software (Biostat, Englewood, New Jersey, United States).

3. Results

3.1 Search results and study characteristics

A total of 18,086 articles were identified and 9,660 were left after removal of duplicates. Full texts were assessed of 1,017 articles and 112 articles were included (Figure 1); all extracted data are provided in tables in Appendix C (Tables C1-5), which are synthesized in figures 2-4 and in figures in Appendix D (Figures D1-8). Included articles represent a total of 43,796 individuals (range across articles: 21 to 3,726) with an average of 56.4% female and the study populations' mean or median age ranged from 61.0 to 88.0 years. Sixty-two articles reported exclusively on community dwelling older adults or community-based samples from the general population. Other articles included community dwelling populations selected for specific disease (or health conditions) and included chronic obstructive pulmonary disorder $(\mathrm{n}=14)$, osteoarthritis $(\mathrm{n}=6)$, diabetes $(\mathrm{n}=3)$, limited mobility $(\mathrm{n}=3)$, any chronic disease $(\mathrm{n}=1)$, $\operatorname{HIV}(\mathrm{n}=1)$, interstitial lung disease $(\mathrm{n}=1)$, peripheral artery disease $(\mathrm{n}=1)$, global cognitive impairment $(\mathrm{n}=1)$, aortic stenosis $(\mathrm{n}=1)$, stroke $(\mathrm{n}=1)$, chronic idiopathic axonal polyneuropathy ($\mathrm{n}=1$), and polio ($\mathrm{n}=1$). All articles reported cross-sectional associations except for four reporting longitudinal associations (Demeyer et al., 2019; Scott et al., 2011; Semanik et al., 2015; Yuki et al., 2019) (Table C1). According to the NOS scale, 81 out of 112 articles were high quality (Table C 2).

3.2 Measures of physical activity and sedentary behavior

PA and SB were measured by use of an accelerometer in 92 of articles, while in 20 articles a pedometer was used. PA was expressed as number of steps (or walking duration), number of activity counts, TPA duration (or standing + walking duration, time on feet, and nonsedentary time), MVPA duration (or vigorous PA and moderate PA duration, individually), and SB was expressed as SB duration (or lying, sitting, basal activity, and inactive time). Intensity-based accelerometer measures were number of vector magnitude units (VMU), total
volume (metabolic equivalent tasks/hour), energy-expenditure (EE) (or physical activity level (PAL) (EE/sleeping metabolic rate)), and intensity gradient (intensity vs. time). Measures of PA and SB frequency and accumulation (bouts) were reported as number and duration of PA bouts, number of breaks in SB (BST), number of breaks per sedentary hour (SB break rate), number and duration of SB bouts, and number and duration of long SB bouts (Table C3).

3.3 Associations of PA and SB with muscle strength and muscle power

Table C4 describes muscle strength and muscle power measurement; Table C5 provides all associations, which are visualized by effect direction heat maps in Figure 2, Figure D1 and Figure D2; Figure 3 summarizes $\beta \mathrm{s}$ (median [IQR]) obtained from the albatross plots in Figure D3-7; and meta-analyses of adjusted β s are presented in Figure 4 with corresponding funnel plots in Figure D8.

3.3.1 Upper body muscle strength

Hand grip strength was reported in 41 articles. Higher TPA (median [IQR], $\beta=0.100$ [0.090$0.116]$), MVPA ($\beta=0.081$ [0.059-0.125]), activity counts ($\beta=0.082$ [0.077-0.110]), LPA $(\beta=0.066[0.024-0.109])$, steps $(\beta=0.070[-0.013-0.156])$, and lower $S B \beta=0.066[0.044-$ 0.092]) were associated with higher hand grip strength (Figure 3 and Figure D3). However, the association of steps and hand grip strength was inconsistent in direction of effect and significance (Figure 2). Positive associations were confirmed in the pooled meta-analysis of adjusted $\beta \mathrm{s}$ for the associations of TPA and hand grip strength including 10 articles representing 6,995 individuals ($\beta=0.041,95 \%$ CI: $0.017-0.065, \mathrm{p}=0.001, \mathrm{I}^{2}=52.2$); MVPA and hand grip strength including four articles representing 2,983 individuals $(\beta=0.070,95 \%$ CI: $0.036-0.104, \mathrm{p}=0.000, \mathrm{I}^{2}=0.0$); and LPA and hand grip strength including four articles representing 3,215 individuals ($\beta=0.057,95 \%$ CI: $0.024-0.090, \mathrm{p}=0.001, \mathrm{I}^{2}=0.0$) (Figure 4). Intensity-based accelerometer measures of PA were inconsistently associated with hand grip strength (Figure D1) and measures of PA and SB frequency and accumulation (bouts) were
not associated with hand grip strength (Figure D2). All PA/SB measures were associated with greater shoulder press strength; steps and activity counts were not associated with chest press strength (Figure 2).

3.3.2 Upper body muscle power

The number of arm curls completed within 30 seconds was reported in nine articles.
Associations between higher steps and lower SB with arm curl were positive and significant, while associations of MVPA with arm curl were positive ($\beta=0.077$ [0.069-0.170]) but only significant in one out of four associations (Figure 2 and Figure 3). Activity counts were not associated with chest press power (Figure 2).

3.3.3 Lower body muscle strength

Knee extension strength was reported in 24 articles, leg press strength in seven, leg strength in six, knee flexion strength in four, knee extension torque in three, hip strength in one, toe grasping strength in one, and calf strength in one. Higher steps ($\beta=0.244$ [0.118-0.316]), MVPA $(\beta=0.206[0.175-0.386])$, TPA $(\beta=0.193$ [0.160-0.250]), activity counts $(\beta=0.207$ [0.046-0.263]), and LPA ($\beta=0.105$ [0.040-0.234]) were associated with better lower body strength (Figure 3 and Figure D5). While the positive direction of effect of lower SB with better lower body muscle strength was consistent for all associations ($\beta=0.140$ [0.033$0.205]$), results were only statistically significant in one of nine associations (Figure 2, Figure 3, and Figure D5). Intensity-based accelerometer measures, EE and VMU, were positively associated with lower body muscle strength, while MET was not (Figure D1)

3.3.4 Lower body muscle power

Chair stand tests were reported in 51 articles. Higher PA and lower SB were consistently associated with better chair stand test performance (Figure 2 and Figure D1), with the exception of measures of PA and SB frequency and accumulation (Figure D2). The largest effect size was identified for steps ($\beta=0.277[0.254,0.348]$) with chair stand test and followed
respectively by activity counts ($\beta=0.225$ [0.167-0.291]), MVPA $(\beta=0.239$ [0.145-0.326]), LPA ($\beta=0.173$ [0.0078-0.228]), and SB ($\beta=0.169$ [0.072-0.275]) (Figure 3 and Figure D6). Pooled adjusted βs of TPA and MVPA with chair stand test included ten articles representing 3,495individuals and five articles representing 2,486 individuals, respectively and both TPA $\left(\beta=0.199,95 \%\right.$ CI: $\left.0.132-0.266, p=0.000, \mathrm{I}^{2}=61.21\right)$ and MVPA $(\beta=0.211,95 \%$ CI: $0.103-$ $0.319, \mathrm{p}=0.000, \mathrm{I}^{2}=80.00$) were significantly associated with better chair stand test performance (Figure 3). Leg press power at varying percentages of an individual's 1RM and/or peak power was reported in five articles, and leg extensor power (Nottingham Power Rig), jumping power, the calf raise test (\# of calf raises/30s), and the squat jump test were each reported in one article. Associations between PA and SB with these lower body muscle power measures were not consistently significant (Figure 2, Figure D1, Figure D2). The median magnitude of effect for MVPA and lower body muscle power ($\beta=0.220$ [0.1250.269]) was consistent with that of chair stand test (Figure 3 and Figure D7).

3.3.5 Longitudinal associations

Seven articles reported longitudinal associations. Neither baseline nor change in PA was associated with changes with hand grip strength in two articles: non-significant associations were found between steps, MVPA, and SB, and change in steps with change in hand grip strength after 2.6 years in a COPD population (Demeyer et al., 2019) and non-significant associations were found between steps, LPA, and MVPA with development of low hand grip strength after 4.2 years in a community dwelling population (Yuki et al., 2019). Bidirectional positive associations of PA and lower body muscle strength were identified in three articles: a highly significant association was found between steps and change in leg strength over 2.6 years in females ($B=1.06,95 \% \mathrm{CI}: 0.31,1.31$) but not males $(B=-0.28,95 \% \mathrm{CI}:-1.27,0.72$) in a general population (Scott et al., 2011); a highly significant association was found between change in lower extremity strength after 4 years and the course of change in steps
over four different time points spanning a total follow-up of 4 years ($B=-1782,95 \% \mathrm{CI}$: -$3348,-217$) in a population with chronic idiopathic axonal polyneuropathy (van Oeijen et al., 2020); KES was associated with change after 1 year in MET and VMU ($B=-0.001$ (SE=6.00E-4) and $\mathrm{B}=-0.005$ ($\mathrm{SE}=0.002$), respectively), but not with steps or MVPA in a COPD population (Boutou et al., 2019). Two articles, including participants from the Osteoarthritis Initiative, showed a highly significant association between SB and change in chair stand test after 2 years ($B=-0.58,95 \%$ CI: $-0.92,-0.24$) (Semanik et al., 2015) in 1,659 participants but not for meeting guidelines for MVPA and change in chair stand test after 4 years 687 participants (Hopkins, 2019).

3.3.6 Influence of population

Stratification of the associations of $\mathrm{PA} / \mathrm{SB}$ and muscle strength and muscle power by population showed similar distributions of effect directions, p-values, and β coefficients (Figures 2-4 and Figure D1-7).

3.3.7 Publication bias in meta-analyses

Funnel plots were visually evaluated and did not show asymmetry, indicating no evidence for the presence of publication bias in meta-analyses, except for a positive skew in the metaanalysis of TPA and hand grip strength. Egger's regression tests confirmed that no evidence for publication bias (all $\mathrm{p}>0.05$) was present, except of the TPA and hand grip strength metaanalysis ($\mathrm{p}=0.000$) (Figure D8).

4. Discussion

This systematic review highlights the association between higher PA and lower SB with greater skeletal muscle strength and muscle power. Specifically, strongest associations were with lower body muscle strength and muscle power, and evidence was most consistent for the performance of the chair stand test. The associations were independent of the population studied. Meta-analyses of adjusted associations confirmed these results for hand grip strength and chair stand test. Longitudinal findings indicated bidirectional associations between PA and SB with lower body muscle strength and SB with chair stand test, but, contrastingly, a lack thereof with hand grip strength. These findings were in line with crosssectional results, which identified larger effect sizes and more frequently significant associations for lower body muscle strength and muscle power than hand grip strength.

Higher PA and lower SB, using various objective measures, were associated with greater muscle strength and muscle power. MVPA was the most often reported measure and often positively associated with muscle strength and muscle power, which was an anticipated finding as MVPA is a strong determinant and predictor of health outcomes (Adelnia et al., 2019; Hupin et al., 2015; Menai et al., 2017). The positive association of activity counts with muscle strength and muscle power is in accordance with our findings for MVPA, as higher activity counts reflect higher intensity. Additional positive associations identified for LPA and negative associations for SB with muscle strength and muscle power are important in light of the substantial amount of time older adults spend in these two behaviors (Amagasa et al., 2017; Arnardottir et al., 2017; Harvey et al., 2015). However, the relatively strongest effect sizes for all outcomes were with steps and TPA, suggesting that all levels of physical activity can contribute to the positive associations with muscle strength and muscle power.

Evidence for the association of higher PA and lower SB with greater hand grip strength was present for all measures, except for PA and SB bout measures, and was most
consistent for MVPA and activity counts. Hand grip strength is the most often used measure of muscle strength in clinical practice because of its practical advantages and clinical relevance (Beaudart et al., 2019; Reijnierse et al., 2017) and was also the most often reported measure in this review. Clear positive associations of MVPA and activity counts with hand grip strength can likely be explained by the incorporation for upper body muscle strength in high intensity PA. However, previous studies have cautioned the use of hand grip strength as a proxy for overall muscle strength and highlighted the need for lower body muscle strength measures (e.g. knee extension strength) as part of geriatric assessments (Yeung et al., 2018), which is in accordance with the present findings.

PA and SB were most associated with lower body muscle strength and muscle power measures, particularly, the performance of the chair stand test, which is a highly relevant finding given lower body muscle power, compared to muscle strength, is more important for activities of daily living (Foldvari et al., 2000; Wang et al., 2020) and thus the ability to remain living independently (Luppa et al., 2010; Mlinac and Feng, 2016). Muscle power is most affected by ageing with an annual decline of approximately 3% compared to muscle strength and muscle mass with annual decline of approximately 2% and 1%, respectively (Reid et al., 2014). Furthermore, lower body muscle strength and muscle power decline faster during ageing compared to upper body measures (Hughes et al., 2001). This supports our longitudinal findings that, bidirectionally, PA and SB are associated with lower body muscle strength. However, we identified inconsistent longitudinal results for chair stand test: in 1,659 participants from the Osteoarthritis Initiative, there was a highly significant association between SB and change in chair stand test over 2 years which persisted after additional adjustment for MVPA (Semanik et al., 2015); on the other hand, in 687 participants from the same cohort, meeting MVPA guidelines was not associated with better chair stand test at 4 years follow-up (Hopkins, 2019). While there were substantial differences in loss to follow
up in these two articles (13% vs. 64%, respectively), results may reiterate the distinction between PA and SB and indicate that, independent of MVPA, sedentary behavior is a stronger determinant of future muscle power than MVPA. This is an important finding given the increasing evidence of the distinct and deleterious effects of SB on future health status. This highlights the importance to design interventions to prevent or slow the decline in lower body muscle strength and power over time with consideration of differences between PA and SB.

Increasing habitual PA has well-established benefits to health (Bravata et al., 2007; Füzéki et al., 2017; Haider et al., 2019). However, inconclusive results on the ability of exercise interventions (structured PA) to improve muscle strength or muscle power have been reported (Clemson et al., 2012; Haider et al., 2019; Liu et al., 2014). Interventions to increase habitual PA in older adults typically include aerobic, balance and strength components. When these multicomponent interventions include resistance exercises, greater increases in muscle strength and muscle power are found (Ferreira et al., 2012; Liu et al., 2014). This is in line with the evidence that progressive resistance exercise training is very effective at increasing muscle strength and muscle power in older adults (Chodzko-Zajko et al., 2009; Guizelini et al., 2018; Straight et al., 2016). However, integrating exercise into lifestyle post-intervention remains a challenge and subsequently improvements in PA are often not sustained (McEwan et al., 2020; Sansano-Nadal et al., 2019). Behavioral change interventions that are complimentary to PA and SB behaviors in daily life, including strength activities such as squatting, lunging and wall sitting, may be more suitable than structured exercise interventions for long-term and sustainable increases in PA and maintenance of muscle strength and muscle power. These behavioral change interventions have been proven feasible in middle aged individuals (Schwenk et al., 2019; Taraldsen et al., 2019) and effective in
improving PA, muscle strength, and reducing the number of falls in older individuals (Clemson et al., 2012, 2010).

4.1 Strengths and limitations

To the best of our knowledge, this is the first systematic review summarizing the associations between objective measures of PA and SB with skeletal muscle strength and muscle power in older adults. The primary strength of this review is the broad array of PA, SB , muscle strength and muscle power measures included which led to a high number of articles included. The use of exclusively objective measures of PA and SB represents a strength of this review as questionnaires may not capture unstructured PA or LPA (i.e. shuffling) (Amagasa et al., 2017; Manns et al., 2012) and older adults are susceptible to overreport PA and under-report SB (Colbert et al., 2011; Dyrstad et al., 2014; Van Cauwenberg et al., 2014). However, it is important to acknowledge that objective measures of PA and SB are limited in their capacity to measure the mode or type of PA or SB including resistance loading during activities, which presents a limitation. Furthermore, the inclusion of diverse and disease populations strengthens the generalizability of our results, but a limitation was our inclusion of only English-language articles. We identified considerable heterogeneity in study design, measures of PA/SB and muscle strength and muscle power and their definitions and statistical analyses used to present the associations. This posed methodological challenges to comparing and synthesizing our results. Nonetheless, we were able to show standardized effect estimates in albatross plots for all associations. This also enhanced the synthesis by avoiding reliance on p-values which are heavily driven by sample size regardless of the magnitude of true underlying effects (Sullivan and Feinn, 2012). Furthermore, we performed a meta-analysis for included articles reporting adjusted standardized regression data that confirmed our overall results.

4.2 Implications

There is both a clinical and public health urgency to identify the degree to which PA and SB can affect health (Taylor, 2014). Given the consequences of low muscle strength and muscle power including increased risk of falls, disability, and mortality and the subsequent public health burden of their high prevalence worldwide (Borges et al., 2020; Manini and Clark, 2012; Mitchell et al., 2012), the current study has significant implications for policy making. This systematic review quantifies the relative impact of higher duration, intensity, and frequency of PA and lower SB on muscle strength and muscle power, and thus provides a foundation to inform interventions; absolute quantification is a priority for future lifestyle guidelines and the management of modifiable risk factors.

5. Conclusion

Higher PA and lower SB are associated with greater skeletal muscle strength and muscle power in older adults, particularly with the chair stand test. Future research should investigate habitual resistance exercise components, while increasing PA and decreasing SB, and seek to identify specific thresholds as actionable targets to maintain and improve skeletal muscle strength and muscle power.

6. Acknowledgements

We would like to thank Eva van de Rijt, Elvira Amaral Gomes, Waner Zhou, and Alec Tolley for their contributions to this project. We would also like to thank all members of the PANINI consortium: Anna C. Whittaker, School of Sport, Exercise \& Rehabilitation Sciences, University of Birmingham, UK; Evans A. Asamane, School of Sport, Exercise \& Rehabilitation Sciences, University of Birmingham, UK; Justin Aunger, School of Sport, Exercise \& Rehabilitation Sciences, University of Birmingham, UK; Kally Bhartti, School of Sport, Exercise \& Rehabilitation Science, University of Birmingham, UK; Maria Giulia Bacalini, Institute of Neurological Sciences (IRCCS), Bologna, Italy; Dmitriy Bondarev, Gerontology Research Center \& Faculty of Sport and Health Sciences, University of Jyväskylä, Finland; Bart Bongers, Department of Epidemiology, Faculty of Health, Medicine and Life Sciences, Maastricht University, The Netherlands; Andrea Cabbia, Department of Biomedical Engineering, Eindhoven University of Technology, Netherlands; Massimo Delledonne, Personal Genomics, University of Verona, Italy; Paul Doody, School of Sport, Exercise \& Rehabilitation Sciences, University of Birmingham, UK; Taija Finni, Neuromuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Finland; Claudio Franceschi, Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy; Paolo Garagnani, Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy; Noémie Gensous, Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy; Carolyn Greig, School of Sport, Exercise \& Rehabilitation Sciences \& MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research, University of Birmingham, UK; Peter Hilbers, Department of Biomedical Engineering, Eindhoven University of Technology, The Netherlands; Barbara Iadarola, Personal Genomics, University of Verona, Italy; Victor

Kallen, The Netherlands Organisation for Applied Scientific Research, The Netherlands; Katja Kokko, Gerontology Research Center \& Faculty of Sport and Health Sciences, University of Jyväskylä, Finland; Anna Elisa Laria, Personal Genomics, University of Verona, Italy; Janet Lord, Institute of Inflammation and Ageing, Medical School \& MRCArthritis Research UK Centre for Musculoskeletal Ageing Research, University of Birmingham, UK; Andrea B. Maier, Department of Human Movement Sciences, Amsterdam Movement Sciences, VU University Amsterdam, The Netherlands \& Department of Medicine and Aged Care, Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia; Carel G.M. Meskers, Department of Rehabilitation Medicine, VU University Medical Center \& Amsterdam Movement Sciences, Amsterdam, The Netherlands; Paola Pazienza, Personal Genomics, University of Verona, Italy; Esmee M. Reijnierse, Department of Medicine and Aged Care, Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia; Belina Rodrigues, School of Medicine, University of Minho, Portugal; Nadine Correia Santos, Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, and ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; Nuno Sousa, Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, and ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; Sarianna Sipila, Gerontology Research Center \& Faculty of Sport and Health Sciences, University of Jyväskylä, Finland; Keenan A. Ramsey, Department of Human Movement Sciences, Amsterdam Movement Sciences, VU University Amsterdam, Muhammad Rizwan Tahir; The Netherlands Organisation for Applied Scientific Research, The Netherlands; Marijke C Trappenburg, Department of Internal Medicine, VU University Medical Center \& Amstelland Hospital, The Netherlands; Janice L. Thompson, School of Sport, Exercise \& Rehabilitation Sciences, University of Birmingham, UK; Nico van Meeteren, Health~Holland, The Hague, \& Faculty of Health,

Medicine and Life Sciences, Maastricht University, The Netherlands; Natal van Riel, Department of Biomedical Engineering, Eindhoven University of Technology, The Netherlands; Suey Yeung, Department of Human Movement Sciences, Amsterdam Movement Sciences, VU University Amsterdam, The Netherlands.

7. Funding

This work was supported by the European Union's Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement [675003].
http://www.birmingham.ac.uk/panini

8. Declarations of interest:

None.

Appendix B: Newcastle-Ottawa Scale (NOS)

Newcastle-Ottawa Scale (NOS): adapted for cross-sectional and longitudinal studies

The NOS was adapted for cross-sectional and longitudinal studies, respectively, using the identical methods as the with the addition of two outcome criteria regarding follow-up for longitudinal studies. For cross-sectional studies (maximum score of 7 stars) a score greater than or equal to 4 is classified as high and less than 4 as low. For longitudinal studies (maximum score of 9 stars) a score greater than or equal to 5 is classified as high and a score less than 5 is classified as low quality.

Selection (max. 3 stars)

1. Representativeness of the sample: community-dwelling older adults
a. Truly representative of sample population. Age, gender distribution, country, and kind of population is reported *
b. Not representative based on factors mentioned above
c. No description
2. Ascertainment of exposure: physical activity (PA)/sedentary behavior (SB)
a. Ascertainment of all physical activity measures reported is clearly and described by name of device, location, and clear cut-off points are reported when appropriate *
b. Methodological criteria of PA/SB data were clearly described and all of the following information: total wear time and assessment of valid days (mandatory hours/day and number of valid days) *
c. No description

Comparability (max. 3 stars)
3. Comparability of cohorts on the basis of the design or analysis
a. The study controls for the most important factors, age and sex, for at least one association *
b. The study adjusted for other or additional factor, e.g. level of education, comorbidities, accelerometer wear time, physical activity for at least one association *
c. No controlling for any factors
d. No description
4. Statistical test: method of quantifying relationship of $\mathrm{PA} / \mathrm{SB}$ and muscle strength/ power
a. The statistical test used to analyze the data is clearly described and appropriate and the measurement of the association is presented clearly including effect size with confidence intervals, p -value (unless $\mathrm{p}<0.001$), or standard error for at least one association *
b. The statistical test is not appropriate or incomplete
c. No description

Outcome (max. 1 star for cross-sectional studies, 3 stars for longitudinal studies)
5. Assessment of outcome measure: muscle strength/muscle power
a. Clear description of an established method for assessing muscle strength/muscle power with measurement device reported (if applicable) for all measures *
b. No description
-------- The following are additional criteria assessed for longitudinal studies only --------
6. Was follow-up long enough for outcome to occur?
a. Yes ≥ 3 months *
b. No <3 months
c. Not reported
7. Adequacy of follow-up of cohorts
a. Complete follow up with all subjects accounted for or small number lost (<20 \%) *
b. Large number lost ($\geq 20 \%$)
c. Not reported

Note Quality was assessed for all articles as described regardless if hypothesized exposureoutcome were reversed (meaning if exposure was muscle strength/muscle power and outcome was PA/SB

References

Abe, T., Mitsukawa, N., Thiebaud, R.S., Loenneke, J.P., Loftin, M., Ogawa, M., 2012. Lower body site-specific sarcopenia and accelerometer-determined moderate and vigorous physical activity: The HIREGASAKI study. Aging Clin. Exp. Res. 24, 657-662. https://doi.org/10.3275/8758

Abe, T., Thiebaud, R.S., Loenneke, J.P., Mitsukawa, N., 2015. Association between toe grasping strength and accelerometer-determined physical activity in middle-aged and older women. J. Phys. Ther. Sci. 27, 1893-1897. https://doi.org/10.1589/jpts.27.1893

Adelnia, F., Urbanek, J., Osawa, Y., Shardell, M., Brennan, N.A., Fishbein, K.W., Spencer, R.G., Simonsick, E.M., Schrack, J.A., Ferrucci, L., 2019. Moderate-to-Vigorous Physical Activity Is Associated With Higher Muscle Oxidative Capacity in Older Adults. J. Am. Geriatr. Soc. https://doi.org/10.1111/jgs. 15991

Aggio, D.A., Sartini, C., Papacosta, O., Lennon, L.T., Ash, S., Whincup, P.H., Wannamethee, S.G., Jefferis, B.J., 2016. Cross-sectional associations of objectively measured physical activity and sedentary time with sarcopenia and sarcopenic obesity in older men. Prev. Med. (Baltim). 91, 264-272. https://doi.org/10.1016/j.ypmed.2016.08.040

Alcazar, J., Rodriguez-Lopez, C., Ara, I., Alfaro-Acha, A., Rodríguez-Gómez, I., NavarroCruz, R., Losa-Reyna, J., García-García, F.J., Alegre, L.M., 2018. Force-velocity profiling in older adults: An adequate tool for the management of functional trajectories with aging. Exp. Gerontol. 108, 1-6. https://doi.org/10.1016/j.exger.2018.03.015

Altman, D.G., Bland, J.M., 2011. Statistics notes: How to obtain the P value from a confidence interval. BMJ. https://doi.org/10.1136/bmj.d2304

Alzahrani, M.A., Dean, C.M., Ada, L., Dorsch, S., Canning, C.G., 2012. Mood and Balance are Associated with Free-Living Physical Activity of People after Stroke Residing in the
community. Stroke Res. Treat. 2012, 1-8. https://doi.org/10.1155/2012/470648
Amagasa, S., Fukushima, N., Kikuchi, H., Takamiya, T., Oka, K., Inoue, S., 2017. Light and sporadic physical activity overlooked by current guidelines makes older women more active than older men. Int. J. Behav. Nutr. Phys. Act. 14, 59. https://doi.org/10.1186/s12966-017-0519-6

Andersson, M., Slinde, F., Grönberg, A., Svantesson, U., Janson, C., Emtner, M., 2013. Physical activity level and its clinical correlates in chronic obstructive pulmonary disease: a cross-sectional study. Respir. Res. 14, 128. https://doi.org/10.1186/1465-9921-14-128

André, H.-I., Carnide, F., Moço, A., Valamatos, M.-J., Ramalho, F., Santos-Rocha, R., Veloso, A., 2018. Can the calf-raise senior test predict functional fitness in elderly people? A validation study using electromyography, kinematics and strength tests. Phys. Ther. Sport 32, 252-259. https://doi.org/10.1016/j.ptsp.2018.05.012

André, H., Carnide, F., Borja, E., Ramalho, F., Santos-Rocha, R., Veloso, A., 2016. Calfraise senior: a new test for assessment of plantar flexor muscle strength in older adults: protocol, validity, and reliability. Clin. Interv. Aging 11, 1661-1674. https://doi.org/10.2147/CIA.S115304

Aoyagi, Y., Park, H., Watanabe, E., Park, S., Shephard, R.J., 2009. Habitual Physical Activity and Physical Fitness in Older Japanese Adults: The Nakanojo Study. Gerontology 55, 523-531. https://doi.org/10.1159/000236326

Arnardottir, N.Y., Koster, A., Van Domelen, D.R., Brychta, R.J., Caserotti, P., Eiriksdottir, G., Sverrisdottir, J.E., Launer, L.J., Gudnason, V., Johannsson, E., Harris, T.B., Chen, K.Y., Sveinsson, T., 2013. Objective measurements of daily physical activity patterns and sedentary behaviour in older adults: Age, Gene/Environment SusceptibilityReykjavik Study. Age Ageing 42, 222-229. https://doi.org/10.1093/ageing/afs160

Arnardottir, N.Y., Oskarsdottir, N.D., Brychta, R.J., Koster, A., van Domelen, D.R.,
Caserotti, P., Eiriksdottir, G., Sverrisdottir, J.E., Johannsson, E., Launer, L.J., Gudnason, V., Harris, T.B., Chen, K.Y., Sveinsson, T., 2017. Comparison of Summer and Winter Objectively Measured Physical Activity and Sedentary Behavior in Older Adults: Age, Gene/Environment Susceptibility Reykjavik Study. Int. J. Environ. Res. Public Health 14, 1268. https://doi.org/10.3390/ijerph14101268

Ashe, M.C., Eng, J.J., Mller, W.C., SOON, J.A., 2007. Disparity between Physical Capacity and Participation in Seniors with Chronic Disease. Med. Sci. Sport. Exerc. 39, 11391146. https://doi.org/10.1249/mss.0b013e31804d2417

Ashe, M.C., Liu-Ambrose, T.Y.L., Cooper, D.M.L., Khan, K.M., McKay, H.A., 2008.
Muscle power is related to tibial bone strength in older women. Osteoporos. Int. 19, 1725-1732. https://doi.org/10.1007/s00198-008-0655-6

Aubertin-Leheudre, M., Anton, S., Beavers, D.P., Manini, T.M., Fielding, R., Newman, A., Church, T., Kritchevsky, S.B., Conroy, D., McDermott, M.M., Botoseneanu, A., Hauser, M.E., Pahor, M., Gill, T., Fragoso, C., Fielding, R., Hauser, M.E., Pahor, M., Guralnik,
J.M., Leeuwenburgh, C., Caudle, C., Crump, L., Holmes, L., Lee, J., Lu, C. ju, Miller, M.E., Espeland, M.A., Ambrosius, W.T., Applegate, W., Beavers, D.P., Byington, R.P., Cook, D., Furberg, C.D., Harvin, L.N., Henkin, L., Hepler, M.J., Hsu, F.C., Lovato, L., Roberson, W., Rushing, J., Rushing, S., Stowe, C.L., Walkup, M.P., Hire, D., Rejeski, W.J., Katula, J.A., Brubaker, P.H., Mihalko, S.L., Jennings, J.M., Hadley, E.C., Romashkan, S., Patel, K. V., Bonds, D., McDermott, M.M., Spring, B., Hauser, J., Kerwin, D., Domanchuk, K., Graff, R., Rego, A., Church, T.S., Blair, S.N., Myers, V.H., Monce, R., Britt, N.E., Harris, M.N., McGucken, A.P., Rodarte, R., Millet, H.K., Tudor-Locke, C., Butitta, B.P., Donatto, S.G., Cocreham, S.H., King, A.C., Castro,
C.M., Haskell, W.L., Stafford, R.S., Pruitt, L.A., Berra, K., Yank, V., Fielding, R.A.,

Nelson, M.E., Folta, S.C., Phillips, E.M., Liu, C.K., McDavitt, E.C., Reid, K.F., Kirn,
D.R., Pasha, E.P., Kim, W.S., Beard, V.E., Tsiroyannis, E.X., Hau, C., Manini, T.M., Pahor, M., Anton, S.D., Nayfield, S., Buford, T.W., Marsiske, M., Sandesara, B.D., Knaggs, J.D., Lorow, M.S., Marena, W.C., Korytov, I., Morris, H.L., Fitch, M., Singletary, F.F., Causer, J., Radcliff, K.A., Newman, A.B., Studenski, S.A., Goodpaster, B.H., Glynn, N.W., Lopez, O., Nadkarni, N.K., Williams, K., Newman, M.A., Grove, G., Bonk, J.T., Rush, J., Kost, P., Ives, D.G., Kritchevsky, S.B., Marsh, A.P., Brinkley, T.E., Demons, J.S., Sink, K.M., Kennedy, K., Shertzer-Skinner, R., Wrights, A., Fries, R., Barr, D., Gill, T.M., Axtell, R.S., Kashaf, S.S., de Rekeneire, N., McGloin, J.M., Wu, K.C., Shepard, D.M., Fennelly, B., Iannone, L.P., Mautner, R., Barnett, T.S., Halpin, S.N., Brennan, M.J., Bugaj, J.A., Zenoni, M.A., Mignosa, B.M., Williamson, J., Sink, K.M., Hendrie, H.C., Rapp, S.R., Verghese, J., Woolard, N., Espeland, M., Jennings, J., Wilson, V.K., Pepine, C.J., Ariet, M., Handberg, E., Deluca, D., Hill, J., Szady, A., Chupp, G.L., Flynn, G.M., Gill, T.M., Hankinson, J.L., Vaz Fragoso, C.A., Groessl, E.J., Kaplan, R.M., 2017. Dynapenia and Metabolic Health in Obese and Nonobese Adults Aged 70 Years and Older: The LIFE Study. J. Am. Med. Dir. Assoc. 18, 312-319. https://doi.org/10.1016/j.jamda.2016.10.001

Balducci, S., D’Errico, V., Haxhi, J., Sacchetti, M., Orlando, G., Cardelli, P., Di Biase, N., Bollanti, L., Conti, F., Zanuso, S., Nicolucci, A., Pugliese, G., 2017. Level and correlates of physical activity and sedentary behavior in patients with type 2 diabetes: A cross-sectional analysis of the Italian Diabetes and Exercise Study_2. PLoS One 12, e0173337. https://doi.org/10.1371/journal.pone. 0173337

Bann, D., Hire, D., Manini, T., Cooper, R., Botoseneanu, A., McDermott, M.M., Pahor, M., Glynn, N.W., Fielding, R., King, A.C., Church, T., Ambrosius, W.T., Gill, T., 2015. Light Intensity Physical Activity and Sedentary Behavior in Relation to Body Mass

Index and Grip Strength in Older Adults: Cross-Sectional Findings from the Lifestyle Interventions and Independence for Elders (LIFE) Study. PLoS One 10, e0116058. https://doi.org/10.1371/journal.pone. 0116058

Barbat-Artigas, S., Plouffe, S., Dupontgand, S., Aubertin-Leheudre, M., 2012. Is functional capacity related to the daily amount of steps in postmenopausal women? Menopause 19, 541-548. https://doi.org/10.1097/gme.0b013e318238ef09

Bartlett, D.B., Duggal, N.A., 2020. Moderate physical activity associated with a higher naïve/memory T-cell ratio in healthy old individuals: potential role of IL15. Age Ageing 49, 368-373. https://doi.org/10.1093/ageing/afaa035

Bassey, E.J., Bendall, M.J., Pearson, M., 1988. Muscle strength in the triceps surae and objectively measured customary walking activity in men and women over 65 years of age. Clin. Sci. 74, 85-89. https://doi.org/10.1042/cs0740085

Beaudart, C., Rolland, Y., Cruz-Jentoft, A.J., Bauer, J.M., Sieber, C., Cooper, C., Al-Daghri, N., Araujo de Carvalho, I., Bautmans, I., Bernabei, R., Bruyère, O., Cesari, M., Cherubini, A., Dawson-Hughes, B., Kanis, J.A., Kaufman, J.M., Landi, F., Maggi, S., McCloskey, E., Petermans, J., Rodriguez Mañas, L., Reginster, J.Y., RollerWirnsberger, R., Schaap, L.A., Uebelhart, D., Rizzoli, R., Fielding, R.A., 2019. Assessment of Muscle Function and Physical Performance in Daily Clinical Practice: A position paper endorsed by the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO). Calcif. Tissue Int. 105, 1-14. https://doi.org/10.1007/s00223-019-00545-w

Beenakker, K.G.M., Ling, C.H., Meskers, C.G.M., de Craen, A.J.M., Stijnen, T., Westendorp, R.G.J., Maier, A.B., 2010. Patterns of muscle strength loss with age in the general population and patients with a chronic inflammatory state. Ageing Res. Rev. https://doi.org/10.1016/j.arr.2010.05.005

Bogucka, A., Kopiczko, A., Głębocka, A., 2018. The effects of selected lifestyle components on the risk of developing dynapenia in women - a pilot study. Anthropol. Rev. 81, 289297. https://doi.org/10.2478/anre-2018-0023

Bollaert, R.E., Motl, R.W., 2019. Physical and Cognitive Functions, Physical Activity, and Sedentary Behavior in Older Adults With Multiple Sclerosis. J. Geriatr. Phys. Ther. 42, 304-312. https://doi.org/10.1519/JPT.00000000000000163

Borges, V.S., Lima-Costa, M.F.F., Andrade, F.B. de, 2020. A nationwide study on prevalence and factors associated with dynapenia in older adults: ELSI-Brazil. Cad. Saude Publica 36. https://doi.org/10.1590/0102-311x00107319

Boutou, A.K., Raste, Y., Demeyer, H., Troosters, T., Polkey, M.I., Vogiatzis, I., Louvaris, Z., Rabinovich, R.A., van der Molen, T., Garcia-Aymerich, J., Hopkinson, N.S., 2019. Progression of physical inactivity in COPD patients: the effect of time and climate conditions - a multicenter prospective cohort study. Int. J. Chron. Obstruct. Pulmon. Dis. Volume 14, 1979-1992. https://doi.org/10.2147/COPD.S208826

Bravata, D.M., Smith-Spangler, C., Sundaram, V., Gienger, A.L., Lin, N., Lewis, R., Stave, C.D., Olkin, I., Sirard, J.R., 2007. Using Pedometers to Increase Physical Activity and Improve Health. JAMA 298, 2296. https://doi.org/10.1001/jama.298.19.2296

Campbell, M., McKenzie, J.E., Sowden, A., Katikireddi, S.V., Brennan, S.E., Ellis, S., Hartmann-Boyce, J., Ryan, R., Shepperd, S., Thomas, J., Welch, V., Thomson, H., 2020. Synthesis without meta-analysis (SWiM) in systematic reviews: Reporting guideline. BMJ 368, 1-6. https://doi.org/10.1136/bmj. 16890

Carrasco Poyatos, M., Navarro Sánchez, M.D., Martínez González-Moro, I., Reche Orenes, D., 2016. Daily physical activity impact in old women bone density and grip strength. Nutr. Hosp. 33, 1305-1311. https://doi.org/10.20960/nh. 775

Caspersen, C.J., Powell, K.E., Christenson, G.M., 1985. Physical Activity, Exercise and

Physical Fitness Definitions for Health-Related Research. Public Health Rep.
Chastin, S.F.M., Ferriolli, E., Stephens, N.A., Fearon, K.C.H., Greig, C., 2012. Relationship between sedentary behaviour, physical activity, muscle quality and body composition in healthy older adults. Age Ageing 41, 111-114. https://doi.org/10.1093/ageing/afr075

Chmelo, E., Nicklas, B., Davis, C., Miller, G.D., Legault, C., Messier, S., 8AD. Physical activity and physical function in older adults with knee osteoarthritis. J Phys Act. Heal. 10, 777-783.

Chodzko-Zajko, W.J., Proctor, D.N., Fiatarone Singh, M.A., Minson, C.T., Nigg, C.R., Salem, G.J., Skinner, J.S., 2009. Exercise and physical activity for older adults. Med. Sci. Sports Exerc. 41, 1510-1530. https://doi.org/10.1249/MSS.0b013e3181a0c95c

Clemson, L., Fiatarone Singh, M.A., Bundy, A., Cumming, R.G., Manollaras, K., O'Loughlin, P., Black, D., 2012. Integration of balance and strength training into daily life activity to reduce rate of falls in older people (the LiFE study): Randomised parallel trial. BMJ 345, 1-15. https://doi.org/10.1136/bmj.e4547

Clemson, L., Singh, M.F., Bundy, A., Cumming, R.G., Weissel, E., Munro, J., Manollaras, K., Black, D., 2010. LiFE Pilot Study: A randomised trial of balance and strength training embedded in daily life activity to reduce falls in older adults. Aust. Occup. Ther. J. 57, 42-50. https://doi.org/10.1111/j.1440-1630.2009.00848.x

Cochrane Handbook for Systematic Reviews of Interventions, 2019. , Cochrane Handbook for Systematic Reviews of Interventions. https://doi.org/10.1002/9781119536604

Cohen, J., Cohen, P., West, S.G., Aiken, L.S., 2003. Applied multiple regression/correlation analysis for the behavioral sciences, 3rd ed., Applied multiple regression/correlation analysis for the behavioral sciences, 3rd ed. Lawrence Erlbaum Associates Publishers, Mahwah, NJ, US.

Colbert, L.H., Matthews, C.E., Havighurst, T.C., Kim, K., Schoeller, D.A., 2011.

Comparative validity of physical activity measures in older adults. Med. Sci. Sports Exerc. 43, 867-876. https://doi.org/10.1249/MSS.0b013e3181fc7162

Cooper, A.J.M., Simmons, R.K., Kuh, D., Brage, S., Cooper, R., Hardy, R., Pierce, M., Richards, M., Abington, J., Wong, A., Adams, J.E., Machin, M., Stephens, A.M., Bonar, K., Bryant, S., Cole, D., Nip, W., Ambrosini, G., Pellerin, D., Chaturvedi, N., Hughes, A., Ghosh, A., March, K., Macfarlane, P., Inglis, L., Friberg, P., Osika, W., Ekelund, U., Mayle, S., Westgate, K., Deanfield, J., Donald, A., Kok, S., Masi, S., Phalora, R., Woodside, J., Bruce, I., Harwood, N., Oughton, E., Chapman, A., Khattar, R.S., Nair, S.B., Franklyn, J., Palmer, S., Boardman, K., Crabtree, N., Clements, R., Suvari, M., Steeds, R., Craig, K., Howard, E., Morley, T., Scanlon, M., Petit, R., Evans, W., Fraser, A., Edwards, J., Reece, E., Newby, D., Marshall, F., Hannan, J., Miller, C., White, A., MacAllister, R., Harris, J., Singzon, R., Ell, P., Townsend, C., Demetrescu, C., Chowienczyk, P., Darroch, P., McNeill, K., Spector, T., Clements, G., Jiang, B., Lessof, C., Cheshire, H., 2015. Physical activity, sedentary time and physical capability in early old age: British birth cohort study. PLoS One 10, 1-14.

https://doi.org/10.1371/journal.pone. 0126465
Cunningham, C., O’ Sullivan, R., Caserotti, P., Tully, M.A., 2020. Consequences of physical inactivity in older adults: A systematic review of reviews and meta-analyses. Scand. J.

Med. Sci. Sports 1-12. https://doi.org/10.1111/sms. 13616
Davis, M.G., Fox, K.R., Stathi, A., Trayers, T., Thompson, J.L., Cooper, A.R., 2014.
Objectively Measured Sedentary Time and its Association With Physical Function in Older Adults. J. Aging Phys. Act. 22, 474-481. https://doi.org/10.1123/JAPA.20130042
de Melo, L.L., Menec, V., Porter, M.M., Ready, A.E., 2010. Personal Factors, Perceived Environment, and Objectively Measured Walking in Old Age. J. Aging Phys. Act. 18,

280-292. https://doi.org/10.1123/japa.18.3.280
de Melo, L.L., Menec, V.H., Ready, A.E., 2014. Relationship of Functional Fitness With
Daily Steps in Community-Dwelling Older Adults. J. Geriatr. Phys. Ther. 37, 116-120. https://doi.org/10.1519/JPT.0b013e3182abe75f

Demeyer, H., Donaire-Gonzalez, D., Gimeno-Santos, E., Ramon, M.A., De Battle, J., Benet, M., Serra, I., Guerra, S., Farrero, E., Rodriguez, E., Ferrer, J., Sauleda, J., Monso, E., Gea, J., Rodriguez-Roisin, R., Agusti, A., Antó, J.M., Garcia-Aymerich, J., 2019. Physical Activity Is Associated with Attenuated Disease Progression in Chronic Obstructive Pulmonary Disease. Med. Sci. Sport. Exerc. 51, 833-840. https://doi.org/10.1249/MSS.0000000000001859

Distefano, G., Standley, R.A., Zhang, X., Carnero, E.A., Yi, F., Cornnell, H.H., Coen, P.M., 2018. Physical activity unveils the relationship between mitochondrial energetics, muscle quality, and physical function in older adults. J. Cachexia. Sarcopenia Muscle 9, 279-294. https://doi.org/10.1002/jcsm. 12272

Dogra, S., Clarke, J.M., Copeland, J.L., 2017. Prolonged sedentary time and physical fitness among Canadian men and women aged 60 to 69 . Heal. reports 28, 3-9.

Dohrn, I.-M., Gardiner, P.A., Winkler, E., Welmer, A.-K., 2020. Device-measured sedentary behavior and physical activity in older adults differ by demographic and health-related factors. Eur. Rev. Aging Phys. Act. 17, 8. https://doi.org/10.1186/s11556-020-00241-x

Dos Santos, V.R., Diniz, T.A., Batista, V.C., Freitas, I.F., Gobbo, L.A., 2019. Practice of physical activity and dysmobility syndrome in community-dwelling older adults. J.

Exerc. Rehabil. 15, 294-301. https://doi.org/10.12965/jer.1938034.017
Duncan, M.J., Minatto, G., Wright, S.L., 2016. Dose-response between pedometer assessed physical activity, functional fitness, and fatness in healthy adults aged 50-80 years. Am. J. Hum. Biol. 28, 890-894. https://doi.org/10.1002/ajhb. 22884

Dyrstad, S.M., Hansen, B.H., Holme, I.M., Anderssen, S.A., 2014. Comparison of selfreported versus accelerometer-measured physical activity. Med. Sci. Sports Exerc. 46, 99-106. https://doi.org/10.1249/MSS.0b013e3182a0595f

Edholm, P., Nilsson, A., Kadi, F., 2019. Physical function in older adults: Impacts of past and present physical activity behaviors. Scand. J. Med. Sci. Sports 29, 415-421. https://doi.org/10.1111/sms. 13350

Egger, M., Smith, G.D., Schneider, M., Minder, C., 1997. Bias in meta-analysis detected by a simple, graphical test. Br. Med. J. https://doi.org/10.1136/bmj.316.7129.469

Fernández-Castilla, B., Aloe, A.M., Declercq, L., Jamshidi, L., Onghena, P., Natasha Beretvas, S., Van den Noortgate, W., 2019. Concealed correlations meta-analysis: A new method for synthesizing standardized regression coefficients. Behav. Res. Methods 51, 316-331. https://doi.org/10.3758/s13428-018-1123-7

Ferreira, M.L., Sherrington, C., Smith, K., Carswell, P., Bell, R., Bell, M., Nascimento, D.P., Máximo Pereira, L.S., Vardon, P., 2012. Physical activity improves strength, balance and endurance in adults aged 40-65 years: A systematic review. J. Physiother. 58, 145156. https://doi.org/10.1016/S1836-9553(12)70105-4

Foldvari, M., Clark, M., Laviolette, L.C., Bernstein, M.A., Kaliton, D., Castaneda, C., Pu, C.T., Hausdorff, J.M., Fielding, R.A., Singh, M.A.F., 2000. Association of Muscle Power With Functional Status in Community-Dwelling Elderly Women. Journals Gerontol. Ser. A Biol. Sci. Med. Sci. 55, M192-M199. https://doi.org/10.1093/gerona/55.4.M192

Foong, Y.C., Chherawala, N., Aitken, D., Scott, D., Winzenberg, T., Jones, G., 2016. Accelerometer-determined physical activity, muscle mass, and leg strength in community-dwelling older adults. J. Cachexia. Sarcopenia Muscle 7, 275-283. https://doi.org/10.1002/jcsm. 12065

Fornias, L., Rodrigues, M., Rey-López, J., Keihan, V., Carmo, O., 2014. Sedentary Behavior and Health Outcomes: An Overview of Systematic Reviews. PLoS One 9, 105620. https://doi.org/10.1371/journal.pone. 0105620

Füzéki, E., Engeroff, T., Banzer, W., 2017. Health Benefits of Light-Intensity Physical Activity: A Systematic Review of Accelerometer Data of the National Health and Nutrition Examination Survey (NHANES). Sport. Med. 47, 1769-1793. https://doi.org/10.1007/s40279-017-0724-0

Gennuso, K.P., Thraen-Borowski, K.M., Gangnon, R.E., Colbert, L.H., 2016. Patterns of sedentary behavior and physical function in older adults. Aging Clin. Exp. Res. 28, 943950. https://doi.org/10.1007/s40520-015-0386-4

Gerdhem, P., Dencker, M., Ringsberg, K., Åkesson, K., 2007. Accelerometer-measured daily physical activity among octogenerians: results and associations to other indices of physical performance and bone density. Eur. J. Appl. Physiol. 102, 173-180. https://doi.org/10.1007/s00421-007-0571-z

Guizelini, P.C., de Aguiar, R.A., Denadai, B.S., Caputo, F., Greco, C.C., 2018. Effect of resistance training on muscle strength and rate of force development in healthy older adults: A systematic review and meta-analysis. Exp. Gerontol. 102, 51-58. https://doi.org/10.1016/j.exger.2017.11.020

Haider, S., Grabovac, I., Dorner, T.E., 2019. Effects of physical activity interventions in frail and prefrail community-dwelling people on frailty status, muscle strength, physical performance and muscle mass-a narrative review. Wien. Klin. Wochenschr. 131, 244254. https://doi.org/10.1007/s00508-019-1484-7

Hall, K.S., Cohen, H.J., Pieper, C.F., Fillenbaum, G.G., Kraus, W.E., Huffman, K.M., Cornish, M.A., Shiloh, A., Flynn, C., Sloane, R., Newby, L.K., Morey, M.C., 2016. Physical Performance Across the Adult Life Span: Correlates With Age and Physical

Activity. Journals Gerontol. Ser. A Biol. Sci. Med. Sci. 72, glw120. https://doi.org/10.1093/gerona/glw120

Harada, Kazuhiro, Lee, Sangyoon, Lee, Sungchul, Bae, S., Harada, Kenji, Suzuki, T., Shimada, H., 2016. Objectively-measured outdoor time and physical and psychological function among older adults. Geriatr. Gerontol. Int. 17, 1455-1462. https://doi.org/10.1111/ggi. 12895

Harrison, S., Jones, H.E., Martin, R.M., Lewis, S.J., Higgins, J.P.T., 2017. The albatross plot: A novel graphical tool for presenting results of diversely reported studies in a systematic review. Res. Synth. Methods 8, 281-289. https://doi.org/10.1002/jrsm. 1239

Hartley, A., Gregson, C.L., Hannam, K., Deere, K.C., Clark, E.M., Tobias, J.H., 2018. Sarcopenia Is Negatively Related to High Gravitational Impacts Achieved From Day-today Physical Activity. Journals Gerontol. Ser. A 73, 652-659. https://doi.org/10.1093/gerona/glx 223

Harvey, J.A., Chastin, S.F.M., Skelton, D.A., 2015. How sedentary are older people? A systematic review of the amount of sedentary behavior. J. Aging Phys. Act. 23, 471487. https://doi.org/10.1123/japa.2014-0164

Hasegawa, J., Suzuki, H., Yamauchi, T., 2018. Impact of season on the association between muscle strength/volume and physical activity among communitydwelling elderly people living in snowy-cold regions. J. Physiol. Anthropol. 37, 1-6. https://doi.org/10.1186/s40101-018-0186-6

Hernandes, N.A., Probst, V.S., Silva Jr, R.A. Da, Januário, R.S.B., Pitta, F., Teixeira, D.C., 2013. Physical activity in daily life in physically independent elderly participating in community-based exercise program. Brazilian J. Phys. Ther. 17, 57-63.
https://doi.org/10.1590/s1413-35552012005000055
Hernández, M., Zambom-Ferraresi, F., Cebollero, P., Hueto, J., Cascante, J.A., Antón, M.M.,
2017. The Relationships Between Muscle Power and Physical Activity in Older Men With Chronic Obstructive Pulmonary Disease. J. Aging Phys. Act. 25, 360-366. https://doi.org/10.1123/japa.2016-0144

Hopkins, C., 2019. Physical Activity and Future Physical Function: Data From the Osteoarthritis Initiative. J. Aging Phys. Act. 27, 367-370. https://doi.org/10.1123/japa.2018-0136

Hughes, V.A., Frontera, W.R., Wood, M., Evans, W.J., Dallal, G.E., Roubenoff, R.,

Fiatarone Singh, M.A., 2001. Longitudinal muscle strength changes in older adults: Influence of muscle mass, physical activity, and health. Journals Gerontol. - Ser. A Biol.

Sci. Med. Sci. 56, 209-217. https://doi.org/10.1093/gerona/56.5.B209
Hupin, D., Roche, F., Gremeaux, V., Chatard, J.C., Oriol, M., Gaspoz, J.M., Barthélémy, J.C., Edouard, P., 2015. Even a low-dose of moderate-to-vigorous physical activity reduces mortality by 22% in adults aged ≥ 60 years: A systematic review and metaanalysis. Br. J. Sports Med. https://doi.org/10.1136/bjsports-2014-094306

Iijima, H., Fukutani, N., Isho, T., Yamamoto, Y., Hiraoka, M., Miyanobu, K., Jinnouchi, M., Kaneda, E., Aoyama, T., Kuroki, H., Matsuda, S., 2017. Relationship Between Pedometer-Based Physical Activity and Physical Function in Patients With Osteoarthritis of the Knee: A Cross-Sectional Study. Arch. Phys. Med. Rehabil. 98, 1382-1388.e4. https://doi.org/10.1016/j.apmr.2016.12.021

Ikenaga, M., Yamada, Y., Takeda, N., Kimura, M., Higaki, Y., Tanaka, H., Kiyonaga, A., Nakagawa Study Group, 2014. Dynapenia, gait speed and daily physical activity measured using triaxial accelerometer in older Japanese men. J. Phys. Fit. Sport. Med. 3, 147-154. https://doi.org/10.7600/jpfsm.3.147

Iwakura, M., Okura, K., Shibata, K., Kawagoshi, A., Sugawara, K., Takahashi, H., Shioya, T., 2016. Relationship between balance and physical activity measured by an activity
monitor in elderly COPD patients. Int. J. Chron. Obstruct. Pulmon. Dis. Volume 11, 1505-1514. https://doi.org/10.2147/COPD.S107936

Jantunen, H., Wasenius, N., Salonen, M.K., Peräää, M.M., Osmond, C., Kautiainen, H., Simonen, M., Pohjolainen, P., Kajantie, E., Rantanen, T., Von Bonsdorff, M.B., Eriksson, J.G., 2017. Objectively measured physical activity and physical performance in old age. Age Ageing 46, 232-237. https://doi.org/10.1093/ageing/afw194

Jeong, J.N., Kim, S.H., Park, K.N., 2019. Relationship between objectively measured lifestyle factors and health factors in patients with knee osteoarthritis: The STROBE Study. Medicine (Baltimore). 98, e16060. https://doi.org/10.1097/MD.0000000000016060

Johnson, L.G., Butson, M.L., Polman, R.C., Raj, I.S., Borkoles, E., Scott, D., Aitken, D., Jones, G., 2016. Light physical activity is positively associated with cognitive performance in older community dwelling adults. J. Sci. Med. Sport 19, 877-882. https://doi.org/10.1016/j.jsams.2016.02.002

Katzmarzyk, P.T., Craig, C.L., 2002. Musculoskeletal fitness and risk of mortality. Med. Sci. Sports Exerc. 34, 740-744. https://doi.org/10.1097/00005768-200205000-00002

Kawagoshi, A., Kiyokawa, N., Sugawara, K., Takahashi, H., Sakata, S., Miura, S., Sawamura, S., Satake, M., Shioya, T., 2013. Quantitative assessment of walking time and postural change in patients with COPD using a new triaxial accelerometer system. Int. J. COPD 8, 397-404. https://doi.org/10.2147/COPD.S49491

Keevil, V.L., Cooper, A.J.M., Wijndaele, K., Luben, R., Wareham, N.J., Brage, S., Khaw, K.-T., 2016. Objective Sedentary Time, Moderate-to-Vigorous Physical Activity, and Physical Capability in a British Cohort. Med. Sci. Sport. Exerc. 48, 421-429.
https://doi.org/10.1249/MSS. 0000000000000785
Kim, M., 2015. Isotemporal Substitution Analysis of Accelerometer-derived Sedentary

Behavior, Physical Activity Time, and Physical Function in Older Women: A Preliminary Study. Exerc. Sci. 24, 373-381.
https://doi.org/10.15857/ksep.2015.24.4.373
Kim, M., Yoshida, H., Sasai, H., Kojima, N., Kim, H., 2015. Association between objectively measured sleep quality and physical function among community-dwelling oldest old Japanese: A cross-sectional study. Geriatr. Gerontol. Int. 15, 1040-1048. https://doi.org/10.1111/ggi. 12396

Lai, T.-F., Lin, C.-Y., Chou, C.-C., Huang, W.-C., Hsueh, M.-C., Park, J.-H., Liao, Y., 2020. Independent and Joint Associations of Physical Activity and Dietary Behavior with Older Adults' Lower Limb Strength. Nutrients 12, 443. https://doi.org/10.3390/nu12020443

Lee, I.-M., Shiroma, E.J., 2014. Using accelerometers to measure physical activity in largescale epidemiological studies: issues and challenges. Br. J. Sports Med. 48, 197-201. https://doi.org/10.1136/bjsports-2013-093154

Lee, J., Chang, R.W., Ehrlich-Jones, L., Kwoh, C.K., Nevitt, M., Semanik, P.A., Sharma, L., Sohn, M.W., Song, J., Dunlop, D.D., 2015. Sedentary behavior and physical function: Objective evidence from the osteoarthritis initiative. Arthritis Care Res. 67, 366-373. https://doi.org/10.1002/acr. 22432

Lerma, N.L., Cho, C.C., Swartz, A.M., Miller, N.E., Keenan, K.G., Strath, S.J., 2018. Isotemporal Substitution of Sedentary Behavior and Physical Activity on Function. Med. Sci. Sport. Exerc. 50, 792-800. https://doi.org/10.1249/MSS.0000000000001491

Liao, Y., Hsu, H.H., Shibata, A., Ishii, K., Koohsari, M.J., Oka, K., 2018. Associations of total amount and patterns of objectively measured sedentary behavior with performancebased physical function. Prev. Med. Reports 12, 128-134. https://doi.org/10.1016/j.pmedr.2018.09.007

Liberati, A., Altman, D.G., Tetzlaff, J., Mulrow, C., Gotzsche, P.C., Ioannidis, J.P.A., Clarke, M., Devereaux, P.J., Kleijnen, J., Moher, D., 2009. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 339, b2700-b2700. https://doi.org/10.1136/bmj.b2700

Ling, C.H.Y., Taekema, D., De Craen, A.J.M., Gussekloo, J., Westendorp, R.G.J., Maier, A.B., 2010. Handgrip strength and mortality in the oldest old population: The Leiden 85-plus study. Cmaj 182, 429-435. https://doi.org/10.1503/cmaj.091278

Liu, C., Shiroy, D.M., Jones, L.Y., Clark, D.O., 2014. Systematic review of functional training on muscle strength, physical functioning, and activities of daily living in older adults. Eur. Rev. Aging Phys. Act. 11, 95-106. https://doi.org/10.1007/s11556-014-0144-1

Lohne-Seiler, H., Hansen, B.H., Kolle, E., Anderssen, S.A., 2014. Accelerometer-determined physical activity and self-reported health in a population of older adults (65-85 years): a cross-sectional study. BMC Public Health 14, 284. https://doi.org/10.1186/1471-2458-14-284

Lohne-Seiler, H., Kolle, E., Anderssen, S.A., Hansen, B.H., 2016. Musculoskeletal fitness and balance in older individuals (65-85 years) and its association with steps per day: a cross sectional study. BMC Geriatr. 16, 6. https://doi.org/10.1186/s12877-016-0188-3

Luppa, M., Luck, T., Weyerer, S., Konig, H.-H., Brahler, E., Riedel-Heller, S.G., 2010. Prediction of institutionalization in the elderly. A systematic review. Age Ageing 39, 31-38. https://doi.org/10.1093/ageing/afp202

Mador, M.J., Patel, A.N., Nadler, J., 2011. Effects of Pulmonary Rehabilitation on Activity Levels in Patients With Chronic Obstructive Pulmonary Disease. J. Cardiopulm. Rehabil. Prev. 31, 52-59. https://doi.org/10.1097/HCR.0b013e3181ebf2ef

Mañas, A., del Pozo-Cruz, B., García-García, F.J., Guadalupe-Grau, A., Ara, I., 2017. Role
of objectively measured sedentary behaviour in physical performance, frailty and mortality among older adults: A short systematic review. Eur. J. Sport Sci. 17, 940-953. https://doi.org/10.1080/17461391.2017.1327983

Manini, T.M., Clark, B.C., 2012. Dynapenia and aging: An update. Journals Gerontol. - Ser. A Biol. Sci. Med. Sci. 67 A, 28-40. https://doi.org/10.1093/gerona/glr010

Manns, P.J., Dunstan, D.W., Owen, N., Healy, G.N., 2012. Addressing the Nonexercise Part of the Activity Continuum: A More Realistic and Achievable Approach to Activity Programming for Adults With Mobility Disability? Phys. Ther. 92, 614-625. https://doi.org/10.2522/ptj. 20110284

Master, H., Thoma, L.M., Christiansen, M.B., Polakowski, E., Schmitt, L.A., White, D.K., 2018. Minimum Performance on Clinical Tests of Physical Function to Predict Walking 6,000 Steps/Day in Knee Osteoarthritis: An Observational Study. Arthritis Care Res. (Hoboken). 70, 1005-1011. https://doi.org/10.1002/acr. 23448

Matkovic, Z., Tudoric, N., Cvetko, D., Esquinas, C., Rahelic, D., Zarak, M., Miravitlles, M., 2020. Easy to Perform Physical Performance Tests to Identify COPD Patients with Low Physical Activity in Clinical Practice. Int. J. Chron. Obstruct. Pulmon. Dis. Volume 15, 921-929. https://doi.org/10.2147/COPD.S246571

McDermott, M.M.G., Greenland, P., Ferrucci, L., Criqui, M.H., Liu, K., Sharma, L., Chan, C., Celic, L., Priyanath, A., Guralnik, J.M., 2002. Lower extremity performance is associated with daily life physical activity in individuals with and without peripheral arterial disease. J. Am. Geriatr. Soc. 50, 247-255. https://doi.org/10.1046/j.15325415.2002.50055.x

McEwan, D., Rhodes, R.E., Beauchamp, M.R., 2020. What Happens When the Party is Over?: Sustaining Physical Activity Behaviors after Intervention Cessation. Behav. Med. 0, 1-9. https://doi.org/10.1080/08964289.2020.1750335

McGregor, D.E., Carson, V., Palarea-Albaladejo, J., Dall, P.M., Tremblay, M.S., Chastin, S.F.M., 2018. Compositional analysis of the associations between 24-h movement behaviours and health indicators among adults and older adults from the Canadian health measure survey. Int. J. Environ. Res. Public Health 15.
https://doi.org/10.3390/ijerph15081779
Meier, N.F., Lee, D., 2020. Physical activity and sarcopenia in older adults. Aging Clin. Exp. Res. 32, 1675-1687. https://doi.org/10.1007/s40520-019-01371-8

Menai, M., Van Hees, V.T., Elbaz, A., Kivimaki, M., Singh-Manoux, A., Sabia, S., 2017. Accelerometer assessed moderate-To-vigorous physical activity and successful ageing: Results from the Whitehall II study. Sci. Rep. 8, 1-9. https://doi.org/10.1038/srep45772

Meskers, C.G.M., Reijnierse, E.M., Numans, S.T., Kruizinga, R.C., Pierik, V.D., van Ancum, J.M., Slee-Valentijn, M., Scheerman, K., Verlaan, S., Maier, A.B., 2019. Association of Handgrip Strength and Muscle Mass with Dependency in (Instrumental) Activities of Daily Living in Hospitalized Older Adults -The EMPOWER Study. J. Nutr. Health Aging 23, 232-238. https://doi.org/10.1007/s12603-019-1170-5

Mitchell, W.K., Williams, J., Atherton, P., Larvin, M., Lund, J., Narici, M., 2012.
Sarcopenia, Dynapenia, and the Impact of Advancing Age on Human Skeletal Muscle Size and Strength; a Quantitative Review. Front. Physiol. 3, 1-18.
https://doi.org/10.3389/fphys.2012.00260
Mlinac, M.E., Feng, M.C., 2016. Assessment of Activities of Daily Living, Self-Care, and Independence. Arch. Clin. Neuropsychol. 31, 506-516.
https://doi.org/10.1093/arclin/acw049
Moher, D., Liberati, A., Tetzlaff, J., Altman, D.G., 2009. Academia and Clinic Annals of Internal Medicine Preferred Reporting Items for Systematic Reviews and MetaAnalyses : Ann. Intern. Med. 151, 264-269.

Monteiro, A.M., Silva, P., Forte, P., Carvalho, J., 2019. The effects of daily physical activity on functional fitness, isokinetic strength and body composition in elderly communitydwelling women. J. Hum. Sport Exerc. 14. https://doi.org/10.14198/jhse.2019.142.11

Morie, M., Reid, K.F., Miciek, R., Lajevardi, N., Choong, K., Krasnoff, J.B., Storer, T.W., Fielding, R.A., Bhasin, S., LeBrasseur, N.K., 2010. Habitual Physical Activity Levels Are Associated with Performance in Measures of Physical Function and Mobility in Older Men. J. Am. Geriatr. Soc. 58, 1727-1733. https://doi.org/10.1111/j.15325415.2010.03012.x

Nagai, K., Tamaki, K., Kusunoki, H., Wada, Y., Tsuji, S., Ito, M., Sano, K., Amano, M., Shimomura, S., Shinmura, K., 2018. Isotemporal substitution of sedentary time with physical activity and its associations with frailty status. Clin. Interv. Aging 13, 18311836. https://doi.org/10.2147/CIA.S175666

Nawrocka, A., Mynarski, W., Cholewa, J., 2017. Adherence to physical activity guidelines and functional fitness of elderly women, using objective measurement. Ann. Agric. Environ. Med. 24, 632-635. https://doi.org/10.5604/12321966.1231388

Nawrocka, A., Polechoński, J., Garbaciak, W., Mynarski, W., 2019. Functional Fitness and Quality of Life among Women over 60 Years of Age Depending on Their Level of Objectively Measured Physical Activity. Int. J. Environ. Res. Public Health 16, 972. https://doi.org/10.3390/ijerph16060972

Nicolai, S., Benzinger, P., Skelton, D.A., Aminian, K., Becker, C., Lindemann, U., 2010. Day-to-day variability of physical activity of older adults living in the community. J. Aging Phys. Act. 18, 75-86. https://doi.org/10.1123/japa.18.1.75

Nieminen, P., Lehtiniemi, H., Vähäkangas, K., Huusko, A., Rautio, A., 2013. Standardised regression coefficient as an effect size index in summarising findings in epidemiological studies. Epidemiol. Biostat. Public Heal. 10 (n, 1-15.
https://doi.org/https://doi.org/10.2427/8854
Ofei-Dodoo, S., Rogers, N.L., Morgan, A.L., Amini, S.B., Takeshima, N., Rogers, M.E., 2018. The Impact of an Active Lifestyle on the Functional Fitness Level of Older Women. J. Appl. Gerontol. 37, 687-705. https://doi.org/10.1177/0733464816641390

Ortlieb, S., ra, , Gorzelniak, L., Nowak, D., Strobl, R., Grill, E., Thor, , Barbara, , Peters, A., Kuhn, K.A., Karrasch, S., Horsch, A., er, ,, Schulz, H., 2014. Associations between multiple accelerometry-assessed physical activity parameters and selected health outcomes in elderly people--results from the KORA-age study. PLoS One 9, el11206.

Orwoll, E.S., Fino, N.F., Gill, T.M., Cauley, J.A., Strotmeyer, E.S., Ensrud, K.E., Kado, D.M., Barrett-Connor, E., Bauer, D.C., Cawthon, P.M., Lapidus, J., 2019. The Relationships Between Physical Performance, Activity Levels, and Falls in Older Men. Journals Gerontol. Ser. A 74, 1475-1483. https://doi.org/10.1093/gerona/gly248

Osthoff, A.K.R., Taeymans, J., Kool, J., Marcar, V., Van Gestel, A.J.R., 2013. Association between peripheral muscle strength and daily physical activity in patients with COPD: A systematic literature review and meta-analysis. J. Cardiopulm. Rehabil. Prev. 33, 351359. https://doi.org/10.1097/HCR.0000000000000022

Osuka, Y., Yabushita, N., Kim, M., Seino, S., Nemoto, M., Jung, S., Okubo, Y., Figueroa, R., Tanaka, K., 2015. Association between habitual light-intensity physical activity and lower-extremity performance: A cross-sectional study of community-dwelling older Japanese adults. Geriatr. Gerontol. Int. 15, 268-275. https://doi.org/10.1111/ggi. 12268

Ouzzani, M., Hammady, H., Fedorowicz, Z., Elmagarmid, A., 2016. Rayyan-a web and mobile app for systematic reviews. Syst. Rev. https://doi.org/10.1186/s13643-016-03844

Park, H., Park, W., Lee, M., Ko, N., Kim, E., Ishikawa-takata, K., Park, J., 2018. The association of locomotive and non-locomotive physical activity measured by an
accelerometer with functional fitness in healthy elderly men: a pilot study. J. Exerc. Nutr. Biochem. 22, 41-48. https://doi.org/10.20463/jenb.2018.0007

Perkin, O.J., McGuigan, P.M., Thompson, D., Stokes, K.A., 2018. Habitual physical activity levels do not predict leg strength and power in healthy, active older adults. PLoS One 13, 1-12. https://doi.org/10.1371/journal.pone. 0200089

Pitta, F., Troosters, T., Spruit, M.A., Probst, V.S., Decramer, M., Gosselink, R., 2005. Characteristics of physical activities in daily life in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 171, 972-977.
https://doi.org/10.1164/rccm.200407-855OC
Puthoff, M.L., Janz, K.F., Nielsen, D.H., 2008. The Relationship between Lower Extremity Strength and Power to Everyday Walking Behaviors in Older Adults with Functional Limitations. J. Geriatr. Phys. Ther. 31, 24-31. https://doi.org/10.1519/00139143-200831010-00005

Rantanen, T., 2003. Muscle strength, disability and mortality. Scand. J. Med. Sci. Sport. 13, 3-8. https://doi.org/10.1034/j.1600-0838.2003.00298.x

Rapp, K., Klenk, J., Benzinger, P., Franke, S., Denkinger, M.D., Peter, R., ActiFE Ulm Study Group, 2012. Physical performance and daily walking duration: associations in 1271 women and men aged 65-90 years. Aging Clin. Exp. Res. 24, 455-60.
https://doi.org/10.3275/8264
Rausch-Osthoff, A.-K., Kohler, M., Sievi, N.A., Clarenbach, C.F., van Gestel, A.J., 2014. Association between peripheral muscle strength, exercise performance, and physical activity in daily life in patients with Chronic Obstructive Pulmonary Disease.

Multidiscip. Respir. Med. 9, 37. https://doi.org/10.1186/2049-6958-9-37
Rava, A., Pihlak, A., Kums, T., Purge, P., Pääsuke, M., Jürimäe, J., 2018. Associations of distinct levels of physical activity with mobility in independent healthy older women.

Exp. Gerontol. 110, 209-215. https://doi.org/10.1016/j.exger.2018.06.005
Reid, K.F., Fielding, R. a, 2012. Skeletal Muscle Power. Exerc. Sport Sci. Rev. 40, 4-12. https://doi.org/10.1097/JES.0b013e31823b5f13

Reid, K.F., Pasha, E., Doros, G., Clark, D.J., Patten, C., Phillips, E.M., Frontera, W.R., Fielding, R.A., 2014. Longitudinal decline of lower extremity muscle power in healthy and mobility-limited older adults: Influence of muscle mass, strength, composition, neuromuscular activation and single fiber contractile properties. Eur. J. Appl. Physiol. https://doi.org/10.1007/s00421-013-2728-2

Reid, N., Healy, G.N., Gianoudis, J., Formica, M., Gardiner, P.A., Eakin, E.E., Nowson, C.A., Daly, R.M., 2018. Association of sitting time and breaks in sitting with muscle mass, strength, function, and inflammation in community-dwelling older adults. Osteoporos. Int. 29, 1341-1350. https://doi.org/10.1007/s00198-018-4428-6

Reijnierse, E.M., de Jong, N., Trappenburg, M.C., Blauw, G.J., Butler-Browne, G., Gapeyeva, H., Hogrel, J.-Y., McPhee, J.S., Narici, M. V., Sipilä, S., Stenroth, L., van Lummel, R.C., Pijnappels, M., Meskers, C.G.M., Maier, A.B., 2017. Assessment of maximal handgrip strength: how many attempts are needed? J. Cachexia. Sarcopenia Muscle 8, 466-474. https://doi.org/10.1002/jcsm. 12181

Rojer, A.G.M., Ramsey, K.A., Trappenburg, M.C., van Rijssen, N.M., Otten, R.H.J., Heymans, M.W., Pijnappels, M., Meskers, C.G.M., Maier, A.B., 2020. Instrumented measures of sedentary behaviour and physical activity are associated with mortality in community-dwelling older adults: A systematic review, meta-analysis and metaregression analysis. Ageing Res. Rev. 61, 101061.
https://doi.org/10.1016/j.arr.2020.101061
Rojer, A.G.M., Reijnierse, E.M., Trappenburg, M.C., van Lummel, R.C., Niessen, M., van Schooten, K.S., Pijnappels, M., Meskers, C.G.M., Maier, A.B., 2018. Instrumented

Assessment of Physical Activity Is Associated With Muscle Function but Not With Muscle Mass in a General Population. J. Aging Health 30, 1462-1481.
https://doi.org/10.1177/0898264317721554
Rosenberg, D.E., Bellettiere, J., Gardiner, P.A., Villarreal, V.N., Crist, K., Kerr, J., 2015. Independent Associations between Sedentary Behaviors and Mental, Cognitive, Physical, and Functional Health among Older Adults in Retirement Communities. Journals Gerontol. - Ser. A Biol. Sci. Med. Sci. 71, 78-83.
https://doi.org/10.1093/gerona/glv103
Rowlands, A. V., Edwardson, C.L., Davies, M.J., Khunti, K., Harrington, D.M., Yates, T., 2018. Beyond Cut Points: Accelerometer Metrics that Capture the Physical Activity Profile, Medicine and Science in Sports and Exercise.
https://doi.org/10.1249/MSS.00000000000001561
Safeek, R.H., Hall, K.S., Lobelo, F., del Rio, C., Khoury, A.L., Wong, T., Morey, M.C., McKellar, M.S., 2018. Low Levels of Physical Activity Among Older Persons Living with HIV/AIDS Are Associated with Poor Physical Function. AIDS Res. Hum.

Retroviruses 34, 929-935. https://doi.org/10.1089/aid.2017.0309
Sánchez-Sánchez, J.L., Mañas, A., García-García, F.J., Ara, I., Carnicero, J.A., Walter, S.,
Rodríguez-Mañas, L., 2019. Sedentary behaviour, physical activity, and sarcopenia among older adults in the TSHA: isotemporal substitution model. J. Cachexia.

Sarcopenia Muscle 10, 188-198. https://doi.org/10.1002/jcsm. 12369
Sansano-Nadal, Giné-Garriga, Brach, Wert, Jerez-Roig, Guerra-Balic, Oviedo, Fortuño, Gómara-Toldrà, Soto-Bagaria, Pérez, Inzitari, Solà, Martin-Borràs, Roqué, 2019. Exercise-Based Interventions to Enhance Long-Term Sustainability of Physical Activity in Older Adults: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Int. J. Environ. Res. Public Health 16, 2527.
https://doi.org/10.3390/ijerph16142527
Santos, D.A., Silva, A.M., Baptista, F., Santos, R., Vale, S., Mota, J., Sardinha, L.B., 2012. Sedentary behavior and physical activity are independently related to functional fitness in older adults. Exp. Gerontol. 47, 908-912. https://doi.org/10.1016/j.exger.2012.07.011

Sardinha, L.B., Santos, D.A., Silva, A.M., Baptista, F., Owen, N., 2015. Breaking-up Sedentary Time Is Associated With Physical Function in Older Adults. Journals Gerontol. Ser. A Biol. Sci. Med. Sci. 70, 119-124. https://doi.org/10.1093/gerona/glu193

Schwenk, M., Bergquist, R., Boulton, E., Van Ancum, J.M., Nerz, C., Weber, M., Barz, C., Jonkman, N.H., Taraldsen, K., Helbostad, J.L., Vereijken, B., Pijnappels, M., Maier, A.B., Zhang, W., Becker, C., Todd, C., Clemson, L., Hawley-Hague, H., 2019. The adapted lifestyle-integrated functional exercise program for preventing functional decline in young seniors: Development and initial evaluation. Gerontology 65, 362-374. https://doi.org/10.1159/000499962

Scott, D., Blizzard, L., Fell, J., Jones, G., 2011. Prospective associations between ambulatory activity, body composition and muscle function in older adults. Scand. J. Med. Sci. Sport. 21, 168-175. https://doi.org/10.1111/j.1600-0838.2010.01229.x

Scott, D., Blizzard, L., Fell, J., Jones, G., 2009. Ambulatory activity, body composition, and lower-limb muscle strength in older adults. Med. Sci. Sports Exerc. 41, 383-389. https://doi.org/10.1249/MSS.0b013e3181882c85

Scott, D., Johansson, J., Gandham, A., Ebeling, P.R., Nordstrom, P., Nordstrom, A., 2020. Associations of accelerometer-determined physical activity and sedentary behavior with sarcopenia and incident falls over 12 months in community-dwelling Swedish older adults. J. Sport Heal. Sci. 00, 1-9. https://doi.org/10.1016/j.jshs.2020.01.006

Semanik, P.A., Lee, J., Song, J., Chang, R.W., Sohn, M.-W., Ehrlich-Jones, L.S., Ainsworth,
B.E., Nevitt, M.M., Kwoh, C.K., Dunlop, D.D., 2015. Accelerometer-Monitored Sedentary Behavior and Observed Physical Function Loss. Am. J. Public Health 105, 560-566. https://doi.org/10.2105/AJPH.2014.302270

Silva, F.M., Petrica, J., Serrano, J., Paulo, R., Ramalho, A., Lucas, D., Ferreira, J.P., DuarteMendes, P., 2019. The Sedentary Time and Physical Activity Levels on Physical Fitness in the Elderly: A Comparative Cross Sectional Study. Int. J. Environ. Res. Public Health 16, 3697. https://doi.org/10.3390/ijerph16193697

Spartano, N.L., Lyass, A., Larson, M.G., Tran, T., Andersson, C., Blease, S.J., Esliger, D.W., Vasan, R.S., Murabito, J.M., 2019. Objective physical activity and physical performance in middle-aged and older adults. Exp. Gerontol. 119, 203-211.
https://doi.org/10.1016/j.exger.2019.02.003
Straight, C.R., Lindheimer, J.B., Brady, A.O., Dishman, R.K., Evans, E.M., 2016. Effects of Resistance Training on Lower-Extremity Muscle Power in Middle-Aged and Older Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Sport. Med. 46, 353-364. https://doi.org/10.1007/s40279-015-0418-4

Sullivan, G.M., Feinn, R., 2012. Using Effect Size—or Why the P Value Is Not Enough. J. Grad. Med. Educ. 4, 279-282. https://doi.org/10.4300/JGME-D-12-00156.1

Taekema, D.G., Gussekloo, J., Maier, A.B., Westendorp, R.G.J., de Craen, A.J.M., 2010. Handgrip strength as a predictor of functional, psychological and social health. A prospective population-based study among the oldest old. Age Ageing 39, 331-337. https://doi.org/10.1093/ageing/afq022

Tak, E., Kuiper, R., Chorus, A., Hopman-Rock, M., 2013. Prevention of onset and progression of basic ADL disability by physical activity in community dwelling older adults: A meta-analysis. Ageing Res. Rev. https://doi.org/10.1016/j.arr.2012.10.001

Tang, Y., Green, P., Maurer, M., Lazarte, R., Kuzniecky, J.R., Hung, M.Y., Garcia, M.,

Kodali, S., Harris, T., 2015. Relationship between Accelerometer-Measured Activity and Self-Reported or Performance-Based Function in Older Adults with Severe Aortic Stenosis. Curr. Geriatr. Reports. https://doi.org/10.1007/s13670-015-0152-7

Taraldsen, K., Stefanie Mikolaizak, A., Maier, A.B., Boulton, E., Aminian, K., Van Ancum, J., Bandinelli, S., Becker, C., Bergquist, R., Chiari, L., Clemson, L., French, D.P., Gannon, B., Hawley-Hague, H., Jonkman, N.H., Mellone, S., Paraschiv-Ionescu, A., Pijnappels, M., Schwenk, M., Todd, C., Yang, F.B., Zacchi, A., Helbostad, J.L., Vereijken, B., 2019. Protocol for the PreventIT feasibility randomised controlled trial of a lifestyle-integrated exercise intervention in young older adults. BMJ Open 9. https://doi.org/10.1136/bmjopen-2018-023526

Taylor, D., 2014. Physical activity is medicine for older adults. Postgrad. Med. J. 90, 26-32. https://doi.org/10.1136/postgradmedj-2012-131366

Thomson, H.J., Thomas, S., 2013. The effect direction plot: visual display of nonstandardised effects across multiple outcome domains. Res. Synth. Methods 4, 95-101. https://doi.org/10.1002/jrsm. 1060

Trayers, T., Lawlor, D.A., Fox, K.R., Coulson, J., Davis, M., Stathi, A., Peters, T., 2014. Associations of objectively measured physical activity with lower limb function in older men and women: Findings from the older people and active living (OPAL) study. J. Aging Phys. Act. 22, 34-43. https://doi.org/10.1123/JAPA.2012-0087

Tremblay, M., 2012. Letter to the editor: Standardized use of the terms "sedentary" and "sedentary behaviours." Appl. Physiol. Nutr. Metab. https://doi.org/10.1139/H2012-024

Tremblay, M.S., Aubert, S., Barnes, J.D., Saunders, T.J., Carson, V., Latimer-Cheung, A.E., Chastin, S.F.M., Altenburg, T.M., Chinapaw, M.J.M., Aminian, S., Arundell, L., Hinkley, T., Hnatiuk, J., Atkin, A.J., Belanger, K., Chaput, J.P., Gunnell, K., Larouche, R., Manyanga, T., Gibbs, B.B., Bassett-Gunter, R., Biddle, S., Biswas, A., Chau, J.,

Colley, R., Coppinger, T., Craven, C., Cristi-Montero, C., de Assis Teles Santos, D., del Pozo Cruz, B., del Pozo-Cruz, J., Dempsey, P., do Carmo Santos Gonçalves, R.F., Ekelund, U., Ellingson, L., Ezeugwu, V., Fitzsimons, C., Florez-Pregonero, A., Friel, C.P., Fröberg, A., Giangregorio, L., Godin, L., Halloway, S., Husu, P., Kadir, M., Karagounis, L.G., Koster, A., Lakerveld, J., Lamb, M., LeBlanc, A.G., Lee, E.Y., Lee, P., Lopes, L., Manns, T., Ginis, K.M., McVeigh, J., Meneguci, J., Moreira, C., Murtagh, E., Patterson, F., da Silva, D.R.P., Pesola, A.J., Peterson, N., Pettitt, C., Pilutti, L., Pereira, S.P., Poitras, V., Prince, S., Rathod, A., Rivière, F., Rosenkranz, S., Routhier, F., Santos, R., Smith, B., Theou, O., Tomasone, J., Tucker, P., Meyer, R.U., van der Ploeg, H., Villalobos, T., Viren, T., Wallmann-Sperlich, B., Wijndaele, K., Wondergem, R., 2017. Sedentary Behavior Research Network (SBRN) - Terminology Consensus Project process and outcome. Int. J. Behav. Nutr. Phys. Act. https://doi.org/10.1186/s12966-017-0525-8

Vagetti, G.C., Barbosa Filho, V.C., Moreira, N.B., de Oliveira, V., Mazzardo, O., de Campos, W., 2014. Association between physical activity and quality of life in the elderly: A systematic review, 2000-2012. Rev. Bras. Psiquiatr.
https://doi.org/10.1590/1516-4446-2012-0895
Van Cauwenberg, J., Van Holle, V., De Bourdeaudhuij, I., Owen, N., Deforche, B., 2014. Older adults' reporting of specific sedentary behaviors: Validity and reliability. BMC Public Health. https://doi.org/10.1186/1471-2458-14-734
van der Ploeg, H.P., Hillsdon, M., 2017. Is sedentary behaviour just physical inactivity by another name? Int. J. Behav. Nutr. Phys. Act. 14, 1-8. https://doi.org/10.1186/s12966-017-0601-0

Van Gestel, A.J.R., Clarenbach, C.F., Stöwhas, A.C., Rossi, V.A., Sievi, N.A., Camen, G., Russi, E.W., Kohler, M., 2012. Predicting Daily Physical Activity in Patients with

Chronic Obstructive Pulmonary Disease. PLoS One 7, e48081. https://doi.org/10.1371/journal.pone.0048081

Van Lummel, R.C., Walgaard, S., Maier, A.B., Ainsworth, E., Beek, P.J., van Dieën, J.H., 2016. The Instrumented Sit-to-Stand Test (iSTS) Has Greater Clinical Relevance than the Manually Recorded Sit-to-Stand Test in Older Adults. PLoS One 11, e0157968. https://doi.org/10.1371/journal.pone. 0157968
van Oeijen, K., Teunissen, L.L., van Leeuwen, C., van Opstal, M., José van der Putten, M., Notermans, N.C., van Meeteren, N.L.U., Schröder, C.D., 2020. Performance and Selfreported Functioning of People With Chronic Idiopathic Axonal Polyneuropathy: A 4Year Follow-up Study. Arch. Phys. Med. Rehabil. 101, 1946-1952. https://doi.org/10.1016/j.apmr.2020.06.017

Van Sloten, T.T., Savelberg, H.H.C.M., Duimel-Peeters, I.G.P., Meijer, K., Henry, R.M.A., Stehouwer, C.D.A., Schaper, N.C., 2011. Peripheral neuropathy, decreased muscle strength and obesity are strongly associated with walking in persons with type 2 diabetes without manifest mobility limitations. Diabetes Res. Clin. Pract. 91, 32-39. https://doi.org/10.1016/j.diabres.2010.09.030

Walker, P.P., Burnett, A., Flavahan, P.W., Calverley, P.M.A., 2008. Lower limb activity and its determinants in COPD. Thorax 63, 683-689.
https://doi.org/10.1136/thx.2007.087130
Wang, D.X.M., Yao, J., Zirek, Y., Reijnierse, E.M., Maier, A.B., 2020. Muscle mass, strength, and physical performance predicting activities of daily living: a meta-analysis.
J. Cachexia. Sarcopenia Muscle 11, 3-25. https://doi.org/10.1002/jcsm. 12502

Ward, C.L., Valentine, R.J., Evans, E.M., 2014. Greater Effect of Adiposity Than Physical Activity or Lean Mass on Physical Function in Community-Dwelling Older Adults. J. Aging Phys. Act. 22, 284-293. https://doi.org/10.1123/japa.2012-0098

Waschki, B., Spruit, M.A., Watz, H., Albert, P.S., Shrikrishna, D., Groenen, M., Smith, C., Man, W.D.C., Tal-Singer, R., Edwards, L.D., Calverley, P.M.A., Magnussen, H., Polkey, M.I., Wouters, E.F.M., 2012. Physical activity monitoring in COPD: Compliance and associations with clinical characteristics in a multicenter study. Respir. Med. 106, 522-530. https://doi.org/10.1016/j.rmed.2011.10.022

Watz, H., Waschki, B., Boehme, C., Claussen, M., Meyer, T., Magnussen, H., 2008. Extrapulmonary Effects of Chronic Obstructive Pulmonary Disease on Physical Activity. Am. J. Respir. Crit. Care Med. 177, 743-751.
https://doi.org/10.1164/rccm.200707-1011OC
Wells, G., Shea, B., O'Connell, D., Peterson, J., 2000. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses [WWW Document]. Ottawa, Ottawa Hosp. Res. Inst.

Wells GA et al., 2012. The Newcastle-Ottawa Scale (NOS) for assessing the quality if nonrandomized studies in meta-analyses. Evid. based public Heal. https://doi.org/10.2307/632432

Westbury, L.D., Dodds, R.M., Syddall, H.E., Baczynska, A.M., Shaw, S.C., Dennison, E.M., Roberts, H.C., Sayer, A.A., Cooper, C., Patel, H.P., 2018. Associations Between Objectively Measured Physical Activity, Body Composition and Sarcopenia: Findings from the Hertfordshire Sarcopenia Study (HSS). Calcif. Tissue Int. 103, 237-245. https://doi.org/10.1007/s00223-018-0413-5

Wickerson, L., Mathur, S., Helm, D., Singer, L., Brooks, D., 3AD. Physical activity profile of lung transplant candidates with interstitial lung disease. J Cardiopulm Rehabil Prev 33, 106-112.

Winberg, C., Flansbjer, U.-B., Rimmer, J.H., Lexell, J., 2015. Relationship Between Physical Activity, Knee Muscle Strength, and Gait Performance in Persons With Late Effects of

Polio. PM R 7, 236-244.
Yamada, M., Arai, H., Nagai, K., Uemura, K., Mori, S., Aoyama, T., 2011. Differential determinants of physical daily activities in frail and nonfrail community-dwelling older adults. J. Clin. Gerontol. Geriatr. 2, 42-46. https://doi.org/10.1016/j.jcgg.2011.02.004

Yasunaga, A., Shibata, A., Ishii, K., Koohsari, M.J., Inoue, S., Sugiyama, T., Owen, N., Oka, K., 2017. Associations of sedentary behavior and physical activity with older adults' physical function: an isotemporal substitution approach. BMC Geriatr. 17, 280. https://doi.org/10.1186/s12877-017-0675-1

Yeung, S.S.Y., Reijnierse, E.M., Trappenburg, M.C., Hogrel, J.Y., McPhee, J.S., Piasecki, M., Sipila, S., Salpakoski, A., Butler-Browne, G., Pääsuke, M., Gapeyeva, H., Narici, M. V., Meskers, C.G.M., Maier, A.B., 2018. Handgrip Strength Cannot Be Assumed a Proxy for Overall Muscle Strength. J. Am. Med. Dir. Assoc. https://doi.org/10.1016/j.jamda.2018.04.019

Yoshida, D., Nakagaichi, M., Saito, K., Wakui, S., Yoshitake, Y., 2010. The Relationship between Physical Fitness and Ambulatory Activity in Very Elderly Women with Normal Functioning and Functional Limitations. J. Physiol. Anthropol. 29, 211-218. https://doi.org/10.2114/jpa2.29.211

Yuki, A., Otsuka, R., Tange, C., Nishita, Y., Tomida, M., Ando, F., Shimokata, H., Arai, H., 2019. Daily Physical Activity Predicts Frailty Development Among CommunityDwelling Older Japanese Adults. J. Am. Med. Dir. Assoc. 20, 1032-1036. https://doi.org/10.1016/j.jamda.2019.01.001

Figure 1 Flowchart of the article selection process

Figure 2 Effect direction heat maps of the associations between physical activity and sedentary behavior with upper (A, B, C, D) and lower body (E, F, G) muscle strength and muscle power

D. UB MP - other

F. LB MP - other

Alcazar 2016 [Leg pres]] n-695 Hartley 2017 [Jump] n-242
Morie 2010 [Leg press] n-82 ${ }^{4}$ Ashe 2003 [Leg press] n-78
Edholm 2018 [squat jump] n-60 Perkin 2018 [Leg prezs] n-48 Hernandez 2016 [5090 1RM] n-44 ${ }^{4}$ Hernandez 2016 [70\% 1RM] n-44 ${ }^{4}$ Puthoff 2008 [Leg press peak] $n-30^{d}$ Puthoff 2003 [Leg press 4090 1RM] $n-30^{4}$ Puthoff 2003 [Leg press 909 1RM] $n-30^{4}$ Andre 2013 ($\&$ Andre 2016) [Calf raise] $n-25$ Chastin 2012 [Leg extension] (M) n-16

	Legend Effect direction and p-value +/-=positive/negative effect direction (higher PA/lower SB associated with better (+) or worse (.) muscle atrength (power), $\mathrm{N} / \mathrm{R}=$ not reported PA/SB Counts=activity counts, TP A= total phytical activity, MVPA= moderate-to-vigorous physical activity, LPA = light phyaical activity, $\mathrm{SB}=$ zedentary behavior Muscle strength/power UB=upper body, LIS=lower body, MS=muscle atrength, $\mathrm{MP}=$ muscle power Articles ${ }^{4}=$ population selected for divease, Underline=loogitudinal derign, (sub-groupt): F-femaic, M-male, ψ--with or without disoace, Ob-oberityryears, $P G$-acercise, $N P G$-mon-exercise, 2.FG-low functioning group, HPG-high functioning group [Muscle strength/power specific measures] KZS: knee extension strength,

Figure 3 Effect sizes of physical activity and sedentary behavior with muscle strength and muscle power derived from albatross plots, expressed as standardized regression coefficients (β)

Figure 4 Forest plots and meta-analysis of adjusted standardized regression coefficients (β) and 95% CI of the associations between of physical activity measures with hand grip strength (A, B, C) and chair stand test (D, E), respectively ${ }^{\text {ab Bann }} 2015$ reported approximate gender distribution and sample sizes were subsequently estimated for males and females from the total population, respectively
${ }^{\text {b }}$ Rowlands 2018 reported determinant and outcome driven sample size as a range and the median was subsequently used as the estimate for sample size

Figure D1 Effect direction heat maps of the associations between intensity-based accelerometer measures of physical activity with upper body (A, B) and lower body (C, D, E) measures of muscle strength and muscle power

Figure D2 Effect direction heat maps of the associations between physical activity and sedentary behavior frequency and accumulation with upper (A, B) and lower body (C, D) measures of muscle strength and muscle power

Figure D3 Albatross plots depicting the magnitude of the association (contours lines represent standardized regression coefficients (β)) of higher physical activity measures (A, B, C, D, E) or lower sedentary behavior (F) with hand grip strength (upper body muscle strength)

E. Light physical activity

Figure D4 Albatross plots depicting the magnitude of the association (contours lines represent standardized regression coefficients (β)) of higher moderate-to-vigorous physical activity (A) with arm curl (upper body muscle power)

Figure D5 Albatross plots depicting the magnitude of the association (contours lines represent standardized regression coefficients (β)) of higher physical activity measures (A, B, C, D, E) or lower sedentary behavior (F) with lower body muscle strength

Figure D6 Albatross plots depicting the magnitude of the association (contours lines represent standardized regression coefficients (β)) of higher physical activity measures (A, B, C, D) or lower sedentary behavior (E) with chair stand test (lower body muscle power)

c. Moderate-to-vigorous physical activity

E. Sedentary behavio

$$
\begin{array}{ccc}
\hline-----\quad \beta= \pm 0.10 \\
\text { disease population }
\end{array} \begin{aligned}
& -\quad-\quad \begin{array}{l}
\beta= \pm 0.20 \\
\text { general population }
\end{array} \\
& \hline
\end{aligned}
$$

Figure D7 Albatross plots depicting the magnitude of the association (contours lines represent standardized regression coefficients (β)) of higher moderate-to-vigorous physical activity (A) with lower body muscle power

Figure D8 Funnel plots of standard error by standardized regression coefficient (β) for the associations of physical activity measures with hand grip strength (A, B, C) and chair stand test (D, E), respectively

A. Total physical activity and hand grip strength (Egger's test: $p=0.000$)

B. Moderate-to-vigorous physical activity and hand grip strength (Egger's test: $\mathrm{p}=0.489$)

C. Light physical activity and hand grip strength (Egger's test: $p=0.162$)

D. Total physical activity and chair stand test (Egger's test: $p=0.010$)

E. Moderate-to-vigorous physical activity and chair stand test (Egger's test: $p=0.064$)

Appendices

Appendix A: Full search strategy
Appendix A Full search strategy (June 21, 2020)

PubMed

\#	Query	Results
\#14	\#10 AND \#13	5.729
\#13	\#11 OR \#12	2.085.084
\#12	"Motor Activity"[Mesh:NoExp] OR "Exercise"[Mesh] OR "Sports"[Mesh] OR "Physical Exertion"[Mesh] OR "Early Ambulation"[Mesh] OR "Exercise Therapy"[Mesh] OR "Exercise Movement Techniques"[Mesh] OR "Locomotion"[Mesh] OR "Motor Activit*" $[$ tiab] OR "Physical Activit*" $[$ tiab] OR "Locomotor Activit*"[tiab] OR "Exercis*"[tiab] OR "Physical Exercis*"[tiab] OR "Isometric Exercis*"[tiab] OR "Aerobic Exercis*"[tiab] OR "training"[tiab] OR "stretching"[tiab] OR "Physical Condition*" $[$ tiab] OR "Physical fitness" $[$ tiab] OR "Physical endurance" $[$ tiab] OR "movement therap*" $[$ tiab] OR "fitness training"[tiab] OR "Plyometric"[tiab] OR "Stretch-Shortening"[tiab] OR "Weight-Lifting"[tiab] OR "WeightBearing"[tiab] OR "running"[tiab] OR "jogging" $[t i a b]$ OR "walk*"[tiab] OR "bicycle"[tiab] OR "cycle"[tiab] OR "bicycling"[tiab] OR "cycling"[tiab] OR "rowing"[tiab] OR "swim*"[tiab] OR "ambulation"[tiab] OR "mobil*"[tiab] OR "pilates"[tiab] OR "yoga"[tiab]	2.061.636
\#11	"Sedentary Behavior"[Mesh] OR "sedent*"[tiab] OR "sitting’"[tiab] OR "physical inactivit*"[tiab]	61.174
\#10	\#3 OR \#5 OR \#9	10.790
\#9	\#1 AND \#8	4.320
\#8	\#6 AND \#7	19.226
\#7	"Monitoring, Physiologic"[Mesh:NoExp] OR "Monitoring, Ambulatory"[Mesh:NoExp] OR "monitoring"[tiab]	528.186
\#6	"Heart Rate"[Mesh:NoExp] OR "cardiac rate*"[tiab] OR "heart rate*" [tiab] OR "pulse rate*"[tiab] OR "cardiac frequency" $[t i a b]$ OR "heart frequency" $[t i a b]$	246.877
\#5	\#1 AND \#4	868
\#4	"pedomet*"[tiab]	2.755
\#3	\#1 AND \#2	5.977
\#2	"Accelerometry"[Mesh] OR "Acceleromet*"[tiab] OR "actigra*"[tiab]	23.701

("Aged"[Mesh] OR "Aged, 80 and over"[Mesh] OR "Frail Elderly"[Mesh] OR "Geriatrics"[Mesh] OR "Geriatric Psychiatry"[Mesh] OR "Geriatric Nursing"[Mesh] OR "Geriatric Dentistry"[Mesh] OR "Dental Care for Aged"[Mesh] OR "Health Services for the Aged"[Mesh]) OR ("elder*" $[t w]$ OR "eldest" $[t w]$ OR "frail*" $[t w]$ OR "geriatri*" $[t w]$ OR "old age*" $[\mathrm{tw}]$ OR "oldest old*" $[\mathrm{tw}]$ OR "senior*" $[\mathrm{tw}]$ OR "senium" $[\mathrm{tw}]$ OR "very old*" ${ }^{[t w]}$ OR "septuagenarian*" tw] OR "octagenarian*" $[t w]$ OR "octogenarian*" $[t w]$ OR "nonagenarian*" $[t w]$ OR "centarian*" $[t w]$ OR "centenarian*" $[t w]$ OR "supercentenarian*"[tw] OR "older people" $[t w]$ OR "older subject*" $[t w]$ OR "older patient*" $[t w]$ OR "older age*" $[t w]$ OR "older adult*" $[\mathrm{tw}]$ OR "older man" $[\mathrm{tw}]$ OR "older men" $[\mathrm{tw}]$ OR "older male" $[\mathrm{tw}]$ OR "older woman" $[\mathrm{tw}]$ OR "older women" $[t w]$ OR "older female" $[t w]$ OR "older population*" $[t w]$ OR "older person*"[tw])

Embase.com

\#	Query	Results
\#15	\#10 AND \#14	6.801
\#14	\#11 OR \#12 OR \#13	2.695 .910
\#13	((motor NEXT/1 activit*):ab,ti,kw) OR ((physical NEXT/1 activit*):ab,ti,kw) OR locomot*:ab,ti,kw OR exercis*: ab,ti,kw OR training:ab,ti,kw OR stretching:ab,ti,kw OR ((physical NEXT/1 condition*):ab,ti,kw) OR 'physical fitness':ab,ti,kw OR 'physical endurance':ab,ti,kw OR ((movement NEXT/1 therap*):ab,ti,kw) OR plyometric:ab,ti,kw OR 'stretch shortening':ab,ti,kw OR 'weight lifting':ab,ti,kw OR 'weight bearing':ab,ti,kw OR running:ab,ti,kw OR jogging:ab,ti,kw OR walk*:ab,ti,kw OR bicycle:ab,ti,kw OR cycle:ab,ti,kw OR bicycling:ab,ti,kw OR cycling:ab,ti,kw OR rowing:ab,ti,kw OR swim*:ab,ti,kw OR ambulation:ab,ti,kw OR mobil*:ab,ti,kw OR pilates:ab,ti,kw OR yoga:ab,ti,kw	2.314.193
\#12	'motor activity'/de OR 'exercise'/exp OR 'sport'/exp OR 'mobilization'/exp OR 'kinesiotherapy'/exp OR 'physical activity'/exp OR 'fitness'/exp OR 'locomotion'/exp	951.571
\#11	'sedentary lifestyle'/exp OR 'sitting'/exp OR 'physical inactivity'/exp OR sedent*:ab,ti,kw OR sitting:ab,ti,kw OR ((physical NEXT/1 inactivit*):ab,ti,kw)	91.488
\#10	\#3 OR \#5 OR \#9	12.541
\#9	\#1 AND \#8	4.407
\#8	\#6 AND \#7	25.596
\#7	'physiologic monitoring'/exp OR 'ambulatory monitoring'/exp OR monitoring:ab,ti, kw	709.204
\#6	'heart rate'/de OR 'heart rate variability'/de OR 'resting heart rate'/de OR 'cardiac rate':ab,ti,kw OR 'heart rate':ab,ti,kw OR 'pulse rate':ab,ti,kw OR 'cardiac frequency':ab,ti,kw OR 'heart frequency':ab,ti,kw	318.213
\#5	\#1 AND \#4	1.097

\#4	'pedometer'/exp OR 'pedometry'/exp OR pedomet*:ab,ti,kw	4.154
\#3	\#1 AND \#2	7.844
\#2	'accelerometry'/exp OR 'accelerometer'/exp OR 'actimetry'/exp OR 'actigraph'/exp OR acceleromet*:ab,ti OR actigra*:ab,ti	36.929
\#1	'aged'/exp OR 'geriatrics'/exp OR 'elderly care'/exp OR elder*:de,ab,ti OR eldest:de,ab,ti OR frail*:de,ab,ti OR geriatri*:de,ab,ti OR ((old NEXT/1 age*):de,ab,ti) OR ((oldest NEXT/1 old*):de,ab,ti) OR senior*:de,ab,ti OR senium:de,ab,ti OR ((very NEXT/1 old*):de,ab,ti) OR septuagenarian*:de,ab,ti OR octagenarian*:de,ab,ti OR octogenarian*:de,ab,ti OR nonagenarian*:de,ab,ti OR centarian*:de,ab,ti OR centenarian*:de,ab,ti OR supercentenarian*:de,ab,ti OR 'older people':de,ab,ti OR ((older NEXT/1 subject*):de,ab,ti) OR ((older NEXT/1 patient*): de, ab,ti) OR ((older NEXT/1 age*):de, ab,ti) OR ((older NEXT/1 adult*):de, ab,ti) OR 'older man':de,ab,ti OR 'older men':de,ab,ti OR 'older male':de,ab,ti OR 'older woman':de,ab,ti OR 'older women':de,ab,ti OR 'older female':de,ab,ti OR ((older NEXT/1 population*):de,ab,ti) OR ((older NEXT/1 person*):de,ab,ti)	3.432.221

The Cochrane Library (via Wiley)

\#	Query	Results
\#14	\#10 and \#13	920
\#13	\#11 or \#12	238.188
\#12	((motor NEXT activit*) or (physical NEXT activit*) or locomot* or exercis* or training or stretching or (physical NEXT condition*) or (physical NEXT fitness) or (physical NEXT endurance) or (movement NEXT therap*) or plyometric or (stretch NEXT shortening) or (weight NEXT lifting) or (weight NEXT bearing) or running or jogging or walk* or bicycle or cycle or bicycling or cycling or rowing or swim* or ambulation or mobil* or pilates or yoga):ti,ab,kw	233.754
\#11	(Sedent* or sitting or (physical NEXT inactivit*)):ti,ab,kw	14.465
\#10	\#3 or \#5 or \#9	1.334
\#9	\#1 and \#8	406
\#8	\#6 and \#7	6.983
\#7	monitoring:ti,ab,kw	59.019
\#6	((cardiac NEXT rate):ab,ti,kw or (heart NEXT rate):ab,ti,kw or (pulse NEXT rate):ab,ti,kw or (cardiac NEXT frequency): ab,ti,kw or (heart NEXT frequency)):ti,ab,kw	59.143
\#5	\#1 and \#4	247

\#4	pedomet*:ti,ab,kw	1.712
\#3	\#1 and \#2	780
\#2	(acceleromet* or actigra*):ti,ab,kw	5.965
\#1	(elder* or eldest or frai** or geriatri* or (old NEXT age*) or (oldest NEXT old*) or senior* or senium or (very NEXT old*) or septuagenarian* or octagenarian* or octogenarian* or nonagenarian* or centarian* or centenarian* or supercentenarian* or (older NEXT people) or (older NEXT subject*) or (older NEXT patient*) or (older NEXT age*) or (older NEXT adult*) or (older NEXT man) or (older NEXT men) or (older NEXT male) or (older NEXT woman) or (older NEXT women) or (older NEXT female) or (older NEXT population*) or (older NEXT person*)):ti,ab,kw	76.361

CINAHL (via EBSCO)

\#	Query	Results
S14	S10 AND S13	2,995
S13	S11 OR S12	592,088
S12	((MH "Motor Activity") OR (MH "Exercise+") OR (MH "Sports+") OR (MH "Early Ambulation") OR (MH "Therapeutic Exercise+") OR (MH "Locomotion+")) OR TI (("motor activit*" OR "physical activit*" OR locomot* OR exercis* OR training OR stretching OR "physical condition*" OR "physical fitness" OR "physical endurance" OR "movement therap*" OR plyometric OR "stretch shortening" OR "weight lifting" OR "weight bearing" OR running OR jogging OR walk* OR bicycle OR cycle OR bicycling OR cycling OR rowing OR swim* OR ambulation OR mobil* OR pilates OR yoga)) OR AB (("motor activit*" OR "physical activit*" OR locomot* OR exercis* OR training OR stretching OR "physical condition*" OR "physical fitness" OR "physical endurance" OR "movement therap*" OR plyometric OR "stretch shortening" OR "weight lifting" OR "weight bearing" OR running OR jogging OR walk* OR bicycle OR cycle OR bicycling OR cycling OR rowing OR swim* OR ambulation OR mobil* OR pilates OR yoga))	582,203
S11	((MH "Life Style, Sedentary") OR (MH "Sitting")) OR TI ((sedent* OR sitting OR "physical inactivit*")) OR AB ((sedent* OR sitting OR "physical inactivit*"))	26,571
S10	S3 OR S5 OR S9	4,531
S9	S1 AND S8	1,003
S8	S6 AND S7	4,480
S7	(MH "Monitoring, Physiologic") OR TI monitoring OR AB monitoring	111,399
S6	(MH "Heart Rate") OR TI (("cardiac rate" or "heart rate" or "pulse rate" or "cardiac frequency" or "heart frequency")) OR AB (("cardiac rate" or "heart rate" or "pulse rate" or "cardiac frequency" or "heart frequency"))	47,141
S5	S1 AND S4	643
S4	(MH "Pedometers") OR TI pedomet* OR AB pedomet*	2,279
S3	S1 AND S2	3,047

S2	((MH "Accelerometry+") OR (MH "Accelerometers") OR (MH "Actigraphy")) OR TI ((acceleromet* or actigra*)) OR AB ((acceleromet* or actigra*))	11,526
S1	MH "Aged+" OR MH "Aged, 80 and Over" OR MH "Frail Elderly" OR MH "Geriatrics" OR MH "Geriatric Psychiatry" OR MH "Gerontologic Nursing+" OR MH "Gerontologic Care" OR MH "Health Services for the Aged" OR TI (elder* OR eldest OR frail* OR geriatri* OR "old age*" OR "oldest old*" OR senior* OR senium OR "very old*" OR septuagenarian* OR octagenarian* OR octogenarian* OR nonagenarian* OR centarian* OR centenarian* OR supercentenarian* OR "older people" OR "older subject*" OR "older patient*" OR "older age*" OR "older adult*" OR "older man" OR "older men" OR "older male" OR "older woman" OR "older women" OR "older female" OR "older population*" OR "older person*") OR AB (elder* OR eldest OR frail* OR geriatri* OR "old age*" OR "oldest old*" OR senior* OR senium OR "very old*" OR septuagenarian* OR octagenarian* OR octogenarian* OR nonagenarian* OR centarian* OR centenarian* OR supercentenarian* OR "older people" OR "older subject*" OR "older patient*" OR "older age*" OR "older adult*" OR "older man" OR "older men" OR "older male" OR "older woman" OR "older women" OR "older female" OR "older population*" OR "older person*")	919,735

APA PsychINFO (via EBSCO)

\#	Query	Results
S17	S13 AND S16	1,097
S16	S14 OR S15	527,097
S15	(DE "Physical Activity" OR (DE "Exercise" OR DE "Aerobic Exercise" OR DE "Weightlifting" OR DE "Yoga") OR DE "Physical Fitness" OR (DE "Sports" OR DE "Baseball" OR DE "Basketball" OR DE "Football" OR DE "Judo" OR DE "Martial Arts" OR DE "Soccer" OR DE "Swimming" OR DE "Tennis" OR DE "Weightlifting") OR DE "Locomotion" AND \#DE "Training" OR DE "Athletic Training" OR DE "Locomotion") OR TI (("motor activit*" OR "physical activit*" OR locomot* OR exercis* OR training OR stretching OR "physical condition*" OR "physical fitness" OR "physical endurance" OR "movement therap*" OR plyometric OR "stretch shortening" OR "weight lifting" OR "weight bearing" OR running OR jogging OR walk* OR bicycle OR cycle OR bicycling OR cycling OR rowing OR swim* OR ambulation OR mobil* OR pilates OR yoga)) OR AB (("motor activit*" OR "physical activit*" OR locomot* OR exercis* OR training OR stretching OR "physical condition*" OR "physical fitness" OR "physical endurance" OR "movement therap*" OR plyometric OR "stretch shortening" OR "weight lifting" OR "weight bearing" OR running OR jogging OR walk* OR bicycle OR cycle OR bicycling OR cycling OR rowing OR swim* OR ambulation OR mobil* OR pilates OR yoga))	522,065
S14	TI (sedent* OR sitting OR "physical inactivit*") OR AB (sedent* OR sitting OR "physical inactivit*")	13,285
S13	S6 OR S8 OR S12	1,802
S12	S4 AND S11	131
S11	S9 AND S10	1,175
S10	DE "Monitoring" OR TI monitoring OR AB monitoring	58,460
S9	DE "Heart Rate" OR TI ("cardiac rate" or "heart rate" or "pulse rate" or "cardiac frequency" or "heart frequency") OR AB ("cardiac rate" or "heart rate" or "pulse rate" or "cardiac frequency" or "heart frequency")	28,295

S8	S4 AND S7	246
S7	TI pedomet* OR AB pedomet*	860
S6	S4 AND S5	1,478
S5	(DE "Actigraphy") OR TI (acceleromet* OR actigra*) OR AB (acceleromet* OR actigra*)	6,322
S4	S1 OR S2 OR S3	401,336
S3	TI (elder* OR eldest OR frail* OR geriatri* OR "old age*" OR "oldest old*" OR senior* OR senium OR "very old*" OR septuagenarian* OR octagenarian* OR octogenarian* OR nonagenarian* OR centarian* OR centenarian* OR supercentenarian* OR "older people" OR "older subject*" OR "older patient*" OR "older age*" OR "older adult*" OR "older man" OR "older men" OR "older male" OR "older woman" OR "older women" OR "older female" OR "older population*" OR "older person*") OR AB (elder* OR eldest OR frail* OR geriatri* OR "old age*" OR "oldest old*" OR senior* OR senium OR "very old*" OR septuagenarian* OR octagenarian* OR octogenarian* OR nonagenarian* OR centarian* OR centenarian* OR supercentenarian* OR "older people" OR "older subject*" OR "older patient*" OR "older age*" OR "older adult*" OR "older man" OR "older men" OR "older male" OR "older woman" OR "older women" OR "older female" OR "older population*" OR "older person*")	174,582
S2	DE "Geriatrics"	12,654
S1	Limiters - Age Groups: Aged (65 yrs \& older)	325,601

SPORTDiscus (via EBSCO)

\#	Query	Results
S16	S12 AND S15	544
S15	S13 OR S14	513,139
S14	DE "PHYSICAL activity" OR (DE "EXERCISE" OR DE "ABDOMINAL exercises" OR DE "AEROBIC exercises" OR DE "ANAEROBIC exercises" OR DE "AQUATIC exercises" OR DE "ARM exercises" OR DE "BACK exercises" OR DE "BREATHING exercises" OR DE "BREEMA" OR DE "BUTTOCKS exercises" OR DE "CALISTHENICS" OR DE "CHAIR exercises" OR DE "CHEST exercises" OR DE "CIRCUIT training" OR DE "COMPOUND exercises" OR DE "DO-in" OR DE "EXERCISE -- Immunological aspects" OR DE "EXERCISE adherence" OR DE "EXERCISE for children" OR DE "EXERCISE for girls" OR DE "EXERCISE for men" OR DE "EXERCISE for middle-aged persons" OR DE "EXERCISE for older people" OR DE "EXERCISE for people with disabilities" OR DE "EXERCISE for women" OR DE "EXERCISE for youth" OR DE "EXERCISE therapy" OR DE "EXERCISE video games" OR DE "FACIAL exercises" OR DE "FALUN gong exercises" OR DE "FOOT exercises" OR DE "GYMNASTICS" OR DE "HAND exercises" OR DE "HATHA yoga" OR DE "HIP exercises" OR DE "ISOKINETIC exercise" OR DE "ISOLATION exercises" OR DE "ISOMETRIC exercise" OR DE "ISOTONIC exercise" OR DE "KNEE exercises" OR DE "LEG exercises" OR DE "LIANGONG" OR DE "METABOLIC equivalent" OR DE "MULAN quan" OR DE "MUSCLE strength" OR DE "PILATES method" OR DE "PLYOMETRICS" OR DE "QI gong" OR DE "REDUCING exercises" OR DE "RUNNING" OR DE "RUNNING -- Social aspects" OR DE "SCHOOLS -- Exercises \& recreations" OR DE "SEXUAL exercises" OR DE "SHOULDER exercises" OR DE "STRENGTH training" OR DE "STRESS management exercises" OR DE "TAI chi"	503,410

| |
| :--- | :--- |

| S6 | DE "PULSE (Heart beat)" OR DE "HEART beat" OR TI ("cardiac rate" or "heart rate" or "pulse rate" or "cardiac frequency"
 or "heart frequency") OR AB ("cardiac rate" or "heart rate" or "pulse rate" or "cardiac frequency" or "heart frequency") | $\mathbf{3 0 , 4 9 0}$ |
| :--- | :--- | :--- | :--- |
| $\mathbf{S 5}$ | S1 AND S4 | |

Appendix C: Tables (Table C1-5)

Appendix D: Figures (Figure D1-8)

Table C1 Characteristics of articles assessing the association of physical activity and sedentary behavior with muscle strength and muscle power in older adults

Author year	Cohort	Country	Population selection ${ }^{\text {a }}$	Sample size (N)	Age in years mean (SD)	F \%	PA/SB measures	Muscle strength/muscle power measures
Abe 2015	N/A	JP	-	57	66.3 (6.8)	100	Steps, MVPA, LPA-to-MPA	KES, toe grasping strength
Abe 2012	N/A	JP	Healthy	48	65.7 (6.4)	100	Steps, VPA, MPA, LPA, EE	KES, knee flexion strength
Aggio 2016	BRHS	GB	-	1286 (Nonsarcopenia: 1033; Sarcopenia: 183; Severe sarcopenia: 70)	Non-sarcopenia: 7.6 (4.1); Sarcopenia: 79.7 (4.7); Severe sarcopenia: 83.1 (5.2)	0.0	MVPA, LPA, SB, BST	HGS
Alcazar 2018	N/A	ES	-	31	75.8 (4.7)	54.8	MVPA, SB	Leg press strength, leg press power
Alzahrani 2012	N/A	N/R	After stroke	42	70 (10)	31.0	Activity counts, TPA, MVPA	KES
Andersson 2013	N/A	SE	COPD	72	65 (7)	61.1	EE (PAL)	KES
Andre 2018	N/A	PT	Healthy	29	73.2 (6.6)	50.0	MVPA	Calf raise
Andre 2016	N/A	PT	Healthy	28	73.9 (7.7)	56.1	MVPA	Calf raise
Aoyagi 2009	Nakanojo	JP		170	72.7 (4.6)	55.3	Steps, TPA	HGS, knee extension torque
Ashe 2008	N/A	N/R		73	68.8 (3)	100	Activity counts, MVPA	KES, leg press power
Ashe 2007	N/A	N/R	Chronic disease	200	74.4 (5.7)	65.0	Steps	HGS, KES
Aubertin- Leheudre 2017	LIFE	US	Mobility limited and sedentary	1453 (Nonobese nondynapenic: 402; Non-obese dynapenic: 381; Obese nondynapenic: 414; Obese dynapenic: 256)	78.8 (5.3)	66.0	Steps, activity counts, TPA	HGS

Author year	Cohort	Country	Population selection ${ }^{\text {a }}$	Sample size (N)	Age in years mean (SD)	F \%	PA/SB measures	Muscle strength/muscle power measures
Balducci 2017	N/A	IT	Diabetes	300	61.6 (9.9)	38.7	$\begin{aligned} & \text { MVPA, LPA, } \\ & \text { SB } \end{aligned}$	Shoulder press strength, leg press strength
Bann 2015	LIFE	US	Mobility limited and sedentary	$\begin{aligned} & 1130(M: \mathrm{N} / \mathrm{R} ; \\ & F: \mathrm{N} / \mathrm{R}) \end{aligned}$	$\begin{aligned} & M: 79.3(5.3) ; F: 78.5 \\ & (5.3) \end{aligned}$	N/R ~ 67	TPA, LPA, SB	HGS
Barbat-Artigas 2012	N/A	CN	Postmenopausal	57 (Sedentary: 19; Moderate active: 20; Active: 18)	61 (5)	100	Steps, TPA	HGS, KES, 20s CST
Bartlett 2020	N/A	N/R	Healthy	50	Sedentary: 63.4 (4.4); Active: 67.0 (6.0)	Sedentary: 52; Active: 56	Steps	HGS
Bassey 1988	N/A	GB	-	125	M: 71 (4); F: 72 (4)	53.6	Steps	Calf strength
Bogucka 2018	N/A	PL	Postmenopausal	46 (Dynapenic: 10; Non- dynapenic: 36)	71.4 (5.6)	100	Steps	HGS
Bollaert 2017	N/A	US	MS and HC	$\begin{aligned} & 80(M S: 40 \text {; } \\ & H C: 40) \end{aligned}$	$\begin{aligned} & M S: 65.3 \text { (4.3); HC: } \\ & 66.5 \text { (6.7) } \end{aligned}$	62.5	MVPA, LPA, SB, PA bouts, SB bouts, long SB bouts	5x CST
Boutou 2019	PROactive	GB, NL, GR, BE	COPD	157	67.2 (7.8)	24.2	Δ Steps, $\triangle \mathrm{MVPA}$, $\triangle \mathrm{MET}, \triangle \mathrm{VMU}$	KES
Carrasco Poyatos 2016	N/A	ES	-	42 (MPA group: 19; VPA group: 15)	70.1 (4.5)	100	VPA, MVPA, MPA	HGS
Chastin 2012	N/A	GB	Healthy	30	$\begin{aligned} & F: 79.3 \text { (3.4); M: } 79.0 \\ & \text { (3.6) } \end{aligned}$	46.7	SB, SB break rate	Leg extension power
Chmelo 2013	IDEA	US	OA, high BMI, and sedentary	160	66 (6)	69.0	Steps, MVPA LPA, EE	KES
Cooper 2015	MRC NSHD	GB	-	1727	63.3 \{60.3-64.9\}	51.5	MVPA, SB, EE	HGS, 10x CST
Davis 2014	OPAL	GB	-	217	78.1 (5.8)	50.2	$\begin{aligned} & \text { MVPA, SB, } \\ & \text { BST } \end{aligned}$	5x CST

Author year	Cohort	Country	Population selection ${ }^{\text {a }}$	Sample size (N)	Age in years mean (SD)	F \%	PA/SB measures	Muscle strength/muscle power measures
De Melo 2010	N/A	CN	-	60	77 (7.3)	75.0	Steps	30s CST
De Melo 2014	N/A	CN	-	60	77 (7.3)	75.0	Steps	Arm curl, 30s CST
Demeyer 2018	PAC-COPD	ES	COPD	114	70 (8)	N/R	Δ Steps, steps, MVPA	$\Delta \mathrm{HGS}$
Distefano 2018	N/A	US	-	29 (Active: 10; Sedentary: 19)	Active: 67.5 (2.7); Sedentary: 70.7 (4.7)	Active: 20.0; Sedentary: 42.1	Steps	KES, 5x CST
Dogra 2017	N/A	CN	-	1157	64 (95\% CI: 64-64)	46.6	BST, long SB bouts	HGS
Dohrn 2020	SNAC-K	SE	-	656	73.3 (9.0)	64.0	Steps	5x CST
Dos Santos 2019	N/A	BR	-	375	70 (7)	69.6	MVPA	HGS
Duncan 2016	N/A	GB	-	201	66.1 (7.7)	59.7	Steps	Arm curl, 30s CST
Edholm 2019	N/A	SE	-	60	67.5 (15)	100	Activity counts, MVPA	Squat jump test
Foong 2016	TASOAC	AU	-	636	66 (7)	50.8	Activity counts, VPA, MPA, LPA, SB	KES, leg strength
Gennuso 2016	N/A	US		$\begin{aligned} & 44(M: 16 ; F \text { : } \\ & 28) \end{aligned}$	$\begin{aligned} & \text { M: } 71 \text { [69-74]; F: } 70 \\ & \text { [67-78] } \end{aligned}$	63.6	SB, BST, SB break rate, SB bouts, long SB bouts	5x CST
Gerdhem 2008	OPRA	SE	≥ 80 years	57	80.1 (0.1)	100	Activity counts, MVPA	KES, Knee flexion strength
Hall 2016	MURDOCK	US	-	$\begin{aligned} & 775 \text { (60-69y: } \\ & \text { 196, 70-79y: } \\ & \text { 198, 80-90+y: } \\ & 92 \text {) } \end{aligned}$	62.1 (SD N/R) (60- 69y: 64.8, 70-79y: 73.6, 80-90+y: 83.6)	$\begin{aligned} & 53.2(60- \\ & \text { 69y: } 50.5 \text {, } \\ & 70-79 y: \\ & 49.5,80- \\ & 90+y: 64.1) \end{aligned}$	Steps, MVPA, SB	30s CST
Harada 2017	NCGG	JP	Global cognitive impairment	192	76.2 (4.1)	44.7	Steps	5x CST
Hartley 2017	COSHIBA	GB	-	242	76.4 (2.6)	100	Activity counts	Jump strength, 5x CST, jump power
Hasegawa 2018	N/A	JP	-	50	77.8 (5.3)	74.0	Steps	30s CST

Author year	Cohort	Country	Population selection ${ }^{\text {a }}$	Sample size (N)	Age in years mean (SD)	F \%	PA/SB measures	Muscle strength/muscle power measures
Hernandes 2013	N/A	BR	+/- exercise lifestyle	238 (Exercise: 134; Nonexercise: 104)	Exercise: 68 [64-71]; Non-exercise: 68 [6471]	Exercise: 39.1; Nonexercise: 69.3	Steps	HGS, 30s CST
Hernandez 2016	N/A	ES	COPD (moderatesevere)	44	70.3 (6.7)	0.0	TPA, MPA, LPA, SB	Quadriceps power at 50% and 70% 1RM, respectively
Hopkins 2019	OAI	US	OA	687	Inactive: 65.7 (0.44); Active: 61.3 (0.48)	Inactive: 69.8; Active 44.3	MVPA	$\Delta 5 \mathrm{x}$ CST
Iijima 2017	N/A	JP	OA	207 (Basal activity: 58; Limited activity: 79; Low Active: 45; Physically active: 25)	Basal activity: 76.4 (8.89); Limited activity: 73.4 (6.83); Low Active: 70.0 (6.48); Physically active: 70.4 (6.00)	71.5	Steps	5x CST
Ikenaga 2014	N/A	JP	-	178	73.7 (2.6)	0.0	Steps, MPA, LPA, SB	HGS, KES
Iwakura 2016	N/A	N/R	COPD	22	71.6 (6.9)	0.0	Steps	5x CST
Jantunen 2016	Helsinki Birth	FI		695	70.7 (2.7)	54.5	MET	Arm curl, 30s CST
Jeong 2019	N/A	KR	-	52	60.3 (5.6)	90.4	Steps	Hip strength, KES
Johnson 2016	TASOAC	AU	-	188	64.0 (7.3)	53.7	VPA, MPA, LPA, SB	Leg strength
Kawagoshi 2013	N/A	JP	COPD	26	77 (6)	0.0	Steps, TPA, LPA, SB	KES
Keevil 2015	EPIC- Norfolk	GB	-	$\begin{aligned} & 3726 \text { (M: 1674; } \\ & F: 2052) \end{aligned}$	$\begin{aligned} & \text { M: } 69.8 \text { (7.6); } F: 68.0 \\ & (7.5) \end{aligned}$	55.1	MVPA, SB	HGS, CST
Kim 2015a	N/A	JP	-	207	83.5 (2.6)	55.5	Activity counts	HGS, KES
Kim 2015b	N/A	JP	$-$	101	81.4 (2.8)	100	Activity counts, MVPA, LPA, SB, long SB bouts	5x CST
Lai 2020	N/A	TW	Independent walking	122	69.9 (5.0)	71.3	MVPA	5x CST

Author year	Cohort	Country	Population selection ${ }^{\text {a }}$	Sample size (N)	Age in years mean (SD)	F \%	PA/SB measures	Muscle strength/muscle power measures
			without assistive device					
Lee 2015	OAI	US	Knee OA	1168	66 (N/R)	55.0	SB	5x CST
Lerma 2018		US	-	91	70.7 (10.2)	60.0	MVPA, LPA, SB	5x CST
Liao 2018	N/A	JP	-	281	74.5 (5.2)	38.1	SB, SB break rate, long SB bouts	HGS
$\begin{aligned} & \text { Lohne-Seiler } \\ & 2016 \end{aligned}$	2 N/R cohorts	NO	-	$\begin{aligned} & 161(M: 76 ; F: \\ & 85) \end{aligned}$	$\begin{aligned} & \text { M: } 72.3 \text { (4.8); F: } 73.2 \\ & (5.4) \end{aligned}$	52.8	Steps	HGS
Mador 2011	N/A	US	COPD	28	71.9 (7.7)	N/R	VMU	KES
Master 2018	OAI	US	Knee OA	1925	65.1 (9.1)	55.0	Steps	5x CST
Matkovic 2020	N/A	HR	COPD	111	67.7 (7.8)	31.5	Steps	HGS, 30s CST
McDermott 2002	N/A	US	+/- PAD	346	71.2 (8.3)	41.6	Accelerations	5x CST
McGregor 2018	CHMS	CN	-	1454	69.3 (0.3)	52.4	MVPA, LPA, SB	HGS
Meier 2020	PAAS	US	-	304	72.8 (5.8)	58.2	Steps	HGS, chest press strength, leg press strength
Monteiro 2019	N/A	PT	Caucasian	60	67.7 (5.3)	100	Activity counts	Arm curl, KES, knee flexion strength, 30s CST
Morie 2010	N/A	US	Mobility limited \& low testosterone	82	74.1 (5.3)	0.0	Activity counts	Chest press strength, chest press power, leg press strength, leg press power
Nagai 2018	N/A	JP	-	886	73.6 (7.0)	70.0	MVPA, LPA, SB	HGS
Nawrocka 2017	N/A	PL	-	61 (Not meeting PA guidelines: 39; Meeting PA guidelines: 22)	66.2 (4.4)	100	MVPA	Arm curl

Author year	Cohort	Country	Population selection ${ }^{\text {a }}$	Sample size (N)	Age in years mean (SD)	F \%	PA/SB measures	Muscle strength/muscle power measures
Nawrocka 2019	N/A	PL	-	$\begin{aligned} & 213 \text { (Not } \\ & \text { meeting PA } \\ & \text { guidelines: } 108 ; \\ & \text { Meeting PA } \\ & \text { guidelines: 105) } \end{aligned}$	N/R	100	MVPA	$\begin{aligned} & \text { HGS, Arm curl, 30s } \\ & \text { CST } \end{aligned}$
Nicolai 2010	N/A	GB	-	44	80.8 (4.1)	N/R	Steps (walking), TPA (standing)	5x CST
Ofei-Doodoo 2016	N/A	US	Sedentary	101	75.0 (7.2)	100	MVPA	Arm curl, 30s CST
Orwoll 2019	MrOS	US	-	2741 (No falls: 1777; One fall: 327: \geq Two falls: 63)	78.8 (5)	0.0	MVPA, LPA	5x CST
Osuka 2015	N/A	JP	-	802	72.5 (5.9)	76.7	MVPA, LPA	5x CST
Park 2018	N/A	KR	-	22	71.5 (3.3)	0.0	Steps	HGS, 30s CST
Perkin 2018	N/A	GB	Healthy	50	69 (4)	46	MVPA, SB, EE	Leg press strength, leg press power
Pitta 2005	N/A	BE	COPD	50	77.3 (7.0)	28	Steps (walking), TPA (standing)	HGS, knee extension torque
Puthoff 2008	N/A	N/R	Mildmoderate functional limitations	30	77.3 (7.0)	83.3	Steps	Leg press strength, leg press power
Rapp 2012	ActiFE Ulm	DE	-	1271	$\begin{aligned} & \text { M: } 76.0 \text { (6.46); } \\ & F: 75.1 \text { (6.58) } \end{aligned}$	43.6	Steps (walking)	HGS, 5x CST
$\begin{aligned} & \text { Rausch-Osthoff } \\ & 2014 \end{aligned}$	N/A	CH	COPD	27	62.3 (5.7)	40.7	Steps, EE, EE (PAL), MET	KES
Rava 2018	N/A	EE	-	81	73.1 (5.3)	100	VPA, MVPA, MPA, LPA, SB	5x CST
Reid 2018	N/A	AU	-	123	70.9 (4.2)	63	SB, BST	KES, leg press strength, 30s CST
Rojer 2017	Grey Power	NL	-	80	74.4 [72.4-78.0]	60.0	Steps, TPA, SB, PA bouts, SB bouts	HGS

Author year	Cohort	Country	Population selection ${ }^{\text {a }}$	Sample size (N)	Age in years mean (SD)	F \%	PA/SB measures	Muscle strength/muscle power measures
Rosenberg 2015	N/A	US	Retirement communities	307	83.6 (6.4)	72.3	SB	5x CST
Rowlands 2018	CODEC	GB	Type II diabetes	295	63.2 (9.7)	39.7	MVPA, accelerations, intensity gradient, PA bouts	HGS, 60s CST
Safeek 2018	N/A	US	HIV	21	66.1 (6.3)	33.3	Steps, MVPA, LPA, SB, EE	HGS, 30s CST
Sanchez-sanchez 2019	TSHA	ES	-	512	78.1 (5.7)	54.3	Activity counts, MVPA, LPA, SB	HGS
Santos 2012	N/A	PT	-	312	74.3 (6.6)	62.5	MVPA, SB	Arm curl, 30s CST
Sardinha 2015	N/A	PT	-	215	73.3 (5.9)	59.5	BST	Arm curl, 30s CST
Scott 2020	Healthy Ageing Initiative	SE	-	$\begin{aligned} & 3334 \text { (Non- } \\ & \text { sarcopenic: } \\ & 3273 ; \\ & \text { Sarcopenic: } 61 \text {) } \end{aligned}$	Non-sarcopenic: 70.01 (0.10); Sarcopenic: 70.02 (0.13)	Nonsarcopenic: 50.5; Sarcopenic: 57.4	MVPA, LPA, SB	HGS
Scott 2011	TASOAC	AU		697	61.9 (7.2)	49.5	Steps	Leg strength
Scott 2009	TASOAC	AU	-	982	62 (7)	51	Steps	Leg strength
Semanik 2015	OAI	US	OA	1659	64.8 (9.0)	54.7	SB	5x CST
Silva 2019	N/A	PT	Physically independent	83	72.14 (5.61)	67.5	$\begin{aligned} & \text { MVPA, LPA, } \\ & \text { SB } \end{aligned}$	Arm curl, 30s CST
Spartano 2019	FOS	US	-	1352	68.6 (7.5)	54.0	Steps, MVPA, SB	HGS, 5x CST
Tang 2015	N/A	US	Severe Aortic Stenosis	51	88 [85-90]	63	Activity counts	HGS
Trayers 2014	OPAL	GB	-	240	78 (6)	48	Steps, counts, MVPA	5x CST
Van Gestel 2012	N/A	SE	COPD	70	62.4 (7.4)	30.0	Steps	HGS, 60s CST
Van Lummel 2016	N/A	NL	-	57	84.0 (11.0)	82.5	TPA, PA bouts, SB bouts	5x CST

Author year	Cohort	Country	Population selection ${ }^{\text {a }}$	Sample size (N)	Age in years mean (SD)	F \%	PA/SB measures	Muscle strength/muscle power measures
Van Oeijen 2020	N/A	NL	CIAP	92	65 (13.75)	27.2	Steps	Lower extremity strength
Van Sloten 2011	N/A	NL	Diabetes	100	64.5 (9.4)	31.0	Steps	HGS
Walker 2008	N/A	N/R	COPD	23	66 (9)	47.8	TPA	KES
Ward 2014	N/A	N/R	-	156	68.9 (6.7)	45.5	Activity counts, MVPA	30s CST
Waschki 2012	N/A	$\begin{aligned} & \text { GB \& } \\ & \text { NL } \end{aligned}$	COPD	104	64.6 (7.2)	39.2	Steps, EE (PAL)	KES
Watz 2008	N/A	DE	COPD	170	64.0 (6.6)	24.7	Steps, EE (PAL)	HGS
Westbury 2018	HSS	GB	-	$\begin{aligned} & 131(M: 32 ; \mathrm{F}: \\ & 99) \end{aligned}$	$\begin{aligned} & \text { M: } 78.6(2.7) ; F: 78.9 \\ & (2.3) \end{aligned}$	75.6	TPA, MVPA, accelerations	HGS
Wickerson 2013	N/A	CN	Interstitial lung disease	24	62 [53-65]	41.7	Steps, MVPA	Knee extension torque
Winberg 2015	N/A	SE	Polio history	77	67 (6)	45.5	Steps	KES, knee flexion strength
Yamada 2011	N/A	JP	-	629 (Non-frail: 515; Frail: 114)	Non-frail: 77.0 (7.2); Frail: 76.1 (7.5)	67.5	Steps	5x CST
Yasunaga 2017	N/A	JP	-	287	74.4 (5.2)	37.3	MVPA, LPA, SB	HGS
Yoshida 2010	N/A	JP	Day care center attendees	147	82.8 (4.3)	100	Steps, TPA, MPA, LPA	HGS, KES
Yuki 2019	NILS-LSA	JP	-	401	71.1 (4.3)	44.4	Steps, LPA, MVPA	HGS

Age in years is presented as mean (standard deviation) or otherwise median [interquartile range] or mean \{range\}. Gender distribution is presented as the percentage of females within the study population. Subgroups are presented in italics with their sample size (N) and any other reported information in parentheses.
${ }^{\text {aPPoplation }}$ selection refers to any specific for criteria for selection other than sex (e.g. disease or demographic characteristic), studies with no selection were selected from a community-based sample or the general population left blank with a dash.
$\mathrm{N}=$ sample size, $\mathrm{M}=$ male, $\mathrm{F}=$ female, $\mathrm{N} / \mathrm{R}=$ not reported, $\mathrm{N} / \mathrm{A}=$ not applicable, $\mathrm{BRHS}=$ British Regional Heart Study, LIFE=Lifestyle Interventions and Independence for Elders, IDEA=Intensive Diet and Exercise for Arthritis, MRC NSHD=Medical Research Council National Survey of Health and Development, OPAL=Older People and Active Living, PAC-COPD=Phenotype Characterization and Course of Chronic Obstructive Pulmonary Disorder, CIAP=chronic idiopathic axonal polyneuropathy,
TASOAC=Tasmanian Older Adult Cohort, OPRA=Osteoporosis Prospective Risk Assessment study, MURDOCK=The Measurement to Understand the Reclassification of Disease Of Cabarrus/Kannapolis, NCGG=National Center for Geriatrics and Gerontology-Study, COSHIBA=Cohort of Skeletal Health in Bristol and Avon, EPIC-
Northfolk=European Prospective Investigation into Cancer in Northfolk, OAI=Osteoarthritis Initiative, CHMS=Canadian Health Measure Survey, MrOS=The Osteoporotic

Fractures in Men Study, ActiFE Ulm=Activity and Function in the Elderly in Ulm, CODEC=Chronotype of Patients with Type 2 Diabetes and Effect on Glycaemic Control, TSHA=Toledo Study of Healthy Aging, FOS=Framingham Offspring Study, HSS=Hertford Sarcopenia Study, NILS-LSA=National Institute for Longevity SciencesLongitudinal Study of Aging, PAAS= Physical Activity and Aging Study, SNAC-K=National study on Aging and Care in Kungsholmen, JP=Japan, GB=Great Britain, $\mathrm{ES}=$ Spain, $\mathrm{PT}=$ Portugal, US=United States, $\mathrm{IT}=\mathrm{Italy}, \mathrm{CN}=$ Canada, $\mathrm{PL}=$ Poland, $\mathrm{BR}=$ Brazil, $\mathrm{SE}=$ Sweden, $\mathrm{FI}=\mathrm{Finland}$, $\mathrm{AU}=$ Australia, $\mathrm{NO}=\mathrm{Norway}, \mathrm{DE=Germany}$,
$\mathrm{CH}=$ Switzerland, $\mathrm{EE}=$ Estonia, $\mathrm{NL}=$ Netherlands, $\mathrm{HR}=$ Croatia, $\mathrm{TW}=$ Tawain, $\mathrm{MS}=$ multiple sclerosis, $\mathrm{HC}=$ healthy controls, $\mathrm{OA}=$ osteoarthritis, $\mathrm{BMI}=$ body mass index, COPD=chronic obstructive pulmonary disorder, $\mathrm{PAD}=$ peripheral artery disease, $\mathrm{N}=$ sample size, $\mathrm{M}=$ male, $\mathrm{F}=$ female,
TPA=total physical activity, MPA=moderate physical activity, VPA=vigorous physical activity, MVPA=moderate to vigorous physical activity, LPA=light physical activity, $\mathrm{SB}=$ sedentary behavior, $\mathrm{EE}=$ energy expenditure, $\mathrm{PAL}=$ physical activity units, $\mathrm{BST}=$ breaks in sedentary time, $\Delta=$ change, MET=metabolic equivalent of tasks, $\mathrm{VMU}=\mathrm{vector}$ magnitude units, HGS=hand grip strength, KES=knee extension strength, CST=chair stand test, $s=$ seconds, $x=$ times (repetitions), 1RM=one repetition maximum

Table C2 Assessment of methodological quality of included articles based on the adapted
Newcastle-Ottawa Scale (NOS)

Author year	$\begin{gathered} \hline \text { Sel } \\ \text { Q1 } \end{gathered}$	$\begin{aligned} & \text { ection } \\ & \mathbf{Q 2} \mathbf{2}_{\mathrm{a}, \mathrm{~b}} \end{aligned}$	Compar Q3 ${ }_{\text {a,b }}$	bility Q4	$\begin{gathered} \text { Outcome } \\ \text { Q5 } \mathbf{Q 6}^{\mathrm{L}} \mathbf{Q 7}^{\mathbf{L}} \end{gathered}$	Score Quality
Abe 2015	*	*	Q		*	5/7 high
Abe 2012	*	*	* -		*	4/7 high
Aggio 2016	*	* *	* *	*	*	7/7 high
Alcazar 2018	*	* -	-		*	3/7 low
Alzahrani 2012	-	* -	- -	*	*	3/7 low
Andersson 2013	*	- -	* *	*	*	5/7 high
Andre 2018	*	* -	- -	*	*	4/7 high
Andre 2016	*	* -	- -	*	*	4/7 high
Aoyagi 2009	*	* -	* -	-	*	4/7 high
Ashe 2008		* *	- -	*	*	4/7 high
Ashe 2007	-	- -	- -	-	*	1/7 low
Aubertin-Leheudre 2017	*	- -	- -	*	-	2/7 low
Balducci 2017		* -	- -		-	1/7 low
Bann 2015	*	* -	* *	*	*	6/7 high
Barbat-Artigas 2012	*	* -	- -	-	*	3/7 low
Bartlett 2020	-	- -	- -	*	-	1/7 low
Bassey 1988	*	- -	- -	-	*	2/7 low
Bogucka 2018	*	- -	- -	*	*	3/7 low
Bollaert 2017	*	- -	- *	*	-	3/7 low
Boutou 2019	*	* -	- *	*	*	5/9 high
Carrasco Poyatos 2016	-	- *	- -	*	*	3/7 low
Chastin 2012	*	* -	- -	*	-	3/7 low
Chmelo 2013	*	* -	- -	*	-	3/7 low
Cooper 2015	*	* *	* *	*	*	7/7 high
Davis 2014	*	* *	* *	*	*	7/7 high
De Melo 2010	*	- -	- *	*	*	4/7 high
De Melo 2014	*	- -	* *	*	*	5/7 high

Table C2 Continued

Author year		$\begin{aligned} & \text { ection } \\ & \mathbf{Q 2} \mathbf{2 a b}^{\mathbf{a}} \end{aligned}$	Compar Q3a,b	$\begin{array}{r} \hline \text { bility } \\ \text { Q4 } \end{array}$		$\begin{aligned} & \text { itcome } \\ & \mathbf{Q 6}^{\mathrm{L}} \mathbf{Q 7}^{\mathrm{L}} \end{aligned}$	Score Quality
Demeyer 2018	*	* *	- -		-	* -	4/9 low
Distefano 2018	*	* -	*		*		5/7 high
Dogra 2017	*	* -	* *	*	*		6/7 high
Dohrn 2020	*	* *	* *	*	*		7/7 high
Dos Santos 2019	*	* -		*	*		4/7 high
Duncan 2016	*	* -	- -	*	*		4/7 high
Edholm 2019	*	* *	- *	*	*		6/7 high
Foong 2016	*	* -		*	*		$4 / 7$ high
Gennuso 2016	*	* *	* *	-	-		5/7 high
Gerdhem 2008	*	*	- -	*	*		5/7 high
Hall 2016	*	- *	- -	*	*		4/7 high
Harada 2017	*	* -	- -	*	*		4/7 high
Hartley 2017		* -	* -	*	*		5/7 high
Hasegawa 2018	*	* -	* -	*	*		5/7 high
Hernandes 2013	*	* -	- -	-	*		3/7 low
Hernandez 2016	*	* -	- *	*	*		5/7 high
Hopkins 2019	*	- -	* *	-	*	* -	5/9 high
Iijima 2017	*	- -	* *	*	*		5/7 high
Ikenaga 2014	*	- -	- *	*	-		3/7 low
Iwakura 2016	*	* -	- -	-	*		3/7 low
Jantunen 2016	*	* *	* *	*	*		$7 / 7$ high
Jeong 2019	*	* -	- -		*		3/7 low
Johnson 2016	*	* *	- -	-	*		4/7 high
Kawagoshi 2013	*	* *	- -	-	*		4/7 high
Keevil 2015	*	* *	* *	*	*		7/7 high
Kim 2015a	*	* -	* -	*	*		5/7 high
Kim 2015b	*	* *	* *	*	*		7/7 high
Lai 2020	*	* *	* *	*	*		$7 / 7$ high
Lee 2015	*	* *	* *	*	*		$7 / 7$ high

Table C2 Continued

Author year	Selection		Comparability		$\begin{gathered} \text { Outcome } \\ \text { Q5 } \mathbf{Q 6}^{\mathrm{L}} \mathbf{Q 7} 7^{1} \end{gathered}$	Score Quality
	Q1	Q2a,b	Q3a,b	Q4		
Lerma 2018	*	* -	* *	*	*	6/7 high
Liao 2018	*	* *	* *	*	*	7/7 high
Lohne-Seiler 2016	*	* *	* *	*	*	$7 / 7$ high
Mador 2011	*	- *	- -	*	*	4/7 high
Master 2018	*	* -	* *	*	*	6/7 high
Matkovic 2020	*	- -	- -	*	*	3/7 low
McDermott 2002	*	* -	- -	*	*	4/7 high
McGregor 2018	*	* -	* *	*	-	5/7 high
Meier 2020	*	- -	* *	*	*	5/7 high
Monteiro 2019	*	* -	- -	*	*	4/7 high
Morie 2010	*	* -	- -	-	*	3/7 low
Nagai 2018	*	* *	- -	-	*	4/7 high
Nawrocka 2017	*	* -	- -	*	*	4/7 high
Nawrocka 2019	-	* -	- -	*	*	3/7 low
Nicolai 2010	-	* -	- -	-	*	2/7 low
Ofei-Doodoo 2016	*	- -	- -	*	*	3/7 low
Orwoll 2019	*	* -	- -	*	*	4/7 high
Osuka 2015	*	* *	* *	*	*	$7 / 7$ high
Park 2018	*	* -	- -	-	-	$2 / 7$ low
Perkin 2018	*	* -	- -	-	*	3/7 low
Pitta 2005	*	* -	- -	*	*	4/7 high
Puthoff 2008	-	* *	- -	-	-	2/7 low
Rapp 2012	*	* *	* -	*	*	6/7 high
Rausch-Osthoff 2014	*	* -	- -	*	*	4/7 high
Rava 2018	*	* -	* *	-	*	5/7 high
Reid 2018	*	- -	* *	*	*	5/7 high
Rojer 2017	*	* *	* *	*	*	$7 / 7$ high
Rosenberg 2015	*	* *	* *	*	*	7/7 high
Rowlands 2018	*	* *	* *	*	-	6/7 high

Table C2 Continued

Author year	Selection		Comparability		Outcome			Score Quality
	Q1	Q2a,b	Q3a,b	Q4				
Safeek 2018	*	* *	- -	-	*			4/7 high
Sanchez-sanchez 2019	*	* *	* *		*			7/7 high
Santos 2012	*	* *	* *	*	*			7/7 high
Sardinha 2015	*	* *	* *	-	*			6/7 high
Scott 2020	*	* *	- *	*	*			6/7 high
Scott 2011	*	* *	- *	*	*	*	*	8/9 high
Scott 2009	*	* *	- -	*	*			5/7 high
Semanik 2015	*	* *	* *	*	*	*	*	9/9 high
Silva 2019	*	* *	- -	*	*			5/7 high
Spartano 2019		*	* *	*	*			$7 / 7$ high
Tang 2015	*	* -	- *	*	*			5/7 high
Trayers 2014	*	- -	* *	*	*			5/7 high
Van Gestel 2012	*	* -	- *	*	*			5/7 high
Van Lummel 2016	*	* -	- -	*	*			4/7 high
Van Oeijen 2020	*	- -	- -	*	-	*	-	3/9 low
Van Sloten 2011	*	* -	- -	*	-			3/7 low
Walker 2008	-	* -	- -	*	*			3/7 low
Ward 2014	*	* -	* *	*	*			6/7 high
Waschki 2012	*	* *	* *	*	*			7/7 high
Watz 2008	*	* -	- *	-	-			3/7 low
Westbury 2018	*	* -	* *	*	*			6/7 high
Wickerson 2013	*	* -	- -	*	*			4/7 high
Winberg 2015	*	* -	* *	-	*			5/7 high
Yamada 2011	*	* -	* *	-	*			5/7 high
Yasunaga 2017	*	* *	* *	*	*			$7 / 7$ high
Yoshida 2010	*	- -	- -	-	*			2/7 low
Yuki 2019	*	* -	* *	-	-		*	6/9 high

$\mathrm{Q}=$ questions, L=questions applicable to longitudinal studies only, quality was assessed using a cut-off for high quality of $\geq 4 / 7$ for crosssectional studies and $\geq 5 / 9$ for longitudinal studies, and otherwise articles were classified low quality
*represents point awarded, - (dash) represents no point awarded, blank represents N/A, underlined articles are longitudinal design Q1:*Age, gender distribution, country, and kind of population is reported
Q2: : *Ascertainment of all physical activity measures reported is clearly and described by name of device, location, and clear cut-off points are reported when appropriate, Q2b:*Methodological criteria of PA/SB data were clearly described and all of the following information: total wear time and assessment of valid days (mandatory hours/day and number of valid days) (2 possible * for Q2)
Q3a:*The study controls for the most important factors, age and sex, for at least one association, $\mathbf{Q 3}_{\mathrm{b}}$: $*$ The study adjusted for other or additional factor, e.g. level of education, comorbidities, accelerometer wear time, physical activity for at least one association (2 possible * for Q3)
Q4:*The statistical test used to analyze the data is clearly described and appropriate and the measurement of the association is presented clearly including effect size with confidence intervals, p-value (unless $p<0.001$), or standard error for at least one association
Q5:*Clear description of an established method for assessing muscle strength/muscle power with measurement device reported (if applicable)
for all measures
Q6 ${ }^{\text {L }}: *$ Follow-up ≥ 3 months (applicable for longitudinal studies only)
Q7 ${ }^{\text {L }: * C o m p l e t e ~ f o l l o w ~ u p ~ w i t h ~ a l l ~ s u b j e c t s ~ a c c o u n t e d ~ f o r ~ o r ~ s m a l l ~ n u m b e r ~ l o s t ~(~}<20 \%$) months (applicable for longitudinal studies only)

Table C3 Ascertainment and measurement characteristics of objectively measured physical activity and sedentary behavior

Author year	Device and wearing protocol			Assessment of valid days			Physical activity and sedentary behavior			
	$\begin{aligned} & \text { A/ Name } \\ & \mathbf{P} \end{aligned}$	Worn on	\# days worn	Defined as minimum (h/day)	\# valid days required	Wear time mean (SD) (min/day)	Reported measure(s) ${ }^{\text {a }}$	Units	Cut off values/definition	Mean (SD)
Abe 2015	Lifecorder	Hip	30	N/R	30	N/R	Steps	\#/day	Device detected	7974 (3041)
							MVPA	Min/day	$\geq 3 \mathrm{MET}$	23.7 (17.1)
							LPA (LPA-MPA)	Min/day	<3-6 MET	82.2 (29.1)
Abe 2012	A $\begin{aligned} & \text { Lifecorder } \\ & \text { EX }\end{aligned}$	Hip	30	N/R	30	N/R	Steps	\#/day	Device detected	7996 (3180)
							VPA	Min/day	>6 MET	1.6 (1.6)
							MVPA (MPA)	Min/day	3-6 MET	22.5 (16.8)
							LPA	Min/day	<3 MET	59.4 (20.8)
							EE	Kcal/day	Device detected	181 (85)
Aggio 2016	A Actigraph GT3X	Hip	7	10	3	N/R	MVPA	Min/day	>1040 CPM	Non-sarcopenia: 42.1, (95\%
										CI: 40.1, 44.0); Sarcopenia: 37.9 (95% CI. $32.8,43.1$).
										37.9 (95\% CI: 32.8, 43.1); Severe sarcopenia: 19.8 (95\%
										CI: 14.4, 25.1)
							LPA	Min/day	100-1040 CPM	Non-sarcopenia: 201.9 (95\%
										CI: 198.1, 205.6); Sarcopenia:
										196.4 (95\% CI:187.1, 205.7);
										Severe sarcopenia: 169.2 (95\% CI: 152.5, 185.9)
							SB	Min/day	<100 CPM	Non-sarcopenia: 610.9 (95\%
										CI: 606.0, 615.7); Sarcopenia:
										614.1 (95\% CI: 602.1, 626.1);
										Severe sarcopenia: 650.6 (95\%
										CI: 632.0, 669.2)
							BST	\#/h	N/R	Non-sarcopenia: 7.3 (95\% CI:
										7.2, 7.4); Sarcopenia: 7.3 (95\%
										CI: 7.0, 7.6); Severe
										sarcopenia: 6.6 (95\% CI: 6.0,
										7.1)
Alcazar 2018A	A Acti	Hip	7	8	4	N/R	MVPA	\% time/day	≥ 1952 CPM	N/R
	Trainer						SB	\% time/day	<100 CPM	N/R

Table C3 Continued

Author year	Device and wearing protocol				Assessment of valid days			Physical activity and sedentary behavior			
	$\begin{aligned} & \text { A/ Name } \\ & \mathbf{P} \end{aligned}$		Worn \# dayson worn		Defined as minimum (h/day)	\# valid days required	Wear time mean (SD) (min/day)	Reported measure(s) ${ }^{\text {a }}$	Units	Cut off values/definition	Mean (SD)
$\begin{aligned} & \text { Alzahrani } \\ & 2012 \end{aligned}$		IDEEA	Waist	2	N/R	N/R	$10.8(1.3)$ h/day	Activity counts	\#/day	$\begin{aligned} & \text { Total \# of steps + stairs } \\ & + \text { sit to stands } \end{aligned}$	5656 (4091)
								TPA (On feet)	Min/day	Total duration of walking + stairs + standing + sit to stands	230 (115)
Anderson 2013		ActiReg	Waist, thigh, and chest		N/R	N/R	N/R	EE (PAL)	None	Calculated as EE from ActiReg/resting metabolic rate from indirect calorimetry	1.47 (0.19
Andre 2018		Actigraph GT1M	Hip	5	$10 \mathrm{~h} /$ day or 3000 activity counts		N/R	MVPA	Min/day	≥ 1952 CPM	35.3 (28.8)
Andre 2016		Actigraph GT1M	Hip	7	$10 \mathrm{~h} /$ day or 3000 activity counts	4	N/R	MVPA (less vs. more active)	Dichotomous min/day	$<\mathrm{vs} . \geq 30 \mathrm{~min} /$ day	31.83 (28.3)
Aoyagi 2009		Kenz Lifecoder	Waist	1 year	N/R	N/R	N/R	Steps TPA	\# /day Min/day	Device detected >3 MET	$\begin{aligned} & 6574 \text { (2715) } \\ & 17.3 \text { (11.9) } \end{aligned}$
Ashe 2008		Actigraph GT1M	waist	N/R	10	$4^{\text {a }}$	6 (1) days	Activity counts MVPA	\#/day Min/day	Device detected >574 CPM	$\begin{aligned} & 244384 \text { (116423) } \\ & 156 \text { (90) } \end{aligned}$
Ashe 2007		New Lifestyles Digiwalker	N/R	3	N/R	N/R	N/R	Steps Steps (high vs. low)	\#/day Dichotomous \#/day	Device detected < or > 7500 steps/day	6078 (4031)
Aubertin- Leheudre 2017		Actigraph GT3X	Hip	N/R	10	3	N/R	Steps	\#/day	Device detected	Non-obese non-dynapenic: 2938 (1573); Non-obese dynapenic: 2703 (1703); Obese non-dynapenic: 2622 (1327); Obese dynapenic: 2406 (1199)
								Activity counts	\#/day	Device detected	Non-obese non-dynapenic: 95617 (49660); Non-obese dynapenic: 84046 (51892);

Table C3 Continued

Table C3 Continued

Author year	Device and wearing protocol			Assessment of valid days			Physical activity and sedentary behavior			
	$\begin{aligned} & \text { A/ Name } \\ & \mathbf{P} \end{aligned}$	Worn on	\# days worn	Defined as minimum (h/day)	\# valid days required	Wear time mean (SD) (min/day)	Reported measure(s) ${ }^{a}$	Units	Cut off values/definition	Mean (SD)
Bollaert 2017	$\begin{aligned} & \text { A Actigraph } \\ & \text { GT3X } \end{aligned}$		7	N/R	4	$\begin{aligned} & M S: 797.8 \\ & (97.8) \\ & H C: 851.8 \\ & (79.3) \end{aligned}$	MVPA	\% wear time	≥ 1723 CPM	MS: 1.5 (0.02); HC: 4.2 (0.03)
							LPA	\% wear time	1722-100 CPM	$\begin{aligned} & M S: 30.6 \text { (0.09); HC: } 33.0 \\ & (0.07) \end{aligned}$
							SB	\% wear time	$<100 \mathrm{CPM}$	$\begin{aligned} & \text { MS: } 67.9 \text { (0.09); HC: } 62.8 \\ & (0.08) \end{aligned}$
							PA bouts	\#/day	$>2 \mathrm{~min} \mathrm{PA}$	MS: 12.4 (4.9); HC: 13.4 (3.7)
							PA bouts	Min/bout/day	$>2 \mathrm{~min} \mathrm{PA}$	$\begin{aligned} & \text { MS: } 45.9 \text { (29.5); HC: } 43.4 \\ & (28.2) \end{aligned}$
							SB bouts	\#/day	>2 min SB	MS: 15.2 (3.2); HC: 15.7 (3.1)
							SB bouts	Min/bout/day	$>2 \mathrm{~min} \mathrm{SB}$	MS: 24.5 (7.3); HC: 22.9 (3.9)
							Long SB bouts	\#/day	$>30 \mathrm{~min} \mathrm{SB}$	MS: 5.9 (1.4); HC: 5.5 (1.9)
							Long SB bouts	Min/bout/day	$>30 \mathrm{~min} \mathrm{SB}$	MS: 51.4 (8.2); HC: 47.8 (6.0)
Boutou 2019 A	A Actigraphy GT3X and Dynaport MiniMod (concurrent)	Hip and back	$14$$\text { FU: } 7$	10		N/R	Actigraph measures: Δ Steps \#/day			
						Device detected			Baseline: 4284 (3533); 6month FU: 3594 (3212); 12month FU: 3533 (2930)	
						$\triangle \mathrm{MVPA}$	Ratio \#/day	Ratio of moderate to. vigorous PA	Baseline: 8.8 (18.8); 6-month FU: 7.4 (17.4); 12-month FU:	
								Vectorial sum of activity counts in three orthogonal directions	Baseline: 374902.4 (265269); 6-month FU: 330420 (223152); 12-month FU: 336240 (214432)	
						Dynaport measures: Δ Steps	\#/day	Device detected	Baseline: 4690 (3708); 6month FU: 4264 (3378); 12month FU: 4359 (3425)	
						Δ Steps (Walking)	Min/day	Device detected	Baseline: 59.1 (34.9); 6-month FU: 53.2 (34.4); 12-month FU: 56.9 (38.7)	
						$\triangle \mathrm{MET}$	G	Metabolic equivalents	Baseline: 0.183 (0); 6-month FU: 0.183 (0); 12-month FU: 0.181 (0)	

Table C3 Continued

Author year	Device and wearing protocol				Assessment of valid days			Physical activity and sedentary behavior				
		Name	Worn on	$\begin{aligned} & \text { \# days } \\ & \text { worn } \end{aligned}$	Defined as minimum (h/day)	\# valid days required	Wear time mean (SD) (min/day)	Reported measure(s) ${ }^{\text {a }}$	Units	Cut off values/definition	Mean (SD)	
$\begin{aligned} & \text { Carrasco A } \\ & \text { Poyatos } 2016 \end{aligned}$		Actigraph GT3X	Wrist	7	10	5	N/R	$\triangle \mathrm{VMU}$ MVPA	\#/day	Vectorial sum of activity counts in three orthogonal directions	Baseline: 286039.6 (237721);6-month FU: 265253.2(218109); 12-month FU:259447.4 (199472)MPA group: 20.6 (1.6); VPAgroup: 22.6 (1.1)	
		MVPA						CPM	$\begin{aligned} & \geq 500 \mathrm{CPM} \\ & \text { (Subgroups - MPA } \\ & \text { group: } 500-760 \mathrm{CPM} \text {; } \\ & \text { VPA group: }>760 \mathrm{CPM} \text {) } \end{aligned}$			
Chastin 2012A			ActivPAL	Thigh		N/R	N/R	N/R	SB	H/day	Device detected (sitting posture)	$F: 16.8$ (1.6); M: 17.7 (1.8)
Chmelo 2013A		Kenz Lifecorder	N/R					SB break rate	\#/sedentary h	N/R	F: 3.3 (0.4); M: 2.6 (0.8)	
		Waist			N/R	N/R	Steps	\#/day	Device detected	6209 (2554)		
		MVPA					Min/day	≥ 3 MET	10.6 (8.9)			
		LPA					Min/day	<3	131 (39)			
Cooper 2015 A							Acitheart	EE	Kcal/day	Device detected	237 (124)	
		Chest	7	6 h per quadrant of day	2	$\begin{aligned} & 5.03[4.8- \\ & 5.2] \end{aligned}$		MVPA	Min/day	$\geq 3 \mathrm{MET}$	M: 90.5 (64.9); F: 79.9 (54.9)	
		SB						H/day	<1.5 MET	M: 17.4 (2.2); F: 17.3 (2.0)		
		EE						Kj/kg/day	Device detected	M: 38.1 (15.7); F: 34.2 (13.3)		
Davis 2014 A	A		ActiGraph GT1M	Waist		10	5	$14.4 \text { (1.4) }$ h/day	MVPA	Min/h	>1951 CPM	0.9 (1.3)
									SB	Min/h	0-99 CPM	42.8 (6.1)
		BST							\#/h	Any transition from SB	5.0 (1.0)	
$\begin{aligned} & \text { De Melo } \\ & 2010 \end{aligned}$		StepsCount SC-01		3	N/R	N/R	N/R	Steps	\#/day	Device detected	5289 (4029)	
$\begin{aligned} & \text { De Melo } \\ & 2014 \end{aligned}$		StepCount SC-01		3	N/R	N/R	N/R	Steps (medium vs. high)	Categorical \#/day	$\begin{aligned} & \geq 3000-6500 \text { vs. } \geq 6500 \\ & \text { steps/day } \end{aligned}$	5289 (4029)	
$\begin{aligned} & \underline{\text { Demeyer }} \\ & \underline{2018} \end{aligned}$		SenseWear Pro Armband	Arm	7	70% of waking hours 8am10 pm	3	$\begin{aligned} & 89(9) \% \text { of } \\ & \text { day; } 6(1) \\ & \text { days } \end{aligned}$	Δ Steps (persistently active decline	Categorical \#/day	Active at follow-up and baseline, declined at		
								persistently inactive)		follow-up from baseline, inactive at follow-up and baseline		
								Steps	\#/day	Device detected		
								MVPA	Min/day	>3 MET		

Table C3 Continued

Table C3 Continued

Author year	Device and wearing protocol				Assessment of valid days			Physical activity and sedentary behavior			
	$\underset{\mathbf{P}}{ }$	Name	Worn on	$\begin{aligned} & \text { \# \# days } \\ & \text { worn } \end{aligned}$	Defined as minimum (h/day)	\# valid days required	Wear time mean (SD) (min/day)	Reported measure(s) ${ }^{\text {a }}$	Units	Cut off values/definition	Mean (SD)
$\begin{aligned} & \hline \text { Hasegawa } \\ & 2018 \end{aligned}$	P	Misfit Shine 2	Hip	7	N/R	N/R	N/R	Steps	\#/day	Device detected	6500 (3200)
Hernandes 2013	P	Yamax SW-200 Digiwalker	Waist	7	12	8	N/R	Steps	\#/day	Device detected	Exercise: 8314 [5971-10060]; Non-exercise: 6250 [43468207]
Hernandez 2016	A	Actigraph GT3X+	Hip	8	8	5	N/R	Steps TPA MVPA (MPA) LPA SB	\#/day Min/day Min/day Min/day Min/day	Device detected Device detected 1952-5724 CPM 100-1951 CPM $<100 \mathrm{CPM}$	$\begin{aligned} & 8105.9(3851.2) \\ & \mathrm{N} / \mathrm{R} \\ & 39.1(33.9) \\ & 227.2(89.9) \\ & 578.6(86.2) \end{aligned}$
$\frac{\text { Hopkins }}{\underline{2019}}$	A	Actigraph GT1M	N/R	7	10	4	N/R	MVPA (Meeting vs. not meeting guidelines)	Dichotomous min/day	$\begin{aligned} & \geq \text { or }<150 \mathrm{~min} \text { MVPA } \\ & (>2020 \mathrm{CPM}) \end{aligned}$	N/R
Iijima 2017	P	N/R	Leg	14	N/R		N/R	Steps	\#/day	Device detected (Subgroups - Basal activity: <2500 steps; Limited activity: 25004999 steps; Low active: 5000-7499 steps; Physically active: ≥ 7500 steps)	Basal activity: 1711 (591); Limited activity: 3718 (754); Low active: 5808 (701); Physically active: 9858 (2132)
Ikenaga		ACCtri	N/R	10	300	4	N/R	Steps	\#/day	Device detected	6523 (3797)
2014	Actimarker				steps/day or			MPA	Min/day	3.0-5.9 MET	34.3 (27.0)
	EW4800 x2 (concurrent)				$10 \mathrm{~min} / \mathrm{day}$			LPA	Min/day	1.1-2.9 MET	563.5 (125.4)
		(concurrent)			of activity			SB	Min/day	<1.1 MET	842.1 (129.8)
Iwakura	A	Lifecorder	Waist	N/R	N/R	5 (Mon-		Steps	\#/day	Device detected	4546 (2992)
2016						Fri)		MVPA	Min/day	>3 MET	13.9 (14.0)
Jantunen 2016	A	Sense Wear Pro 3	Arm	10	10	4 (Mon- Fri) +1 (Sat-Sun)	1436.8 (6.0)	MET	H/day	Device detected	1779.6 (298.5)

Table C3 Continued

Table C3 Continued

Author year Device and wearing protocol					Assessment of valid days			Physical activity and sedentary behavior			
		Name	Worn on	\# days worn	Defined as minimum (h/day)	\# valid days required	Wear time mean (SD) (min/day)	Reported measure(s) ${ }^{\text {a }}$	Units	Cut off values/definition	Mean (SD)
Lai 2020		$\begin{aligned} & \text { Actigraph } \\ & \text { wGT3X-BT } \end{aligned}$	Waist	7	10	$\begin{aligned} & 4 \text { (incl. } 1 \\ & \text { Sat-Sun) } \end{aligned}$	$\begin{aligned} & 15.4 \text { (SD } \\ & \mathrm{N} / \mathrm{R}) \mathrm{h} / \mathrm{day} \end{aligned}$	MVPA (Meeting vs. not meeting guidelines)	Dichotomous min/day	$\begin{aligned} & \geq 30 \mathrm{~min} / \text { day MVPA } \\ & (>2020 \mathrm{CPM}) \end{aligned}$	24.6 (23.2)
Lee 2015		Actigraph GT1M	Hip	7	10	4	$\begin{aligned} & 14.8 \text { (SD } \\ & \mathrm{N} / \mathrm{R}) \mathrm{h} / \mathrm{day} \end{aligned}$	SB	H/day	<100 CPM	9.8 (1.5)
Lerma 2018		Actigraph GT3X	Hip	7	N/R	N/R	844.8 (75.8)	MVPA LPA SB	Min/day Min/day Min/day	$\begin{aligned} & \geq 1952 \mathrm{CPM} \\ & 100-1951 \mathrm{CPM} \\ & <100 \mathrm{CPM} \end{aligned}$	$\begin{aligned} & 25.0 \text { (20.9) } \\ & 283.1 \text { (73.3) } \\ & 536 \text { (75.7) } \end{aligned}$
Liao 2018		Active Style Pro HJA-350IT	Hip	7	10	4 (incl. 1 Sat-Sun)	900.9 (86.4)	SB Break rate	Min/day \#/sedentary h	< 1.5 METs Non-SB bout b/t two SB bouts	$\begin{aligned} & 524.9 \text { (111.7) } \\ & 37.6(2.9) \end{aligned}$
								Long SB bouts Long SB bouts	\#/day Min/day	\# $\geq 30 \mathrm{~min}$ SB bouts Duration $\geq 30 \mathrm{~min}$ SB bouts	$\begin{aligned} & 4.4(1.9) \\ & 233.0(118.5) \end{aligned}$
Lohne-Seiler 2016		ActiGraph GT1M		7	10	1	6.6 (1.4) days; 14.0 (1.2) h/day	Steps	\#/day	Device detected	N/R
Mador 2011		Actigraph GT1M	N/R	7	10	4	$12.7(2.1)$ h/day	VMU	\#/min/day	Device detected	116.5 (62.7)
Master 2018		Actigraph GT1M		7	10	4	N/R	Steps	\#/day	Device detected	6166 (2924)
$\begin{aligned} & \text { Matkovic } \\ & 2020 \end{aligned}$		StepWatch Activity Monitor	Ankle	7	8	N/R	N/R	Steps	\#/day	Device detected	8059 (4757)
McDermott 2002	A	Caltrac	Waist	7	N/R	N/R	N/R	Accelerations (standardized)	\#/day	Device detected normalized for age, sex height and weight	897.5 (533.4)
McGregor 2018		Actical	Hip	7	10	4	N/R	MVPA LPA SB	Log-ratio Log-ratio Log-ratio	$\begin{aligned} & \geq 1535 \mathrm{CPM} \\ & 100-1534 \mathrm{CPM} \\ & <100 \mathrm{CPM} \end{aligned}$	$\begin{aligned} & \mathrm{N} / \mathrm{R} \\ & \mathrm{~N} / \mathrm{R} \\ & \mathrm{~N} / \mathrm{R} \end{aligned}$

Table C3 Continued

Author year	Device and wearing protocol				Assessment of valid days			Physical activity and sedentary behavior			
		Name	Worn on	$\begin{aligned} & \text { \# days } \\ & \text { worn } \end{aligned}$	Defined as minimum (h/day)	\# valid days required	Wear time mean (SD) (min/day)	Reported measure(s) ${ }^{\text {a }}$	Units	Cut off values/definition	Mean (SD)
Meier 2020		$\begin{aligned} & \hline \text { Omoron } \\ & \text { HJ-321 } \end{aligned}$	Waist	7	N/R	N/R	N/R	Steps Steps (high, medium, low)	$\begin{aligned} & \text { \#/day } \\ & \text { \#/day } \end{aligned}$	$\begin{aligned} & \hline \text { Device detected } \\ & \geq 5000,2500-4999 \text {, } \\ & <2500 \end{aligned}$	4943 (2632)
$\begin{aligned} & \text { Monteiro } \\ & 2019 \end{aligned}$		Actigraph GT1M	Hip	7	8	$\begin{aligned} & 3 \text { (Mon- } \\ & \text { Fri) } \end{aligned}$	N/R	Activity counts (terciles)	\#/min/day	$\begin{aligned} & \text { T1: } \leq 507.75 \text { CPM, T2: } \\ & \text { 507.75-752.08 CPM, } \\ & \text { T3: } \geq 752.08 \text { CPM } \end{aligned}$	N/R
Morie 2010	A	Actigraph	Hip	7	N/R	5	$\begin{aligned} & 6.6(0.09) \\ & \text { days } \end{aligned}$	Activity counts	${ }_{5}^{\# / m i n} / \text { day x } 10^{-}$	Device detected	12.2 (7.0)
Nagai 2018	A	Actiband	Wrist	14	10	4	1015 (74)	$\begin{aligned} & \text { MVPA } \\ & \text { LPA } \\ & \text { SB } \end{aligned}$	Min/day Min/day Min/day	$\begin{aligned} & \geq 3 \mathrm{MET} \\ & 1.5-2.9 \mathrm{MET} \\ & <1.5 \mathrm{MET} \end{aligned}$	$\begin{aligned} & 42(34) \\ & 463(150) \\ & 510(170) \end{aligned}$
Nawrocka 2017		Actigraph GT3X	Waist	7	10	N/R	N/R	MVPA (Meeting vs. not meeting guidelines)	Dichotomous min/day	$\geq 150 \mathrm{~min}$ MPA (20205998 CPM) or $\geq 75 \mathrm{~min}$ VPA ($>599 \mathrm{CPM}$) or equivalent combination of MVPA	N/R
$\begin{aligned} & \text { Nawrocka } \\ & 2019 \end{aligned}$		Actigraph GT3X	Waist	7	10	N/R	N/R	MVPA (Meeting vs. not meeting guidelines)	Dichotomous min/day	$\geq 150 \mathrm{~min}$ MPA (20205998 CPM) or $\geq 75 \mathrm{~min}$ VPA ($>599 \mathrm{CPM}$) or equivalent combination of MVPA	N/R
Nicolai 2010		Physiolog BioAGM	Chest	7	N/R	N/R	N/R	Steps (Walking) TPA (Time on feet)	Min/day Min/day	≥ 3 consecutive steps Upright standing < 3 steps + walking	$\begin{aligned} & 1.45(0.07) \\ & 5.01(0.18) \end{aligned}$
$\begin{aligned} & \text { Ofei-Doodoo } \\ & 2016 \end{aligned}$		Kenz Lifecorder	Waist	14	N/R	N/R	N/R	MVPA	Min/day	Accelerometer intensity 4-6 (corresponds to 4-6 MET)	$\begin{aligned} & \geq 30: 00 \min M V P A: 49: 42 \\ & \{31: 24-2: 17: 07\} ; 20: 00-29: 59 \\ & \min M V P A: 25: 16\{20: 00- \\ & \text { 29:59\}; 10:00-19:59 min } \\ & \text { MVPA: } 14: 51\{10: 18-19: 43\} ; \\ & 0: 00-9: 59 \min \text { MVPA: } 3: 33 \\ & \{0: 02-9: 58\} \end{aligned}$

Table C3 Continued

Author year	Device and wearing protocol				Assessment of valid days			Physical activity and sedentary behavior			
	A/ Name		Worn on	wor	Defined as minimum (h/day)	\# valid days required	Wear time mean (SD) (min/day)	$\begin{aligned} & \hline \text { Reported } \\ & \text { measure(s) } \end{aligned}$	Units	Cut off values/definition	Mean (SD)
Orwoll 2019	A	SenseWear Pro Armband	Arm	7	N/R	$\begin{aligned} & 90 \% \text { of } \\ & \text { time }+1 \\ & \text { (Sat-Sun) } \end{aligned}$	N/R	TPA ($\geq L P A$)	Min/day	$\geq 1.51 \mathrm{MET}$	No falls: 160.8 (88.2); One fall: 156.4 (89.9); >Two falls: 141.9 (89.1)
								MVPA (\geq MPA $)$	Min/day	≥ 3 MET	No falls: 90.0 (61.5); One fall: 88.0 (62.0); \geq Two falls: 77.8 (60.6)
Osuka 2015	A	Kenz Lifecorder	Hip	7	10	5	875.3 (92.4))MVPA	Min/day	≥ 3.6 MET	17.6 (15.3)
								LPA	Min/day	1.8-2.9 MET	57.1 (22.7)
Park 2018		Active style Pro HJA- 350IT	Waist	14	N/R	$\begin{aligned} & >3 \text { (Mon- } \\ & \text { Fri) }+1 \\ & \text { (Sat-Sun) } \end{aligned}$	N / R	Steps	\#/day	Device detected	7567.5 (3316.8)
								TPA	Min/day	$\geq 0.9 \mathrm{MET}$	807.3 (69.5)
								VPA	Min/day	$\geq 6.0 \mathrm{MET}$	0.4 (1.6)
								MVPA	Min/day	$\geq 3.0 \mathrm{MET}$	65.9 (29.7)
								MPA	Min/day	3-5.9 MET	65.4 (29.7)
								LPA	Min/day	1.5-2.9 MET	354.1 (71.7)
								SB	Min/day	0.9-1.5 MET	388.9 (81.3)
Perkin 2018	A	Actiheart	Chest	6	N/R	N/R	N/R	MVPA	Min/day	$\geq 3.2 \mathrm{MET}$	103 (49)
								SB	Min/day	$\leq 1.5 \mathrm{MET}$	1058 (112)
								EE (PAL)	None	EE/basal metabolic rate	1.59 (0.17)
Pitta 2005	A	DynaPort Activity Monitor	Waist 5 and leg sensor		12	2	N/R	Steps (Walking)	Min/day	Device detected	44 (26)
								TPA (Standing)	Min/day	Device detected (not incl. walking)	191 (99)
Puthoff 2008 Rapp 2012		AMP 331	Ankle	6	8	6	N/R	Steps	\#/day	Device detected	6384.4 (2370.8)
	A	ActivPAL	Thigh	7	24	$\begin{aligned} & >3 \text { (Mon- } \\ & \text { Fri) }+1 \\ & \text { Sun } \end{aligned}$	N/R	Steps (Walking)	Min/day	Device detected	$\begin{aligned} & M: 104.8 \text { (41.0); } F: 103.0 \\ & (39.4) \end{aligned}$
RauschOsthoff 2014		SenseWear Pro Armband	Arm	7	N/R	N/R	N/R	Steps	\#/day	Device detected	4097 (2325)
								EE	Kcal/day	Device detected	2222 (467)
								EE (PAL)	None	Total EE/sleep EE	1.44 (0.16)
								MET	Kcal/h/kg	Device detected	30.3 (4.7)
Rava 2018		Actigraph	Hip	7	10	4	N/R	VPA	Min/day	≥ 5725 CPM	1.5 (6.1)
								MVPA	Min/day	≥ 1954 CPM	56.2 (29.6)

Table C3 Continued

Table C3 Continued

Table C3 Continued

Table C3 Continued

Author year	Device and wearing protocol			Assessment of valid days			Physical activity and sedentary behavior			
		NameWorn on	\# days worn	Defined as minimum (h/day)	\# valid days required	Wear time mean (SD) (min/day)	Reported measure(s) ${ }^{\text {a }}$	Units	Cut off values/definition	Mean (SD)
Ward 2014		Actigraph Hip single-axis	7	10	5	N/R	Activity counts	\#/min/day	Device detected	$\begin{aligned} & \hline F: 2473.03(111.50 ; M: 319.23 \\ & (131.0) \end{aligned}$
							MVPA	Min/week	>3 MET	$\begin{aligned} & F: 79.56 \text { (96.82); M: } 95.13 \\ & (91.90) \end{aligned}$
$\begin{aligned} & \text { Waschki } \\ & 2012 \end{aligned}$	A	SenseWear Arm Armband	8	22	5	Maastricht: 142h 17 min Liverpool: 141h 1 min ; London: 142h 24 min	Steps$\mathrm{EE}(P A L)$	\#/day	EE/sleeping metabolic rate (device detected)	4725 (3212)
								None		1.45 (0.20)
Watz 2008	A	SenseWear Arm	5-6	22.5	5	N/R	Steps	\#/day	Device detected	5882 (3684)
		Armband					EE (PAL)	None	EE/sleeping metabolic rate (device detected)	1.50 (0.28)
Westbury 2018		GENEActiv Wrist	7	N/R	7	N/R	TPA	Min/day	$\geq 40 \mathrm{mg}$-force	$\begin{aligned} & \text { M: } 137.8 \text { [81.7-217.2]); F: } \\ & 186.0[122.1-240.4] \end{aligned}$
							MVPA	Min/day	$\geq 100 \mathrm{mg}$-force	$\begin{aligned} & M: 14.3[1.8-30.2] ; F: 9.5[2.1- \\ & 18.6] \end{aligned}$
							Accelerations	Mg-force	Device detected	M: 23.9 (7.6); F: 25.5 (6.8)
Wickerson		Actigraph Hip	7	8	N/R	4.5 (1.6)	Steps,	\#/day	Device detected	2736 (1612)
2013		GT3X				h/day; 6.6 (1.0) days	MVPA (MPA)	Min/day	3-6 MET	3.6 [1.5-7.7]
Winberg 2015		Yamax SW Lower 200 back		N/R	N/R	N/R	Steps	\#/day	Device detected	6270 (3120)
$\begin{aligned} & \text { Yamada } \\ & 2011 \end{aligned}$		Yamax Leg	14	N/R	N/R	N/R	Steps	\#/day	Device detected	Non-frail: 4414.4 (2726.3);
		Walker EX- 510								
Yasunaga		Active style Waist Pro HJA- 350IT		10	4 (incl. 1	901.1	MVPA	Min/day	$\geq 3 \mathrm{MET}$	50.2 (33.5)
2017					Sat-Sun)	(87.5); 7.2	LPA	Min/day	$>1.5-<3 \mathrm{MET}$	328.7 (101.4)
							SB	Min/day	$\leq 1.5 \mathrm{MET}$	522.7 (113.4)

Table C3 Continued

Mean (standard deviation (SD)) of wear time and physical activity/sedentary behavior are presented unless otherwise reported as median [interquartile range], or mean
\{range\}. Subgroups for stratified results are presented in italics. Underlined articles have a longitudinal design.
${ }^{\text {a }}$ Reported measures of PA and SB were classified as either steps, activity counts, TPA, MVPA, LPA, SB, PA bouts, SB bouts, long SB bouts, BST, SB break rate, accelerations, VMU, intensity gradient, EE; further details of reported measures are provided in parentheses and italic font when measures were originally described otherwise but were classified as one into one of the aforementioned categories.
$A=$ accelerometer, $\mathrm{p}=$ pedometer, $\mathrm{PA}=$ physical activity, $\mathrm{SB}=$ sedentary behavior, $\mathrm{N} / \mathrm{R}=$ not reported, TPA=total physical activity, MPA=moderate physical activity, VPA=vigorous physical activity, MVPA=moderate to vigorous physical activity, LPA=light physical activity, $\mathrm{SB}=$ sedentary behavior, $\mathrm{EE}=$ energy expenditure, PAL=physical activity units, BST=breaks in sedentary time, $\Delta=$ change, MET=metabolic equivalent of tasks, VMU=vector magnitude units, min=minutes, h=hours, CPM=counts per minutes, \#=number, mg-force=miligrams-force (force of earth gravity acting on one milligram), Mon=Monday, Fri=Friday, Sat=Saturday, Sun=Sunday, vs=versus (compared to), MIDEEA=Intelligent Device for Energy Expenditure and Activity, HFG=high functioning group, LFG=low functioning group

Table C4 Ascertainment and measurement characteristics of measures of upper body and lower body muscle strength and muscle power

Author year	Device/equipment	Definition and protocol	Measure type	Reported measure(s)	Units	Mean (SD) ${ }^{\text {a }}$
Abe 2015	Dynamometer	MVC isometric KES, 2-3 attempts, max/weight used for analysis	LB MS	KES/weight	Kg/nm	105 (25)
		Max toe grasping strength, 3 attempts for each	LB MS	Toe grasping/weight	Kg/kg	13.4 (3.5)
	Toe-Grasp T.K.K. 3361 Dynamometer	foot, max of each foot averaged used				
Abe 2012	Bidoex System 3 Dynamometer	MVC isometric strength of knee flexors and extensors, 2-3 attempts, max used for analysis	LB MS	KES	Nm	105 (25)
			LB MS	Knee flexion strength	Nm	45 (9)
Aggio 2016	Jamar Hydraulic Hand Dynamometer	HGS, 3 attempts for each hand, max used	UB MS	HGS	Kg	Non-sarcopenia: 32.3 (9.9); Sarcopenia: 28.7 (10.1); Severe sarcopenia: 22.2 (6.1)
Alcazar 2018	Leg press E	Leg press 1RM, progressive reps increasing by 10 kg , force-velocity evaluation to determine max force (strength) and max power for analysis	LB MS	Leg press strength	N	N/R
			LB MP	Leg press power	W	N/R
			LB MP	Leg press power/weight	W/kg	N/R
Alzahrani 2012	Handheld DynamometerMVC KES, 2 attempts, max used for analysis N/R		LB MS	KES	N	116 (52)
Anderson 2013	Steve Strong Dynamometer	MVC isometric KES strength, 3 attempts, recordedLB MS in N , max used and converted into kg		KES	Kg	31.3 (11.2)
Andre 2018	N/A	Calf raise (heel rise) senior test, \# of calf raises (heel rises) in 30 s, high: ≥ 38 and low: <38	LB MP	Calf raise (High vs. low)	\#/30s	37.8 (13.4)
Andre 2016	N/A	Calf raise (heel rise) senior test, \# of calf raises (heel rises) in 30s	LB MP	Calf raise	\#/30s	31.79 (7.01)
Aoyagi 2009	Smedley Dynamometer ES-100 μ Tas Dynamometer MF-01	HGS, 2 attempts with dominant hand, max used for analysis Isometric knee extension torque, 2 attempts, max used for analysis	UB MS	HGS	N	262 (83)
			LB MS	Knee extension torque	Nm/kg	1.34 (0.37)
Ashe 2008	Keiser Air-pressured Digital Resistance Leg Press Machine	1RM KES, progressive reps increasing by 10%, max used for analysis Bilateral leg extension, reps at $40 \%, 50 \%, 60 \%$, $70 \%, 80 \%$, and 90% of individual's 1 RM, max power used for analysis	LB MS	Leg press strength	Kg	325 (66)
			LB MP	Leg press power	W	656 (193)
Ashe 2007	Jamar JLW Dynamometer Nicolas MMT 11560 handheld Dynamometer	HGS, 3 attempts with left hand, mean used KES, 3 attempts with left leg, mean normalized to weight used for analysis	UB MS	HGS	Kg	24.2 (10.9)
			LB MS	KES	Kg	18.2 (7.3)

Table C4 Continued

Table C4 Continued

Author year	Device/equipment	Definition and protocol	Measure type	Reported measure(s)	Units	Mean (SD) ${ }^{\text {a }}$
Cooper 2015	Nottingham Electric Dynamometer	HGS, 3 attempts with each hand, max used	UB MS	HGS	Kg	M: 46.4 (11.5); F: 27.0 (7.5)
	N/A	Time to complete 10 chair stands	LB MP	10x CST	\#/min	M: 26.2 (7.3); F: 24.9 (7.3)
Davis, 2014	N/A	Time to complete 5 chair stands, $>16.70 \mathrm{~s}=0$ points $13.70-16.69 \mathrm{~s}=1$ point, $11.20-13.69 \mathrm{~s}=3$ points, $<11.19 \mathrm{~s}=4$ points	,LB MP	5x CST (0-4)	Points	2.7 (1.3)
De Melo 2010	N/A	\# chair stands completed in 30s	LB MP	30s CST	\#/30s	19.4 (5.4)
De Melo 2014	N/A	\# of full flexion and extension of the elbow without moving the shoulder (arm curls) using dumbbells ($F: 5$ pounds, $M: 8$ pounds) completed in 30s	UB MP	Arm Curl	\#/30s	15.2 (3.7)
	N/A	\# chair stands completed in 30s	LB MP	30s CST	\#/30s	10.4 (5.4)
Demeyer 2018	N/R	Δ HGS, non-dominant hand, measured at baseline and after 2.6 (SD: 0.6) years	UB MS	Δ HGS	N	Baseline: 295 (87); Follow up: 272 (84); Decline per year: 7.84 (23)
Distefano 2018	Standard weight stack	1RM KES, left leg, progressive reps increasing by 10%, max used.	LB MS	KES	Kg	Active: 35.6 (2.5); Sedentary: $31.9 \text { (1.7) }$
	N/A	Time to complete 5 chair stands	LB MP	5x CST	S	N/R
Dogra, 2017	Smedley Dynamometer	HGS, two attempts with each hand, sum of max from each hand used	UB MS	HGS	Kg	64 (95\% CI: 62, 66)
Dohrn 2020	N/A	Ability to complete 5 chair stands	LB MP	5x CST (able vs. nonable)	None	N/R
Dos Santos 2019	Camry EH101 Digital Dynamometer	HGS, two attempts with dominant hand, max from each hand used, M : > or < $30 \mathrm{~kg}, F$: > or < 20 kg	UB MS	HGS (low vs. high)	Kg	N/R
Duncan 2016	N/A	\# of full flexion and extension of the elbow (arm curls) with dumbbells $F: 5$ pounds and $M: 8$ pounds completed in 30s	UB MP	Arm curl	\#/30s	Low: 13.7 (SE=0.61; Medium: 15.8 ($\mathrm{SE}=0.43$); High: 18.4 (0.41)
	N/A	\# chair stands completed in 30s	LB MP	30s CST	\#/30s	Low: 13.3 ($\mathrm{SE}=0.81$); Medium: 14.4 ($\mathrm{SE}=0.52$); High: 16.9 ($\mathrm{SE}=0.51$).
Edholm 2019	Kistler 9281 Force Platform	Concentric phase of jump on to force platform, 3 attempts, max used	LB MS	Squat jump test	N/kg	8.4 (1.8)
Foong 2016	100 kg Pocket Balance	MVC isometric KES, dominant leg	LB MS	KES	Kg	M: 39.3 (8.1); F: 28.2 (9.1)
	Dynamometer	MVC leg strength lifting a bar, both legs (simultaneously)	LB MS	Leg strength	Kg	$\begin{aligned} & M: 129.0(39.5) ; F: 56.4 \\ & (27.1) \end{aligned}$
Gennuso 2016	Dynamometer N / R	N/R	UB MS	HGS	N/R	N/R
	N/A	Time to complete 5 chair stands	LB MP	5x CST (0-4)	Points	

Author year	Device/equipment	Definition and protocol	Measure type	Reported measure(s)	Units	Mean (SD) ${ }^{\text {a }}$
						$\begin{aligned} & M: 2.5[1.0-3.5] ; F: 2.5[1.5- \\ & 3.0] \end{aligned}$
Gerdhem 2008	Bidoex Computerized	Isometric KES, three attempts, max used	LB MS	KES	NmS	246 (71)
	Dynamometer 4.5.0.	Isometric knee flexion strength, three attempts, max used	LB MS	Knee flexion strength	NmS	117 (37)
Hall 2016	N/A	\# chair stands completed in 30s	LB MP	30s CST	\#/30s	$\begin{aligned} & \text { 60-69:15.8 (4.5); 70-79: } 14.1 \\ & (4.9) ; 80-90+: 10.9(4.8) \end{aligned}$
Harada 2017	N/A	Time to complete 5 chair stands	LB MP	5x CST	S	7.7 (2.2)
Hartley 2018	Jamar Dynamometer	HGS, 3 attempts with each hand, max used	UB MS	HGS	Kg	21.8 (4.9)
	Mechanography Ground	One legged jump strength, 3 attempts, max used	LB MS	Jump strength	KiloN	1.3 (0.2)
	Reaction Force Platform	Two legged jump power, three 3, maxed used	LB MP	Jump power	KiloW	1.4 (0.3)
	N/A	Time to complete 5 chair stands	LB MP	5x CST	S	12.9 (4.2)
Hasegawa 2018	N/A	\# chair stands completed in 30s	LB MP	30s CST	\#/30s	15.4 (4.3)
Hernandes 2013	Takei Dynamometer	HGS, 2 attempts with each hand, max used	UB MS	HGS	KgF	Exercise: 27 [23-33]; Nonexercise: 25 [22-34]
	N/A	\# chair stands completed in 30s	LB MP	30s CST	\#/30s	Exercise: 13 [12-15]; Nonexercise: 12 [10-13]
Hernandez, 2016	Bilateral Leg Press	1RM leg press KES, 4-5 attempts, max used	LB MS	KES	Kg	195.8 (76.8)
	Technogym	Quadriceps power at 50% and 70% of individual's	LB MP	Quad power 50\%	W	576.4 (250.4)
		1RM, 2 attempts, max used	LB MP	Quad power 70\%	W	571.3 (245.9)
Hopkins 2019	N/A	Time to complete 5 chair stands	LB MP	5x CST	S	N/R
Iijima 2017	N/A	Time to complete 5 chair stands	LB MP	5x CST	S	Basal activity: 10.5 (3.42); Limited activity: 9.06 (2.33); Low active: 8.55 (2.86); Physically active: 7.90 (1.74)
Ikenaga 2014	Smedley Dynamometer TKK5401 GRIP-D	HGS, 2 attempts with both hands, max used	UB MS	HGS	Kg	35.4 (5.3)
	Dynamometer TKK5717 \& TKK5710	HGS, 2 attempts, max used	LB MS	KES	Nm/kg	2.35 (0.54)
Iwakura 2016	N/A	Time to complete 5 chair stands	LB MP	5x CST	S	11.05 (3.19)
Jantunen 2016	N/A	\# of full flexion and extension of the elbow (arm curls) with dumbbells F : 5 pounds and M : 8 pounds completed in 30s	UB MP	Arm Curl	\#/30s	16.0 (3.5)
	N/A	\# chair stands completed in 30s	LB MP	30s CST	\#/30s	11.5 (2.3)
Jeong 2019	Lafayette Instrument Handheld Dynamomete	Isometric KES, 2 attempts with most OA symptomatic knee, 2 attempts, mean used divided by weight	LB MS	KES	N/kg	2.8 (0.8)

Author year	Device/equipment	Definition and protocol	Measure type	Reported measure(s)	Units	Mean (SD) ${ }^{\text {a }}$
		Isometric hip abductor strength, 2 attempts on side of most OA symptomatic knee, mean used divided by weight	LB MS	Hip strength	N/kg	0.7 (0.3)
Johnson 2016	TTM Muscular Meter Dynamometer	Isometric hip extensor and quadricep strength, 2 attempts in both legs (simultaneously), max used	LB MS	Leg strength	Kg	97.58 (51.13)
Kawagoshi 2013	Hydromusculator GT160	Isometric extension and contraction of quadriceps femoris	LB MS	KES	N/R	N/R
Keevil 2015	Smedley Dynamometer	HGS, 2 attempts with each hand, max used	UB MS	HGS	Kg	N/R
	N/A	Time to complete 5 chair stands	UB MS	5x CST	\#/min	N/R
Kim 2015a	Smedley Dynamometer	HGS, 2 attempts with each hand, max used	UB MS	HGS	Kg	23.4 (7.5)
	μ Tas Dynamometer F-1 ANIMA	Isometric KES, 2 attempts with dominant leg, max/weight used	LB MS	KES	N/kg	1.15 (0.33)
Kim 2015b	N/A	Time to complete 5 chair stands	LB MP	5x CST	S	8.9 (2.1)
Lai 2020	N/A	Time to complete 5 chair stands, M : > or $\langle 6.95$ s, F : > or <6.88s	LB MP	5x CST (high vs. low)	S	N/R
Lee 2015	N/A	Time to complete 5 chair stands	LB MP	5x CST	\#/min	N/R
Lerma 2018	N/A	Time to complete 5 chair stands	LB MP	5x CST	S	15.2 (4.8)
Liao 2018	Jamar Dynamometer	HGS, 2 attempts with one hand, max used	UB MS	HGS	Kg	27.4 (8.4)
Lohne-Seiler 2016	Hydraulic Dynamometer	HGS, 3 attempts with dominant hand, max used	UB MS	HGS (adjusted for age, sex, test center)	Kg	33.5 (95\% CI: 32.3, 34.8)
Mador 2011	HF Star	Quadriceps strength dynamic contractions against hydraulic resistance, 2 sets of 3 contractions at highest resistance, max used	LB MS	KES	Kg	48.03 (12.29)
Matkovic 2020	KERN MAP 80K1 Handheld Dynamometer	HGS, 3 attempts with each hand, max used	UB MS	HGS	Kg	Right hand: 30.7 (10.1); Left hand: 29.1 (9.2)
	N/A	\# chair stands completed in 30s	LB MP	30s CST	\#/30s	11 (3)
Master 2018	N/A	Time to complete 5 chair stands	LB MP	5x CST	S	10.5 (2.9)
McDermott 2002	N/A	Time to complete 5 chair stands	LB MP	5x CST	S	N/R
McGregor 2018	Hand Dynamometer	HGS, 2 attempts, max used	UB MS	HGS	Kg	N/R
Meier 2020	Jamar Plus+ Digital	HGS, 3 attempts with each hand, max used	UB MS	HGS	Kg	29.9 (10.3)
	Dynamometer N/R	1 RM chest press, progressive reps increasing in weight, max used	UB MS	Chest press strength	Lbs	75.2 (37.2)
	N/R	1RM leg press, progressive reps increasing in weight, max used	LB MS	Leg press strength	Lbs	183.9 (78.0)

Author year	Device/equipment	Definition and protocol	Measure type	Reported measure(s)	Units	Mean (SD) ${ }^{\text {a }}$
Monteiro 2019	N/A	\# of full flexion and extension of the elbow (arm curls) with dumbbells $F: 5$ pounds and $M: 8$ pounds completed in 30s	UB MP	Arm curl	\#/30s	T1: 25.8 (9.75); T2: 30.50 (8.88); T3: 32.60 (8.36)
	Bidoex System 2 (custom)	Isokinetic KES, measured at $180^{\circ} / \mathrm{sec}$, five attempts, max used	LB MS	KES	Nm	$\begin{aligned} & \text { T1: } 57.65 \text { (15.36); T2: } 65.10 \\ & (15.24) ; T 3: 69.93(17.51) \end{aligned}$
		Isokinetic knee flexion strength, measured at				
	Bidoex System 2 (custom)	$180^{\circ} / \mathrm{sec}$, five attempts, max used \# chair stands completed in 30 s	LB MS	Knee flexion strength	Nm	$\begin{aligned} & T 1: 33.39 \text { (11.38) T2: } 36.54 \\ & \text { (12.24); T3: } 42.02 \text { (9.23) } \end{aligned}$
	N/A		LB MP	30s CT	\#/30s	$\begin{aligned} & T 1: 20.55(5.73) ; T 2: 21.75 \\ & (7.33) ; T 3: 25.10(5.93) \end{aligned}$
Morie 2010	Jamar Dynamometer	HGS, 3 attempts with each hand, max used	UB MS	HGS	Kg	N/R
	Keiser A420 Pneumatic	Chest and leg press 1RM determined, 2 trials, max	UB MS	Chest press strength	N	N/R
	Resistance Machine	used and power at varying \% of 1RM for chest	UB MP	Chest press power	W	N/R
		press and leg press assessed, max power used for	LB MS	Leg press strength	N	N/R
		analysis	LB MP	Leg press power	W	N/R
Nagai 2018	Smedley Dynamometer GRIP-A	$\mathrm{N} / \mathrm{R}, \mathrm{M}:>$ or $<26 \mathrm{~kg}$ and F : > or $<18 \mathrm{~kg}$	UB MS	HGS (weak vs. not weak)	Kg	26.7 (7.6)
Nawrocka 2017	N/A	\# of full flexion and extension of the elbow (arm curls) with dumbbells $F: 5$ pounds and $M: 8$ pounds completed in 30s	UB MP	Arm curl	\#/30s	N/R
	N/A	\# chair stands completed in 30s	LB MP	30s CSTs	\#/30s	N/R
Nawrocka 2019	Jamar Dynamometer	HGS, two attempts, max used	UB MS	HGS	Kg	Not meeting PA guidelines: 22.87 (5.05); Meeting PA guidelines: 24.99 (5.60)
	N/A	curls) with dumbbells F : 5 pounds and $M: 8$ pounds completed in 30s \# chair stands completed in 30s	UB MP	Arm curl	\#/30s	Not meeting PA guidelines: 16.04 (4.03); Meeting PA guidelines: 17.87 (3.76)
	N/A		LB MP	30s CST	\#/30s	Not meeting PA guidelines: 14.36 (3.27); Meeting PA guidelines: 14.92 (3.59)
Nicolai 2010	N/A	Time to complete 5 chair stands	LB MP	5x CST	S	Unadjusted
					S	Unadjusted
Ofei-Doodoo 2016	N/A	\# of full flexion and extension of the elbow (arm curls) with dumbbells $F: 5$ pounds and $M: 8$ pounds completed in 30s	UB MP	Arm curl	\#/30s	N/R
	N/A	\# chair stands completed in 30s	LB MP	30s CST	\#/30s	N/R

Author year	Device/equipment	Definition and protocol	Measure type	Reported measure(s)	Units	Mean (SD) ${ }^{\text {a }}$
Orwoll 2019	N/A	Time to complete 5 chair stands	LB MP	5x CST	S	No falls: 11.2 (3.2); One falls: 11.6 (3.3); \geq Two falls: 12.3 (4.4)
Osuka 2015	N/A	Time to complete 5 chair stands	LB MP	5x CST	S	N/R
Park 2018	Dynamometer N/R	HGS, two attempts with each hand, max/weight x 100 used	UB MS	HGS	\%	52.0 (7.8)
	N/A	\# chair stands completed in 30s, 2 attempts, max used	LB MS	30s CST	\#/30s	20.7 (4.2)
Perkin 2018	Keijzer A420	Leg press 1 RM, force-velocity evaluation to determine max force (strength) and max power	LB MS	Leg press strength	N	N/R
			LB MP	Leg press power	W	N/R
Pitta 2005	Jamar Dynamometer	Isometric HGS, 3 attempts with each hand, sum of max on each hand used, \% predictive	UB MS	HGS	\% pred	92 (24)
	Cybex Norm Jamar Dynamometers	Isometric knee extension torque, \% predictive (pred)	LB MS	Knee extension torque	\% pred	56 (10)
Puthoff 2008	Keiser 420 Leg Press	Leg press 1RM, peak power, power at 40% of 1RM, and power at 90% of 1 RM assessed, 3 attempts, max result for each used	LB MS	Leg press strength	N/kg	15.5 (4.0)
			LB MP	Leg press power peak	W/kg	7.6 (2.7)
			LB MP	Leg press power 40\%	W/kg	7.1 (2.7)
			LB MP	Leg press power 90\%	W/kg	5.7 (2.4)
Rapp 2012	Jamar Dynamometer	HGS, two attempts in each hand, mean of each hand calculated and max used Time to complete 5 chair stands	UB MS	HGS	Kg	M: 38.8 (9.40); F: 23.7 (6.56)
	N/A		LB MP	5x CST	S	M: 11.1 (3.42); F: 11.6 (3.73)
Rausch-Osthoff	Strain Gauge connected to Interface Series SM S-Type Load Cell and Nexus-10 device	MVC isometric KES, left leg, 3 attempts mean used	LB MS	KES	Nm	14.5 (5.2)
Rava, 2018	N/A	Time to complete 5 chair stands	LB MP	5x CST	S	9.6 (2.0)
Reid 2018	Lord's Strap Assembly	1 RM KES, 2 attempts with each leg, max used	LB MS	KES	Kg	25.2 (11.2)
	1RM Bilateral Leg PressN/R		LB MS	Leg press strength	Kg	128/7 (51.2)
	N/A	\# chair stands completed in 30s,	LB MP	30s CT	\#/30s	12.3 (2.4)
Rojer 2017	Jamar Dynamometer	HGS, 3 attempts with each hand, max used	UB MS	HGS	Kg	31.5 (9.5)
Rosenberg 2015	N/A	Time to complete 5 chair stands	LB MP	5x CST	S	13.0 (3.4)
Rowlands 2018	N/R	HGS, 3 attempts with each hand, max used	UB MS	HGS		28.5 (10.1)
	N/A	\# chair stands completed in 30s, 2 attempts, max	LB MP	60s CST		22.1 (7.8)

Author year	Device/equipment	Definition and protocol	Measure type	Reported measure(s)	Units	Mean (SD) ${ }^{\text {a }}$
Safeek 2018	Jamar Dynamometer	HGS, 2 attempts with dominant hand, max used	UB MS	HGS	Kg	$\begin{aligned} & M: 38.00[9.75] ; F: 25.00 \\ & {[2.50]} \end{aligned}$
	N/A	\# chair stands completed in 30s, 2 attempts, max used	LB MP	30s CST	\#/30s	14.00 [6.00]
Sanchez-sanchez 2019	Jamar Dynamometer	HGS, 3 attempts with each hand, max used	UB MS	HGS	Kg	22.26 (8.21)
Santos 2012	N/A	\# of full flexion and extension of the elbow (arm curls) with dumbbells F : 5 pounds and $M: 8$ pounds completed in 30s	UB MP	Arm Curl	\#/30s	16.3 (5.3)
	N/A	\# chair stands completed in 30s	LB MP	30s CST	\#/30s	13.7 (4.7)
Sardinha 2015	N/A	\# of full flexion and extension of the elbow (arm curls) with dumbbells F : 5 pounds and $\mathrm{M}: 8$ pounds completed in 30s	UB MP	Arm Curl	\#/30s	16.9 (5.2)
	N/A	\# chair stands completed in 30s	LB MP	30s CST	\#/30s	14.4 (4.5)
Scott 2020	Patterson Medical Jama Dynamometer	rHGS, 2 attempts, max used	UB MS	HGS	Kg	Non-sarcopenic: 34.7 (10.6); Sarcopenic: 16.5 (5.8)
Scott 2011	TTM Muscular Meter Dynamometer	Isometric hip extensor and quadricep strength, 2 attempts in both legs (simultaneously), max used	LB MS	Leg strength	Kg	96.2 (49.4)
Scott 2009	TTM Muscular Meter Dynamometer	Isometric hip extensor and quadricep strength, 2 attempts in both legs (simultaneously), max used	LB MS	Leg strength	Kg	Sedentary: 84.3 (47.5); Low active: 4.4 (47.3); Somewhat active: 88.3 (48.8); Active: 99.4 (48.5); Highly active: $102.7 \text { (51.1) }$
Semanik 2015	N/A	Time to complete 5 chair stands	LB MP	5x CST	\#/min	30.6 (11.2)
Silva 2019	N/A	\# of full flexion and extension of the elbow (arm curls) with dumbbells F : 5 pounds and M : 8 pounds completed in 30s	UB MP	Arm Curl	\#/30s	20.07 (6.69)
	N/A	\# chair stands completed in 30s	LB MP	30s CST	\#/30s	15.04 (5.06)
Spartano 2019	Jamar Dynamometer	HGS, 3 attempts with each hand, max used	UB MS	HGS	Kg	M: 39.1 (8.7); F: 23.3 (5.7)
	N/A	Time to complete 5 chair stands	LB MP	5x CST	S	9.9 (2.6)
Tang 2015	Jamar Dynamometer	Isometric HGS, 3 attempts with each hand, mean used	UB MS	HGS	Kg	16.3 [11.3-20.2]
Trayers	N/A	Time to complete 5 chair stands	LB MP	5x CST (0-4)	Points	N/R
Van Gestel 2012	Bremshey Hand Dynamometer	Dominant hand	UB MS	HGS	Kg	37.3 (10.2)
	N/A	\# chair stands completed in 60s	LB MP	60s CST	\#/60s	20 (6)

Table C4 Continued

Author year	Device/equipment	Definition and protocol	Measure type	Reported measure(s)	Units	Mean (SD) ${ }^{\text {a }}$
Van Lummel 2016	N/A	Time to complete 4.5 chair stands (ending seated)	LB MP	5x CST	S	14.9 (6.6)
Van Oeijen 2020	MicroFET Hand-held Dynamometer	"Make" test of the hip flexors, hip abductors, knee extensors and ankle dorsal flexors, N/R	LB MS	Lower extremity strength	Z-score	$\begin{aligned} & \text { s Baseline: -1.00 (1.15); FU: } \\ & 1.36 \text { (1.06) } \end{aligned}$
Van Sloten 2011	Jamar Dynamometer	HGS, 3 attempts with each hand, max used, sex specific $20^{\text {th }}$ percentiles used as cut off points for presence of low HGS	LB MS	HGS	Kg	M: 43.4 (9.87); F: 26.1 (4.9)
Walker 2008	Transducer and MacLab max used Bridge Amplifier		LB MS	KES	N	315 (106)
Ward 2014	N/A	\# chair stands completed in 30s	LB MP	30s CST	\#/30s	$\begin{aligned} & F: 15.72 \text { (4.13); M: } 17.51 \\ & (5.89) \end{aligned}$
Waschiki 2012	Strain Gauge Dynamometer	MVC isometric quadriceps strength, mean used	LB MS	KES	Kg	32.0 (13.2)
Watz 2008	Handgrip dynamometer (N / R)	N/R	LB MS	HGS	Kg	35.3 (9.6)
Westbury 2018	Jamar hydraulic Dynamometer	HGS, 3 attempts with each hand, max used	UB MS	HGS	Kg	M: 34.8 (6.5); F: 20.7 (5.6)
Wickerson 2013	Isokinetic Dynamometer	rIsometric quadriceps torque	LB MS	Knee extension torque	Nm	120 (36)
Winberg 2015	Biodex Multi- Joint System 3 PRO Dynamometer	MVC knee extension and knee flexion strength, both legs (less affected leg and more affected leg by polio), peak torques used	LB MS	KES	Nm	Less affected leg: 104 (43); More affected leg: 69 (43)
			LB MS	Knee flexion strength	Nm	Less affected leg: 59 (25); More affected leg: 36 (24)
Yamada 2011	N/A	Time to complete 5 chair stands	LB MP	5x CST	S	Non-frail: 8.9 (3.6); Frail: $17.6(8.5)$
Yasunaga 2017	Smedley Dynamometer HGS, 1 attempt with dominant hand TKK5041		UB MS	HGS	Kg	27.4 (8.3)
Yoshida 2010	Smedley Dynamometer	HGS, 2 attempts with each hand, mean calculated and max used Isometric KES, two attempts with each leg, max of each leg added and multiplied by leg length converted into torque and divided by weight	UB MS	HGS	Kg	HFG: 17.9 (4.0); LFG: 15.1 (4.0)
			LB MS	KES	Nm/kg	$\begin{aligned} & H F G: 2.10 \text { (} 0.69 \text {); LFG: } 2.61 \\ & (0.87) \end{aligned}$
Yuki 2019	N/R	HGS, M : > or < $26 \mathrm{~kg} F$: > or < 18 kg	UB MS	HGS (+/-weakness)	Kg	N/R

${ }^{2}$ Mean (standard deviation (SD)) of muscle strength and muscle power are presented unless reported as median [interquartile range], or mean \{range\}. Subgroups for stratified results are presented in italics.
$\mathrm{UB}=$ upper body, $\mathrm{LB}=$ lower body, MS=muscle power, MP=muscle strength, HGS=hand grip strength, KES=knee extension strength, KET=knee extension torque, $\mathrm{CST}=\mathrm{chair}$ stand test, $\mathrm{s}=$ seconds, $\mathrm{x}=$ times (repetitions), \#=number, quad=quadriceps, $\mathrm{kg}=$ kilogram, $\mathrm{N}=$ newton, $\mathrm{Nm}=$ newton-meter, $\mathrm{W}=\mathrm{watt}$, KgF=kilogram-force, KiloW=kilowatt, KiloN=kilonewton, MVC=maximum voluntary contraction, $1 \mathrm{RM}=$ one repetition maximum, max=maximum, $/=$ divided by or per, $\Delta=$ change, $\%$ pred $=\%$ predictive, $+/-$ $=$ with or without, $\mathrm{N} / \mathrm{A}=$ not applicable, $\mathrm{N} / \mathrm{R}=$ not reported, $\mathrm{M}=$ male, $\mathrm{F}=$ female, $\mathrm{HFG}=$ high functioning group, $\mathrm{LFG}=$ low functioning group, $\mathrm{OA}=\mathrm{osteoarthritis}$. articles have a longitudinal design

Table C5 Associations between physical activity and sedentary behavior with muscle strength and muscle power in older adults

Author year	Physical activity and sedentary behavior		Muscle strength and muscle power		Adjustment	Effect size (95\% CI) ${ }^{\text {a }}$	p-value used for analyses ${ }^{\text {b }}$
	Reported measure(s)	Units	Reported measure(s)	Units			
Abe 2015	Steps	\#/day	KES/weight	Kg/Nm	Age	Partial R=0.242 (p>0.05)	"Abe 2012"
	MVPA	Min/day	KES/weight	$\mathrm{Kg} / \mathrm{Nm}$	Age	Partial R=0.233 ($\mathrm{p}>0.05$)	"Abe 2012"
	LPA (LPA-MPA)	Min/day	KES/weight	$\mathrm{Kg} / \mathrm{Nm}$	Age	Partial R=0.217 $(\mathrm{p}>0.05)$	"Abe 2012"
	Steps	\#/day	Toe grasping/weight	Kg/kg	Age	Partial $\mathrm{R}=0.283$ ($0.01>\mathrm{p}<0.05$)	$0.01>\mathrm{p}<0.05$
	MVPA	Min/day	Toe grasping/weight	Kg/kg	Age	Partial $\mathrm{R}=0.228$ ($\mathrm{p}>0.05$)	p (calc) $=0.881$
	LPA (LPA-MPA)	Min/day	Toe grasping/weight	Kg/kg	Age	Partial $\mathrm{R}=0.290$ ($0.01>\mathrm{p}<0.05$)	$0.01>\mathrm{p}<0.05$
Abe 2012	Steps	\#/day	KES	Nm	Unadjusted	$\mathrm{R}=0.351 \quad(\mathrm{p}=0.015)$	$\mathrm{p}=0.015$
	VPA	Min/day	KES	Nm	Age, sex, height, weight	Partial R=0.184 ($\mathrm{p}>0.05$)	
	MVPA (MPA)	Min/day	KES	Nm	Age, sex, height, weight	Partial R=0.197 ($\gg 0.05$)	p (calc) $=0.180$
	LPA	Min/day	KES	Nm	Age, sex, height, weight	Partial $\mathrm{R}=0.155$ ($\mathrm{p}>0.05$)	p (calc) $=0.293$
	EE	Kcal/day	KES	Nm	Unadjusted	$\mathrm{R}=0.421$ ($\mathrm{p}=0.004$)	$\mathrm{p}=0.004$
	Steps	\#/day	Knee flexion strength	Nm	Age, sex, height, weight	Partial R=0.369 ($\mathrm{p}=0.014$)	$\mathrm{p}=0.014$
	VPA	Min/day	Knee flexion strength	Nm	Age, sex, height, weight	Partial $\mathrm{R}=0.236$ ($\mathrm{p}>0.05$)	
	MPA	Min/day	Knee flexion strength	Nm	Age, sex, height, weight	Partial R=0.438 ($\mathrm{p}=0.003$)	$\mathrm{p}=0.003$
	LPA	Min/day	Knee flexion strength	Nm	Age, sex, height, weight	Partial R=0.089 ($\mathrm{p}>0.05$)	p (calc) $=0.547$
	EE	Kcal/day	Knee flexion strength	Nm	Age, sex, height, weight	Partial $\mathrm{R}=0.409(\mathrm{p}=0.006$)	$\mathrm{p}=0.006$
Aggio 2016	MVPA	Sqrt(min/day)	HGS	Kg	Age, waist circumference	$\mathrm{B}=0.58(0.34,0.82)$	$\mathrm{p}<0.001$
	LPA	Min/day	HGS	Kg	Age, waist circumference	$\mathrm{B}=0.21(-0.06,0.48)$	$\mathrm{p}=0.125$
	SB	$30 \mathrm{~min} /$ day	HGS	Kg	Age, waist circumference	$\mathrm{B}=-0.20$ (-0.41, 0.01)	$\mathrm{p}=0.062$
	BST	\#/h	HGS	Kg	Age, waist circumference	$\mathrm{B}=0.14(-0.14,0.42)$	$\mathrm{p}=0.329$
Alcazar 2018	MVPA	\% wear time	Leg press strength	N	Unadjusted	$\mathrm{R}=0.41$ (p<0.05)	p (calc) $=0.021$
	SB	\% wear time	Leg press strength	N	Unadjusted	$\mathrm{R}=\mathrm{N} / \mathrm{R}(\mathrm{p}>0.05)$	$\mathrm{p}(\mathrm{N} / \mathrm{R})>0.25$
	MVPA	\% wear time	Leg press power	W/kg	Unadjusted	$\mathrm{R}=0.59(\mathrm{p}<0.01)$	p (calc) <0.001
	SB	\% wear time	Leg press power	W/kg	Unadjusted	$\mathrm{R}=\mathrm{N} / \mathrm{R}(\mathrm{p}>0.05)$	$\mathrm{p}>0.25$
Alzahrani 2012	Activity counts	\#/day	KES	N	Unadjusted	$\mathrm{R}=0.03(\mathrm{p}=0.85)$	$\mathrm{p}=0.85$
	TPA	Min/day	KES	N	Unadjusted	$\mathrm{R}=0.18(\mathrm{p}=0.25)$	$\mathrm{p}=0.25$
Andersson 2013	EE (PAL)	None	KES	Kg	Age, sex, gait speed + others	$\mathrm{B}=0.004$ (0.000, 0.008)	$\mathrm{p}=0.242$
Andre 2018	MVPA	Min/day	Calf raise (high vs. low)	\#/30s	Unadjusted	*Cohen's d=0.97 ($\mathrm{p}=0.04$)	$\mathrm{p}=0.04$
Andre 2016	MVPA (high vs. low)	Min/day	Calf raise	\#/30s	Unadjusted	$\mathrm{R}=0.639$ ($\mathrm{p}=0.001$)	$\mathrm{p}=0.001$
Aoyagi 2009	Steps	\#/day	HGS	N	Age, sex	Partial R=0.12 (p>0.05)	p (calc) $=0.119$
	TPA	Min/day	HGS	N	Age, sex	Partial R=0.12 ($\mathrm{p}>0.05$)	p (calc) $=0.119$

Author year	Physical activity and sedentary behavior		Muscle strength and muscle power		Adjustment	Effect size (95\% CI) ${ }^{\text {a }}$	p-value used for analyses ${ }^{\text {b }}$
	Reported measure(s)	Units	Reported measure(s)	Units			
Ashe 2008	Steps	\#/day	Knee extension torque	Nm/kg	Age, sex	Partial R=0.20 (p<0.05)	p (calc) $=0.009$
	TPA	Min/day	Knee extension torque	Nm/kg	Age, sex	Partial $\mathrm{R}=0.21$ ($\mathrm{p}<0.05$)	p (calc) $=0.005$
	Activity counts	\#/day	Leg press strength	Kg	Unadjusted	$\mathrm{R}=0.284(\mathrm{p}=0.025)$	$\mathrm{p}=0.025$
	MVPA	Min/day	Leg press strength	Kg	Unadjusted	$\mathrm{R}=0.174(\mathrm{p}=0.175)$	$\mathrm{p}=0.175$
	Activity counts	\#/day	Leg press power	W	Unadjusted	$\mathrm{R}=0.373(\mathrm{p}=0.003)$	$\mathrm{p}=0.003$
Ashe 2007	MVPA	Min/day	Leg press power	W	Unadjusted	$\mathrm{R}=0.260$ ($\mathrm{p}=0.041$)	$\mathrm{p}=0.041$
	Steps	\#/day	HGS	Kg	Unadjusted	$\mathrm{R}=0.22$ (p<0.01)	p (calc) $=0.002$
	Steps (high vs. low)	\#/day	HGS	Kg	Unadjusted	* $\mathrm{OR}=2.04$ (0.86, 4.79)	
	Steps	\#/day	KES	Kg	Unadjusted	$\mathrm{R}=0.31$ (p<0.001)	p<0.001
Aubertin-Leheudre 2017	Steps	\#/day	HGS (dynapenic vs. nondynapenic)	Kg	Unadjusted	Non-obese: T=N/R (+) ($\mathrm{p}=0.07$) Obese: T=N/R (+) ($\mathrm{p}=0.056$)	$\begin{aligned} & \mathrm{p}=0.07 \\ & \mathrm{p}=0.056 \end{aligned}$
	Activity counts	\#/day	HGS (dynapenic vs. nondynapenic)	Kg	Unadjusted	Non-obese: $\mathrm{T}=\mathrm{N} / \mathrm{R}(+) \mathrm{p}=0.0008$) Obese: T=N/R (+) ($\mathrm{p}=0.021$)	$\begin{aligned} & \mathrm{p}=0.0008 \\ & \mathrm{p}=0.021 \end{aligned}$
	TPA	Min/day	HGS (dynapenic vs. nondynapenic)	Kg	Unadjusted	Non-obese: $\mathrm{T}=\mathrm{N} / \mathrm{R}(+)(\mathrm{p}=0.005)$ Obese: $\mathrm{T}=\mathrm{N} / \mathrm{R}(+)(\mathrm{p}=0.029)$	$\begin{aligned} & \mathrm{p}=0.005 \\ & \mathrm{p}=0.029 \end{aligned}$
Balducci 2017	MVPA	Min/day	Shoulder press strength	Nm	Unadjusted	Rho $=0.397$ ($\mathrm{p}<0.001$)	$\mathrm{p}<0.001$
	LPA	H/day	Shoulder press strength	Nm	Unadjusted	Rho $=0.281$ ($\ll 0.001$)	p<0.001
	SB	H/day	Shoulder press strength	Nm	Unadjusted	Rho $=-0.235$ ($\mathrm{p}<0.001$)	p<0.001
	MVPA	Min/day	Leg press strength	Nm	Unadjusted	Rho $=0.412$ ($\ll 0.001$)	p<0.001
	LPA	H/day	Leg press strength	Nm	Unadjusted	Rho $=0.341$ ($\mathrm{p}<0.05$)	$\mathrm{p}<0.001$
	SB	H/day	Leg press strength	Nm	Unadjusted	Rho $=-0.299$ ($\mathrm{p}<0.001$)	p<0.001
Bann 2015	TPA	H/day	HGS	Kg	Age, sex, wear time	$\mathrm{B}=0.06(-0.03,0.16)$	$\mathrm{p}=0.191$
	Higher LPA	H/day	HGS	Kg	Age, sex, wear time	$\mathrm{B}=2.41$ (0.16, 4.66)	
	LPA (Lower LPA)	H/day	HGS	Kg	Age, sex, wear time	$\mathrm{B}=0.06(-0.42,0.54)$	$\mathrm{p}=0.809$
	SB	H/day	HGS	Kg	Age, sex, wear time	$\mathrm{B}=-0.13(-0.55,0.28)$	$\mathrm{p}=0.527$
Barbat-Artigas	Steps	\#/day	HGS	Kg	Unadjusted	$\mathrm{R}=\mathrm{N} / \mathrm{R}(\mathrm{p}>0.05)$	$\mathrm{p}(\mathrm{N} / \mathrm{R})>0.25$
2012	TPA	Min/day	HGS	Kg	Unadjusted	$\mathrm{R}=\mathrm{N} / \mathrm{R}(\mathrm{p}>0.05)$	$\mathrm{p}(\mathrm{N} / \mathrm{R})>0.25$
	Steps	\#/day	KES	N	Unadjusted	$\mathrm{R}=\mathrm{N} / \mathrm{R}(\mathrm{p}>0.05)$	$\mathrm{p}(\mathrm{N} / \mathrm{R})>0.25$
	TPA	Min/day	KES	N	Unadjusted	$\mathrm{R}=\mathrm{N} / \mathrm{R}(\mathrm{p}>0.05)$	$\mathrm{p}(\mathrm{N} / \mathrm{R})>0.25$
	Steps	\#/day	20s CST	\#/20s	Unadjusted	$\mathrm{R}=\mathrm{N} / \mathrm{R}(\mathrm{p}>0.05)$	$\mathrm{p}(\mathrm{N} / \mathrm{R})>0.25$
	TPA	Min/day	20s CST	\#/20s	Unadjusted	$\mathrm{R}=\mathrm{N} / \mathrm{R}(\mathrm{p}>0.05)$	$\mathrm{p}(\mathrm{N} / \mathrm{R})>0.25$
Bartlett 2020	Steps (active vs. sedentary)	\#/day	HGS	Kg	Unadjusted	$\mathrm{T}=\mathrm{N} / \mathrm{R}(+)(\mathrm{p}=0.69)$	$\mathrm{p}=0.69$

Author year	Physical activity and sedentary behavior		Muscle strength and muscle power		Adjustment	Effect size (95\% CI) ${ }^{\text {a }}$	p-value used for analyses ${ }^{\text {b }}$
	Reported measure(s)	Units	Reported measure(s)	Units			
Bassey 1988	Steps (step score)	\#/day x 10^3	Calf strength	N	Unadjusted	F: Pearson's $\mathrm{R}=\mathrm{N} / \mathrm{R}(\mathrm{p}>0.05)$	$\mathrm{p}(\mathrm{N} / \mathrm{R})>0.25$
						M: Pearson's $\mathrm{R}=0.30(\mathrm{p}<0.05)$	p (calc) $=0.025$
Bogucka 2018	Steps	\#/day	HGS	Kg	Unadjusted	Dynapenic: $\mathrm{R}=-0.12(\mathrm{p}=0.74)$	$\mathrm{p}=0.74$
						Non-dynapenic: $\mathrm{R}=0.16(\mathrm{p}=0.34)$	$\mathrm{p}=0.34$
Bollaert 2017	MVPA	\% wear time	5x CST (0-4)	Points	MS, SB, long SB bouts	$\mathrm{B}=9.07(\mathrm{SE}=5.14) \beta=0.18$	p (calc) $=0.077$
	LPA	\% wear time	5x CST (0-4)	Points	Unadjusted	$\mathrm{R}=0.40$ ($\mathrm{p}<0.01$)	p (calc)<0.001
	SB	\% wear time	5x CST (0-4)	Points	MS, MVPA, long SB bouts	$B=-2.98(S E=1.46) \beta=-0.20 \mathrm{~s}$	p (calc) $=0.041$
	PA bouts	\#/day	5x CST (0-4)	Points	Unadjusted	$\mathrm{R}=0.34(\mathrm{p}<0.01)$	p (calc) $=0.002$
	PA bouts	Min/bout/day	5x CST (0-4)	Points	Unadjusted	$\mathrm{R}=0.15$ ($\mathrm{p}>0.01$)	p (calc) $=0.184$
	SB bouts	\#day	5x CST (0-4)	Points	Unadjusted	$\mathrm{R}=-0.01$ ($\mathrm{p}>0.01$)	p (calc) $=0.930$
	SB bouts	Min/bout/day	5x CST (0-4)	Points	Unadjusted	$\mathrm{R}=-0.33$ (p<0.01)	p (calc) $=0.003$
	Long SB bouts	\#/day	5x CST (0-4)	Points	Unadjusted	$\mathrm{R}=-0.32$ ($\mathrm{p}<0.01$)	p (calc) $=0.004$
	Long SB bouts	Min/bout/day	5x CST (0-4)	Points	MS, MVPA, SB	$\mathrm{B}=-0.04$ ($\mathrm{SE}=0.02$) $\beta=-0.25$	p (calc) $=0.045$
Boutou 2019	Actigraph measures:						
	Δ Steps	\#/day	KES	Kg	Age, 6MWD, climate + others	* $\mathrm{B}=-1.00 \mathrm{E}-4(-0.004,0.005)$	
	$\triangle \mathrm{MVPA}$	Ratio	KES	Kg	Age, 6MWD, climate + others	* $\mathrm{B}=-0.004(-0.016,0.009)$	$\mathrm{p}=0.535$
	$\Delta \mathrm{VMU}$	\#/day	KES	Kg	Age, 6MWD, climate + others	* $\mathrm{B}=-0.003(-0.007,0.001)$	
	Dynaport measures:						
	Δ Steps	\#/day	KES	Kg	Age, 6MWD, climate + others	*B=-2.10E-4 (-0.005, 0.005)	$\mathrm{p}=0.932$
	Δ Steps (Walking)	Min/day	KES	Kg	Age, 6MWD, climate + others	*B=0.002 (-0.003, 0.067)	
	$\triangle \mathrm{MET}$	G	KES	Kg	Age, 6MWD, climate + others	* $\mathrm{B}=-0.001$ (SE=6.00E-4)	$\mathrm{p}=0.036$
	$\triangle \mathrm{VMU}$	\#/day	KES	Kg	Age, 6MWD, climate + others	* $\mathrm{B}=-0.005(\mathrm{SE}=0.002)$	$\mathrm{p}=0.03$
2016 Chastin 2012	MVPA	CPM	HGS	Kg	Unadjusted	$\mathrm{R}=0.42(\mathrm{p}=0.01)$	$\mathrm{p}=0.01$
	SB	H/day	Leg extension power	N/R	Unadjusted	M: $\mathrm{R}=0.739$ ($\mathrm{p}=0.003$)	$\mathrm{p}=0.003$
						$F: \mathrm{R}=0.151(\mathrm{p}=0.678)$	$\mathrm{p}=0.678$
	SB break rate	\#/sedentary h	Leg extension power	N/R	Unadjusted	$M: \mathrm{R}=-0.683(\mathrm{p}=0.07)$	$\mathrm{p}=0.07$
						$F: \mathrm{R}=-0.158(\mathrm{p}=0.663)$	$\mathrm{p}=0.663$
Chmelo 2013	Steps	\#/day	KES	N	Unadjusted	$\mathrm{R}=0.13(\mathrm{p}=0.15)$	$\mathrm{p}=0.15$
	MVPA	Min/day	KES	N	Unadjusted	$\mathrm{R}=0.09(\mathrm{p}=0.33)$	$\mathrm{p}=0.33$
	LPA	Min/day	KES	N	Unadjusted	$\mathrm{R}=-0.04$ ($\mathrm{p}=0.66$)	$\mathrm{p}=0.66$
	EE	Kcal/day	KES	N	Unadjusted	$\mathrm{R}=0.23$ ($\mathrm{p}=0.01$)	$\mathrm{p}=0.01$
Cooper 2015	MVPA	SDs	HGS	Kg	Sex	$\beta=0.638$ (0.166, 1.110)	$p($ calc $)=0.008$
	SB	SDs	HGS	Kg	Sex	$\beta=-0.588$ (-1.062, -0.115)	p (calc) $=0.015$

Author year	Physical activity and sedentary behavior		Muscle strength and muscle power		Adjustment	Effect size (95\% CI) ${ }^{\text {a }}$	p-value used for analyses ${ }^{\text {b }}$
	Reported measure(s)	Units	Reported measure(s)	Units			
Davis, 2014	EE	SDs	HGS	Kg	Sex	$\beta=0.632(0.158,1.105)$	p (calc) $=0.009$
	MVPA	SDs	10x CST	\#/min	Sex	$\beta=0.670$ (0.321, 1.018)	p (calc)<0.001
	SB	SDs	10x CST	\#/min	Sex	$\beta=-0.550(-0.898,-0.201)$	p (calc) $=0.002$
	EE	SDs	10x CST	\#/min	Sex	$\beta=0.943$ ($0.594,1.292)$	p (calc)<0.001
	MVPA	$\log (\mathrm{min} / \mathrm{h})$	5x CST (0-4)	Points	Age, sex, BMI, edu	$\mathrm{B}=0.851(0.429,1.272)$	p<0.001
	SB	Min/h	5x CST (0-4)	Points	Age, sex, BMI, edu, MVPA	$\mathrm{B}=-0.042(-0.073,-0.011)$	$\mathrm{p}=0.009$
	BST	\#/h	5x CST (0-4)	Points	Age, sex, BMI, edu, MVPA, SB	$\mathrm{B}=0.334(0.178,0.490)$	p<0.001
De Melo 2010	Steps	\#/day	30s CST	\#/30s	Age, self-rate health, income	*RR=1.04 (1.00, 1.07)	$\begin{aligned} & \text { "De Melo } \\ & 2014 " \end{aligned}$
De Melo 2014	Steps (medium vs. low)	\#/day	Arm Curl	\#/30s	Age, sex, morbidities	* $\mathrm{OR}=1.01$ (0.77-1.32)	
	Steps (high vs. low)	\#/day	Arm Curl	\#/30s	Age, sex, morbidities	*OR=1.35 (1.00-1.82)	$\mathrm{p}=0.04$
	Steps (medium vs. low)	\#/day	30s CST	\#/30s	Age, sex, morbidities	* $\mathrm{OR}=1.00$ (0.82-1.18)	
	Steps (high vs. low)	\#/day	30s CST	\#/30s	Age, sex, morbidities	* $\mathrm{OR}=1.61$ (1.17-2.21)	$\mathrm{p}=0.004$
Demeyer 2018	Δ Steps (persistently active vs. decline)	\#/day	\triangle HGS	N	Baseline HGS	$\operatorname{EMM}(\mathrm{N} / \mathrm{R})(\mathrm{p}$-trend=0.48)	
	Δ Steps (persistently active vs. inactive)	\#/day	$\Delta \mathrm{HGS}$	N	Baseline HGS	$\operatorname{EMM}(\mathrm{N} / \mathrm{R})(\mathrm{p}$-trend=0.39)	
	Steps (active, somewhat active, inactive, very inactive)	\#/day	$\Delta \mathrm{HGS}$	N	Baseline HGS	$\operatorname{EMM}(\mathrm{N} / \mathrm{R})(\mathrm{p}$-trend=0.84)	$\mathrm{p}=0.84$
	MVPA (quartiles)	Min/day	Δ HGS	N	Baseline HGS	EMM (N / R) (p-trend $=0.32$)	$\mathrm{p}=0.32$
	SB (quartiles)	Min/day	$\Delta \mathrm{HGS}$		Baseline HGS	EMM (N / R) (p-trend $=0.24$)	$\mathrm{p}=0.24$
Distefano 2018	Steps	\#/day	KES	Kg/kg	Age, sex	Partial $\mathrm{R}=0.294(\mathrm{p}=0.154)$	$\mathrm{p}=0.154$
	Steps	\#/day	5x CST	S	Age, sex	Partial $\mathrm{R}=-0.301(\mathrm{p}=0.153)$	$\mathrm{p}=0.153$
Dogra 2017	BST	\#/day	HGS	Kg	Age, sex, BMI, edu, + others	$\beta=0.068$ (-0.011, 0.147)	$\mathrm{p}=0.09$
	Long SB bouts	\% time/day	HGS	Kg	Age, sex, BMI, edu, + others	$\beta=-0.064(-0.148,0.021)$	$\mathrm{p}=0.13$
Dohrn 2020	SB	Min/day	5x CST (able vs. nonable)	None	Age, sex, BMI, edu, + others	OR=39.5 (p<0.05)	$0.01<\mathrm{p}<0.05$

Author year	Physical activity and sedentary behavior		Muscle strength and muscle power		Adjustment	Effect size (95\% CI) ${ }^{\text {a }}$	p-value used for analyses ${ }^{\text {b }}$
	Reported measure(s)	Units	Reported measure(s)	Units			
	SB break rate	\#/sedentary H	5x CST (able vs. nonable)	None	Age, sex, BMI, edu, + others	OR=0.9 (p>0.05)	$\mathrm{p}(\mathrm{N} / \mathrm{R})>0.25$
	SB bouts	Min/all SB bouts	5x CST (able vs. nonable)	None	Age, sex, BMI, edu, + others	$\mathrm{OR}=4.8(\mathrm{p}<0.05)$	$0.01<\mathrm{p}<0.05$
	Long SB bouts	Min	5x CST (able vs. nonable)	None	Age, sex, BMI, edu, + others	$\mathrm{OR}=11.8(\mathrm{p}>0.05)$	$\mathrm{p}(\mathrm{N} / \mathrm{R})>0.25$
Dos Santos 2019	MVPA (sufficient vs. insufficient)	Min/day	HGS (high vs. low)	Kg	Unadjusted	$\mathrm{OR}=3.03$ (1.38, 6.63)	$\mathrm{p}=0.004$
Duncan 2016	Steps (high, medium, low)	\#/day	Arm curl	\#/30s	Age	Partial $\eta^{2}=0.168(\mathrm{p}=0.001)$	$\mathrm{p}=0.001$
	Steps (high, medium, low)	\#/day	30s CST	\#/30s	Age	Partial $\eta^{2}=0.095(\mathrm{p}=0.001)$	$\mathrm{p}=0.001$
Edholm 2019	Activity counts	\#/min/day	Squat jump test	N/kg	Fat mass, self-reported past PA	ANOVA (+) (p<0.001)	$\mathrm{p}<0.001$
	MVPA	Min/day	Squat jump test	N/kg	Fat mass, self-reported past PA	ANOVA (+) ($\mathrm{p}=0.081$)	$\mathrm{p}=0.081$
Foong 2016	Activity counts	\#/10000	KES	Kg	Age residuals, sex	$\beta=0.17$ (0.12, 0.22)	p<0.001
	VPA	$10 \mathrm{~min} / \mathrm{day}$	KES	Kg	Age residuals, sex	$\beta=2.7(1.0,4.5)$	
	MVPA (MPA)	$10 \mathrm{~min} /$ day	KES	Kg	Age residuals, sex	$\beta=0.6(0.3,0.8)$	$\mathrm{p}<0.001$
	LPA	$10 \mathrm{~min} / \mathrm{day}$	KES	Kg	Age residuals, sex	$\beta=0.1(0.02,0.20)$	$\mathrm{p}=0.019$
	SB	$10 \mathrm{~min} /$ day	KES	Kg	Age residuals, sex	$\beta=-0.03$ (-0.1, 0.04)	$\mathrm{p}=0.415$
	Activity counts	\#/10000	Leg strength	Kg	Age residuals, sex	$\beta=0.65$ (0.46, 0.83)	$\mathrm{p}<0.001$
	VPA	$10 \mathrm{~min} / \mathrm{day}$	Leg strength	Kg	Age residuals, sex	$\beta=7.5(0.9,14.1)$	
	MVPA (MPA)	$10 \mathrm{~min} /$ day	Leg strength	Kg	Age residuals, sex	$\beta=1.6(0.6,2.7)$	$\mathrm{p}=0.002$
	LPA	$10 \mathrm{~min} /$ day	Leg strength	Kg	Age residuals, sex	$\beta=0.4(0.1,0.8)$	$\mathrm{p}=0.023$
	SB	$10 \mathrm{~min} /$ day	Leg strength	Kg	Age residuals, sex	$\beta=-0.1(-0.4,0.2)$	$\mathrm{p}=0.438$
Gennuso 2016	SB	H/day	HGS	N/R	Age, sex, wear time, MVPA	$\beta=N / R(p>0.05)$	$\mathrm{p}(\mathrm{N} / \mathrm{R})>0.25$
	BST	\#/day	HGS	N/R	Age, sex, wear time, MVPA	$\beta=N / R(p>0.05)$	$\mathrm{p}(\mathrm{N} / \mathrm{R})>0.25$
	SB break rate	\#/sedentary h	HGS	N/R	Age, sex, wear time, MVPA	$\beta=N / R(p>0.05)$	$\mathrm{p}(\mathrm{N} / \mathrm{R})>0.25$
	SB bouts	Min/day	HGS	N/R	Age, sex, wear time, MVPA	$\beta=N / R(p>0.05)$	$\mathrm{p}(\mathrm{N} / \mathrm{R})>0.25$
	Long SB bouts	H/day	HGS	N/R	Age, sex, wear time, MVPA	$\beta=N / R(p>0.05)$	$\mathrm{p}(\mathrm{N} / \mathrm{R})>0.25$
	$\geq 40 \mathrm{~min} \mathrm{SB}$ bouts	H/day	HGS	N/R	Age, sex, wear time, MVPA	$\beta=N / R(p>0.05)$	$\mathrm{p}(\mathrm{N} / \mathrm{R})>0.25$
	$\geq 60 \mathrm{~min} \mathrm{SB}$ bouts	H/day	HGS	N/R	Age, sex, wear time, MVPA	$\beta=N / R(p>0.05)$	$\mathrm{p}(\mathrm{N} / \mathrm{R})>0.25$
	SB	H/day	5x CST (0-4)	Points	Age, sex, wear time, MVPA	$\beta=-0.21$ (SE=0.11)	p (calc) $=0.056$
	BST	\#/day	5x CST (0-4)	Points	Age, wear time, MVPA	M: $\beta=0.06$ ($\mathrm{SE}=0.02$)	$0.01<\mathrm{p} \leq 0.05$
						$F: \beta=0.006(\mathrm{SE}=0.02)$	p (calc) $=0.777$

Author year	Physical activity and sedentary behavior		Muscle strength and muscle power		Adjustment	Effect size (95\% CI) ${ }^{\text {a }}$	p-value used for analyses ${ }^{\text {b }}$
	Reported measure(s)	Units	Reported measure(s)	Units			
Gerdhem 2008	SB break rate	\#/sedentary h	5x CST (0-4)	Points	Age, wear time, MVPA	M: $\beta=0.60$ (SE=0.19)	$0.001<\mathrm{p} \leq 0.01$
						$F: \beta=0.04$ ($\mathrm{SE}=0.12$)	p (calc) $=0.752$
	SB bouts	Min/day	5x CST (0-4)	Points	Age, sex, wear time, MVPA	$\beta=-0.10$ (SE=0.03)	$0.001<\mathrm{p}<0.01$
	Long SB bouts	H/day	5x CST (0-4)	Points	Age, sex, wear time, MVPA	$\beta=-0.18$ (SE=0.08)	$0.001<\mathrm{p}<0.01$
	$\geq 40 \mathrm{~min} \mathrm{SB}$ bouts	H/day	5x CST (0-4)	Points	Age, sex, wear time, MVPA	$\beta=-0.23$ (SE=0.09)	
	$\geq 60 \mathrm{~min} \mathrm{SB}$ bouts	H/day	5x CST (0-4)	Points	Age, sex, wear time, MVPA	$\beta=-0.29$ ($\mathrm{SE}=0.09$)	
	Activity counts	\#/min/day	KES	NmS	Unadjusted	$\mathrm{R}=0.19$ ($\mathrm{p}=0.209$)	$\mathrm{p}=0.209$
	MVPA	Min/day	KES	NmS	Unadjusted	$\mathrm{R}=0.21$ ($\mathrm{p}=0.160$)	$\mathrm{p}=0.160$
	Activity counts	\#/min/day	Knee flexion strength	NmS	Unadjusted	$\mathrm{R}=0.09$ ($\mathrm{p}=0.564$)	$\mathrm{p}=0.564$
	MVPA	Min/day	Knee flexion strength	NmS	Unadjusted	$\mathrm{R}=0.15$ ($\mathrm{p}=0.307$)	$\mathrm{p}=0.307$
Hall 2016	Steps	\#/day	30s CST	\#/30s	Unadjusted	60-69y: $\mathrm{R}=0.563$ ($\mathrm{p}=0.000$)	p(calc)<0.001
	Steps	\#/day	30s CST	\#/30s	Unadjusted	70-79y: $\mathrm{R}=0.353$ ($\mathrm{p}=0.001$)	$\mathrm{p}=0.001$
	Steps	\#/day	30s CST	\#/30s	Unadjusted	$80-90+y$: $\mathrm{R}=0.451(\mathrm{p}=0.021)$	$\mathrm{p}=0.021$
	MVPA	Min/day	30s CST	\#/30s	Unadjusted	60-69y: $\mathrm{R}=0.367$ ($\mathrm{p}=0.000$)	p (calc)<0.001
	MVPA	Min/day	30s CST	\#/30s	Unadjusted	70-79y: $\mathrm{R}=0.192$ ($\mathrm{p}=0.030$)	$\mathrm{p}=0.030$
	MVPA	Min/day	30s CST	\#/30s	Unadjusted	$80-90+y$: $\mathrm{R}=0.281(\mathrm{p}=0.068)$	$\mathrm{p}=0.068$
	SB	\% time/day	30s CST	\#/30s	Unadjusted	60-69y: $\mathrm{R}=-0.359(\mathrm{p}=0.000)$	p (calc) $=0.001$
	SB	\% time/day	30s CST	\#/30s	Unadjusted	70-79y: $\mathrm{R}=-0.197(\mathrm{p}=0.026$)	$\mathrm{p}=0.026$
	SB	\% time/day	30s CST	\#/30s	Unadjusted	$80-90+y$: $\mathrm{R}=-0.291$ ($\mathrm{p}=0.059$)	$\mathrm{p}=0.059$
Harada 2017	Steps	\#/day	5x CST	S	Unadjusted	$\mathrm{R}=-0.25$ ($\mathrm{p}<0.001$)	$\mathrm{p}<0.001$
Hartley 2018	Activity counts (low)	\#/impact/day	HGS	Kg	Age	*Low $\beta=1.09$ (0.97, 1.23)	$\mathrm{p}=0.14$
	Activity counts (med)	\#/impact/day	HGS	Kg	Age	*Medium $\beta=1.15$ (0.97, 1.37)	
	Activity counts (high)	\#/impact/day	HGS	Kg	Age	*High $\beta=1.14$ (0.95, 1.36)	
	Activity counts (low)	\#/impact/day	Jump strength	kN	Age	*Low $\beta=1.05$ (0.90, 1.22)	$\mathrm{p}=0.53$
	Activity counts (medium)	\#/impact/day	Jump strength	kN	Age	*Medium $\beta=1.18$ (0.95, 1.47)	
	Activity counts (high)	\#/impact/day	Jump strength	kN	Age	*High $\beta=1.26$ (1.00, 1.57)	
	Activity counts (low)	\#/impact/day	Jump power	kW	Age	*Low $\beta=0.97$ ($0.83,1.13$)	$\mathrm{p}=0.71$

Author year	Physical activity and sedentary behavior		Muscle strength and muscle power		Adjustment	Effect size (95\% CI) ${ }^{\text {a }}$	p-value used for analyses ${ }^{\text {b }}$
	Reported measure(s)	Units	Reported measure(s)	Units			
	Activity counts (medium)	\#/impact/day	Jump power	kW	Age	*Medium $\beta=1.14$ (0.91, 1.42)	
	Activity counts (high)	\#/impact/day	Jump power	kW	Age	*High $\beta=1.08$ (0.86, 1.36)	
	Activity counts (low)	\#/impact/day	5x CST	S	Age	*Low $\beta=0.80$ ($0.70,0.91$)	p (calc)<0.001
	Activity counts (medium)	\#/impact/day	5x CST	S	Age	*Medium $\beta=0.69$ (0.57, 0.83)	
	Activity counts (high)	\#/impact/day	5x CST	S	Age	*High $\beta=0.83$ (0.68, 1.00)	
Hasegawa 2018	Steps	\#/day	30s CST	\#/30s	Age, sex	* $\beta=0.20$ ($\mathrm{p}=0.17$)	$\mathrm{p}=0.17$
Hernandes 2013	Steps	\#/day	HGS	KgF	Unadjusted	Non-exercise: Rho $=-0.10(\mathrm{p}>0.05)$ Exercise: Rho=-0.11 (p>0.05)	$\begin{aligned} & \mathrm{p}(\text { calc })=0.206 \\ & \mathrm{p}(\text { calc })=0.312 \end{aligned}$
	Steps	\#/day	30s CST	\#/30s	Unadjusted	Non-exercise: Rho=0.30 ($\mathrm{p}<0.05$) Exercise: Rho=0.28 (p<0.05)	$\begin{aligned} & \mathrm{p}(\text { calc })=0.001 \\ & \mathrm{p}(\text { calc })<0.001 \end{aligned}$
Hernandez 2016	TPA	Min/day	KES	Kg	Unadjusted	$\mathrm{R}=0.30$ ($\mathrm{p}=0.07$)	$\mathrm{p}=0.07$
	LPA	Min/day	KES	Kg	Unadjusted	$\mathrm{R}=0.27$ ($\mathrm{p}=0.11$)	$\mathrm{p}=0.11$
	SB	Min/day	KES	Kg	Unadjusted	$\mathrm{R}=-0.16$ ($\mathrm{p}=0.35$)	$\mathrm{p}=0.35$
	Steps	\#/day	Quad power 50\% 1RM	W	Unadjusted	$\mathrm{R}=0.30$ ($\mathrm{p}=0.07$)	$\mathrm{p}=0.07$
	TPA	Min/day	Quad power 50\% 1RM	W	BMI	* $\mathrm{B}=0.30(0.19,0.42) \beta=0.76$	$\mathrm{p}<0.001$
	MVPA (MPA)	Min/day	Quad power 50\% 1RM	W	Unadjusted	$\mathrm{R}=0.12$ ($\mathrm{p}=0.48$)	$\mathrm{p}=0.48$
	LPA	Min/day	Quad power 50\% 1RM	W	BMI	* $\mathrm{B}=0.25$ (0.13, 0.36) $\beta=0.69$	$\mathrm{p}<0.001$
	SB	Min/day	Quad power 50\% 1RM	W	Unadjusted	$\mathrm{R}=-0.13(\mathrm{p}=0.44)$	$\mathrm{p}=0.44$
	TPA	Min/day	Quad power 70\% 1RM	W	Unadjusted	$\mathrm{R}=0.37$ ($\mathrm{p}=0.027$)	$\mathrm{p}=0.027$
	LPA	Min/day	Quad power 70\% 1RM	W	BMI	* $\mathrm{B}=0.23$ (0.10, 0.35) $\beta=0.62$	$\mathrm{p}=0.001$
	SB	Min/day	Quad power 70\% 1RM	W	Unadjusted	$\mathrm{R}=0.14$ ($\mathrm{p}=0.41$)	$\mathrm{p}=0.41$
Hopkins 2019	MVPA (Meeting vs. not meeting guidelines)	Min/day	45x CST	S	Age, sex, race, BMI + others	$\mathrm{B}=-0.093$ (p>0.05)	$\mathrm{p}(\mathrm{N} / \mathrm{R})>0.25$
Iijima 2017	Steps	1000/day	5x CST (quartiles: Q1=worst performance)	S	Age, sex, BMI, OA grade	Ordinal logistic regression $\mathrm{OR}=1.22$ $(1.10,1.36)$	$\mathrm{p}<0.001$
Ikenaga 2014	Steps	\#/day	HGS	Kg	Age, BMI, \% body fat	ANCOVA (p-trend=0.160)	$\mathrm{p}=0.160$
	MVPA (MPA)	Min/day	HGS	Kg	Age, BMI, \% body fat	ANCOVA (p-trend=0.195)	$\mathrm{p}=0.195$
	LPA	Min/day	HGS	Kg	Age, BMI, \% body fat	ANCOVA (p-trend=0.707)	$\mathrm{p}=0.707$

Author year	Physical activity and sedentary behavior		Muscle strength and muscle power		Adjustment	Effect size (95\% CI) ${ }^{\text {a }}$	p-value used for analyses ${ }^{\text {b }}$
	Reported measure(s)	Units	Reported measure(s)	Units			
	SB	Min/day	HGS	Kg	Age, BMI, \% body fat	ANCOVA (p-trend=0.869)	$\mathrm{p}=0.869$
	Steps	\#/day	KES	Nm/kg	Age, BMI, \% body fat	Partial $\mathrm{R}=0.167$ ($\mathrm{p}=0.028$)	$\mathrm{p}=0.028$
	MVPA (MPA)	Min/day	KES	Nm/kg	Age, BMI, \% body fat	Partial $\mathrm{R}=0.208(\mathrm{p}<0.01)$	p (calc) $=0.005$
	LPA	Min/day	KES	Nm/kg	Age, BMI, \% body fat	Partial R=N/R ($\mathrm{p}>0.05$)	$\mathrm{p}(\mathrm{N} / \mathrm{R})>0.25$
	SB	Min/day	KES	Nm/kg	Age, BMI, \% body fat	Partial $\mathrm{R}=-0.147$ (0.053)	$\mathrm{p}=0.053$
Iwakura 2016	Steps	1000/day	5x CST	S	Unadjusted	$\mathrm{R}=-0.299$ ($\mathrm{p}>0.05$)	p (calc) $=0.176$
	MVPA	Min/day	5x CST	S	Unadjusted	$\mathrm{R}=-0.384(\mathrm{p}>0.05)$	p (calc) $=0.078$
Jantunen 2016	MET	H/day	Arm curl	\#/30s	Age, sex	$\beta=0.02(0.02,0.04)$	$\mathrm{p}=0.021$
	MET	H/day	30s CST	\#/30s	Age, sex	$\beta=0.06$ (0.05, 0.07)	$\mathrm{p}<0.001$
Jeong 2019	Steps	\#/day	KES	N/kg	Unadjusted	$\mathrm{R}=0.09(\mathrm{p}=0.53)$	$\mathrm{p}=0.53$
	Steps	\#/day	Hip strength	N/kg	Adjustment N/R	$\beta=0.40, \mathrm{R}^{2}=0.16$ ($\mathrm{p}<0.01$)	p (calc) $=0.003$
Johnson 2016	VPA	Min/day	Leg strength	Kg	Unadjusted	$\mathrm{R}=0.184(\mathrm{p}<0.05)$	
	MVPA (MPA)	Min/day	Leg strength	Kg	Unadjusted	$\mathrm{R}=0.276$ (p<0.01)	p (calc)<0.001
	LPA	Min/day	Leg strength	Kg	Unadjusted	$\mathrm{R}=0.120$ ($\mathrm{p}>0.05$)	p (calc) $=0.101$
	SB	Min/day	Leg strength	Kg	Unadjusted	$\mathrm{R}=-0.024$ ($\mathrm{p}>0.05$)	p (calc) $=0.743$
Kawagoshi 2013		Min/day			Unadjusted	$\mathrm{R}=0.46$ ($0.01<\mathrm{p}<0.05$)	p (calc) $=0.200$
	Standing (only)	Min/day	KES	N/R	Unadjusted	$\mathrm{R}=0.26$ ($\gg 0.05$)	
	MVPA (Fast walking)	Min/day	KES	N/R	Unadjusted	$\mathrm{R}=0.60$ ($0.01<\mathrm{p}<0.05$)	p (calc) $=0.001$
	LPA (Slow Walking)	Min/day	KES	N/R	Unadjusted	$\mathrm{R}=0.33$ (p>0.05)	p (calc) $=0.100$
	SB (Sitting)	Min/day	KES	N/R	Unadjusted	$\mathrm{R}=-0.24$ ($\mathrm{p}>0.05$)	p (calc) $=0.237$
	Lying	Min/day	KES	N/R	Unadjusted	$\mathrm{R}=-0.17$ ($\mathrm{p}>0.05$)	
Keevil 2015	MVPA (quartiles: Q1=least MVPA)	Min/day	HGS	Kg	Age, wear time	$\begin{aligned} & F: \text { Q2vs.Q1 B=1.18 }(0.56,1.79), \\ & \text { Q3vs.Q1 B=0.92 }(0.28,1.55), \\ & \text { Q4vs.Q1 B=2.02 }(1.36,2.68)(p- \\ & \text { trend<0.001) } \end{aligned}$	p<0.001
						$\begin{aligned} & \text { M: Q2vs.Q1 B=0.88 }(-0.09,1.85) \text {, } \\ & \text { Q3vs.Q1 } B=1.83(0.82,2.83), \\ & \text { Q4vs.Q1 } B=1.26(0.22,2.30),(p- \\ & \text { trend<0.001) } \end{aligned}$	$\mathrm{p}<0.001$
	SB (quartiles: Q1=most SB)	H/day	HGS	Kg	Age, wear time	$\begin{aligned} & F: \text { Q2vs.Q1 B=0.00 }(-0.62,0.62), \\ & \text { Q3vs.Q1 B=0.69 }(0.05,1.34), \\ & \text { Q4vs.Q1 } B=0.83(0.11,1.56)(p- \\ & \text { trend }<0.001) \end{aligned}$	$\mathrm{p}<0.001$

Author year	Physical activity and sedentary behavior		Muscle strength and muscle power		Adjustment	Effect size (95\% CI) ${ }^{\text {a }}$	p-value used for analyses ${ }^{\text {b }}$
	Reported measure(s)	Units	Reported measure(s)	Units			
Lerma 2018						$\begin{aligned} & \mathrm{Q} 1=\mathrm{B}=3.43(\mathrm{SE}=0.98) \text {, (mean of } \\ & \text { Q2-Q4 vs Q1 } \mathrm{p}=0.0016 \text {) } \end{aligned}$	
	MVPA	60min/day	5x CST	\% s	Age, sex	$e^{\beta}=-4.433(-7.21,-1.650)$	p (calc) $=0.001$
	LPA	60min/day	5x CST	\% s	Age, sex	$e^{\beta}=-0.622(-1.349,0.104)$	p (calc) $=0.093$
Liao 2018	SB	60min/day	5x CST	\% s	Age, sex	$\mathrm{e}^{\beta}=0.092(-0.602,0.786)$	p (calc) $=0.807$
	SB	Min/day	HGS	Kg	Age, sex, MVPA + others	$\beta=-0.083(-0.199,0.034)$	$\mathrm{p}=0.165$
	SB break rate	\#/sedentary h	HGS	Kg	Age, sex, MVPA, SB + others	$\beta=0.004(-0.115,0.124)$	$\mathrm{p}=0.944$
	Long SB bouts	\#/day	HGS	Kg	Age, sex, MVPA, SB + others	$\beta=0.053(-0.132,0.237)$	$\mathrm{p}=0.575$
	Long SB bouts	Min/day	HGS	Kg	Age, sex, MVPA, SB + others	$\beta=-0.060(-0.159,0.039)$	$\mathrm{p}=0.237$
Lohne-Seiler 2016	Steps	1000/day	HGS	Kg	Age, sex, wear time, test center	$\mathrm{B}=-1.33$ (SE=0.24) (-0.61, 0.34)	$\mathrm{p}=0.6$
Mador 2011	VMU	\#/min/day	KES	Kg	Unadjusted	* $\mathrm{R}=0.50$ ($\mathrm{p}=0.013$)	$\mathrm{p}=0.013$
Master 2018	Steps	\#/day	5x CST	S	Age, sex, morbidities + others	$\mathrm{B}=-130(-178,-83)$	p (calc)<0.001
Matkovic 2020	Steps (<5000/day)	\#/day	HGS	Kg	Unadjusted	*AUC=0.596 (0.491, 0.702)	$\mathrm{p}=0.082$
	Steps (<5000/day)	\#/day	30s CST	\#/30s	Unadjusted	*AUC=0.676 (0.576, 0.776)	$\mathrm{p}=0.001$
McDermott 2002	Accelerations	\#/day	5x CST	S	Unadjusted	$\begin{aligned} & +P A D: * \mathrm{~B}(\mathrm{NR})(+)(\mathrm{p} \text {-trend } \\ & <0.0001) \end{aligned}$	p<0.001
	Accelerations	\#/day	5x CST	S	Unadjusted	$\begin{aligned} & -P A D: * \mathrm{~B}=\mathrm{N} / \mathrm{R}(+)(\mathrm{p}-\text { trend } \\ & <0.0001) \end{aligned}$	$\mathrm{p}<0.001$
McGregor 2018	MVPA	Log-ratio	HGS	Kg	Age, sex, morbidity + others	$\gamma=-0.599(\mathrm{p}=0.213)$	$\mathrm{p}=0.213$
	LPA	Log-ratio	HGS	Kg	Age, sex, morbidity + others	$\gamma=2.979(\mathrm{p}=0.028)$	$\mathrm{p}=0.028$
	SB	Log-ratio	HGS	Kg	Age, sex, morbidity + others	$\gamma=0.003(\mathrm{p}=0.677)$	$\mathrm{p}=0.677$
Meier 2020	Steps	1000/day	HGS	Kg	Age, sex, BMI, edu + others	$\mathrm{B}=0.01(\mathrm{SE}=0.16), \mathrm{R}^{2}=0.58$	$\mathrm{p}=0.53$
	Steps (high, medium, low)	\#/day	Chest press strength	Lbs	Unadjusted	ANOVA (+) $(\mathrm{p}=0.15)(+)$	$\mathrm{p}=0.15$
	Steps (high, medium, low)	\#/day	Leg press strength	Lbs	Unadjusted	ANOVA (+) ($\mathrm{p}=0.17$)	$\mathrm{p}=0.17$
Monteiro 2019	Activity counts (terciles)	\#/min/day	Arm curl	\#/30s	Unadjusted	ANOVA (+) ($\mathrm{p}=0.058$)	$\mathrm{p}=0.058$
	Activity counts (terciles)	\#/min/day	KES	Nm	Unadjusted	ANOVA (+) ($\mathrm{p}=0.060$)	$\mathrm{p}=0.060$
	Activity counts (terciles)	\#/min/day	Knee flexion strength	Nm	Unadjusted	ANOVA (+) ($\mathrm{p}=0.051$)	$\mathrm{p}=0.051$
		\#/min/day	30s CST	\#/30s	Unadjusted	ANOVA (+) ($\mathrm{p}=0.073$)	$\mathrm{p}=0.073$

Author year	Physical activity and sedentary behavior		Muscle strength and muscle power		Adjustment	Effect size (95\% CI) ${ }^{\text {a }}$	p-value used for analyses ${ }^{\text {b }}$
	Reported measure(s)	Units	Reported measure(s)	Units			
Orwoll 2019	MVPA (MPA)	Min/day	5x CST	S	Unadjusted	$\mathrm{R}=-0.2(\mathrm{p}<0.001)$	p<0.001
	LPA	Min/day	5x CST	S	Unadjusted	$\mathrm{R}=-0.2$ (p<0.001)	p<0.001
Osuka 2015	MVPA	Min/day	5x CST (low vs. high)	S	Unadjusted	*Mann-Whitney U (+) (p<0.001)	$\mathrm{p}<0.001$
	LPA	Min/day	5x CST	S	Age, sex, BMI + others	$\beta=-0.07(p=0.047)$	$\mathrm{p}=0.047$
Park 2018	Steps	\#/day	HGS/weight	\%	Unadjusted	$\mathrm{R}=0.07$ ($\mathrm{p}>0.05$)	p (calc) $=0.757$
	TPA	Min/day	HGS/weight	\%	Unadjusted	$\mathrm{R}=0.10$ ($\gg 0.05$)	p (calc) $=0.658$
	VPA	Min/day	HGS/weight	\%	Unadjusted	$\mathrm{R}=0.21$ ($\gg 0.05$)	
	MVPA	Min/day	HGS/weight	\%	Unadjusted	$\mathrm{R}=-0.06$ ($\mathrm{>}>0.05$)	p (calc) $=0.790$
	MPA	Min/day	HGS/weight	\%	Unadjusted	$\mathrm{R}=-0.07(\mathrm{p}>0.05)$	
	LPA	Min/day	HGS/weight	\%	Unadjusted	$\mathrm{R}=0.20$ ($\mathrm{p}>0.05$)	p (calc) $=0.372$
	SB	Min/day	HGS/weight	\%	Unadjusted	$\mathrm{R}=-0.08$ ($\mathrm{p}>0.05$)	p (calc) $=0.723$
	Steps	\#/day	30s CST	\#/30s	Unadjusted	$\mathrm{R}=0.36$ ($\mathrm{p}>0.05$)	p (calc) $=0.100$
	TPA	Min/day	30s CST	\#/30s	Unadjusted	$\mathrm{R}=0.25$ ($\gg 0.05$)	p (calc) $=0.262$
	VPA	Min/day	30s CST	\#/30s	Unadjusted	$\mathrm{R}=0.05$ ($\gg 0.05$)	
	MVPA	Min/day	30s CST	\#/30s	Unadjusted	$\mathrm{R}=0.29$ ($\gg 0.05$)	p (calc) $=0.190$
	MPA	Min/day	30s CST	\#/30s	Unadjusted	$\mathrm{R}=0.29$ ($\mathrm{p}>0.05$)	
	LPA	Min/day	30s CST	\#/30s	Unadjusted	$\mathrm{R}=0.04(\mathrm{p}>0.05$)	p (calc) $=0.860$
	SB	Min/day	30s CST	\#/30s	Unadjusted	$\mathrm{R}=0.06$ ($\gg 0.05$)	p (calc) $=0.791$
Perkin 2018	MVPA	Min/day	Leg press strength	N	Unadjusted	$\mathrm{R}^{2}=\mathrm{N} / \mathrm{R}(\mathrm{p}>0.05)$	$\mathrm{p}(\mathrm{N} / \mathrm{R})>0.25$
	SB	Min/day	Leg press strength	N	Unadjusted	$\mathrm{R}^{2}=\mathrm{N} / \mathrm{R}(\mathrm{p}>0.05$	$\mathrm{p}(\mathrm{N} / \mathrm{R})>0.25$
	EE (PAL)	None	Leg press strength	N	Unadjusted	$\mathrm{R}^{2}=-0.03(\mathrm{p}>0.05)$	p (calc) $=0.230$
	MVPA	Min/day	Leg press power	W	Unadjusted	$\mathrm{R}^{2}=\mathrm{N} / \mathrm{R}(\mathrm{p}>0.05)$	$\mathrm{p}(\mathrm{N} / \mathrm{R})>0.25$
	SB	Min/day	Leg press power	W	Unadjusted	$\mathrm{R}^{2}=\mathrm{N} / \mathrm{R}(\mathrm{p}>0.05)$	$\mathrm{p}(\mathrm{N} / \mathrm{R})>0.25$
	EE (PAL)	None	Leg press power	W	Unadjusted	$\mathrm{R}^{2}=-0.03(\mathrm{p}>0.05)$	p (calc) $=0.230$
Pitta 2005	Steps (Walking)	Min/day	HGS	\%pred	Unadjusted	$\mathrm{R}=0.44$ ($0.001<\mathrm{p}<0.01)$	$0.001<\mathrm{p}<0.01$
	TPA (Standing)	Min/day	HGS	\%pred	Unadjusted	$\mathrm{R}=0.28(0.01<\mathrm{p} \leq 0.5)$	$0.01<\mathrm{p} \leq 0.5$
	Steps (Walking)	Min/day	KES	\%pred	Unadjusted	$\mathrm{R}=0.45$ ($0.001<\mathrm{p}<0.01)$	$0.001<\mathrm{p} \leq 0.1$
	TPA (Standing)	Min/day	KES	\%pred	Unadjusted	$\mathrm{R}=0.20$ (p>0.5)	p (calc) $=0.164$
Puthoff 2008	Steps	\#/day	Leg press strength	N/kg	Unadjusted	*B=184.15 (SE=107.86) $\beta=0.31$	p (calc) $=0.087$
	Steps	\#/day	Leg press power (peak)	W/kg	Unadjusted	* $\mathrm{B}=340.99$ ($\mathrm{SE}=152.08$) $\beta=0.40$	p (calc) $=0.024$
	Steps	\#/day	Leg press power (40\%)	W/kg	Unadjusted	* $\mathrm{B}=237.41$ (SE=160.68) $\beta=0.29$	p (calc) $=0.140$
	Steps	\#/day	Leg press power (90\%)	W/kg	Unadjusted	* $\mathrm{B}=351.73$ (SE=175.81) $\beta=0.36$	p (calc) $=0.045$

Author year	Physical activity and sedentary behavior		Muscle strength and muscle power		Adjustment	Effect size (95\% CI) ${ }^{\text {a }}$	p-value used for analyses ${ }^{\text {b }}$
	Reported measure(s)	Units	Reported measure(s)	Units			
$\overline{\text { Rapp } 2012}$	Steps (Walking)	Min/day	HGS	Kg	Unadjusted	*M 65-74y: $\mathrm{B}=-0.2(-0.7,0.3)$	p (calc) $=0.441$
						*M 75-90y: $\mathrm{B}=-0.05(-0.5,0.4)$	p (calc) $=0.839$
						*F 65-74y: $\mathrm{B}=0.3(-0.4,0.9)$	p (calc) $=0.372$
						*F 75-90y: $\mathrm{B}=1.5(0.7,2.3)$	p (calc)<0.001
	Steps (Walking)	Min/day	5x CST	S	Unadjusted	$* M: \beta=-2.4(-3.3,-1.6)$	$\mathrm{p}(\text { calc })<0.001$
						$* F: \beta=-3.2(-4.0,-2.4)$	$\mathrm{p}(\text { calc })<0.001$
$\begin{aligned} & \text { Rausch-Osthof } \\ & 2014 \end{aligned}$	Steps	\#/day	KES	Nm	Unadjusted	* $\beta=-0.085$ (-0.567, 0.387)	$\mathrm{p}=0.699$
	EE	Kcal/day	KES	Nm	Unadjusted	* $\beta=0.274(-0.171,0.749)$	$\mathrm{p}=0.206$
	EE (PAL)	None	KES	Nm	Unadjusted	* $\beta=0.092(-0.345,0.516)$	
	MET	Kcal/day/kg	KES	Nm	Unadjusted	* $\beta=0.100(-0.371,0.582)$	$\mathrm{p}=0.650$
Rava 2018	VPA	Min/day	5x CST	S	Age, BMI	$\mathrm{R}=-0.06$ ($\mathrm{p}>0.00625$)	
	MVPA	Min/day	5x CST	S	Age, BMI	$\mathrm{R}=-0.27(\mathrm{p}>0.00625)$	p (calc) $=0.015$
	MPA	Min/day	5x CST	S	Age, BMI	$\mathrm{R}=-0.26$ ($\gg 0.00625$)	
	LPA	Min/day	5x CST	S	Age, BMI	$\mathrm{R}=-0.12$ ($\mathrm{p}>0.00625$)	p (calc) $=0.286$
	SB	Min/day	5x CST	S	Age, BMI	$\mathrm{R}=0.05$ ($\mathrm{p}>0.00625$)	p (calc) $=0.658$
Reid 2018	SB	\#/day	KES	Kg	Age, sex	$\mathrm{RR}=1.02$ (0.93, 1.12)	$\mathrm{p}(\text { calc })=0.689$
	BST	10/day	KES	Kg	Age, sex	$\mathrm{RR}=0.94(0.82,1.07)$	p (calc) $=0.368$
	SB	\#/day	Leg press strength	Kg	Age, sex	$\mathrm{B}=1.61(-2.33,5.56)$	p (calc) $=0.432$
	BST	10/day	Leg press strength	Kg	Age, sex	$\mathrm{B}=-6.32(-11.95,-0.69)$	p (calc) $=0.028$
	SB	\#/day	30s CST	\#/30s	Age, sex	$\mathrm{B}=-0.28(-0.51,-0.04)$	p (calc) $=0.019$
	BST	10/day	30s CST	\#/30s	Age, sex	$\mathrm{B}=0.10(-0.24,0.45)$	p (calc) $=0.259$
Rojer 2017	Steps	1000/day	HGS (Z-score)	SD	Age, sex	$\mathrm{B}=0.052(\mathrm{SE}=0.038)$	$\mathrm{p}=0.173$
	TPA	Min/day	HGS (Z-score)	SD	Age, sex	$\mathrm{B}=0.002(\mathrm{SE}=0.001)$	$\mathrm{p}=0.279$
	SB	H/day	HGS (Z-score)	SD	Age, sex	$\mathrm{B}=-0.091$ ($\mathrm{SE}=0.081$)	$\mathrm{p}=0.267$
	PA bouts	100/day	HGS (Z-score)	SD	Age, sex	$\mathrm{B}=0.027(\mathrm{SE}=0.022)$	$\mathrm{p}=0.231$
	PA bouts	S/bout/day	HGS (Z-score)	SD	Age, sex	$\mathrm{B}=-0.023(\mathrm{SE}=0.043)$	$\mathrm{p}=0.594$
	SB bouts	100/day	HGS (Z-score)	SD	Age, sex	$\mathrm{B}=0.219(\mathrm{SE}=0.243)$	$\mathrm{p}=0.370$
	SB bouts	H/bout/day	HGS (Z-score)	SD	Age, sex	$\mathrm{B}=-0.041(\mathrm{SE}=0.035)$	$\mathrm{p}=0.254$
Rosenberg 2015	SB	H/day	5x CST	S	Age, sex, MVPA + others	$\mathrm{B}=1.02(\mathrm{SE}=0.21)$	p<0.001
Rowlands 2018	MVPA	Min/day	HGS	Kg	Age, sex, body fat + others	$\mathrm{B}=0.02(-0.02,0.06)$	p (calc) $=0.332$
	Accelerations	Mg -force	HGS	Kg	Age, sex, body fat + others	$\mathrm{B}=0.09(-0.04,0.23)$	p (calc) $=0.193$
	Intensity gradient	N/R	HGS	Kg	Age, sex, body fat + others	$\mathrm{B}=4.44$ (0.60, 8.27)	p (calc)<0.001
	PA bouts	Min/day	HGS	Kg	Age, sex, body fat + others	$\mathrm{B}=-0.01(-0.07,0.05)$	p (calc) $=0.757$
	MVPA	Min/day	60s CST	\#/60s	Age, sex, body fat + others	$\mathrm{B}=0.06$ (0.02, 0.09)	p (calc)<0.001

Author year	Physical activity and sedentary behavior		Muscle strength and muscle power		Adjustment	Effect size (95\% CI) ${ }^{\text {a }}$	p-value used for analyses ${ }^{\text {b }}$
	Reported measure(s)	Units	Reported measure(s)	Units			
Safeek 2018	Accelerations	Mg-force	60s CST	\#/60s	Age, sex, body fat + others	$\mathrm{B}=0.25$ (0.11, 0.40)	p (calc) $=0.007$
	Intensity gradient	N/R	60s CST	\#/60s	Age, sex, body fat + others	$\mathrm{B}=8.83$ (5.83, 11.83)	p (calc)<0.001
	PA bouts	Min/day	60s CST	\#/60s	Age, sex, body fat + others	$\mathrm{B}=0.07(-0.02,0.16)$	p (calc) $=0.127$
	Steps	\#/day	HGS	Kg	Unadjusted	$\mathrm{R}=-0.02(\mathrm{p}>0.05)$	p (calc) $=0.931$
	MVPA	Min/day	HGS	Kg	Unadjusted	$\mathrm{R}=-0.20(\mathrm{p}>0.05)$	p (calc) $=0.385$
	LPA	H/day	HGS	Kg	Unadjusted	$\mathrm{R}=0.15$ ($\mathrm{p}>0.05$)	p (calc) $=0.516$
	SB	H/day	HGS	Kg	Unadjusted	$\mathrm{R}=0.15$ ($\mathrm{p}>0.05$)	p (calc) $=0.516$
	EE	Kcal/day	HGS	Kg	Unadjusted	$\mathrm{R}=0.12$ ($\mathrm{p}>0.05$)	p (calc) $=0.604$
	Steps	\#/day	30s CST	\#/30s	Unadjusted	$\mathrm{R}=0.30$ ($\mathrm{p}>0.05$)	p (calc) $=0.186$
	MVPA	Min/day	30s CST	\#/30s	Unadjusted	$\mathrm{R}=0.16$ ($\mathrm{p}>0.05$)	p (calc) $=0.488$
	LPA	H/day	30s CST	\#/30s	Unadjusted	$\mathrm{R}=0.24$ (p>0.05)	p (calc) $=0.295$
	SB	H/day	30s CST	\#/30s	Unadjusted	$\mathrm{R}=-0.25$ (p>0.05)	p (calc) $=0.274$
	EE	Kcal/day	30s CST	\#/30s	Unadjusted	$\mathrm{R}=0.16$ ($\mathrm{p}>0.05$)	p (calc) $=0.488$
Sanchez-sanchez	Activity counts	SDs (\#/day)	HGS	Kg	Age residuals, sex + others	$\mathrm{B}=0.857$ (0.312, 1.402)	$0.001<\mathrm{p}<0.01$
2019	MVPA	H/day	HGS	Kg	Age residuals, sex + others	$\mathrm{B}=0.933$ (0.246, 1.620)	$0.001<\mathrm{p}<0.01$
	LPA	H/day	HGS	Kg	Age residuals, sex + others	$\mathrm{B}=0.428(0.051,0.805)$	p (calc) $=0.026$
	SB	H/day	HGS	Kg	Age residuals, sex + others	$\mathrm{B}=-0.467(-0.807,-0.128)$	p (calc) $=0.007$
Santos 2012	MVPA	Min/day	Arm curl	\#/30s	Age, sex, register time	$\mathrm{B}=0.016$ (-0.007, 0.039)	p (calc) $=0.173$
	SB	Min/day	Arm curl	\#/30s	Age, sex, register time	$\mathrm{B}=-0.010$ (-0.016, -0.004)	p (calc)<0.001
	MVPA	Min/day	30s CST	\#/30s	Age, sex, register time	$\mathrm{B}=0.035$ ($0.014,0.055$)	p (calc)<0.001
	SB	Min/day	30s CST	\#/30s	Age, sex, register time	$\mathrm{B}=-0.013(-0.018,-0.008)$	p (calc)<0.001
Sardinha 2015	BST	\#/day	Arm curl	\#/30s	Age, sex, BMI, SB + others	$\beta=0.180$ ($0.039,0.322$)	p (calc) $=0.013$
	BST	\#/day	30s CST	\#/30s	Age, sex, BMI, SB + others	$\beta=0.181(0.045,0.318)$	p (calc) $=0.797$
Scott 2020	MVPA	H/day	HGS (low vs. high)	Kg	Sex, BMI, LPA, SB + others	$\mathrm{OR}=0.80(0.71,0.91)$	p (calc)<0.001
	LPA	H/day	HGS (low vs. high)	Kg	Sex, BMI, MVPA, SB + others	$\mathrm{OR}=0.99(0.96,1.02)$	$\mathrm{p}(\text { calc })=0.526$
	SB	H/day	HGS (low vs. high)	Kg	Sex, BMI, MVPA, LPA + others	OR=1.00 (0.98,1.02)	p (calc) $=1$
$\underline{\text { Scott } 2011}$	Steps (baseline)	\#/day x 10^{3}	Δ Leg strength	Kg	Age, weight, CVD + others	M: $\mathrm{B}=-0.28(-1.27,0.72)$	p (calc) $=0.593$
						$F: \mathrm{B}=1.06$ (0.31, 1.31)	p (calc)<0.001
	Steps (habitual)	\#/day x 10^{3}	Δ Leg strength	Kg	Age, weight, CVD + others	M: $\mathrm{B}=-0.21(-1.24,0.82)$	
						$F: \mathrm{B}=1.37(0.57,2.17)$	
Scott 2009	Steps	\#/day	Leg strength	Kg	Age	$M: \mathrm{B}=0.86$ (-0.02, 1.74)	$\mathrm{p}=0.056$
	Steps	\#/day	Leg strength	Kg	Age	$F: \mathrm{B}=071(0.13,1.29)$	$\mathrm{p}=0.016$

Author year	Physical activity and sedentary behavior		Muscle strength and muscle power		Adjustment	Effect size (95\% CI) ${ }^{\text {a }}$	p-value used for analyses ${ }^{\text {b }}$
	Reported measure(s)	Units	Reported measure(s)	Units			
Semanik 2015	SB	H/day	45x CST	\#/min	Age, sex, baseline CST + others	$\mathrm{B}=-0.58(-0.92,-0.24)$	p<0.001
Silva 2019	MVPA	Min/day	Arm curl	\#/30s	Unadjusted	Rho=0.243 ($\mathrm{p}=0.027$)	$\mathrm{p}=0.027$
	LPA	Min/day	Arm curl	\#/30s	Unadjusted	Rho $=-0.069(\mathrm{p}=0.538)$	$\mathrm{p}=0.538$
	SB	Min/day	Arm curl	\#/30s	Unadjusted	Rho $=0.124$ ($\mathrm{p}=0.264$)	$\mathrm{p}=0.264$
	MVPA	Min/day	30s CST	\#/30s	Unadjusted	Rho $=0.163$ ($\mathrm{p}=0.142$)	$\mathrm{p}=0.142$
	LPA	Min/day	30s CST	\#/30s	Unadjusted	Rho $=-0.083$ ($\mathrm{p}=0.458$)	$\mathrm{p}=0.458$
	SB	Min/day	30s CST	\#/30s	Unadjusted	Rho=0.167 ($\mathrm{p}=0.131$)	$\mathrm{p}=0.131$
Spartano 2019	Steps	1000/day	HGS	Kg	Age, sex, wear time + others	M : $\mathrm{B}=-0.16$ ($\mathrm{SE}=0.09$)	$\mathrm{p}=0.077$
						F; B=0.09 ($\mathrm{SE}=0.06$)	$\mathrm{p}=0.125$
	MVPA	Log(min/day)	HGS	Kg	Age, sex, wear time + others	M: $\mathrm{B}=0.058(\mathrm{SE}=0.34)$	$\mathrm{p}=0.090$
						$F: \mathrm{B}=0.64(\mathrm{SE}=0.19)$	$\mathrm{p}=0.0008$
	SB	\% wear time	HGS	Kg	Age, sex, wear time + others	M: $\mathrm{B}=0.09$ ($\mathrm{SE}=0.05$)	$\mathrm{p}=0.088$
						$F: \mathrm{B}=-0.05(\mathrm{SE}=0.04)$	$\mathrm{p}=0.133$
	Steps	1000/day	5x CST	Log(s)	Age, sex, wear time + others	$\mathrm{B}=-0.010$ ($\mathrm{SE}=0.002$)	p<0.0001
	MVPA	Log(min/day)	5x CST	Log(s)	Age, sex, wear time + others	$\mathrm{B}=-0.057(\mathrm{SE}=0.006)$	p<0.0001
	SB	\% wear time	5x CST	Log(s)	Age, sex, wear time + others	$\mathrm{B}=0.006$ ($\mathrm{SE}=0.001$)	p<0.0001
Tang 2015	Activity counts	\#/day	HGS	Kg	SPPB score, 6 min walk test	*B=23022 (-41988, -4055)	$\mathrm{p}=0.02$
Trayers 2014	Steps (low vs. high)	\#/day	5x CST (0-4)	Points	Age, sex	*OR=7.2 (3.8, 13.6)	p<0.001
	Activity counts (low vs. high)	\#/day	5x CST (0-4)	Points	Age, sex	*OR=5.8 (3.2, 10.8)	p<0.001
	MVPA (low vs. high)	Min/day	5x CST (0-4)	Points	Age, sex	*OR=7.8 (4.0, 15.0)	$\mathrm{p}<0.001$
Van Gestel 2012	Steps	\#/day	HGS	Kg	Unadjusted	$\mathrm{R}=0.21(-0.03,-0.42)$	$\mathrm{p}=0.19$
	Steps	\#/day	60s CST	\#/60s	BMI, partial pressure $\mathrm{O}^{2}, \mathrm{FEV}_{1}$	*B=155.38 (SE=73.15) $\beta=0.28$	$\mathrm{p}=0.041$
Van Lummel 2016	TPA (standing)	Min/day	5x CST (fast vs. slow)	S	Unadjusted	*Mann-Whitney U (+) ($\mathrm{p}=0.230$)	$\mathrm{p}=0.230$
	PA bouts	\#/day	5x CST (fast vs. slow)	S	Unadjusted	*Mann-Whitney U (+) ($\mathrm{p}=0.218$)	$\mathrm{p}=0.218$
	SB bouts	Min/bout/day	5x CST (fast vs. slow)	S	Unadjusted	*Mann-Whitney U (-) (p=0.042)	$\mathrm{p}=0.042$
Van Oeijen 2020	Δ Steps	\#/day	Δ Lower extremity muscle strength	e Z-score	Unadjusted	$\mathrm{B}=676.279(\mathrm{SE}=186.151)$	$\mathrm{p}<0.000$
Van Sloten 2011	Steps	\#/day	HGS (low vs. high)	Kg	Age, sex, BMI, neuropathy, PAD	* $\mathrm{B}=-1782(-3348,-217)$	$\mathrm{p}(\mathrm{calc})=0.025$

Author year	Physical activity and sedentary behavior		Muscle strength and muscle power		Adjustment	Effect size (95\% CI) ${ }^{\text {a }}$	p-value used for analyses ${ }^{\text {b }}$
	Reported measure(s)	Units	Reported measure(s)	Units			
Walker 2008	TPA	\% time/day	KES	N	Unadjusted	$\mathrm{R}=0.4(0.06,0.55)$	$\mathrm{p}=0.023$
Ward 2014	Activity counts	\#/min/day	30s CST	\#/30s	Age, sex, morbidities, body fat	$\beta=0.002(-0.006, ~ 0.009)$	$\mathrm{p}($ calc $)=0.614$
	MVPA	Min/week	30s CST	\#/30s	Age, sex, morbidities	Partial $\mathrm{R}=0.147$ ($\mathrm{p}>0.05$)	$\mathrm{p}($ calc $)=0.067$
Waschiki 2012	Steps	\#/day	KES	Kg	Age, sex, BMI, study site	$\beta=0.298(p=0.022)$	$\mathrm{p}=0.022$
	EE (PAL)	None	KES	Kg	Age, sex, BMI, study site	$\beta=0.350(p=0.007)$	$\mathrm{p}=0.007$
Watz 2008	Steps	\#/day	HGS	Kg	Edu, smoking, alcohol + others	N / R ($\mathrm{p}>0.05$)	$\mathrm{p}(\mathrm{N} / \mathrm{R})>0.25$
	EE (PAL)	None	HGS	Kg	Edu, smoking, alcohol + others	$\mathrm{N} / \mathrm{R}(\mathrm{p}>0.05)$	$\mathrm{p}(\mathrm{N} / \mathrm{R})>0.25$
Westbury 2018	TPA	Min/day	HGS	Kg	Age, sex, height + others	$\beta=0.16$ (-0.03, 0.34)	$\mathrm{p}=0.09$
	MVPA	Min/day	HGS	Kg	Age, sex, height + others	$\beta=0.11(-0.09,0.31)$	$\mathrm{p}=0.27$
	Accelerations	Mg -force	HGS	Kg	Age, sex, height + others	$\beta=0.12$ (-0.07, 0.30)	$\mathrm{p}=0.23$
Wickerson 2013	Steps	\#/day	Knee extension torque	Nm	Unadjusted	$\mathrm{R}=0.51$ ($\mathrm{p}<0.01$)	$\mathrm{p}($ calc $)=0.011$
	MVPA	Min/day	Knee extension torque	Nm	Unadjusted	$\mathrm{R}=0.36$ ($\mathrm{p}=0.08$)	$\mathrm{p}=0.08$
Winberg 2015	Steps	\#/day	KES	Nm	Age, sex, BMI	* $\mathrm{B}=19$ ($\mathrm{p}<0.01$), $\mathrm{R}^{2}=0.18$	p (calc)<0.001
	Steps	\#/day	Knee flexion strength	Nm	Age, sex, BMI	* $\mathrm{B}=39(\mathrm{p}<0.01), \mathrm{R}^{2}=0.19$	p (calc)<0.001
Yamada 2011	Steps	\#/day	5x CST	S	Age, sex, gait speed + others	$\beta=-0.147(p<0.01)$	p (calc)<0.001
Yasunaga 2017	MVPA	10min/day	HGS	Kg	Age, sex, morbidities + others	$B=0.092(-0.135,0.318)$	p (calc) $=0.434$
	LPA	10min/day	HGS	Kg	Age, sex, morbidities + others	$\mathrm{B}=0.058$ (-0.024, 0.141)	$\mathrm{p}($ calc $)=0.169$
	SB	10min/day	HGS	Kg	Age, sex, morbidities + others	$\mathrm{B}=-0.056(-0.130,0.017)$	$\mathrm{p}($ calc $)=0.136$
Yoshida 2010	Steps	\#/day	HGS	Kg	Unadjusted	HFG: Rho=0.137 (p>.05)	$\mathrm{p}($ calc $)=0.301$
						LFG: Rho=0.142 (p>.05)	$\mathrm{p}($ calc $)=0.187$
	TPA	Min/day	HGS	Kg	Unadjusted	HFG: Rho=-0.091 (p>.05)	p (calc) $=0.493$
						LFG: Rho=0.102 (p>.05)	p (calc) $=0.344$
	MVPA (MPA)	Min/day	HGS	Kg	Unadjusted	HFG: $\mathrm{Rho}=0.206$ (p>.05)	p (calc) $=0.118$
						LFG: Rho=0.146 (p>.05)	p (calc) $=0.175$
	LPA	Min/day	HGS	Kg	Unadjusted	HFG: Rho=-0.176 (p>.05)	$\mathrm{p}($ calc $)=0.182$
						LFG: Rho $=0.076$ ($\mathrm{p}>.05$)	p (calc) $=0.482$
	Steps	\#/day	KES	Nm	Unadjusted	$H F G: \text { Rho }=0.277(\mathrm{p}<.05)$	$\mathrm{p}(\mathrm{calc})=0.034$
						$L F G: \text { Rho }=-0.018(\mathrm{p}>.05)$	p (calc) $=0.868$
	TPA	Min/day	KES	Nm	Unadjusted	HFG: Rho=-0.159 (p>.05)	$\mathrm{p}(\text { calc })=0.229$
						LFG: Rho=-0.034 ($\mathrm{p}>.05$)	$\mathrm{p}($ calc $)=0.753$
	MVPA (MPA)	Min/day	KES	Nm	Unadjusted	HFG: Rho=0.475 (p<.01)	p (calc) <0.001
						LFG: Rho=0.055 ($\mathrm{p}>.05$)	p (calc) $=0.677$
	LPA	Min/day	KES	Nm	Unadjusted	HFG: Rho=0.028 (p>.05)	p (calc) $=0.833$
						LFG: Rho=-0.045 (p>.05)	$\mathrm{p}($ calc $)=0.611$

Table C5 Continued

Author year	Physical activity and sedentary behavior		Muscle strength and muscle power		Adjustment	Effect size (95\% CI) ${ }^{\text {a }}$	p-value used for analyses ${ }^{\text {b }}$
	Reported measure(s)	Units	Reported measure(s)	Units			
Yuki 2019	Steps	\#/day	HGS (weakness vs. no weakness)	Kg	Age, sex	*OR=N/R (p>0.05)	$\mathrm{p}(\mathrm{N} / \mathrm{R})>0.25$
	LPA	Min/day	HGS weakness vs. no weakness)	Kg	Age, sex	*OR=N/R (p>0.05)	$\mathrm{p}(\mathrm{N} / \mathrm{R})>0.25$
	MVPA	Min/day	HGS weakness vs. no weakness)	Kg	Age, sex	*OR=N/R (p>0.05)	$\mathrm{p}(\mathrm{N} / \mathrm{R})>0.25$

[^1]
[^0]: ${ }^{\text {i }}$ Faculty of Health Sciences and Sport, University of Stirling, Scotland, United Kingdom

[^1]: ${ }^{\text {a }}$ If effect sizes were not reported, when possible, the direction of effect was determined as either positive (+) when higher PA and lower SB was associated with better muscle strength/power or as negative (-) when associated with worse muscle strength/power. *Stars before effect size coefficient represent the use of muscle strength or muscle power as an independent variable and PA or SB as the dependent variable, all other associations presented describe PA and SB as independent variable and muscle strength and power as the dependent variable.
 ${ }^{\mathrm{b}} \mathrm{p}$-values of associations included in analyses (effect direction heat map and albatross plots) are presented as reported in article, calculated as p (calc) using formulas described in methods, or estimated conservatively as $p(N / R)$ when p-value was not reported and could not be calculated (estimation described in methods). Associations with a blank space for p-value were not included as exposure-outcome associations were only represented once per article. If two articles reported the same exposure-outcome (PA/SB muscle strength/power) association in the same population, adjusted data was used based on hierarchy of adjustment models or when adjustment models were the same, the data from the article with a larger sample sized was used and indicated by "author year". Underlined articles have a longitudinal design.
 TPA=total physical activity, MPA=moderate physical activity, VPA=vigorous physical activity, MVPA=moderate to vigorous physical activity, LPA=light physical activity, $\mathrm{SB}=$ sedentary behavior, $\mathrm{EE}=$ energy expenditure, $\mathrm{PAL}=$ physical activity units, $\mathrm{BST}=$ breaks in sedentary time, $\Delta=\mathrm{change}$, MET=metabolic equivalent of tasks, VMU=vector magnitude units, min=minutes, h=hours, $\mathrm{CPM}=$ counts per minutes, \#=number, mg-force=miligrams-force (force of earth gravity acting on one milligram), $\mathrm{SD=standard}$ deviation, $\log =\log$ transformed, $\mathrm{e}=$ natural \log, Partial $\mathrm{R}=$ partial correlation, $\mathrm{R}=$ Pearson's correlation, $\mathrm{Rho}=$ Spearman's correlation, $\mathrm{R}_{\mathrm{pb}}=\mathrm{point}$ biserial correlation, $B=$ unstandardized regression coefficient (unstandardized beta), $\beta=$ standardized regression coefficient (standardized beta), $R R=$ relative risk, $O R=o d d s$ ratio, Partial $\eta^{2}=$ partial eta squared, ANOVA=analysis of variance, EMM=estimated marginal means, $T=t-t e s t(t-s t a t i s t i c), ~ Q=q u a r t i l e, ~ p-t r e n d=p$ for trend, HGS= hand grip strength, KES=knee extension strength, $\mathrm{KET}=$ knee extension torque, $\mathrm{CST}=\mathrm{chair}$ stand test, $\mathrm{s}=$ seconds, $\mathrm{x}=$ times (repetitions), \#=number, quad=quadriceps, $\mathrm{kg}=\mathrm{kilogram} \mathrm{~N}=\mathrm{newton},, \mathrm{Nm}=\mathrm{newton}-$ meter, $\mathrm{W}=$ watt, $\mathrm{KgF}=$ kilogram-force, KiloW=kilowatt, $\mathrm{KiloN}=$ kilonewton, MVC=maximum voluntary contraction, $1 \mathrm{RM}=$ one repetition maximum, Lbs=pounds, $\max =$ maximum, $/=$ divided by or per, $\Delta=$ change, $\%$ pred $=\%$ predictive, $+/-=$ with or without, $\mathrm{N} / \mathrm{A}=$ not applicable, $\mathrm{N} / \mathrm{R}=$ not reported, $\mathrm{M}=$ male, $\mathrm{F}=\mathrm{female}, \mathrm{HFG}=$ high functioning group, LFG=low functioning group, $\mathrm{BMI}=$ body mass index, $\mathrm{OA}=$ osteoarthritis, $\mathrm{O}^{2}=$ oxygen, $\mathrm{FEV}=$ forced expirator volume in one second in percent of predicted, + others=adjusted for other potential confounders

