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In centralized matching markets such as car-pooling platforms and kidney exchange schemes, new par-

ticipants constantly enter the market and remain available for potential matches during a limited period

of time. To reach an efficient allocation, the “timing” of the matching decisions is a critical aspect of the

platform’s operations. There is a fundamental trade-off between increasing market thickness and mitigating

the risk that participants abandon the market. Nonetheless, the dynamic properties of matching markets

have been mostly overlooked in the algorithmic literature.

In this paper, we introduce a general dynamic matching model over edge-weighted graphs, where the

agents’ arrivals and abandonments are stochastic and heterogeneous. Our main contribution is to design

simple matching algorithms that admit strong worst-case performance guarantees for a broad class of graphs.

In contrast, we show that the performance of widely used batching algorithms can be arbitrarily bad on

certain graph-theoretic structures motivated by car-pooling services. Our approach involves the development

of a host of new techniques, including linear programming benchmarks, value function approximations, and

proxies for continuous-time Markov chains, which may be of broader interest. In extensive experiments, we

simulate the matching operations of a car-pooling platform using real-world taxi demand data. The newly

developed algorithms can significantly improve cost efficiency against batching algorithms.

Key words : dynamic matching; approximation algorithms; Markov decision processes; car-pooling.

1. Introduction

The study of centralized matching markets is motivated by a large spectrum of applications such as

kidney exchange schemes, ridesharing platforms and public housing programs. In these settings, a

central platform controls the matching operations: market participants and resources are matched

to maximize social or economic efficiency. To reach an efficient allocation, the “timing” is a crit-

ical aspect of the platform’s decisions. Indeed, new participants constantly enter the market and

remain available for potential matches during a limited period of time. The participants’ sojourn

time is often uncertain, and they can abandon the market if a satisfying match is not achieved.

Making the market participants wait longer often results in more efficient allocations and higher-

quality matches, but exposes the system to higher levels of abandonment. Hence, platforms need

to adequately time their matching decisions to balance between efficiency and abandonment levels.
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One representative example of such market dynamics is given by kidney exchange schemes,

which enroll incompatible pairs of donors and recipients seeking mutual exchanges. The arriving

market participants are pairs of donors and recipients, which can be classified through various

observable attributes, governing their pairwise compatibilities (e.g., blood type, blood markers,

time-sensitivity of the transplant). Their lifetime in the system is generally uncertain and can be

affected by various exogenous factors, including patient-specific mortality rates and the availability

of outside options for transplants. Consequently, the kidney exchange schemes need to strike a

good balance between the quality and the latency of their transplant allocation decisions, both of

which ultimately influence the survival rates of kidney recipients (Ashlagi et al. 2018). For instance,

the living kidney sharing scheme (LKSS) in the United Kingdom conducts matching runs on a

quarterly schedule1. The rationale is to accumulate, within three months, a sufficiently diverse pool

of recipient-donor pairs to perform efficient kidney allocations, while ensuring a relatively high

frequency of matches for time-sensitive transplants.

Similar trade-offs are crucial for designing and operating ridesharing platforms, such as Didi,

Uber, or Lyft. Their matching mechanism aims to minimize the travel time needed to pick-up riders,

to improve riders’ satisfaction and increase drivers’ hourly earnings. By slightly delaying their

matching decisions, these platforms accumulate a batch of rider requests before they are assigned to

drivers. Due to their substantial benefits, such batching algorithms have been widely implemented

in major ridesharing platforms (Lyft 2016). Recent evolutions of car-pooling platforms further

illustrate the critical importance of the time dimension. When riders make a request, they might

wait for several minutes for the platform to assess potential matches with other riders heading to

the same direction, based on their pick-up and drop-off locations (Yan et al. 2020). To inform the

design of the matching mechanism, riders’ request rate and willingness-to-wait can be estimated

from the wealth of historical data.

As illustrated above, matching platforms face a fundamental trade-off between increasing the

thickness of the market through longer waiting times and mitigating the risk that participants

abandon the system. However, the dynamic properties of matching markets have been mostly

overlooked in the classic algorithmic literature, which we review in Section 1.2. The vast majority of

previously studied online matching models focus on two extreme types of arrival and abandonment

patterns: (i) offline resources stay in the system throughout of the time horizon; (ii) online customers

need to be matched immediately upon arrival.

Our work positions in a growing line of research that studies dynamic matching models under

nuanced arrival and abandonment patterns (Akbarpour et al. 2020, Hu and Zhou 2021, Ashlagi

et al. 2019, Truong and Wang 2019). In view of the current state of affairs, we are the first to study

an online stochastic matching problem on a broad class of graph-theoretic structures, where agent’s
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arrivals and abandonments are stochastic and heterogeneous. While the specifics of our modeling

approach are presented in Section 2, informally, we formulate the dynamic matching problem as an

infinite-horizon continuous-time Markov decision process. Agents of different types arrive according

to a Poisson process and abandon the system once their sojourn time elapses. The sojourn times are

drawn independently from type-specific exponential distributions, while the compatibility between

types and the matching rewards (or costs) are described by an edge-weighted graph.

The main contribution of this paper is to demonstrate that the dynamic properties of matching

markets have significant implications on the design of the underlying matching technology. We

devise simple matching algorithms with strong performance guarantees in regard to leveraging prior

knowledge about the graph structure and market dynamics. We conduct numerical simulations

showing that these algorithms can be calibrated to real-world data and implemented at scale.

1.1. Preview of main results

In Section 2, we introduce an online stochastic matching problem on edge-weighted graphs, where

the agents’ arrivals and abandonments are stochastic and heterogeneous. The problem is formu-

lated as an infinite-horizon continuous-time Markov decision process (MDP) that either minimizes

the expected average costs incurred by the matching decisions, or maximizes the expected aver-

age rewards. While this problem has no non-trivial competitive ratio (a notion we will formalize

shortly that measures the performance of online algorithms against a full-information benchmark),

we study the MDP through the lens of approximation algorithms. Our main contributions come

in the form of constant-factor approximations in both cost-minimization and reward-maximization

settings. It is worth noting that, while there clearly exists an exact mapping from cost-minimization

instances to reward-maximization instances, the design of approximation algorithms is fundamen-

tally different in these settings, owing to the structure of their objective function. Below, we provide

a detailed account of our main technical ideas and practical insights.

LP benchmark. We start-off by developing a novel linear programming-based fluid relaxation

for our dynamic stochastic matching problem. We show in Section 4.2 that this LP provides a

lower bound on the optimal expected average cost in the cost-minimization setting. As explained

in Section 5, in the reward-maximization setting, we construct an upper bound on the optimal

expected average reward using a quadratically-constrained variant of the LP benchmark.

Constant-factor approximation algorithms. In Section 4, we devise a 3-approximation

algorithm for the cost-minimization dynamic stochastic matching problem. This approximation

guarantee hinges on the assumptions that (i) the edge-weighted graph satisfies the triangle inequal-

ity, (ii) agents have uniform abandonment rates. This setting is motivated by the minimization of

time-distance costs of shared rides by car-pooling platforms. Our algorithm builds on a notion of
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“marginal cost” for each vertex type, which is computed using a simplified variant of our original

MDP. By combining the marginal costs, we construct an additive approximation of the cost-to-go

at each state of the MDP. Consequently, our algorithm computes a greedy policy with respect to

the approximate cost-to-go function. To analyze the resulting matching algorithm, we uncover a

relationship between our initial LP benchmark and the notion of marginal costs.

Our main technical contribution is to develop a constant-factor approximation for the reward-

maximization MDP in its utmost generality, without any further assumption on the graph structure

and the abandonment rates. Specifically, we devise a simple matching algorithm that attains an

approximation ratio of e−1
4e

on arbitrary edge-weighted graphs; we derive improved performance

guarantees in bipartite settings. To keep the paper concise, we provide an outline of our algorithmic

approach in Section 5, while the results are formally established in Appendix B. At a high level,

our algorithm is based on a variant of the LP benchmark, taking the form of a quadratically-

constrained linear program (QCLP). This QCLP relaxation is utilized to specify the distribution

of various random edge pruning procedures. Next, our matching policy makes greedy decisions

with respect to the pruned subgraphs. The main technical difficulty in analysis is to characterize

the stationary distribution of the Markov chain induced by this matching policy. Surprisingly, our

approximation guarantees follow by constructing a so-called virtual Markov chain, which serves as

a simplified proxy for the induced stochastic process.

Simulation case study. In Section 7, we conduct extensive numerical simulations to evaluate

our newly developed matching algorithms. We take the perspective of a car-pooling platform that

matches pairs of riders to generate cost savings with respect to the utilization of driver time. Using

the NY taxi trip data sets, we generate realistic instances that mirror various market conditions

faced by car-pooling platforms (commute hours, weekends, etc.). Against batching algorithms, we

show that our algorithms achieve significant efficiency gains in certain realistic market conditions.

Negative results. To gain perspective on our algorithmic contributions, we establish two

impossibility results, implying a strong separation between our dynamic stochastic matching set-

ting and related online matching problems. First, we argue that there exists no algorithm achieving

a positive constant-factor competitive-ratio. Specifically, we compare our LP benchmark to an

optimal offline matching algorithm under full knowledge of the arrival and sojourn times on each

realization. We show that the optimal offline expected average cost can be arbitrarily smaller than

the optimal value of the LP benchmark. Second, we analyze the performance of batching algo-

rithms, which are widely used by ridesharing platforms and kidney exchange schemes. A batching

policy periodically computes an optimal matching. Surprisingly, simple counter-examples demon-

strate that the performance guarantee of batching policies could be arbitrarily bad in the cost-

minimization setting, even if the length of the batching interval is optimally tuned. This family of

bad instances is motivated by car-pooling services.
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1.2. Related literature

In what follows, we review two long-standing streams of literature on matching optimization, which

are both relevant to position our current work. Next, we discuss several recent closely related papers

on dynamic matching in greater detail.

Online matching. Our paper is related to the online matching literature. The classic setting,

introduced by Karp et al. (1990), describes sequential matching decisions over a bipartite graph.

On one side, the vertices are known initially (offline resources), and remain available throughout

the horizon. On the other side, the vertices are revealed sequentially (online demand), and should

be matched immediately upon their arrival, otherwise they abandon the system. Karp et al. (1990)

devise a simple randomized algorithm attaining a (1− 1
e
)-competitive ratio. Specifically, given α> 0,

a randomized online algorithm is said to be α-competitive for a reward-maximization matching

problem if ALG
OFF

≥ α for any arbitrary graph instance, where ALG is the expected reward generated

by the algorithm, while OFF the offline optimal reward, achieved under full knowledge of the

underlying graph instance. Consequently, this problem has been studied under various shapes and

forms, building on the classic result of Karp et al. (1990). We refer the reader to the survey by Mehta

et al. (2013) that covers numerous extensions, including budgeted ad allocation problems (Mehta

et al. 2005, Devanur and Hayes 2009). On edge-weighted graphs, Ma and Simchi-Levi (2020)

develop nearly-optimal algorithms attaining instance-dependent competitive ratios. In contrast, the

stochastic setting, where the arriving online vertices are independently and identically sampled from

a known distribution over vertex types, admits constant-factor competitive ratios (Goel and Mehta

2008, Feldman et al. 2009, Manshadi et al. 2012, Jaillet and Lu 2013). Lastly, there is a concurrent

stream of literature that studies online metric bipartite matching problems (Kalyanasundaram and

Pruhs 1993, Khuller et al. 1994, Bansal et al. 2007, Ashlagi et al. 2017). Even in the presence of

i.i.d. stochastic arrivals, the best-known competitive ratio is parametric with respect to the number

of requests (Gupta et al. 2019).

Our modeling approach shares similarities with the line of research on stochastic matching

problems, which exploit a probabilistic prior on graph instances. Nonetheless, the model studied

here differs from the classical setting by capturing a fully-online arrival and abandonment pro-

cess. Amongst other technical differences, our problem does not admit any positive constant-factor

competitive ratio, and our analysis is based on properties of continuous-time stochastic processes.

Additionally, we develop specialized results for a cost-minimization formulation, where the under-

lying graph satisfies a metric-like property. Motivated by car-pooling platforms, our model does

not differentiate between “servers” and “customer requests”. As such, we are able to devise a

constant-factor approximation, in sharp contrast with the best known performance guarantees for

related online metric matching problems.
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Queuing networks. Matching problems have received a significant amount of attention in the

queuing literature that focuses on multi-class multi-server queuing systems. The vast majority of

research papers consider a fixed matching policy, described by a service discipline and an exogenous

compatibility graph over heterogeneous types of customers and servers. Computing the stationary

matching rates over the customer-server types is generally very challenging, and thus, the literature

focuses on various approximations. For example, Talreja and Whitt (2008) develop a fluid model

to study first-come-first-served (FCFS) discipline in overloaded systems, with further structural

restrictions on the underlying compatibility graph. Caldentey et al. (2009) introduced the infinite

bipartite matching model. In the basic setting, an infinite stream of arriving customers and servers

are matched on a FCFS basis according to a compatibility graph representing the types of customers

and servers. The stationary matching rates can be derived on specific compatibility structures, such

as ‘W’-shaped graphs and almost-complete graphs. Similarly, Adan and Weiss (2012, 2014) study

a skill-based parallel queueing system with abandonments under the FCFS-ALIS discipline (first

come first served, assign longest idle server). The authors derive the unique stationary distribution

of the system, which is in product-form. That said, the state space description is exponentially

sized, and the resulting matching rates cannot be easily computed.

Related to our MDP setting, there are a few papers that investigate the design of optimal dynamic

matching policies under various control objectives. Gurvich and Ward (2014) study a finite-horizon

general matching control problem, where the objective is to minimize holding costs. The authors

derive a lower bound, emanating from a so-called imbalance process, which is asymptotically

matched by a myopic policy. Tsitsiklis and Xu (2017) study a multiserver queueing network under

a scaling of the system size. They show that batching policies simultaneously achieve the optimal

throughput rate and queuing delays asymptotically, when the underlying network has sufficiently

strong connectivity properties. Motivated by ridesharing platforms, Özkan and Ward (2020) study

a dynamic matching problem on bipartite graphs where customers need to be matched immediately,

while supplies wait in a queue with potential abandonments. The authors show the asymptotic

optimality of a myopic randomized policy in a large market regime, based on a continuous lin-

ear programming relaxation, which can be simplified into a linear program for time-homogeneous

processes. Taking a different perspective, Banerjee et al. (2018) approach the dynamic matching

problem in ridesharing through a closed queueing network model, where customers need to be

matched immediately upon arrival. They derive state-dependent control policies achieving order

optimal decay of the demand loss with respect to the number of supplies. Recently, Cadas et al.

(2019) consider the problem of minimizing the long-term average holding cost incurred by waiting

times in a bipartite matching system. The authors characterize an optimal threshold-based match-

ing policy under N-shaped graphs with two types of vertices. In a similar vein, Afeche et al. (2021)
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study the design of an optimal matching network to balance between waiting time and matching

rewards under FCFS-ALIS discipline. They develop a quadratic programming approximation to

compute the matching rates in heavy-traffic conditions for a given compatibility graph.

Our paper departs from this line of research on several fronts. First, our model captures het-

erogeneous patterns of arrivals and abandonments and considers a reward-maximization (or cost-

minimization) objective emanating from an edge-weighted compatibility graph. Most importantly,

these research papers operate under scaling limits or heavy-traffic conditions. By contrast, we

develop matching algorithms achieving worst-case performance guarantees with respect to an opti-

mal matching policy. In applications such as ridesharing, the trade-off between market thickness

and abandonment risk is due to the scarcity of the demand. Hence, this trade-off is less relevant

in scaling limits. This remark will be formalized in Section 3.

Dynamic matching. Closer to our current work, dynamic matching problems have received grow-

ing attention in recent literature, motivated by applications to car-pooling platforms (Santi et al.

2014, Alonso-Mora et al. 2017, Bertsimas et al. 2019) and kidney exchanges (Ashlagi et al. 2018).

This line of research investigates the design of online matching algorithms on dynamic graphs, where

all vertices arrive over time. To our knowledge, the papers by Anderson et al. (2017) and Akbar-

pour et al. (2020) are the first to study a continuous-time dynamic matching model with stochastic

arrivals. Anderson et al. (2017) establish asymptotic optimality results for greedy and batching poli-

cies in dynamic barter marketplaces, which further capture cyclic (multi-way) exchanges between

market participants. Focusing on bipartite matching settings, Akbarpour et al. (2020) also finds

that the greedy algorithm is close to optimal, while leveraging information about when agents’

abandon can substantially improve performance. However, the analysis of the preceding papers is

based on several stylised assumptions: the underlying network is an Erdös-Rényi random graph,

agents are ex-ante identical, and the loss function is the (unweighted) rate of unmatched agents.

Subsequent literature has considered several variants of this problem, including unidirectionally dif-

ferentiated agent types (Hu and Zhou 2021), strategic agents (Baccara et al. 2020), and connections

to prophet inequalities (Truong and Wang 2019).

Turning the spotlights on the algorithmic literature, most papers operate under the so-called

“criticality” assumption, meaning that the platform knows when a vertex is about to abandon

the system; this time period is referred as the vertex’s deadline. In this setting, Ashlagi et al.

(2019) studies an online matching problem on arbitrary edge-weighted graphs, where vertices have

a uniform sojourn of d periods. The authors devise a 1
4
-competitive algorithm, where the platform

postpones the matching decision for a given vertex until it becomes critical. While this paper

comprises a model extension capturing stochastic deadlines, the matching algorithm still utilises

the criticality information. Under a similar assumption, Huang et al. (2018, 2019) devise tight
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competitive ratios for unweighted online matching problems with arbitrary sojourn times. Similarly

to the analysis of Huang et al. (2018), we distinguish between so-called active and passive vertices

to construct a novel linear programming relaxation in Section 3. However, our definitions of active

and passive vertices slightly differ from those of Huang et al. (2018) since the matching decisions

are not “triggered” by the deadlines associated with active vertices. Subsequent to the submission

of our paper, Collina et al. (2020) consider a dynamic matching problem with a type-specific

Poisson arrival process. Here, the abandonments are both stochastic and unknown to the platform

before they occur. In this context, Collina et al. (2020) devise a 1
8
-competitive algorithm for reward

maximization, while we obtain an approximation ratio of 1
4
· (1− 1

e
)≈ 0.158 in this setting.

2. Modeling Approach

In this section, we introduce the online stochastic matching optimization problem examined in this

paper, dubbed dynamic stochastic matching. Here, we develop a cost-minimization formulation of

this problem. An analogous reward-maximization formulation is studied in Section 5.

Notation. We begin by defining notation that will be useful throughout the paper. For every

integer ℓ∈N∗, we use the shorthand [ℓ] = {1, . . . , ℓ}. An edge-weighted graph G= (V,E) is endowed

with a cost function c : E → R+ ∪ {+∞}. By extension, for convenience of notation, we may use

c(n,m) = c({n,m}) for every {n,m}∈E. Given a matching M ⊆E, we denote by φ(M) the set of

all vertices in V covered by M . Further, let E(V ) designate the collection of edges in the complete

graph induced by V , and let S(V ) be the collection of self-loops. Lastly, given a stochastic process

{Xt}t≥0 having right-hand limits everywhere, we denote by X̄t = limu→t+ Xu the right-hand limit

at each t≥ 0.

Agents’ arrivals and sojourn times. We study a continuous-time model, whereby a stream of

random agents arrive and sojourn in the system for a limited amount of time. Each agent, indexed

by n ∈ N∗ = {1,2, . . .}, is characterized by an arrival time tn, a sojourn time δn and a type θn.

Specifically, the agents’ arrivals are represented by an independently-marked Poisson point process

{(tn, δn,θn)}n∈N∗ , where the arrivals tn are the set of points, while the sojourn times δn and the

types θn are the set of marks.

• The collection of types T = {θn : n ∈ N∗} is embedded in a graph (T ,E), where each edge

e∈E is assigned with a cost c(e). Without loss of generality, we require that E =E(T )∪S(T ),

provided that the edge costs can be infinite.

• Agents of type i∈ T arrive at a rate λi > 0, and abandon the system at a rate µi > 0. Namely,

for every agent n∈N, the sojourn time δn follows an exponential distribution of rate parameter

µi > 0 conditional on {θn = i}.
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Consequently, we denote by N(t) the counting process associated with the agents’ arrivals, and we

let E(t) be the random subset of times ζ ∈ [0, t] at which agent arrive or abandon the system.

Going forward, we define the sojourn process as a family of random graphs {Gt}t≥0, whereby the

agent’s arrivals and departures are represented through graph insertions and deletions. Specifically,

upon each agent’s arrival, a new vertex is inserted into the current graph, and gets deleted once the

sojourn time has elapsed. Formally, Gt = (Vt,E(Vt)) is the complete graph over the set of vertices

Vt = {n ∈ [N(t)] : t < tn + δn}. For each edge {n,m} ∈E(Vt), we overload notation by defining the

cost c(n,m) = c(θn,θm).

Markov decision process. Let (Ft)t≥0 designate the canonical filtration generated by the sojourn

process. A matching policy π describes an Ft-adapted stochastic process {Mπ
t }t≥0, where Mπ

t

is a matching within the subgraph of Gt induced by the set of remaining vertices V π
t = Vt \

(
!

e∈[0,t) φ(M
π
e )). Hereafter, this subgraph is referred to as the realization graph at time t under the

matching policy π. The cumulative cost induced by π is represented by a jump process {Cπ
t }t≥0.

Specifically, at each time t≥ 0, the cost is accrued by the quantity c(e) for every e∈Mπ
t . In addi-

tion, the cost is accrued by a penalty ca(i) whenever a type-i agent abandons the system. Hence,

we denote by Dπ
t = {n ∈ V π

t : tn + δn = t} the subset of unmatched agents abandoning the system

at time t. Consequently, the cumulative cost Cπ
t at time t is given by

Cπ
t =

"

ζ∈Eπ(t)

"

e∈Mπ
ζ

c(e)+
"

ζ∈Eπ(t)

"

n∈Dπ
ζ

ca (θn) , (1)

where Eπ(t) is the set of jump epochs ζ ∈ [0, t], for which Dπ
ζ ∕= ∅ or Mπ

ζ ∕= ∅.

The objective of the dynamic stochastic matching problem is to devise a matching policy π to

minimize the expected average cost cπ = limsupt→+∞
E[Cπ

t ]

t
. Clearly, this problem can be formulated

as an average-cost continuous-time Markov decision process (MDP), where, without incurring any

loss in optimality, the decision epochs coincide with the times at which agents arrive or abandon

the system, i.e., Eπ(t) = E(t). In what follows, we adopt a compact state space representation of

this MDP, where each state corresponds to an equivalence class of realization graphs. Specifically,

the state space V is formed by all integral vectors (νi)i∈T , where νi is the number of type-i vertices

in the current realization graph. For a given matching policy π, we denote by ϑ(V π
t )∈ V the state

of the system at time t≥ 0.

It is well-known that there exists an optimal deterministic stationary policy for continuous-time

MDPs under mild regularity conditions (e.g., in Appendix A.1, we show that our MDP instances

can be reduced to the setting of Guo and Hernández-Lerma (2009, Thm. 5.9)). It is important to

note that our dynamic stochastic matching problem cannot be exactly formulated as an average-

cost discrete-time MDP using the standard uniformization method (Puterman 2014, Chap. 11.5.3),
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without slightly altering its probabilistic structure, or imposing further restrictions on the class of

admissible policies. Hence, for further generality, we utilize our continuous-time MDP formulation

throughout the paper.

Approximation algorithms. While optimal policies are computationally intractable, we will iden-

tify simple policies that can be computed in polynomial time, attaining strong performance guar-

antees with respect to the average-cost criterion. More specifically, we will say that a matching

policy π is α-approximate, for some constant α ≥ 1, if cπ ≤ α · cπ∗
, where π∗ denotes an optimal

deterministic stationary policy. Consequently, we will say that an algorithm is an α-approximation

if the algorithm in question computes an α-approximate matching policy on every instance of the

dynamic stochastic matching problem.

3. Linear Programming Benchmark

In this section, we construct a fluid relaxation of the MDP, which will play a crucial role in our

subsequent analysis. To guide our exposition, we introduce the notion of active and passive vertices.

For any given matching policy, a vertex is said to be passive if it is matched with a vertex arriving

earlier; otherwise, the vertex is said to be active. The distinction between active and passive vertices

is key to capture the probabilistic structure of the agents’ abandonments. Intuitively, active vertices

have “greater” contributions to the abandonment cost since they wait “longer” in the system.

To formalize this idea, we construct a linear programming formulation, which will be utilized as

a benchmark for the cost-minimization dynamic stochastic matching problem:

(CB) min
x

"

i∈T

ca(i) ·xi,a +
"

(i,j)∈T 2

c(i, j) ·xi,j

s.t.
"

j∈T

xj,i +
"

j∈T

xi,j +xi,a = λi , ∀i∈ T (2)

µi

λj

·xi,j ≤ xi,a , ∀(i, j)∈ T 2 (3)

xi,j ≥ 0 ∀(i, j)∈ T 2

Let L∗ be the minimum cost of (CB). In order to relate the linear program (CB) to a fluid

relaxation of our dynamic stochastic matching problem, we view the average match rates induced

by a given policy as elementary units of flow. Specifically, for every (i, j) ∈ T 2, the flow variable

xi,j represents the average match rate between active type-i vertices and passive type-j vertices.

Similarly, the flow variable xi,a represents the average rate of unmatched type-i vertices abandoning

the system. Consequently, constraint (2) can be interpreted as a flow balance equation: every and

each arriving vertex is active, passive, or unmatched. Constraint (3) requires that the proportion

xi,a of unmatched type-i vertices abandoning the system should be a factor at least µi
λj

relative to
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the average match rate xi,j. Intuitively, this inequality proceeds by observing that an active type-i

vertex abandons the system before the next type-j arrival with probability µi
µi+λj

; this intuition is

formalized in the subsequent analysis.

Lemma 1. L∗ ≤ cπ
∗
.

Remark 1: LP benchmark vs. offline benchmark. It is important to highlight that the LP bench-

mark (CB) does not constitute a lower-bound on the optimal offline matching policy, i.e., the

optimal matching under full knowledge of the agents’ arrivals and sojourn times on each realization

of the stochastic process. Through a simple family of examples constructed in Appendix C, we

show that the gap between the optimal LP value and the optimal offline expected average cost

can be arbitrarily large. As such, there exists no algorithm attaining a positive constant-factor

competitive ratio with respect to the offline benchmark.

Remark 2: Scaling limits. In view of constraint (3), our LP formulation is tighter than the fluid

LP relaxation developed by Özkan and Ward (2020) in a related setting. However, in the large

market limit studied by the latter paper, where the arrival rates are uniformly scaled and the

abandonment rate is held constant, constraint (3) is no longer binding. In fact, Özkan and Ward

(2020) show that the myopic LP-based randomized policy is asymptotically optimal. The system

controller described by the myopic matching policy does not take advantage of “waiting”; each

vertex is either matched immediately upon arrival or irrevocably disposed of, which explains why

constraint (3) becomes superfluous in the asymptotic regime.

Proof of Lemma 1. For every (i, j)∈ T 2, we define the counting process {A∗
t (i, j)}t≥0 as follows:

A∗
t (i, j) =

"

ζ∈E(t)

"

{n,m}∈Mπ∗
ζ

n<m

I (θn = i,θm = j) ,

as well as

A∗
t (i) =

"

ζ∈E(t)

"

n∈Dπ∗
ζ

I (θn = i) .

Namely, A∗
t (i, j) is the number of matches by time t between active vertices of type i and passive

vertices of type j, while A∗
t (i) is the number of type-i vertices which have abandoned the system by

time t. Consequently, for every (i, j) ∈ T 2, we define x∗
i,j = limt→+∞

1
t
·E [A∗

t (i, j)]; the limit exists

in light of the stationarity of π∗. Similarly, we define x∗
i,a = limt→+∞

1
t
·E [A∗

t (i)]. We have

cπ
∗
= lim

t→+∞

1

t
·E

#
Cπ∗

t

$

=
"

(i,j)∈T 2

c(i, j) ·
%

lim
t→+∞

1

t
·E [A∗

t (i, j)]

&
+
"

i∈T

ca (i) ·
%

lim
t→+∞

1

t
·E [A∗

t (i)]

&

=
"

(i,j)∈T 2

c (i, j) ·x∗
i,j +

"

i∈T

ca(i) ·x∗
i,a
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Hence, in order to establish the inequality L∗ ≤ cπ
∗
, it is sufficient to show that the variables

(x∗
i,j)(i,j)∈T 2 and (x∗

i,a)i∈T satisfy the constraints of the linear program (CB). Clearly, the vector

(x∗
i,j)i,j satisfies the flow balance equation (2) by noting that each arriving vertex falls into one of

the three categories: active, passive, or unmatched.

The remainder of the proof is devoted to establishing constraints (3), by leveraging the asso-

ciated embedded Markov chain. To this end, let {ζq}q∈N be the sequence of random arrival and

abandonment epochs, by increasing order. For every integer q≥ 0, we introduce the modified count

random variables:

Âq(i, j) =
∞"

r=0

"

{n,m}∈Mπ∗
ζr

n<m

I (θn = i,θm = j, tm ≤ ζq) .

As such, Âq(i, j) is the number of matches executed at any time between active type-i vertices

and passive type-j vertices, both arriving at or before time ζq. Hence, A∗
ζq
(i, j) counts the matches

which occur by time ζq, whereas Âq(i, j) also counts matches which occur at all subsequent epochs.

It is easy to verify that these modified variables asymptotically converge to the same average match

rate vector (x∗
i,j)(i,j)∈T 2 , as shown in the next claim.

Claim 1. For every (i, j)∈ T 2, limq→+∞
1
ζq
·E[Âq(i, j)] = x∗

i,j almost surely.

The proof immediately follows from the stationarity of the matching policy; in order not to deviate

from our main argument, the proof is presented in Appendix A.2. Now, fix (i, j) ∈ T 2, and an

integer q ≥ 0. For every (i, j) ∈ T , the expected increment of the modified count variable between

successive epochs is upper bounded as follows:

E
#
Âq+1(i, j)− Âq(i, j)

$

=
"

ν∈V

Pr
#
ϑ
'
V π∗
ζq

(
= ν

$
·E

#
Âq+1(i, j)− Âq(i, j)

)))ϑ
'
V π∗
ζq

(
= ν

$

=
"

ν∈V

Pr
#
ϑ
'
V π∗
ζq

(
= ν

$
·E

*

++,
∞"

r=0

"

{n,m}∈Mπ∗
ζr

n<m

I (θn = i,θm = j, tm = ζq+1)

))))))))
ϑ
'
V π∗
ζq

(
= ν

-

../ ·

≤
"

ν∈V

Pr
#
ϑ
'
V π∗
ζq

(
= ν

$
·E

#
I
'
νi > 0,ϑj

'
V π∗
ζq+1

(
= νj +1

()))ϑ
'
V π∗
ζq

(
= ν

$

=
"

ν∈V

Pr
#
ϑ
'
V π∗
ζq

(
= ν

$
· I (νi > 0) · λj0

k∈T λk +
0

k∈T νk ·µk

(4)

On the other hand, for every i∈ T , we have:

E
#
A∗

ζq+1
(i)−A∗

ζq
(i)

$
=

"

ν∈V

Pr
#
ϑ
'
V π∗
ζq

(
= ν

$
·E

#
A∗

ζq+1
(i)−A∗

ζq
(i)

)))ϑ
'
V π∗
ζq

(
= ν

$
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=
"

ν∈V

Pr
#
ϑ
'
V π∗
ζq

(
= ν

$
·Pr

#
ϑi

'
V π∗
ζq+1

(
= νi − 1

)))ϑ
'
V π∗
ζq

(
= ν

$

=
"

ν∈V

Pr
#
ϑ
'
V π∗
ζq

(
= ν

$
· νi ·

µi0
k∈T λk +

0
k∈T νk ·µk

.

By combining the latter equality with (4), for every (i, j)∈ T 2, we obtain

E
#
Âq+1(i, j)− Âq(i, j)

$
≤ λj

µi

·E
#
A∗

ζq+1
(i)−A∗

ζq
(i)

$
.

By summing over all integers q ∈N, and by Claims 1, we conclude that the flow vector formed by

(x∗
i,j)(i,j)∈T 2 and (x∗

i,a)i∈T satisfies the ensemble of constraints (3). □

4. Approximation Algorithm for Cost Minimization

In this section, we devise a constant-factor approximation for the cost-minimization dynamic

stochastic matching problem, introduced in Section 2. Our main result in the cost-minimization

setting relies on two structural assumptions, described in the sequel.

Assumption 1. The cost function satisfies the triangle inequality. Namely, for every types i, j, k ∈

T , we have c(i, j)+ c(j, k)≥ c(i, k) and ca(i)+ c(i, j)≥ ca(j).

In particular, Assumption 1 implies that c(i, i)≤ 2 · c(i, j) for every i, j ∈ T , and thus, vertices of

identical types can be matched. This assumption is motivated by car-pooling platforms, where the

goal is to minimize the time-distance cost generated by the shared rides (Santi et al. 2014). In this

context, what we consider an “ideal” match is one that pairs riders having identical pick-up and

drop-off locations. Moreover, the cost function naturally satisfies the triangle inequality, as further

explained in Section 7.

Assumption 2. The abandonment rates are uniform, namely, µi = µ for every i∈ T .

Having introduced the structural assumptions utilized in this section, we are ready to state our

main theorem in the cost-minimization setting.

Theorem 1. Under Assumptions 1 and 2, there exists a polynomial-time 3-approximation algo-

rithm for the cost-minimization dynamic stochastic matching problem.

It is worth highlighting that the matching policy attaining the approximation ratio stated by

Theorem 1 has a simple and interpretable structure. At a high-level, each vertex type is associated

with a notion of “marginal cost”. The matching decisions are guided by an additive approximation

of the cost-to-go, constructed by combining these marginal costs. Specifically, our algorithmic

approach and analysis proceed in three steps.
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Step 1: Active-vertex problem. We begin by considering a simplified problem, dubbed the type-i

active-vertex problem for every given type i∈ T , for which an optimal matching policy can be easily

computed. As made formal in Section 4.1, the problem consists in minimizing the expected cost

generated by a single active vertex ni of type i, available at time t= 0. Namely, either ni is matched

with some vertex n arriving during her sojourn and incurs the corresponding cost c(ni, n), or ni

abandons the system unmatched and incurs the penalty ca(i). By focusing on a single vertex ni,

the matching policy reduces to a stopping rule: clearly, upon matching vertex ni, it is optimal to

pick the vertex of minimal cost within the realization graph. Interestingly, we show in Section 4.1

that there exists a fixed-threshold policy which is optimal. Namely, there exists a threshold c̄i ≥ 0

such that it is optimal to match ni with the first arriving vertex n for which c(i,θn)≤ c̄i, if any.

Step 2: Lower bound. In Section 4.2, we relate the thresholds arising from the active-vertex prob-

lems to a lower bound on our original dynamic stochastic matching problem. More concretely, we

show that 1
3
·
0

i∈T λic̄i is a lower bound on the optimal expected average cost under Assumptions 1

and 2. Intuitively, the active-vertex problem is “optimistic”, in the sense that the “competition”

between active vertices is overlooked. That said, a lower bound on our original problem does imme-

diately follow from this observation. The main challenge is that the matching policy ultimately

controls the relative rates of active vs. passive vertices. Hence, our lower bound proceeds from

jointly bounding the cost contributions of active and passive vertices, using the LP benchmark of

Lemma 1 and the triangle inequality property (Assumption 1).

Step 3: Vertex-additive matching policy. Lastly, in Section 4.3, we devise a simple matching

policy, referred to as vertex-additive, that matches the lower bound established in Step 2, up to a

constant multiplicative factor. At a high-level, our policy constructs an additive approximation of

the cost-to-go by interpreting c̄i as the “marginal cost” associated each type-i vertex. Consequently,

our matching policy is greedy with respect to this linear approximation of the cost-to-go function.

4.1. Step 1: Active-vertex problem

Given a type i ∈ T , we proceed with a formal definition of the type-i active-vertex problem. In

what follows, we assume that the sojourn process is initialized by V0 = {ni}, where θni
= i and

tni
= 0. Conditional on the initial state V0 = {ni}, the sojourn process {Vt}t≥0 is identical to our

original process, described in Section 2. For ease of notation, we use the shorthand V −
t = Vt \ {ni}

to designate the set of vertices at time t at the exclusion of ni. The objective is to minimize the

expected cost generated by ni, either by matching with a subsequently arriving vertex during its

sojourn, or by incurring the abandonment penalty. Specifically, an admissible policy corresponds

to a stopping rule τ , generating a cost ĉτ defined as follows:
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ĉτ =

1
c
2
i,ϑ

2
V −
τ

33
, if τ < δni

and |V −
τ |≥ 1 ,

ca(i) , otherwise ,
(5)

where we use the shorthand c(i,ν) =min{c(i, j) : j ∈ T ,νj > 0}. The objective is to devise a stopping
rule τ that minimizes E[ĉτ ]. Letting τ ∗ be an optimal stopping rule, we use c̄i = E[ĉτ∗ ] to denote

the optimal cost of the type-i active-vertex problem.

Threshold policies. Given a constant α ≥ 0, the α-threshold policy matches ni with the first

arriving vertex n before vertex ni abandons the system such that c(ni, n) ≤ α, if any, i.e., the

α-threshold policy corresponds to the stopping rule

τα =min
4
δni

,min
4
t≥ 0 : c

2
i,ϑ

2
V −
t

33
≤ α

55
.

Clearly, we have τα <∞ almost surely. In the next lemma, we show that the c̄i-threshold policy

is optimal for the type-i active-vertex problem. This result implies that there is no benefit in

“accumulating” passive vertices; every arriving vertex is either immediately matched to ni, or

irrevocably disposed of. At the end of this section, we provide algorithmic means to compute c̄i by

characterizing the expected cost generated by threshold policies in closed-form expression.

Lemma 2. The c̄i-threshold policy is optimal for the type-i active-vertex problem.

Proof. We formulate our optimal stopping problem through the associated embedded Markov

chain. To this end, let {ζq}q∈N∗ be the sequence of random arrival and abandonment epochs, by

increasing order. It is easy to verify that the stopping times can be restricted to the set {ζq : q ∈N∗},
without incurring any loss in optimality. Consequently, the optimal stopping problem is expressed

through an ensemble of recursive equations. Since the sojourn process satisfies the strong Markov

property, the expected cost-to-go E[ĉτ∗ |τ ∗ ≥ ζq,ϑ(V
−
ζq
) = ν, δni

> ζq] when reaching state ν at the

q-th epoch does not depend on q ∈N∗. Hence, we define F (ν) =E[ĉτ∗ |ϑ(V −
0 ) = ν], which is equal to

the expected cost-to-go E[ĉτ∗ |τ ∗ ≥ ζq,ϑ(V
−
ζq
) = ν, δni

> ζq] for every q ∈N∗. The cost-to-go function

F (·) satisfies the following Bellman equation:

F (ν) =min

1
c (i,ν) ,

1

µ · |ν|+µ+
0

k∈T λk

·
6
µ · ca(i)+

"

j∈T

λj ·F (ν+ ej)+
"

j∈T

νjµ ·F (ν− ej)

78
,(6)

where we use the shorthand |ν| =
0

i∈T νi. To instill intuition about this recursive equation, we

remark that all possible outcomes are captured by the cost-to-go expression: (1) vertex ni abandons

the system at the next epoch, (2) a type-j vertex arrives at the next epoch, for some j ∈ T , or (3)

a type-j vertex abandons the system at the next epoch, for some j ∈ T .

Equation (6) describes an undiscounted infinite-horizon MDP, where an absorbing state is

reached whenever ni is matched or abandons the system. Since the sojourn time of ni is almost
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surely bounded, any admissible policy of this MDP is proper, and the optimal value function

{F (ν)}ν∈V corresponds to the unique fixed point of the Bellman operator; see Bertsekas and Tsit-

siklis (1996). Now, let A∗
i be the subset of types that minimizes the function fi(·), where

fi (A) =
µ

µ+
0

k∈A λk

· ca(i)+
"

j∈A

λj

µ+
0

k∈A λk

· c (i, j) ,

for every A⊆ T . In the next claim, we express F (ν) as a function of fi(A∗
i ) for every state ν. In

particular, the lemma implies that c̄i = fi(A∗
i ) and the c̄i-threshold policy is optimal.

Lemma 3. F (ν) =min{fi(A∗
i ), c(i,ν)} for every ν ∈ V.

Proof. We begin by highlighting a basic property of the optimal subset of types A∗
i with respect

to the minimization of the function fi(·).

Claim 2. A∗
i = {j ∈ T : c(i, j)≤ fi(A∗

i )}.

The proof of Claim 2 is presented in Appendix A.3. Now, define F̂ (ν) = min{fi(A∗
i ), c(i,ν)}

for every ν ∈ V. It is sufficient to show that F̂ (·) satisfies the Bellman equations (6) to establish

the desired claim. To this end, we fix a state ν ∈ V. In what follows, we examine the case where

fi(A∗
i )≥ c(i,ν). The opposite case fi(A∗

i )< c(i,ν) proceeds from a nearly-identical reasoning (see

Appendix A.4).

Case 1: fi(A∗
i )≥ c(i,ν). We begin by bounding the terms F̂ (ν + ej) and F̂ (ν − ej) for every

j ∈ T . To this end, we define A+ = {j ∈ T : c(i, j)≤ c(i,ν)}. For every j ∈A+,

F̂ (ν+ ej) =min{fi(A∗
i ), c (i,ν) , c (i, j)}= c (i, j) . (7)

Now, for every j ∈ T \A+, we have

F̂ (ν+ ej) =min{fi(A∗
i ), c (i,ν) , c (i, j)}= c (i,ν) , (8)

where the last equality proceeds from our case hypothesis. Lastly, for every j ∈ T , we have

F̂ (ν− ej) =min{fi(A∗
i ), c (i,ν− ej)}≥min{fi(A∗), c (i,ν)}= c (i,ν) , (9)

where the last inequality proceeds from our case hypothesis. Thus, we have

F̂ (ν) = min{fi(A∗
i ), c (i,ν)}

= c (i,ν)

=
µ+

0
k∈A+ λk

µ · |ν|+µ+
0

k∈T λk

· c (i,ν)+
µ · |ν|+

0
k∈T \A+ λk

µ · |ν|+µ+
0

k∈T λk

· c (i,ν)

≤
µ+

0
k∈A+ λk

µ · |ν|+µ+
0

k∈T λk

· fi (A∗
i )+

µ · |ν|+
0

k∈T \A+ λk

µ · |ν|+µ+
0

k∈T λk

· c (i,ν)



17

≤
µ+

0
k∈A+ λk

µ · |ν|+µ+
0

k∈T λk

· fi
2
A+

3
+

µ · |ν|+
0

k∈T \A+ λk

µ · |ν|+µ+
0

k∈T λk

· c (i,ν)

=
µ+

0
k∈A+ λk

µ · |ν|+µ+
0

k∈T λk

9

: µ

µ+
0

k∈A+ λk

· ca(i)+
"

j∈A+

λj

µ+
0

k∈A+ λk

· c (i, j)

;

<

+
µ · |ν|+

0
k∈T \A+ λk

µ · |ν|+µ+
0

k∈T λk

· c (i,ν)

≤ 1

µ · |ν|+µ+
0

k∈T λk

·
6
µ · ca(i)+

"

j∈T

λj · F̂ (ν+ ej)+
"

j∈T

µ · νj · F̂ (ν− ej)

7
,

where the first inequality follows from the case hypothesis, and the second inequality proceeds from

the optimality of A∗
i . The last inequality holds by combining (7), (8) and (9). Hence, the Bellman

equation (6) is satisfied with respect to state ν. □
□

Basic properties of c̄i. In the proof of Lemma 2, we have shown that c̄i = fi(A∗
i ), where

fi (A∗
i ) = min

A⊆T

µ

µ+
0

k∈A λk

· ca(i)+
"

j∈A

λj

µ+
0

k∈A λk

· c (i, j) , (10)

A close examination of the optimization problem (10) reveals a connection to the unconstrained

MNL-assortment optimization problem. In this context, it is well-known that the optimal solution

takes the form of a revenue-ordered assortment (Talluri and van Ryzin 2004). The revenue-ordered

structure is analogous to the property established in Claim 2, whereby A∗
i is comprised of all

types incurring a cost c(i, j) below a given threshold. By leveraging the connection to the MNL-

assortment optimization problem, we can formulate problem (10) as the following linear program:

(ANi) min
y

ca(i) · ya +
"

j∈T

c(i, j) · yj

s.t. ya +
"

j∈T

yj = 1 ,

µ

λj

· yj ≤ ya , ∀j ∈ T

yj, ya ≥ 0 ∀j ∈ T

In view of the exact analogy between the active-vertex problem and the MNL-assortment opti-

mization problem, the proof of the next lemma is omitted (Gallego et al. 2014).

Lemma 4. The minimum cost of the linear program (ANi) is c̄i. Furthermore, A∗
i = {j ∈ T : y∗

j >

0}, where (y∗
j )j∈T describes the optimal solution vector of (ANi).

In the next claim, we derive an inequality that will be useful to bound the variations of the optimal

expected costs c̄i across different types i ∈ T . The proof immediately proceeds from the triangle

inequality (Assumption 1), and thus, it is deferred to Appendix A.5.

Lemma 5. For every i, j ∈ T , c̄i ≤ c̄j + c(i, j).
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4.2. Step 2: Lower bound

In the next lemma, we develop a lower bound on the optimal expected average cost, as a function

of the active-vertex expected costs {c̄i}i∈T . The proof is based on on the LP benchmark (CB)

developed in Section 4.2 as well as the triangle inequality property (Assumption 1).

Lemma 6. 1
3
·
0

i∈T c̄i ·λi ≤ cπ
∗

Proof. Let (x∗
i,j)(i,j)∈T 2 and (x∗

i,a)i∈T form an optimal solution vector of problem (CB). For

every i ∈ T , we define si = x∗
i,a +

0
j∈T x∗

i,j. By noting that the vector formed by (x∗
i,j/si)j∈T and

x∗
i,a/si satisfies the constraints of the linear program (ANi), and by Lemma 4, we infer that

ca(i) ·x∗
i,a +

"

j∈T

c (i, j) ·x∗
i,j ≥ c̄i · si (11)

Hence, we obtain

"

i∈T

c̄iλi =
"

i∈T

c̄i · si +
"

i∈T

"

j∈T

c̄i ·x∗
j,i

≤
"

i∈T

c̄i · si +
"

i∈T

"

j∈T

c (j, i) ·x∗
j,i +

"

i∈T

"

j∈T

c̄j ·x∗
j,i

=
"

i∈T

%
1+

si −x∗
i,a

si

&
· c̄i · si +

"

i∈T

"

j∈T

c (j, i) ·x∗
j,i

≤
"

i∈T

6%
1+

si −x∗
i,a

si

&
· ca(i) ·x∗

i,a +

%
2+

si −x∗
i,a

si

&
·
"

j∈T

c (i, j) ·x∗
i,j

7

≤ 3 ·

9

:
"

i∈T

ca ·x∗
i,a +

"

(i,j)∈T 2

c (i, j) ·x∗
i,j

;

<

= 3 ·L∗ ,

where the first inequality holds due to Lemma 5 and the second inequality proceeds from (11). □

4.3. Step 3: Vertex-additive matching policy

Finally, in this section, we devise a simple greedy-like matching policy that competes against the

lower bound derived in Lemma 6, up to a constant multiplicative factor.

Matching policy. The vertex-additive matching policy π̄ is defined such that M π̄
t is a minimum-

cost matching within the realization graph at time t with respect to the cost function M -→
0

e∈M c(e)−
0

n∈φ(M) c̄θn ; we break ties among matchings of minimum cost by picking M π̄
t as an

arbitrary matching of maximum cardinality. Policy π̄ can be interpreted as the greedy policy with

respect to the linear approximation of the cost-to-go
0

i∈T νi · c̄i at each state ν ∈ V; e.g., see Bert-

sekas and Tsitsiklis (1996) for further background on greedy policies in the context of MDPs.
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Algorithm 1 Computing the vertex-additive policy

Instance parameters: Collection of types T , arrival rates (λi)i∈T , abandonment rates (µi)i∈T ,

matching costs c(·), abandonment costs c̄a(·).

Offline computation: Solving the active-vertex problems

For every i∈ T :

Compute c̄i by solving the linear program (ANi)

Online computation: Min-cost matching

Input: Realization graph Gt = (V π̄
t ,E(V π̄

t )) at time t≥ 0

Compute a min-cost matching M π̄
t ⊆E(V π̄

t ) that minimizes M -→
0

e∈M c(e)−
0

n∈φ(M) c̄θn

Output: Return M π̄
t

Intuitively, this matching policy uses c̄i as an estimate for the “marginal cost” of each type-i vertex.

Our algorithmic approach is summarized by the pseudo-code of Algorithm 1.

Since vertices arrive one at a time, the matching M π̄
t is either empty or a singleton, for every

t≥ 0. Moreover, every match {n,m}∈M π̄
t picked by the vertex-additive policy necessarily satisfies

c(n,m)≤ c̄θn + c̄θm , otherwise eliminating the match {n,m} is cost-wise beneficial with respect to

our approximation of the cost-to-go. Building on these properties, we show that the vertex-additive

matching policy is 3-approximate, thereby completing the proof of Theorem 1.

Lemma 7. cπ̄ ≤ 3 · cπ∗
.

Proof. The remainder of this section is devoted to proving Lemma 7. To this end, we begin by

introducing a notion of allocation cost, which is key to our analysis.

Allocated cost. For every vertex n∈N∗, we define the allocated cost απ̄(n) as the following random

variable:

απ̄(n) =

=
>>?

>>@

c̄θn if n is passive,

ca(θn) if n is active and abandons the system ,

c (n,m)− c̄θm if n is active and matched with vertex m .

Observe that, on every realization, we have c(n,m) = απ̄(n) + απ̄(m) for every match {n,m} ∈
!

t≥0M
π̄
t . Thus, it is not difficult to verify that cπ̄ = limt→+∞

1
t
·E[

0
n∈[N(t)]α

π̄(n)]. Furthermore,

in the next claim, we develop an upper-bound on the expected allocated cost conditional on the

vertex type.

Lemma 8. For every n∈N∗ and i∈ T , we have E [απ̄(n)|θn = i]≤ c̄i.
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The proof of Lemma 8 is deferred to Appendix A.6. Consequently, we obtain:

cπ̄ = lim
t→+∞

1

t
·E

*

,
"

n∈[N(t)]

"

i∈T

E [απ̄(n) · I (θn = i)]

-

/

≤ lim
t→+∞

1

t
·E

*

,
"

n∈[N(t)]

"

i∈T

c̄i ·E [I (θn = i)]

-

/

=

6
"

i∈T

λi0
j∈T λj

· c̄i

7
·
%

lim
t→+∞

E
A
N(t)

t

B&

=
"

i∈T

λi · c̄i

≤ 3 · cπ∗
,

where the first inequality follows from Lemma 8, the third equality holds by Wald’s equation, and

the last inequality proceeds from Lemma 6. □

5. Approximation Algorithm for Reward Maximization

In this section, we study the reward-maximization formulation of the dynamic stochastic matching

problem. Here, the collection of types T = {θn : n∈N∗} is embedded in a graph (T ,E), where each

edge e ∈ E is assigned with an arbitrary reward r(e). Without loss of generality, we require that

E =E(T )∪S(T ), provided that the rewards can be 0. The sojourn process {Gt}t≥0 is identical to

the cost-minimization setting, described in Section 2. Namely, at every time t≥ 0, Gt = (Vt,E(Vt))

is the complete graph over the set of vertices Vt = {n ∈ [N(t)] : t < tn + δn}. Each edge {n,m} ∈
E(Vt) is associated with a reward r(n,m) = r(θn,θm). Consequently, a matching policy π induces

a cumulative reward process {Rπ
t }t≥0. At each decision epoch ζ, the cumulative reward is accrued

by the quantity
0

e∈Mπ
ζ
r(e). Namely, for every t≥ 0,

Rπ
t =

"

ζ∈E(t)

"

e∈Mπ
ζ

r(e) .

The objective is to devise a matching policy π that maximizes the expected average reward

rπ = lim inft→+∞
E[Rπ

t ]

t
. We say that π is an α-approximate policy, for some constant α ∈ (0,1], if

rπ ≥ α · rπ∗
, where π∗ designates an optimal deterministic stationary policy. In what follows, we

also consider two special cases of interest: (i) We say that the underlying graph is bipartite when

the subgraph formed by the edges Ē = {e ∈ E : r(e) ∕= 0} with non-zero rewards is bipartite, i.e.,

there is a partition T1,T2 of the collection of types T such that (T1,T2, Ē) is a bipartite graph;

(ii) The bipartite-asymmetric setting refers to such bipartite graphs (T1,T2, Ē) where vertices on

one side of the graph leave immediately after their arrival, i.e., with a slight abuse of notation,

we require that µi =+∞ for all i ∈ T1 or µi =+∞ for all i ∈ T2. This setting can be viewed as a
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continuous-time formulation of the classical online stochastic matching problem, where “online”

demand vertices should be immediately matched upon their arrival lest they abandon, but “offline”

resources are replenished according to a stationary stochastic process.

Our main result comes in the form of a constant-factor approximation for the reward-

maximization setting for arbitrary graph structures and abandonment rates. As detailed by the

next theorem, improved approximation ratios are established under additional structural assump-

tions on the underlying graph.

Theorem 2. There exists a polynomial-time constant-factor approximation for the reward-

maximization dynamic stochastic matching problem.

• On arbitrary graphs, our algorithm computes a ( e−1
4e

)-approximate matching policy.

• On bipartite graphs, our algorithm computes a ( e−1
2e

)-approximate matching policy.

• In the bipartite-asymmetric setting, our algorithm computes a (1− 1
e
)-approximate policy.

Since the proof requires significant technical developments, Theorem 2 is established in

Appendix B. That said, we provide a technical outline in Section 5.1 and intuitively discuss certain

characteristics of our algorithm in Section 5.2.

5.1. Technical outline

Step 1: QCLP benchmark. By adapting the fluid relaxation idea of Section 3, we formulate a

linear program, which will serve as a benchmark for the reward-maximization matching problem:

(RB) max
x

"

(i,j)∈T 2

r (i, j) ·xi,j

s.t.
"

j∈T

xj,i +
"

j∈T

xi,j +xi,a = λi , ∀i∈ T (12)

µi ·xi,j ≤ λj ·xi,a , ∀(i, j)∈ T 2 (13)

xi,j ≥ 0 ∀(i, j)∈ T 2

Let U∗ designate the optimal value of (RB). As one might expect, the next claim shows that

U∗ is an upper-bound on the optimal expected average reward. The proof, which is presented in

Appendix B.1, proceeds from a direct reduction to the cost-minimization setting of Section 3.

Claim 3. U∗ ≥ rπ
∗
.

While (RB) gives an upper bound on the optimal expected average reward, this LP operates a

strong relaxation in regard to the arrivals of passive vertices. Indeed, as revealed by the proof of

Lemma 1, the coefficient λj on the right-hand side of constraint (13) captures the fact that passive

type-j vertices arrive at rate λj. In reality, however, only a fraction of the arriving type-j vertices
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are passive. Specifically, in the LP relaxation (RB), the arrival rate of passive type-j vertices is
0

i∈T xi,j, which can be much smaller than λj. Motivated by this observation, we will consider an

alternative mathematical program that further restricts the feasible region of (RB) by tightening

constraint (13). Namely, we define a quadratically-constrained linear program (QCLP) as follows:

(QB) max
x

"

(i,j)∈T 2

r (i, j) ·xi,j

s.t.
"

j∈T

xj,i +
"

j∈T

xi,j +xi,a +xi = λi , ∀i∈ T (14)

µi ·xi,j ≤
6
xj +

"

k∈T

xk,j

7
·xi,a , ∀(i, j)∈ T 2 (15)

xi,j ≥ 0 ∀(i, j)∈ T 2

xi ≥ 0 ∀i∈ T

To gain intuition on this formulation, the quadratic constraint (15) can be viewed as an adjustment

of constraint (13) to the “actual” arrival rate of passive type-j vertices. Here, the fixed quantity λj is

replaced by the flow xj+
0

k∈T xk,j, which is endogenously determined by the QCLP formulation. In

this context, the new variable xj should be understood as a “buffer” of unmatched passive vertices,

noting that a larger value of xj enables us to relax constraint (15). While (QB) no longer provides

an upper bound on the optimal expected average reward, the next claim shows a constant-factor

loss in optimality with respect to the LP benchmark. The proof appears in Appendix B.2.

Lemma 9. There is a polynomial-time algorithm that computes a feasible flow x̃ for problem (QB)

such that
0

(i,j)∈T 2 r(i, j) · x̃i,j ≥ κ · rπ∗
, where κ= 1

4
on arbitrary graphs, κ= 1

2
on bipartite graphs,

and κ= 1 in the bipartite-asymmetric setting. In particular, we have rπ
∗ ≤ κ ·Q∗ in these settings.

It is worth noting that the proof of Lemma 9 gives a simple procedure to compute a feasible flow

x̃ for the QCLP problem (QB) using only an optimal solution of the LP relaxation (RB). In

particular, our algorithm comes at no extra computational cost compared with solving this basic

LP. Nonetheless, solving (QB) numerically may result in tighter instance-dependent guarantees,

which exploit the structure of each instance. Lemma 9 illustrates this approach in the bipartite

and bipartite-asymmetric special cases, for which we obtain better approximation ratios.

Step 2: Randomized compatibility policy (Appendix B.3). Next, we construct an algorithm that

computes a randomized matching policy, dubbed randomized compatibility, which competes against

our QCLP benchmark up to a constant factor. To keep the paper concise, we settle here for a high-

level description of this algorithm, while all technical details are deferred to Appendix B.3. The

main idea is to approximately simulate the matching flow obtained by solving problem (QB). To

this end, a near-optimal flow x̃ is utilized to specify a distribution over labels, which are randomly
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assigned to the arriving vertices. Each label imposes two constraints: (i) The vertex in question is

either marked as passive or as active; (ii) Each active vertex is further assigned with a compatibility-

set, which is defined as the subset of types with which it can be matched. Next, our policy matches

the arriving vertices greedily subject to the restrictions imposed by their labels. That is, the

randomized compatibility policy proceeds in two steps, which are illustrated by Figure 1:

1. Randomized labels: A label is randomly assigned to each arriving vertex. These labels are

independently sampled from carefully constructed distributions based on the flow solution x̃.

2. Greedy matching: At each epoch, the policy picks a maximum-weight matching over compatible

pairs of vertices in the realization graph. That is, we prune all edges that connect vertices

with incompatible labels; a compatible pair corresponds to a vertex marked as active and a

vertex marked as passive, whose type resides in the active vertex’s compatibility-set.

Figure 1 Illustration of the randomized compatibility matching policy.

Active vertex

Passive vertex

Compatible label

Matched edge

1

2

3

i

Arriving agent

STEP 1:  Sampling of labels

1

2

3

i

STEP 2: Greedy matching

Step 3: Analysis via virtual Markov chains (Appendix B.4). The performance guarantees stated

by Theorem 2 are established by relating the expected average reward of the randomized compat-

ibility policy to the QCLP-based upper bound of Lemma 9. While the Markov chain induced by

this policy is generally difficult to analyze, we construct a modified stochastic process, termed the

virtual Markov chain, for which the stationary distribution can be easily computed. Intuitively, this
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approximation is constructed by assuming that the matching rates of vertices with different labels

are mutually independent, which yields a decomposition of the system evolution into independent

birth-death processes. Then, we relate the virtual Markov chain to our original stochastic process

using a criterion for stochastic dominance.

5.2. Discussion: Capturing the pooling effects

From a conceptual standpoint, our approach has similarities with LP-based and simulation-based

algorithms developed for related online matching problems (Manshadi et al. 2012, Jaillet and Lu

2013, Dickerson et al. 2018). These algorithms often solve an offline relaxation of the matching

problem and use summary statistics of the offline solution to make randomized online decisions

(e.g., an arriving vertex is randomly matched according to a distribution proportional to the flow

solution). However, the dynamic properties of our model lead to fundamental differences with

previous literature. Due to the risk that agents abandon the market, it is important to minimize

the waiting times incurred by the matching decisions. For this purpose, there are benefits in pooling

agents’ arrivals. This notion is illustrated by the following heuristic reasoning. Suppose that we

match a currently available type-1 vertex with the first type-2 or-3 vertex who arrives in the future;

in other words, the arrivals of type-2 and type-3 vertices are pooled. The probability that the active

vertex abandons the system is of µ1
µ1+λ2+λ3

. In the absence of pooling, if candidate matches are

restricted to type-2 vertices only, the probability of abandonment increases to µ1
µ1+λ2

!

As shown by this simple example, pooling effects are critical to minimize waiting times, and

thereby, reduce the risk of abandonment. Standard simulation-based algorithms cannot take advan-

tage of pooling effects; such algorithms sample (and commit to) a certain matching decision for each

arriving vertex. By contrast, our algorithm does not commit to a specific match upon the arrivals

of vertices. The compatibility-sets constructed by our algorithm introduce a degree of flexibility,

allowing us to leverage the pooling effects amongst arriving passive vertices.

6. Negative results

In this section, we establish two negative results which foreground the technical challenges sur-

mounted in Sections 4 and 5 to devise provably-good approximation algorithms for the dynamic

stochastic matching problem. First, we demonstrate that our cost-minimization MDP has no pos-

itive constant-factor competitive ratio. Specifically, we show that the optimal value of our LP

benchmark (CB) defined in Section 4.2 can be arbitrarily larger than the optimal cost of an

offline benchmark that fully knows the sequence of agents’ arrivals and abandonments. This result

highlights the value of having access to precise information about the market dynamics. Sec-

ond, we analyze the worst-case performance of a family of batching algorithms, which are widely



25

implemented by matching platforms in practice, including ridesharing firms and kidney exchange

programs (see Section 1). We show that, even if such batching algorithms are optimally tuned,

their performance guarantees can be arbitrarily bad. Although our performance analysis focuses

on worst-case instances, the “bad” counter-examples that we construct are relatively simple; for

example, they satisfy the structural properties considered in Section 4. This suggests that our

negative results might hold in certain practically relevant settings.

Offline benchmark. We compare our linear programming benchmark (CB) to offline policies, that

have full knowledge of the sojourn process on each realization. Specifically, letting F∞ =
!

t≥0Ft, we

denote by {M off
t }t≥0 an F∞-measurable family of matchings that minimizes the expected average

cost coff = limsupt→+∞
E[Coff

t ]

t
. The cumulative cost {Coff

t }t≥0 is defined similarly to equation (38);

namely, for every t≥ 0, we have

Coff
t =

"

ζ∈E(t)

ca ·
))Doff

ζ

))+
"

ζ∈E(t)

"

e∈Moff
ζ

c(e) ,

where Doff
ζ is the subset of vertices that abandon the system at epoch ζ. With these definitions at

hand, we show that the expected average cost coff of the offline benchmark is generally incomparable

to the optimal value of our LP benchmark.

Theorem 3. For every ε ∈ (0,1), there exists an instance of the dynamic stochastic matching

problem, satisfying Assumption 1, such that coff ≤ ε ·L∗
ε , where L∗

ε is the optimal value of (CB) for

the corresponding instance.

In combination with Lemma 1, the above result implies that there exists no admissible match-

ing policy that achieves a constant-factor approximation guarantee with respect to the offline

benchmark. The proof, presented in Appendix C, is based on constructing instances that have the

following structure: (i) there are two distinct types of agents, referred to as patient and impatient

in view of their respective abandonment rates; (ii) patient agents arrive much more frequently

than impatient agents; (iii) matches amongst agents of the same type incur very small cost; (iv)

unmatched abandonments are very costly. Intuitively, having access to precise information about

future arrival and abandonment epochs can dramatically improve the performance of the matching

platform by ensuring that a substantial fraction of the impatient agents are matched amongst each

other at a very small cost, without increasing their exposure to abandonments.

Performance of batching algorithms. We now turn our attention to analyzing a family of batching

algorithms for the cost-minimization formulation of our dynamic stochastic matching problem. A

batching policy computes a min-cost maximum-cardinality matching at regular intervals of time.

Namely, given a batching window parameter η> 0, the η-batching policy b(η) is defined such that
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M
b(η)
t = ∅ if t /∈ {k · η : k ∈N}, otherwise, M b(η)

t is a min-cost maximum cardinality matching in the

realization graph at time t, i.e., the subgraph of Gt induced by V
b(η)
t . For any given instance of

the dynamic stochastic matching problem, we define the best batching policy as a policy b(η) that

minimizes the expected average cost over all η ≥ 0. In other words, we ensure that the batching

parameter η is optimally tuned on each instance. The best batching policy is well-defined since we

can restrict η to lie in a compact set without loss of generality.

Theorem 4. The worst-case performance of the best batching policy is arbitrarily bad for the

dynamic stochastic matching problem, even under Assumptions 1 and 2.

Due to lengthy technical details, the proof of this theorem is deferred in Appendix D. That said, we

emphasize that the bad instances that we construct have a simple structure; in particular, the cost

function satisfies the triangle inequality (Assumption 1) and the agents have uniform abandonment

rates (Assumption 2). We show that batching policies fail to achieve a satisfactory performance on

instances for which the optimal “timing” of the matching decisions is highly heterogeneous across

types. Since each batching policy utilizes a fixed time interval, it is impossible to optimally balance

market thickness and abandonment risks for all agent types simultaneously. This reasoning will be

empirically corroborated in Section 7 through our numerical case study.

7. Data-Driven Case Study

In this section, we conduct extensive simulations to evaluate the vertex-additive algorithm devel-

oped in Section 4.3. We take the perspective of a car-pooling platform that matches pairs of riders

at the beginning of their trips to generate distance cost savings. Using the NY taxi trip data sets, we

generate realistic instances that mirror various market conditions faced by car-pooling platforms.

7.1. Data overview

We utilize NY taxi trip data sets that describe the exact date and time of pick-up and drop-off

as well as the GPS coordinates and trip lengths for over 28 million trips. Our case study focuses

on trips recorded throughout the 8-week period of January and February 2013.2 Most taxi trips

originate from or terminate at locations in Manhattan. Besides Manhattan, the most common pick-

up and drop-off locations are LaGuardia and John F. Kennedy airports. To ensure an exhaustive

coverage of the taxi network, all regions are incorporated into our case study. We conduct minimal

pre-processing of the data by eliminating inaccurate and noisy observations, as further explained

in Appendix E.1.

We observe that the demand patterns for taxis are seasonal with significant day-of-week and

time-of-day effects (see Figure 7 in Appendix E.4). Consequently, we focus our subsequent analysis
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Table 1 Summary statistics of the data sets generated for each time window.

Day of week Time of day Number of types |T | Sample size
Training set Test set

Monday
7:30 AM - 8:00 AM 272 50988 9022
11:00 AM - 11:30 AM 272 48484 7064

Saturday
7:30 AM - 8:00 AM 218 15036 2535
5:30 PM - 6:00 PM 307 70035 10275

on four time windows that represent various market conditions: Monday 7:30-8:00AM, correspond-

ing to commute time; Saturday 5:30-6:00PM, corresponding to weekend peak time, as well as

Monday 11:00-11:30AM and Saturday 7:30-8:00AM, describing non-peak times during week days

and weekends, respectively. Additionally, we split the data into training sets (comprised of the first

7 weeks of data) and test sets (comprised of the last week of data). The parameters of the problem

instances are estimated on the training sets, and the performance of the matching algorithms is

measured on the test sets. The statistics of the resulting data sets are summarized in Table 1.

7.2. Simulation set-up

Rider types. Our modeling approach hinges on defining a collection of types i∈ T and specifying

their arrival rates λi. Intuitively, each type should describe “similar” riders in terms of pick-up

and drop-off locations. To formalize this notion, we develop a data-driven clustering method that

identifies riders with close-enough pick-up and drop-off locations. The specifics of this method

appear in Appendix E.2. At high-level, we build on the approach developed by Buchholz (2021) to

decompose the NY area into “homogeneous” regions using census-tract boundaries. The resulting

33 regions are visualized in Figure 5 in Appendix E.2. However, certain combinations of pick-up

and drop-off regions exhibit a very small number of rider requests at certain times of day and days

of week. For example, for 27% of the pairs of pick-up and drop-off regions, there are fewer than

8 trips recorded throughout our 8-week time period. Hence, we cluster the pairs of pick-up and

drop-off regions to deal with data sparsity. As shown by Figure 6 in Appendix E.2, all resulting

clusters contain more than 8 trips. Consequently, we view each cluster as a distinct rider type

i∈ T , and the corresponding arrival rate λi is estimated on the training set.

Simulation inputs. We define a simulation trial as one iteration of the matching process based

on the following inputs:

• A collection of riders {1, . . . , r}: Riders are formed by all historical trips recorded during the

time window forming the test set.

• Arrival times {t1, . . . , tr}: The arrival times are determined using the timestamp corresponding

to the starting time of the trip.

• Sojourn times {δ1, . . . , δr} : The sojourn times are i.i.d. samples drawn from an exponential

distribution of rate µ, where µ is varied in the set {0.5,1,2} (arrivals per minute).
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• Trip lengths {ℓ1, . . . ℓr} : The trip length ℓn associated with rider n ∈ [r] is the Euclidean

distance between her pick-up and drop-off locations.

• Matching costs: The matching cost c(n1, n2) for a pair of riders {n1, n2} is defined as the

minimum total Euclidean distance3 over all possible vehicle routes formed by sequencing the

riders’ pick-ups and drop-offs (we provide a pictorial illustration of all possible routes in

Figure 8, Appendix E.4). In particular, Assumption 1 is satisfied by the specified cost function

since c(n1, n2)≤ ℓn1
+ ℓn2

≤ c(n1, n3)+ c(n3, n2) for every n1, n2, n3 ∈ [r].

• Abandonment costs: The abandonment cost of rider n∈ [r] is defined as ca(n) = cp+ ℓn, where

cp > 0 is a constant penalty. This notion roughly monetizes the opportunity cost for the

platform in case rider n abandons the system (see Garg and Nazerzadeh (2021) for further

background on affine pricing mechanisms in ridesharing).

Performance metrics. Based on the above-described inputs, we simulate the sequence of events

formed by the arrivals of riders, the matching decisions made by the platform, and the abandon-

ments of unmatched riders. Consequently, we compute the total cost C generated by the matching

algorithms on the simulation trial, namely C =
0

ζ∈E
0

e∈Mζ
c(e) +

0
ζ∈E

0
n∈Dζ

ca(n), where E is

formed by all arrival, abandonment and decision epochs, Mζ is the matching picked at epoch ζ,

and Dζ is the collection of unmatched rider who abandon at epoch ζ. For every match {n1, n2}, we

define the cost saving s(n1, n2) = ℓn1
+ ℓn2

− c(n1, n2). This notion quantifies how much driver time

is saved by “pooling” riders n1 and n2, and thus, it is a key indicator of the car-pooling platform’s

performance. Indeed, the cost C can be expressed as an affine function of the match rate and the

saving rate defined as follows:

C = α1 +α2 −α1 ·
%
1−

0
ζ∈E |Dζ |
r

&

C DE F
Match rate

−α2 ·
60

ζ∈E
0

e∈Mζ
s(e)

0r

n=1 ℓn

7

C DE F
Saving rate

, (16)

where α1 = cp ·r and α2 =
0r

n=1 ℓn. By noting that α1,α2 do not depend on the platform’s decisions,

without loss of generality, the algorithms’ performance is uniquely determined by the corresponding

match rate and saving rate. Intuitively, by making a rider wait longer, the platform can find a more

suitable match unless the rider in question abandons the system. As such, we expect that larger

savings generally come at the expense of lower match rates (i.e., higher risks of abandonment).

7.3. Tested algorithms

We compare the performance of three matching algorithms: batching, vertex-additive and

threshold-based. We utilize a tuning parameter to control the trade-off between saving rates and

match rates. By varying this tuning parameter, we generate the Pareto frontier attained by each
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matching algorithm with respect to these criteria. Note that we only implement the vertex-additive

algorithm of Section 4.3 since the formulation of a cost-minimization problem and the use of a

deterministic matching algorithm are more natural in the context of car-pooling platforms.

Batching algorithm. We refer the reader to Appendix D for a mathematical description of the

batching algorithm. Informally speaking, the batching algorithm computes a min-cost maximum-

cardinality matching over all available riders, at regular intervals of time. The tuning parameter of

the algorithm is the batching window ηb ∈ {0,0.5,1,2,3, . . . ,29,45,60}, corresponding to the length

of each time interval (in seconds). Longer batching windows might result in higher-saving matches,

but riders are more likely to abandon the platform.

Vertex-additive algorithm. In Section 4.3, the vertex-additive policy is defined as the greedy pol-

icy with respect to the additive approximation of the cost-to-go
0

i∈T νic̄i, where ν ∈ V is the state

of the MDP, and c̄i is the optimal expected cost for the type-i active-vertex problem. We imple-

ment an analogous greedy algorithm using a scaled variant of the cost-to-go ηv · (
0

i∈T νic̄i), where

ηv ∈ {0.7,0.72, . . . ,1.28,1.3} is the tuning parameter. Intuitively, we expect that riders’ waiting

times will decrease as a function of ηv. As explained in Appendix E.3, for every i∈ T , we compute

c̄i by employing a binary search algorithm on a normalized variant of the cost function.

Threshold-based algorithm. Lastly, we implement a threshold-based algorithm, motivated by the

optimality of the c̄i-threshold policy for the type-i active-vertex problem (see Theorem 2 in Section

4.1). Specifically, upon the arrival of a rider n∈ [r], we define the subset of eligible riders VE = {m∈
V : c(n,m)≤ ηt × c̄θm} out of all available riders V , where ηt ∈ {0.7,0.72, . . . ,1.98,2} is the tuning

parameter of the threshold-based algorithm. Next, we compute a min-cost maximum-cardinality

matching over VE ∪ {n} to resolve the potential contention between multiple eligible riders.

7.4. Results

The performance metrics are reported in Figure 2. Specifically, for each algorithm and each tun-

ing parameter value, we compute the average saving rate and match rate over 10 randomly-

generated simulation trials. We observe that the vertex-additive algorithm achieves substantial

Pareto improvements relative to the batching and threshold-based algorithms. As illustrated by

Figure 3, given a match rate target of 90%, the vertex-additive algorithm achieves a 35% sav-

ing rate, which represents an improvement of nearly 10% (in absolute terms) over the incumbent

matching mechanism. While batching achieves comparable performance when the match rate is

high (corresponding to batching windows in the order of a few seconds), the performance devolves

for match rates below 95%. In this regime, increasing the batching window has almost no effect

on the level of savings, which appears to be capped at approximately 23%. In contrast, there is

a clear-cut trade-off between the match rate and the saving rate under the vertex-additive and
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threshold-based algorithms – almost all configurations generated by varying the tuning parameters

lie on the Pareto frontier, unlike the batching algorithm. We also compare the performance of the

proposed algorithms with our LP lower bound. We find that the vertex-additive algorithm has

a gap of 16%-21% with respect to the LP benchmark, which is much tighter than the factor-3

approximation ratio yielded by our analysis (see Table 2 in Appendix E.4).

At first glance, these results are surprising since the vertex-additive algorithm can be imple-

mented in a “decentralized” fashion, using only local information about the first-degree neighbors

of each vertex, while batching is a “centralized” algorithm that fully exploits the structure of the

realization graph. That said, our newly developed algorithms have the ability to adjust the riders’

exposure to waiting times based on their type, while the batching algorithm makes riders wait uni-

formly, irrespective of their type. This notion of market segmentation is corroborated by Figures 9

and 10 in Appendix E.4. Riders requesting short trips wait relatively less under the vertex-additive

algorithm compared to batching, while riders requesting long trips wait relatively more.

Figure 2 Match rates and saving rates achieved by the tested algorithms in various market conditions.
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Figure 3 On the left, match rates and saving rates achieved by the tested algorithms (Mondays 7:30-7:40 AM,

µ= 1). On the right, empirical density function of the saving rates over the population of riders.
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Note. Each algorithm is tuned to achieve a match rate of 90%(±1%).

We conduct various robustness checks to verify whether the improvements in performance are

detrimental to certain categories of riders. First, we examine the distribution of savings over the

population of all riders. As shown by Figure 3, the variance in saving rates is significantly lowered

by the vertex-additive algorithm, meaning that our proposed matching mechanism would provide

a more reliable experience to riders. Second, we break-down the performance with respect to short

vs. long trips. Since long trips often originate from sparse suburban areas, this granular analysis is

important to ensure that the newly developed matching algorithms do not generate unfair spatial

disparities. As shown by Figure 11 in Appendix E.4, the vertex-additive consistently generates

higher levels of savings than the other matching algorithms irrespective of trip length.

8. Concluding Remarks

In summary, this research work advances the development of approximation algorithms for dynamic

stochastic matching problems. Our results leave several interesting directions for future research.

Open question 1: Performance of batching algorithms. Theorem 4 shows certain limitations of

batching policies. That said, the family of bad instances that we construct has two noteworthy

characteristics: (i) The underlying graph is non-bipartite and optimal matches involve agents of

identical types. While this structure is very relevant to car-pooling systems, it might not be realistic

for other types of matching decisions made by ridesharing platforms, such as matching riders with

drivers. (ii) Our negative result crucially relies on a min-cost formulation of the dynamic stochastic

matching problem. To our knowledge, it is unknown whether the family of batching policies attains

a constant-factor approximation for the reward-maximization problem in its utmost generality.

Broadly speaking, understanding the performance of batching policies on specific graph-theoretic

structures and objective functions is an interesting direction for future research.
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Open question 2: Improved approximation ratios. Important theoretical research questions

include whether the performance analyses of Theorems 1 and 2 are tight and whether it is possible

to devise algorithms attaining better approximation ratios. One starting point would be to further

investigate the bipartite-asymmetric special case of Theorem 2, a setting for which we obtain a

(1− 1
e
)-approximation. Moreover, we conjecture that our algorithm for the reward-maximization

setting might be asymptotically optimal in the large market regime of Özkan and Ward (2020). As

discussed in Remark 2 of Section 3, the constraints relative to abandonments are asymptotically

relaxed when type-i vertices arrive at a scaled rate θ · λi as θ tends to infinity. In this context, it

would be interesting to check whether or not our randomized compatibility policy converges to the

myopic randomized policy of Özkan and Ward (2020).

Applications to ridesharing. From a modeling perspective, our work captures two characteristics

of dynamic matching markets that are relevant to the ridesharing sector. First, we assume that the

platform has a stochastic prior on the market dynamics, captured by the arrival and abandonment

rates. In practice, ridesharing platforms collect large amounts of historical data from which they can

estimate these parameters. Second, the agents’ abandonments are unannounced: namely, our work

bypasses the criticality assumption used in previous literature. This model seems more realistic for

ridesharing platforms, whereby an abandonment corresponds to a rider cancellation. Nonetheless,

our approach still presents a number of important limitations. Key to our results is the assumption

that the sojourn times are exponentially distributed. While this assumption is realistic in certain

regimes, one might expect that riders are relatively more likely to cancel at the beginning and end

of the time window quoted by the platform. An equally interesting direction is to study hypergraph

matching models, in which more than two agents can be matched together. These issues have

received limited attention in the literature so far.
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Appendix A: Additional Proofs

A.1. Existence of an optimal policy

Guo and Hernández-Lerma (2009, Thm. 5.9) identify optimality conditions for average-cost

continuous-time MDPs with infinitesimal cost functions. We argue that our dynamic stochastic

matching problem can be reduced to an average-cost continuous-time MDP with a continuous

cost function. Specifically, for every state ν ∈ V, and for every action M ∈NE(T )∪S(T ) describing a

matching over the vertices available at state ν, we define the cost c (ν, ·) as follows:

c (ν,M) =

6
"

i∈T

νi ·µi +
"

i∈T

λi

7
·

9

:
"

{i,j}∈E(T )∪S(T )

Mi,j · c (i, j)

;

< .

Picking the action M at state ν means that the vertices matched by M incur cost at rate c(ν,M)

until the vertices leave the system at the next decision epoch. The asymptotic equivalence between

our original lump sum cost MDP and the continuous cost MDP follows from Wald’s equation. The

regularity conditions in Guo and Hernández-Lerma (2009, Thm. 5.9) are met since the cost rate is

uniformly bounded by a function that only depends on the current state, namely c(ν,M) =O(|ν|2).

□

A.2. Proof of Claim 1

Fix (i, j) ∈ T 2 and q ∈ N∗. By definition, the matches counted by Âq(i, j) are a superset of those

counted by A∗
ζq
(i, j). Hence, we have A∗

ζq
(i, j)≤ Âq(i, j) for each realization of the stochastic process.

To establish a reciprocal inequality, observe that Âq(i, j)−A∗
ζq
(i, j) is at most the number of type-i

vertices available at time ζq, meaning that Âq(i, j)− A∗
ζq
(i, j) ≤ ϑi(V

π∗
ζq

). It immediately follows

that

E
#
A∗

ζq
(i, j)

$
≤E

#
Âq(i, j)

$
≤E

#
A∗

ζq
(i, j)

$
+E

#
ϑi(V

π∗
ζq

)
$
. (17)

Clearly, {ϑ(V π∗
ζq

)}q≥0 admits a limiting distribution as q→+∞ since the matching policy π∗ induces

an ergodic embedded Markov chain. Hence, the sequence ( 1
ζq

· E[ϑi(V
π∗
ζq

)])q∈N∗ converges almost

surely to 0. By inequality (17), we conclude that the sequence ( 1
ζq
·E[Âq(i, j)])q∈N∗ converges almost

surely to x∗
i,j. □

A.3. Proof of Claim 2

By the optimality of A∗
i , it is clear that c(i, j)≥ fi(A∗

i ) for every j ∈ T \A∗
i ; otherwise, we would

obtain fi(A∗
i ∪ {j})< fi(A∗

i ) by noting that fi(A∗
i ∪ {j}) is a strict convex combination of fi(A∗

i )

and c(i, j), thereby contradicting the optimality of A∗
i . Similarly, for every j ∈A∗

i , we have c(i, j)≤

fi(A∗
i ), otherwise we would obtain fi(A∗

i \ {j})< fi(A∗
i ), which contradicts the optimality of A∗

i .

□
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A.4. Proof of Lemma 3

Case 2: fi(A∗
i )< c(i,ν). Using the same line of reasoning as for Case 1, we begin by bounding

the terms F̂ (ν+ ej) and F̂ (ν− ej) for every j ∈ T . For every j ∈ T \A∗
i , we have

F̂ (ν+ ej) =min{fi(A∗
i ), c(i,ν+ ej)}=min{fi(A∗

i ), c (i,ν) , c (i, j)}= fi (A∗
i ) ,

where the last inequality proceeds from Claim 2 and our case hypothesis. Similarly, for every j ∈A∗
i ,

we obtain

F̂ (ν+ ej) =min{fi(A∗
i ), c (i,ν) , c (i, j)}= c (i, j) .

Lastly, for every j ∈ T ,

F̂ (ν− ej) =min{fi(A∗
i ), c (i,ν− ej)}= fi (A∗

i ) ,

where the last equality holds since fi(A∗
i )< c(i,ν)≤ c(i,ν − ej) by our case hypothesis. By com-

bining these equations, we obtain

F̂ (ν) = min{fi(A∗
i ), c (i,ν)}

= fi (A∗
i )

=
µ+

0
k∈A∗

i
λk

µ · |ν|+µ+
0

k∈T λk

9

: µ

µ+
0

k∈A∗
i
λk

· ca(i)+
"

j∈A∗
i

λj

µ+
0

k∈A∗
i
λk

· c (i, j)

;

<

+
µ · |ν|+

0
k∈T \A∗ λk

µ · |ν|+µ+
0

k∈T λk

· fi (A∗
i )

=
1

µ · |ν|+µ+
0

k∈T λk

·
6
µ · ca(i)+

"

j∈T

λj · F̂ (ν+ ej)+
"

j∈T

µ · νj · F̂ (ν− ej)

7
.

It ensues that the Bellman equation (6) is satisfied with respect to the state ν. □

A.5. Proof of Lemma 5

For every i, j ∈ T , we have:

c̄i =
µ

µ+
0

k∈A∗
i
λk

· ca(i)+
"

h∈A∗
i

λh

µ+
0

k∈A∗
i
λk

· c (i, h)

≤ µ

µ+
0

k∈A∗
j
λk

· ca(i)+
"

h∈A∗
j

λh

µ+
0

k∈A∗
j
λk

· c (i, h)

≤ µ

µ+
0

k∈A∗
j
λk

· ca(j)+
µ

µ+
0

k∈A∗
j
λk

· c (i, j)+
"

h∈A∗
j

λh

µ+
0

k∈A∗
j
λk

· c (j, h)

+
"

h∈A∗
j

λh

µ+
0

k∈A∗
j
λk

· c (i, j)

= c̄j + c(i, j) ,

where the first equation proceeds from (10). The first inequality holds since A∗
i minimizes the

function fi(·) by (10). The second inequality immediately proceeds from Assumption 1. □
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A.6. Proof of Lemma 8

Fix a vertex n∈N∗ and a type i∈ T . By the formula of conditional expectations, we have:

E [απ̄(n)|θn = i] =
"

ν0∈V

E
G
απ̄(n)|θn = i,ϑ(V π̄

tn
) = ν0

H
·Pr

G
ϑ(V π̄

tn
) = ν0

))θn = i
H
.

Hence, it suffices to show that E[απ̄(n)|θn = i,ϑ(V π̄
tn
) = ν0] ≤ c̄i for all ν0 ∈ V. In what follows,

we fix ν0 ∈ V and define the event E = {θn = i,ϑ(V π̄
tn
) = ν0}. Since the vertex-additive policy can

only match a passive vertex upon its arrival, the event E fully determines whether n is active or

passive. If n is passive conditional on E, the definition of the allocated cost immediately implies

E[απ̄(n)|E] = c̄i. Hence, the remainder of the proof focuses on the case where n is active conditional

on the event E.

Now, let ℓ be the first random vertex arriving after n of type θℓ ∈A∗
i = {j ∈ T : c(i, j)≤ c̄i}, and

let τ be the random time at which n leaves the system, either due to a match or by abandoning the

system. It is worth noting that the vertex-additive policy can potentially match n with a vertex of

type j ∈ T \A∗
i . Nonetheless, the next claim highlights a key property of this policy, showing that

if n is still available when ℓ arrives, our policy necessarily picks the match {n, ℓ} at time tℓ.

Claim 4. Pr
G
M π̄

tℓ
= {n, ℓ}|E,n∈ V π̄

tℓ

H
= 1.

The proof is deferred to Appendix A.7. By noting that Claim 4 implies that Pr[τ ≤min{tℓ, tn +

δn}] = 1, we further decompose the expected allocated cost as follows:

E [απ̄ (n)|E] = Pr [τ <min{tℓ, tn + δn}] ·E [απ̄ (n)|E, τ <min{tℓ, tn + δn}]

+Pr [τ =min{tℓ, tn + δn}] ·E [απ̄ (n)|E, τ =min{tℓ, tn + δn}] . (18)

The remainder of the proof consists in separately upper bounding the expected allocated costs

E[απ̄(n)|E, τ <min{tℓ, tn + δn}] and E[απ̄(n)|E, τ =min{tℓ, tn + δn}]. The former quantity corre-

sponds to the case of an early match, meaning that n is matched with agent of type j ∈ T \A∗
i . The

latter quantity corresponds to the case of a late match attempt, meaning that either n is matched

with ℓ or it abandons before tℓ.

Case 1: Upper bound conditional to an early match. Observe that every match {n,m} picked by

the vertex-additive policy necessarily satisfies c(n,m)≤ c̄θn + c̄θm , otherwise eliminating the match

{n,m} is cost-wise beneficial with respect to the linear approximation of the cost-to-go. Hence,

by definition of the allocated cost, it follows that απ̄(n)≤ c̄i almost surely conditional on n being

matched. It immediately follows that

E [απ̄ (n)|E, τ <min{tℓ, tn + δn}]≤ c̄i .
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Case 2: Upper bound conditional to a late match attempt. Now, to upper bound the second term

on the right-hand side of equation (18), we observe that

E [απ̄ (n)|E, τ =min{tℓ, tn + δn}]

=
"

j∈A∗
i

Pr [θℓ = j, τ = tℓ|E, τ =min{tℓ, tn + δn}] ·E [απ̄ (n)|E,θℓ = j, τ = tℓ]

+Pr [τ = tn + δn|E, τ =min{tℓ, tn + δn}] ·E [απ̄ (n)|E, τ = tn + δn]

=
"

j∈A∗
i

Pr [θℓ = j, τ = tℓ|E, τ =min{tℓ, tn + δn}] · (c (i, j)− c̄j)

+Pr [τ = tn + δn|E, τ =min{tℓ, tn + δn}] · ca(i)

=
"

j∈A∗
i

λj

µ+
0

k∈A∗
i
λk

· (c (i, j)− c̄j)+
µ

µ+
0

k∈A∗
i
λk

· ca(i)

≤
"

j∈A∗
i

λj

µ+
0

k∈A∗
i
λk

· c (i, j)+ µ

µ+
0

k∈A∗
i
λk

· ca(i)

= c̄i ,

To justify the second equality, observe that E[απ̄ (n) |E,θℓ = j, τ = tℓ] = c(i, j) − c̄i by Claim 4

and the definition of the allocated cost, while E[απ̄ (n) |E, τ = tn + δn] = ca(i). The third equality

proceeds from the distribution of the minimum of independent exponential random variables. □

A.7. Proof of Claim 4

Let q1 ∕= q2 ∈ V π̄
tℓ

be two distinct vertices such that q1 < q2 < ℓ. Suppose that c(q1, q2)≤ c̄q1 + c̄q2 .

Consequently, we define the matching M+ =M π̄
tq2

∪ {{q1, q2}}, and observe that

"

e∈M+

c(e)−
"

n∈φ(M+)

c̄θn −

9

I:
"

e∈M π̄
tq2

c(e)−
"

n∈φ(M π̄
tq2

)

c̄θn

;

J<= c (q1, q2)− c̄q1 − c̄q2 ≤ 0 ,

where the first equality holds by noting that q1, q2 /∈ φ(M π̄
tq2

) since q1, q2 ∈ V π̄
tℓ
and tℓ > tq2 . The latter

inequality contradicts that M π̄
tq2

is of maximal cardinality, and it follows that c(q1, q2)− c̄θq1 − c̄θq2 >

0. In particular, this implies that the matching M π̄
tℓ
is formed by a single edge that covers vertex ℓ.

Now, observe that, for every q ∈ V π̄
tℓ
\ {n, ℓ}, we have

c (q, ℓ)− c̄θq − c̄θℓ ≥ c (q,n)− c (n, ℓ)− c̄θq − c̄θℓ > c̄i − c (n, ℓ)− c̄ℓ ≥−c̄ℓ ,

where the second inequality holds since c(q,n)− c̄θq > c̄i as shown above, while the last inequality

holds by the definition of ℓ, whereby θℓ ∈A∗
i . On the other hand, we clearly have that c(n, ℓ)− c̄i−

c̄ℓ ≤−c̄ℓ. It immediately follows that M π̄
tm

= {n, ℓ} when n∈ V π̄
tℓ
. □
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Appendix B: Proof of Theorem 2

B.1. Proof of Claim 3

The inequality is established by constructing a reduction of our reward-maximization instance

Ir into an equivalent instance Ic of the cost-minimization problem, and by leveraging Lemma 4.

Define ca =maxe∈E r(e), and let c(e) = 2 ·ca−r(e) for every edge e∈ T 2. Consequently, the instance

Ic is constructed using the same sojourn process as Ir, while specifying the edge costs c(·) and the

uniform abandonment penalty ca(i) = ca for all i∈ T . Further, we let L∗ be the optimal value of the

corresponding linear programming benchmark (CB). It easy to verify that any optimal solution

vector for (RB) is also an optimal solution vector for (CB), and consequently,

U∗ +L∗ = ca ·
6
"

i∈T

λi

7
. (19)

On the other hand, the cumulative cost Cπ∗
t at time t associated with the optimal matching policy

π∗ for instance Ic is given by:

Cπ∗
t =

"

ζ∈E(t)

ca ·
)))Dπ∗

ζ

)))+
"

ζ∈E(t)

"

e∈Mπ∗
ζ

c(e)

= ca ·
'
N(t)−

)))V π∗
t

)))
(
−

"

ζ∈E(t)

"

e∈Mπ∗
ζ

r(e)

= ca ·
'
N(t)−

)))V π∗
t

)))
(
−Rπ∗

t .

It immediately follows that

rπ
∗
+ cπ

∗
= lim

t→+∞

1

t
·
'
E
#
Cπ∗

t

$
+E

#
Rπ∗

t

$(
= ca · lim

t→+∞

%
N(t)

t
− |V π∗

t |
t

&
= ca ·

6
"

i∈T

λi

7
. (20)

Hence, we obtain that

U∗ = ca ·
6
"

i∈T

λi

7
−L∗ ≥ ca ·

6
"

i∈T

λi

7
− cπ

∗
= rπ

∗
,

where the first equality holds by (19), the inequality proceeds from Lemma 4, and the last equality

proceeds from (20). □

B.2. Proof of Lemma 9

Arbitrary graphs. Let (x∗
i,j)(i,j)∈T 2 and (x∗

i,a)i∈T designate an optimal flow for (RB). We begin

by establishing the first claim. To this end, we define x̃i,j =
1
4
·x∗

i,j for every (i, j)∈ T 2. In addition,

for every i∈ T , we define x̃i and x̃i,a as follows:

x̃i =
λi

2
−
6
"

j∈T

x̃j,i

7
, (21)
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and

x̃i,a = λi − x̃i −
6
"

j∈T

x̃j,i

7
−
6
"

j∈T

x̃i,j

7
. (22)

Constraint (12) implies that x̃i, x̃i,a ≥ 0. Further, by the definition of xi,a in equation (22), the flow

vector formed by (x̃i,j)(i,j)∈T 2 and (x̃i,a, x̃i)i∈T satisfies the flow balance constraint (14). On the

other hand, for every (i, j)∈ T 2, we have:

x̃i,a =
λi

2
−
6
"

j∈T

x̃i,j

7
≥

x∗
i,a

2
≥ 2µi

λj

· 1
4
·x∗

i,j =
µi

x̃j +
0

k∈T x̃k,j

· x̃i,j ,

where the first equality is obtained by combining (22) and (21). The first inequality follows from

constraint (12). The second inequality holds by constraint (13). The last equality proceeds from

the definition of x̃i,j and equation (21). Hence, we have just shown that the flow vector formed by

(x̃i,j)(i,j)∈T 2 and (x̃i,a, x̃i)i∈T is feasible with respect to problem (QB). Thus, we have

Q∗ ≥
"

(i,j)∈T 2

r (i, j) · x̃i,j =
1

4
·U∗ ≥ 1

4
· rπ∗

,

where the last inequality proceeds from Claim 3.

Bipartite graphs. Now, suppose that the reward function r(·) describes a bipartite graph, and

let T1,T2 be the partite sets. Without loss of generality, we assume that
0

(i,j)∈T1×T2 r(i, j) · x
∗
i,j ≥

1
2
· U∗, otherwise the partite sets can be swapped. Consequently, we define x̃i,j = x∗

i,j for every

(i, j) ∈ T1 × T2, and x̃i,j = 0 for every (i, j) ∈ T 2 \ (T1 × T2). Further, we let x̃i,a = x∗
i,a if i ∈ T1 and

x̃i,a = 0 otherwise. Lastly, for every i∈ T , we define x̃i as follows:

x̃i = λi − x̃i,a −
6
"

j∈T

x̃j,i

7
−
6
"

j∈T

x̃i,j

7
. (23)

Clearly, x̃i ≥ 0 for every i ∈ T by constraint (12). Further, the flow vector formed by (x̃i,j)(i,j)∈T 2

and (x̃i,a, x̃i)i∈T verifies the flow balance constraint (14) by equation (23). On the other hand,

constraint (15) is satisfied for every (i, j)∈ T 2\(T1×T2) since x̃i,j = 0. Now, for every (i, j)∈ T1×T2,

we have:

x̃i,a = x∗
i,a ≥

µi

λj

·x∗
i,j =

µi

x̃j +
0

k∈T x̃k,j

· x̃i,j ,

where the first inequality proceeds from constraint (13) and the last equality holds since x̃i,j = x∗
i,j

by construction, noting that equation (23) implies that λj = x̃j +
0

k∈T x̃k,j when j ∈ T2. We have

just shown that the flow vector formed by (x̃i,j)(i,j)∈T 2 and (x̃i,a, x̃i)i∈T is a feasible solution of

(QB). It follows that Q∗ ≥
0

(i,j)∈T1×T2 r(i, j) · x
∗
i,j ≥ 1

2
· U∗ ≥ 1

2
· rπ∗

, where the first inequality is

due to our initial hypothesis, and the last inequality proceeds from Claim 3.
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Bipartite-asymmetric setting. Here, our analysis is nearly identical to that of the bipartite case,

except that the premise
0

(i,j)∈T1×T2 x
∗
i,j ≥ 1

2
·U∗ is replaced by

0
(i,j)∈T1×T2 x

∗
i,j =U∗. To establish

this equality, let (T1,T2, Ē) be the bipartite graph associated with the reward function r(·). Without

loss of generality, we assume that µi =+∞ for all i∈ T2, otherwise the partite sets can be swapped.

Hence, for all i∈ T2, constraint (13) implies that xi,j = 0 in light of the assumption µi =+∞. (Since

the vertices of type i∈ T2 leave immediately after their arrival, they are necessarily passive if they

are matched, which naturally implies that xi,j = 0 for all j ∈ T .) It follows that

U∗ =
"

(i,j)∈T1×T2

r(i, j) ·x∗
i,j +

"

(i,j)∈T2×T1

r(i, j) ·x∗
i,j =

"

(i,j)∈T1×T2

r(i, j) ·x∗
i,j .

□

B.3. Randomized compatibility matching policy

Here, we describe our matching algorithm in the reward-maximization setting. The resulting match-

ing policy is referred to as the randomized compatibility policy. At a high-level, this approach

approximately simulates the matching flows induced by the fluid relaxation benchmark. Here-

inafter, we denote by x̃ a feasible flow for problem (QB) satisfying the performance bounds stated

by Lemma 9. Our algorithm assigns each arriving vertex with a random label; the distribution over

labels is constructed using a careful decomposition of the flow x̃. Specifically, each label indicates

whether the vertex in question is active or passive. If the vertex is active, the label further specifies

a restricted subset of types, named the compatibility-set, that can be matched with this vertex.

Consequently, our matching policy is greedy with respect to the restrictions imposed by the labels.

The remainder of this section formally describes the notions of vertex label, compatibility-set and

greedy matching.

Flow decomposition and compatibility-sets. In what follows, we fix a type i ∈ T , and we define

Si as the support of the flow vector (x̃i,j)j∈T , i.e., Si = {j ∈ T : x̃i,j > 0}. Our objective is to

linearly decompose the flow outgoing from type i, formed by (x̃i,j)j∈T and x̃i,a, into a collection

of flow components that satisfy two key properties: (i) the supports of the flow components are

nested subsets of Si, (ii) each flow component saturates constraint (15). The compatibility-sets

are defined as the collection of subsets that support each of the flow component appearing in this

decomposition. The construction of the compatibility-sets is illustrated in Figure 4. We mention in

passing that our approach has similarities with randomized assortment policies informed by fluid

relaxations in MNL-based revenue management problems (Topaloglu 2013, Gallego et al. 2014).

However, due to the two-sided nature of the market dynamics, our construction is more intricate.

To this end, we let σi(1),σi(2), . . . ,σi(|Si|) be the sequence of types j ∈ Si by decreasing order of
x̃i,j
λ
p
j
, where λp

j = x̃j +
0

k∈T x̃k,j, breaking ties arbitrarily. Consequently, for every ℓ ∈ [1, |Si|], the
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Figure 4 Illustration of our construction of the compatibility-sets.
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<latexit sha1_base64="N5P1ij0X8jmoL3woEiWg5wzNVKc=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBi8cWTFtoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dkobm1vbO+Xdyt7+weFR9fikrZNMMfRZIhLVDalGwSX6hhuB3VQhjUOBnXByN/c7T6g0T+SDmaYYxHQkecQZNVZq8UG15tbdBcg68QpSgwLNQfWrP0xYFqM0TFCte56bmiCnynAmcFbpZxpTyiZ0hD1LJY1RB/ni0Bm5sMqQRImyJQ1ZqL8nchprPY1D2xlTM9ar3lz8z+tlJroNci7TzKBky0VRJohJyPxrMuQKmRFTSyhT3N5K2JgqyozNpmJD8FZfXiftq7rn1r3Wda3hFnGU4QzO4RI8uIEG3EMTfGCA8Ayv8OY8Oi/Ou/OxbC05xcwp/IHz+QPKE4zb</latexit>

/
X

j

x⇤
i,j

<latexit sha1_base64="BQFW5caC2pGE5WSI6308jEZdc/E=">AAACA3icbVDLSgMxFM3UV62vUXe6CRZBRMpMFXRZcOOygn1AZxwyadqmTTJDkhHLMODGX3HjQhG3/oQ7/8a0zkJbDwQO59zLzTlhzKjSjvNlFRYWl5ZXiqultfWNzS17e6epokRi0sARi2Q7RIowKkhDU81IO5YE8ZCRVji6nPitOyIVjcSNHsfE56gvaI9ipI0U2HteLKNYR9BTCQ/SYQbvb4+DlJ4Ms8AuOxVnCjhP3JyUQY56YH963QgnnAiNGVKq4zqx9lMkNcWMZCUvUSRGeIT6pGOoQJwoP51myOChUbqwF0nzhIZT9fdGirhSYx6aSY70QM16E/E/r5Po3oWfUhEnmgj8c6iXMGgyTwqBXSoJ1mxsCMKSmr9CPEASYW1qK5kS3NnI86RZrbinler1Wbnm5HUUwT44AEfABeegBq5AHTQABg/gCbyAV+vRerberPef0YKV7+yCP7A+vgH3d5ep</latexit>

Active vertices

/
X

i

x⇤
i,j

<latexit sha1_base64="vikhwqOBv86o/cQrXSqQXs7Dif4=">AAACA3icbVBLSwMxGMzWV62vVW96CRZBRMpuFfRY8OKxgn1Auy7ZNNvGJpslyYplWfDiX/HiQRGv/glv/hvTdg/aOhAyzHwfyUwQM6q043xbhYXFpeWV4mppbX1jc8ve3mkqkUhMGlgwIdsBUoTRiDQ01Yy0Y0kQDxhpBcPLsd+6J1JREd3oUUw8jvoRDSlG2ki+vdeNpYi1gF2VcD+lGXy4PTb3yV3m22Wn4kwA54mbkzLIUfftr25P4ISTSGOGlOq4Tqy9FElNMSNZqZsoEiM8RH3SMTRCnCgvnWTI4KFRejAU0pxIw4n6eyNFXKkRD8wkR3qgZr2x+J/XSXR44aU0ihNNIjx9KEwYNJnHhcAelQRrNjIEYUnNXyEeIImwNrWVTAnubOR50qxW3NNK9fqsXHPyOopgHxyAI+CCc1ADV6AOGgCDR/AMXsGb9WS9WO/Wx3S0YOU7u+APrM8f9eiXqA==</latexit>

j
<latexit sha1_base64="X/2Z1JPQjqZ8Y/bkB8v/r/9mrsU=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fjw4rEF+wFtKJvtpN12swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28Hkfu63n1BpHstHM03Qj+hQ8pAzaqzUGPdLZbfiLkDWiZeTMuSo90tfvUHM0gilYYJq3fXcxPgZVYYzgbNiL9WYUDahQ+xaKmmE2s8Wh87IpVUGJIyVLWnIQv09kdFI62kU2M6ImpFe9ebif143NeGdn3GZpAYlWy4KU0FMTOZfkwFXyIyYWkKZ4vZWwkZUUWZsNkUbgrf68jppVSvedaXauCnX3DyOApzDBVyBB7dQgweoQxMYIDzDK7w5Y+fFeXc+lq0bTj5zBn/gfP4AzOWM4A==</latexit>

<latexit sha1_base64="YWqr6HxX3hHSXLK+TwTO5BLBbio=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBZBEEoiBT0WvHisYD+gDWWz3bRLN5uwOxFC6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzgkQKg6777ZQ2Nre2d8q7lb39g8Oj6vFJx8SpZrzNYhnrXkANl0LxNgqUvJdoTqNA8m4wvZv73SeujYjVI2YJ9yM6ViIUjKKVulcDoULMhtWaW3cXIOvEK0gNCrSG1a/BKGZpxBUySY3pe26Cfk41Cib5rDJIDU8om9Ix71uqaMSNny/OnZELq4xIGGtbCslC/T2R08iYLApsZ0RxYla9ufif108xvPVzoZIUuWLLRWEqCcZk/jsZCc0ZyswSyrSwtxI2oZoytAlVbAje6svrpHNd99y699CoNd0ijjKcwTlcggc30IR7aEEbGEzhGV7hzUmcF+fd+Vi2lpxi5hT+wPn8ASPwj18=</latexit>

Passive vertices

j1
<latexit sha1_base64="yMLCDvnvK5SDNyJZJ29+Z+G/ZJ4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48V7Qe0oWy2m3btZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//cS1EbF6wEnC/YgOlQgFo2il+8e+1y9X3Ko7B1klXk4qkKPRL3/1BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+6pScWWVAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uw2s/EypJkSu2WBSmkmBMZn+TgdCcoZxYQpkW9lbCRlRThjadkg3BW355lbRqVe+iWru7rNTdPI4inMApnIMHV1CHW2hAExgM4Rle4c2Rzovz7nwsWgtOPnMMf+B8/gDyMY2E</latexit>

/ x⇤
i,j1

<latexit sha1_base64="Gt33nOHsarQt1aCzT5wV6mMFb28=">AAAB/HicbVDLSgMxFM3UV62v0S7dBIsgImWmCrosuHFZwT6gHYdMmmmjmSQkGbEM9VfcuFDErR/izr8xbWehrQcuHM65l3vviSSj2njet1NYWl5ZXSuulzY2t7Z33N29lhapwqSJBROqEyFNGOWkaahhpCMVQUnESDu6v5z47QeiNBX8xowkCRI04DSmGBkrhW65J5WQRsDH2+Mwoyd3oT8O3YpX9aaAi8TPSQXkaITuV68vcJoQbjBDWnd9T5ogQ8pQzMi41Es1kQjfowHpWspRQnSQTY8fw0Or9GEslC1u4FT9PZGhROtREtnOBJmhnvcm4n9eNzXxRZBRLlNDOJ4tilMG7bOTJGCfKoING1mCsKL2VoiHSCFsbF4lG4I///IiadWq/mm1dn1WqXt5HEWwDw7AEfDBOaiDK9AATYDBCDyDV/DmPDkvzrvzMWstOPlMGfyB8/kDJWaUYQ==</latexit>

/ x⇤
i,j2

<latexit sha1_base64="9ShOq3heJryQ73lFrsVoyvDvhdA=">AAAB/HicbVDLSgMxFM3UV62v0S7dBIsgImWmCrosuHFZwT6gHYdMmmmjmSQkGbEM9VfcuFDErR/izr8xbWehrQcuHM65l3vviSSj2njet1NYWl5ZXSuulzY2t7Z33N29lhapwqSJBROqEyFNGOWkaahhpCMVQUnESDu6v5z47QeiNBX8xowkCRI04DSmGBkrhW65J5WQRsDH2+Mwoyd3YW0cuhWv6k0BF4mfkwrI0Qjdr15f4DQh3GCGtO76njRBhpShmJFxqZdqIhG+RwPStZSjhOggmx4/hodW6cNYKFvcwKn6eyJDidajJLKdCTJDPe9NxP+8bmriiyCjXKaGcDxbFKcM2mcnScA+VQQbNrIEYUXtrRAPkULY2LxKNgR//uVF0qpV/dNq7fqsUvfyOIpgHxyAI+CDc1AHV6ABmgCDEXgGr+DNeXJenHfnY9ZacPKZMvgD5/MHJuuUYg==</latexit>

/ x⇤
i,j3

<latexit sha1_base64="K4VCbdaJ+HVieZ5gVtBh36PWKnk=">AAAB/HicbVDLSsNAFJ3UV62vaJduBosgIiVpBV0W3LisYB/QxjCZTtqxk8kwMxFDqL/ixoUibv0Qd/6N0zYLbT1w4XDOvdx7TyAYVdpxvq3Cyura+kZxs7S1vbO7Z+8ftFWcSExaOGax7AZIEUY5aWmqGekKSVAUMNIJxldTv/NApKIxv9WpIF6EhpyGFCNtJN8u94WMhY7h492pn9Gze78+8e2KU3VmgMvEzUkF5Gj69ld/EOMkIlxjhpTquY7QXoakppiRSamfKCIQHqMh6RnKUUSUl82On8BjowxgGEtTXMOZ+nsiQ5FSaRSYzgjpkVr0puJ/Xi/R4aWXUS4STTieLwoTBs2z0yTggEqCNUsNQVhScyvEIyQR1iavkgnBXXx5mbRrVbderd2cVxpOHkcRHIIjcAJccAEa4Bo0QQtgkIJn8ArerCfrxXq3PuatBSufKYM/sD5/AChwlGM=</latexit>

j2
<latexit sha1_base64="68ly2CDjqGNsaFnfvbKyIWvDLJI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48V7Qe0oWy2m3btZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//cS1EbF6wEnC/YgOlQgFo2il+8d+rV+uuFV3DrJKvJxUIEejX/7qDWKWRlwhk9SYrucm6GdUo2CST0u91PCEsjEd8q6likbc+Nn81Ck5s8qAhLG2pZDM1d8TGY2MmUSB7YwojsyyNxP/87ophtd+JlSSIldssShMJcGYzP4mA6E5QzmxhDIt7K2EjaimDG06JRuCt/zyKmnVqt5FtXZ3Wam7eRxFOIFTOAcPrqAOt9CAJjAYwjO8wpsjnRfn3flYtBacfOYY/sD5/AHztY2F</latexit>

j1
<latexit sha1_base64="yMLCDvnvK5SDNyJZJ29+Z+G/ZJ4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48V7Qe0oWy2m3btZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//cS1EbF6wEnC/YgOlQgFo2il+8e+1y9X3Ko7B1klXk4qkKPRL3/1BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+6pScWWVAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uw2s/EypJkSu2WBSmkmBMZn+TgdCcoZxYQpkW9lbCRlRThjadkg3BW355lbRqVe+iWru7rNTdPI4inMApnIMHV1CHW2hAExgM4Rle4c2Rzovz7nwsWgtOPnMMf+B8/gDyMY2E</latexit>

j3
<latexit sha1_base64="Wc7yedgi4NQmgblPkunF170Wmfk=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4Kkkr6LHgxWNF+wFtKJvtpl272YTdiVBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR23TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfjm5nffuLaiFg94CThfkSHSoSCUbTS/WO/1i+V3Yo7B1klXk7KkKPRL331BjFLI66QSWpM13MT9DOqUTDJp8VeanhC2ZgOeddSRSNu/Gx+6pScW2VAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uw2s/EypJkSu2WBSmkmBMZn+TgdCcoZxYQpkW9lbCRlRThjadog3BW355lbSqFa9Wqd5dlutuHkcBTuEMLsCDK6jDLTSgCQyG8Ayv8OZI58V5dz4WrWtOPnMCf+B8/gD1OY2G</latexit>

j2
<latexit sha1_base64="68ly2CDjqGNsaFnfvbKyIWvDLJI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48V7Qe0oWy2m3btZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//cS1EbF6wEnC/YgOlQgFo2il+8d+rV+uuFV3DrJKvJxUIEejX/7qDWKWRlwhk9SYrucm6GdUo2CST0u91PCEsjEd8q6likbc+Nn81Ck5s8qAhLG2pZDM1d8TGY2MmUSB7YwojsyyNxP/87ophtd+JlSSIldssShMJcGYzP4mA6E5QzmxhDIt7K2EjaimDG06JRuCt/zyKmnVqt5FtXZ3Wam7eRxFOIFTOAcPrqAOt9CAJjAYwjO8wpsjnRfn3flYtBacfOYY/sD5/AHztY2F</latexit>

j1
<latexit sha1_base64="yMLCDvnvK5SDNyJZJ29+Z+G/ZJ4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48V7Qe0oWy2m3btZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//cS1EbF6wEnC/YgOlQgFo2il+8e+1y9X3Ko7B1klXk4qkKPRL3/1BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+6pScWWVAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uw2s/EypJkSu2WBSmkmBMZn+TgdCcoZxYQpkW9lbCRlRThjadkg3BW355lbRqVe+iWru7rNTdPI4inMApnIMHV1CHW2hAExgM4Rle4c2Rzovz7nwsWgtOPnMMf+B8/gDyMY2E</latexit>

Flows

Compatibility-sets

ℓ-th compatibility-set associated with type i is defined as the set Sℓ
i = {σi(q) : q ∈ [1, ℓ]}. Clearly,

the compatibility-sets are nested, i.e., S1
i ⊆ S2

i ⊆ . . . ⊆ Sℓ
i . Moreover, each compatibility-set Sℓ

i is

associated with a flow quantity λ̂i,ℓ constructed using the following inductive procedure:

• Base case, ℓ= |Si|: Initially, we have:

λ̂i,ℓ =

6
µi +

0
j∈Si

λp
j

λp
σi(ℓ)

7
· x̃i,σi(ℓ) . (24)

• Induction step, ℓ≤ |Si|− 1: Here, we have:

λ̂i,ℓ =

6
µi +

0
j∈Sℓ

i
λp
j

λp
σi(ℓ)

7
·
6
x̃i,σi(ℓ) −

|Si|"

q=ℓ+1

6
λp
σi(ℓ)

µi +
0

j∈S
q
i
λp
j

7
· λ̂i,q

7
. (25)

The next claim, we highlight certain key properties of the compatibility-sets and their associated

flow quantities.

Claim 5. For every ℓ∈ [1, |Si|], we have λ̂i,ℓ ≥ 0 and x̃i,σi(ℓ) =
0|Si|

q=ℓ

λ
p
σi(ℓ)

µi+
!

j∈S
q
i
λ
p
j
· λ̂i,q. Furthermore,

we have x̃i,a =
0|Si|

ℓ=1
µi

µi+
!

j∈Sℓ
i
λ
p
j
· λ̂i,ℓ.

The proof is deferred to the end of this section (Appendix B.5). Based on Claim 5, our construction

of the compatibility-sets and their associated flow quantities yields a decomposition of the flow

outgoing from type i, described by (x̃i,j)j∈T and x̃i,a. To this end, for every ℓ ∈ [1, |Si|], we define

the vector (x̂ℓ
i,j)j∈T supported by Sℓ

i , where, for every j ∈ Sℓ
i ,

x̂ℓ
i,j =

λp
j

µi +
0

k∈Sℓ
i
λp
k

· λ̂i,ℓ .
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Similarly, we define the quantity x̂ℓ
i,a as follows:

x̂ℓ
i,a =

µi

µi +
0

j∈Sℓ
i
λp
j

· λ̂i,ℓ .

By definition, each flow vector (x̂ℓ
i,j)j∈T , x̂

ℓ
i,a saturates constraint (15), meaning that

x̂ℓi,j

x̂ℓi,a
=

λ
p
j

µi
.

Moreover, Claim 5 directly implies that x̃i,j =
0|Si|

ℓ=1 x̂
ℓ
i,j for every j ∈ T , and x̃i,a =

0|Si|
ℓ=1 x̂

ℓ
i,a.

Having constructed our decomposition of the flow x̃ and specified the compatibility-sets

(Sℓ
i )i∈[n],ℓ∈[|Si|], we proceed by describing the randomized compatibility matching policy, which we

denote by π̂. All the steps of the algorithm are summarized by the pseudo-code of Algorithm 2.

Step 1: Assigning vertices with random labels. Each arriving vertex n ∈ N∗ is assigned with a

random label (θn, ℓn) upon its arrival. Here, θn is the type of vertex n, while ℓn is a random integer

generated by our policy, independently from the sojourn process. While the precise role of the

label ℓn will be revealed later on, the event {ℓn = 0} indicates that n is passive, while {ℓn > 0}
indicates that n is active. Furthermore, conditional on {ℓn > 0}, ℓn is a random experiment over

the compatibility-set indices [1, |Sθn |]. To complete the probabilistic description of our labelling

operation, we specify the distribution of ℓn conditional on {θn = i}, for each type i∈ T .

• Active vs. passive: The probability of assigning the value 0 to ℓn is given by:

Pr [ℓn = 0|θn = i] =
λp
i

λi

. (26)

• Compatibility-set: Conditional on {ℓn > 0}, ℓn follows a multinomial distribution over the

compatibility-set indices [1, |Si|]; specifically, for every ℓ∈ [1, |Si|], we have:

Pr [ℓn = ℓ| ℓn > 0,θn = i] =
λ̂i,ℓ0|Si|
ℓ=1 λ̂i,ℓ

. (27)

Step 2: Greedy matching. Having assigned each incoming vertex with a random label, our policy

greedily selects the matching that maximizes the immediate reward subject to the restrictions

imposed by the labels of the vertices. Specifically, the decision epochs are the arrival times of

vertices. Upon the arrival of each vertex n∈N∗ at time tn, we distinguish two cases:

• Case (1): n is active. Conditional on ℓn > 0, we have M π̂
tn
= ∅.

• Case (2): n is passive. Conditional on ℓn = 0, we define the set of vertices C = {m∈ V π̂
tn
: ℓm >

0,θn ∈ Sℓm
θm

} formed by all active vertices that have a compatibility-set containing θn. In the

sequel, the labels of the vertices in C are said to be compatible with type θn.

—Case (2a): C = ∅. Here, we have M π̂
tn

= ∅. Moreover, n is never matched subsequently.

Without loss of generality, n abandons the system at time tn.

—Case (2b): C ∕= ∅. In this case, the matching M π̂
tn

is a singleton formed by an edge {n,m}∈
E(V π̂

t ) that maximizes r(θn,θm) out of all m∈ C.
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Algorithm 2 Computing the randomized compatibility policy

Instance parameters: Collection of types T , arrival rates (λi)i∈T , abandonment rates (µi)i∈T ,

matching rewards r(·).

Preliminary step: Flow decomposition and compatibility-sets

Construct a feasible flow x̃ for problem (QB) such that
0

(i,j)∈T 2 x̃i,j ≥ κ · rπ∗
(Lemma 9)

For every i∈ T :

Define Si = {j ∈ T : x̃i,j > 0} and λp
j = x̃j +

0
k∈T x̃k,j

Compute the permutation σi(·) by sorting the types j ∈ Si in decreasing order of
x̃i,j
λ
p
j

For every ℓ∈ [|Si|]:

Compute λ̂i,ℓ according to equations (24) and (25)

Step 1 (online computation): Assigning arriving vertices with random labels

Input: An arriving vertex n∈N and his type θn

Sample ℓn independently according to the conditional probability distribution (26)-(27)

Output: Return ℓn

Step 2 (online computation): Greedy matching

Input: Realization graph Gt = (V π̂
t ,E(V π̂

t )) at time t≥ 0

Set M π̄
t = ∅

If t is an epoch in which a passive vertex n∈N∗ arrives, i.e., t= tn and ℓn = 0:

Define C = {m∈ V π̂
tn
: ℓm > 0,θn ∈ Sℓm

θm
}

If C ∕= ∅:

Set M π̄
t = {n,m} where {n,m}∈E(V π̂

t ) maximizes r(θn,θm) out of all m∈ C

Output: Return M π̄
t

B.4. Analysis

In this section, we derive a constant-factor approximation guarantee for the randomized compati-

bility policy π̂ described in Section B.3, thereby completing the proof of Theorem 2.

Lemma 10. For all instances of the dynamic stochastic matching problem, we have rπ̂ ≥ ( e−1
4e

) ·rπ∗
.

On bipartite graphs, we have rπ̂ ≥ ( e−1
2e

) ·rπ∗
, while rπ̂ ≥ ( e−1

e
) ·rπ∗

in the bipartite-impatient setting.

Since our matching policy π̂ is stationary, the state of the system {ϑ(V π̄
t )}t≥0 describes a positive

recurrent Markov chain, which converges to a unique stationary distribution. However, this dis-

tribution is hard to compute analytically. Hence, the proof of Lemma 10 proceeds in two steps.

First, we construct a modified stochastic process, termed the virtual Markov chain, for which it
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is easy to compute the resulting limiting distribution. Second, we relate the virtual Markov chain

to our original stochastic process, by exploiting a property of stochastic dominance. Consequently,

we derive a lower bound on rπ̂ based on the stationary distribution of the virtual Markov chain,

which ensues the desired performance guarantee.

Augmented state space. Recall from Section 2 that the state of system at time t is described

by a vector ϑ(V π̂
t ) ∈ V, where ϑi(V

π̂
t ) is the number of type-i vertices in V π̂

t . In what follows, we

augment our state space to account for the labelling actions performed by our matching policy.

To this end, we let L denote the collection of all possible labels. For every (i, ℓ) ∈ L, and t ≥ 0,

we define X̄ i,ℓ
t as the number of vertices in V̄ π̂

t assigned with the label (i, ℓ). In vector form, each

state is denoted by X̄t = (X̄ i,ℓ
t )(i,ℓ)∈L. We let X denote the augmented state space, formed by all

the states reached by {X̄t}t≥0. By the definition of the randomized compatibility policy, all passive

vertices leave the system immediately after their arrival (see cases (2a) and (2b) of the matching

decisions in Appendix B.3). Hence, the support of all vectors x∈X is contained in the set of labels

L>0 = {(i, ℓ)∈L : ℓ> 0}.

Given a state x ∈ X , we describe all the possible transitions from state x. To this end, let

L>0
x = {(i, ℓ) ∈ L>0 : xi,ℓ > 0} be the subset of active labels having at least one vertex in state x.

Upon a new arrival to the system, the state transitions are deterministic conditional on the current

state and the label of the arriving vertex. In particular, for every (i, ℓ)∈L>0
x , we define T i,ℓ

x as the

subset of types j ∈ T such that the arrival of a passive type-j vertex triggers a transition from state

x to state x− ei,ℓ; this state transition corresponds to case (2b) of our matching decisions, where

an arriving vertex, labelled (j,0), is matched with an active vertex having a compatible label (i, ℓ).

With these definitions at hand, the transitions of the continuous-time Markov chain {X̄t}t≥0 are

governed by the intensity matrix (Q̄x,y)(x,y)∈X2 , where, for every distinct states x ∕= y, we have

Q̄x,y =

=
>>>?

>>>@

λ̂i,ℓ if y= x+ ei,ℓ, where (i, ℓ)∈L>0 , (28)

|xi,ℓ| ·µi +
"

j∈T i,ℓ
x

λ̂p
j if y= x− ei,ℓ, where (i, ℓ)∈L>0

x , (29)

0 otherwise ,

and Q̄x,x =−
0

y∈X
y ∕=x

Q̄x,y for every x∈X . Equation (28) corresponds to case (1) of the randomized

compatibility policy, where an active vertex labelled (i, ℓ) arrives, and thus, the state variable xi,ℓ

is incremented by one unit. Equation (29) subsumes the state transitions whereby a vertex labelled

(i, ℓ) either abandons the system unmatched, or gets matched with an arriving vertex, labelled

(j,0) for some j ∈ T i,ℓ
x . In both cases, the state variable xi,ℓ is decremented by one unit.
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Virtual Markov chain. The main challenge in analyzing the Markov chain {X̄t}t≥0 is the proba-

bilistic dependence between the state variables X̄ i,ℓ
t over (i, ℓ)∈L. For example, we are not aware

of any tractable characterization of the stationary distribution of {X̄t}t≥0. In what follows, our

goal is to introduce a simplified stochastic process {X̃t}t≥0, termed the virtual Markov chain, as

a proxy for {X̄t}t≥0. Intuitively, the probabilistic dependence between state variables stems from

step (2b) of the randomized compatibility policy π̂, whereby a single vertex is matched out of all

compatible labels. The virtual Markov chain will “eliminate” these dependencies by allowing all

compatible labels to be depleted at a uniform rate. Specifically, we construct the intensity matrix

(Q̃x,y)(x,y)∈X2 that governs {X̃t}t≥0 by specifying, for every distinct states x ∕= y,

Q̃x,y =

=
>>>>?

>>>>@

λ̂i,ℓ if y= x+ ei,ℓ, where (i, ℓ)∈L>0, (30)

|xi,ℓ| ·µi +
"

j∈Sℓ
i

λ̂p
j if y= x− ei,ℓ, where (i, ℓ)∈L>0

x , (31)

0 otherwise ,

and Q̃x,x = −
0

y∈X Q̃x,y for every x ∈ X . We highlight that the transition rates of the virtual

Markov chain do not capture feasible matching decisions; in other words, there exists no matching

policy that induces the stochastic process {X̃t}t≥0. Indeed, equation (31) would imply that the

“combined match rate” of passive type-j vertices at state x is |{(i, ℓ) ∈ L>0
x : j ∈ Sℓ

i }| · λ̂
p
j . This

should be contrasted with equation (29), where the match rate is at most λ̂p
j (namely, a single

active vertex is picked out of all compatible labels).

Lemma 11. For every I ⊆L>0, we have:

lim
t→+∞

Pr

*

,
"

(i,ℓ)∈I

X̃ i,ℓ
t = 0

-

/≤
K

(i,ℓ)∈I

e
−

λ̂i,ℓ

µi+
!

j∈Sℓ
i
λ
p
j .

Proof. The key observation is that the stochastic processes {X̃ i,ℓ
t }t≥0 indexed by (i, ℓ) ∈ I are

mutually independent birth-death processes. Indeed, for every (i, ℓ)∈L, the transitions of {X̃ i,ℓ
t }t≥0

are governed by the intensity matrix (Q̃i,ℓ
u,v)(u,v)∈N2 , defined as follows:

Q̃i,ℓ
u,v =

=
>>>>?

>>>>@

λ̂i,ℓ if v= u+1 , (32)

u ·µi +
"

j∈Sℓ
i

λ̂p
j if v= u− 1, (33)

0 otherwise ,

and Q̃i,ℓ
u,u =−

0
v∈N
v ∕=u

Q̃i,ℓ
u,v for every u ∈N. Equations (32) and (33) immediately proceed from (30)

and (31), respectively. Hence, we obtain

lim
t→+∞

Pr

*

,
"

(i,ℓ)∈I

X̃ i,ℓ
t = 0

-

/=
K

(i,ℓ)∈I

%
lim

t→+∞
Pr

#
X̃ i,ℓ

t = 0
$&

≤
K

(i,ℓ)∈I

e
−

λ̂i,ℓ

µi+
!

j∈Sℓ
i
λ
p
j ,
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where the equality proceeds from the mutual independence of the birth-death processes {X̃ i,ℓ
t }t≥0

over (i, ℓ)∈ I, while the inequality immediately follows from equations (32) and (33). □
Bounding the expected average reward. To conclude our analysis, we relate the original Markov

chain {X̄t}t≥0 to the virtual Markov chain {X̃t}t≥0, through a stochastic dominance relationship.

Namely, given two random variables Y (1), Y (2), taking values in a countable partially-ordered set

Y, the stochastic order Y (1) ≼ Y (2) indicates that Pr[Y (1) ≤ y]≥Pr[Y (2) ≤ y] for every y ∈Y.

Lemma 12. For every t≥ 0, X̃t ≼ X̄t.

The proof, presented at the end of this section (Appendix B.6), proceeds from straightforward

comparisons of the intensity matrices (Q̄x,y)(x,y)∈X2 and (Q̃x,y)(x,y)∈X2 . Now, for every j ∈ T , let

Lj be the set of all labels (i, ℓ) compatible with type j, i.e., j ∈ Sℓ
i . We construct the sequence

(i1j , ℓ
1
j), (i

2
j , ℓ

2
j), . . . , by ranking the labels (i, ℓ)∈Lj by decreasing order of r(i, j), and breaking ties

arbitrarily. By exploiting these ranked sequences, the expected average reward of the randomized

compatibility policy π̂ can be expressed as follows:

rπ̂ =
"

j∈T

λ̂p
j ·

|Lj |"

q=1

r(iqj , j) ·
6

lim
t→+∞

Pr

L
q−1"

r=1

X̄
irj ,ℓ

r
j

t = 0 , X̄
i
q
j ,ℓ

q
j

t > 0

M7

=
"

j∈T

λ̂p
j ·

|Lj |"

q=1

2
r(iqj , j)− r(iq+1

j , j)
3
·
6

lim
t→+∞

Pr

L
q"

r=1

X̄
irj ,ℓ

r
j

t > 0

M7

≥
"

j∈T

λ̂p
j ·

|Lj |"

q=1

2
r(iqj , j)− r(iq+1

j , j)
3
·
6

lim
t→+∞

Pr

L
q"

r=1

X̃
irj ,ℓ

r
j

t > 0

M7

≥
"

j∈T

λ̂p
j ·

|Lj |"

q=1

2
r(iqj , j)− r(iq+1

j , j)
3
·

9

I:1−
qK

r=1

e
−

λ̂ir,ℓr

µir+
!

k∈Sℓr
ir

λ̂
p
k

;

J<

≥
"

j∈T

λ̂p
j ·

|Lj |"

q=1

2
r(iqj , j)− r(iq+1

j , j)
3
·
%
1− 1

e

&
·

9

:
q"

r=1

λ̂ir,ℓr

µir +
0

k∈Sℓr
ir
λ̂p
k

;

<

=

%
1− 1

e

&
·
"

j∈T

|Lj |"

q=1

r(iqj , j) ·
λ̂p
j

µiq +
0

k∈Sℓq

iq
λ̂p
k

· λ̂iq ,ℓq

=

%
1− 1

e

&
·

"

(i,j)∈T 2

r(i, j) · x̃i,j

≥ κ

%
1− 1

e

&
· rπ∗

where, for convenience of notation, we have r(iq+1
j , j) = 0 for every j ∈ T and q = |Lj|. The first

equation proceeds from the PASTA property (Wolff 1982), with respect the Markov chain {X̄t}t≥0

and the arrivals of vertices labelled (j,0). Indeed, by step (2b) of the matching decisions, an arriving

passive vertex labelled (j,0) is matched with an available vertex of compatible type (i, ℓ)∈Lj that
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maximizes r(i, j) (see Appendix B.3). The first inequality holds since X̃t ≼ X̄t for every t≥ 0, by

Lemma 12. The second inequality proceeds from Lemma 10. The third inequality holds since, for

every j ∈ T , we have

|Lj |"

r=1

λ̂ir,ℓr

µir +
0

k∈Sℓr
ir
λ̂p
k

=
1

λ̂p
j

·

9

:
|Lj |"

r=1

λ̂ir,ℓr · λ̂p
j

µir +
0

k∈Sℓr
ir
λ̂p
k

;

<=
1

x̃j +
0

k∈T x̃k,j

·
6
"

k∈T

x̃k,j

7
≤ 1 .

Finally, the fourth equality follows from the flow decomposition established by Claim 5, and the

last inequality proceeds from Lemma 9. □

B.5. Proof of Claim 5

Without loss of generality, we may assume that constraint (15) is saturated for the pair of types

(i,σi(1)), meaning that x∗
i,a = µi

λ
p
σi(1)

· x∗
i,σi(1)

; otherwise, we could decrease the variable x∗
i,a and

increase the variable x∗
i , while preserving the optimality and feasibility of the flow. Suppose tem-

porarily that the first part of Claim 5 is established. It follows that

x∗
i,a =

µi

λp
σi(1)

·x∗
i,σi(1)

=
µi

λp
σ1(i)

·
6 |Si|"

ℓ=1

λp
σi(1)

µi +
0

j∈Sℓ
i
λp
j

· λ̂i,ℓ

7
=

|Si|"

ℓ=1

µi

µi +
0

j∈Sℓ
i
λp
j

· λ̂i,ℓ .

Consequently, it suffices to establish the first part of Claim 5. The proof is based on an induc-

tion over ℓ ∈ [1, |Si|]. For ℓ= |Si|, equation (24) immediately implies that λ̂i,|Si| ≥ 0 and x∗
i,σi(ℓ)

=
λ
p
σi(ℓ)

µi+
!

j∈Sℓ
i
λ
p
j
· λ̂i,ℓ. Now, we examine the case where ℓ≤ |Si|− 1. By rearranging (25), we derive the

equation

x∗
i,σi(ℓ)

=

|Si|"

q=ℓ

λp
σi(ℓ)

µi +
0

j∈S
q
i
λp
j

· λ̂i,q .

Hence, it remains to show that λ̂i,ℓ ≥ 0. To this end, observe that

λ̂i,ℓ =

6
µi +

0
j∈Sℓ

i
λp
i

λp
σi(ℓ)

7
·
6
x∗
i,σi(ℓ)

−
|Si|"

q=ℓ+1

6
λp
σi(ℓ)

µi +
0

j∈S
q
i
λp
j

7
· λ̂i,q

7

≥
6
µi +

0
j∈Sℓ

i
λp
i

λp
σi(ℓ)

7
·
6
x∗
i,σi(ℓ)

−
x∗
i,σi(ℓ)

x∗
i,σi(ℓ+1)

·
|Si|"

q=ℓ+1

6
λp
σi(ℓ+1)

µi +
0

j∈S
q
i
λp
j

7
· λ̂i,q

7

=

6
µi +

0
j∈Sℓ

i
λp
i

λp
σi(ℓ)

7
·
2
x∗
i,σi(ℓ)

−x∗
i,σi(ℓ)

3

≥ 0 ,

where the inequality holds since
x∗i,σi(ℓ)
λ
p
σi(ℓ)

≥
x∗i,σi(ℓ+1)

λ
p
σi(ℓ+1)

by definition of σ. The second equality follows

from our inductive hypothesis, implying that x∗
i,σi(ℓ+1) =

0|Si|
q=ℓ+1

λ
p
σi(ℓ+1)

µi+
!

j∈S
q
i
λ
p
j
· λ̂i,q. □
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B.6. Proof of Lemma 12

We invoke a well-known criterion for stochastic dominance relationships between time-homogeneous

Markov chains. In what follows, given a countable partially-order set Y, a subset A⊆Y is said to

be monotone if, for every x, y ∈Y, x≤ y and x∈A imply that y ∈A.

Theorem (Stochastic dominance) Let Y (1), Y (2) be two stochastic processes taking values in a

countable partially-ordered set Y. Suppose that Y (1) and Y (2) have time-homogeneous stochastic

kernels P (1) and P (2). Then, Y (1) ≼ Y (2) if and only if, for every x, y ∈Y, and every monotone set

A⊆Y:

x≤ y with x∈A or y /∈A =⇒
"

z∈A

P (1)
x,z ≤

"

z∈A

P (2)
y,z (34)

For a proof of this theorem, we refer the interested readers to the work of Brandt and Last (1994,

Example 3.9). López et al. (2000) provides a constructive proof of this result, where the general

conditions for stochastic dominance established by Brandt and Last (1994) are expressed as a

function of the associated intensity matrices. We apply the above-stated stochastic dominance

theorem to the stochastic processes Y (1) = {X̃t}t≥0 and Y (2) = {X̄t}t≥0. To this end, let x, y ∈ X

be two vectors such that x ≤ y, and let A ⊆ X be a monotone set such that x ∈ A or y /∈ A. In

the remainder of this section, we verify that condition (34) of the stochastic dominance theorem is

met, meaning that
0

z∈A Q̃x,z ≤
0

z∈A Q̄y,z.

Case 1: y /∈A. In this case, we infer that x /∈ A since x ≤ y and A is monotone. Let ZA be

the set of states z ∈A such that Q̃x,z > 0. Observe that z ≥ x; otherwise, z ≤ x would imply that

x∈A since A is monotone, thereby contradicting our hypothesis. By inspecting the transition rate

equations (30)-(31), we immediately infer that for every state z ∈ ZA that can be reached from

state x in the virtual Markov chain is of the form z = x+ ei,ℓ for some (i, ℓ) ∈ L>0
x . Based on this

observation, we define the injective mapping ψ(z) = y + ei,ℓ. Note that ψ(z) ≥ x+ ei,ℓ = z, thus

ψ(z)∈A since A is monotone. Consequently, we have

"

z∈A

Q̃x,z =
"

z∈ZA

Q̃x,z =
"

z∈ZA

Q̄y,ψ(z) ≤
"

z∈A

Q̄y,z ,

where the second equality follows from the observation that, for every state z = x + ei,ℓ where

(i, ℓ)∈L>0
x , we have Q̄x,z = λ̂i,ℓ = Q̃y,ψ(z), where the first equality proceeds from equation (28), and

the latter equality holds due to equation (30).

Case 2: x∈A. By the monotone property of the set A, we infer from the condition x≤ y that y ∈

A. As such, the desired inequality
0

z∈A Q̃x,z ≤
0

z∈A Q̄y,z is equivalent to
0

z∈Ā Q̃x,z ≥
0

z∈Ā Q̄y,z

where Ā=X \A. To establish the desired inequality, we construct a mapping φ :ZĀ →L>0
y , where

ZĀ is the collection of states z ∈ Ā such that Q̄y,z > 0. For every z ∈ ZĀ, observe that z < y;
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otherwise, we would have z ∈A since A is monotone. Moreover, the transition rate equations (28)-

(29) imply that there exists (i, ℓ)∈L>0
y such that z = y− ei,ℓ, for every given z ∈ZĀ. Based on this

observation, we define φ(z) = (i, ℓ). Consequently, we have

"

z∈Ā

Q̄y,z =
"

z∈ZĀ

Q̄y,z ≤
"

z∈ZĀ

Q̃x,x−eφ(z))
≤
"

z∈Ā

Q̃x,z ,

where the first inequality follows from the observation that, for every state z = y−ei,ℓ where z ∈ZĀ,

we have Q̄y,z = |yi,ℓ| · µi +
0

j∈T i,ℓ
y

λ̂p
j ≤ |xi,ℓ| · µi +

0
j∈Sℓ

i
λ̂p
j = Q̃x,x−eφ(z)

, where the first equality

proceeds from equation (29), the inequality proceed from Claim 6, and the latter equality holds

due to equation (31). □

Claim 6. |xi,ℓ|= |yi,ℓ| for every (i, ℓ)∈ φ〈ZĀ〉.

Proof. Suppose ad absurdum that |xi,ℓ| < |yi,ℓ|. It immediately follows that x ≤ y − ei,ℓ =

φ−1(i, ℓ). Since A is monotone, we infer that φ−1(i, ℓ)∈A, thereby contradicting that φ−1(i, ℓ)∈ Ā.

□

Appendix C: Proof of Theorem 3

We construct a family of instances Iε, indexed by ε> 0, such that coffε =O(ε ·L∗
ε), where L∗

ε is the

optimal value of the linear programming benchmark (see Section 4.2), and coffε is the offline bench-

mark associated with the instance Iε. For simplicity of notation, the reference to ε is sometimes

omitted in our construction.

• There are two types T = {1,2} , with the arrival rates λ1 =
1
ε2

and λ2 =
1
ε
.

• The abandonment rates are µ1 = 0 and µ2 = 1.

• The cost function is specified as follows: c(1,1) = c(2,2) = 0 and c(1,2) = 1.

• The abandonment penalty is ca(1) = ca(2) =
2
ε
+1.

Clearly, the instance Iε satisfies the triangle inequality (Assumption 1). It is worth emphasizing

that, by picking µ1 = 0, we considerably simplify our subsequent analysis, but this specification of

µ1 is by no means necessary. Instead, we could have chosen any sufficiently small µ1 =O(ε) as a

function of ε. The remainder of our proof is based on the following two claims.

Claim 7. L∗
ε ≥ 1

ε
.

Proof. Given the instance Iε, our LP benchmark takes the form of the linear program:

(CBε) min x1,2 +x2,1 + ca(1) ·x1,a + ca(2) ·x2,a (35)

s.t. 2 ·x1,1 +x1,2 +x2,1 +x1,a =
1

ε2
,

2 ·x2,2 +x1,2 +x2,1 +x2,a =
1

ε
, (36)

x2,a ≥ ε ·x2,2 , x2,a ≥ ε2 ·x2,1 (37)

x1,1, x2,2, x1,2, x2,1, x1,a, x2,a ≥ 0
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Consequently, letting (x∗
i,j)i,j∈{1,2} and (x∗

i,a)i∈{1,2} be optimal solution vectors for the problem

(CBε), we have

L∗
ε = x∗

1,2 +x∗
2,1 + ca(1) ·x∗

1,a + ca(2) ·x∗
2,a

≥ 1

ε
− 2 ·x∗

2,2 −x∗
2,a + ca(2) ·x∗

2,a

≥ 1

ε
+

%
ca(2)−

2

ε
− 1

&
·x∗

2,a

=
1

ε
,

where the first inequality proceeds from constraint (36), and the second inequality immediately

follows from constraint (37). □

Claim 8. coffε ≤ 5.

Proof. For every t≥ 0, we introduce an F∞-measurable matching random variable M∞
t , along

with the corresponding realization graph V ∞
t = Vt \

!
ζ<t φ(M

∞
t ). Specifically, we consider the

following case disjunction, inductively over t∈R:

1. Suppose that t= tn is the arrival time of a vertex n∈N∗ such that θn = 2 and ϑ2(V
∞
t ) = 2. In

this case, we define M∞
t as the singleton matching formed by the pair of type-2 vertices.

2. Suppose that t= tn is the arrival time of a vertex n ∈N∗ such that θn = 2, ϑ2(V
∞
t ) = 1, and

ϑ1(V
∞
t )≥ 1. If there exists no type-2 vertex arriving between tn and tn + δn, we define M∞

t

as a singleton matching between n and a type-1 vertex in V ∞
t .

3. Suppose that t∈N∗. In this case, M∞
t is defined as a maximum-cardinality matching over the

type-1 vertices of V ∞
t .

4. In any other case, we have M∞
t = ∅.

We begin by observing that coffε ≤ c∞ε , where the expected average cost c∞ε = limsupt→+∞
E[C∞

t ]

t
is

defined with respect to the family of cumulative costs {C∞
t }t≥0, where, for every t≥ 0,

C∞
t =

"

ζ∈E(t)

ca ·
))D∞

ζ

))+
"

ζ∈E(t)

"

e∈M∞
ζ

c(e) , (38)

and D∞
ζ is the subset of vertices that leave unmatched at time ζ. The positive contributions to

the cumulative cost come from type-2 vertices that either abandon the system unmatched, or get

matched with a type-1 vertex. We proceed to upper bound the probability of each such event. To

this end, for every t≥ 0, we define N1(t) and N2(t) as the number of type-1 and type-2 vertices

arriving between the times ⌊t⌋ and t, respectively. Next, we fix t ∈ N∗, and we designate by n a

vertex picked uniformly at random over [N(t)]. We define Ea
n as the event whereby θn = 2 and n

leaves unmatched. In addition, we define E1
n as the event whereby θn = 2 and n is matched with
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a type-1 vertex. Let ℓ be the first type-2 vertex arriving after time tn. With these definitions at

hand, observe that

Pr
G
E1
n

))θn = 2
H
≤Pr [tℓ ≥ tn + δn] =

ε

1+ ε
. (39)

Indeed, for every realization of the sojourn process, if tℓ < tn + δn, then n is guaranteed to be

matched with a type-2 vertex by M∞
tn

or M∞
tℓ

(see case 1 of the matching decisions). Using a similar

sample path argument, we have

Pr [Ea
n|θn = 2] ≤ Pr [tℓ ≥ tn + δn,N1 (tn)≤N2 (tn)]

= Pr [tℓ ≥ tn + δn] ·Pr [N1 (tn)≤N2 (tn)]

≤ ε

1+ ε
· 2ε , (40)

where the first inequality holds by further noting that, for every realization of the sojourn process,

N1(tn)≥N2(tn)+ 1 implies that ϑ1(V
∞
n )≥ 1, meaning that vertex n cannot leave unmatched (see

case 2 of the matching decisions). The equality holds since the inter-arrival times tℓ − tn and the

sojourn time δn are independent of N1(tn) and N2(tn). Lastly, the last inequality proceeds by noting

that

Pr [N1 (tn)≤N2 (tn)]

=
∞"

k=0

%N 1

0

Pr [N1 (u)+N2 (u) = k]du

&
·

k"

q=⌈ k
2 ⌉

%
k

q

&
·
%

λ2

λ1 +λ2

&q

·
%

λ1

λ1 +λ2

&k−q

=

N 1

0

Pr [N1 (u)+N2 (u) = 0]du+
λ2

λ1 +λ2

·
∞"

k=1

%N 1

0

Pr [N1 (u)+N2 (u) = k]du

&
·

9

:

k"

q=⌈ k
2 ⌉

k

q
·
%
k− 1

q− 1

&
·
%

λ2

λ1 +λ2

&q−1

·
%

λ1

λ1 +λ2

&k−q
;

<

≤ 1

λ1 +λ2

+2 · λ2

λ1 +λ2

≤ 2ε ,

where the first equality holds since tn − ⌈tn⌉ is uniformly distributed over [0,1) since n is picked

uniformly at random over [N(t)]. Moreover, for every u> 0, the distribution of N2(u) conditional

to {N1(u)+N2(u) = k} is binomial with parameters k and λ2
λ1+λ2

.

By combining inequalities (39) and (40), we obtain

E [C∞
t ] = E

L
N(t)"

m=1

I [Ea
m,θm = 2] · ca(2)+ I

G
E1
m,θm = 2

H
· c(1,2)

M

= E [N(t)] ·Pr [θn = 2] ·
2
Pr [Ea

n|θn = 2] · ca(2)+Pr
G
E1
n

))θn = 2
H
· c(1,2)

3

≤ λ2 · t ·
%

2ε2

1+ ε

%
2

ε
+1

&
+

ε

1+ ε

&

≤ 5t .
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It immediately follows that coffε ≤ 5. □

□

Appendix D: Proof of Theorem 4

We construct a family of instances Iε of the dynamic stochastic matching problem, indexed by

ε ∈ (0,1), such that cb(ηε)ε =Ω( 1
ε
) · cπ

∗
ε

ε , where cπε is the expected average cost for any policy π with

respect to the instance Iε, while ηε is the batching window associated with the best batching policy

for the instance Iε, and π∗
ε is an optimal deterministic stationary matching policy. In what follows,

we describe the input parameters of the instance Iε for a fixed ε∈ (0,1). For simplicity of notation,

the reference to ε is omitted in our construction.

• There are two types T = {1,2} , with respective arrival rates λ1 =
1
ε2

and λ2 =
1
ε
.

• The cost function is specified as follows: c(1,1) = c(2,2) = 0 and c(1,2) = 1.

• The abandonment rate is µ= 1.

• The abandonment penalty is ca(1) = ca(2) = 1.

It is worth highlighting that the triangle inequality (Assumption 1) and the property of uniform

abandonment rates (Assumption 2) are satisfied by the instance Iε. The remainder of the proof is

devoted to establishing the following lemmas, which complete the proof of Theorem 4.

Lemma 13. c
π∗
ε

ε ≤ 2.

Proof. In the optimal matching policy, each active type-1 vertex is matched with the first

subsequently arriving type-1 vertex before she abandons the system, if any. Similarly, each active

type-2 vertex is matched with the first arriving type-2 vertex before she abandons the system, if

any. Therefore, the expected average cost is upper bounded by

cπ
∗
ε

ε ≤ λ1 ·
µ

µ+λ1

· ca(1)+λ2 ·
µ

µ+λ2

· ca(2)≤ 2 ,

where the first inequality holds by observing that, under the optimal matching policy, the prob-

ability that a type-1 vertex abandons the system conditional on being active is precisely of µ
µ+λ1

.

Similarly, the probability that a type-2 vertex abandons the system conditional on being active is

of µ
µ+λ2

. □

Lemma 14. cb(ηε)ε ≥ (e−1)

2e2
· (1−ε)3

ε
.

Proof. We separately examine three regimes relative to the batching window parameter ηε.
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Case 1: ηε ≤ ε2

1+ε
. For every k ∈N∗, we seek to characterize the probability that there exists an

odd number of type-1 and an odd number of type-2 vertices in V
b(ηε)
k·ηε ; this event is denoted by Ek.

The key observation is that, conditional on Ek, the matching M
b(ηε)
k·ηε necessarily contains an edge

between a vertex of type 1 and a vertex of type 2. Consequently, we derive a lower boun on the

expected average cost incurred by the batching policy b(ηε):

cb(ηε)ε ≥ lim
K→+∞

1

K · ηε
·

K"

k=1

Pr [Ek] · c (1,2) (41)

Now, in order to lower bound Pr[Ek] for each k ∈ N∗, we begin by observing that V̄
b(ηε)

(k−1)·ηε is

comprised of at most one vertex; otherwise, any two remaining vertices can always be matched,

thereby contradicting the maximal cardinality of M
b(ηε)

(k−1)·ηε . More specifically, the main ingredient of

our analysis in Case 1 consists in showing that Pr[ϑ(V̄
b(ηε)

(k−1)·ηε) = e1] is lower bounded by a universal

constant. To this end, we construct a time-homogeneous Markov chain {Lk}k≥0 taking binary

values such that Lk is stochastically smaller or equal to ϑ1(V̄
b(ηε)
k·ηε ) for every k ∈N. Specifically, the

Markov chain {Lk}k≥0 is uniquely defined by the marginal probabilities:

=
>>?

>>@

Pr [L0 = 0] = 1 ,

Pr [Lk = 1|Lk−1 = 0] =
(1− ε)

e
·λ1 · ηε for every k ∈N∗ , (42)

Pr [Lk = 0|Lk−1 = 1] = 3 ·λ1 · ηε for every k ∈N∗ . (43)

To establish the desired stochastic dominance property, let N1(t) and N2(t) denote the number

type-1 and type-2 agents that arrive in the time interval [0, t], respectively. Consequently, we have

Pr
#
ϑ1(V̄

b(ηε)
k·ηε ) = 1

)))ϑ1(V̄
b(ηε)

(k−1)·ηε) = 0
$
≥ Pr [δ1 > ηε] ·Pr [N1 (ηε) = 1] ·Pr [N2 (ηε) = 0]

≥ e−ηε ·λ1 · ηε · e−λ1·ηε · e−λ2·ηε

≥ (1− ε)

e
·λ1 · ηε

= Pr [Lk = 1|Lk−1 = 0] ,

where the first inequality proceeds by noting that ϑ1(V̄
b(ηε)
k·ηε ) = 1 if ϑ1(V̄

b(ηε)

(k−1)) = 0 and there is

precisely one type-1 vertex arriving in the interval ((k− 1) · ηε, k · ηε] with a corresponding sojourn

time greater than ηε. The last equality holds by equation (42). Furthermore, we have

Pr
#
ϑ1(V̄

b(ηε)
k·ηε ) = 0

)))ϑ1(V̄
b(ηε)

(k−1)·ηε) = 1
$
≤ Pr [δ1 < ηε] +Pr [N1 (ηε)+N2 (ηε)≥ 1]

= 1− e−ηε +1− e−(λ1+λ2)·ηε

≤ 3 ·λ1 · ηε

= Pr [Lk = 0|Lk−1 = 1] ,
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where the first inequality proceeds by observing that, conditional on the event {ϑ1(V̄
b(ηε)

(k−1)) = 1}, the

absence of any type-1 vertex in the realization graph right after time k ·ηε implies that one of the two

following conditions is necessarily met: (i) the type-1 vertex available at time (k− 1) · ηε abandons

the system by time k · ηε; (ii) there is at least one vertex arriving in the interval ((k− 1) · ηε, k · ηε].

The last equality holds by equation (43).

Having shown that Lk is stochastically smaller or equal to than ϑ1(V̄
b(ηε)
k·ηε ) for every k ∈ N, we

obtain a lower bound on the expected average cost using inequality (41):

cb(ηε)ε ≥ lim
K→+∞

1

K · ηε
·

K"

k=1

Pr [Ek]

≥ lim
K→+∞

1

K · ηε
·

K"

k=1

Pr
#
ϑ1(V

b(ηε)
k·ηε ) = 1,ϑ2(V

b(ηε)
k·ηε ) = 1

)))ϑ1(V̄
b(ηε)

(k−1)·ηε) = 1
$
·Pr

#
ϑ1(V̄

b(ηε)

(k−1)·ηε) = 1
$

≥ lim
K→+∞

1

K · ηε
·

K"

k=1

(Pr [δ1 > ηε])
2 ·Pr [N2 (ηε) = 1] ·Pr [Lk−1 = 1]

= λ2 · e−(2+λ2)·ηε ·
6

lim
K→+∞

1

K
·

K"

k=1

Pr [Lk−1 = 1]

7

≥ 1

(1+3e)
· (1− ε)

3

ε
,

where the first inequality proceeds by observing that, conditional on {ϑ1(V̄
b(ηε)

(k−1)·ηε) = 1}, the out-

comes ϑ1(V
b(ηε)
k·ηε ) = 1 and ϑ2(V

b(ηε)
k·ηε ) = 1 are necessarily implied by the fact that if there is precisely

one type-2 vertex arriving in the interval ((k − 1) · ηε, k · ηε] and there is no abandonment in the

same period of time. The last inequality proceeds by utilizing our Case 1 hypothesis (i.e., ηε ≤ ε2

1+ε
)

and by characterizing the stationary distribution of the Markov chain {Lk}k≥0 using equations (42)

and (43).

Case 2: ε
1+ε

≥ ηε ≥ ε2

1+ε
. Following the same line of reasoning as in Case 1, the goal is to lower

bound Pr[Ek] for every k ∈N∗. To this end, we will utilize the following technical claim, which proof

is deferred to the end of this section.

Claim 9. 1
2
· e−ηε · (1− e−λ1·ηε)≤Pr [ϑ1(Vηε) /∈ 2 ·N]≤ 1

2
.

Next, we separately analyze the probability of Ek conditional on three mutually exclusive events.

1. Case (2a): V̄
b(ηε)

(k−1)·ηε = ∅. We denote by ℓ ∈ N∗ the first agent of type 2 arriving after time

(k− 1) · ηε. Consequently, we have:

Pr
#
Ek| V̄ b(ηε)

(k−1)·ηε = ∅
$
= Pr [ϑ1(Vηε) /∈ 2 ·N] ·Pr [ϑ2(Vηε) /∈ 2 ·N]

≥ Pr [ϑ1(Vηε) /∈ 2 ·N] ·Pr [N2(ηε) = 1, δℓ > ηε]
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≥ 1

2
· e−ηε ·

2
1− e−λ1·ηε

3
· ηε ·λ2 · e−ηε·λ2 · e−ηε

≥ (e− 1)

2e2
· (1− ε)2

ε
· ηε , (44)

where the first equation holds since the arrivals of type-1 and type-2 vertices are independent,

and the sojourn process satisfies the Markov property. The first inequality holds due to the

inclusions of the events {N2(ηε) = 1, δℓ > ηε}⊆ {ϑ2(Vηε) = 1}⊆ {ϑ2(Vηε) /∈ 2 ·N}. The second

inequality immediately follows from Claim 9.

2. Case (2b): ϑ(V̄
b(ηε)

(k−1)·ηε) = e1. Here, we have

Pr
#
Ek|ϑ

'
V̄

b(ηε)

(k−1)·ηε

(
= e1

$
≥ Pr [δ1 > ηε] ·Pr [ϑ1(Vηε)∈ 2 ·N] ·Pr [ϑ2(Vηε) /∈ 2 ·N]

≥ 1

2
·Pr [δ1 > ηε] ·Pr [ϑ2(Vηε) /∈ 2 ·N]

≥ 1

2e
· (1− ε)

ε
· ηε , (45)

where the second inequality immediately follows from Claim 9, and the third inequality pro-

ceeds from computations similar to those leading to inequality (44).

3. Case (2c): ϑ(V̄
b(ηε)

(k−1)·ηε) = e2. Here, we have

Pr
#
Ek|ϑ

'
V̄

b(ηε)

(k−1)·ηε

(
= e2

$
≥ Pr [δ1 > ηε] ·Pr [ϑ1 (Vηε) /∈ 2 ·N] ·Pr [ϑ2 (Vηε)∈ 2 ·N]

≥ Pr [δ1 > ηε] ·Pr [ϑ1(Vηε) /∈ 2 ·N] ·Pr [N2(t) = 0]

≥ (e− 1)

2e2
· (1− ε)

ε
· ηε , (46)

where the second inequality holds due to the inclusions of the events {N2(t) = 0}⊆ {ϑ2(Vηε) =

0}⊆ {ϑ2(Vηε)∈ 2 ·N}. The third inequality immediately follows from Claim 9 and our Case 2

hypothesis (i.e., ηε ≤ ε
1+ε

).

By plugging inequalities (44)-(46) into inequality (41), we obtain

cb(ηε)ε ≥ lim
K→+∞

1

K · ηε
·

K"

k=1

Pr [Ek]≥ lim
K→+∞

1

K · ηε
·

K"

k=1

(e− 1)

2e2
· (1− ε)2

ε
· ηε =

(e− 1)

2e2
· (1− ε)2

ε
.

Case 3: ηε >
ε

1+ε
. This case is relatively simple. The idea is to lower bound the expected average

abandonment penalty incurred by abandonments of type-1 vertices. To this end, we denote by Yk

the random number of type-1 vertices arriving during the time interval ((k − 1) · ηε, k · ηε], and

abandoning the system before time k · ηε. Having defined Yk for every k ∈N, we lower bound the

expected average cost as follows:

cb(ηε)ε ≥ lim
K→+∞

1

K · ηε
·

K"

k=1

ca(1) ·E [Yk] =
1

ηε
·E [Y1] ,
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where the last equality holds since the sojourn process is stationary. On the other hand, we have

E [Y1]≥ λ1 · ηε ·
2
1− e−ηε

3
≥
%
1− 1

e

&
· (1− ε)

ε
· ηε,

where the first inequality holds since λ1 · ηε is the expected number of type-1 arrivals during

the batching window, and 1− e−ηε is a lower bound on their survival probabilities. The second

inequality proceeds from our Case 3 hypothesis (i.e., ηε >
ε

1+ε
). Lastly, by combining the above two

inequalities, we obtain

cb(ηε)ε ≥
%
1− 1

e

&
· (1− ε)

ε(1+ ε)
.

□
Proof of Claim 9. We begin by observing that:

Pr [ϑ1(Vt) /∈ 2 ·N]

=

N t

0

λ1 · e−λ1·u ·Pr [ϑ1(Vt) /∈ 2 ·N| t1 = u,θ1 = 1]du

=

N t

0

λ1 · e−λ1·u · (1−Pr [ϑ1(Vt−u) /∈ 2 ·N]) ·Pr [δ1 > t−u]du

+

N t

0

λ1 · e−λ1·u ·Pr [ϑ1(Vt−u) /∈ 2 ·N] ·Pr [δ1 ≤ t−u]du

=

N t

0

λ1 · e−λ1·u · e−(t−u)du+

N t

0

λ1 · e−λ1·u ·Pr [ϑ1(Vt−u) /∈ 2 ·N] ·
2
1− 2e−(t−u)

3
du . (47)

Consequently, we define the function f(u) = Pr[ϑ1(Vu) /∈ 2 ·N] for every u∈ [0,ηε]. Suppose that

there exists u ∈ [0,ηε] for which f(u) ≥ 1
2
, and let u∗ be the minimal such u ∈ [0,ηε]. Since f is

continuous, by noting that f(u)< 1
2
for every u ∈B(0, δ) given a sufficiently small neighborhood

δ> 0 , we obtain

f (u∗)<

N u∗

0

λ1 · e−λ1·u · e−(u∗−u)du+

N u∗

0

λ1 · e−λ1·u · 1
2
·
'
1− 2e−(u∗−u)

(
du≤ 1

2
,

thereby contradicting that f(u∗) = 1
2
. Consequently, we have just shown that f(u) ≤ 1

2
for every

u∈ [0,ηε]. Moreover, using a line of argumentation similar to equation (47), we have:

f (ηε) ≥
N t

0

λ1 · e−λ1·u · (1−Pr [ϑ1(Vt−u) /∈ 2 ·N]) ·Pr [δ1 > ηε]du

≥ 1

2
· e−ηε ·

N t

0

λ1 · e−λ1·udu

=
1

2
· e−ηε ·

2
1− e−λ1·ηε

3
.

□
□
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Appendix E: Empirical case study

E.1. Data cleaning

We observe that a significant fraction of the trip records have location coordinates of precisely

zero, or identical pick-up and drop-off locations. These inputs of location are likely inaccurate or

erroneous, and thus, we filter the corresponding observations from the data sets. Furthermore, we

take a conservative approach with respect to timestamp information by eliminating all observations

having a trip length shorter than 5 minutes or exceeding 1 hour. Overall, we filter approximately

25% of all trip observations.

E.2. Clustering method

Figure 5 Decomposition of the NY area into 33 regions based on census-tract boundaries.

Our modeling approach hinges on defining a collection of types i ∈ T and their corresponding

arrival rates λi (these model ingredients specify the agents’ arrival process). Intuitively, each type

should describe “similar” riders in terms of pick-up and drop-off locations. To this end, we develop

a data-driven clustering method that identifies riders with close-enough pick-up and drop-off loca-

tions. This method proceeds in two steps:
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• First, we build on the approach employed by Buchholz (2021) to decompose the NY area into

“homogeneous regions”. Specifically, the method consists in aggregating census-tract bound-

aries in NY to obtain 39 homogeneous regions with respect to the arrival rates, travel times

and transition probabilities. Using an analogous method, we partition the NY area into 33

regions by aggregating census tracts. Centroid of a region is used as the pick-up or the drop-off

location for a trip originating from or ending at the region, respectively. The resulting regions

are visualized in Figure 5.

• Second, we assign each pair of pick-up and drop-off regions to a rider type using a clustering

algorithm. To this end, the trip data is initially partitioned into 33 pre-clusters C1, . . . ,C33,

each of which corresponds to the collection of trips that originate in the same region. Next, we

run a K-means algorithm based on the drop-off locations of the riders within each pre-cluster

Cs. Hence, the collections of riders with nearly-identical pick-up locations described by each of

the 33 pre-clusters are further refined into clusters having drop-off locations in close proximity.

The number of clusters Ks within each pre-cluster Cs is chosen proportional to the number of

trips |Cs|, namely Ks ≈ |Cs|!33
s=1 |Cs|

· |T |.

Figure 6 Empirical cumulative density for the number of trips in pairs of pick-up and drop-off regions.
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The choice of the number of agent types |T | is subject to a trade-off between granularity and

sparsity. Specifically, if the number of rider types |T | is too small, the geographic granularity is
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coarse, meaning that pick-up and drop-off locations could be highly variable within each single

type. For example, if the trips are clustered solely on the basis of their pick-up region, the coefficient

of variation of the trip lengths within a cluster is of 59.6% on average. Conversely, if the number

of rider types |T | is large, the arrival rates cannot be accurately estimated due to the small sample

size. Indeed, certain combinations of pick-up and drop-off regions exhibit a very small number of

trips at certain times of day and days of week. For example, as illustrated by Figure 6, for 27% of

the pairs of pick-up and drop-off regions, there are fewer than 8 trips throughout our 8-week time

period that originate in the pick-up region and terminate in the drop-off region in question. Hence,

to deal with data sparsity, we cluster the pairs of pick-up and drop-off regions; as shown by Figure

6, all resulting clusters contain more than 8 trips.

E.3. Computation of {c̄i}i∈T

In Section 4.1, c̄i is defined as the minimum of the function fi(.), where

fi (A) =
µ

µ+
0

k∈A λk

· ca(i)+
"

j∈A

λj

µ+
0

k∈A λk

· c (i, j) ,

for every A ⊆ T . While c̄i can be computed by solving the linear program (ANi) introduced

in Section 4.1, we utilize a fixed-point formulation. To this end, observe that c̄i = fi(A∗
i ) and

A∗
i = {j ∈ T : c(i, j) ≤ fi(A∗

i )} by Lemma 3. Thus, c̄i is a solution of the fixed-point equation

fi (Ai(α)) = α, where Ai(α) = {j ∈ T |c(i, j)≤ α}. Consequently, we define c̄i as the empirical mean

of the fixed-point solutions over all type-i riders n1 in the training set. It is worth noting that we

utilize normalized variant of the cost function n2 -→
ℓn1

ℓn1+ℓn2
· c(n1, n2).

E.4. Additional figures and plots

Table 2 Total cost of the proposed algorithms and the LP-benchmark (CB) .

Departure rate (µ) Constant penalty (cp) Batching Vertex-additive Threshold LP-benchmark (CB)

0.5 0.01 48.55 43.33 48.62 37.09

1 0.01 49.28 45.41 51.35 38.14

2 0.01 50.33 47.86 52.80 39.55

0.5 0.05 49.76 47.2 53.31 38.99

1 0.05 51.14 48.56 54.14 40.62

2 0.05 53.02 51.88 54.32 42.76
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Figure 7 Aggregate demand for NY taxis on various days of week and times of day (January-February 2013).
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Figure 8 Pictorial illustration of all possible vehicle routes for matching two riders.
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Figure 9 On the left, saving rates achieved by the tested algorithms as a function of trip length. On the right,

average waiting times of riders as a function of trip length.
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Note. Each algorithm is tuned to achieve a match rate of 90%(±1%). The “smooth” curves are generated using a

local regression method (geom smooth function of the R package ggplot2).

Figure 10 Empirical cumulative density of waiting times for each tested algorithm.
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Note. Each algorithm is tuned to achieve a match rate of 90%(±1%).
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Figure 11 Savings rates achieved by the tested algorithms as a function of trip length in various market conditions.
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Note. Each algorithm is tuned to achieve a match rate of 90% (±1%).


