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Abstract

The accurate regulation of glucose within humans is an essential feature of homeostasis. It optimises
energy release in the muscles and organs. Glucose rhythms driven by internal and external stimuli
have been physiologically observed in humans and modelled mathematically to provide a solid
framework for understanding these processes in a qualitative and quantitative manner. In this
paper, we review the latest contribution of mathematical modelling to the understanding and
prediction of dynamics within the glucose regulation system.

Introduction

The mathematical modelling of physiological regulation is an important theoretical tool for
furthering the understanding of biological processes, and devising quantitative markers of both
healthy regulation and pathogenesis in the healthy and non-healthy regimes [5]. In conjunction
with the increased use of wearable monitoring devices [36], it thus comes as an indispensable in-
strument for informing clinical practice, tracking the progression of diabetes [29], and devising
optimal treatment strategies that integrate natural rhythms [26]. Glucose regulation is an integral
part of the endocrine system [77] and is the result of complex biochemical interactions occurring
within the plasma, muscles and organs. Two main modelling strands prove useful for understand-
ing these interactions. Many studies investigate mechanisms at the cellular level to understand
patterns of insulin and glucagon release or glucose absorption, while others regard regulation at
the system level, focusing on key physiological functions. Such models provide a framework for
assessing glucose regulation efficiency in an individual and determining personalised conditions for
the successful implementation of an automated insulin distribution system [12, 19, 38].

Dynamics within the Langerhans islets

The secretion of insulin operates in a pulsatile manner with a period of about 5 minutes and
is triggered within β cells in response to variations in glucose levels, especially following meals. It
is released in two phases which are principally modulated by the ATP/ADP ratio which increases
following the entry of glucose into the cell through the cellular membrane, while Ca2+ waves
facilitate the exocytosis of insulin granules [37, 58]. Recent models provide evidence for intracellular
interconnected feedback mechanisms involving Ca2+ signalling and metabolic oscillations.
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One such model is the Integrated Oscillator Model (IOM) [11, 46], which builds upon the pre-

vious dual oscillator model [47] and contains an additional key Ca2+ feedback to glycolysis [43, 46].
It integrates bidirectional feedback between electrical activity and glycolytic oscillations within
a single β-cell along with mitochondrial dynamics [43] to embed energy production mechanisms
(Figure 1). The model incorporates cellular and mitochondrial membrane potentials, along with
Ca2+, ATP, and fructose phosphates (fructose 1,6-bisphosphate FBP, and fructose 6-phosphate
F6P), the dynamics of which are described by a set of eleven differential equations along with a
number of fluxes and ionic currents. The oscillations produced by the model (Figure 2) are in line
with experimental results on mice β cells, including bursting oscillations in the cellular membrane
potential. The model is able to reproduce numerous key experimental findings of pulsatile insulin
secretion, notably the presence of compound oscillations and the sawtooth oscillations in FBP (see
figure 2) [46] and in the pyruvate kinase activity reporter (PKAR) signal, which is a biosensor
engineered to monitor glycolytic activity [48].

Figure 1: Modular diagram for the Integrated Oscillator Model of a singular mouse β cell, including membrane
potentials, Ca2+, ATP, ADP, fructose phosphates and key ionic currents and fluxes. After [43].

The modelling highlights the importance of the tetrameric enzyme phosphofructokinase (PFK),
which is responsible for the catalysis of the initial reaction in glycolysis and thus has a crucial
role in the genesis of oscillations [42]. Mouse experiments supplemented with this augmented
mathematical model has shown that β cells deprived of phosphofructokinase M (PFK-M) keep
their ability to produce pulsatile insulin secretion thanks to isoforms of the enzyme [44]. In turn,
the IOM has been used along with the model from Cha et al. [16] and the Phantom Bursting
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model in [45] to study how the ATP/ADP ratio varies in response to glucose levels in the presence
of K(ATP)-driven Ca2+ bursting oscillations in [43].

Figure 2: Simulation of oscillations in the Integrated Oscillator Model, as implemented in [43]. V : β cell membrane
potential, ψm: mitochondrial membrane potential, Ca:, Cam : mitochrondrial Ca2+, F6P: Fructose 6-phosphate,
FBP: Fructose 1,6-bisphosphate, ADP: adenosine diphosphate in cytosol, ADPm: adenosine diphosphate in mito-
chondria, NADHm: nicotinamide adenine dinucleotide + hydrogen.

In humans, the bursting of pituitary cells also occurs in pseudo-plateaus, showing additional
smaller amplitude bursts in the plateau areas. These mixed-mode oscillations were studied in [7]
using a modified version of the Hodgkin-Huxley model. The model was reduced to a 3D slow-fast
system in which the maximal conductance of the potassium human Ether-à-go-go-Related Gene
(hERG) channel can be used as a bifurcation parameter to generate the hyperpolarisation, spiking
and mixed-mode oscillatory bursting states.

The modelling of interactions between β cells within the islets of Langerhans can be achieved by
regarding the system as a weighted network connected through gap junction channels. In particular,
this approach has been used in [61] to provide synchronisation conditions on the connectivity matrix
for homogeneous (all active) and heterogeneous (including a fraction of silent cells) populations
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of β cells, which are individually assumed to satisfy Pernarowski’s model of bursting [24, 59]. An
appropriate Lyapunov function was constructed to obtain synchronicity constraints [61]. While this
modelling study assumes uniformity of behaviour (and model parameters) in the β cell population,
which is a common assumption in the non-diabetic, the approach could be modified to account for
some heterogeneity.

In contrast, the glucagon-secreting α cells are known to exhibit a much larger inter-cell vari-
ability, which requires the usage of models with a wide range of parameters to match physiological
observations [49]. In addition, modelling taking into account noise [25] and paracrine signalling
[49, 73] have demonstrated their important role in the pulsatile secretion of glucagon. Similarly,
a recent model of α, β, δ cell interactions suggest that the inhibition of glucagon secretion in the
presence of elevated glucose levels is partly achieved through the action of β cells onto somatostatin
secretion in δ cells [13]. The recent discovery of the importance of innervation between pancreatic
cells may shed further light on intrapancreatic regulatory activity [75].

System level models

The entrainment of insulin release by glucose stimuli has also been observed at the ultradian
level, with tightly coupled glucose-insulin oscillations (period ∼ 80-180 minutes) emerging in fast-
ing, meal ingestion, continuous enteral and intravenous nutrition conditions [63]. A large part
of the mathematical study of glucose-insulin ultradian rhythms takes its roots in the modelling
work of Sturis et al. [66, 67, 68], within which the delay inherent to hepatic glucose production is
regarded as a mechanism for explaining these oscillations. In recent years, extensions of this model
have been used to provide more robust systems of the intravenous glucose tolerance test (IVGTT)
[9, 10] or to include different infusion patterns. When focusing solely on plasma glucose (G) and
insulin levels (I), two feedback loops taking into account secretion times inherent to hepatic glucose
and pancreatic insulin synthesis and transport are typically modelled using nonlinear equations of
the form

Ġ(t) = Gin(t)− f2(G)− f3(G)f4(I) + f5(I(t− τ2)), (1)
İ(t) = Iin(t) + f1(G(t− τ1))− diI, (2)

as first introduced in [40]. Here, f1 represents insulin secretion (with a constant delay τ1 ∼ 5-15
minutes), f2 is the insulin independent glucose utilisation, f3f4 stands for the insulin dependent
glucose utilisation and f5 models hepatic glucose production (with a constant delay τ2 ∼ 35-50
minutes), which is assumed to be triggered by low insulin levels. As such, functions f1, f2, f3 and f4
are positive functions of their arguments, while f5 decreases as insulin levels increase. The glucose
infusion Gin(t) is typically chosen as constant [40, 41, 34, 33, 15] or representing meals [17, 18].
The delays have a crucial effect on the production of oscillations and on the resulting glucose and
insulin amplitudes [15, 33, 41]. It was shown using interval maps in the one delay case (that is when
τ1 = 0, reducing to a model studied in [8, 23]) that a global bifurcation exists and is responsible
for the presence of oscillations [3]. Such a phenomenon is numerically evidenced and also expected
in the two-delay model (2) [40, 39]. To approximate the limit cycle in the two-delay model with a
constant glucose infusion using a perturbative scheme, the following simplified model

Ġ(t) = Gin − a1G− a2GI +
a3

I(t− τ2) +K2
(3)

İ(t) =
b1G(t− τ1)

2

G(t− τ1)2 +K2
1

− b2I, (4)
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was investigated in [15]. Delay-dependent conditions were formulated for the existence of a su-
percritical Hopf bifurcation, which is the process by which gradually increasing the value of a
parameter (e.g. glucose input) leads to oscillations. Explicit approximate equations for glucose
and insulin amplitudes were obtained in terms of the model parameters [14, 15]. In particular,
these expressions provide a proxy for directly estimating the maximal and minimal values for glu-
cose and insulin oscillations for a given level of insulin resistance. It is worth emphasising that
such formulas have been obtained under the assumption that delays are discrete and constant. An
IVGTT model with an interval delay was introduced by Shi et al. [64].

The impact of different patterns of insulin therapies on the dynamics of systems of the form
(2) has been investigated in numerous studies [72, 32, 33, 74].

The model was recently further extended to consider glucagon dynamics, introducing A as
the plasma glucagon concentration (ng/L), whilst incorporating both the glucagon secretion rate
and the body’s glucagon clearance rate. The resulting model is shown in (5) and schematically
represented in Figure 3. In response to the physiological observation that both glucose and insulin
levels determine glucagon secretion, the function f5(I(t−τ2)) in the initial model has been replaced
with terms reflecting the hepatic glucose uptake (HPU) and hepatic glucose production (HGP),
which are respectively modelled by f5(G)f6(I) and f7(I(t−τ2))f8(A) . It is shown analytically that
HPU and HPG must counterbalance each other for oscillations to occur. This modification allows
the recently introduced concept of glucagon resistance to be acknowledged within the model, with
moderate levels of glucagon being incapable of stimulating HGP when the shape of the function
significantly changes. Moreover, τ2 now represents the delay from when glucagon binds to the liver
to the subsequent release of glucose rather than the time between the suppression and diminishment
of HGP in the presence of increased insulin levels [20].

Ġ(t) = Gin(t)− f2(G)− f3(G)f4(I)− f5(G)f6(I) + f7(I(t− τ2))f8(A),

İ(t) = Iin(t) + f1(G(t− τ1))− diI (5)
Ȧ(t) = f9(G)f10(I)− daA.

A simple system describing insulin-mediated glucagon dynamics through C-peptide data has been
devised recently by Morettini et al. [50] to provide a minimal model of the oral glucose tolerance
test.

In order to pass from controlled glucose inputs to real-life glucose predictions in the presence
of meals and insulin injections, the Arleth model is sometimes used to infer glucose absorption
timings from levels of proteins, lipids, sugar and starch in the stomach and of carbohydrates in
the intestine [4]. This approach was recently implemented by Gyuk et al [27] in conjunction with
a simplified delay model devised in [55] to make glucose-insulin predictions. Personalised model
parameters were optimised to match CGM data collected on insulin-dependent type 2 diabetic
individuals.

In non-clinical circumstances, it is also fruitful to consider the dynamics of ghrelin, which
modulates food appetite. This hormone is secreted mainly in the stomach although its inhibi-
tion signalling occurs in the intestine. This additional feedback was embedded in a recent multi-
compartment model [6] and the dynamics in the presence of three meals were compared with
experimental data from 10 individuals. Although the current model did not include the effect
of insulin on ghrelin release, which remains to be elucidated, the model satisfactorily reproduced
the available data for ghrelin and insulin levels, and food volumes remaining in the gastrointesti-
nal tract over a 24 hour window. Furthermore, to acknowledge the fact that insulin secretion is
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Figure 3: Flow chart for the glucose-insulin-glucagon model (5).

impacted by the presence of free fatty acids, their contribution was incorporated into a simple
three-equation delay model [52] which generalises a model of the intravenous glucose tolerance test
[41]. In particular, the insulin secretion term in the model comprised an additional contribution
of free fatty acids. This enabled the authors to investigate quantitatively the contribution of this
effect before and after bariatric surgery.

A separate in-depth model using Topp’s model [70] and incorporating leptin as well as lipolysis
and lipid oxidation in relation to glucose uptake was introduced by Sweatman [69]. The study
explores the changes of various biomarkers under the conditions of several diets, assessing the
changes to plasma glucose and insulin concentrations. It makes predictions surrounding insulin
and leptin sensitivity and the relevant impact on both insulin and glucagon secretion rates. The
model has the capability to predict trajectories to lean and overweight type 2 diabetes, along with
nondiabetic states with raised fat mass.

Two models created by Panunzi, de Gaetano and collaborators, namely the Single Delay Model
(SDM) for IVGTT [56] (a minimal one-delay model of the form (2)) and the Extended Model
[21] (which models β cells as heterogeneous firing units) have been supplemented with insulin-
independent glucose utilisation [22]. The updated SDM was then used to fit a large number of
glucose-insulin series generated with the extended model. The interplay between the two models
allowed the authors to discuss the link between the degree of nonlinearity in insulin secretion and
the volume of the pancreatic reserve.

Several larger-scale multi-organ models integrate a very extensive number of biological variables
separated in multiple compartments, for which production, diffusion, utilisation and clearance
processes lead to large systems of balance equations simulating whole-body dynamics. Among
these, UVA Padova is patented for usage in closed-loop delivery systems [71]. A similar multi-
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organ model was introduced in [30], supplementing the previous model of Nyman et al. [54]
through the introduction of the effect of blood flow on glucose uptake in adipose tissue and by
updating postprandial glucose uptake in organs and muscles. Another very comprehensive model
is that of Sorenson [65], devised by considering a large number of physiological functions along with
parameter values estimated from the clinical literature. In a recent revision of this model [57], an
additional subsystem was added to incorporate intestinal glucose absorption, present the complete
set of equations in a concise manner and provide an online implementation of the modified model.
The model provides predictions comparable to the UVA-Padova and the Hovorka model in in silico
simulations [60]. While similar, the model from Sarkar et al. [62] was calibrated using patient data
over several years and as such, focuses on long term dynamics and aims at providing estimates for
the progression of type 2 diabetes in an individual.

As the phenomenological understanding of physiological regulation evolves, it is important to
use this knowledge to devise enhanced estimators of insulin (and glucagon) resistance. It has been
recognised that current biomarkers may not be informative enough for discriminating between
the different pathways that may lead to type 2 diabetes. Building on a model from Topp et al.
[70], the model by Ha and Sherman [29] incorporates distinct feedback mechanisms for hepatic
and peripheral insulin sensitivity onto β cell mass dynamics and hyperinsulinimia. The model
enables the tracking of two main pathways to type 2 diabetes depending on which pre-diabetes
symptom arises first, namely fasting hyperglycaemia or impaired glucose tolerance in the oral
glucose tolerance test. They performed longitudinal simulations over a period of five years with
an assumed initial decline in peripheral and hepatic insulin sensitivity. The model provides a
framework for devising optimised therapy in the early stages of diabetes, targeting the specific
insulin resistance phenotype.

Furthermore, although Bergman’s minimal model [9, 10] has the power to estimate insulin
sensitivity (Si) during an IVGTT, discrepancies have risen in the accuracy of the model when
comparing Si across different ethnic groups. The Si is underestimated in individuals with a large
acute insulin response. This paper evaluates the differences of Si when calculated using the minimal
model versus using the hyperinsulinemic euglycemic clamp. It concludes that the latter, measuring
Si directly, is more reliable than the simulation in the minimal model and care should be taken
when analysing results across different ethnic groups. [28].

Exercise has a direct impact on glucose dynamics in individuals with type 1 diabetes, hence,
incorporating exercise-induced changes is important in the development of a safe artificial pancreas.
Alkhateeb et al. [2] propose six variations of the Bergman Minimal Model [10] to simulate the
physiological effects of moderate exercise, validating the results by comparing with existing clinical
data and simulations with the Hovorka model [31]. The model portrays that glucose effectiveness
is dependent on exercise intensity and the increased insulin sensitivity was seen to be proportional
to both the intensity and duration.

Finally, it is worth emphasising that the large quantity of data obtained through continuous
glucose monitoring (CGM) provides a highly valuable resource for the training of artificial neural
networks. As such, machine learning methods are taking an increasingly large share of the literature
on glucose dynamics prediction, with a large body of work being concerned with the prediction
of hypoglycaemia (see [51] for a review). While various studies obtain glucose predictions based
solely on long-term CGM data, others make use of other physiological data (e.g. insulin, physical
activity, heart rate, meals) as well as dynamical models. The approach of using neural networks
trained with CGM in combination with glucose absorption models (such as the one from Arleth
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[4]) was shown to provide more reliable estimates than CGM data alone [35], especially when the
responses to meals is to be predicted. Recent research carried out to understand the role of glucose
transporters in intestinal glucose absorption (especially GLUT2 [1, 53]) should lead to further
improvements in predictive models of glucose uptake. Similarly, further modelling is required for
evaluating the effect of rhythms in the hypothalamic-pituitary-adrenal axis and their impairment
on pancreatic secretion and insulin sensitivity [76, 77]. Such modelling studies should enable a
better glycemic control that preserves healthy dynamical rhythms.

Interest. Authors declare no competing interests.
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