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Abstract

External low-frequency peripheral nerve stimulation (LFS) has been proposed as a novel method for neuropathic pain relief.
Previous studies have reported that LFS elicits long-term depression-like effects on human pain perception when delivered at
noxious intensities, whereas lower intensities are ineffective. To shed light on cortical regions mediating the effects of LFS, we
investigated changes in somatosensory-evoked potentials (SEPs) during four LFS intensities. LFS was applied to the radial nerve
(600 pulses, 1 Hz) of 24 healthy participants at perception (1 times), low (5 times), medium (10 times), and high intensities (15
times detection threshold). SEPs were recorded during LFS, and averaged SEPs in 10 consecutive 1-min epochs of LFS were ana-
lyzed using source dipole modeling. Changes in resting electroencephalography (EEG) were investigated after each LFS block.
Source activity in the midcingulate cortex (MCC) decreased linearly during LFS, with greater attenuation at stronger LFS inten-
sities, and in the ipsilateral operculo-insular cortex during the two lowest LFS stimulus intensities. Increased LFS intensities
resulted in greater augmentation of contralateral primary sensorimotor cortex (SI/MI) activity. Stronger LFS intensities were fol-
lowed by increased a (alpha, 9–11 Hz) band power in SI/MI and decreased h (theta, 3–5 Hz) band power in MCC. Intensity-de-
pendent attenuation of MCC activity with LFS is consistent with a state of long-term depression. Sustained increases in
contralateral SI/MI activity suggests that effects of LFS on somatosensory processing may also be dependent on satiation of SI/
MI. Further research could clarify if the activation of SI/MI during LFS competes with nociceptive processing in neuropathic pain.

NEW & NOTEWORTHY Somatosensory-evoked potentials during low-frequency stimulation of peripheral nerves were examined
at graded stimulus intensities. Low-frequency stimulation was associated with decreased responsiveness in the midcingulate cor-
tex and increased responsiveness in primary sensorimotor cortex. Greater intensities were associated with increased midcingu-
late cortex h band power and decreased sensorimotor cortex a band power. Results further previous evidence of an inhibition
of somatosensory processing during and after low-frequency stimulation and point toward a potential augmentation of activity in
somatosensory processing regions.

EEG; long-term depression; low-frequency stimulation; pain; somatosensation

INTRODUCTION

Neuropathic pain, defined as pain caused by a lesion or
disease in the somatosensory system (1), is characterized by
spontaneous pain, heightened pain sensitivity, and sensory
loss (2, 3). Neuropathic pain syndromes affect �7%–10% of
the general population (4), with considerable impacts on
quality of life and functioning (5). First-line pharmacological
treatments for neuropathic pain are associated with modest

efficacy and adverse side effects (6–8), therefore, the devel-
opment of new, effective treatments is of vital importance.

External, low-frequency peripheral nerve stimulation
(LFS) has been proposed as a novel neurostimulation
method for intractable neuropathic pain syndromes (9, 10).
Long-term depression (LTD) of synaptic efficacy is theor-
ized as the neurophysiological mechanism underlying LFS
(11). LTD has been demonstrated at many sites in the cen-
tral nervous system and can be induced in the nociceptive
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system after repetitive LFS (�1–2 Hz) of Ad fibers in the spi-
nal dorsal horn both in vitro (11–14) and in vivo (15).
Conversely, high-frequency stimulation (HFS, �100 Hz) of
primary afferent fibers induces long-term potentiation of
Ad (16) and C-fiber responses (17–20), and may be a mecha-
nism for pain amplification in acute and chronic pain states
(21, 22). Long-term potentiation in the dorsal horn can be
inhibited and reversed with LFS (11, 14, 15); therefore, LFS
has important implications for our understanding of neuro-
pathic pain.

Alterations in synaptic plasticity cannot be directly meas-
ured in humans, although changes in pain ratings and pain-
related neural activity after LFS have been interpreted as
indirect correlates of nociceptive LTD. In these studies, pref-
erential activation of Ad fibers through the skin is assumed
with small diameter electrodes that deliver high current den-
sities (23–27). LFS of peripheral nerve fibers in humans is
associated with a sustained, homotopic decrease in per-
ceived pain to noxious electrical stimuli (28–31) and a rever-
sal of experimentally induced hyperalgesia (28, 32). LFS has
been shown to decrease the amplitude of somatosensory-
evoked potentials (SEPs) recorded with electroencephalogra-
phy (EEG) during noxious electrical test stimuli (25, 29, 33).
Thus, LFS appears to elicit strong effects on somatosensory
processing in humans.

Although the poststimulation effects of LFS on nocicep-
tive processing are well established, few studies have
investigated neural activation changes during the time
course of LFS. We recently demonstrated in healthy volun-
teers that LFS is associated with source activity in the pri-
mary sensorimotor cortex (SI/MI), bilateral operculo-
insular cortex, and midcingulate cortex (MCC) (34). By re-
cording SEPs over the duration of LFS, we showed a linear
decrease in SEP amplitude in the MCC and ipsilateral oper-
culo-insular cortex. These findings are in line with previ-
ous studies demonstrating that LFS is associated with a
linear decrease in excitatory postsynaptic potentials in
vitro (11) and gradual decreases in pain ratings during LFS
conditioning in humans (25, 28, 35, 36). We also showed
that LFS was associated with poststimulation increases in
8–12 Hz a and 16–24 Hz b band power in electrodes overly-
ing contralateral operculo-insular and sensorimotor corti-
ces (34), consistent with cortical inhibition and idling in
regions that mediate sensory perception (37, 38). Taken to-
gether, this indicates that LFS has lasting, inhibitory
effects on sensory processing that may be mediated by the
MCC and operculo-insular cortex.

Induction of LTD has been shown to be dependent on LFS
intensity. It is well established that LFS of afferent fibers at
noxious intensities sufficient to activate Ad fibers induces
sustained LTD, whereas lower intensities activating Ab fibers
produce no inhibition (39) or only a transient decrease in
synaptic transmission (11, 15). Likewise, in human studies,
maximal reduction in SEP amplitude and acute pain percep-
tion have been observed after 1,200 pulses of 1 Hz stimula-
tion at four times pain threshold, corresponding to 15 times
detection threshold (29). Conversely, lower intensities at one
time and two times pain threshold produced a smaller reduc-
tion in SEPs and pain ratings. In our recent study, we used a
distinctly uncomfortable but not painful LFS intensity that
may have been insufficient to activate Ad fibers (34). Thus,

to examine if reduced amplitude of SEPs estimated to be
generated by the MCC and operculo-insular cortex during
LFS are specific to LTD, it is crucial to compare the effects of
noxious intensities of LFS to stimulation at nonpainful
intensities.

To shed light on the cortical regions mediating the sup-
pression of activity during nonpainful and noxious inten-
sities of LFS, we investigated changes in SEPs and
poststimulation resting oscillations with four intensities of
continuous LFS in healthy human volunteers. Based on pre-
vious evidence that 15 times detection threshold is sufficient
to elicit attenuation of SEPs (29), the four intensities used
were 1 times, 5 times, 10 times, and 15 times detection
threshold. Using source analysis, we characterized the loca-
tions of sources contributing to the SEPs and how activity
in the sources changed over the duration of LFS. We pre-
dicted that LFS would be associated with a linear reduction
of SEP amplitude in sources originating in the MCC and ipsi-
lateral operculo-insular cortex, and that the greatest reduc-
tion in SEP amplitude would be found in these sources at the
highest LFS intensity. We secondly investigated whether the
cortical regions showing activation changes over the period
of LFS would similarly show poststimulation modulation of
resting oscillatory activity. It was predicted that greater
intensities of LFS would be associated with greater increases
in a and b band power and decreases in h band power in
source signals generated in operculo-insular and cingulate
cortex.

MATERIALS AND METHODS

Subjects

Twenty-eight healthy subjects (14 females) with no history
of chronic pain or neurological conditions were recruited
from a pool of undergraduate and postgraduate students at
the University of Liverpool. Four subjects were excluded dur-
ing data collection: three as they could not tolerate the elec-
trical stimulation and one due to excessive movement
artifacts. The final sample included 24 participants (11
females, 22 right handed) with a mean age of 25±4.2 yrs
(mean ± SD). The procedure was approved by the Research
Ethics Committee of the University of Liverpool, and all par-
ticipants gave written informed consent at the start of the
experiment in accordance with the Declaration of Helsinki.
Participants were reimbursed with £20 for their time on
completion of the study.

Experimental Protocol

Experimental procedures were carried out in a single 2-h
session in the Eleanor Rathbone Building, University of
Liverpool. Electrical detection thresholds were determined
before the start of the experiment using themethod of limits.
During the experiment, participants were seated in a dimly
lit room with a 19-in. LCD monitor in front of them.
Participants were instructed to keep their eyes open and look
straight ahead for 4min during the recording of resting EEG.

LFS was applied to the dorsal aspect of the hand during
four conditions, each modulated by LFS intensity: percep-
tion (detection threshold), low (5 times detection threshold),
medium (10 times detection threshold), and high (15 times
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detection threshold). Each block of LFS lasted �10 min.
Participants were randomly assigned one of six possible
block orders with each block order represented four times.
Presentation of LFS stimuli was controlled with Cogent 2000
(University College London, London, UK) in MATLAB 2010
(The MathWorks, Inc.). After each block of LFS, resting EEG
was recorded for 4 min while participants looked straight
ahead with eyes open, followed by a break of 6 min to ensure
that participants remained alert and to allow the researcher
to check electrode impedances.

Participants’ ratings of electrical stimulation were col-
lected at the start of the experiment and after each block of
stimulation by applying a single electrical stimulus to the
test site using the conditioning LFS electrode. Participants
were informed that the intensity of test stimulation was the
maximum level that they would receive during the experi-
ment, but that their perception of the stimulus may change
throughout the study. Participants were asked to rate the
painfulness of the test stimuli on a verbal numeric rating
scale from 0 (no pain) to 10 (maximum pain), where 3 indi-
cated pain threshold, and unpleasantness from 0 (not at all
unpleasant) to 10 (maximumunpleasantness).

Electrical stimulation.
LFS was applied to the skin in the region of the radial
nerve of the left hand using a pen electrode with 4 mm di-
ameter cathode (Compex Motor Point Pen, UK) and a dis-
tal 5-cm2

flat electrode by the olecranon process that
served as an anode, controlled by a Digitimer DS7A con-
stant current stimulator (Digitimer, UK) and MATLAB
2010. Electrodes using a small cathode area such as pin,
concentric, or pen electrodes been designed to preferen-
tially activate Ad fibers without coactivation of Ab fibers
(23, 24, 40–42). To the best of our knowledge, the propor-
tion of Ad and Ab fiber involvement during low- or high-
intensity LFS is not known.

Stimulus detection threshold was determined at the start
of the experiment using the method of limits, where single
electrical stimuli were delivered to the test site in descending
and ascending steps of 0.02 milliamperes (mA) to establish
the lowest threshold at which participants could perceive
the stimuli (detection threshold). During the experiment,
LFS was applied at four intensities calculated as multiples of
detection threshold: 1 times, 5 times, 10 times, or 15 times
detection threshold, with the highest intensity in line with
previous studies using LFS (29, 43). If participants found the
high-intensity condition to be intolerable, intensity was
reduced to a painful but tolerable level, and medium- and
low-intensity conditions were modified to 66% and 33% of
the high intensity, respectively. Mean stimulus intensities
were as follows: perception 0.12±0.04 mA, low 0.63±0.32
mA, medium 1.19±0.39 mA, and high 1.78±0.59 mA. An in-
dependent-samples t test showed that electrical detection
threshold was higher in male (M = 0.14 mV, SD = 0.04) com-
pared with female participants (M = 0.11mV, SD = 0.04) [t(22) =
2.09, P = 0.048]. Each block of LFS consisted of 600 pulses
delivered at a frequency of 1 Hz, pulse width of 1 ms, and
duration of 1 ms. The total number of pulses was reduced
in contrast to previous studies with LFS to reduce the bur-
den on participants, based on evidence that these parame-
ters are sufficient to elicit a prolonged suppression of SEPs

and pain ratings to electrical test stimuli (29). In addition,
single electrical test stimuli were applied to the test site at
the high intensity (15 times detection threshold) at base-
line and after each LFS block using the same electrode as
the conditioning stimulus.

EEG acquisition.
Continuous EEG was recorded using a 129-channel Geodesics
EGI System (Electrical Geodesics, Inc., Eugene, OR) with a
sponge-based HydroCel Sensor Net. The sensor net was
aligned with respect to three anatomical landmarks of two
preauricular points and the nasion. Electrode-to-skin impe-
dances were kept below 50 kX throughout the experiment. A
recording bandpass filter was set at 0.001–200 Hz with a sam-
pling rate of 1,000 Hz. Electrode Cz was used as a reference
electrode during the recordings.

Analysis of LFS Ratings

Mean ratings of pain and unpleasantness to electrical test
stimuli in each condition were calculated for each partici-
pant. To assess differences in pain and unpleasantness rat-
ings of test stimuli after each LFS intensity, 1�4 repeated-
measures analyses of covariance (ANCOVA) were computed
using SPSS v. 27 (IBM Inc.) separately for pain and unpleas-
antness, with an independent variable of “LFS Intensity”
(perception, low, medium, and high intensity) and baseline
scores as a covariate. Post hoc t tests were used where appro-
priate to investigate significant main effects.

EEG Data Analysis

EEG data were processed using BESA v. 6.1 (MEGIS
GmbH, Germany). Data were filtered using 1 Hz high-pass
and 70 Hz low-pass filters, with a notch filter of 50 Hz ± 2 Hz.
EEG data were spatially transformed to reference-free data
using common average method (44). Oculographic and elec-
trocardiographic artifacts were removed with principal com-
ponent analysis (45). Data were visually inspected for
movement and muscle artifacts. Trials containing artifacts
were marked and excluded from further analysis. Electrode
channels with large artifacts were interpolated to a maxi-
mum of 10% of electrodes.

Analysis of SEPs during LFS.
SEPs were evaluated during 10 min of LFS applied to the
radial nerve. All 600 SEP responses over the 10-min re-
cording were divided into 10 1-min intervals of 60
responses each. SEP responses in each 1-min interval were
averaged in the epoch �100 ms prestimulus to 900 ms
poststimulus. The baseline period ranged from �100 to �5
ms before stimulus onset, and the stimulus artifact win-
dow was defined as �4 to 10 ms poststimulus. Data were
filtered during averaging from 1 to 45 Hz. The mean num-
ber of epochs containing SEP responses accepted for fur-
ther analysis was 56.99 ± 0.27 (means ± SE). A repeated-
measures ANOVA showed that the average number of
accepted epochs was significantly different between LFS
intensities [F(3,69) = 2.86, P = 0.043] due to fewer accepted
epochs during high intensity (56.45 ± 0.41; P = 0.015) com-
pared with perception intensity LFS (57.26 ± 0.26).
Accepted epochs were significantly different over the 10-min
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duration of LFS [F(9,207) = 5.69, P < 0.001]. Pairwise compari-
sons showed a significant increase in the number of accepted
epochs in minutes 2–10 compared with minute 1 (P < 0.05).
The interaction between LFS intensity and duration was not
significant (P> 0.05).

Source dipole modeling.
Source dipole modeling of SEPs was performed using
BESA v. 6.1 (MEGIS GmbH, Germany). The source dipole
model was constructed using a sequential strategy as used
in our previous study (34), in which equivalent current
dipoles (ECDs) were fitted consecutively from the first
peak in global field power (46–49). Due to the presence of
a large stimulus artifact from LFS, dipoles were fitted
between 30 ms and 900 ms poststimulus. When residual
variance was not reduced by adding another dipole, the fit-
ting procedure was terminated. Classical LORETA analysis
recursively applied (CLARA) (50) was used as an independ-
ent source localization method to confirm the location of
ECDs.

To evaluate the effect of LFS duration on SEPs, the grand
average source dipole model was used to compute individual
subject source waveforms for all 10 1-min intervals of LFS. A
permutation analysis with 2,000 repetitions, implemented
in the statcond.m program in EEGLab (51), was utilized to
identify time intervals showing significant main effects and
interactions of LFS duration and intensity (52). This method
provides a data-driven approach to test the effects across all
timepoints while controlling for multiple comparisons with
no loss in statistical power. Time intervals surrounding
source waveform peaks were defined for each ECD (ECD1
35–75 ms, ECD2 100–150 ms, ECD3 105–155 ms, and ECD4
150–260 ms). Intervals surrounding ECD peaks that
exceeded a predefined threshold on the calculated P values
(corrected P < 0.001) for the main effect or interactions of
LFS duration and intensity were selected for further analysis.
Source dipole moments in intervals deemed significant by
permutation tests were entered into individual 4� 10
repeated-measures ANOVAs involving the four LFS inten-
sities (perception, low, medium, and high) and each 10-min
interval (minutes 1–10) for each ECD. The Huynh–Feldt cor-
rection was used where necessary to tackle a violation of the
sphericity assumption, denoted by ɛ.

Linear regression analysis.
Linear regression analysis was conducted to analyze if
source dipole moments showed a systematic decrease in am-
plitude over time, consistent with LTD. Linear regression
analysis was carried out in every subject and each level of
LFS intensity, with LFS duration as a predictor variable and
source dipole moments as dependent measures. As the
regression analysis assessed the slope of change in ECD am-
plitude over time, only source dipole moments that showed
a significant main effect of time were included.

The resultant regression coefficients from linear regres-
sion analysis for all subjects were entered into one sample t
tests to examine if any of the four LFS intensities showed a
significant difference from zero. Regression coefficients
showing a significant difference from zero were compared
individually for each ECD using repeated-measures ANOVAs
to investigate changes across the four LFS intensities.

Resting EEG analysis.
To evaluate the effect of LFS intensity on ongoing oscillatory
activity, the grand average source dipole model was used to
compute individual subject source waveforms in resting
EEG recorded before LFS and after each LFS intensity. Each
ECD in the source dipole model yielded, after back projec-
tion onto resting-state EEG data using the surrogate model
method, a continuous source signal sampled at 256 Hz.
Individual continuous source signals for all LFS intensities
were exported to MATLAB 2019b for spectral analysis. Power
spectral density was estimated using Welch’s method in the
frequency range 0–128 Hz in nonoverlapping 1-s segments.
Data were smoothed using a Hamming window. For each
subject, time samples containing artifacts were removed
from the data before spectral analysis, and data were
trimmed to the length of the shortest condition to avoid dif-
ferences in data length affecting the results. The mean dura-
tion of resting EEG data for which power spectra were
estimated was 231± 7 s (means ± SD).

Only frequency components between 1 and 40 Hz were con-
sidered for statistical analysis. Mean absolute power values
were transformed using a decadic logarithmic transform. One-
way ANOVAs were computed to investigate the effect of LFS
intensity (perception, low, medium, and high) on spectral
power in all frequencies from 1 to 40 Hz in each of the four
ECDs. Analyses were carried out on all frequencies from 1 to 40
Hz to investigate the specific frequency components showing
changes in resting oscillatory activity. Resting EEG recorded
before LFS was not included in statistical analyses as the order
of this condition was not permuted. To control for Type I error
likely to occur due to the large number of ANOVAs, the result-
ing statistical probability values were subject to permutation
analysis using the statcond.m program with 2,000 permuta-
tions. Frequency components that exceeded a predefined
threshold (P < 0.05) for the main effect of LFS intensity were
selected for further analysis. Pairwise comparisons were com-
puted to investigate the direction of effects.

Next, Pearson’s correlations were conducted in MATLAB
to analyze the relationship between linear regression slopes
(b) for change in source dipole amplitude during LFS at each
of the four LFS intensities, and change in resting oscillatory
band-power after stimulation. Correlations were computed
individually for source waveforms showing significant dif-
ferences from zero, and resting band power after each inten-
sity of LFS in the corresponding source waveforms. To
correct for individual variations in resting band power, a
baseline correction was implemented by subtracting spectral
power before stimulation from absolute power after each of
the four LFS intensities.

RESULTS

Mean Ratings of Electrical Test Stimuli

Mean pain ratings of test stimuli before LFS were
4.5 ± 1.3 on a scale of 0–10, where 3 indicated pain thresh-
old. Mean unpleasantness scores for test stimuli before
LFS were 6.04 ± 1.9 on a scale of 0–10. Mean pain and
unpleasantness ratings for test stimuli did not signifi-
cantly vary with LFS intensity [F(3,66) = 0.4, P > 0.05;
F(3,66) = 0.23, P > 0.05].
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Source Dipole Model

Changes in SEPs over the 10min of LFS were analyzed using
source dipole analysis. The four-dipole model accounted for
83.62% of the variance in the SEP (Fig. 1, A and B). Addition of
a fifth dipole with free orientation and location to the source
dipole model resulted in an anterior dipole close to ECD4,
which did not improve the residual variance; therefore, the
four-dipole solution was used. CLARAmethodwas used to ver-
ify the location of fitted ECDs. Results were highly convergent

between the two models, with a maximum discrepancy of �2
mmbetween ECD3 and themaxima of the CLARA cluster.

ECD1 was located in the contralateral SI/MI (approximate
Talairach coordinates: x = 30 mm, y = �20 mm, z = 60 mm).
This source waveform had a negative peak at 56 ms (Fig. 1, C
and D). ECD2 was located in the upper bank of the right
Sylvian fissure comprising the secondary somatosensory cor-
tex (approximate Talairach coordinates: x = 40 mm, y = �23
mm, z = 17 mm). The source waveform had a positive peak in
frontal electrodes at 121 ms (Fig. 1, E and F) . ECD3 was
located in the left Sylvian fissure symmetrical to ECD2, con-
sistent with the ipsilateral secondary somatosensory cortex
(approximate Talairach coordinates: x = �45 mm, y = �19
mm, z = 20mm). The source waveform of ECD3 (Fig. 1,G and
H) waveform had a positive peak in frontal electrodes at 126
ms. Finally, ECD4 was located in the medial parietal cortex
involving the mid- and posterior cingulate cortex (approxi-
mate Talairach coordinates: x = 8 mm, y = �42 mm, z = 54
mm). The ECD4 source waveform had a positive peak across
the vertex with a latency of 182 ms (Fig. 1, I and J).

Changes in SEPs during LFS.
Figure 2, A, C, and E shows the time intervals around source
waveform peaks showing a significant effect of LFS intensity.
Amplitude of ECD1 was significantly modulated by LFS inten-
sity [F(3,69) = 15.57, P < 0.001, g2

p = 0.40; Fig. 2B]. Pairwise
comparisons showed an increase in amplitude at low (P =
0.010), medium (P < 0.001), and high (P < 0.001) LFS inten-
sities compared with the lowest perception level. ECD2
showed no statistically significant changes during LFS (P >
0.05). ECD3 was significantly modulated by LFS intensity [F
(3,69) = 10.68, P < 0.001, ɛ = 0.58, g2

p = 0.32; Fig. 2D], with an
increase in amplitude at low, medium, and high LFS inten-
sities compared with the lowest perception level (all P <
0.001). ECD4 also showed a significant increase in amplitude
with LFS intensity [F(3,69) = 33.76, P < 0.001, ɛ = 0.56, g2

p =
0.60; Fig. 2F] due to a significant increase in amplitude at
greater LFS intensities (perception vs. low, P = 0.028, all other
comparisons, P < 0.001). In addition, the statistical test of
trend components confirmed that amplitude increased line-
arly with greater LFS intensities for ECD1 [F(1,23) = 40.03, P <
0.001, g2

p = 0.64], ECD3 [F(1,23) = 14.04, P < 0.001, g2
p = 0.38]
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Figure 1. Source dipole model of somatosensory-evoked potentials (SEPs)
during 10 min of low-frequency peripheral nerve stimulation (LFS). A: loca-
tion and orientation of four equivalent current dipoles (ECDs) in transparent
glass brains determined using a data-driven sequential strategy. B: global
field power (GFP) of grand average electroencephalography (EEG) poten-
tials averaged over all participants (n = 24, 11 females) and all 1-min epochs
over the 10-min duration of LFS. C: time course of ECD1 with a positive peak
latency of 56 ms. D: potential maps of the P56 component showing a posi-
tive potential maximum in parietal area and a negative maximum in contra-
lateral central and frontal electrodes, consistent with a tangential dipole
located in primary sensorimotor cortex (SI/MI). E: time course of ECD2 with
a positive peak latency of 121 ms. F: potential maps of the N2 component
showing a negative maximum in contralateral temporal electrodes, suggest-
ing the presence of a radial dipole located in the contralateral operculo-in-
sular cortex. G: time course of ECD3 with a positive peak latency of 126 ms.
H: potential maps of the N2 component showing a negative maximum in ip-
silateral temporal electrodes, suggestive of a radial dipole located in the
operculo-insular cortex. I: ECD4 time course with a positive peak latency of
182 ms. J: potential maps of the P182 component showing a positive poten-
tial on the vertex, consistent with a radially orientated current dipole located
in the midcingulate cortex (MCC).
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and ECD4 [F(1,23) = 46.67, P < 0.001, g2
p = 0.67] but not for

ECD2 (P> 0.05).
ECD1 amplitude was significantly modulated by LFS dura-

tion [F(9,207) = 9.08, P< 0.001, ɛ = 0.74, g2
p = 0.28; Fig. 3,A and

B] in the interval 50–76 ms. Simple contrasts indicated that
this effect was due to an increase in amplitude duringminute 2
(P = 0.006), minute 3 (P = 0.031), minute 5 (P = 0.007), and
minutes 4 and 6–10 (P < 0.001) compared with minute 1.
The linear trend was also statistically significant [F(1,23) =
33.79, P < 0.001, g2

p = 0.60], indicating that ECD1 ampli-
tude increased with successive LFS stimuli. ECD2 showed
no statistically significant changes during LFS (P > 0.05).
ECD3 was significantly modulated by LFS duration
[F(9,207) = 4.95, P < 0.001, ɛ ¼ 0.63, g2

p = 0.18; Fig. 3, D and
E] in the latency epoch 105–119 ms, with a significant lin-
ear decrease in amplitude over time [F(1,23) = 10.12, P <
0.004, g2

p = 0.31]. Simple contrasts from minute 1 indicated
a significant decrease in amplitude during minute 2 (P =
0.011), minute 4 (P = 0.009), minute 5 (P = 0.040), minutes
7 and 8 (P = 0.003), minute 9 (P = 0.007), and minute 10

(P = 0.005). ECD4 also showed a significant linear decrease
in amplitude with LFS duration [F(9,207) = 12.94, P <
0.001, ɛ ¼ 0.67, g2

p = 0.36; F(1,23) = 20.40, P < 0.001, g2
p =

0.47; Fig. 3,G andH] in the interval 200–261 ms. Simple con-
trasts from minute 1 showed a statistically significant
decrease in amplitude duringminute 2 (P = 0.029),minutes 3
and 4 (P < 0.001), minute 5 (P = 0.002), and minutes 6–10
(P< 0.001).

Figure 3, A, D, and G illustrates time intervals around
source waveform peaks showing a significant interaction
between LFS duration and intensity. ECD3 showed a statis-
tically significant interaction between LFS duration and
intensity in the window 124–142 ms [F(27,621) = 2.23, P =
0.003, g2

p = 0.09; Fig. 3F]. Repeated-measures ANOVAs
showed that this effect was due to reductions in ECD3 am-
plitude over time both during perception [F(9,207) = 3.72,
P < 0.001, g2

p = 0.14] and low LFS intensities [F(9,207) =
2.97, P = 0.002, g2

p = 0.11]; in contrast, there was no signifi-
cant change in ECD3 amplitude during medium and high
LFS intensities (P > 0.05). ECD4 showed a significant
interaction between LFS duration and intensity in the win-
dow 250–256 ms [F(27,621) = 2.07, P = 0.012, g2

p = 0.08; Fig.
3I]. Repeated-measures ANOVAs showed that this was due
to significant reductions in ECD4 amplitude over time dur-
ing low [F(9,207) = 7.66, P < 0.001, g2

p = 0.25], medium
[F(9,207) = 5.88, P < 0.001, g2

p = 0.20], and high [F(9,207) =
7.89, P < 0.001, g2

p = 0.26] LFS intensities, but not percep-
tion intensity (P > 0.05).

In summary, results point toward a modulation of ECD1
and ECD4 amplitude at greater LFS intensities, and
decreased ECD3 amplitude during lower LFS intensities.

Linear regression slopes.
Repeated-measures ANOVAs were computed to assess sig-
nificant differences in linear regression slopes (b) between
LFS intensities for source dipole moments showing a signifi-
cant difference from zero in one-way ANOVAs: ECD1, ECD3,
and ECD4. Mean regression coefficients for each intensity
are shown in Fig. 4, A–C. ECD1 showed a statistically signifi-
cant effect of LFS intensity [F(3,69) = 5.87, P = 0.001, g2

p =
0.20]. Pairwise comparisons indicated that this effect was
due to a significantly steeper positive slope at medium (P =
0.044) and high LFS intensities (P = 0.012) compared with
perception intensity (Fig. 4A). ECD3 showed a statistically
significant effect of LFS intensity [F(3,69) = 3.10, P = 0.032,
g2
p = 0.13], however pairwise comparisons between LFS

intensities did not survive Bonferroni correction (P > 0.05)
(Fig. 4B). ECD4 showed a statistically significant effect of
LFS intensity [F(3,69) = 5.87, P = 0.001, g2

p = 0.20]. Pairwise
comparisons indicated that this effect was due to a signifi-
cantly steeper negative slope at low- (P = 0.044) and high
LFS intensities (P = 0.007) compared with perception inten-
sity (Fig. 4C).

Oscillatory Changes in Source Signals after LFS

Figure 5 shows the power spectral densities in the rest-
ing EEG in each of the ECDs before any LFS stimulation
(pre-LFS) and after each of four LFS intensity blocks.
Resting EEG recorded before LFS is shown only for com-
parison purposes. Spectral power of ECD1 was significantly
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Figure 2. Grand average changes in somatosensory-evoked potentials
(SEPs) at varying intensities of low-frequency stimulation (LFS). One-way
ANOVAs showed a statistically significant amplitude modulation by LFS in-
tensity for equivalent current dipole (ECD)1 (A), ECD3 (C), and ECD4 (E).
Shaded bars indicate significant time intervals around source waveform
peaks. Bar graphs show the mean amplitudes and standard deviation of
ECD1 (B), ECD3 (D), and ECD4 (F) source waveforms during perception (1
times), low (5 times), medium (10 times), and high LFS intensities (15 times
detection threshold) in corresponding time intervals. Individual subject
data points averaged over single trials are overlaid for each condition.
Pairwise comparisons were computed to identify contrasts that exceeded
significance at �P< 0.05 or ��P< 0.001. n = 24 (11 females).
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modulated by LFS intensity at 9–11 Hz [F(3,69) = 3.07,
P = 0.034, g2

p = 0.12; Fig. 5A]. Pairwise comparisons showed
that this effect was due to an increase in band power after
the strongest LFS intensity, compared with after percep-
tion (P = 0.038) and low intensities (P = 0.001). ECD2 and
ECD3 showed no statistically significant changes in spec-
tral power after each intensity of LFS (P > 0.05; Fig. 5, B
and C). ECD4 showed a statistically significant decrease in
3–5 Hz power with LFS intensity [F(3,69) = 3.24, P < 0.027,
g2
p = 0.24; Fig. 5D]. This effect was due to a significant

decrease in power after the strongest LFS intensity com-
pared with perception intensity (P = 0.014).

Pearson’s correlations were conducted to analyze the rela-
tionship between linear regression slopes in ECD1 and ECD4
at each of the four LFS intensities and normalized change in
resting oscillatory band-power after stimulation. Pearson’s
correlations showed no statistically significant relationship
between the slope of regression in ECD1 and 9–11 Hz

normalized band power in ECD1 (P > 0.05), or between
ECD4 and 3–5 Hz normalized band power in ECD4 (P >

0.05), at any of the four LFS intensities.
In summary, results show that LFS delivered at strong

intensities (15 times detection threshold) was followed by
increased resting 9–11 Hz band power in ECD1 and decreased
3–5 Hz power in ECD4.

DISCUSSION
The present study investigated the temporal profiles of

cortical activity during four intensities of LFS and ampli-
tudes of cortical oscillations following LFS. SEPs related to
LFS of the radial nerve were modeled by four ECDs located
in contralateral SI/MI, bilateral operculo-insular cortex, and
MCC. Source activity in the MCC decreased linearly during
LFS, with greater attenuation at increasing LFS intensities.
Source activity in ipsilateral operculo-insular cortex also
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Figure 3. Grand average changes in somatosensory-evoked potentials (SEPs) during 10 min of low-frequency stimulation (LFS) and at varying LFS inten-
sities. One-way ANOVAs showed a statistically significant amplitude modulation by LFS duration for equivalent current dipole (ECD)1 (A), ECD3 (D), and
ECD4 (G). Source waveforms and standard deviations in minute 1, minute 4, minute 7, and minute 10 are shown for illustrative purposes. Bars indicate
time intervals around source waveform peaks showing a significant effect of LFS duration (shaded only) or an interaction between LFS duration and in-
tensity (shaded with outline). Bar graphs show the mean amplitudes and standard deviation of ECD1 (B), ECD3 (E), and ECD4 (H) source waveforms
in 1-min intervals over the 10-min duration of LFS, averaged over all LFS intensities. Individual subject data points averaged over single trials are
overlaid for each condition. Simple contrasts were computed to identify contrasts that exceeded significance from LFS minute 1. Scatter graphs
show mean amplitudes of ECD1 (C), ECD3 (F), and ECD4 (I) source waveforms during each of the four LFS intensities for all 1-min epochs of LFS.
Error bars indicate standard deviation. n = 24 (11 females).

NEURAL EFFECTS OF LOW-FREQUENCY STIMULATION INTENSITY

J Neurophysiol � doi:10.1152/jn.00511.2021 � www.jn.org 1635
Downloaded from journals.physiology.org/journal/jn (094.174.117.125) on June 10, 2022.

http://www.jn.org


decreased linearly during LFS, albeit only during the two
lowest stimulus intensities. In contrast, contralateral SI/MI
showed a linear increase of source activity during LFS.
Blocks of strong LFS intensities were followed by increased
9–11 Hz a band power in contralateral SI/MI and diminished
3–5 Hz h band power inMCC.

Diminished source activity inMCCwas observed during LFS
intensities at greater than perception level. This furthers our
previous findings (34), showing that changes inMCC are found
at noxious intensities. Involvement of the MCC in somatosen-
sory processing is well established; the MCC is engaged during
the anticipation (53) and experience of acute experimental
pain (54–57), as well as during nonpainful somatosensory stim-
uli (58–60). The MCC generates greater activity during noxious
stimuli when defensive motor actions are required (61), and
connections with the premotor cortex and intralaminar tha-
lamic nuclei have been suggested to mediate nocifensive
behaviors (55). Thus, the MCC has been proposed to act as a
hub between affective processing, pain, cognitive control, and
motor planning (62, 63). Engagement of the MCC during LFS
has relevance for neuropathic pain treatments; motor cortex
stimulation for neuropathic pain has been shown to increase
cerebral blood flow in regions including the cingulate gyrus

(64), and transcranial magnetic stimulation over medial scalp
regions corresponding to the MCC decreases ratings of noxious
electrical stimulation (65). Taken together, decreased MCC
responses during LFS at intensities greater than perception
may reflect reduced engagement of cingulate nociceptive path-
ways, which are implicated in neuropathic pain.

Poststimulation amplitude of h oscillations in the MCC
were lower after periods of strong LFS. Theta oscillations
have been reported to encode the intensity of acute pain and
touch stimuli (66), whereas augmented h power has been
observed in patients with neurogenic pain (67–69), fibro-
myalgia (70, 71), and primary dysmenorrhea (72). As a result,
a shift from dominant a to h oscillations has been suggested
as a contributing factor in the maintenance of chronic pain
(73, 74). Greater reduction in power with increased LFS
intensities suggests an inhibition within the region of MCC.
This reduction in power may be related to the presence of
LTD, which is a proposed mechanism of pain suppression
during LFS (11, 28). Thus, reduced h band power after LFS
could reflect a reduction of aberrant processes within the
MCC that potentially contribute to persistent pain states.

A novel finding in the current study was increasing slopes
of activation in SI/MI during LFS, which were enhanced with
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greater LFS intensities. The primary somatosensory cortex
has been implicated in sensory-discriminative processing of
noxious and innocuous stimuli, with preferential responses
for nonpainful stimulus onsets (59, 75). Pain-related activa-
tion has also been demonstrated in the primarymotor cortex
(57, 76–78). Primary somatosensory cortex activation has been
shown to be more resilient to stimulus repetition than other
somatosensory processing regions, particularly in area 3b (79–
81); although some studies have reported reduced primary
somatosensory cortex responses to repeated noxious stimuli
(82). Increased amplitude of short-latency SEPs generated in
primary somatosensory cortex have been reported alongside
increased motor cortex excitability with high intensities of pe-
ripheral electrical stimulation, whereas lower stimulation
intensities reduce SEP amplitude and cortical excitability (83,
84). Greater cortical excitability in corticomotor pathways after
high intensities of peripheral stimulation could mask subse-
quent parallel inputs via an inhibitory gating mechanism (48,
85). Findings of increased primary somatosensory cortex acti-
vation suggest that the analgesic effects of LFS that have been
reported in previous studies (28–32) may result from a combi-
nation ofMCC attenuation and SI/MI facilitation.

Poststimulation amplitude of a oscillations in SI/MI
showed increased power after the strongest LFS intensity.
Tactile and peripheral nerve stimulation are associated with
amplitude attenuation of cortical 10 and 20 Hz oscillations
focused primarily over contralateral sensorimotor regions
(37, 86–91), followed by an amplitude increase or rebound af-
ter stimulus cessation (37, 89, 92–97). Poststimulus increases
in μ rhythm, particularly in the 20-Hz component, have been
linked to the involvement of the dorsal column pathway
(87). Notably, periods of increased oscillatory band power
over sensorimotor cortical areas have been found following
administration of c-aminobutyric acid (GABA) agonist ben-
zodiazepines (98, 99), pointing toward a direct role in sen-
sory gating and inhibition (100). Prestimulus a power has
been shown to be related to noxious processing, with weaker
10–12 Hz a band power associated with higher amplitude
laser-evoked potentials (101). Greater a band power is associ-
ated with cortical inhibition (86, 102). Combined, the results
suggest that increased source activity in SI/MI during condi-
tioning may inhibit poststimulation processing, due to the
possible masking of nociceptive processing by afferent
impulses conveyed in ascending spinal pathways.

Ipsilateral operculo-insular source activity decreased
selectively during the two lowest LFS intensities, point-
ing toward a differentiation between noxious and non-
painful stimulation. Operculo-insular cortex has been
consistently implicated in pain processing (59, 78, 103–
106), with increased activation alongside heightened
acute pain perception (107, 108). Similar to conditioning
stimuli in the current study, repeated stimuli presented
at regular intervals manifest in diminished SEPs as early
as the second repetition (109–112). Notably, SEPs during
medium and high LFS intensities were reduced during
the first minute of stimulation in contrast to the two low-
est intensities. Therefore, selective attenuation of oper-
culo-insular source activity during weaker LFS intensities
may be due to immediate suppression of evoked poten-
tials during strong stimuli, which show no further
decreases during conditioning.

Activity-dependent synaptic plasticity such as LTD have
been interpreted as hallmarks of learning and memory (113–
115), leading to the suggestion that LTD may be a process for
erasing pain memory traces (32, 116). LFS was associated
with source activity in the SI/MI, bilateral operculo-insular
cortex, and MCC, consistent with previous studies of SEPs
elicited by electrical stimulation (117–120) and our previous
LFS study (34). Although the contralateral operculo-insular
cortex was not affected by intensity, activity in the SI/MI, ip-
silateral operculo-insular cortex, and MCC showed greater
source activity as LFS intensity increased. This is in line with
evidence that graded intensities of nonpainful and noxious
stimuli are associated with enhanced amplitude of evoked
potentials (110, 118, 119, 121, 122) and greater hemodynamic
responses in somatosensory processing regions (57, 78, 108,
123). These findings further previous evidence of reductions
in pain-related cortical activation after LFS in regions includ-
ing the primary and secondary somatosensory cortices,
insula, anterior cingulate cortex, and inferior parietal lobule
(124).

The present study did not identify significant changes in
pain or unpleasantness of electrical test stimuli between LFS
intensities. Previous studies have reported a decrease in be-
havioral pain ratings to noxious stimuli after LFS (28–30),
with the strongest attenuation after an intensity correspond-
ing to 15 times detection threshold (29). Such decreases have
been interpreted as correlates of LTD of nociception in
humans (28). Inconsistencies may be due to variations in
methodology; Jung et al. (29) studied the effects of LFS in-
tensity on mean pain ratings from 0 to 100 during eight
blocks of 15 test stimuli over 1 h following conditioning stim-
ulation, in comparison with single test stimuli rated from 0
to 10 in the present study. Ratings in the present study may
also have been affected by participants’ knowledge that LFS
intensity was the same for each test stimulus, as cognitive
processes such as expectation are well established as modu-
lators of pain experience (125).

A caveat of the present findings is in the use of source
dipole modeling to estimate cortical generators of the
observed scalp data. Source dipole modeling is an inverse so-
lution which assumes that the scalp generated field is gener-
ated by only one or a few equivalent current dipoles in the
brain (126). Studies examining the accuracy of dipole source
localization methods have reported mean errors of 6–20mm
(127–130). However, definitive identification of electrical
potentials is not possible from EEG alone, and caution
should be taken when interpreting the spatial locations of
results.

The current findings have potential implications for neu-
ropathic pain treatment. Although preliminary investiga-
tions have demonstrated success with LFS (9, 10, 131),
evidence is limited, and a recent randomized controlled trial
in chronic peripheral nerve injury found no significant
reduction in spontaneous pain symptoms following 3 mo of
LFS treatment (132). However, these findings may have been
affected by stimulation intensity, as patients were able to
vary stimulus parameters including intensity as desired,
which may have resulted in intensities below that required
to activate Ad fibers (11, 15). A mechanistic arm of the afore-
mentioned trial reported significant effects of LFS on me-
chanical pain sensitivity and dynamic mechanical allodynia
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(132). Indeed, LFS has been shown to reverse and inhibit the
development of primary hyperalgesia evoked by HFS, even
at very low frequencies that would not independently result
in LTD (32). This has particular relevance for neuropathic
pain, with a large proportion of patients with peripheral neu-
ropathic pain exhibiting mechanical hyperalgesia (133).

Conclusions

Our study demonstrates that LFS of radial nerve fibers
elicits graded effects on somatosensory processing, most
notably in the MCC and SI/MI. Although previous literature
points toward LTD as the neurophysiological mechanism
underlying LFS, our study suggests a potential secondary
mechanism involving engagement of the SI/MI. Preliminary
findings of a modulation of cortical oscillations after condi-
tioning supports sustained changes after LFS; however, the
link between short-term changes in neural activity and long-
lasting effects of LFS on persistent pain states has yet to be
explored.
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