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Abstract

As we are stepping into the era of beyond 5G, the demand for frequency bands will
increase significantly to accommodate the fast growing tendency in wireless commu-
nications technology. Spectrum sharing is one of the promising solutions to overcome
the frequency scarcity problem and maximise spectrum utilisation efficiency. Its con-
sideration can be seen in the recent ongoing deployment of 5G as in 5G New Radio
Unlicensed (5G NR-U). The harmonious coexistence of several wireless systems in a
shared frequency spectrum is highly dependent on making effective decisions for the
utilisation of such spectrum. These decisions are usually based on the users’ traffic
activity within the channel and their statistical information. Therefore, it is crucial for
a spectrum sharing system to accurately obtain channel activity statistics. Although
spectrum sensing is used in such systems to determine the instantaneous state of the
channel, sensing decisions can further be exploited to provide a broad range of statisti-
cal information of the channel activity. However, spectrum sensing is imperfect in real
world which therefore leads to inaccurate estimation of the channel activity statistics.

In this context, this thesis studies the problem of estimating the channel activity
statistics under (realistic) Imperfect Spectrum Sensing (ISS) and it finds mathematical
relationships (in closed-form expressions) between the observed channel activity statis-
tics under ISS and their corresponding actual statistical information, as a function of
relevant operating parameters including the probability of sensing errors, the employed
sensing period and the sample size. Such problem is poorly addressed in the literature,
without deep and rigorous mathematical analyses taking into account all the factors
that would influence the estimation accuracy of the channel activity statistics. Then,
the thesis investigates different approaches that can be used to improve the estima-
tion of the channel activity statistics under ISS, namely the closed-form expression
approach, which is based on the obtained mathematical expressions for these statistics;
the algorithmic approach, which is based on reconstruction algorithms; and finally a
Traffic Learning (TL) approach, which is based on deep learning techniques. It is shown
that the proposed estimation methods in this thesis outperform the existing methods
in the literature without requiring any prior knowledge of the channel activity. The
correctness of the obtained analytical expressions and proposed estimation methods are
corroborated with both simulation and experimental results, for which a USRP-based
prototype is developed as an experimental platform to validate the theoretical analy-
ses conducted for the estimation of the channel activity statistics in spectrum sharing
systems.
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Chapter 1

Introduction

1.1 Background

Since the early civilisations, humans have sought innovative ways to communicate with

one another. The history of the early communication means can be traced back to

the pre-industrial age, where rudimentary techniques such as smoke signals, fires, and

semaphore flags were used by the ancient people of China, North America and Eu-

rope in order to send important messages over far distances. Despite the simplicity

of those techniques back then, they hold a similar sort of engineering trade-offs that

are well known in our modern communication systems such as transmission distance

and data rate. More complex systems of communications started to appear in the 18th

century when Samuel Morse patented the electric telegraph in 1838 as the first elec-

trical telecommunication system that uses electrical pulses, Morse code, to send text

messages over long distances. The latter was gradually replaced after the world’s first

telephone was invented by Alexander Graham Bell in 1876, commencing a new era of

voice communications over electrical wires. However, after the theoretical foundations

of electromagnetic waves were presented by James Clerk Maxwell in 1864, it was not

very long until Marconi was able to demonstrate the first radio transmission in 1895

between a transmitter and a receiver, hence radio communications was born.

Since then, the interests in radio technology have arisen rapidly to enable wireless

communications support larger capacities (i.e., number of users, data rate, etc.). The

initial systems of wireless communications were based on a large central transmitter

that covers a wide geographical area. The challenges of wireless communications were

soon realised, including the capacity limitation of the frequency spectrum. This capac-

ity problem was then overcome when the cellular concept was developed by researchers
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from Bell Laboratories [1], in which the fact that the power of the transmitted signals

dissipate over distances is exploited in order to reuse the same signals frequency at

spatially separated areas (cells) while maintaining minimal interference among them.

The development of wireless communications continued from one generation to another

to accommodate the increasingly growing number of wireless-connected devices and to

support new emerging technologies. As we are stepping into the era of Beyond Fifth

Generation (B5G)/6G of wireless communications, spectrum capacity is expected to

grow massively to support data-hungry applications (e.g., 4k/8k Ultra High Defini-

tion (UHD) video traffic, Virtual Reality (VR), Augmented Reality (AR), real time

mobile gaming, etc.) and the exponentially rising number of Internet-of-Things (IoT)

devices [2–5]. It is expected that the global mobile traffic volume will exceed 5 ZB

(Zeta Byte) per month by the end of 2030 from 0.062 ZB as in 2020, and the number

of machine-to-machine (M2M) subscriptions will reach 97 billion in 2030 from 7 bil-

lion as of 2020 [6]. Such growing tendency also brings burdens of rising demand for

frequency spectrum to support this tremendous number of interconnected terminals.

This demand has been tried to be fulfilled in 5G by introducing Frequency Range 2

(FR2) [7] of millimeter wave (mmWave) bands to support the traditional wireless com-

munications bands given by Frequency Range 1 (FR1) [8] (which include sub-6 GHz

low and mid-frequency bands). Although there is significant unexploited bandwidth

available in mmWave bands, moving to higher frequencies does not solve the problem

of spectrum scarcity as it brings other challenges that might restrict its deployment

as a standalone system. These challenges are significant in wireless communications,

which include high signal attenuation (path loss) and low signal penetration (signal

blockage by solid materials) [9], which can therefore limit mmWave’s applications and

deployments. This indeed makes FR1 still attractive and irreplaceable by introducing

higher frequency bands. However, due to its limited bandwidth, the need for efficient

and smart spectrum management strategies to maximise the utilisation efficiency and

the exploitation of underutilised patterns of low and mid-frequency bands has become a

crucial ongoing necessity. Solutions for efficient spectrum utilisation were first explored

through Cognitive Radio (CR) concept [10,11] and then evolved into a more recent and

wider context of Spectrum Sharing (SS) [12–15] systems.

1.2 Spectrum Sharing

Spectrum sharing was traditionally introduced two decades ago and received popularity

in Cognitive Radio (CR) concept to enable Dynamic Spectrum Access (DSA) [16, 17],
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which was proposed as a solution to overcome the underutilisation problem in the

legacy management policy of fixed spectrum allocation. In DSA/CR systems, spec-

trum utilisation is improved by allowing unlicensed (secondary) users to exploit the

idle spectrum (spectrum holes) opportunistically without causing any harmful inter-

ference with the licensed (primary) users. This approach has found its applicability,

for example, targeting the television frequency spectrum (56–806 MHz) also known as

TV White Space (TVWS), which has been implemented and standardised in the IEEE

802.22 standard [18]. Spectrum sensing is the key enabler of the DSA/CR systems,

which enables Secondary Users (SUs) to monitor and access the primary channel based

on the sensing observations of the Primary Users (PUs) activity.

The next deployment of spectrum sharing emerged in Europe [19] when the Au-

thorised Shared Access (ASA) concept, also known as Licensed Shared Access (LSA),

was introduced by Nokia and Qualcomm in 2011. The LSA concept was defined by the

Radio Spectrum Policy Group (RSPG) as [20]:

“A regulatory approach aiming to facilitate the introduction of radio communication

systems operated by a limited number of licensees under an individual licensing regime

in a frequency band already assigned or expected to be assigned to one or more incumbent

users. Under the LSA approach, the additional users are authorised to use the spectrum

(or part of the spectrum) in accordance with sharing rules included in their spectrum

rights of use, thereby allowing all authorised users, including incumbents, to provide a

certain QoS”.

In other words, spectrum sharing in LSA is allowed between two tiers of users, in-

cumbents and additional users called LSA licensees (similar to primary and secondary

concept), however, certain level of Quality of Service (QoS) and interference protection

will be guaranteed for LSA licensees (unlike previous spectrum sharing approaches).

The LSA architecture is depicted in Fig. 1.1, which shows the involvement of three

stakeholders: incumbent, who has the primary rights to use the frequency band; LSA

licensee, who agrees to the sharing conditions of the incumbent with guaranteed inter-

ference protection and QoS; and National Regulatory Agency (NRA), which controls

and monitors the sharing process between incumbents and LSA licensees [21].

Another important initiative for the deployment of spectrum sharing came from

the Federal Communications Commission (FCC) in the USA [22] by enabling the op-

eration of the so-called Citizen Broadband Radio System (CBRS) in the frequency

band 3.55–3.7 GHz. This sharing paradigm includes three tiers of users as shown in

Fig. 1.2: incumbent, who has the top priority for using the spectrum; Priority Access

License (PAL), who has licensed access to the spectrum exclusively in the absence of



4 Chapter 1. Introduction

Figure 1.1: Baseline LSA architecture [21].

Figure 1.2: Three-tier model of SAS [24].

the incumbent; and General Authorized Access (GAA), who has unlicensed access to

the spectrum in the absence of the incumbent assisted by sensing (similar to the tra-

ditional CR). These tiers are coordinated and managed by Spectrum Access System

(SAS), in which the allocation of the spectrum to the PALs and GAAs is carried out.

It is worth mentioning that spectrum sensing concept is adopted in SAS, also referred

to as Environmental Sensing Capability (ESC), by which essential information on the

incumbents activity and the actual available band is provided to the SAS [23]. A brief

comparison between the two concepts (LSA and SAS) of spectrum sharing is provided

in Table 1.1.

Note that, spectrum sensing, which was not part of the original LSA concept, has

recently been considered in the evolved version of the LSA aiming towards a dynamic
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Table 1.1: LSA and SAS comparison

LSA (EU version) SAS (USA version)

Two-tier model: incumbents and LSA
licensees.

Three-tier model: incumbents, PAL
and GAA.

Static geo-location database (LSA
repository), where spectrum usage in-
formation is provided by the incum-
bents as a static priori information.

Dynamic geo-location database, where
spectrum usage information is obtained
by employing spectrum sensing.

Incumbent protection is provided
through database.

Incumbent protection is provided
through spectrum sensing.

Frequency band: 2.3-2.4 GHz. Frequency band: 3.55-3.7 GHz.

operation as proposed in the EU-funded project ADEL (Advanced Dynamic spectrum

5G mobile networks Employing Licensed shared access) [26].

More recently, new interests in spectrum sharing concept have arisen targeting the

use of Long Term Evolution (LTE) systems over unlicensed spectrum bands. These

were focused on a fair and harmonious coexistence between LTE and Wi-Fi networks

in the unlicensed 5 GHz band, aiming to increase the LTE network capacity without

degrading the performance of the existing WiFi networks. Two main standards have

been introduced in this context: LTE-Unlicensed (LTE-U) proposed by LTE-U Fo-

rum [27] and LTE-License Assisted Access (LTE-LAA) proposed by 3rd Generation

Partnership Project (3GPP) Release 13 [28]. LTE-U was the first version allowing LTE

operation over unlicensed band, in which the duty cycle is adjusted by LTE networks

combined with Carrier Sense Adaptive Transmission (CSAT) to allow coexistence be-

tween LTE and WiFi in 5 GHz band. However, this was improved through LTE-LAA,

which behaves similar to WiFi node by using Listen Before Talk (LBT) protocol, which

can achieve a better fairness in the coexistence between LTE and WiFi. In both ap-

proaches sensing is an important element for achieving this coexistence mechanism

between LTE and WiFi networks. Nowadays, 3GPP efforts in 5G New Radio (NR)

have been extended targeting the unlicensed bands at 5 GHz and 6 GHz to introduce

the so-called 5G New Radio Unlicensed (5G NR-U) as specified in Release 16 [29]. The

future specification will also target the unlicensed millimeter wave (mmWave) at 60

GHz bands [30–32].

Spectrum sharing has been constantly evolving since its traditional DSA/CR con-

cept to meet the ever-increasing demand for the frequency spectrum. However, re-
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gardless of the sharing method used, spectrum sensing has been a crucial and essential

part of spectrum sharing systems, which has accompanied and supported most of the

emerging concepts of spectrum sharing to provide information and awareness about the

activity of the spectrum.

1.3 Spectrum Awareness

The function of spectrum awareness in spectrum sharing systems is to provide environ-

mental information of the surrounding radio activity in the spectrum. This awareness

includes the knowledge of when (the time instants) and where (the frequency channels)

the spectrum would be occupied or unoccupied, which in turn will support spectrum

sharing users to utilise the spectrum efficiently. Several techniques can be used to ob-

tain spectrum awareness, including spectrum sensing [33], geolocation databases [34]

and beacon signals [35]. Geolocation databases and beacon signals require licensed sys-

tems to provide information of their occupancy patterns and therefore the deployment

of these methods would require external systems, which may lead to additional cost

and compatibility issues with the legacy systems. Spectrum sensing, on the other hand,

senses and observes the spectrum occupancy independently without the need of any

external system to provide spectrum awareness, thus it is simpler and more attractive

for deployment than the other methods [36]. However, the information obtained by

means of spectrum sensing can be affected by the practical impairments introduced by

the radio channel propagation and therefore it can be less accurate and reliable. In this

work, spectrum sensing is considered for spectrum sharing systems as discussed in the

next section.

Spectrum Sensing

Spectrum sensing was first introduced in DSA/CR systems to enable SUs detect the

activities (i.e., idle/busy states) of the PUs within the frequency channel in order to ex-

ploit the unoccupied spectrum in the time and frequency domains (i.e., spectrum holes).

It also continues to play the same essential role in the recent emerging spectrum sharing

scenarios whereby the unlicensed users can autonomously obtain environmental infor-

mation of the existing users (e.g., incumbents) in the frequency channels, without any

prior negotiation. The main challenge of spectrum sensing is the accuracy of sensing.

This accuracy is primarily dependent on the Signal-to-Noise Ratio (SNR) of the users’

signal being sensed in the channel. As such, Perfect Spectrum Sensing (PSS) can be
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assumed (i.e., without sensing errors) under sufficiently high SNR conditions. How-

ever, in practice, spectrum sharing systems are more likely to operate in moderate/low

SNR environments and sensing errors are likely to occur due to the wireless channel

impairments (e.g., noise, multipath fading and shadowing), thus Imperfect Spectrum

Sensing (ISS) is a more realistic scenario. Two types of sensing errors can be identified

under ISS: false alarms, where an idle state of the channel is sensed as a busy state,

and missed detections, where a busy state of the channel is sensed as an idle state.

There have been significant research efforts in the literature to improve the accuracy of

spectrum sensing methods and algorithms. These methods vary in their complexities

and sensing capabilities, which include:

• Energy Detection (ED) [37]: ED is the simplest and most widely used method for

spectrum sensing, by which the channel is reported as busy (i.e., occupied by other

users) if the detected signal energy is higher than a predefined threshold, or as

idle otherwise. ED method detects the presence/absence of the users irrespective

of their signal characteristics (e.g., modulation type). Therefore, ED is a suitable

method when spectrum sharing systems have no prior information about the

licensed users or when low complexity sensing is required. However, this method

is affected by the uncertainty of the noise power, which results in a degradation

in the sensing performance [38]. More accurate and advanced ED algorithms

have also been proposed in the literature such as Improved Energy Detection

(IED) [39], adaptive threshold energy detection [40] and more recently Machine

Learning aided energy detection [41].

• Matched filter [42]: this method provides the optimal detection performance in

Additive White Gaussian Noise (AWGN), in which the received SNR can be

maximised. However, matched filter detection method requires prior knowledge

about the characteristics of the signals being detected in the spectrum, which

include the modulation type, pulse shape, packet format, etc. [43].

• Cyclostationary detection [44]: this method exploits the cyclostationarity in the

modulated signals in order to identify the presence of the users’ signals in the spec-

trum. Such features result from the embedded sinusoidal carriers, pulse trains,

repeating spreading, hopping sequences or cyclic prefixes [45]. As such, this

property cannot be found in the stationary noise or interference signal. There-

fore, cyclostationary signal detection method performs better than ED under low

SNR conditions, however, it is more complex and it requires the cyclic spectral

correlation function to be known to detect the licensed signals.
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• Covariance-based detection [46–48]: this method does not require any prior knowl-

edge about the licensed users’ signals in the spectrum sharing systems. However,

it depends on the assumption that users’ signal are autocorrelated, which can

then be exploited to distinguish these (correlated) signals of the licensed users

from the (uncorrelated) noise. This method provides higher detection accuracy

than ED when signals are correlated (and they are usually in practice or can be

made otherwise), however, signal covariance is computationally complex to find.

In addition to the above discussed methods, spectrum sensing can also be classified

into two operational mechanisms: non-cooperative and cooperative sensing.

i. Non-Cooperative Spectrum Sensing: in which the unlicensed user independently

senses the activity (i.e., presence/absence) of the licensed users in the frequency

channel and makes a local decision (either idle or busy) on the state of the channel.

ii. Cooperative Spectrum Sensing: in which multiple unlicensed users share their local

sensing observations with a common receiver, the Fusion Centre (FC), in order to

make a better global decision about the presence/absence of the licensed users in

the channel. Cooperative spectrum sensing can significantly improve the detection

performance by exploiting the spatial diversity of the cooperating users.

Regardless of the spectrum sensing method and the cooperative mechanism used,

spectrum sensing objective and output is the same, which is that to provide binary

decisions on the state of the channel, either H0 for idle state or H1 for busy state.

1.4 Channel Activity Statistics Estimation

Since the activity of the users in a spectrum sharing system would vary over both time

and frequency, it is very critical and inefficient for an unlicensed user to coexist and

access the spectrum without having a proper knowledge about the activity patterns of

the channel. Such knowledge can be acquired from exploiting the statistical information

of the spectrum activity obtained from spectrum sensing. Although the main purpose

of spectrum sensing is to determine the instantaneous state of the channel (i.e., either

idle H0 or busy H1), sensing observations can further be exploited to provide a broad

range of statistical information about the channel activity. These statistics include, but

are not limited to, the minimum, mean and variance of the idle/busy periods, the duty

cycle of the channel occupancy as well as the distribution of the idle/busy periods. The

idle and busy periods of the channel activity can be estimated from spectrum sensing
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decisions such that the elapsed time between any two changes in the sensing decisions

(H0/H1) can provide an estimation for the original idle/busy periods’ durations, which

in turn are used to calculate the statistical parameters of the channel.

Since channel statistics in spectrum sharing systems can be estimated autonomously

from the observations of spectrum sensing, they may differ from the original statistics of

the channel. Under high SNR conditions (i.e., under PSS), the estimation accuracy of

the channel statistics is affected to some extent by the time resolution of the employed

sensing period Ts [49]. On the other hand, under low SNR conditions (i.e., under ISS)

channel statistics estimation is significantly corrupted due to the presence of sensing

errors in the spectrum sensing observations in addition to the sensing resolution impact.

Therefore, the impact of the employed parameters to perform spectrum sensing will be

crucial on the estimation accuracy of the channel activity statistics. These parameters

include the employed sensing period Ts (i.e., sensing resolution), the predefined proba-

bility of false alarm Pfa and probability of missed detection Pmd (i.e., sensing errors),

as well as the number of sensing decisions or number of idle/busy periods N consid-

ered for statistics estimation (i.e., sample size). In this context, this thesis studies the

estimation of the channel activity statistics in spectrum sharing systems based on the

realistic observations of spectrum sensing (i.e., ISS), regardless of the spectrum sensing

method/algorithm used. In addition, it analyses the impact of the spectrum sensing

parameters on the estimation accuracy of the channel activity statistics.

1.5 Motivation and Objectives

Channel activity statistics (also called channel traffic statistics) have recently gained

increasing attention due to their remarkable role in the performance improvement of

spectrum sharing systems, where they can also find a wide range of applications in

wireless communication networks. The utilisation of these statistics include, but is not

limited to:

• Spectrum prediction [50–53], in which the historical statistical data of the spec-

trum can be exploited, using various spectrum prediction algorithms (e.g., ma-

chine learning [51]), to predict or infer the future behaviour of the licensed users

and thus their spectrum activity.

• Spectrum sensing [54], in which the statistical information of the channel can

help in selecting a more accurate threshold for spectrum sensing algorithms (e.g.,

energy detection algorithm).
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• Channel selection [55–58], in which spectrum sharing systems can exploit the sta-

tistical parameters of the channels’ activity in order to select the most appropriate

channel that can be offered to the unlicensed users.

• Radio resource management [59–61], in which the statistical information can also

help spectrum sharing systems to make crucial decisions to mitigate the inter-

ference between licensed and unlicensed users, optimise the system performance

and enhance the utilization of the spectrum.

From above, it is evident that channel activity statistics play an effective role in

the performance of various applications in spectrum sharing systems. As a result, it is

significantly crucial for such systems to obtain accurate estimation for these statistics

especially under (a realistic) ISS scenario. In the literature, channel activity statistics

have been analysed under PSS more comprehensively than under ISS as in [49, 62–

68]. The majority of existing work where ISS is considered has mainly focused on the

estimation of the channel duty cycle as in [69–71], paying less attention to other equally

important statistical properties of the channel activity. Few studies (e.g., [72–74])

have also considered the mean of the channel idle/busy periods, but they are typically

constrained to an exponential distribution to model the idle/busy periods, which is not

a realistic assumption in practice [78]. Another approach of reconstruction method in

the form of algorithms has been proposed in [75–77] to correct the estimation of the

channel activity statistics under ISS. These works however suffer from the following

limitations: 1) no closed-form expressions are provided for these statistics, only heuristic

estimation methods in the form of algorithms, and 2) the employed reconstruction

algorithms assume perfect knowledge of some of the channel statistical parameters

(e.g., the minimum idle/busy period). Fig. 1.3 summarises all the possible approaches

(including the proposed ones) that can be used for the estimation of the channel activity

statistics.

The limitations of the previous works and the lack for a comprehensive study that

analyses a wider range of channel activity statistics under ISS, without making any

assumption about the activity of the channel, have motivated this work. Therefore, a

detailed mathematical analysis for various statistical parameters of the channel is car-

ried out under ISS. In addition, a relationship between the estimated statistics under

ISS and the original statistics is provided in closed-form expressions without introducing

any constraints or requiring any prior-knowledge on the channel activity. This mathe-

matical analysis provides the basis for the formulation of novel methods for an accurate

estimation of the channel activity statistics under realistic ISS operating conditions.
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Channel Activity Statistics Estimation

Imperfect Spectrum Sensing (ISS)

Deep Learning
Approach

Reconstruction
Algorithms

Closed-form
Expressions

Perfect Spectrum Sensing (PSS)

Closed-form
Expressions

Figure 1.3: Estimation of the channel activity statistics using different approaches.

1.6 Thesis Contribution

This thesis addresses a significant and a highly challenging problem in spectrum sharing

systems, which is that of obtaining accurate statistical information about the activity

of the spectrum based on realistic spectrum sensing (i.e., ISS). Such problem is poorly

addressed in the literature without deep and rigorous mathematical analyses taking

into account all the factors that would influence the estimation accuracy of the channel

activity statistics. In addition, it aims to find solutions through proposing new methods

and approaches that can correct the estimation of the channel activity statistics under

any operational scenario of spectrum sensing (ISS or PSS). Hence, the contribution of

this work can be summarised as follows (ordered based on significance):

1. A set of closed-form expressions is developed for the statistics calculated under

ISS as a function of the real channel statistics (obtained from the actual channel

activity), probabilities of sensing error, and the employed sensing period. The

obtained expressions are useful for spectrum sharing systems since they can pro-

vide insights into how spectrum sensing configurations can affect the estimation

of statistics in the presence of sensing errors. This contribution is studied in

Chapter 3 and published in the journal number 2 and conference papers number

7 and 8 (from the thesis’s list of publications in Section 1.8).

2. A set of novel estimation methods is proposed based on the achieved mathematical

analyses, which can provide accurate estimation for the channel statistics even

under high probabilities of sensing error. The proposed estimators outperform

the conventional methods proposed in the literature (e.g., [69–71]) to estimate
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the statistics of the channel activity. This contribution is studied in Chapter 4

and published in the journal number 2 and conference papers number 5 and 8

(from the thesis’s list of publications in Section 1.8).

3. The impact of the sample size on the estimation of the channel activity statistics

under ISS scenario is also studied, in which closed-form expressions for the re-

quired sample size of the idle/busy periods under ISS to achieve a targeted level

of accuracy are found. This contribution is studied in Chapter 3 and published

in the conference papers number 3 and 6 (from the thesis’s list of publications in

Section 1.8).

4. A novel reconstruction algorithm assisted by a closed-form expression (obtained

for the estimation of the mean period) is proposed, which can reach the perfor-

mance of the state of the art algorithm presented in the literature [77] and yet

without requiring any additional knowledge about the channel activity, unlike all

the existing reconstruction algorithms in the literature (e.g., [75–77]). This con-

tribution is studied in Chapter 4 and published in the conference paper number

4 (from the thesis’s list of publications in Section 1.8).

5. This thesis also introduces a new approach, named Traffic Learning (TL), as

a deep learning approach to learn from the channel traffic observations under

realistic ISS scenario in order to predict the actual statistical information of the

channel traffic activity in spectrum sharing systems. This contribution is studied

in Chapter 4 and published in the journal number 1 (from the thesis’s list of

publications in Section 1.8).

6. A simple yet efficient cooperative spectrum sensing approach is proposed, which

takes into consideration not only the impact of sensing errors but also the impact

of sensing resolution. Such consideration, to the best of the author’s knowledge,

has not been presented in the literature which can outperform the conventional

approach of cooperative spectrum sensing (e.g., [79–81]) for achieving minimum

interference and maximum utilisation in spectrum sharing systems. It is worthy

to mention that this contribution was inspired while analysing the impact of the

sensing resolution and sensing errors on the observations of the channel activity

and, even though it does not particularly target the estimation of the channel

activity statistics, can effectively contribute to more accurate estimations of the

channel activity through a better performance of spectrum sensing. This contri-

bution is studied in Chapter 2 and published in the conference paper number 1
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(from the thesis’s list of publications in Section 1.8).

7. A USRP-based prototype is developed to support experimental validation for the

conducted theoretical analyses of the channel activity statistics under real-world

conditions, in which sensing energy of the existing signals in the channel can be

monitored instantaneously and real-time estimation of the channel activity statis-

tics can be provided accordingly. This prototype demonstrates the feasibility of

the contributions of this research in practical system implementations. This con-

tribution is studied in Chapter 2 and applied to validate the analysis in Chapter

3. The contribution is also published in the conference paper number 2 (from the

thesis’s list of publications in Section 1.8).

1.7 Thesis Outline

The remainder of this thesis is organised as follows. First, Chapter 2 presents two

preliminary research contributions that do not target specifically the problem of es-

timating the channel activity statistics but can contribute to provide more accurate

estimations and performance assessment of the estimation accuracy in realistic scenar-

ios. The first contribution investigates the problem of cooperative spectrum sensing

and introduces a novel approach that considers the impact of both sensing errors and

sensing resolution to achieve minimum interference and maximum utilisation in spec-

trum sharing systems. The proposed cooperative approach is only presented in Chapter

2 as a preliminary contribution to show how spectrum sensing can be enhanced, which

can indirectly contribute to a more accurate estimation of the channel activity statistics

studied in the other chapters. Then the second contribution of the chapter introduces a

USRP-based prototype developed to support a wide range of experiments and provide

an experimental validation for the theoretical analyses and methods proposed in this

work for an accurate estimation of the channel activity statistics. This experimental

platform will be widely used in Chapter 3 to demonstrate the accuracy and correctness

of the obtained mathematical results. This is achieved by deploying experiments under

realistic conditions of wireless communications and then apply the obtained estimation

methods to validate them experimentally.

Chapter 3 analyses a broad range of channel activity statistics and finds a set of

closed-form expressions for the statistics calculated under ISS as a function of the orig-

inal statistics and relevant operating parameters including the probability of sensing

errors (false alarms and missed detections) and the employed sensing period. In addi-
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tion, the impact of the sample size on the estimation of the channel activity statistics

under ISS is also studied, in which closed-form expressions for the required sample size

under ISS to achieve a targeted level of accuracy of the idle/busy periods’ statistics

are found. The achieved mathematical expressions are validated by means of both

simulations and experimental results.

Chapter 4, on the other hand, investigates three different approaches to correct the

estimation of the channel activity statistics under ISS. The first approach is based on

the closed-form expressions obtained in Chapter 3 in order to derive novel estimation

methods for the channel activity statistics under ISS, without making any assumption

about the activity of the channel. The second approach investigates the reconstruction

method, for which a new reconstruction algorithm is introduced to correct the observa-

tion of the channel activity statistics under ISS, which can achieve the same accuracy

of the latest reconstruction method in the literature without requiring any prior knowl-

edge of the channel activity. Finally, this chapter introduces a novel approach, Traffic

Learning (TL), as deep learning approach for obtaining accurate statistical informa-

tion of the channel traffic in spectrum sharing systems. This approach learns from the

imperfect observations of the channel activity statistics in order to predict their accu-

rate estimations. All these approaches are compared for the estimation of the channel

activity statistics under ISS in terms of their performance and complexity.

Finally, Chapter 5 summarises all the findings achieved in this thesis and draws a

comprehensive conclusion about the outcomes of this study on the estimation of the

channel activity statistics under ISS. Suggestions for future work are provided as well.
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7. M. López-Beńıtez, O. H. Toma and D. K. Patel, “Mathematical Models for the

Accuracy of the Estimated Distribution of Primary Activity Times in Dynamic

Spectrum Access Systems,” 2020 IEEE Wireless Communications and Network-

ing Conference (WCNC), Seoul, Korea (South), 2020, pp. 1–5.

(This publication is related to Chapter 3 findings).
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Chapter 2

Cooperative Spectrum Sensing

and Experimental Prototype

2.1 Introduction

This chapter presents two preliminary research contributions that do not target specif-

ically the problem of estimating the channel activity statistics but can contribute to

provide more accurate estimations and performance assessment of the estimation accu-

racy in realistic scenarios. The first contribution investigates the problem of cooperative

spectrum sensing and introduces a novel approach which can achieve minimum interfer-

ence and maximum utilisation in spectrum sharing systems. The proposed cooperative

approach1 can effectively contribute to a more accurate estimation of the channel ac-

tivity statistics through an enhanced performance of spectrum sensing methods. The

second contribution of the chapter introduces a USRP-based experimental system pro-

totype developed to support a wide range of experiments in the context of channel

activity statistics estimation. This experimental platform will be widely used in Chap-

ter 3 to demonstrate the accuracy and correctness of the obtained mathematical results

as well as the improved estimation accuracy that can be obtained with the methods

proposed in this thesis.

1Since cooperative spectrum sensing is not the scope of this thesis, it is only presented in this chapter
as a preliminary research to show how spectrum sensing can be improved, which can eventually enhance
the estimation of statistics studied in the other chapters.
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2.2 Cooperative Spectrum Sensing

Cooperative Spectrum Sensing (CSS) [79–81] is a widely studied topic in spectrum shar-

ing systems, which is capable of improving the detection accuracy of the users activity

in the spectrum through taking advantage of spatial diversity of multiple cooperating

unlicensed users performing spectrum sensing. In the context of DSA/CR systems,

Secondary Users’ (SUs) local sensing decisions are shared with a common receiver, the

Fusion Centre (FC), to make a global decision about the presence/absence of a Primary

User (PU) within a particular licensed channel. The global decision is made by the FC

after combining the sensing data forwarded by the SUs. The combining methods in CSS

are classified into two types: hard and soft combining. The hard combining approach

is based on the binary local decisions of the SUs, while the soft combining approach

is based on the detected signal energy itself at the SUs [82]. Soft combining usually

provides a better performance at the expense of an increased signaling overhead. Re-

gardless of which combining approach is used, CSS improves the accuracy of sensing

of the PU’s activity within a particular frequency channel by reducing the impact of

sensing errors. CSS has been extensively researched in the literature for a long time

and the majority of the works in the literature (e.g., [79, 82, 83]) focus on exploiting

SUs’ observations to reduce the impact of sensing errors, thus producing more accurate

decisions about the state of the primary channel. The main aim of reducing the impact

of sensing errors is to avoid collision between SUs and PUs as well as to maintain high

spectral utilisation. In this section a different approach is investigated for exploiting

SUs’ observations in CSS. The new approach suggests that by performing spectrum

sensing in every cooperating SU at a different time instant (i.e., rather than to be syn-

chronised among all the SUs as in the conventional approach) will help reducing the

impact of the overall sensing resolution. The proposed approach, to the best of the

author’s knowledge, has not been presented in the literature, which outperforms the

conventional approach of CSS for achieving minimum collision between secondary and

primary users and maximum spectral utilisation (i.e., minimum missed opportunities).

2.2.1 Collision Ratio

Before delving into pursuing the efficient way of utilising SUs’ observations in coopera-

tive spectrum sensing, a new metric C is defined to represent the collision ratio between

a SU and a PU [85], which can be given by:

C =
Tc
T1
, (2.1)
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Figure 2.1: Collision and missed opportunity in PU and SU coexistence.

where Tc denotes the collision time between a SU and a PU, and T1 denotes the busy

time of the PU as illustrated in Fig. 2.1. The collision ratio C represents the fraction

of time that a PU transmission is under interference from a SU. Note that C = 1 when

the collision time Tc equals the busy time T1, which means there is 100% interference

between the SU and the PU (which could only happen when the probability of missed

detection is Pmd = 1), while C = 0 when the collision time is Tc = 0, which means there

is no interference at all between the SU and the PU (which could only happen when

Pmd = 0 and the sensing period is Ts = 0).

Under PSS, collision between a SU and a PU results from a late detection of the

PU’s busy periods, which depends on the resolution of the sensing period Ts. Therefore,

collision time could vary uniformly between 0 and Ts (i.e., Tc ∼ U(0, Ts)) and its

expectation is E(Tc) = Ts/2. As a result, the total collision ratio for a given set

{T1,n}Nn=1 of N busy periods under PSS can be found as:

Cpss =

∑N
n=1 Tc,n∑N
n=1 T1,n

=
N Ts

2

NE(T1)
=

Ts
2E(T1)

, (2.2)

where E(T1) represents the mean of the busy periods.

On the other hand, under ISS, collision between a SU and a PU results from the

resolution of the sensing period Ts as well as the missed detection errors. Every missed

detection error increases the collision time by Ts, except when a missed detection occurs

at the end edge of a busy period where it only increases the collision time by an average
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of Ts/2. Therefore, for N busy periods, the collision time under ISS can be found as:

N∑
n=1

Tc,n = N
Ts
2

+NmdTs −NPmd
Ts
2
, (2.3)

where Nmd denotes the number of the missed detection errors within N busy periods,

and it can be found as:

Nmd =
NE(T1)

Ts
· Pmd. (2.4)

Thus, (2.3) can be written as:

N∑
n=1

Tc,n = N
Ts
2

+NE(T1)Pmd −NPmd
Ts
2
. (2.5)

Finally, the collision ratio C under ISS can be found as:

C =
N Ts

2 +NE(T1)Pmd −NPmd Ts2
NE(T1)

=
Ts

2E(T1)
+ Pmd −

PmdTs
2E(T1)

=
Ts

2E(T1)︸ ︷︷ ︸
Due to sensing period

+ Pmd

(
1− Ts

2E(T1)

)
.︸ ︷︷ ︸

Due to missed detections

(2.6)

As it can be noticed from (2.6), collision ratio under ISS has two components con-

tributed by the effect of the finite sensing period and the presence of missed detections,

and they are directly proportional to the overall resulting collision ratio. Note that

when Pmd = 0 in expression (2.6), collision ratio C will be the same as (2.2) for PSS

where only the sensing period has an impact. Therefore, in this work, (2.6) can be used

as a general form expression for calculating the collision ratio C. The correctness of the

obtained collision ratio expression in (2.6) can be validated by means of simulations as

discussed in Section 2.2.5.

2.2.2 Missed-Opportunity Ratio

Another metric is introduced for calculating the utilisation of the available opportunities

in a shared spectrum. Missed-opportunity ratio M is here used to represent the fraction

of the opportunistic periods that has not been exploited or has been missed by the

SUs [85]. This fraction can be found as the ratio of the unexploited time to the available
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idle time in a primary channel as:

M =
Tu
T0
, (2.7)

where Tu denotes the unexploited time by an SU and T0 denotes the idle time of the PU

as illustrated in Fig. 2.1. Note that M = 1 when the unexploited time Tu equals the idle

time T0, which means that SUs have not utilised any of the available opportunities in

the primary channel and therefore they are 100% unexploited (which could only happen

when the probability of false alarm is Pfa = 1), while M = 0 when the unexploited

time is Tu = 0, which means there is no missed opportunity at all or all the available

opportunities have been exploited by the SUs (which could only happen when Pfa = 0

and Ts = 0). Also note that minimum missed-opportunity ratio M refers to maximum

utilisation.

Under PSS, the available opportunities can be missed by a SU due to the late

detection of the PU’s idle periods, which depends on the resolution of the sensing

period Ts. Therefore, the unexploited time could vary uniformly between 0 and Ts

(i.e., Tu ∼ U(0, Ts)) and its expectation is E(Tu) = Ts/2. On the other hand, under

ISS, missed opportunities result from the resolution of the sensing period Ts as well as

the false alarm errors. Every false alarm error increases the unexploited time by Ts,

except when a false alarm occurs at the end edge of an idle period where it only increases

the unexploited time by an average of Ts/2. As a result, the missed-opportunity ratio

M can be found following the same analysis as for the collision ratio C, by using Pfa

and T0 parameters instead of Pmd and T1 respectively, which yields:

M =
Ts

2E(T0)︸ ︷︷ ︸
Due to sensing period

+ Pfa

(
1− Ts

2E(T0)

)
.︸ ︷︷ ︸

Due to false alarms

(2.8)

As it can be noticed from (2.8), missed-opportunity ratio under ISS has two components

contributed by the effect of the finite sensing period and the presence of false alarms,

and they are directly proportional to the overall resulting missed-opportunity ratio.

The correctness of the obtained missed-opportunity ratio expression in (2.8) can also

be validated by means of simulations as discussed in Section 2.2.5.

One can understand from both (2.6) and (2.8) that the impact of the collision

ratio C and the missed-opportunity ratio M in DSA/CR systems can be reduced by

adjusting Ts, Pmd and Pfa parameters, while E(T1) and E(T0) are non-adjustable since

they depend on the PU activity within the primary channel, which is assumed to be

unknown to the DSA/CR system.
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Figure 2.2: Conventional cooperative spectrum sensing approach.

Since the aim of this section is to investigate how SUs’ observations in cooperative

spectrum sensing can be exploited in such a way that minimum collision ratio and

minimum missed-opportunity ratio (i.e., maximum utilisation) can be reached, the

conventional approach of CSS is first introduced and its collision ratio and missed-

opportunity ratio are analysed.

2.2.3 Conventional CSS Approach

Consider a single primary channel which is occupied by a single PU. A group of K SUs

on the other hand perform spectrum sensing to monitor the activity of the primary

channel. Spectrum sensing using, for example, Energy Detection (ED) method can

be applied at each SU based on a predefined probability of error (i.e., Pfa and Pmd),

which can be assumed to be the same for all K SUs. In addition, it is assumed that the

performed sensing events at the SUs are synchronised with a periodic sensing interval

Ts. In the centralized common receiver FC, the sensing data forwarded by the SUs

are combined to make a global decision about the presence of the PU. Either hard or

soft combining method can be applied to combine SUs observations. Both combining

methods aim to increase the accuracy of the final decision taken by the FC about the

presence of the PU. This approach (shown in Fig. 2.2) is the widely considered approach

in the literature for CSS and for which the collision ratio C and the missed-opportunity

ratio M will be analysed.

Analysis of C and M Ratios for the Conventional CSS Approach

In this section, the hard combining method (using “n out of K” rule [84]) is consid-

ered to anlyse the collision and missed-opportunity ratios (similar analysis can also be

applied for soft combining method). In hard combining, each SU produces a binary
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decision about the status of the primary channel at each sensing event (where sensing

events are synchronised for all SUs). Then a one-bit decision Di for each sensing event

is forwarded to the FC (where Di = 1 stands for busy state and Di = 0 for idle state of

the PU). Since there are K SUs, the FC will receive K one-bit decisions made for the

same sensing event from different SUs. Based on which a global decision can be made

as hypothesis H1 if at least n out of K are 1s and hypothesis H0 otherwise [84]:

Y =
K∑
i=1

Di

≥ n, H1

< n, H0

(2.9)

The overall probability of false alarm Qfa and missed detection Qmd of a cooperative

spectrum sensing scheme using such rule are found as [84]:

Qfa =
K∑
l=n

(
K

l

)
P lfa(1− Pfa)K−l, (2.10)

Qmd = 1−
K∑
l=n

(
K

l

)
P ld(1− Pd)K−l, (2.11)

where Pd = 1− Pmd, and the optimum n is found as [84]:

nopt =

⌈
K

1 + α

⌉
, where α =

ln
Pfa

1−Pmd
ln Pmd

1−Pfa

. (2.12)

If Pfa = Pmd, then α = 1 and nopt = dK2 e.

In comparison with Pfa and Pmd predefined at each SU, the overall probabilities of

false alarm and missed detection (i.e., Qfa and Qmd) are significantly decreased as the

number of the SUs (i.e., K) increases. As a result, the overall collision ratio C resulting

from CSS using the conventional approach can be written based on (2.6) as:

C =
Ts

2E(T1)
+Qmd

(
1− Ts

2E(T1)

)
, (2.13)

where Qmd � Pmd for K � 1 and as a result the collision ratio in (2.13) is lower than

that in (2.6).

Similarly, the overall missed-opportunity ratio M resulting from CSS using the
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conventional approach can be written based on (2.8) as:

M =
Ts

2E(T0)
+Qfa

(
1− Ts

2E(T0)

)
, (2.14)

where Qfa � Pfa for K � 1 and as a result the missed-opportunity ratio in (2.14) is

lower than that in (2.8).

2.2.4 Proposed CSS Approach

As it can be noticed from (2.13) with reference to (2.6) and from (2.14) with reference to

(2.8), CSS given by the conventional approach can only reduce the collision ratio C and

the missed-opportunity ratio M by reducing the impact of sensing error (probability of

missed detection in C and probability of false alarm in M). As a result, the interest in

the following two questions is motivated:

• Q1: Can CSS be exploited to reduce the collision ratio and the missed-opportunity

ratio caused by the time resolution resulting from the employed sensing period

Ts while keeping constant Pfa, Pmd and Ts used at each SU? If so, what would

be the method for such scheme?

• Q2: Which scheme would provide a lower collision ratio and a lower missed-

opportunity ratio?

It is possible to reduce the impact of the collision ratio and the missed-opportunity

ratio caused by the employed sensing period Ts (answer to Q1) by letting each SU

to start sensing at a different time within Ts (i.e., unlike the previous approach, SUs’

sensing events are not synchronised) [85]. A time difference of Ts/K can be allowed

among the SUs’ sensing time instants. In addition, a combining method will not be

required at the FC since each received report from each SU represents new sensing

information about the presence of the PU at a different time instant, which also reduces

the complexity and computational requirements of the FC. Fig. 2.3 shows the proposed

approach of the CSS using asynchronous sensing events2 at the SUs, which is capable

of reducing the collision ratio and the missed-opportunity ratio caused by the employed

sensing period Ts. Note that τi represents the relative sensing time instants across the

SUs. If SU1 starts sensing at time τ1 = 0, then SU2 starts at τ2 = Ts/K and SU3 starts

at τ3 = 2Ts/K, where K = 3 in this example.

2Although synchronisation accuracy of the CSS is out of the scope of this work, it is worth mentioning
that the conventional approach is more sensitive to the synchronisation error than the proposed one
since its sensing events have to take place at the same time instant along with the other SUs.
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Figure 2.3: Proposed cooperative spectrum sensing approach.

Analysis of C and M Ratios for the Proposed CSS Approach

The proposed approach can reduce the overall resolution error of the sensing period Ts

to Ts/K, which in turn will reduce the collision ratio C based on (2.6) to:

C =
Ts

2KE(T1)
+ Pmd

(
1− Ts

2KE(T1)

)
, (2.15)

and also will reduce the missed-opportunity ratio M based on (2.8) to:

M =
Ts

2KE(T0)
+ Pfa

(
1− Ts

2KE(T0)

)
. (2.16)

As it can be noticed from (2.15) and (2.16), the proposed approach cannot decrease

the impact of the sensing errors probabilities Pmd and Pfa (opposite to the previous

approach in (2.13) and (2.14) where Pmd and Pfa were decreased to Qmd and Qfa, re-

spectively). This leads us to ask the second important question (Q2): which parameter

is more significant to be decreased, sensing error or sensing resolution? The answer

to this question is dependent on the values of Ts, Pmd and Pfa themselves as well as

the number of SUs K used in the CSS. Under PSS scenario, the conventional approach

fails to mitigate the collision and missed-opportunity ratios since the probabilities of

sensing errors are already zero under PSS and cannot be further reduced by increasing

the number K of cooperating SUs. Meanwhile increasing the number of cooperating

users in such a case under the proposed approach would still reduce the collision and

missed-opportunity ratios resulting from the time resolution imposed by the sensing

period Ts. On the other hand, the conventional approach would perform better in

some ISS scenarios as Pmd and Pfa increase since their impact on the collision ratio

and missed-opportunity ratio becomes more severe than the time resolution imposed by
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the sensing period Ts. However, a threshold can be obtained to decide which approach

is more efficient to exploit SUs’ observations in CSS in order to provide the lowest

achievable collision ratio C and missed-opportunity ratio M (answer to Q2) as given by

the following two selection criteria:

Cc
Proposed

≷
Conventional

Cp, (2.17)

Mc

Proposed

≷
Conventional

Mp, (2.18)

where Cc and Mc are the collision ratio and missed-opportunity ratio of the conventional

approach based on (2.13) and (2.14), respectively, while Cp and Mp are the collision

ratio and missed-opportunity ratio of the proposed approach based on (2.15) and (2.16),

respectively. If Cc > Cp, the proposed approach should be selected. Otherwise, the

conventional approach should be selected. The same rule applies when Mc >Mp.

2.2.5 Simulation Results

First of all, the obtained expressions (2.6) and (2.8) for collision ratio C and missed-

opportunity ratio M, respectively, are validated by means of simulation. In order to

calculate the collisions and the missed opportunities in simulation a large number (106)

of idle/busy periods of a PU is generated. The duration of these periods are modeled to

follow a Generalised Pareto (GP) distribution, which provides the best representation

for PU periods according to the experimental measurements in [78]. The distribution

parameters of GP are configured as: location µ = 10 t.u. (time units), scale λ = 30 t.u.,

and shape α = 0.25. This configuration results in a sequence of PU periods that have a

busy mean period E(T1) = 50 t.u., an idle mean period of E(T0) = 50 t.u., a minimum

busy period of µ1 = 10 t.u. and a minimum idle period of µ0 = 10 t.u.. Spectrum

sensing can then be performed on the generated periods using a sensing period Ts in

order to obtain the sensing decisions that would be observed by a SU. Based on these

decisions, SU’s accessing/waiting periods can be computed. Therefore, the collision

between SU (accessing/waiting periods) and PU (idle/busy periods) can be calculated

in the simulation and compared with the theoretical expression obtained in (2.6). As

shown in Fig. 2.4 (left), the calculated collision ratio C using (2.6) perfectly matches

the simulation results (for both PSS and ISS) for different Ts values. In the same way,

the missed-opportunity ratio M can be calculated from the simulation and compared

with the theoretical expression obtained in (2.8) as shown in Fig. 2.4 (right), where a
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Figure 2.4: Collision ratio (left) and missed-opportunity ratio (right) as a function of
Ts under PSS and ISS.

perfect match can also be observed, thus validating our analysis for M as well. Note

that C and M in Fig. 2.4 show similar trends because the parameters Pmd and E(T1)

(which control on the C ratio) are set similar to the ones Pfa and E(T0) (which control

on the M ratio), however, they are not necessarily to be the same in general.

On the other hand, to evaluate the collision ratio C and the missed-opportunity

ratio M for the proposed approach of CSS with respect to the conventional approach,

consider a CSS system with K = 10 SUs monitoring the idle/busy periods of the PU.

The collision ratio Cc calculated in (2.13) based on the conventional approach, and the

collision ratio Cp calculated in (2.15) based on the proposed approach can be evaluated

and compared over different values of Ts and different values of Pmd as shown in Fig.

2.5. As it can be noticed from this figure, when Pmd is low or approaching zero,

the collision ratio resulting from the proposed approach (the plane in blue colour) is

significantly lower than the conventional approach (the plane in gray colour) for all Ts

values. In contrast, the conventional approach performs better when Pmd increases.
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Figure 2.5: Collision ratio as a function of Ts and Pmd, when K = 10,E(T1) = 50 t.u.
and µ1 = 10 t.u..

Figure 2.6: Missed-opportunity ratio as a function of Ts and Pfa, when K = 10,E(T0) =
50 t.u. and µ0 = 10 t.u..
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In addition, when Pmd is somewhere in the middle (e.g., 0.05), the collision ratio will

be lower for the proposed approach when Ts is high, and will be higher otherwise. It

can also be noticed that the conventional approach is not useful at all under PSS (i.e.,

when Pmd = 0) because Pmd can not be reduced any further, whereas the impact of

the sensing period Ts can still be reduced through the proposed approach. Similar

trends can also be observed for the calculated missed-opportunity ratio Mc based on

the conventional approach and the calculated missed-opportunity ratio Mp based on

the proposed approach over different values of Ts and different values of Pfa as shown

in Fig. 2.6. It is worth mentioning that when Pmd and Pfa are both low, the proposed

approach can perform better in reducing both C and M. In contrast, when Pmd and Pfa

are both high, the conventional approach would then perform better. In some scenarios,

when Pmd is low and Pfa is high (or vice versa), one approach would perform better

than the other in reducing only one of the metrics (C or M). As such, an approach

can be selected based on what would be of most interest to a system to reduce (i.e.,

reducing C or M). As a result, based on the parameters that are selected by the CSS

(K, Pmd, Pfa and Ts), it can easily be decided (using (2.17) and (2.18)) which approach

is the most efficient one for mitigating the interference and maximising the utilisation

of the spectrum in spectrum sharing systems.

2.3 Prototype for Channel Activity Statistics Estimation

In this section, a prototype is introduced that is used as a platform for carrying out

experiments on the estimation of the channel activity statistics, which will serve as a

proof-of-concept for the conducted theoretical analyses and proposed estimation meth-

ods in the following chapters. Channel activity statistics have been studied and analysed

in the literature mainly theoretically. The work in [86] has presented a simple platform,

Prototype for the Estimation of Channel Activity Statistics (PECAS), to validate the

mathematical analyses of the channel activity statistics experimentally. PECAS model,

however, has several hardware limitations in its transmitter and receiver. Its transmit-

ter, which acts as a PU, is based on a Raspberry Pi with an ON-OFF Keying (OOK)

modulator connected to it. The used OOK modulator can only operate at a central

frequency of 433.92 MHz, thus limiting the experiments to such frequency band and

making it impossible to conduct a wider range of experiments for different research

purposes. In addition, the maximum modulation frequency supported by the modula-

tor is 10 kHz, which limits the time resolution of the generated (PU activity) idle/busy

periods to 0.1 ms. This limited time resolution is inconvenient since a reliable study
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requires the transmission and reception of a sufficiently large number of idle/busy peri-

ods, which may take unreasonably long times for many experiments under such limited

time resolution. The PECAS receiver, on the other hand, which acts as a SU, is based

on the RTL-SDR platform, which supports a limited frequency range of 24 MHz–1766

MHz. Therefore, experiments on a higher frequency channel (e.g., 2.5 GHz and 5 GHz

of the WLAN frequency bands) are not possible. In addition, the maximum sample

rate that RTL-SDR can provide is 3.2 MS/s, which might not be sufficient when fast

spectrum sensing is required.

While PECAS prototype is suitable for low-cost experiments on channel activity

statistics, it might not be applicable on a wider range and sophisticated experiments.

In addition, it has no capability of monitoring the channel activity statistics while the

experiment is running in real-time (it only provides the statistical information after

the execution of the experiment). In this context, this section presents a solution that

overcomes the aforementioned limitations of the PECAS prototype by proposing a new

sophisticated prototype based on the Universal Software Radio Peripheral (USRP) [87].

USRP is a readily available and widely used platform in the community, which enables

other researchers and engineers to easily implement and reproduce our proposed system

and benefit from its advantages (we provide free open source code in [88]). The new

prototype enables monitoring the instantaneous sensing energy of the channel and

provides real-time estimation of the channel activity statistics. It provides a high

sample rate up to 56 MS/s, which enables a better time resolution for generating

idle/busy periods at the transmitter (with 17.8 ns compared to 0.1 ms for PECAS)

and a faster spectrum sensing at the receiver (30 times faster than PECAS). It can

operate in a wide frequency range of 70 MHz–6 GHz (or even larger for some USRP

models), which supports a wide range of experiments such as those in 5G wireless

communications, while PECAS prototype is restricted to the experiments at a central

frequency of 433.92 MHz. In addition, a Graphical User Interface (GUI) is developed

for both transmitter and receiver to easily configure the USRP used in this prototype,

which will also help other researchers to conduct various experiments without the need

to modify the source code.

2.3.1 Prototype Overview

The proposed prototype consists of a transmitter and a receiver. For each, a host

computer (PC) and a USRP are used as illustrated in the block diagram in Fig. 2.7 and

its actual setup in Fig. 2.8. The transmitter acts as a PU, which transmits a sequence of
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Figure 2.7: Block diagram of the proposed prototype.

Figure 2.8: Experimental setup for the proposed prototype.

idle/busy periods (with known statistical parameters) in a particular frequency channel

in order to generate a PU channel activity. The receiver, on the other hand, acts as a

SU, which performs spectrum sensing (using ED algorithm) in the same channel with a

periodic sensing time Ts. The energy of each sensing event is compared with a threshod

to decide whether the channel is idle or busy. Sensing decisions can then be used to

calculate the durations of the PU’s idle/busy periods, based on which PU activity

statistics can be estimated. By comparing the statistics of the generated periods at the

transmitter (PU) with the estimated ones at the receiver (SU), it is possible to validate

the accuracy of the new estimation methods and algorithms proposed in this thesis

(including the previous ones in the literature such as [49, 63, 68, 75]) under a realistic

conditions of wireless channel impairments (i.e., noise, path loss, shadowing and fading)

and hardware limitations of the transmitter and receiver.



Chapter 2. Cooperative Spectrum Sensing and Experimental Prototype 33

Figure 2.9: USRP B200mini block diagram [89].

2.3.2 Hardware implementation

The hardware implementation of the proposed prototype comprises a USRP and a host

PC at both sides of the system (transmitter and receiver). USRP is a Software Defined

Radio (SDR) platform that is widely used to implement and prototype sophisticated

radio communication systems. In this prototype, USRP B200mini Series [89] is adopted,

which is a small form factor and easily portable USB-powered USRP with 1 Tx and 1

Rx front ends as shown in its block diagram in Fig. 2.9. This USRP supports a wide

frequency range from 70 MHz to 6 GHz, which enables a wide range of experiments

(e.g., FM and TV broadcast, cellular, Wi-Fi and etc.). The USRP front end filter

has an adjustable bandwidth of 200 kHz - 56 MHz and an available gain up to 89.8

dB (for the transmit front end) and 76 dB (for the receive front end). In addition,

the ADC/DAC of this USRP can provide a maximum sample rate (master clock) of

61.44 MS/s, however, rates above 56 MS/s are possible, but not recommended. The

I/Q samples of the USRP are streamed to/from a host computer PC for additional

processing through a high-speed USB 3.0 bus (which has a transmission speed of up

to 5 Gbit/s). Meanwhile, the host PC adopted in this prototype has the following

specifications: Ubuntu 18.04.3 LTS operating system, Intel Core i5-6500 CPU processor

@ 3.20GHz and 8 GB memory. This host PC provides enough computational power

to run a broad range of complex experiments in real-time with the developed software

implementation, which is described in the following section.
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2.3.3 Software implementation

Transmitter software

The software of the transmitter aims to configure the USRP in order to operate as a

PU. A program is developed using C language on the host PC to communicate with

the USRP. First, the USRP Hardware Driver (UHD) is required to be installed on the

PC in order to provide all the necessary controls and libraries used to transport I/Q

samples to/from USRP hardware. Then the USRP-transmitter is programmed such

that it generates a sequence of idle/busy periods in a frequency channel to represent PU

activity. The busy period durations T1 can be generated by letting the USRP transmit

a signal for a desired duration of time T1. Any modulation scheme can be used for the

transmitted signal since signal modulation is irrelevant when energy detection method

is used at the SU [37] (the purpose of this signal is to generate an energy activity in

the channel rather than to transmit data). However, for simplicity, ON-OFF Keying

(OOK) modulation is used by streaming a binary 1 data (i.e., I=1 and Q=0) for a

duration of T1. The code implementation allows to easily add sequences of random

bits and more sophisticated modulations if desired. The maximum sample rate (56

MS/s) of USRP B200mini allows representing continuous values of busy periods with a

time resolution of 17.8 ns (which significantly improves the accuracy of the generated

periods by using PECAS prototype [86] where the time resolution was 0.1 ms). The idle

periods T0, on the other hand, are produced by halting the transmission of the USRP

for a duration of time T0 using nanosleep function in C, in which an idle duration

with nano seconds resolution is used to hold up the transmission before the next busy

period.

The duration values of the idle/busy periods that are wanted to be transmitted

can either be imported from a plain text file containing a list of pre-generated period

durations or randomly generated by the transmitter program in real-time (in both

cases the number of periods can be specified). If the latter is selected, the program

will generate random durations of idle/busy periods based on a distribution selected

from a list of distributions that provide an accurate representation for the empirical

data in a real system [78]. This list includes Exponential, Generalised Exponential,

Pareto, Generalised Pareto, Log-Normal, Gamma and Weibull distributions as shown

in [78, Table I]. Note that a random value from any distribution can be obtained (based

on the inversion method in [90, p. 28]) using uniform random number generator (e.g.,

rand function in C) and the inverse CDF [86]. A test mode is also included in the list

of distributions to transmit a test sequence of 1 second idle and 1 second busy periods.
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(a) Transmitter GUI (b) Receiver GUI

Figure 2.10: Designed GUI for the proposed USRP-based prototype.

Finally, a Graphical User Interface (GUI) is designed as shown in Fig. 2.10a to ease

the configuration of the USRP transmitter and the created PU activity without the

need to modify the original source code, which will also help other researchers to easily

conduct relevant experiments on such platform for different research purposes.

Receiver software

Receiver software aims to configure the USRP in order to operate as a SU. Similar

to the transmitter, a C program is developed on the receiver PC to control on the

USRP via UHD library. The USRP-receiver is programmed such that it senses the

energy activity of a frequency channel periodically every Ts sensing time (using ED

algorithm); and then make a binary decision on whether the channel is idle or busy.

At every sensing event a set of samples are captured from the desired channel for a

time slot of τ as shown in Fig. 2.11. Note that τ must significantly be shorter than

Ts such that the remaining time of Ts − τ would be reasonable to exploit in spectrum

sharing systems (when the channel is idle). The number of samples N that can be

captured during τ time slot depends on the sample rate of the USRP hardware and it



36 Chapter 2. Cooperative Spectrum Sensing and Experimental Prototype

Figure 2.11: Spectrum sensing decisions [86].

is given by N = dτfse, where fs is the sample rate configured for the USRP. Using the

USRP’s maximum sample rate of 56 MS/s enables capturing 1000 samples in τ = 17.8

µs time (whereas PECAS model would require a time of τ = 312.5 µs to capture the

same number of samples, thus slowing down the process of spectrum sensing and the

whole experiment, in particular when a large number of idle/busy periods is required).

The total energy of these samples is then calculated and compared with a predefined

threshold as:

Ex =
N∑
n=1

|x[n]|2
H1

≷
H0

λ (2.19)

If the energy of the N samples is greater than the threshold λ a binary decision of

H1 is made to indicate the channel is busy, otherwise H0 is made to indicate the

channel is idle. Selecting threshold value will determine the operation of the system.

The prototype can operate under PSS by selecting a threshold energy midway between

idle and busy energies after adjusting the gain of the receiver to be sufficiently high

in order to easily differentiate the energy between the two states without causing any

sensing error. On the other hand, under ISS scenario, threshold value λ is selected to

meet a predefined probability of false alarm Pfa, where only receiver’s noise need to

be known [39]. This threshold can be selected by first saving the energy values of the

sensing events when there is no signal in the channel but only noise (i.e., transmitter

is off) into a file for post-processing. These energy values are then used to select

a threshold that would cause a false decision with a probability Pfa for which the

experiment wanted to be tested under ISS.

After obtaining the sensing decisions, they can be further exploited to provide
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statistical information of the channel activity as discussed previously. The program first

estimates the durations of the idle/busy periods observed in the channel by computing

the time difference between any two changes in the decision of sensing as shown in Fig.

2.11. The estimated periods can then be printed on the terminal window of the program

in real-time (while the experiment is running) such that their accuracy can be examined

instantaneously in comparison with the transmitted periods. They can also be saved

into a text file for post-processing. Subsequently, the statistical parameters of the

detected periods can then be calculated to find, for example, the minimum/maximum

period, the mean and variance of periods, duty cycle and distribution of periods. These

statistics are valuable information to enhance the performance of spectrum sharing

systems. Receiver program is developed such that it can provide a real-time graphical

illustration for the detected energy of the idle/busy periods as well as a real-time

estimation for the statistical parameters of the channel activity. Every time the program

detects a new period it updates the estimation of the statistics instantaneously. In

addition, similar to the transmitter, a GUI is also designed for the receiver as shown

in Fig. 2.10b to ease the configuration of the USRP that is used to perform spectrum

sensing and process the sensing decisions.

By comparing the estimated statistics at the receiver with the statistics used to

generate the idle/busy periods at the transmitter, it will be possible to use this platform

to evaluate the performance of the new estimation methods and algorithms proposed

in the following chapters (including those in the literature) under realistic conditions

of wireless communication system imposed by the channel impairments (noise, path

loss, shadowing and fading) and hardware limitations of transmitter and receiver. In

addition, the impact of the parameters employed by spectrum sensing, which include

sensing period Ts, sensing time slot τ , probability of sensing errors and sample size N ,

on the estimation of the channel activity statistics can easily be examined using this

prototype in real-time and under realistic conditions.

2.3.4 Illustrative Experiment and Results

In this section, the operation of the proposed prototype is demonstrated by carrying

out an illustrative experiment to show the whole process which involves generating

PU activity in a frequency channel (i.e., transmitting idle/busy periods), detecting the

energy of the channel activity (i.e., spectrum sensing), estimating the idle/busy periods

durations, and finally estimating their statistical information. All these operations take

place in real-time while the experiment is running.
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First, the USRP of the transmitter and the receiver are configured (using the de-

signed GUI shown previously) such that they both operate on the same frequency

channel. In this context, we run the experiment on 2.5 GHz WiFi band using channel

11 (2.451 GHz - 2.473 GHz) centred at 2.462 GHz. It is worthy to mention that such ex-

periment would not be possible to carry out using PECAS [86], which can only operate

at a central frequency of 433.92 MHz. In addition, channel 11 is selected as such was

less crowded in the WiFi environment where our experiment was tested. Selecting the

less crowded WiFi channel (non-overlapping) allows us to generate our own PU traffic

with known statistics, which then will be compared and validated with the statistics

estimated at the SU. Therefore, in the GUI of the transmitter and receiver, the centre

frequency of the USRPs is set to 2.462 GHz as shown in Fig. 2.10. In addition, the

full functionality of the USRP is used to set the sample rate to its maximum 56 MS/s,

which will help providing high resolution idle/busy periods at the transmitter and fast

energy detection at the receiver. Placing the SU 1 meter apart from the PU and using a

gain of 45 dB at both sides will be sufficient to detect the transmitted signal. Note that

if a longer distance is chosen between the PU and SU, a higher gain might be needed for

the experiments conducted under PSS (i.e., without sensing errors), or an adjusted gain

might be needed for the experiments conducted under ISS (with predefined probability

of sensing error).

The transmitter is configured to generate and transmit 200 periods (100 idle and

100 busy). These periods are produced from the Generalised Pareto distribution (which

is the best desecription for the empirical data in real system [78]). This distribution

can be selected from the GUI and its parameters (for both idle and busy periods) can

be configured as: location µ = 0.2 s, scale λ = 0.24 s, and shape α = 0.2. Based on

which, the generated idle/busy periods will have the following statistical characteristics:

a minimum period min(T0) = min(T1) = 0.2 s, a mean period E(T0) = E(T1) = 0.5

s, and a duty cycle Ψ = 0.5. Since these generated periods require 100 seconds to be

transmitted, the reception time of the receiver is adjusted to be sufficiently high to

detect the whole transmitted sequence. For example, a reception time of 200 s (with

extra 50 s before starting the transmitter and extra 50 s after) can be used to guarantee

all the periods will be detected properly.

The receiver senses the channel periodically using a sensing time Ts = 100 ms, where

Ts has to be smaller than the minimum transmitted period which is min(T ) = 0.2 s.

Note that the minimum Ts that can be configured by the proposed prototype using the

host PC (with Intel Core i5 processor) while still maintaining real-time operation is 0.33

ms (which is 30 times faster than PECAS [86] where its minimum Ts is 10 ms). At every
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Figure 2.12: Real-time energy detection and statistics estimation using the proposed
prototype.

sensing event a set of samples are captured for a time slot of τ = 0.1 ms. The number of

these samples is found as N = dτfse = d0.1 ms× 56 MS/se = 5600 samples. Based on

which, the energy of each sensing event can be calculated and plotted instantaneously

as shown in Fig. 2.12 (top-left), which shows the real-time energy detection of the

idle/busy periods in the frequency channel 2.462 GHz. Comparing the energy values

with a predefined threshold λ = 0.05 (which is selected to be in the middle for PSS

operation), binary decisions can be made about the state of the channel (idle H0 or

busy H1). Based on these decisions, the idle/busy periods durations can be estimated,

which in turn will be used to provide an estimation for the channel activity statistics

such as the mean period as shown in Fig. 2.12 (top-right), duty cycle (bottom-left)

and distribution (bottom-right). These statistics are shown for busy periods, however,

similar tendency can also be observed for the idle periods.

As it can be appreciated from Fig. 2.12, the larger the number of periods (sample
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Figure 2.13: Threshold selection from the CDF of the noise energy.

size) used to estimate the statistics the closer the estimation approaches the original

statistics. This can help to determine how many periods are required to provide an

accurate estimation for channel activity statistics, which can therefore validate the anal-

ysis conducted in [63,68]. Notice that the statistics shown in Fig. 2.12 are recalculated

and updated in real-time every time a new period is observed.

The prototype can also be configured to operate under ISS by selecting a threshold

value that satisfies a predefined Pfa. This threshold can be found by first running the

receiver to save a large number of (noise-only) sensing energies when the transmitter

is off, then selecting the point where the Cumulative Distribution Function (CDF) of

these energies is equal to 1 − Pfa, i.e., λ = F−1
Ex

(1 − Pfa). As shown in Fig. 2.13, the

CDF of the energy values fits well with the Gaussian CDF, from which a threshold

λ = 0.0081 J is found to run the prototype under ISS with Pfa = 0.1.

This prototype will be used to serve as a proof-of-concept for the conducted math-

ematical analysis on the channel activity statistics in the subsequent chapters of this

thesis, where experimental validation for the obtained closed-form expressions and novel

estimation methods will be provided under realistic conditions of the wireless channel
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and hardware limitations. This platform will also help other researchers and engineers

to support their ongoing research on the channel activity statistics in spectrum sharing

systems and other works in the future.

2.4 Summary

This chapter has presented two preliminary research contributions, which are not specif-

ically targeting the problem of estimating the channel activity statistics but can con-

tribute to provide more accurate estimations and performance assessment of the estima-

tion accuracy in realistic scenarios. The first contribution has investigated the problem

of cooperative spectrum sensing and introduced a novel approach which can achieve

minimum interference and maximum utilisation in spectrum sharing systems. The

proposed cooperative approach outperforms the conventional approach by taking into

account both the impact of sensing resolution and sensing error. The second contribu-

tion of the chapter has introduced a USRP-based prototype as an experimental platform

to support a wide range of experiments in the context of channel activity statistics esti-

mation, which outperforms the functionality and applicability of the existing platform

in the literature (PECAS). This platform will be widely used in the subsequent chap-

ters to demonstrate the accuracy and correctness of the obtained mathematical results

as well as the improved estimation accuracy that can be obtained with the methods

proposed in this thesis.





Chapter 3

Mathematical Analysis of the

Channel Activity Statistics

3.1 Introduction

Channel activity statistics can play a significant role in enhancing the performance

of spectrum sharing systems. However, in practice these statistics can be severely

corrupted by sensing errors under ISS to the extent that they would not be of any

practical use in spectrum sharing systems. In the literature, channel activity statistics

have been analysed under PSS more comprehensively than under ISS as in [49,62–68].

Few studies (e.g., [72–74]), which consider the ISS scenario, are usually constrained to

a particular distribution (exponential) to model the idle/busy periods, which can be

an unrealistic assumption according to the field measurements in [78]. Moreover, the

majority of these works have been mainly focused on the estimation of the channel

duty cycle as in [69–71], paying less attention to other equally important statistical

properties of the channel activity.

In this context, this chapter addresses a significant and highly challenging problem

in spectrum sharing systems, which is that of finding mathematical relationships in

closed-form between the observed channel activity statistics under ISS and their cor-

responding original statistics, as a function of relevant operating parameters including

the probability of sensing errors (false alarms and missed detections) and the employed

sensing period. Such problem is poorly addressed in the literature without deep and

rigorous mathematical analyses taking into account all the factors that influence the

estimation accuracy of the channel activity statistics. In addition, the impact of the

sample size, i.e., the number of periods used to estimate the statistical metrics of the
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channel under ISS, is also analysed and closed-form expressions for the required sample

size to achieve a targeted level of accuracy for the estimation of the channel activ-

ity statistics under ISS are found. The obtained closed form expressions will then be

validated by means of simulations and experiments, using the experimental platform

proposed previously in Chapter 2.

3.2 System Model and Problem Formulation

Consider, without loss of generality, a single primary channel which is allocated to a

single PU. The activity of the PU within this channel is represented by a sequence of

idle/busy periods in the time domain. The time durations of these periods are contin-

uous random variables, which can be modelled following a particular distribution. The

experimental measurements in [78] show that the Generalised Pareto (GP) distribution

is the best fit representation for those periods. In our analysis, however, this informa-

tion will be considered to be unknown to the DSA/CR system (i.e., no prior knowledge

is required), which makes this study independent and applicable to any distribution

type.

A SU, on the other hand, monitors the activity patterns of the PU based on spec-

trum sensing. In spectrum sensing, periodic sensing events are performed at a constant

time interval referred to as the sensing period Ts. At each sensing event the instan-

taneous state of the channel is detected and reported as idle (H0) or busy (H1). The

observations of spectrum sensing, therefore, will be a set of binary decisions H0/H1,

based on which the durations of idle/busy periods can be calculated. The time duration

elapsed between any two adjacent changes in the sensing decisions is considered as an

estimation of the original period (i.e., the actual duration of the channel activity).

As shown in Fig. 3.1(a), the original idle/busy periods Ti (where i refers to the

type of the period, i = 0 for idle and i = 1 for busy) are estimated as T̂i under PSS

(i.e., without sensing errors). The accuracy of this estimation (i.e., under PSS) is only

affected by the time resolution imposed by the employed sensing period Ts when no

sensing errors are assumed. In practice, however, spectrum sensing is imperfect due to

low SNR conditions and sensing errors are likely to occur in the sensing events Hi. Two

types of sensing errors can be identified: false alarms (where an idle state of the channel

is sensed as a busy state) and missed detections (where a busy state of the channel is

sensed as an idle state). The estimated periods in the presence of the sensing errors are

denoted as T̆i to represent the ISS estimation of the real periods Ti as shown in Fig.

3.1(b), where the impact of a false alarm and a missed detection is illustrated.
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Figure 3.1: Estimation of idle/busy periods based on spectrum sensing: (a) under
perfect spectrum sensing (PSS), (b) under imperfect spectrum sensing (ISS).

Sensing errors are random variables and can be modelled with a given probability of

false alarm Pfa and probability of missed detection Pmd, which is a common modelling

approach in the DSA/CR literature. The value of these probabilities in a practical

scenario will depend on the system’s operating conditions as well as the configuration

of the employed spectrum sensing algorithm, which is an algorithm-specific problem

and therefore is out of the scope of this work. However, the system designer can

always know how a particular sensing algorithm will behave in terms of these error

probabilities (e.g., in an energy detector these probabilities can be easily related to the

selected energy decision threshold). Therefore, these probabilities can be assumed to

be known in practice [39, 69]. The characterisation of the spectrum sensing algorithm

performance in terms of its false alarm and missed detection probabilities makes the

analysis presented in this chapter valid irrespective of the specific spectrum sensing

algorithm implemented in the DSA/CR system or spectrum sharing systems in general.
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3.3 Analysis of the Channel Activity Statistics Under ISS

DSA/CR systems can estimate the idle/busy periods of the primary channel from

the observations of the spectrum sensing decisions. Based on a sufficiently large set

of these periods, DSA/CR systems can also obtain the statistical information of the

primary channel activity [92]. Since this work is concerned with the estimation of the

primary activity statistics in the presence of sensing errors (i.e., considering a realistic

spectrum sensing scenario), the set of idle/busy periods observed under ISS, as shown

in Fig. 3.1(b), is the one considered in this work for statistics calculations. Therefore,

a set {T̆i,n}Nissn=1 of Niss periods observed under ISS is used to estimate the statistical

parameters of the primary channel.

The idle/busy period durations T̆i observed under ISS are affected by several con-

figuration parameters of the spectrum sensing algorithm. These parameters include

the employed sensing period Ts and the selected value of probabilities of sensing error

(i.e., Pfa and Pmd), which in the case of ED depend on the selected energy decision

threshold [37,39]. The estimation of the primary activity statistics under ISS, therefore,

can be analysed based on these parameters and a relationship between the statistics

estimated under ISS and the original statistics can be found as a function of Ts, Pfa and

Pmd. Note that the impact of the sample size parameter Niss on the estimation of the

channel activity statistics under ISS will be considered later on in Section 3.7, therefore

for now, Niss will be assumed to be sufficiently large to provide accurate results.

In order to find a mathematical relationship between the statistics estimated under

ISS and the original statistics of the primary channel activity, three stages of analysis

are required:

1. Finding a relationship between the statistics estimated under ISS and the statis-

tics estimated under PSS.

2. Finding a relationship between the statistics estimated under PSS and the original

statistics.

3. Combining the second relationship with the first one results in the desired rela-

tionship, i.e., the relationship between the statistics estimated under ISS and the

original statistics.

The relationship obtained in the first stage of this analysis should be as a function

of the sensing period Ts, Pfa, and Pmd as mentioned above, while the relationship

in the second stage should only be as a function of the sensing period Ts since PSS is
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assumed with no sensing errors (i.e., Pfa = Pmd = 0). As discussed in the motivation of

this thesis in Chapter 1, channel activity statistics have been analysed in the literature

mainly under PSS as in [49], in which the second relationship between the statistics

estimated under PSS and the original statistics is provided. In contrast, the analysis

of the channel activity statistics under ISS (which is the more realistic scenario) has

not been investigated comprehensively in the literature. Therefore, in this chapter the

analysis of the first relationship (i.e., between the statistics estimated under ISS and

the statistics estimated under PSS) will be obtained first. Then, the final relationship

between the statistics estimated under ISS and the original statistics will be achieved

by combining the analysis presented in [49] with the analysis presented in this chapter,

which considers the same set of statistical metrics as in [49], namely the minimum

period, mean of periods, duty cycle, and distribution of the estimated periods.

3.4 Analysis of the Minimum Period

The minimum period µi of a primary channel is the shortest time that a primary

channel can be active or inactive. This parameter can help determine the minimum

opportunistic time that can be exploited by the SUs, or the minimum time that the

SUs need to wait until a new opportunity becomes available in the primary channel.

DSA/CR systems can estimate the minimum period µi of the channel from spectrum

sensing observations. Although this parameter has already been studied in [49] under

PSS and in [75] under ISS, we summarise the analysis here in order to make this

exposition self-contained.

Based on a given set {T̂i,n}
Npss
n=1 of Npss periods observed under PSS, [49] found that

the estimated minimum period µ̂i under PSS can be expressed as a function of the

original minimum period µi as [49, eq. (7)]:

µ̂i = min
(
{T̂i,n}

Npss
n=1

)
=

⌊
µi
Ts

⌋
Ts, Ts ≤ µi, (3.1)

where b·c denotes the floor operator. As it can be appreciated from (3.1), the minimum

period can be correctly estimated under PSS (i.e., µ̂i = µi) when Ts is an integer

submultiple of the true minimum (i.e., when Ts = µi/k, k ∈ N+), otherwise µ̂i < µi [49].

On the other hand, the minimum period cannot be estimated correctly under ISS

because the minimum observed period would be equal to the duration of a single sensing

error, which in turn is equal to the sensing period Ts [75], no matter how low the

probability of sensing error is. Therefore, from a given set {T̆i,n}Nissn=1 of Niss periods



48 Chapter 3. Mathematical Analysis of the Channel Activity Statistics

observed under ISS, the minimum estimated period would be [75]:

µ̆i = min
(
{T̆i,n}Nissn=1

)
= Ts. (3.2)

As it can be noticed from the observed periods under ISS in Fig. 3.1(b), the minimum

busy period T̆1 would be the duration of the single false alarm, which is equal to Ts (the

same applies to the minimum idle period T̆0 where a single missed detection would be

the minimum observed period). Since (3.2) shows that the estimated minimum period

under ISS is solely dependent on the sensing period Ts (regardless of the original value of

the minimum period), it is impossible to find, from this expression, an exact relationship

between the estimated minimum period µ̆i under ISS and the original minimum µi.

3.5 Analysis of the Mean Period

One of the main statistical moments of the primary channel activity is the mean of the

idle/busy periods. For a given set {T̂i,n}
Npss
n=1 of Npss periods estimated under PSS, the

mean E(T̂i) of the observed periods can be found by using the conventional (unbiased)

sample mean estimator m̂i:

E(T̂i) ≈ m̂i =
1

Npss

Npss∑
n=1

T̂i,n. (3.3)

The analysis in [49] has shown that the estimated mean under PSS is approximately

equal to the true mean of the channel periods (i.e., m̂i ≈ E(Ti)). However, this does not

apply to the estimated mean under ISS because when an error occurs in the sensing

decisions (either false alarm or missed detection), it will divide the original period

duration Ti into shorter fragments [93]. As it can be noticed in Fig. 3.1(b), a single

false alarm error could corrupt the estimation of an idle period T0 period by dividing

it into three new shorter periods, which are T̆0, T̆1, and T̆0. The duration of the T̆1

fragment is equal to the sensing period Ts, while the durations of the two T̆0 fragments

are random, depending on the position of the error itself within T0.

Due to this phenomenon, the number of the observed periods under ISS (Niss)

would not be the same as the number of the periods observed under PSS (Npss). As

shown in Fig. 3.1(b), with a single false alarm, the original T0 period is estimated as

two T̆0 periods and one T̆1 period. If there were two false alarms within T0, then they

would result in three T̆0 and two T̆1 periods, and so on. Therefore, each false alarm

would produce an additional estimated idle period T̆0 and an additional estimated busy
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period T̆1 (a similar effect would be observed with missed detections). As a result, the

number of periods Niss observed under ISS will be greater than the actual number of

the periods N (unlike under PSS where no additional periods are produced during the

spectrum sensing process and thus Npss = N). Therefore, from a given set {T̆i,n}Nissn=1 of

Niss periods estimated under ISS, calculating the mean using the following conventional

mean estimator:

E(T̆i) ≈ m̆i =
1

Niss

Niss∑
n=1

T̆i,n (3.4)

would be highly inaccurate (indeed, much lower than the original value of the mean).

In order to find the relationship between the mean calculated under ISS E(T̆i) and the

original value of the mean E(Ti) of the channel periods, we first find its relationship

with the mean calculated under PSS E(T̂i) as discussed in Section 3.3. The analysis

will consider first, without loss of generality, the sample mean for idle periods (i.e.,

m̆0, m̆i with i = 0), and will be later on generalised to both idle and busy periods.

Consider the idle period T0 illustrated in Fig. 3.1(b), the mean of the observed idle

periods under ISS within T0 (which are caused by a single false alarm in this case) can

be found as:

m̆0 =
T̆0,1 + T̆0,2

2

=
T̂0 − T̆1

2

=
T̂0 − Ts

2
.

This mean represents the summation of the two idle fragments (T̆0,1 and T̆0,2) di-

vided by 2. This summation is equivalent to subtracting T̆1 from the estimated period

T̂0 under PSS, knowing that the produced T̆1 period from the false alarm error is equal

to the sensing period Ts. In addition, the denominator 2, which represents the num-

ber of the estimated idle periods under ISS (i.e., Niss), can be substituted with the

number of estimated idle periods under PSS plus one for the single false alarm (i.e.,

Niss = Npss + 1). This analysis of a single false alarm error within a single idle period

can be extended to a general form for any arbitrary number of false alarm errors within

the whole set of idle periods as:

m̆0 =

∑Npss
n=1 T̂0,n −NfaTs
Npss +Nfa

, (3.5)
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where Nfa represents the total number of false alarm errors in the entire set of observed

periods, which can be found by multiplying the entire number of H0 events (i.e., idle

sensing decisions) by the probability of false alarm Pfa as:

Nfa =

∑Npss
n=1 T̂0,n

Ts
· Pfa. (3.6)

The above analysis does not consider the impact of missed detection errors. Missed

detections would also lead to additional idle periods in the observed set of periods,

where every single missed detection produces a single idle period of a duration equal to

Ts. In order to find m̆0 by taking into consideration the missed detections as well, the

same concept can be followed so that (3.5) can be rewritten to include both sensing

error types:

m̆0 =

∑Npss
n=1 T̂0,n −NfaTs +NmdTs
Npss +Nfa +Nmd

, (3.7)

where Nmd represents the total number of missed detection errors in the entire set of

observed periods, which can be found by multiplying the entire number of H1 events

(i.e., busy sensing decisions) by the probability of missed detection Pmd as:

Nmd =

∑Npss
n=1 T̂1,n

Ts
· Pmd. (3.8)

By substituting (3.6) and (3.8) in (3.7):

m̆0 =

∑Npss
n=1 T̂0,n −

∑Npss
n=1 T̂0,n

Ts
· PfaTs +

∑Npss
n=1 T̂1,n

Ts
· PmdTs

Npss +
∑Npss
n=1 T̂0,n

Ts
· Pfa +

∑Npss
n=1 T̂1,n

Ts
· Pmd

. (3.9)

Note that from (3.3), the term
∑Npss

n=1 T̂i,n can be written as:

Npss∑
n=1

T̂i,n = Npssm̂i. (3.10)

Therefore, using (3.10), expression (3.9) can be further simplified to:

m̆0 =
m̂0(1− Pfa) + m̂1Pmd

1 + m̂0
Ts
Pfa + m̂1

Ts
Pmd

. (3.11)

Although this equation can provide a mathematical relationship between the calculated

mean under ISS, m̆0, and the calculated mean under PSS, m̂0, it lacks some accuracy.
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The reason is that, based on our analysis, there are two special cases where sensing

errors (either false alarms or missed detections) will not produce additional estimated

idle periods (T̆0) and additional estimated busy periods (T̆1). This will be analysed

exhaustively in the following two cases.

3.5.1 Case I

When a sensing error occurs at the first (or last) sensing event within a period, it will

be observed as a part of the previous (or next) period attached to it, thus causing

no fragments or additional periods. As shown in Fig. 3.2, the false alarm at the left

edge of the idle period is combined with the adjacent busy period and both together

are estimated as a single T̆1 period. Therefore, there will be no additional T̆0 or T̆1

fragments produced from such false alarm. The previous analysis has assumed that all

the sensing errors will produce an additional idle period and an additional busy period

without considering the case explained here. To include this effect, the denominator

in (3.7), which represents the number of the estimated periods under ISS (Niss =

Npss+Nfa+Nmd), should not count the cases when the sensing errors occur at the edges

of the periods since there will be no additional periods produced by them. This can

be attained by knowing that each estimated idle/busy period will have two edges and

these edges are actually represented by sensing events H0/H1. Therefore, the problem

in the denominator of (3.7) and the resulting (3.11) can be solved by subtracting the

two sensing events for both edges from the total number of sensing events within a

single period (or 2Npss from the entire number of the events within Npss periods), and

thus (3.11) can be corrected to yield:

m̆0 =
m̂0(1− Pfa) + m̂1Pmd

1 +
(
m̂0
Ts
− 2
)
Pfa +

(
m̂1
Ts
− 2
)
Pmd

. (3.12)

3.5.2 Case II

It is also possible that some sensing errors will not produce additional periods when

they occur in bursts (i.e., they are consecutive to other errors). Fig. 3.3 shows how

two false alarms could occur consecutively in the sensing decisions of an idle period.

Although most of the sensing errors could occur as individual periods (with a duration

equal to Ts), it is still possible, depending on the probability of sensing error, to observe

some occasional consecutive errors in the sensing decisions. However, the probability of

having two consecutive errors is higher than that of having three or more consecutive
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Figure 3.2: Case I: A single sensing error at the edge of a period.
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Figure 3.3: Case II: Two consecutive sensing errors in the middle of a period.

errors as also illustrated in [77, Fig. 3]. Consecutive errors will have the same effect of a

single error in terms of the number of produced fragments. For example, the resulting

fragments of the two consecutive false alarms in Fig. 3.3 are T̆0, T̆1, and T̆0, which

is the same number of the resulting fragments from a single false alarm observed in

the example of Fig. 3.1(b). Since there are no additional fragments resulting from

consecutive errors, the denominator of (3.7) should therefore not count these errors.

This can be attained by subtracting the probability of having consecutive errors from

the probability of sensing error itself. As a result, Pfa and Pmd used in (3.6) and (3.8)
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to find Nfa and Nmd should be modified as follows:

P̀fa = Pfa −
∞∑
j=2

P jfa

= Pfa

(
1− 2Pfa
1− Pfa

)
,

(3.13)

where P̀fa represents the probability of having false alarms as individual periods, ir-

respective of being consecutive or isolated errors, and the relation
∑∞

j=2 a
j = a2

1−a ,

when |a| < 1 is used to obtain the final expression in (3.13). This also applies to the

consecutive missed detection errors, hence:

P̀md = Pmd −
∞∑
j=2

P jmd

= Pmd

(
1− 2Pmd
1− Pmd

)
.

(3.14)

3.5.3 Final Closed-Form Expression of the Mean Period

Taking into account the previous two special cases, the final expression of the estimated

mean idle period under ISS, m̆0, is obtained by introducing (3.13) and (3.14) into the

denominator of (3.12), which yields:

m̆0 =
m̂0(1− Pfa) + m̂1Pmd

1 +
(
m̂0
Ts
− 2
)
P̀fa +

(
m̂1
Ts
− 2
)
P̀md

. (3.15)

The achieved expression in (3.15) provides the relationship between the mean m̆0 esti-

mated under ISS (for idle periods) and the means m̂i estimated under PSS (for both

idle and busy periods), which satisfies the first stage of the analysis as mentioned in

Section 3.3. On the other hand, the relationship between the mean m̂i estimated under

PSS and the original mean mi was analysed in [49], which shows that the population

mean of the periods observed under PSS is exactly equal to the population mean of the

original periods (i.e., E(T̂i) = E(Ti)), thus providing the second stage of the analysis

as mentioned in Section 3.3. Therefore, by assuming a sufficiently large sample size

(i.e., number of periods), the sample means in (3.15) can be substituted by population

means so that the second relationship can be combined with the first one to obtain

the desired relationship between the estimated mean under ISS and the original mean,
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which completes the third stage of the analysis mentioned in Section 3.3 as:

E(T̆0) =
E(T0)(1− Pfa) + E(T1)Pmd

1 +
(
E(T0)
Ts
− 2
)
P̀fa +

(
E(T1)
Ts
− 2
)
P̀md

. (3.16)

A similar analysis can also be followed to find the estimated mean of the busy periods

E(T̆1) under ISS as:

E(T̆1) =
E(T1)(1− Pmd) + E(T0)Pfa

1 +
(
E(T0)
Ts
− 2
)
P̀fa +

(
E(T1)
Ts
− 2
)
P̀md

. (3.17)

Therefore, the final closed-form expression for the estimated mean of the idle/busy

periods E(T̆i) under ISS can be expressed in a compact form as:

E(T̆i) =
E(Ti)− (−1)i E(T0)Pfa + (−1)i E(T1)Pmd

1 +
(
E(T0)
Ts
− 2
)
P̀fa +

(
E(T1)
Ts
− 2
)
P̀md

, (3.18)

which provides the final expression for the estimated mean E(T̆i) under ISS as a function

of the original mean E(Ti), probabilities of sensing error Pfa and Pmd, and sensing

period Ts.

Note that a novel estimation method can be derived from 3.18 to accurately estimate

the original mean period under ISS as well as the duty cycle of the periods, where duty

cycle Ψ = E(T1)
E(T1)+E(T0) . This will be discussed in detail in Chapter 4.

3.6 Analysis of the Distribution of the Periods

The idle/busy periods observed from sensing decisions are integer multiples of the

sensing period (i.e., T̆i = kTs, k ∈ N+) and, as discussed in Section 3.4, the minimum

estimated period under ISS is Ts, which is due to the presence of individual sensing

errors. As a result, the distribution of the idle/busy periods estimated under ISS is

discretely shaped with a discrete step of Ts, starting from the minimum period Ts up to

the maximum multiple integer of Ts observed in the channel. In order to find a closed-

form expression for the Probability Mass Function (PMF) of the idle/busy periods

estimated under ISS as a function of the original Probability Density Function (PDF),

probabilities of sensing error and sensing period, this analysis considers, without loss

of generality, the case of idle periods, introducing the false alarms first and missed

detections later on.
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3.6.1 Impact of False Alarms

False alarms occur in the sensing decisions of the idle periods with a probability Pfa > 0.

This means that any sensing decision H0 within a T0 idle period as shown in Fig. 3.1(b)

will have a probability of Pfa to be a false alarm, and a probability of 1 − Pfa not to

be a false alarm (i.e., to be a correct decision). Consequently, to find the PMF of

idle periods under ISS, denoted as fT̆0
(T̆0 = kTs), we need to consider all the possible

cases in which the observed idle periods under ISS, T̆0 = kTs, could be affected by the

presence of sensing errors. This can be summarised into three exhaustive cases, which

are analysed in detail below.

Case I

In this case, an idle period is observed between two busy periods without having any

false alarms as shown in Fig. 3.4. The probability of having such case can be calculated

as:

P (T̆0 = kTs | T̂0 = kTs) = (1− Pfa)k, (3.19)

which is the probability of having k correct decisions in k sensing events within an idle

period (i.e., k non-false alarms). To find the unconditional PMF of such periods from

a set {T̂0,n}
Npss
n=1 of Npss idle periods observed under PSS, such probability should be

multiplied by the ratio N I
pss/Niss as follows:

f I
T̆0

(T̆0 = kTs) =
(1− Pfa)kN I

pss

Niss
, (3.20)

where N I
pss represents the number of periods observed under PSS with a duration

equal to kTs (i.e., T̂0 = kTs), which is given by f
T̂0

(T̂0 = kTs)Npss. Thus, (3.20) can be

written as:

f I
T̆0

(T̆0 = kTs) =
(1− Pfa)kfT̂0

(T̂0 = kTs)Npss

Niss

= β(1− Pfa)kfT̂0
(T̂0 = kTs), (3.21)

where β is defined to be the ratio Npss/Niss < 1, and it can be found as (see Section

3.7 for the analysis of the sample size under ISS):

β =
Npss

Niss
=

1

1 +
(
E(T0)
Ts
− 2
)
P̀fa +

(
E(T1)
Ts
− 2
)
P̀md

. (3.22)
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Figure 3.4: Case I: An idle period T̆0 = kTs observed between two busy periods without
sensing errors.

The expression obtained in (3.21) represents the PMF of the observed ISS idle periods

resulting from Case I shown in Fig. 3.4.

Case II

Another case where an idle period can be observed under ISS occurs between a single

false alarm and the edge of the adjacent busy period as shown in Fig. 3.5. The

probability of having such case is:

P (T̆0 = kTs | T̂0 ≥ (k + 1)Ts) = 2Pfa(1− Pfa)k, (3.23)

which is the probability of having a single false alarm and k non-false alarms in at least

k+ 1 sensing events within an idle period. Note the presence of the factor of 2 because

this case could occur at the left and right ends of an idle period next to a busy period.

Therefore, following the same principle as in Case I, the unconditional PMF of such

periods can be found by multiplying (3.23) by the ratio N II
pss/Niss as:

f II
T̆0

(T̆0 = kTs) =
2Pfa(1− Pfa)kN II

pss

Niss
, (3.24)

where N II
pss represents the number of periods observed under PSS with a duration

(T̂0 ≥ (k + 1)Ts), which is given by Npss

(
1− F

T̂0
(kTs)

)
where F

T̂0
(kTs) represents

the Cumulative Distribution Function (CDF) of the idle periods observed under PSS.
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Figure 3.5: Case II: An idle period T̆0 = kTs observed between a busy period and a
false alarm.

Thus, (3.24) can be written as:

f II
T̆0

(T̆0 = kTs) =
2Pfa(1− Pfa)kNpss

(
1− F

T̂0
(kTs)

)
Niss

= 2βPfa(1− Pfa)k
(

1− F
T̂0

(kTs)
)
. (3.25)

The expression obtained in (3.25) represents the PMF of the observed ISS idle periods

resulting from Case II as shown in Fig. 3.5.

Case III

The last case where an idle period can be observed under ISS occurs between two false

alarms within the original idle period as shown in Fig. 3.6. The probability of having

such case is:

P (T̆0 = kTs | T̂0 ≥ (k + 2)Ts) =

(
T̂0

Ts
− (k + 1)

)
P 2
fa(1− Pfa)k, (3.26)

which is the probability to have two false alarms and k non-false alarms in at least k+2

sensing events within an idle period. Note the presence of the factor
(
T̂0
Ts
− (k + 1)

)
as there are

(
T̂0
Ts
− (k + 1)

)
different ways for such case to occur within an idle period.

For example, if T̂0 = (k + 2)Ts, the result of the above probability would simply

be P 2
fa(1 − Pfa)k. Therefore, following the same principle as in Cases I and II, the
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Figure 3.6: Case III: An idle period T̆0 = kTs observed between two false alarms.

unconditional PMF of such periods can be found as:

f III
T̆0

(T̆0 = kTs) =

(∑Npss
n=1 T̂ III0,n

Ts
− (k + 1)N III

pss

)
P 2
fa(1− Pfa)k

Niss
, (3.27)

where N III
pss represents the number of periods observed under PSS with a duration

(T̂0 ≥ (k + 2)Ts) and
∑Npss

n=1 T̂
III
0,n is their summation. Thus, (3.27) can be further

solved as in (3.28).

The expression obtained in (3.28) represents the PMF of the observed ISS idle

periods resulting from Case III shown in Fig. 3.6.

The analysis presented so far has considered all the possible cases that can lead to

the observation of an idle period under ISS (due to false alarms only), and the corre-

sponding PMF was obtained for each case separately. Therefore, a general expression

for the PMF that jointly considers the three cases can be obtained by combining (3.21),

(3.25) and (3.28) as in (3.29).

The expression ffa
T̆0

(T̆0 = kTs) obtained in (3.29) represents the PMF of the periods

observed under ISS as a function of the corresponding PMF, CDF, and mean period

that would be estimated under PSS as well as the probability of false alarm and the

sensing period. Since the missed detections were not considered in the previous analysis

(i.e., Pmd = 0), next section studies the effect of the missed detections on the calculation

of the estimated distribution.
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Figure 3.7: An idle period T̆0 = kTs observed within a busy period because of missed
detections.

3.6.2 Impact of Missed Detections

Under imperfect sensing, missed detections can also occur in the sensing decisions of the

busy states of the channel, so that a busy state H1 can be incorrectly reported as an idle

state H0. Therefore, any H1 sensing event within a T1 period will have a probability

of Pmd to be misdetected, and a probability of 1 − Pmd not to be misdetected. Since

there will be additional idle periods T̆0 resulting from missed detections as shown in

Fig. 3.7, these periods need to be considered as well when calculating the PMF of

the idle periods. Therefore, the probability of observing an idle period within a busy

period due to missed detections can be calculated as:

P (T̆0 = kTs | T̂1 ≥ (k + 2)Ts) =

(
T̂1

Ts
− (k + 1)

)
P kmd(1− Pmd)2, (3.30)

which is the probability to have k consecutive missed detections between two non-

missed detections within at least k + 2 sensing events of a busy period. Therefore, to

find the PMF of such periods from a set {T̂1,n}
Npss
n=1 of Npss busy periods the following

can be yield:

fmd
T̆0

(T̆0 = kTs) =

(∑Npss
n=1 T̂1,n

Ts
− (k + 1)Npss

)
P kmd(1− Pmd)2

Niss

= β

(
E(T̂1)

Ts
− (k + 1)

)
P kmd(1− Pmd)2. (3.31)
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Note that the idle periods resulting from missed detections are more likely to occur

as short periods due to single missed detection errors (i.e., k = 1) than consecutive

errors, and it is very unlikely that the whole sensing events of a busy period are missed

detected. The obtained expression fmd
T̆0

(T̆0 = kTs) in (3.31) represents the PMF of the

idle periods observed under ISS (due to missed detections only).

3.6.3 Final Closed-Form Expression of the Distribution of the Periods

After analysing the impact of false alarms and missed detections on the estimation of

the PMF of the idle periods observed under ISS, the final closed-form expression can

be obtained by combining (3.29) with (3.31) as:

fT̆0
(T̆0 = kTs) =β(1− Pfa)k

[
f
T̂0

(T̂0 = kTs) + 2Pfa

(
1− F

T̂0
(kTs)

)
+ P 2

fa

(
E(T̂0)

Ts
−

k∑
m=1

(
mf

T̂0
(T̂0 = mTs)

)
− (k + 1)

(
1− F

T̂0
(kTs)

))

+

(
E(T̂1)

Ts
− k − 1

)
P kmd(1− Pmd)2

(1− Pfa)k

]
. (3.32)

After simplifying (3.32), the following expression can finally be obtained:

fT̆0
(T̆0 = kTs) =βP 2

fa(1− Pfa)k
[
f
T̂0

(T̂0 = kTs)

(
P 2
fa − 2Pfa + 1

P 2
fa

)

−
k−1∑
m=1

f
T̂0

(T̂0 = mTs)

(
m− k +

2− Pfa
Pfa

)
+

E(T̂0)

Ts
+

2− Pfa
Pfa

− k

+

(
E(T̂1)

Ts
− k − 1

)
P kmd(1− Pmd)2

P 2
fa(1− Pfa)k

]
. (3.33)

The analytical result in (3.33) provides a closed-form relationship between the PMF

of the idle periods observed under ISS, fT̆0
(T̆0 = kTs), and the PMF f

T̂0
(T̂0 = kTs)

and the mean E(T̂i) of the periods that would be observed under PSS as well as the

probabilities of sensing errors Pfa and Pmd, and sensing period Ts. In other words,

(3.33) satisfies the first stage of the analysis procedure mentioned in Section 3.3. On

the other hand, the expression of the estimated PMF under PSS, f
T̂0

(T̂0 = kTs), as a

function of the original PDF was provided in [49], which satisfies the second stage of

the analysis mentioned in Section 3.3. Therefore, by combining the second relationship
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with the first one, the relationship between the estimated PMF under ISS and the

original PDF can then be achieved, which completes the third stage of the analysis

mentioned in Section 3.3.

3.7 Analysis of the Sample Size

The previous sections have analysed the channel activity statistics without any con-

straints on the sample size used to estimate these statistics (i.e., an arbitrarily large

sample size as large as required to achieve the best attainable estimation accuracy).

Although the work in [68] has analysed the impact of the sample size on the statistics

estimation, it was conducted under the assumption that spectrum sensing is perfect

(i.e., PSS). Since DSA/CR receivers are more likely to operate under low SNR condi-

tions where sensing errors are likely to occur, this section analyses the impact of the

sample size on the channel statistics estimation under (a realistic) ISS scenario [94].

In addition, it finds closed-form expressions for the required sample size of idle/busy

periods under ISS to achieve a targeted level of accuracy.

Consider a set {Ti,n}Nn=1 to represent N samples of idle/busy periods of a PU within

a particular channel. A SU on the other hand monitors the activity of the primary chan-

nel using spectrum sensing. The observed duration of the idle/busy periods can easily

be corrupted by the presence of sensing errors. Sensing errors divide the original dura-

tion of the idle/busy periods into shorter fragments. The number of these fragments as

a result is higher than the original number of periods N . In other words, the number

of the observed idle/busy periods under ISS, Niss, would be greater than (depending

on the probability of spectrum sensing error) the original number of periods N (i.e.,

Niss > N). These Niss periods are short fragments of the original N periods. If prob-

ability of sensing error is zero, PSS can be assumed such that the original periods are

observed without sensing errors and they are therefore not divided into fragments (i.e.,

Npss = N). The only difference between the idle/busy periods observed under PSS

and the original ones is the accuracy of calculating the duration of these periods, which

depends on the resolution of the employed sensing period Ts. Since ISS is a more re-

alistic scenario for the DSA/CR systems, it is very important to find a mathematical

expression for the number of idle/busy periods observed under ISS, Niss, as a function

of the original number of periods N when probabilities of sensing errors, Pfa and Pmd,

are predefined by DSA/CR system.

To find the sample size Niss as a function of the original sample size N , consider

a single idle period T0 and a single busy period T1, which are observed as T̂0 and T̂1,
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respectively, under PSS (based on K sensing events within each period, assuming they

have same duration). If a single false alarm occurs within the K sensing events of

the idle period and a single missed detection occurs within the K sensing events of

the busy period as shown in Fig. 3.1(b), the total number of idle periods becomes

three (the same applies to the busy periods as well). This is because the single false

alarm divides the original idle period into two fragments of idle periods and the single

missed detection produces another new idle period. As a result, the total number of

idle periods becomes three (the two fragments plus the new one). Therefore, one can

say:

Niss = N +Nfa +Nmd, (3.34)

where Nfa and Nmd represent the number of false alarms and missed detections, re-

spectively. They can be found by multiplying the number of sensing events by the

probabilities of sensing errors as:

Nfa = KPfa =

∑N
n=1 T̂0,n

Ts
· Pfa

=
NE(T̂0)

Ts
Pfa =

NE(T0)

Ts
Pfa. (3.35)

Nmd = KPmd =

∑N
n=1 T̂1,n

Ts
· Pmd

=
NE(T̂1)

Ts
Pmd =

NE(T1)

Ts
Pmd. (3.36)

Note that the estimated mean under PSS is equal to the true mean E(T̂i) = E(Ti) as

discussed in [49].

Expression (3.34) is true if all false alarms and missed detecions occur as solo sensing

errors within the idle/busy periods. This, however, is not the case as sensing errors

can also appear attached to other periods or consecutive to other sensing errors (as

discussed in Cases I and II of Section 3.5). Therefore, (3.34) can be corrected as:

Niss = N + Ǹfa + Ǹmd, (3.37)

where Ǹfa and Ǹmd are found after taking Cases I and II of Section 3.5 into account
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as:

Ǹfa = N

(
E(T0)

Ts
− 2

)
P̀fa. (3.38)

Ǹmd = N

(
E(T1)

Ts
− 2

)
P̀md. (3.39)

After considering these, the final expression of the sample size under ISS as a function

of the original sample size and probabilities of sensing errors can be written as:

Niss = N

(
1 +

(
E(T0)

Ts
− 2

)
P̀fa +

(
E(T1)

Ts
− 2

)
P̀md

)
. (3.40)

From this, the original sample size based on the observed sample size under ISS can

also be found as:

N =
Niss(

1 +
(
E(T0)
Ts
− 2
)
P̀fa +

(
E(T1)
Ts
− 2
)
P̀md

) . (3.41)

3.7.1 Required Sample Size for the Mean Estimation under ISS

Given a set {T̂i,n}Nn=1 of N idle/busy periods observed under PSS, the mean E(T̂i) of

the observed periods can be found based on the sample mean estimator m̂i:

E(T̂i) ≈ m̂i =
1

N

N∑
n=1

T̂i,n. (3.42)

The maximum relative error of the mean estimator m̂i under PSS as a function of the

sample size N is found as [68]:

εm̂imax ≈
κ

E(Ti)

[
1

N

(
V(Ti) +

T 2
s

6

)] 1
2

, (3.43)

where V(Ti) denotes the variance of the idle/busy periods, and κ is standard deviation

interval defined by the confidence level ρ. For a given confidence level ρ, κ can be found

from concentration inequalities as explained in [68]. However, concentration inequalities

may lead to loose upper bounds of the maximum relative error. A more accurate result

can be achieved by applying the central limit theorem on the mean estimator m̂i where
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κ can be obtained for a certain confidence level ρ as [68]:

κ ≥
√

2 erf−1(ρ), (3.44)

where erf denotes the Gauss error function [68].

In order to find the maximum relative error of the mean estimator m̆i under ISS as

a function of the sample size Niss, the obtained expression in (3.41), which defines the

original sample size as a function of the ISS sample size, is used along with (3.43) as:

εm̆imax ≈
κ

E(Ti)

[(
1 +

(
E(T0)
Ts
− 2
)
P̀fa +

(
E(T1)
Ts
− 2
)
P̀md

)
Niss

×
(
V(Ti) +

T 2
s

6

)] 1
2

. (3.45)

Note that if probabilities of sensing errors (Pfa and Pmd) are zero, (3.45) will be the

same as (3.43) for the calculated relative error under PSS. Therefore, the result shown

in (3.45) can be considered as a general form to find the maximum relative error of the

mean estimator based on the sample size under both scenarios.

The required sample size of the idle/busy periods observed under ISS to achieve a

targeted maximum relative error of the mean estimator can be found from (3.45) as:

N m̆i
iss ≈

(
κ

εm̆imaxE(Ti)

)2(
V(Ti) +

T 2
s

6

)(
1 +

(
E(T0)

Ts
− 2

)
P̀fa +

(
E(T1)

Ts
− 2

)
P̀md

)
.

(3.46)

3.7.2 Required Sample Size for the Duty Cycle Estimation under ISS

The duty cycle of the idle/busy periods of the primary channel is one of the most impor-

tant statistical information for DSA/CR systems, which helps determine the amount

of opportunities available in the primary channels. The channel duty cycle Ψ can be

estimated based on the observed sample size under PSS as:

Ψ̂ =
m̂1

m̂1 + m̂0
, (3.47)

where m̂1 and m̂0 are the sample mean of the busy and idle periods, respectively. The

maximum relative error of the duty cycle estimator Ψ̂ under PSS as a function of the
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sample size N is found as [68]:

εΨ̂
max ≈

κ

Ψ

[
1

N [E(T0) + E(T1)]4

{
[E(T1)]2

(
V(T0) +

T 2
s

6

)
+ [E(T0)]2

(
V(T1) +

T 2
s

6

)}] 1
2

.

(3.48)

In order to find the maximum relative error of the duty cycle estimator Ψ̆ under ISS

as a function of the sample size Niss, the obtained expression in (3.41), which defines

the original sample size as a function of the ISS sample size, is used along with (3.48)

as:

εΨ̆
max ≈

κ

Ψ

[(
1 +

(
E(T0)
Ts
− 2
)
P̀fa +

(
E(T1)
Ts
− 2
)
P̀md

)
Niss [E(T0) + E(T1)]4

×

{
[E(T1)]2

(
V(T0) +

T 2
s

6

)
+ [E(T0)]2

(
V(T1) +

T 2
s

6

)}] 1
2

. (3.49)

The required sample size of the idle/busy periods observed under ISS to achieve a

targeted maximum relative error of the duty cycle estimator can be found from (3.49)

as:

N Ψ̆
iss ≈

(
κ

εΨ̆
maxΨ

)2

×
Ψ2
(
V(T0) + T 2

s
6

)
+ (1−Ψ)2

(
V(T1) + T 2

s
6

)
[E(T0) + E(T1)]2

×
(

1 +

(
E(T0)

Ts
− 2

)
P̀fa +

(
E(T1)

Ts
− 2

)
P̀md

)
(3.50)

3.7.3 Required Sample Size for the Distribution Estimation under ISS

The distribution of the idle/busy periods can also be estimated based on the outcomes

of spectrum sensing. Since the experimental measurements in [78] have shown that

Generalised Pareto (GP) distribution is the best description for the original idle/busy

periods of a PU, the CDF of these periods can be estimated based on the PSS obser-

vation as [49]:

F
T̂i

(T ) = 1−
[
1 +

α̂i(T − µ̂i)
λ̂i

]−1/α̂i

, T ≥ µ̂i, (3.51)

where µ̂i, λ̂i and α̂i are the location, scale and shape parameters of the GP distribution.

The location µ̂i also represents the minimum period duration and it can be assumed
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to be known µ̂i ≈ µi, while λ̂i and α̂i can be found as [49]:

λ̂i =
1

2

(
1 +

(m̂i − µ̂i)2

ṽi

)
(m̂i − µ̂i) (3.52a)

α̂i =
1

2

(
1 +

(m̂i − µ̂i)2

ṽi

)
, (3.52b)

where m̂i and ṽi are the sample mean and variance estimators, respectively. Note that

the variance estimator is found in [49] as ṽi = v̂i − T 2
s
6 . The accuracy of the CDF

estimator F
T̂i

(T ) in (3.51) as a function of the sample size N under PSS is found in

terms of the Kolmogorov-Smirnov (KS) distance as [68]:

D
F
T̂

KS = κ(1 + αi)
− 1
αi
−1
[

1

N

(
1

λ2
i

Ω(Ti) +
[(1 + αi) ln(1 + αi)− αi]2

α4
i

Υ(Ti)

)] 1
2

, (3.53)

where Ω(Ti) and Υ(Ti) are given in [68, eq. (45)].

KS distance quantifies the maximum difference or error between the empirical cumu-

lative distribution of the samples and the reference distribution, which can be applied

here to find the maximum error between the estimated (discrete) and actual (continu-

ous) distributions. In order to find the KS distance of the CDF estimator FT̆i(T ) under

ISS as a function of the sample size Niss, the obtained expression in (3.41), which de-

fines the original sample size as a function of the ISS sample size, is used along with

(3.53) as:

D
FT̆
KS = κ(1 + αi)

− 1
αi
−1
[(1 +

(
E(T0)
Ts
− 2
)
P̀fa +

(
E(T1)
Ts
− 2
)
P̀md

)
Niss

×
(

1

λ2
i

Ω(Ti) +
[(1 + αi) ln(1 + αi)− αi]2

α4
i

Υ(Ti)

)] 1
2

. (3.54)

The required sample size of the idle/busy periods observed under ISS to achieve a

targeted KS distance of the CDF estimator can be found from (3.54) as:

N
FT̆
iss =

(
κ

D
FT̆
KS

)2

(1 + αi)
− 2
αi
−2
(

1 +

(
E(T0)

Ts
− 2

)
P̀fa +

(
E(T1)

Ts
− 2

)
P̀md

)
×
(

1

λ2
i

Ω(Ti) +
[(1 + αi) ln(1 + αi)− αi]2

α4
i

Υ(Ti)

)
. (3.55)
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3.8 Numerical, Simulation and Experimental Results

In order to validate the analyses carried out in this chapter, the numerical results

obtained from the derived closed-form expressions are compared with the counterpart

obtained by means of both simulations and hardware experiments. Simulations are

based on Matlab following a similar procedure as in [75]. A sequence of a sufficiently

high number of idle/busy periods Ti is generated with random durations drawn from

a Generalised Pareto distribution (using µi = 10 t.u., λi = 30 t.u. and αi = 0.25

as the values for the location, scale and shape parameters). Then spectrum sensing is

performed on the generated periods by employing a sensing period of Ts, using different

values within the interval (0, µi). The calculated idle/busy periods from the sensing

decisions represent the corresponding sequence of periods T̂i that would be observed by

a DSA/CR system under PSS. Introducing sensing errors on the PSS decisions, based

on the selected value of Pfa and Pmd, leads to the corresponding sequence of idle/busy

periods T̆i that would be observed under ISS. Finally, the statistics of the periods

T̆i resulting from ISS can be calculated and compared with the original statistics of

the generated periods Ti. The experimental results, on the other hand, are obtained

by using the USRP-based prototype presented in Chapter 2. The transmitter, which

represents the PU, generates a sequence of idle/busy periods from a Generalised Pareto

distribution (similar to the simulations settings) and transmits 105 pairs of these periods

using a 2.462 GHz channel. The receiver on the other hand, which represents the SU,

performs spectrum sensing to observe the activity of the signals (idle/busy periods) in

the same channel. Different sensing periods Ts (0 ms < Ts < 10 ms) are employed by

the USRP to sense the channel activity periodically. The receiver is placed sufficiently

far away from the transmitter to ensure that the desired probability of missed detection

is reached (further distance for higher probability of missed detection). The probability

of false alarm is tuned by adjusting the energy decision threshold at the receiver. At

each sensing event, samples are taken from the detected signal at a sampling rate of 56

MS/s for a duration of τ = 0.1 ms. These samples are processed by an energy detection

algorithm to decide the state of the channel (either idle or busy). Using the outcomes

of these sensing decisions, the duration of the idle/busy periods can be estimated at

the receiver side and their statistics can therefore be calculated. By comparing these

statistics with the original statistics of the periods generated at the transmitter, the

accuracy of the analytical results achieved in this chapter can be verified experimentally

under realistic conditions and practical limitations of both transmitter and receiver. It

is worth mentioning that the unit of time used in the evaluation of the analytical
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expressions is given in a general form of time unit (t.u.). In the experimental scenario,

however, where a specific unit needs to be selected, 1 ms is used as the reference time

unit (i.e., 1 t.u. = 1 ms).

3.8.1 Estimation of the Minimum Period

The accuracy of the result in (3.2) for the estimated minimum period µ̆i under ISS was

evaluated in [75] by means of simulations. This evaluation is included here for com-

pleteness and to corroborate the simulation validation with experimental results as well.

The accuracy is evaluated by calculating the relative error of the estimated minimum

idle period µ̆0 under ISS with respect to its original value µ0 as |µ̆0 − µ0| /µ0. Assuming

µ0 = 10 t.u. and Pfa = Pmd = 0.1, the relative error can be found for different Ts

values as shown in Fig. 3.8. The obtained results from simulations and experiments

perfectly match the analytical expression given by (3.2), which thus corroborate its

correctness and accuracy. It can also be noticed that as Ts increases the relative error

decreases. This is because the estimated minimum period under ISS is µ̆0 = Ts and its

value will approach the true minimum µ0 as Ts tends to µ0, thus making the relative

error tend to zero accordingly. Same observations can also be noticed for any non-zero

value of Pfa and Pmd and they are also valid for the estimated minimum busy period

µ̆1 under ISS.

3.8.2 Estimation of the Mean Period

This section validates the analysis presented in Section 3.5 for the estimation of the

mean period under ISS. This validation is provided in terms of the relative error of the

estimated mean period under ISS E(T̆i) with respect to the original mean period E(Ti)

as
∣∣∣E(T̆i)− E(Ti)

∣∣∣ /E(Ti). Fig. 3.9 shows the calculated relative error based on the

achieved mathematical model for the mean period in (3.18) as well as the estimated

mean from the simulations and hardware experiments, with respect to the employed

sensing period Ts and for both low (Pfa = Pmd = 0.01) and high (Pfa = Pmd = 0.1)

probabilities of sensing errors. As it can be appreciated, there exists a perfect agreement

among all three curves, thus demonstrating the accuracy of the closed-form expression

obtained in (3.18) for the estimated mean period under ISS as a function of the original

mean, sensing period and probabilities of sensing error. When the sensing period

Ts increases there will be less sensing events within the observed idle/busy periods,

and eventually less number of sensing errors, which means less corrupted fragments

resulting from these sensing errors. For this, the relative error of the estimated mean
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Figure 3.8: Relative error of the calculated minimum period µ̆i under ISS.

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3.9: Relative error of the calculated mean E(T̆0) under ISS.



Chapter 3. Mathematical Analysis of the Channel Activity Statistics 71

period as shown in Fig. 3.9 reduces for higher Ts values. On the other hand, when

the probabilities of sensing error (Pfa and Pmd) increase the number of sensing errors

increases as well, thus causing higher relative error in the estimation of the mean period.

3.8.3 Estimation of the Distribution

This section validates the analysis presented in Section 3.6 for the estimation of the

distribution of the periods under ISS. Fig. 3.10 compares the theoretical expression

in (3.33) for the PMF of the periods observed under ISS with the equivalent results

obtained from simulations and hardware experiments. As it can be observed, there is

a perfect agreement for all the considered cases shown in Fig. 3.10. A more quantita-

tive comparison can be performed based on the well-known Kolmogorov-Smirnov (KS)

distance [91], which in the context of this work is defined as the maximum absolute

difference between the CDF of the periods observed under ISS, and the CDF of the

original periods:

DKS = sup
k
| FTi(kTs)− FT̆i(kTs) | , where k ∈ N+. (3.56)

While the original period durations Ti and their CDF FTi(·) can be assumed to be

continuous in general, the periods observed under ISS T̆i are integer multiple values

of the employed sensing period and therefore their CDF FT̆i(·) is discrete. In order to

enable the comparison between these continuous and discrete distributions based on

(3.56), the continuous distribution FTi(·) is evaluated at discrete points for which FT̆i(·)
is defined (i.e., Ti = kTs, k ∈ N+). The KS distance as defined in the context of this

work in (3.56) is first evaluated numerically based on (3.33) and then compared to the

corresponding KS distance obtained from simulations and hardware experiments. The

results are shown in Fig. 3.11 with respect to the sensing period Ts and using high and

low probabilities of sensing errors. It is observed that as the probability of sensing error

increases as the distance of the calculated distribution under ISS from its actual value

increases as well (i.e., lower accuracy). It can also be noticed that there is a perfect

agreement among analytical, simulation and experimental results, which validates the

theoretical expression obtained in (3.33).

3.8.4 Sample Size Evaluation

In this section the obtained analytical results for the sample size are validated by means

of simulations and experiments. First of all, the obtained expression in (3.41), which
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(b) Pfa = 0.01, Pmd = 0.01.
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Figure 3.10: Estimating the PMF of the idle periods under ISS using different proba-
bilities of sensing error and when Ts = 1 t.u..
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Figure 3.11: KS distance of the calculated distribution under ISS.

provides a mathematical relationship between the original sample size of the idle/busy

periods and the observed sample size under ISS, is tested. For which, a large sample size

ofN = 104 of idle/busy periods is generated and then observed under ISS using different

probabilities of sensing error (Pfa, Pmd ∈ {0.001, 0.01, 0.1}). The simulation results of

the observed sample size under ISS can then be compared with the calculated one using

the achieved expression in (3.41). As shown in Fig. 3.12, the analytical results match

the simulation results for the calculated sample size under ISS for different scenarios

of probabilities of sensing error and with respect to Ts. It can also be noticed that the

number of the observed periods under ISS increases as the probabilities of sensing error

increase as well, this is because the presence of more sensing errors result in a larger

number of short fragments of the original periods.

After validating (3.41), the obtained maximum relative error expressions, (3.45) and

(3.49) for the mean and duty cycle estimations, respectively, as well as the KS distance

expression (3.54) for the CDF estimation can then be validated. In the simulation, the

impact of the sample size on the mean, duty cycle, and distribution estimations under

ISS is evaluated with respect to the obtained analytical expressions (using a confidence
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Figure 3.12: The sample size under ISS as a function of the sensing period Ts, when
the original sample size N = 104.

level ρ = 0.95). These analyses are also validated experimentally using the USRP-based

prototype proposed in Chapter 2. As shown in Fig. 3.13, the relative errors of estimat-

ing the mean and duty cycle of the periods as well as the KS distance of estimating

the CDF of the periods decrease as the sample size of the ISS observations increases.

It can also be noted that the analytical results obtained in this section reproduce ac-

curately the sample sizes required to achieve the desired estimation accuracies and can

therefore be useful in DSA/CR system designs under any scenario of spectrum sensing

(especially the realistic ISS scenario).

3.9 Summary

This chapter has addressed a highly challenging problem in spectrum sharing systems,

which is the problem of observing inaccurate channel activity statistics under ISS. Such

problem is poorly addressed in the literature without deep and rigorous mathematical

analyses taking into account all the factors that influence the estimation accuracy of

the channel activity statistics. The performance of spectrum sharing systems can be

improved significantly by knowing the statistical information of the channel. Therefore,
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Figure 3.13: (Top) Relative error of the mean estimator, (Middle) Relative error of the
duty cycle estimator, and (Bottom) KS distance of the CDF estimator with respect to
the sample size under ISS, when confidence level ρ = 0.95.

it is important to obtain this information accurately especially under realistic SNR

conditions (i.e., ISS). In this context, this chapter has studied analytically the impact

of the sensing errors on statistics observation, for which mathematical relationships

in closed-form between the observed channel activity statistics under ISS and their

corresponding original statistics have been found. A set of closed-form expressions

for several statistical metrics has been obtained as a function of the parameters used

to configure spectrum sensing operation (i.e., probability of sensing error and sensing

period). In addition, the impact of the sample size on the estimation of these statistics

has been analysed, and closed-form expressions for the required sample size under ISS
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to achieve a targeted level of accuracy have been obtained. These analytical results

have been validated by means of simulations and experiments. The obtained closed-

form expressions in this chapter will serve as the basis to propose novel estimation

methods to overcome the degrading effects of sensing errors in the next chapter, which

can provide accurate estimations of the channel activity statistics even under severe

ISS conditions.





Chapter 4

Proposed Estimation Methods

for Channel Activity Statistics

4.1 Introduction

Channel activity statistics are conventionally estimated directly from the sensing de-

cisions of spectrum sensing. However, this approach can be highly sensitive to the

presence of sensing errors as it has been shown in the previous chapter. Another ap-

proach based on reconstruction methods in the form of algorithms as in [75–77] has

been proposed to correct the estimation of the channel activity statistics under ISS.

These works however suffer from the following limitations: i) no closed-form expres-

sions are provided for these statistics, only heuristic estimation methods in the form of

algorithms, and ii) the employed reconstruction algorithms assume perfect knowledge

of some of the channel statistical parameters (e.g., the minimum idle/busy period).

Given the limitations of the previous works, this chapter investigates three differ-

ent approaches to improve the estimation of the channel activity statistics under ISS.

The first approach proposes novel estimation methods for the channel activity statistics

under ISS based on the closed-form expressions achieved in Chapter 3, without mak-

ing any assumption about the activity of the channel. The proposed methods provide

highly accurate estimation for the channel activity statistics under ISS, outperforming

the existing methods in the literature. The second approach investigates the recon-

struction method, for which a new reconstruction algorithm is introduced to correct

the observation of the channel activity statistics under ISS, which can achieve the same

accuracy of the latest reconstruction method in the literature without requiring any

prior knowledge of the channel activity, opposite to all the previous reconstruction



Chapter 4. Proposed Estimation Methods for Channel Activity Statistics 79

Figure 4.1: Channel activity statistics estimation in spectrum sharing system.

methods. Finally, this chapter introduces a novel approach, Traffic Learning (TL), as

deep learning approach for obtaining accurate statistical information of the channel

traffic in spectrum sharing systems. This approach learns from the imperfect observa-

tions of the channel activity statistics in order to predict their accurate estimations.

All these approaches, which can be illustrated as in Fig. 4.1, will be investigated in

detail and their performance will be evaluated and compared among each other in this

chapter.

4.2 Estimation Methods Based on Closed-Form Expres-

sions

In this section the mathematical expressions obtained in the previous chapter will be

exploited to derive novel estimation methods that are able to provide accurate statistical

information of the channel activity under ISS.

4.2.1 Estimation Method for the Minimum Period

As it was discussed in Section 3.4, the presented expression in (3.2), µ̆i = Ts, shows

that the estimated minimum period under ISS µ̆i is solely dependent on the sensing

period Ts (regardless of the original value of the minimum period). Therefore, it is

impossible to derive an estimation method from this expression in order to provide an

accurate estimation for the original minimum period µi. However, another approach

will be proposed in Section 4.4 using Deep Learning method to solve such problem

through learning from the ISS observations in order to predict the accurate estimation

of the minimum period.
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4.2.2 Estimation Method for the Mean Period

The closed-form expression obtained in (3.18), which provides a mathematical relation-

ship between the estimated mean under ISS E(T̆i) and the original mean E(Ti), suggests

a novel method to accurately find the original mean of the channel periods from the

outcomes of the ISS estimates. In this section, therefore, a novel estimation method

is proposed to accurately estimate the original value of the mean of the idle/busy pe-

riods based on the ISS observations. The analytical result in (3.18) summarises two

expressions, namely the estimated mean of idle periods under ISS (when i = 0) and the

estimated mean of busy periods under ISS (when i = 1), which can be written here as:

E(T̆0) =
E(T0)− E(T0)Pfa + E(T1)Pmd

1 +
(
E(T0)
Ts
− 2
)
P̀fa +

(
E(T1)
Ts
− 2
)
P̀md

, (4.1)

E(T̆1) =
E(T1) + E(T0)Pfa − E(T1)Pmd

1 +
(
E(T0)
Ts
− 2
)
P̀fa +

(
E(T1)
Ts
− 2
)
P̀md

. (4.2)

The above two expressions can be solved for the original means of periods, i.e., E(T0)

and E(T1), as shown in (4.3) and (4.4), respectively.

E(T0) = E(T̆0)
1− 2P̀fa − 2P̀md

1− Pfa −
P̀fa
Ts

E(T̆0)
+ E(T1)

P̀md
Ts

E(T̆0)− Pmd

1− Pfa −
P̀fa
Ts

E(T̆0)
, (4.3)

E(T1) = E(T̆1)
1− 2P̀fa − 2P̀md

1− Pmd − P̀md
Ts

E(T̆1)
+ E(T0)

P̀fa
Ts

E(T̆1)− Pfa
1− Pmd − P̀md

Ts
E(T̆1)

. (4.4)

By substituting (4.4) in (4.3), a new expression can be derived in (4.5), denoted as

E(T̃0), to represent the accurate estimation of the original mean E(T0) as a function of

the estimated mean under ISS (i.e., E(T̆0) and E(T̆1)), probability of sensing error (i.e.,

Pfa and Pmd), and sensing period (i.e., Ts). Similarly, the estimator for the mean of the

busy periods E(T̃1) can be derived by substituting (4.3) in (4.4) to obtain (4.6). The

final expression for the mean estimator of the idle/busy periods E(T̃i) can be written

in a compact form as shown in (4.7).

The result in (4.7) represents a novel method to accurately estimate the original

value of the mean of the channel periods based on the estimated mean under ISS,

probabilities of sensing error, and sensing period. It is worth mentioning that the

probabilities of sensing error Pfa and Pmd, and sensing period Ts are all configured

based on the spectrum sensing algorithm used by the DSA/CR system and are known.



Chapter 4. Proposed Estimation Methods for Channel Activity Statistics 81

E(
T

0
)
≈

E(
T̃

0
)

=

( E(
T̆

0
)(

1
−
P
m
d
)
−
E(
T̆

1
)P

m
d

)( 1
−

2
P̀
f
a
−

2
P̀
m
d

)
( 1
−
P
f
a
−

P̀
f
a

T
s
E(
T̆

0
))( 1

−
P
m
d
−

P̀
m
d

T
s
E(
T̆

1
)) −(

P̀
f
a

T
s
E(
T̆

1
)
−
P
f
a

)( P̀ m
d

T
s
E(
T̆

0
)
−
P
m
d

)
(4

.5
)

E(
T

1
)
≈

E(
T̃

1
)

=

( E(
T̆

1
)(

1
−
P
f
a
)
−
E(
T̆

0
)P

f
a

)( 1
−

2
P̀
f
a
−

2P̀
m
d

)
( 1
−
P
f
a
−

P̀
f
a

T
s
E(
T̆

0
))( 1

−
P
m
d
−

P̀
m
d

T
s
E(
T̆

1
)) −(

P̀
f
a

T
s
E(
T̆

1
)
−
P
f
a

)( P̀ m
d

T
s
E(
T̆

0
)
−
P
m
d

)
(4

.6
)

E(
T
i)
≈

E(
T̃
i)

=

( E(
T̆
i)

(1
−
P

1
−
i

m
d
P
i f
a
)
−
E(
T̆

1
−
i)
P

1
−
i

m
d
P
i f
a

)( 1
−

2P̀
f
a
−

2
P̀
m
d

)
( 1
−
P
f
a
−

P̀
f
a

T
s
E(
T̆

0
))( 1

−
P
m
d
−

P̀
m
d

T
s
E(
T̆

1
)) −(

P̀
f
a

T
s
E(
T̆

1
)
−
P
f
a

)( P̀ m
d

T
s
E(
T̆

0
)
−
P
m
d

)
(4

.7
)



82 Chapter 4. Proposed Estimation Methods for Channel Activity Statistics

0 5 10
������� ����	
� �� �����

0

10

20

30

40

50

�
��

�
	
�
�


��
�
��

�	


�
�

��
��

��� � ��� � ���

���� ���� ������ �� ���

��������
 ���� ��
�� ���

��	�	��
 ���� �����	�

0 5 10
������� ����	
� �� �����

0

10

20

30

40

50

�
��

�
	
�
�


��
�
��

�	


�
�

��
��

��� � ��� � ����

���� ���� ������ �� ���

��������
 ���� ��
�� ���

��	�	��
 ���� �����	�
Conventional mean estimator Conventional mean estimator

Figure 4.2: Accuracy of the proposed mean estimator E(T̃i).

Therefore, this method is applicable in real hardware implementations, as opposed to

most previous estimation methods proposed in the existing literature [75,77].

The accuracy of the proposed mean estimation method in (4.7) can be examined fol-

lowing the same simulation procedure in Section 3.8, where a large number of idle/busy

periods Ti are generated and then observed under ISS as T̆i. The proposed estimation

methods can then be applied to find the original statistics of Ti from the observed ones

T̆i under ISS. Fig. 4.2 shows the accuracy of the achieved mean estimator in (4.7) in

comparison with that attained by the conventional mean estimator given in (3.4). As

it can be noticed, when the mean period is directly estimated from the channel periods

observed under ISS based on (3.4), the resulting estimate is highly inaccurate. On the

other hand, the proposed estimator in (4.7) provides a nearly perfect estimation under

low probabilities of sensing errors (Pfa = Pmd = 0.01) and even a significantly high ac-

curacy under high probabilities of sensing errors (Pfa = Pmd = 0.1), which approaches

the exact mean period as the employed sensing period increases. The proposed mean

estimator using this approach (i.e., closed-form expression) will also be compared with

other approaches investigated later on in this chapter.
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4.2.3 Estimation Method for the Duty Cycle

The Duty Cycle (DC), also referred to as the channel occupancy rate or the channel

load, is one of the most widely used statistical metrics in DSA/CR systems due to its

simplicity and applicability in enhancing the efficiency of spectrum utilisation. The

DC of the channel, denoted as Ψ, is traditionally estimated from the spectrum sensing

observations by dividing the number of busy sensing events over the entire number

of the sensing events [95–97]. Although this is the most widely used approach in the

literature, it is highly sensitive to the presence of the sensing errors. On the other hand,

and in the context of PSS, another method was proposed in [62] to estimate the DC of

the channel activity based on the mean of the idle/busy periods as:

Ψ =
E(T1)

E(T1) + E(T0)
. (4.8)

The observed idle/busy periods T̂i under PSS can serve to obtain an accurate estimation

for the mean E(T̂i) and thus an accurate estimation of the DC of the primary channel

as well. However, in the ISS scenario, the observed idle/busy periods T̆i could be

significantly corrupted because of the sensing errors, as explained in Chapter 3, and

the estimated mean of these periods could be highly inaccurate. Therefore, estimating

the DC of the channel under ISS as given in (4.9), which depends solely on the mean

of the observed periods, would be highly inaccurate (i.e., Ψ̆ 6= Ψ).

Ψ̆ =
E(T̆1)

E(T̆1) + E(T̆0)
6= Ψ. (4.9)

An alternative approach is here proposed based on the analysis presented in Section

4.2.2. The proposed mean estimator E(T̃i) in (4.7), which can be used to estimate the

mean of the idle/busy periods accurately under ISS, can also be exploited to find the

DC of the channel under ISS. Therefore, by substituting the mean estimator of (4.7)

in (4.8), a new DC estimator Ψ̃ is obtained as:

Ψ̃ =
E(T̃1)

E(T̃1) + E(T̃0)
≈ Ψ, (4.10)

where E(T̃0) and E(T̃1) are the accurate estimations of E(T0) and E(T1) provided by

(4.5) and (4.6), respectively, and thus the obtained Ψ̃ provides an accurate estimation

of the original DC Ψ.

The accuracy of the DC estimation method can also be validated as shown in Fig. 4.3.
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Figure 4.3: Relative error of the proposed DC estimator Ψ̃ for different Pfa and Pmd
(Ts = 5 t.u.).
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This accuracy is presented in terms of the relative error (|Ψ̃−Ψ|/Ψ) of the estimation

methods for the conventional DC estimator (which is found directly by taking the

ratio of the busy sensing decisions to the total number of sensing decisions) as well

as the proposed DC estimator (which is found by (4.10) based on the mean period

estimator). The results are shown for different combinations of low/high probabilities

of sensing errors and for the whole range of possible DC values. A sensing period of

Ts = 5 t.u. is here considered for illustrative purposes but similar results are obtained

for other values of the sensing period as well. As it can be clearly observed, the

proposed DC estimator significantly outperforms the conventional method widely used

in the literature to estimate the DC when a realistic scenario of ISS is considered.

The relative error is almost zero in all cases, even when high probabilities of sensing

errors are considered (e.g., Pfa = Pmd = 0.1 in Fig. 4.3(a)). The excellent level

of accuracy achieved by the proposed DC estimation method, even in the presence of

severe probabilities of sensing errors, highlights its practical utility in realistic scenarios.

4.2.4 Estimation Method for the Distribution

The closed-form expression in (3.33) suggests a novel method to accurately estimate

the PMF of the channel periods under PSS, and therefore the original PDF, from the

outcomes of the ISS estimates. Consequently, the analytical result in (3.33) can be

solved for the PMF obtained under PSS f
T̂0

(T̂0 = kTs) as a function of the PMF

obtained under ISS fT̆0
(T̆0 = kTs), E(T̆i), Pfa, Pmd and Ts. This can be achieved by

simplifying (3.33) as shown below:

fT̆0
(T̆0 = kTs) = ak

[
c · f

T̂0
(T̂0 = kTs)−

k−1∑
m=1

[
f
T̂0

(T̂0 = mTs)

(
m− k +

2− Pfa
Pfa

)]
+ bk

]
,

(4.11)

where

ak = βP 2
fa(1− Pfa)k, (4.12a)

bk =
E(T̂0)

Ts
+

2− Pfa
Pfa

− k +

(
E(T̂1)

Ts
− k − 1

)
P kmd(1− Pmd)2

P 2
fa(1− Pfa)k

, (4.12b)

c =

(
P 2
fa − 2Pfa + 1

P 2
fa

)
. (4.12c)
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The equation shown in (4.11) can then be solved to find f
T̂0

(T̂0 = kTs) as follows:

f
T̂0

(T̂0 = kTs) =
1

c

[
fT̆0

(T̆0 = kTs)

ak
+

k−1∑
m=1

[
f
T̂0

(T̂0 = mTs)

(
m− k +

2− Pfa
Pfa

)]
− bk

]
.

(4.13)

Equation (4.13) can be used as a recursive formula (where k ∈ N+) whose initial value

can be found for k = 1 and successive values can be found by iterating over k as shown

in (4.14).

f
T̂0

(T̂0 = kTs) =
1

c

[
fT̆0

(T̆0 = kTs)

ak
− bk

]
for k = 1

1

c

[
fT̆0

(T̆0 = kTs)

ak
+

k−1∑
m=1

[
f
T̂0

(T̂0 = mTs)

(
m− k +

2− Pfa
Pfa

)]
− bk

]
for k > 1

(4.14)

Note that the mean period E(T̂i) in (4.12b) can be substituted with the correspond-

ing mean estimator (4.7) proposed in Section 4.2.2. As a result, the expression in (4.14)

represents the estimator for the PMF of the periods that would be observed under PSS

as a function of the PMF and mean obtained under ISS as well as Pfa, Pmd, and Ts.

Notice that the resulting PMF estimated from (4.14) is still a discrete distribution.

A continuous estimation of the original distribution can be obtained by interpolating

through the middle points of each discrete step in this PMF f
T̂0

(T̂0 = kTs), which is

justified by the analytical result obtained in [49, eq. (38)].

In the same way, the accuracy of the novel estimator proposed in (4.14) can be

examined for the estimation of the original distribution of the periods from the ISS

observations. Therefore, by comparing the KS distance of the proposed estimator

with the KS distance resulting from the direct estimation under ISS (without using

any estimation method), the improvement of the proposed estimation approach can

be assessed. As it can be appreciated in Fig. 4.4, the proposed estimator leads to a

significantly improved accuracy in the estimation of the true distribution of the periods

based on the ISS outcomes, providing a nearly perfect estimation (DKS ≈ 0) under low

sensing error probability and a significantly more accurate estimation even under high

sensing error probability (provided that the appropriate sensing period is selected).

The estimation using this approach will also be compared with the performance of the
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Figure 4.4: KS distance of the proposed distribution estimator.

other studied approaches later on in the the comparison section (Section 4.5). These

results highlight the feasibility of obtaining a highly accurate estimation of the channel

activity statistics from spectrum sensing observations, even in the presence of sensing

errors, if the methods proposed in this section are employed.

4.3 Estimation Methods Based on Reconstruction Algo-

rithms

A reconstruction technique was first introduced in [75], in which three different methods

were presented to reconstruct the idle/busy periods estimated under ISS in order to

improve the estimation accuracy of the statistical information of the primary channel.

Then [77] developed three additional reconstruction algorithms which outperform the

methods presented in [75]. However, all the above mentioned methods require perfect

knowledge of the minimum period that the PU is active or in active within the primary

channel. In a practical scenario such information may be unknown to DSA/CR systems,

in which case the system is unable to obtain by itself an accurate estimation based on

spectrum sensing observations as discussed in Section 3.4. In this context, this work



88 Chapter 4. Proposed Estimation Methods for Channel Activity Statistics

proposes a novel reconstruction algorithm that can reach the performance of the latest

algorithm, which is presented in [77], but without requiring any additional knowledge

about the primary channel and assuming that the DSA/CR system is blind to the PUs

activity patterns.

In order to understand how the reconstruction technique can help obtain more

accurate estimation for the primary channel statistics under ISS, the estimation of the

statistical distribution of the primary channel periods is considered. The estimated

distribution of these periods under ISS will be highly inaccurate compared with the

original distribution as discussed in Chapter 3. A single false alarm error as shown in

Fig. 3.1b, could corrupt the estimation of T0 by producing three new shorter period

durations, which are (idle) T̆0, (busy) T̆1, and (another idle) T̆0. In addition, the

resulting T̆1 period from the false alarm itself has a duration equal to the sensing period

Ts (where Ts should be shorter than the minimum period µi). Since the majority of

the sensing errors could appear as individual short periods with a duration of Ts, these

errors can easily be identified when the minimum period µi of the channel is known.

This inspired [75] to propose three methods to reconstruct the sensing decisions affected

by the errors in order to provide more accurate estimation for the statistical distribution

of the idle/busy periods under ISS. Given a set {T̆i,n}Nissn=1 of Niss periods observed under

ISS, the methods discussed below can be employed when the value of µi is perfectly

known [75].

4.3.1 Method 1

This method (from [75]) simply assumes that any estimated period under ISS shorter

than the minimum period µi is an error. Therefore, it discards any period T̆i,n < µi

and does not include it in the computation of the distribution of the channel periods

under ISS.

4.3.2 Method 2

This method (from [75]) not only discards the periods which are T̆i,n < µi, but also

discards the preceding (T̆i,n−1) and the subsequent (T̆i,n+1) periods since these periods

could be the remaining fragments of the original period as illustrated in Fig. 3.1b.

4.3.3 Method 3

Instead of discarding the periods, this method (from [75]) suggests to reconstruct the

incorrect periods by joining all the possible fragments of an original period together.
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This can be performed by combining the periods which are T̆i,n < µi with the preceding

and subsequent periods as (T̆i,n−1 + T̆i,n + T̆i,n+1) and considering the resulting value

as a single period of the opposite type to T̆i,n.

The explained methods of [75] can noticeably improve, to some extent, the accuracy

of the estimated statistics of the primary channel under ISS. However, as shown in [75],

Method 1 can perform better than the other methods. This is because, with the

reconstruction technique in Method 3 the reconstructed periods could sometimes be

incorrectly considered as the opposite type of the original type of the periods and this

degrades the accuracy of statistics estimation. In this context, [77] developed three

other reconstruction algorithms, which could outperform the methods in [75]. These

reconstruction algorithms also assume perfect knowledge of the minimum period µi

of the primary channel. In this work, the most significant reconstruction algorithm

proposed by [77] is considered which is here referred to as Method 4.

4.3.4 Method 4

In this method (from [77]), a threshold βTs < µi is defined (where β ∈ N+), which can

be tuned as explained in [77]. Starting from an initial observed period T̆i,n that has

a duration less than the threshold (i.e., T̆i,n < βTs), all the subsequent periods (idle

and busy) are checked until a period of the opposite type with a duration greater than

the threshold (i.e, T̆1−i,n+N > βTs) is found. These periods are then reconstructed

by summing (T̆i,n + ... + T̆i,n+N−1) to form a single reconstructed period of the same

type as T̆i,n. The next period T̆1−i,n+N , which is the opposite type of the previously

reconstructed period, is then taken as the new initial period for a new reconstruction.

This process is repeated over the whole sequence of the observed periods in an attempt

to reconstruct the whole set of fragments of the original idle/busy periods.

4.3.5 Method 5 (proposed method)

All the previous discussed methods, including the latest reconstruction algorithm in

Section 4.3.4, assume a perfect knowledge of the minimum period µi of the PU occu-

pancy patterns within a particular channel. In a practical scenario such information

may be unknown to the DSA/CR system. Therefore, this section proposes a novel

reconstruction method which can reach the performance achieved by [77], but without

requiring any additional knowledge and assuming that the DSA/CR system is blind

to the PUs activity and inactivity patterns [98]. In this method a new algorithm is

developed that depends on another parameter, which is the mean of idle/busy periods
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mi, rather than the minimum period µi. This algorithm takes the advantage of the

novel estimator proposed in (4.7) of Section 4.2.2 for estimating the mean of idle/busy

periods accurately even under high probability of sensing error (i.e., no prior knowledge

is required for this parameter since it can be estimated accurately based on the analysis

achieved in 4.2.2).

As explained before, the estimated periods under ISS are divided into shorter frag-

ments due to the sensing errors. As a result, the calculated mean of these periods will

be much lower than its true value (i.e., the mean when there are no sensing errors).

Based on this observation, the proposed algorithm reconstructs the periods in an it-

eration process and in each iteration the mean of the reconstructed periods will be

calculated until it reaches the value of the mean obtained using the estimator proposed

in (4.7) (the convergence performance of this process will also be evaluated in the next

section). To explain this in more detail, let us consider the first iteration as an exam-

ple. In this iteration the shortest periods, which are T̆i,n = Ts, will be reconstructed

first as (T̆i,n−1 = T̆i,n−1 + T̆i,n + T̆i,n+1), then the mean of the reconstructed periods

will be calculated and compared with the estimated mean using the estimator in (4.7).

If the calculated mean is lower than the estimated one, the second iteration will take

place where the second shortest periods, which are T̆i,n = 2Ts, will be reconstructed

this time and in the same way as in the first iteration. Therefore, this process will be

repeated until the calculated mean of the reconstructed periods reaches the estimated

value of mean using the mean estimator proposed in (4.7). This proposed method relies

on the fact that the estimator proposed in (4.7) can produce a highly accurate estima-

tion of the original mean period, even in the presence of sensing errors, and thus can

be exploited as an indicator of when periods are reconstructed correctly, without any

prior knowledge of the PU activity pattern. The steps of this method can be further

illustrated in Algorithm 1. Notice that the mean period is here used as a reference to

determine when the periods are correctly reconstructed, however once the process is

finished, other statistics (not only the mean) can also be estimated.

4.3.6 Performance Evaluation of Reconstruction Algorithms

To evaluate the performance of the proposed algorithm in Method 5 along with the

previous methods, the system model is simulated using MATLAB, following a simi-

lar simulation procedure as in Section 3.8 with some slight changes. After a sequence

of idle/busy periods T0/T1 is generated (with Generalised Pareto distribution) and

observed under ISS as T̆0/T̆1 (based on predefined Pfa and Pmd), the reconstruction
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Algorithm 1: Proposed Method 5

Input: (T̆i) The estimated periods under ISS
Output: (T̄i) The reconstructed periods

1 Calculate the mean (m̆i) of the periods under ISS
2 Estimate the mean (m̃i) of the periods using the estimator in (4.7)
3 k = 0

4 T̄i = T̆i
5 while m̆i < m̃i do
6 k = k + 1

7 for each T̆i,n = kTs do

8 T̄i,n−1 = T̆i,n−1 + T̆i,n + T̆i,n+1

9 end
10 m̆i = E(T̄i) // Calculate the mean of the reconstructed periods

11 end
12 return (T̄i)

methods can then be applied to reconstruct the corrupted periods under ISS and re-

ferred to as T̄0/T̄1. The statistical parameters, e.g., Cumulative Distribution Function

(CDF), can then be calculated for the reconstructed periods T̄0/T̄1 as well as for the un-

reconstructed periods T̆0/T̆1, and then compared with the CDF of the original periods

T0/T1.

All discussed reconstruction methods in this work are implemented, and therefore

the above simulation procedure is repeated five times, each time with a different re-

construction method. The accuracy of the reconstruction methods is evaluated by

comparing the estimated CDF of periods (after and before reconstruction) with the

CDF of the original periods. Since the original period durations (Ti) are continuous

values, their CDF is continuous as well. In contrast, the periods T̆i and T̄i that are

estimated under ISS before and after reconstruction, respectively, are discrete values,

and their CDF therefore is discrete as well. Since it is impossible to compare between

continuous and discrete distributions, the discrete distribution is interpolated in order

to be comparable with the continuous one. This comparison can be performed using

the KS distance (also explained in Section 3.8.3). For example, comparing the CDF

of the original periods with the CDF of the ISS periods before reconstruction can be

found as:

DKS = sup
Ti

| FTi(Ti)− FT̆i(Ti) | (4.15)

where FTi(Ti) represents the CDF of the original periods and FT̆i(Ti) is the interpo-
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lated version of the discrete distribution FT̆i(T̆i), DKS denotes the KS distance of the

estimated distribution with respect to the original distribution.

Similarly, to compare the CDF of the original periods with the CDF of the periods

after reconstruction, the following can be used:

DKS = sup
Ti

| FTi(Ti)− FT̄i(Ti) | (4.16)

In this simulation the same settings are selected as in [75] and [77] in order to obtain

a fair comparison. Therefore, the idle periods are drawn from a Generalised Pareto

distribution using the following parameters: location (minimum period) µ0 = 10 t.u.,

scale λ0 = 30 t.u., and shape α0 = 0.25. These parameters result in a mean period of

E(T0) = 50 t.u. when using a duty cycle of Ψ = 0.5. However, for the proposed method

these parameters are considered unknown to the DSA/CR system.

Proposed Method Operation

In order to understand how the periods are reconstructed in the time-domain using the

proposed reconstruction algorithm of Method 5 and how the calculated mean converges

to the true mean, a sequence of the estimated idle/busy periods under ISS selected from

the simulation results is shown in Fig. 4.5 to illustrate the reconstruction process in

each iteration and its corresponding calculated mean. First, an original sequence of the

idle/busy periods is generated with a mean value equal to 50 t.u., then by employing a

sensing period of Ts = 1 t.u. the estimated PSS sequence will be as shown in Fig. 4.5

(the first sequence). By applying sensing errors to this sequence with Pfa = Pmd = 0.1

the ISS periods can be obtained as in the second sequence of the same figure. As it can

be noticed, the calculated mean of the ISS sequence, about (5.1 t.u.), is much lower

than its original value. The following sequences in Fig 4.5 represent the reconstruction

process in each iteration. As it can be seen, the shortest periods, which are equal

to 1Ts, have been reconstructed in the first iteration and the calculated mean has

become 26.2 t.u.. Similarly, the periods 2Ts, 3Ts and 4Ts have been reconstructed in

the second, third and fourth iteration, respectively. In addition the calculated mean

has converged gradually to the original value as 41.3, 44.1, 46.8 t.u.. Since the original

value of the mean should be considered unknown to the DSA/CR system, the achieved

mean estimator in (4.7) is used here, which can provide a satisfactory accuracy for

estimating the true mean. Therefore, in this case the estimated mean was m = 44.4

t.u., which was used as a threshold for the proposed algorithm to break the loop (i.e.,

stop the reconstruction process) whenever the calculated mean exceeds this value.



Chapter 4. Proposed Estimation Methods for Channel Activity Statistics 93

 

2𝑇𝑠 1𝑇𝑠 3𝑇𝑠 4𝑇𝑠 

Figure 4.5: Reconstruction process of the idle/busy periods in time-domain using the
proposed algorithm and comparing it with the periods under PSS and ISS.

In Fig. 4.6, on the other hand, the convergence performance of the proposed algo-

rithm is demonstrated for different scenarios of probability of sensing error, in terms

of the relative error with respect to the number of iterations required to achieve the

accuracy given by the mean estimator in (4.7). As it can be seen, the accuracy of this

method converges to zero (or close to zero) relative error as the number of iterations

increases. In addition, more iterations are required to reconstruct the idle/busy periods

and achieve the minimum estimation error when higher probability of sensing error is

considered (e.g., 4 iterations for Pfa = Pmd = 0.1, 2 iterations for Pfa = Pmd = 0.05

and 1 iteration for Pfa = Pmd = 0.01).

Performance Evaluation

Fig. 4.7 illustrates the accuracy of estimating the CDF under ISS using different

methods, which is presented in terms of the KS distance versus the sensing period

Ts. Regardless of which reconstruction method is used, the improvement in the CDF

estimation can be clearly noticed as compared with the case when no reconstruction

method is used. Knowing that as the KS distance approaches zero as the estimated

CDF under ISS approaches the original CDF value.
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Figure 4.6: Convergence performance of the proposed algorithm in terms of the accu-
racy of estimating the mean period and the required number of iterations.

As it can be noticed, the methods proposed by [75] (Method 1,2 and 3) can improve,

to some extent, the estimation of the CDF under ISS. However, Method 1 shows better

performance than Method 2 and 3 as explained in Section 4.3.3. On the other hand,

the reconstruction algorithm developed by [77] in Method 4 has further improved the

accuracy of estimating the distribution under ISS, and it could outperform Method 1,

2 and 3 since its KS distance approaches closer to zero. The proposed algorithm, which

is referred to as Method 5, has also been examined and compared with the previous

methods. As shown in Fig. 4.7, Method 5 approaches the performance achieved by

Method 4, while it outperforms Method 1, 2 and 3 as well. It can also be noticed that

Method 5 outperforms Method 4 when the value of the sensing period Ts is high (note

that Ts should not exceed µi), while it performs slightly worse when Ts is low. This

is due to the fact that the accuracy of the mean estimator in (4.7) degrades as the

employed sensing period Ts decreases, which in turn will degrade the performance of

this method at the very low Ts. Meanwhile, the accuracy of the mean estimator in

(4.7) increases as Ts increases (this is because there will be lower number of sensing
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Figure 4.7: Performance of the reconstruction methods.

errors for higher Ts), thus Method 5 outperforms Method 4 for higher sensing period

Ts. Overall, the proposed Method 5 can approximately achieve the same accuracy of

the latest reconstruction method in the literature (i.e., Method 4) without requiring

any knowledge about the activity patterns of the primary channel, opposite to all the

previous methods (1-4) which always assume a perfect knowledge of the minimum

period µi of the primary channel.

4.4 Estimation Methods Based on Deep Learning

The advancement of Deep Learning (DL) in computer vision, speech recognition and

natural language processing domains has inspired a large community of experts in the

communications field to exploit the potential of this technology for solving a wide

range of problems in communication systems. Such problems are either difficult to

represent with tractable mathematical models or impractical to be solved by following

the classical methods and algorithms. In this context, there has been an increasing

interest in exploiting DL in wireless communications, in particular, Spectrum Sharing
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(SS) systems. This is due to the demonstrated improvements that DL has brought to

several applications of SS such as spectrum management, spectrum sensing, spectrum

prediction, network security and so on. These applications are crucial for the ongoing

deployment of 5G technology, including but not limited to, 5G New Radio Unlicensed

(NR-U) [99–101], unlicensed LTE [102, 103] and License Assisted Access (LAA) [104–

106].

In recent works, the statistical information of the channel traffic has increasingly

been exploited as input features to the neural network of DL models. These statistical

features can make significant improvement in the performance of DL for solving partic-

ular problems in SS systems. For instance, in [107,108] traffic statistics (mean, variance

and kurtosis) have been exploited as features for a neural network to recognise user-

level applications such as YouTubeTM and WhatsAppTM. On the other hand, in [41]

the accuracy of spectrum sensing in cognitive radio has remarkably been enhanced by

exploiting channel activity statistics as input features to a DL model used to sense

the spectrum. Moreover, [109, 110] has employed the historical samples of the channel

traffic statistics to train a DL to predict the future channel occupancy ratio. Obtain-

ing accurate statistical information of the channel traffic can also find a wide range of

applications in enhancing the performance of cooperative spectrum sensing systems op-

erating under realistic environmental conditions [111–113] as well as in cognitive radio

for Vehicular Ad Hoc Network (VANET) [114].

From the above discussion, it is evident that traffic statistics play an effective role

in the performance of various applications in SS systems which apply DL technique.

The majority of these works, however, assume perfect estimation of these statistics,

such that they can smoothly be exploited in DL models. In practice, however, these

statistics can be corrupted due to signal detection errors as discussed in the previous

sections. Inaccurate traffic statistics, consequently, can worsen the training process of

a DL model and thus provide inaccurate results. Therefore, in order to exploit the

channel traffic activity statistics in SS systems it is essential to estimate these statistics

accurately especially under a realistic (i.e., ISS) scenario.

In the previous sections, the estimation of the channel activity statistics under

ISS has been corrected through two approaches: i) closed-form expressions, where

mathematical expressions are derived for the original statistics as a function of their

corresponding statistics observed under ISS, probability of sensing error and sensing

period. ii) reconstruction algorithms, where the observed idle/busy periods under ISS

of the channel traffic are reconstructed to provide accurate statistics. Reconstruction

methods can provide accuracy improvements but are typically based on heuristic al-
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gorithms and therefore sub-optimal. Although closed-form expressions would be the

most attractive solution to correct the estimation of traffic statistics under ISS, it is

challenging sometimes to find these expressions for higher statistical moments such as

variance, skewness and kurtosis under ISS. In addition, even though these expressions

can provide accurate estimations, they may still show some considerable estimation

errors when a short sensing period Ts is employed (e.g., see Fig. 4.2 (left) for the

estimation of the mean period over short Ts values). In some cases, closed-form expres-

sions are known or can be obtained but they are unable to lead to accurate estimations

of the true traffic statistics under ISS as discussed in Section 4.2.1 for the estimation

of the minimum period. Therefore, considering the aforementioned limitations of the

previous approaches, this section proposes a novel approach, Traffic Learning (TL),

as a DL approach to learn from the observations of the channel traffic activity under

realistic ISS scenario in order to provide accurate statistical information of the channel

traffic activity in SS systems [115].

4.4.1 Deep Learning Approach

The novelty of this section lies on the fact that it presents the first trial and investigation

of exploiting DL in the estimation of the channel activity statistics under ISS. The

consideration of deep learning here instead of the traditional machine learning methods

is due to the difficulty sometimes to extract certain features by the traditional methods

from the available dataset in order to provide accurate estimation results for the channel

activity statistics. Learning from such unstructured dataset is possible via DL, however,

this does not exclude the applicability of the traditional machine learning methods

for the estimation of some of these statistical parameters when certain features can

be obtained (e.g., mean or variance). In this context, this section proposes a novel

approach for the estimation of the channel traffic statistics under ISS based on DL

technique. The DL model in this section aims to provide an accurate estimation for

the original statistical parameters of the channel traffic based on their corresponding

(inaccurate) statistics observed under ISS. It is widely known that DL can solve various

problems through formulating them as either classification or regression problems. The

estimation of the statistical parameters, for example, mean, variance and minimum

period is considered as a regression problem, while the estimation of the channel traffic

distribution is solved by first classifying the type of the distribution, then finding its

parameters. The estimation of these statistics can be solved using Multilayer Perceptron

(MLP) fully-connected feedforward Neural Network (NN) [116].
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An MLP with L (dense) layers maps the input layer x to the output layer y through

one or more hidden layers in between. This mapping function can be written as y =

f(x; θ), where θ denotes the NN parameters given by the weights W and biases b. Each

layer of the NN consists of one or more neurons n, hence the output of the `-th layer

can be written as [117]:

f`(x`−1; θ`) = σ` (W`x`−1 + b`) , ` = 1, · · · , L (4.17)

where W` ∈ Rn`×n`−1 is the weight matrix, b` ∈ Rn` is the bias vector (note that n`

denotes the number of neurons at the `-th layer), and σ`(·) represents the non-linear

activation function which can be given by, e.g., ReLU [118], sigmoid [119], softmax [120],

etc. The output of the `-th layer f`(x`−1; θ`) is based on the input x`−1 from the

previous layer and the parameter θ` = {W`, b`} at the `-th layer. In general, a Neural

Network (NN) is trained based on a labelled training dataset, which is an input-output

(x, y) vector pairs of data. In our scenario, the input vector is the observations of a

statistical parameter s̆ under ISS (e.g., mean, variance, etc.) and the output vector is

the corresponding original statistical parameter s. Therefore, this input-output (s̆, s)

dataset is used to train a NN to find θ∗ that minimises the loss function L(s̆, s):

θ∗ = argmin
θ

L(s̆, s) (4.18)

This loss function can be given by a Mean Squared Error (MSE) as ‖s−f(s̆; θ)‖2 to find

θ that minimises the error. By selecting the appropriate hyper-parameters of the NN

(e.g., number of layers, neurons, loss function) along with the useful input features, a DL

model can be achieved to provide an accurate estimation for the statistical parameters

of the channel traffic under ISS as it will be discussed next.

4.4.2 Mean, Variance and Minimum Estimation Based on DL

Let us first consider the estimation of the original mean mi of the idle/busy periods

(where i can be 0 referring to idle periods, or 1 referring to busy periods). A DL model

using MLP NN is built to find the accurate estimation of the mean of the channel traffic

from the corresponding mean observed under ISS. Therefore, the inaccurate means m̆0

and m̆1 of the idle/busy periods observed under ISS are used as inputs to the DL

model to provide the accurate estimation of the mean period m̃i (where m̃i ≈ mi).

Since under ISS the presence of sensing errors corrupts the observation of the idle/busy

periods as discussed in Chapter 3, the mean of these periods would be significantly
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Figure 4.8: Deep Learning model for mean of periods estimation under ISS.

inaccurate depending on the probabilities of sensing error (i.e., Pfa and Pmd). These

probabilities can be pre-defined based on the employed sensing algorithm at the end

terminal. Therefore, Pfa and Pmd can also be exploited as input features to the DL

model along with m̆0 and m̆1 observed under ISS. Pfa and Pmd can assist a NN to

learn from how these features affect the observation of m̆0 and m̆1 under ISS, which

in turn will help predicting the actual mean value at the output as shown in Fig. 4.8.

Note that when Pfa = Pmd = 0, the observed mean will be equal to the original

one [49]. A similar concept can also be applied to find a DL model for estimating

higher statistical moments under ISS. Therefore, the second moment (variance vi) of

the idle/busy periods is here considered, which can similarly be found as shown in Fig.

4.9. As it can be noticed, the observed statistics of both idle and busy periods are

always considered as input features because they are both affected by false alarms and

missed detections, this effect can also be noticed in the closed-form expressions obtained

in Section 4.2. Therefore, considering only the observed statistics for the same type of

periods being estimated (idle or busy) would not provide complete input information.

On the other hand, the accurate estimation of the minimum period µi of the chan-

nel traffic under ISS is more challenging to find compared to the previous statistical

parameters. This is because for any non-zero probability of sensing error (Pfa > 0 and

Pmd > 0) the observed minimum period µ̆i under ISS is always equal to the duration of

a single sensing error, which is the same as the duration of the sensing period Ts (i.e.,

µ̆i 6= µi and µ̆i = Ts, ∀Pfa, Pmd > 0) as it was explained in Section 4.2.1. Therefore,

a NN can not learn anything from the observed minimum idle/busy periods µ̆0/µ̆1 un-

der ISS (unlike the previous statistical parameters) since they are always equal to the
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Figure 4.9: Deep Learning model for variance of periods estimation under ISS.

sensing period Ts, no matter how high or low the probability of sensing error is. In

order to utilise a feature that can help a NN to predict the actual minimum period µi

from the observations of the ISS, it is useful to look at the distribution of the observed

periods under ISS. The observed periods under ISS have a discrete distribution with a

bin size of Ts and starting at Ts as well. This distribution is distorted by the presence of

sensing errors, however, it forms a distinguished pattern corresponding to a particular

combination of probabilities of sensing error (Pfa and Pmd). A NN can be trained to

learn from these patterns of the observed distributions under ISS in order to locate the

actual minimum period. As a result, it is found that by using the first h-th histogram

bins of the observed periods under ISS along with the probabilities of sensing error

(Pfa and Pmd) it is possible to train a NN to provide an accurate estimation for the

actual minimum period under ISS. The MLP NN in Fig. 4.10 shows an example of

using 100 histogram bins of the observed periods under ISS as input features along

with Pfa and Pmd, where h1 refers to the number of the observed periods under ISS

within the first bin, while h2 refers to the number of the observed periods under ISS

within the second bin and so on. The number of bins was selected here after conducting

several evaluations on the estimation accuracy of the minimum period under ISS while

considering several scenarios of probabilities of sensing errors (Pfa and Pmd), for which

100 bins were found to be sufficient to provide accurate results under any scenario of

sensing errors. The output of this NN provides the accurate estimation µ̃i for the actual

minimum period µi (where µ̃i ≈ µi).
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Figure 4.10: Deep Learning model for minimum of periods estimation under ISS.

Raw Dataset Construction and Preprocessing

In this approach, data are obtained and prepared in two stages, in the first stage

raw datasets are generated using MATLAB, then in the second stage the generated

datasets are preprocessed using Python to train, validate and test the proposed DL

model. Dataset generation using MATLAB can be achieved as follows:

1. First, a channel traffic is modelled by generating a large sequence of idle/busy

periods (T0/T1) in a frequency channel drawn from a particular distribution such

as Generalised Pareto distribution.

2. Then spectrum sensing can be applied with periodic sensing period Ts, where

Ts should be smaller than the minimum period of the channel idle/busy periods

(i.e., Ts < µi). In this work the use of short Ts = 1 t.u. is considered when the

minimum period µi = 10 t.u. (i.e., 10% of the minimum period). This is to show

how the estimation methods perform under the worse scenario of using such short

sensing period since higher sensing periods (e.g., 90%) can provide more accurate

estimations for traffic statistics under ISS [75], which has been also noticed from

the results of closed-form expression approach in Section 4.2.

3. Spectrum sensing is configured based on the selected probabilities of sensing error

(i.e., Pfa and Pmd), based on which a sensing threshold is adjusted to decide

whether the channel is idle H0 or busy H1. Sensing decisions are then used to
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Figure 4.11: Datasets construction of DL for channel traffic mean and variance estima-
tion.

Figure 4.12: Datasets construction of DL for channel traffic minimum estimation.

calculate the duration of the idle/busy periods (T̆0/T̆1) observed under ISS.

4. The statistical parameters such as mean m̆0/m̆1, variance v̆0/v̆1 or histogram

{h1, . . . , h100} can then be calculated from (T̆0/T̆1) periods observed under ISS

in step 3. These statistics are saved into a .mat file along with the configured

Pfa and Pmd to represent the input vector (features). On the other hand, the

corresponding original statistics m0/m1 for mean, v0/v1 for variance or µ0/µ1 for

minimum of the idle/busy periods (T0/T1) generated in step 1 are also saved into

the same .mat file to represent the output vector (labels).

The obtained features and labels in .mat file are then used to construct the required

dataset for DL, 60% of which is for training, 20% is for validation and the remaining

20% is for testing as shown in Figs. 4.11 and 4.12. It is a common practice to distribute

the available dataset among training, validation and testing as above. However, this

percentage can be adjusted based on the available size of the dataset while ensuring

the selected portions of data from this dataset would be sufficient to train the DL

models and then validate and test these models. These raw datasets require some pre-
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processing before using them for DL training or testing. Python is used here, which

offers numerous tools and advanced DL libraries (e.g., TensorFlow [121], Keras [122]

and PyTorch [123]) that facilitate not only the preprocessing of the datasets, but also

building, training and testing of the DL model. Therefore, the obtained dataset in

.mat file is imported to Python for preprocessing, where the features and labels are

extracted and stored into separate arrays. Since these data can hold any real val-

ues, it is a common practice to scale and normalise these values before learning from

them. The preprocessing.Normalization() function from Keras library is used,

which normalises its inputs into a distribution centred around zero with unit standard

deviation. This is accomplished by applying the following normalisation relationship

(input−mean)/
√
variance to the input dataset.

Training, Validating and Testing the DL model

After preprocessing the datasets, they are ready to train, validate and test a DL model.

An MLP NN has been examined using several hyper-parameter settings to build the

required DL model for channel traffic statistics estimation under ISS. As shown in Fig.

4.13, different number of hidden layers {1, 2, 3 and 4} and neurons {16, 32, 64 and 128}
are used to examine the accuracy of training based on Mean Absolute Error (MAE)

loss function. It is found that a NN with 3 hidden layers can reach the same accuracy

as a higher number of layers after 100 epochs of training. In the same way, 64 neurons

per hidden layer can provide the same accuracy as a higher number of neurons after

100 epochs of training. As a result, the MLP NN shown in Table 4.1 is considered for

this approach to provide the accurate estimation of the channel traffic statistics under

ISS. The output of this model would be either the accurate estimation of the mean m̃i,

variance ṽi or minimum period µ̃i when the input is the corresponding ISS mean m̆i,

variance v̆i, or histogram bins {h1, . . . , h100}, respectively.

This MLP NN model is trained based on the 60% of the preprocessed features and

labels, while 20% of which is used to validate the training process. This validation is

important to make sure that the NN can generalise to new data and avoid the over-

fitting problem during training process. ReLU activation function is selected at each

hidden layer, and Adam optimiser is used with learning rate 0.001. After training and

validating the DL model, it can now be tested based on the remaining 20% of the

dataset to evaluate its estimation performance. Although the testing dataset has both

features and labels, only features are fed to the NN to predict the accurate channel

traffic statistics, while labels are used to quantify the accuracy of the estimation pro-
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Figure 4.13: Training and vlaidation accuracy of the MLP NN for the estimation of
the mean, variance and minimum period.

Table 4.1: MLP NN model used for mean, variance and minimum period estimation
under ISS.

Hyper-parameter Settings

Number of hidden layers 3

Neurons per hidden layer 64

Activation function ReLU

Optimiser Adam

Learning rate 0.001

Loss function MAE

Metric Accuracy

Batch size 10

Epochs 100

vided by the NN, which will be shown in the results section 4.5 in comparison with the

previous approaches.

4.4.3 Distribution Classification and Estimation Based on DL

Having an accurate estimation for the distribution of the idle/busy period durations

completes the whole picture of learning about the channel traffic activity (i.e., Traffic

Learning). In the literature, different distribution models have been considered for the
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channel traffic. Exponential (E) distribution, for example, is one of the widely assumed

models for channel traffic as in [73,74,124], which can simplify the mathematical analy-

sis of the studies. However, field measurements in [78] have shown that the Generalised

Pareto (GP) distribution is more realistic for channel traffic representation. In this

section, however, the estimation of the channel traffic distribution under ISS is inves-

tigated using a DL approach without making any prior assumption about the original

distribution type of the channel traffic, which then will be compared with the previous

studied approaches. First, a DL model is used to classify the distribution type of the

channel traffic based on the ISS observations. After classifying the distribution type,

Method of Moments (MoM) inference technique [125] can then be used to estimate the

distribution parameters (location µ , scale λ and shape α, if they all exist) from the

sample moments obtained previously (i.e., mean, variance and minimum).

The classification problem can be solved using an MLP NN that selects a distribu-

tion class at the output based on the observations of the ISS for the channel traffic.

Table 4.2 is considered for the list of the possible traffic distribution types that provides

accurate representations for the empirical data [78], from which a NN can select the

best match type for the channel traffic distribution. This list includes Exponential (E),

Generalised Pareto (GP), Gamma (G) and Weibull (W) distributions (note that other

distribution types can also be added to the list). Therefore, there is no particular type

assumption for the channel traffic distribution (as often is assumed in the literature)

since the list here can easily be extended to other distribution models. The input of the

NN, as shown in Fig. 4.14, uses the first h-th histogram bins of the observed periods

under ISS along with the probabilities of sensing error (Pfa and Pmd) to predict the

best classification for their distribution (the highest probability at the output). Note

that the input of this NN is similar to the input of the NN used to find the minimum

parameter µ in the previous section, however, the input here is used to solve a classifi-

cation problem rather than a regression problem and as a result the NN has multiple

outputs.

After classifying the distribution type of the channel traffic, MoM inference tech-

nique [125] is considered to estimate the distribution parameters (location µi , scale

λi and shape αi, if they all exist) from the sample moments obtained previously (i.e.,

mean, variance and minimum). The location parameter µi is the same as the minimum

period estimated previously as µ̃i using DL approach, while the scale λi and shape αi

parameters can be found from the mean and variance of the selected distribution model.

Since the moments (mean and variance) can also be estimated accurately using the DL

approach as discussed before, the scale λi and shape αi parameters of the selected dis-
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Figure 4.14: Deep Learning model for distribution type classification under ISS.

tribution can therefore be solved using MoM technique. For example, if the DL model

shown in Fig. 4.14 classifies (with highest probability) the channel traffic observations

as GP-distributed, their µi, λi and αi parameters can then be found as [125, ch. 20]:

µi ≈ µ̃i (4.19a)

λi ≈ λ̃i =
1

2

(
1 +

(m̃i − µ̃i)2

ṽi

)
(m̃i − µ̃i) (4.19b)

αi ≈ α̃i =
1

2

(
1− (m̃i − µ̃i)2

ṽi

)
(4.19c)

where µ̃i, m̃i and ṽi are the estimated minimum, mean and variance of the channel

traffic using DL approach, respectively. Once the distribution parameters are found,

the Cumulative Distribution Function (CDF) of the GP distribution FGP can then be

obtained from:

FGP ≈ F̃GP (Ti; µ̃i, λ̃i, α̃i) = 1−
[
1 +

α̃i(Ti − µ̃i)
λ̃i

]−1/α̃i

(4.20)

In the same way the expressions for other channel traffic distributions can be found.

Raw Dataset Construction and Preprocessing

As discussed before, distribution estimation is achieved by first classifying the distri-

bution type using DL model, then estimating the distribution function using MoM

technique. To solve the classification problem, datasets are required to be obtained.
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These datasets are constructed in the same way as step 1 to 4 in Section 4.4.2 with

some slight differences. In step 1, channel traffic is modelled 4 times using (E, GP,

G and W) distributions. Then spectrum sensing and probability of sensing error (Pfa

and Pmd) are configured in the same way as in step 2 and 3. In step 4, channel traf-

fic statistics (histogram bins {h1, . . . , h100}) are computed from the ISS observations.

These observations along with the configured Pfa and Pmd represent the input vector

(features) of the DL model, whereas the output vector (labels) is given by the classes

of the original distribution used to model the channel traffic in step 1. Since four dis-

tribution classes (E, GP, G and W) is used, they can be encoded as a one-hot vector

1s ∈ R4 (i.e., 4-dimensional vector, the s-th element of which is equal to one and zero

otherwise [117]). These features and labels can then be saved into .mat file to be used

later for training and testing.

However, preprocessing is required to be performed first on the produced dataset.

Therefore, the obtained dataset in .mat file is imported to Python for preprocessing.

Similar to section 4.4.2, preprocessing.Normalization() function from Keras library

is used to normalise these datasets in order to be used for training and testing.

Training, Validating and Testing the DL model

After preprocessing the dataset, it can now be used to train, validate and test a DL

model. An MLP NN with several settings has been examined to build the required

DL model for classifying channel traffic distribution under ISS. As shown in Fig. 4.15,

different number of hidden layers {1, 2, and 3} and neurons {16, 32, 64 and 128} are used

to examine the accuracy of training based on Categorical Cross-Entropy loss function

(which is a loss function used in multi-class classification tasks, where a decision can

only belong to one out of many possible categories). It is found that a NN with 2 hidden

layers can reach the same accuracy as a higher number of layers when 100 Epochs is

used. In the same way, 64 neurons per hidden layer can provide the same accuracy as a

higher number of neurons when 100 Epochs are used. As a result, an MLP NN shown

in Table 4.3 is considered to provide accurate classification for the type of the channel

traffic distribution under ISS. The output layer of this model has 4 neurons referring to

the corresponding classes (E, GP, G and W). Therefore, by using Softmax activation

function at this layer, the output of these 4 neurons will represent a probability of the

corresponding distribution class. Hence, the output with the highest probability will

indicate the best distribution class match for the observed channel traffic under ISS.

After preprocessing the features and labels in the .mat file, 60% of these data is used
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(a) Using different number of hidden layers (64
neurons each).
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(for 2 hidden layers).

Figure 4.15: Training and validation accuracy of the MLP NN for distribution classifi-
cation.

Table 4.3: MLP NN model used for distribution classification under ISS

Hyper-parameter Settings

Number of hidden layers 2

Neurons per hidden layer 64

Activation function ReLU, Softmax (output)

Optimiser Adam

Learning rate 0.001

Loss function Categorical Cross-Entropy

Metric Accuracy

Batch size 10

Epochs 100

to train this MLP NN model, while 20% is used to validate the training process. After

training and validating the DL model, it can then be tested based on the remaining

20% of the dataset to evaluate its classification performance. Although testing dataset

has both features and labels, only features are fed to the NN to classify channel traffic

distribution, while labels are used to quantify the accuracy of the classification provided

by the NN, which will be shown next in the results section in comparison with the

previous approaches.
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4.5 Comparison Results of Estimation Methods

In this section, the performance of the proposed deep learning approach in comparison

with the previously investigated approaches in this chapter, which include the closed-

form expression approach and the reconstruction algorithm approach, will be evaluated

and compared altogether for the estimation of several statistical parameters of the

channel activity under different scenarios of the ISS.

4.5.1 Mean, Variance and Minimum Period Estimation under ISS

First, to evaluate the performance of the DL model proposed in Section 4.4.2 for the

estimation of the mean, variance and minimum period of the channel traffic under ISS,

a large dataset is produced to train the DL model such that it can generalise a problem,

i.e., provide accurate estimation for the channel traffic statistics even when new data

are observed under ISS. This can be achieved by repeating steps 1 to 4 in Section 4.4.2

several times to remodel the original channel traffic to cover a wide variety of traffic

statistics, and for each traffic model spectrum sensing is applied and configured in step

3 using different combinations of Pfa and Pmd ranging from low (0.01) to high (0.1)

probability of sensing error. In the estimation of mean, for example, channel traffic in

step 1 can be modelled repeatedly to have random mean values as mi ∼ U(10, 200)

t.u., where U(a, b) denotes a uniform distribution between a and b. For each traffic

mean, spectrum sensing is applied using several combinations of Pfa ∼ U(0.01, 0.1) and

Pmd ∼ U(0.01, 0.1) to observe the original mean under different scenarios of ISS. Similar

procedures can also be followed to obtain the datasets for variance and minimum period

statistics.

Then 60% and 20% of such datasets are used to train and validate the DL model,

respectively, as discussed in Section 4.4.2, while the remaining 20% of the dataset is

used to test the accuracy of the DL model. Fig. 4.16 shows the accuracy of estimating

the mean of the channel traffic under ISS using different approaches of closed-form

expression, reconstruction algorithm and DL. Each point in the figure represents the

corrected estimation of the traffic mean observed under ISS for a particular Pfa and

Pmd ∼ U(0.01, 0.1). As it can be noticed, DL approach outperforms the other ap-

proaches for providing accurate estimation, in which all the points are distributed

closely around the straight line that corresponds to the original mean value. These re-

sults are obtained while using a short sensing period (in this case Ts = 1 t.u.) in order

to consider the worst case scenario for the estimation of the channel activity statistics

under ISS (as it has been also discussed and shown in the results of the closed-form
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expression approach in Fig. 4.2 (left) for the estimation of the mean period over short

Ts values). On the other hand, the reconstruction algorithm introduced in this work

(in Section 4.3) performs better than the closed-from expression because the algorithm

itself exploits the closed-form expression to improve the estimation of the mean. It can

also be noticed that, as the mean value increases the estimation performance degrades

for all approaches. This is due to the fact that the longer the periods the higher the

number of sensing errors occur within those periods, thus less accurate estimation can

be achieved. In Fig. 4.17 and 4.18, on the other hand, the DL approach also provides

higher accuracy for the estimation of the variance and minimum period, respectively.

Variance estimation in Fig. 4.17 is only provided for DL and reconstruction approaches

since, to the best of the author’s knowledge, no closed-form expression for such moment

under ISS is available in the literature. In Fig. 4.18, on the other hand, even when

a closed-form expression is provided for the estimation of the minimum period under

ISS (which is simply given by µ̆ = Ts as discussed in Section 4.2.1), it does not lead to

accurate estimation of the true minimum period. Similarly, the reconstruction method

also fails to provide accurate estimation for the minimum period under ISS, this is

because even after reconstructing the corrupted idle/busy periods under ISS there will

be still some short periods which have not been reconstructed properly, thus providing

incorrect minimum period estimation. The distribution of estimation error (found from

the PDF of the relative error) for all approaches is also provided (in the middle plots),

where it shows better performance for DL estimator as it is centred around zero with

narrow standard deviation with respect to other approaches. This performance im-

provement can also be observed in the right hand side plots in terms of the Maximum

Absolute Error (MAE) obtained within a 90% confidence interval. The performance

shown in Figs. 4.16(a), 4.17(a) and 4.18(a) can also be presented in numerical form as

shown in Table 4.4 by taking the average of the differences between the original values

of these statistics and their estimations under ISS, for which it can be noticed that

the proposed DL approach also, in average, provides less error in the estimation of the

original statistics with respect to the other studied approaches.

4.5.2 Distribution Classification and Estimation under ISS

As discussed in Section 4.4.3, channel traffic distribution can be estimated using DL in

two stages, first classifying the distribution type, second estimating the distribution pa-

rameters. To evaluate the performance of the DL model used to classify the distribution

of the channel traffic, a large dataset of 4× 105 histograms using 100 bins is produced
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(a) Mean m0 estimation under
ISS.

(b) PDF of estimation error
for the mean m0.

(c) Maximum Absolute Error
for the mean m0 estimation.

Figure 4.16: Simulation results for traffic mean estimation under ISS using different
approaches, when Pfa and Pmd ∼ U(0.01, 0.1), Ts = 1 t.u..

(a) Variance v0 estimation un-
der ISS.

(b) PDF of estimation error
for the variance v0.

(c) Maximum Absolute Error
for the variance v0 estimation.

Figure 4.17: Simulation results for traffic variance estimation under ISS using different
approaches, when Pfa and Pmd ∼ U(0.01, 0.1), Ts = 1 t.u..

(a) Minimum µ0 estimation
under ISS.

(b) PDF of estimation error
for the minimum µ0.

(c) Maximum Absolute Error
for minimum µ0 estimation.

Figure 4.18: Simulation results for traffic minimum estimation under ISS using different
approaches, when Pfa and Pmd ∼ U(0.01, 0.1), Ts = 1 t.u..



Chapter 4. Proposed Estimation Methods for Channel Activity Statistics 113

Table 4.4: Average error for statistics estimation using different approaches.

Approach
Mean
(t.u.)

Variance
(t.u.)2

Minimum
(t.u.)

Closed-form expression 10.83 – 106.75

Reconstruction algorithm 7.95 60.56 86.41

Deep Learning 5.22 10.33 2.42

E GP G W
Predicted label

E

GP

G

W

Tr
ue

 la
be

l

0.98 0.00 0.02 0.00

0.00 1.00 0.00 0.00

0.00 0.00 1.00 0.00

0.00 0.01 0.00 0.99

Confusion Matrix

0.0

0.2

0.4

0.6

0.8

1.0

(a)

E GP G W
Predicted label

E

GP

G

W

Tr
ue

 la
be

l

0.93 0.00 0.07 0.00

0.00 0.91 0.09 0.00

0.00 0.00 1.00 0.00

0.00 0.00 0.02 0.98

Confusion Matrix

0.0

0.2

0.4

0.6

0.8

1.0

(b)

Figure 4.19: Channel traffic distribution classification under ISS when (a) Pfa = 0.01
and Pmd = 0.01, (b) Pfa = 0.1 and Pmd = 0.1.

by remodelling the channel traffic several times using (E, GP, G and W) distribution

models. The corresponding observations of the channel traffic under ISS using random

Pfa and Pmd ∼ U(0.01, 0.1) are obtained. Similar to the previous section, 60% and

20% of such dataset are used to train and validate the DL model, respectively, while

the remaining 20% of the dataset is used to test the accuracy of classification. Fig. 4.19

shows the accuracy of classifying the distribution of the observed channel traffic under

low (0.01) and high (0.1) probability of sensing error. Sensing errors can distort the

shape of the observed traffic distribution. However, as it can be seen from the confusion

matrix, even under high probability of sensing error the proposed DL model can still

provide accurate classification for the observed channel traffic under ISS. To estimate

the distribution parameters (µi, λi and αi), MoM method can be applied according

to the selected distribution type. Since the mean, variance and minimum period can

be estimated accurately using DL approach as seen from the previous section results,
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Figure 4.20: KS distance of the channel traffic CDF estimation under ISS.

accurate estimation can also be obtained for (µ̃i, λ̃i and α̃i), based on which the CDF of

the channel traffic F̃ (Ti) can then be found as explained in Section 4.4.3. The accuracy

of this estimation can be presented in terms of the Kolmogorov-Smirnov (KS) distance

between the estimated CDF F̃ (Ti) and the original CDF F (Ti) of the channel traffic

as:

DKS = sup
Ti

|F̃ (Ti)− F (Ti)| (4.21)

Therefore, based on (4.21), the accuracy of estimating the distribution of the channel

traffic under ISS is shown in Fig. 4.20 using DL, reconstruction algorithm and closed-

form expression approaches when the original traffic distribution is drawn from GP

with µi = 10 t.u., λi = 3 t.u. and αi = 0.25 parameters. As it can be appreciated, the

proposed DL approach achieves lower KS distance (i.e., higher accuracy of estimation)

than the previous approaches for different values of Pfa and Pmd. Since the estimation

of the traffic distribution using DL approach is dependent on the estimations of the

mean, variance and minimum period, its accuracy changes according to the accuracy

of estimating those moments, which are also obtained using DL approach for the given

Pfa and Pmd. Similar observations can be obtained as well for the estimation of other

types of distributions, showing significant improvement in the distribution estimation

through using the proposed DL approach.
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4.5.3 Computational Complexity

The computational complexity of the different approaches used to estimate channel

traffic statistics under ISS is an important aspect to investigate. Generally, closed-

form expressions approach tends to be more attractive in terms of the complexity as it

provides accurate estimations for the channel traffic statistics under ISS through using

explicit mathematical equations. However, the accuracy of these equations tends to

degrade as the sensing period Ts decreases. This is because decreasing the latter causes

an increase in the number of the sensing events within an observed period, which in

turn increases the occurrence of sensing errors as a result. In addition, regardless of

being more attractive, closed-form expressions can be challenging sometimes to find for

higher statistical parameters under ISS such as variance, skewness and kurtosis (where

this can be noticed from the results of Fig. 4.17, the absence of the closed-from expres-

sion approach for variance estimation). The reconstruction algorithms approach, on

the other hand, is less attractive in terms of the complexity as it performs heavily com-

putational operations with several iterations in their algorithms in order to reconstruct

the idle/busy periods corrupted by the sensing errors. In the reconstruction Algorithm

1, for example, each sensing error needs to be identified and then corrected using two

arithmetic (addition) operations. These operations, therefore, increase significantly as

the number of the sensing errors increases and they, even more, double for every itera-

tion performed. In contrast, the complexity of the deep learning approach depends on

the NN models used to perform estimation (i.e., number of layers, neurons, etc.). The

computation requirements of this approach weighs more on the training process than

on the prediction process of the DL models. However, this training operation does not

take place often, in fact once a DL model is trained it can then be used to perform

estimations for the channel traffic statistics.

Table 4.5 shows a comparison for the computational complexity of the considered

approaches in this work in terms of the computation time taken to perform 100 sam-

ples of estimations for the channel traffic statistics under ISS. As it can be appreciated,

the computational cost associated with the closed-form expressions approach is the

most efficient one, while it is significantly higher for the reconstruction algorithm ap-

proach (using the proposed Method 5). The implications of the long time taken by

the reconstruction algorithm to provide accurate statistical estimations, as shown in

Table 4.5, could limit the applicability of this approach when fast statistics estimations

(short-term decisions) for the channel activity is required (i.e., its applicability might

be limited to long-term decisions). On the other hand, the deep learning approach is
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Table 4.5: Computation time (in seconds) required by each approach to provide 100
estimations for different statistical metrics.

Approach Mean Variance Minimum Distribution

Closed-form
expressions

0.037 – 0.001 0.52

Reconstruction
algorithms

200.7 243 266.8 280

Deep Learning 0.4 0.42 0.47 1.7

+ training 50.8 51.4 50.74 162.1

considerably less complex than the algorithmic approach and reasonably more com-

plex than the closed-form expression approach. It can also be noticed that the already

trained DL models require significantly less computations than the resulting compu-

tations from the training process, however, as explained earlier, this training is not

required to take place often to preform estimations for the channel traffic statistics.

Therefore, considering the significant accuracy improvement with a reasonable increase

in the complexity, the proposed DL approach can be considered an efficient solution

for providing accurate estimation for the channel traffic statistics under ISS.

4.6 Summary

In the previous chapter, the observation of the channel activity statistics under ISS

was analysed and closed-form expressions were provided for several statistical metrics

to accurately represent these statistics mathematically as a function of their corre-

sponding original statistics. The outcomes of these results have contributed, in this

chapter, to find novel estimation methods for the channel activity statistics (mean,

duty cycle and distribution) under ISS based on the obtained closed-form expressions.

This closed-form expressions approach outperforms the conventional estimation meth-

ods calculated directly from the sensing decisions. Then, the reconstruction approach

has also been investigated in this chapter for the estimation of the channel activity

statistics under ISS, wherein a novel reconstruction algorithm has been proposed to

be the first reconstruction algorithm that does not require any prior knowledge about

the channel activity, and at the same time approaches the performance achieved by

the latest reconstruction method available in the literature. This method utilises the

closed-form expression achieved for the mean period as an indicator of when periods
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are reconstructed correctly. Finally, the chapter introduces a new approach, Traffic

Learning (TL), as a deep learning approach for obtaining accurate statistical informa-

tion of the channel traffic in spectrum sharing systems. This approach learns from the

imperfect observations of the traffic statistics in order to predict their accurate esti-

mations. Several deep learning models have been validated for the estimation of the

mean, variance, minimum and distribution of the channel traffic.

The performance and the complexity of all studied approaches have been analysed

and compared altogether for the estimation of the channel activity statistics under

ISS. It has been demonstrated that the deep learning approach outperforms the other

approaches which are based on closed-form expressions and reconstruction algorithms,

under different scenarios of sensing error probabilities and specially for the worst sce-

nario of using a short sensing period. The closed-form expressions approach, on the

other hand, can be more attractive in terms of the complexity, but it can be challenging

to find for higher statistical moments (e.g., variance).





Chapter 5

Conclusions and Future Work

5.1 Conclusions

The spectrum sharing concept is one of the promising solutions to overcome the fre-

quency scarcity problem and maximise spectrum utilisation efficiency. The harmonious

coexistence of several wireless communication systems in a shared frequency spectrum

is highly dependent on making effective decisions for the utilisation of such spectrum.

These decisions are usually based on the users’ activity within the channel and their

traffic statistical information. Therefore, it is crucial for a spectrum sharing system to

obtain accurate estimation of the channel activity statistics even under low SNR condi-

tions (i.e., ISS). In this context, this thesis has addressed this challenging problem and

conducted a detailed mathematical analysis on the estimation of the channel activity

statistics under a realistic ISS scenario taking into account the main factors that would

influence the estimation accuracy of the channel activity statistics. In addition, several

approaches have been investigated to correct the estimation of these statistics under the

realistic operational scenario of spectrum sensing. To this end, the main conclusions of

this thesis are:

1. Chapter 2: Two research problems have been considered in this chapter. First,

the problem of cooperative spectrum sensing in spectrum sharing systems has

been investigated and analysed in terms of the collision ratio (i.e., interference)

and missed-opportunity ratio (i.e., utilisation). A novel approach has been pro-

posed, which can achieve minimum interference and maximum utilisation in spec-

trum sharing systems. It has been shown that the proposed cooperative approach

outperforms the conventional approach by taking into account the impact of both

sensing errors and sensing resolution. The second part of the chapter, on the
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other hand, has introduced an experimental platform (USRP-based prototype)

to support a wide range of experiments for the estimation of the channel ac-

tivity statistics using spectrum sensing. The proposed prototype overcomes the

limitations associated with the existing experimental platform in the literature

(PECAS) for analysing the statistics of the channel activity in terms of its func-

tionality and wide applicability. This prototype serves as a proof-of-concept for

the conducted analyses throughout this thesis as well as similar research work

conducted by other researchers and engineers in the related field.

2. Chapter 3: This chapter has addressed the significant problem of observing in-

accurate channel activity statistics under the presence of sensing errors (i.e., ISS).

Such problem has been poorly addressed in the literature without comprehensive

mathematical analyses taking into account the factors that would influence the

estimation accuracy of the channel activity statistics such as the probability of

sensing error and the sensing period. Therefore, the impact of the sensing errors

and sensing period on statistics estimation has been analysed and mathematical

relationships (in closed-form expressions) between the observed channel activity

statistics under ISS and their corresponding original statistics have been found.

In addition, the impact of the sample size on the estimation of these statistics has

also been analysed, and closed-form expressions for the required sample size under

ISS to achieve a targeted level of accuracy have been obtained. The correctness

of the achieved analytical results has been validated by means of simulation and

experimental results, showing an excellent agreement for all cases.

3. Chapter 4: After addressing and analysing the problem of inaccurate estima-

tion of channel activity statistics under ISS in the previous chapter, this chapter

has investigated three approaches to correct the estimation of channel statis-

tics corrupted by the presence of sensing errors. The first approach exploits the

closed-form expressions obtained previously to find novel estimation methods for

the channel activity statistics under ISS. These expressions provide accurate es-

timations for the channel statistics based on the inaccurate observations of their

corresponding statistical parameters under ISS, outperforming the conventional

estimation methods used to calculate these statistics directly from the sensing de-

cisions. Second, another approach based on reconstruction algorithms has been

studied and for which a new reconstruction algorithm has been proposed that

does not require any prior knowledge on the channel activity to correct statistics

estimation (opposite to all existing reconstruction methods in the literature) and
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at the same time achieving the same performance achieved by the latest recon-

struction method in the literature. Finally, the chapter has introduced a novel

approach named Traffic Learning (TL) as a deep learning approach to provide ac-

curate estimation of the channel activity statistics by learning from their imperfect

observations under ISS. The studied mathematical, algorithmic and deep learn-

ing approaches have been evaluated and compared in terms of their performance

and complexity. It has been concluded that the TL approach in general outper-

forms other approaches for providing accurate estimation of the channel activity

statistics with some reasonable complexity for Neural Network (NN) training and

prediction process. In contrast, the closed-form expressions approach is more at-

tractive in terms of the complexity for the achieved estimation accuracy, but it

can be limited to specific statistical parameters. The reconstruction algorithms

approach, on the other hand, can be very costly in terms of the computational

complexity required to correct the estimation of the channel activity statistics. In

addition, it may require some prior information of the channel activity (as in the

existing algorithms in the literature) or it may exploit a closed-form expression

(as in the proposed algorithm).

In summary, the work carried out in this research has shown that it is possible

to achieve an accurate estimation of the channel activity statistics in spectrum shar-

ing systems under realistic operating conditions, including practical impairments and

limitations of real systems.

5.2 Future Work

The conducted research throughout this thesis has broadened the author’s horizon

and opened further questions that require further research and investigations. These

research topics can be considered in the future work as extensions to this thesis, which

include but are not limited to the points discussed below:

1. As a part of the future work, the proposed Cooperative Spectrum Sensing (CSS)

approach in Chapter 2 can further be developed to propose a hybrid approach,

where both the proposed and the conventional CSS approaches can be combined

in one system to achieve even better spectrum utilisation efficiency and minimum

interference. In such approach, a number of SUs will be selected to operate under

the conventional CSS approach to reduce the impact of the sensing error (i.e.,

ISS), while another number of SUs will be selected to operate under the proposed
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CSS approach at the same time to reduce the impact of the sensing resolution

(i.e., Ts). The selection procedure of the SUs will be required to be studied to

find the best combinations of the SUs’ groups that can provide accurate obser-

vations under each CSS approach based on their (i.e., SUs) individual operating

conditions such as Pfa, Pmd and Ts.

2. For the estimation of the channel activity statistics under ISS based on the ma-

chine learning approach, other types of neural network models can be considered

and investigated for providing accurate statistical information of the channel ac-

tivity. This can be studied more comprehensively through considering simpler

models such as the traditional methods of machine learning, and more power-

ful models such as the Convolutional Neural Network (CNN) and/or Recurrent

Neural Network (RNN). The selection of these models would be based on the dif-

ficulty for a specific statistical parameter to estimate from the ISS observations.

In addition, the potential of using Multitask Learning in NN models can also be

applied to solve several tasks through using a shared model. The complexity of

these neural networks with respect to the ones considered in this work can then

be evaluated and compared.

3. A useful extension of this work, furthermore, would be the exploitation of the

proposed estimation methods in this thesis in various applications of spectrum

sharing systems. This can be investigated by considering a realistic scenario (i.e.,

ISS) for a spectrum sharing system, and then apply the methods proposed in this

work to help spectrum sharing systems take critical decisions regarding how to

use the spectrum, for example, to select the optimum available channel, to predict

the future behaviour of the spectrum, to optimise the radio resource management

etc.. This would require a detailed study that is beyond the scope of this thesis

and is suggested as future work.
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Sensing Based on Statistical Information,” in IEEE Communications Letters, vol.

21, no. 7, pp. 1585–1588, July 2017.



Bibliography 129

[55] S. Sengottuvelan, J. Ansari, P. Mähönen, T. G. Venkatesh and M. Petrova, “Chan-

nel Selection Algorithm for Cognitive Radio Networks with Heavy-Tailed Idle

Times,” in IEEE Trans. on Mobile Computing, vol. 16, no. 5, pp. 1258–1271,

2017.

[56] M. B. Hosen, M. M. H. Mridha and M. A. Hamza, “Secondary User Channel Selec-

tion in Cognitive Radio Network Using Adaptive Method,” 2018 3rd International

Conference for Convergence in Technology (I2CT), Pune, 2018, pp. 1–6.

[57] X. Liu, B. Krishnamachari, and H. Liu, “Channel selection in multichannel op-

portunistic spectrum access networks with perfect sensing,” in Proc. 2010 IEEE

Int’l. Symp. Dyn. Spect. Access Networks (DySPAN 2010), Apr. 2010, pp. 1–8.

[58] A. John and A. P. Mathew, “Channel selection in cognitive radio networks using

exploration order and stopping rule,” 2016 International Conference on Commu-

nication and Electronics Systems (ICCES), Coimbatore, 2016, pp. 1–5.

[59] G. C. Deepak, K. Navaie and Q. Ni, “Radio Resource Allocation in Collaborative

Cognitive Radio Networks Based on Primary Sensing Profile,” in IEEE Access,

vol. 6, pp. 50344–50357, 2018.

[60] W. Zhang, C. Wang, X. Ge and Y. Chen, “Enhanced 5G Cognitive Radio Net-

works Based on Spectrum Sharing and Spectrum Aggregation,” in IEEE Trans.

on Comms., vol. 66, no. 12, pp. 6304–6316, Dec. 2018.

[61] E. Jung and X. Liu, “Opportunistic spectrum access in multiple-primary-user en-

vironments under the packet collision constraint,” IEEE/ACM Trans. Networking,

vol. 20, no. 2, pp. 501–514, Apr. 2012.

[62] A. Al-Tahmeesschi, M. López-Beńıtez, K. Umebayashi and J. Lehtomäki, “Ana-

lytical study on the estimation of primary activity distribution based on spectrum

sensing,” 2017 IEEE 28th Annual International Symposium on Personal, Indoor,

and Mobile Radio Communications (PIMRC), Montreal, QC, 2017, pp. 1–5.
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[85] O. H. Toma and M. López-Beńıtez, “Cooperative Spectrum Sensing: A New Ap-

proach for Minimum Interference and Maximum Utilisation,” 2021 IEEE Inter-

national Conference on Communications Workshops (ICC Workshops), 2021, pp.

1–6.
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