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Abstract—Medical imaging technology has rapidly advanced
in the last few decades, providing detailed images of the
human body. The accurate analysis of these images and the
segmentation of anatomical structures can produce significant
morphological information, provide additional guidance toward
subject stratification after diagnosis or before a clinical trial,
and help predict a medical condition. Usually, medical scans are
manually segmented by expert operators, such as radiologists
and radiographers, which is complex, time-consuming and prone
to inter-observer variability. A system that generates automatic,
accurate quantitative organ segmentation on a large scale could
deliver a clinical impact, supporting current investigations in
subjects with medical conditions and aiding early diagnosis and
treatment planning. This paper proposes a web-based application
that automatically segments multiple abdominal organs and
muscle, produces respective 3D reconstructions and extracts
valuable biomarkers using a deep learning backend engine.
Furthermore, it is possible to upload image data and access the
medical image segmentation tool without installation using any
device connected to the Internet. The final aim is to deliver a web-
based image-processing service that clinical experts, researchers
and users can seamlessly access through IoT devices without
requiring knowledge of the underpinning technology.

Index Terms—IoT Web Application, Deep Learning, 3D Re-
construction, Web Technology, Medical Image Computing, Organ
Segmentation

I. INTRODUCTION

The accurate, computer-aided quantitative segmentation and
classification of organs can provide significant information
about medical conditions and produce additional guidance
towards stratifying subjects after diagnosis or before clin-
ical trials. For example, recent research studies show that
automatic segmentation and computer-aided investigation of
organ volume variations in patients with conditions such as
polycystic liver disease (PLD) [1], renal (kidney) disease [2],
and type 1 and 2 diabetes mellitus [3] have contributed to
raising the quality of biomedical research [4]. Computer-
aided diagnosis systems can provide a “second opinion” and,
therefore, support interpretations of medical scans, reducing
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possible misdiagnosis and providing a valuable guidance for
therapy planning [5].

State-of-the-art works show high segmentation accuracy
scores of 90% or above for the automatic segmentation of
organs such as kidneys [6], liver [7] and spleen [8]. However,
other anatomical structures, such as the pancreas and iliop-
soas muscles, present significant challenges due to size, high
structural variability and location, and a full inspection from
a scan is often very problematic.

In the last decade, the use of convolutional neural networks
(CNNs) has increased the performance of several imaging
tasks using large-scale data, particularly semantic segmenta-
tion [9]. It has been successfully integrated into medical image
segmentation tasks, especially for abdominal organs that are
highly deformable and possess vague edge boundaries.

This work aims to provide the scientific community with
a web-based framework for the automatic feature extraction
and segmentation of abdominal organs in medical scans, using
newly developed CNNs algorithms. Medical Internet of Things
(IoT) can vastly improve the standards of care. As health-
care systems increasingly use cloud technologies, software
applications for medical image computing are evolving to
benefit from these services [10]. The application is easy-to-use
without requiring an expert operator’s interaction. The broader
research community could use the proposed framework since
the developed algorithms are open-source and easily accessi-
ble; this will help accurately reconstruct a patient’s anatomical
structure and improve the disease detection and treatment
planning performed by radiologists and clinicians in medical
health services. The proposed framework will also support the
stratification of subjects according to organ morphology.

This paper is structured as follows: Section II explains the
web-based application’s backend methodology, the automated
segmentation approach, 3D visualisation, and the extraction
of morphological features following segmentation. Section
III presents the developed web-based application. Section IV
discusses its evaluation and usage. Finally, section IV provides
a conclusion, including references to future work.



Fig. 1. Overview of the proposed framework. The initial input is a 3D medical volume that runs through a segmentation process, achieving a 3D accurate
reconstruction of the organ (or muscle) of interest. Next, the segmentation result processes through a biomedical model, which computes morphological
features to enable the final prediction of a medical condition or evaluate that condition’s progression.

Fig. 2. Overview of the proposed automated organ segmentation approach [11]. The figure shows two different stages. In the training stage, the 3D Rb-UNet
localises the organ of interest and the 3D Tiramisu predicts the labels that correspond to that organ. In the testing stage, an original scan (e.g., a 3D or 4D
volume) is processed to predict the bounding box capturing the organ of interest and then the cropped image volume is processed to predict the labels of that
organ.



II. METHODOLOGY

The proposed web-based application aims to automatically
obtain, from medical scans, relevant morphological features
that can be used to predict a medical condition or evaluate
the progression of a condition. The initial input is a 3D
medical scan as a volume that can be uploaded from any
smart device connected to the Internet: it is processed through
a segmentation stage driven by Artificial Intelligence (AI)
using deep learning modelling to obtain an accurate 3D
reconstruction of the anatomical structure of interest (e.g. the
pancreas). The segmentation result is then processed through
a computational biomedical model that calculates relevant
morphological features or biomarkers and enables the final
prediction of a condition or evaluates the progression of a pre-
diagnosed condition. The overview of the proposed approach
is shown in Fig. 1.

A. AI Driven Models for Automatic Segmentation of Abdom-
inal Organs

The algorithms used to perform automatic organ segmenta-
tion in medical volumes are based on 3D deep learning tech-
niques that employ volumetric information instead of 2D pixel
information, presented and evaluated in [11]. The developed
framework has a two-part process: the first part develops a
localisation model known as 3D Rb-UNet to “capture” the
target organ of interest, and the second part performs detailed
organ segmentation through a 3D Tiramisu network. The
testing stage processes an original medical volume to predict
the minimal bounding box surrounding the organ, and then
the cropped image volume is processed to predict that organ’s
labels. The training stage and testing stage for each part are
shown in Fig. 2.

The first part of the training stage implements a model,
defined as Rb-UNet, which aims to identify the region of
interest where the organ is localised. Residual connections
are added at each block of a baseline 3D U-Net architecture,
connecting the input of convolutional layers at each scale to the
outputs of the corresponding layer. The main aim is to improve
convergence through this bypass with identity connections for
convolutional blocks at each scale. Empirically tested, the
3D Rb-UNet model performed significantly better than the
standard 3D U-Net for organ localisation [11].

The second part of the training stage develops a 3D Tiramisu
model [12] using the cropped region obtained in the previous
stage, where the organ of interest is fully present, discarding
background information unrelated to the organ. While the
3D Rb-UNet model employs the full spatial context of an
image volume, the 3D Tiramisu model only utilises the main
region surrounding the organ. Therefore, the main aim of
the 3D Tiramisu model is to perform voxel-wise predictions:
does a voxel belong to the organ of interest or otherwise?
The Tiramisu model builds upon DenseNet to work as Fully
Convolutional Networks by adding an upsampling path to
compensate for the full resolution of the input. In this ar-
chitecture, a standard skip connections is used to pass the
higher resolution information between the downsampling and

the upsampling paths. Empirically tested, this upsampling path
built from dense blocks performs better than an upsampling
path with conventional operations in DenseNet or U-Net.
Further details about the network architecture can be found
in [11].

Fig. 3. Example of automatic 3D organ visualisation from the proposed
web-based application after performing automatic liver segmentation (top)
and segmentation of the iliopsoas muscles (bottom).

B. 3D Organ Visualisation

The automatic segmentation framework produces a 3D
binary volume of a target organ. The reconstruction process
employs a Gaussian smoothing algorithm applied to a 3D
interpolation for noise removal. This technique is often used as
a pre-processing stage in computer vision tasks to enhance im-
age structures at varying scales of visualisation [13]. Following
the Gaussian process, the smoothed data is represented as an
isosurface, which can be described as a set of points where
the function represented by the data takes on a common value
called isovalue. The marching cube [14] algorithm is used
to reconstruct the isosurface as a polygonal mesh. Finally,
Laplacian smoothing is used to refine the polygonal mesh,
after which the 3D organ model is visualised against a single
2D slice in the original medical image volume. The 3D
representation of the organ is interactive, with the option to
load the 3D binary mask from the segmentation process and
display the 3D mesh. Also, functionalities such as zoom-in,
zoom-out and rotation are enabled. Examples of 3D interactive
representations are provided in Fig. 3.

Organ visualisation is also an important aspect of the
web-based application’s functionalities. The medical image
volume, once loaded, can be visualised in three main views:
axial, sagittal and coronal. The segmented organ appears over-
imposed on the original medical slice (2D) as shown in Fig. 4.



Fig. 4. Overview of the proposed automated organ segmentation approach [11]. A single 2D slice in a medical volume is displayed in three different views
(axial, sagittal and coronal) with over-imposed segmentation results. The web-based application delivers these different views after performing automatic liver
segmentation.

C. Morphological Features Extraction

An important aspect of this framework is the automatic
computation of medically valuable morphological features of
the target organ, enabling early diagnosis or stratification of
subjects according to organ morphology.

Two values have been calculated as a descriptor of the
organ’s morphological structure: volume and curvature. Details
of the algorithms implemented to compute these values are de-
scribed in [15]. The volume provides a measure of the organ’s
dimensions, while the curvature describes the organ’s surface
and its level of “smoothness” or “raggedness”, indicating the
potential deformity of the organ.

D. Open-source Imaging Framework

Development of commercial systems driven by medical
imaging manufacturers suffer of some limitations [16]. They
usually follow research and clinical validation and require sev-
eral years before releasing new products on the market despite
the increasing and urgent demand for advanced processing
tools. For these reasons, open-source and free software is more
widely adopted in the medical community. It is cost effective
and it can be customised to match the needs and specific usage
in clinical setups. Furthermore, it is a quick way of providing
new innovative and challenging analysis tools that respond to
users’ demands, even before industry and commercial vendors
identify these new trends as a potential source of revenue.

All source code and the files produced in this work are
openly available on GitHub by accessing the link: https:
//github.com/medicimage/AI med seg app. In addition,
guidelines and details on how to run the application locally
are also provided.

III. WEB-BASED APPLICATION AND RESULTS

There are numerous limitations to local medical imaging
processing applications. Firstly, operating system and process-
ing power constraints prevent the application from running in
any workstation. Furthermore, the application would need to
be accessible from one specific machine where the software is
installed and not available from other workstations. Addressing
this limitation, a web-based application has been developed
to enable users to access a medical image processing and

visualisation platform from any machine without installing any
software or knowing the underpinning technology.

All the source code is written in Python 3.8 and uses
Streamlit (https://www.streamlit.io) and Plotly (https://plotly.c
om) for a graphical user interface (GUI) and interactive data
visualisation. Streamlit.io is a new open-source framework for
developing web applications and allows the implementation of
graphical interfaces to Python backend code.

Streamlit Cloud handles all the Python dependencies, con-
tainer orchestration, server provisioning, scaling and data
security. Also, it continuously deploys the app from GitHub,
providing version-controlled code development and facilitating
collaborations and tools maintainability (Fig. 5).

The developed prototype integrates the AI-driven algorithms
developed for organ segmentation in medical image volumes
as described in Section II.

The user can perform the following actions:
• upload a medical image volume (DICOM or NIfTI files);
• load a sample image volume: the user can use an image

volume stored in the server (without uploading their own)
to run the main functionalities available in the web-app;

• visualise each slice in the medical image volume in three
different views (axial, sagittal, coronal). The slice can be
selected using a sliding bar on each image;

• select which organ is to be segmented by clicking the
appropriate radio-button. Afterwards, segmentation will
be performed, and the final segmentation results will
be displayed on each visualised slice. In addition, the
segmentation contouring will be updated by changing the
slice;

• visualise the 3D reconstructed organ volume;
• zoom-in, zoom-out, rotate and save the 3D reconstructed

volume;
• compute morphological features such as organ volume

and curvature;
• visualise metadata from the uploaded DICOM and NIfTI

file.
In Fig. 6 the web interface has been shown performing the

main functionalities. A short demo is available at this link:
https://share.streamlit.io/medicimage/ai med seg app/main/
mainProgram.py.

https://github.com/medicimage/AI_med_seg_app
https://github.com/medicimage/AI_med_seg_app
https://www.streamlit.io
https://plotly.com
https://plotly.com
https://share.streamlit.io/medicimage/ai_med_seg_app/main/mainProgram.py
https://share.streamlit.io/medicimage/ai_med_seg_app/main/mainProgram.py


Fig. 5. Secure application sharing and collaborating architecture in Streamlit.

IV. TESTS AND DISCUSSION

The system has been tested using the available datasets. In
addition, users not familiar with the project have been involved
in running some usability tests. Taking into consideration their
feedback and comments, the interface will be improved by
adding exception handling and extra functionalities, including
loading medical images as .png or .jpeg; an icon with loading
bars while the model is performing automatic segmentation; a
text box where the user can type the slice number to visualise;
and the segmentation contouring of multiple organs on the
same slice.

Furthermore, there are a number of limitations when running
the application in the cloud-host browser. In particular, due
to some server power limitations, it is not possible to load
image volumes with a high resolution (maximum is around
150 slices). Also, the pre-processing and model computation
requires high-memory allocation, currently not supported by
the Streamlit server. These factors impacted the accuracy of
organ identification as some of the algorithms were fine-tuned
to perform on less memory and disk space. These limitations
will be addressed, and the web application prototype will be
further improved. Finally, the plan is to migrate into a high-
performance server available at the University of Westminster,
where the data and the deep learning models will be stored.
Furthermore, the functionalities will be extended with possi-
bilities to train the deep learning models on a user dataset,
potentially enabling higher accurate segmentation results for
extensive medical data types and different types of target
anatomical structures.

V. CONCLUSION

This paper proposes a web-based application for the auto-
matic segmentation of anatomical structures in medical image
volumes using an AI-driven approach. The main goal is to
elaborate the concept of publicly available cloud-based image-
processing services that clinical experts and researchers in Life
Sciences can seamlessly access through web pages from any
IoT device without requiring knowledge of the underpinning
technology. Furthermore, given that the developed algorithms

are open-source and easily accessible, the broader research
community could employ the proposed framework and deliver
3D reconstructions of patient-specific anatomical structures,
helping to improve disease detection and treatment planning
performed by radiologists and clinicians throughout the med-
ical health service industry.
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