
WestminsterResearch
http://www.westminster.ac.uk/westminsterresearch

Developing a Generic Predictive Computational Model using

Semantic data Pre-Processing with Machine Learning Techniques

and its application for Stock Market Prediction Purposes

Bolotov, A., Yerashenia, N. and Chan You Fee, D.

This is a copy of the author’s accepted version of a paper subsequently published in the

proceedings of the 24th IEEE International Conference on Business Informatics (IEEE

CBI 2022), Amsterdam, 15 - 17 Jun 2022.

The final published version will be available online at:

https://ieeexplore.ieee.org/

© 2022 IEEE . Personal use of this material is permitted. Permission from IEEE must be

obtained for all other uses, in any current or future media, including

reprinting/republishing this material for advertising or promotional purposes, creating

new collective works, for resale or redistribution to servers or lists, or reuse of any

copyrighted component of this work in other works.

The WestminsterResearch online digital archive at the University of Westminster aims to

make the research output of the University available to a wider audience. Copyright and

Moral Rights remain with the authors and/or copyright owners.

https://ieeexplore.ieee.org/

Developing a Generic Predictive Computational
Model using Semantic data Pre-Processing with

Machine Learning Techniques and its application
for Stock Market Prediction Purposes

1st Natalia Yerashenia
School of Computer Science and Engineering

University of Westminster
London, United Kingdom

N.Yerashenia1@westminster.ac.uk

2nd Alexander Bolotov
School of Computer Science and Engineering

University of Westminster
London, United Kingdom

A.Bolotov@westminster.ac.uk

3d David Chan You Fee
School of Computer Science and Engineering

University of Westminster
London, United Kingdom

D.Chanyoufee2@westminster.ac.uk

Abstract—In this paper, we present a Generic Predictive
Computational Model (GPCM) and apply it by building a Use
Case for the FTSE 100 index forecasting. This involves the mining
of heterogeneous data based on semantic methods (ontology),
graph-based methods (knowledge graphs, graph databases) and
advanced Machine Learning methods. The main focus of our
research is data pre-processing aimed at a more efficient selection
of input features. The GPCM model pipeline’s cycles involve the
propagation of the (initially raw) data to the Graph Database
structured by an ontology and regular updates of the features’
weights in the Graph Database by the feedback loop from the
Machine Learning Engine. The Graph Database queries output
the most valuable features that, in turn, serve as the input for
the Machine Learning-based prediction. The end-product of this
process is fed back to the Graph Database to update the weights.

We report on practical experiments evaluating the effectiveness
of the GPCM application in forecasting the FTSE 100 index.
The underlying dataset contains multiple parameters related to
predicting time-series data, where Long Short-Term Memory
(LSTM) is known to be one of the most efficient machine learning
methods. The most challenging task here has been to overcome
the known restrictions of LSTM, which is capable of analysing
one input parameter only. We solved this problem by combining
several parallel LSTMs, a Concatenation unit, which merges
the LSTMs’ outputs (into a time-series matrix), and a Linear
Regression Unit, which produces the final result.

Index Terms—semantic data analysis, graph database, ontol-
ogy, stock analysis, computational model, neural network, linear
regression, FTSE 100, LSTM, Protégé, Neo4j, Python

I. INTRODUCTION

The paper introduces a Generic Predictive Computational
Model (GPCM) and applies it building a Use Case for the
FTSE 100 index forecasting. This involves the mining of
heterogeneous data based on semantic methods, graph-based

methods (ontology, knowledge graphs, graph databases) and
advanced Machine Learning methods. The main focus of
our research is data pre-processing aimed at a more efficient
selection of input features.

GPCM has the following pipeline. Raw Data collected from
an external source is fed to the model Graph Database which
is additionally structured by the ontology and, after the first
model cycle, is regularly updated by the feedback loop from
the Machine Learning Engine. The latter is used to update
the weights (values of importance) of the nodes (features) in
the Graph Database. The Graph Database queries output the
most valuable features that subsequently serve as the input for
the Machine Learning-based prediction. The end-product of
this process is fed back to the Graph Database to update the
weights.

In the course of practical experiments, we built a Use
Case and evaluated the effectiveness of the GPCM model
application for forecasting the FTSE 100 index1. To adapt
our model for this Use Case we developed a special Mar-
ket Index Prediction Ontology (MIPO) and a comprehensive
Machine Learning Engine utilising Long Short-Term Memory
(LSTM). This Machine Learning Engine was based on the
use of multiple parameters related to predicting time-series
data: the market index itself and the set of macroeconomic
indices, used as additional external impact factors. The most
challenging task here was to overcome the known restrictions
of LSTM, the primary and one of the most accurate methods
of forecasting time-series market data – LSTM is intended
to analyse one input parameter only (dealing with time-series

1https://markets.ft.com/data/indices/tearsheet/summary?s=ftse:fsi

https://markets.ft.com/data/indices/tearsheet/summary?s=ftse:fsi

vectors).
Therefore, to enable LSTM to tackle multiple input parame-

ters, a unique hybrid Machine Learning Engine was developed.
It consists of several parallel LSTMs, a Concatenation unit,
which merges the LSTMs’ outputs (into a time-series matrix),
and a Linear Regression Unit, which produces the final result.

To develop an Ontology which structures the Graph
Database we use Protégé2. As a graph database environment,
Neo4j3 was chosen. The integrated code for the GPCM model
is written and executed in Python; it will be explained in
the relevant sections and can also be found at our GitHub
repository [1].

The structure of the paper is as follows. Section II overviews
work related to the application of the LSTM for time-series
data prediction as the stand-alone single-component models.
In Section III the architecture of the Generic Predictive Com-
putational Model is presented. This model is implemented
in Section IV which presents a Use Case for the Market
Index Prediction purposes (FTSE 100 index): Section IV-A
describes input data, Section IV-B presents the development of
the relevant Ontology, Section IV-C introduces the graph DB
hosting multiple parameter input data, Section IV-D describes
the hybrid ML engine. Section V evaluates the developed
model. Finally, Section VI summarises the contribution of this
paper and draws paths for future work.

II. RELATED WORKS

Recurrent Neural Networks. The most popular method for
performing classification and other analysis of data sequences
are Recurrent Neural Networks (RNNs) [2]. However, in prob-
lems of time-series analysis, a modification of such networks is
especially distinguished – Long Short-Term Memory (LSTM)
networks [3].

The idea behind a RNN is to use information consistently. In
traditional neural networks, all inputs and outputs are assumed
to be independent. But this is not suitable for many tasks
[3]. For example, if it is necessary to predict the next value
of the market index, it is best to consider the values that
precede it. RNNs are called recurrent because they perform
the same task for each element of the sequence, depending on
previous computations [4]. Another interpretation of a RNN is
a network with a ”memory” that considers prior information.

Pure recurrent neural networks are not used very often in
practice. The main reason for this is the vanishing gradient
problem [2]. Ideally, for recurrent neural networks, a long
chain of ”memories” is needed as an input so that the network
can connect data relationships over significant distances in
time [5]. For example, such a network could make real
progress in understanding how events in the stock market
are related. However, the more time steps we have, the more
chances that backpropagation gradients will either pile up and
explode or disappear.

To reduce the vanishing gradient problem and therefore
allow recurrent neural networks to perform well in practice,

2https://protege.stanford.edu/products.php
3https://neo4j.com/product/neo4j-graph-database/

there must be a way to reduce the multiplication of fewer
than zero gradients [4]. A modified version of the RNN
– the LSTM, is a specially designed logical unit that will
help reduce the vanishing gradient problem enough to make
recurrent neural networks more practical for long-term tasks
[6]. It does this by creating an internal memory state that is
simply added to the processed input signal, which significantly
reduces small gradients’ multiplicative effect. In addition, the
timing and impacts of previous inputs are controlled by a
concept called the forget gate. Forget gate determines which
states are remembered or forgotten.

Hochreiter and Schmidhuber [7] introduced LSTM in 1997,
and then optimised and popularised them in many subsequent
works. Such networks do an excellent job of solving many
problems and are widely used at this time and this method
is considered to be one of the most powerful for market data
analysis [6], [8], [3].

All the papers mentioned above consider LSTMs as the
stand-alone method for time-series financial data prediction.
However, we use the LSTM as the component of a com-
prehensive computational model, which aims to improve the
efficiency of the prediction.

III. GENERIC PREDICTIVE COMPUTATIONAL MODEL
ARCHITECTURE

The component-based architecture of the Generic Predictive
Computational Model (GPCM) is shown in Fig. 1. It consists
of the following components: Raw Data Interpreter; Ontology;
Graph Database; Feature Selection Component; and Machine
Learning Engine.

This system significantly improves the previous construction
of a predictive model [9], [10]: the Graph Database component
now has a three-layered structure and the model is enriched
with the Feedback Loop. However, the use case presented in
the above papers can still be considered as a use case for the
enriched model.

Raw Data Interpreter. The role of this module is to collect
raw data from the sources’ standard databases. The data gained
are subsequently stored in a convenient form to support its
efficient management. The interpreter allows feeding the data
in an appropriate commonly used format (e.g., CSV) to the
Graph Database module (see below).

We aim at the construction of a generic model the realisation
of which initially depends on the type of the input data. This
will enable its application for data mining of all kinds of
quantitative datasets; however, we believe it is more suitable
for highly interconnected data. For our use case, we have
determined to use financial/market data.

Semantic Graph Database. Graph Database (GDB) stores
the raw data collected from the companies’ standard databases
(for our use cases we use the Neo4j environment for GDB
construction) structuring data based on the Ontology. Ad-
ditionally, GDB is dependent/dynamically updated by the
feedback from the Machine Learning Engine. It allows to
include the outcomes and analytical metadata (e.g. features’
weights) gained from the model’s previous iterations.

https://protege.stanford.edu/products.php
https://neo4j.com/product/neo4j-graph-database/

Fig. 1. GPCM Components and Dataflow

we use a GDB instead of a traditional database mainly
because it copes well with highly interconnected data (e.g.,
financial data). It effectively implements the property graph
model, right down to the storage layer. This means that the
data is stored exactly as one represents it. Only a database
that initially contains all possible connections can efficiently
store, process, and query relations. While traditional databases
compute relationships at query time through resource-intensive
operations, a GDB stores connections and the model’s data.
Time traversal constants on large graphs facilitate the efficient
representation of nodes and relationships. Therefore, regard-
less of the overall size of the dataset, graph databases do an
excellent job of managing data with complex relationships
and complex queries [11]. Moreover, the flexible nature of
the graph allows it to adapt over time, subsequently adding
new concepts and relationships to quickly access and speed
up data processing as the analysis needs change.

The Ontology included into the system formalises the
theoretical concepts needed for the data analysis and creates a
framework according to which the entire system will operate.
An ontology defines a standard concept library for users
and developers who need to share information. It includes
computer-interpretable formulations of the basic concepts of
the subject area and the relationship between them, making
them more accessible for complex reasoning. Both tools,
ontology and graph database, are compatible with popular
programming languages, including Java, JavaScript, .NET,
Python, which helps automate and speed up the system
management, construction process and integrate independent
components into a single system.

In Ontology template graph (Definition IV.1 in [10]) nodes
are labelled by ”abstract empty containers” while in Ontology
full graph (Definition IV.2 in [10]) these ”abstract containers”
are filled with the values gained from the concrete data (i.e.,
the specific use case metadata).

Now, we introduce an extra layer of the Ontology graph –
Ontology full graph with weights (Definition III.1), where the
Machine Learning Engine feedback loop adds the weights of
the features after every model’s iteration.

Definition III.1 (Ontology full graph with weights). An
Ontology full graph with weights is a labelled graph Gw =
< V,E,Lw >, where V is the set of vertices, E is the set
of edges (features), and L is the set of labels. Labels in
L = value : 0, value : i, weight : 0, weight : k,
where value : 0 is a constant meaning ”the value is not
yet identified” and i ranges over the real values taken from
a company’s dataset; weight : 0 is a constant meaning ”the
feature is irrelevant regarding this particular model’s cycle”
and k ranges over the weights which were added as the result
of analysis executed during the previous model’s cycle, besides
k ranges in (0,1], where 1 means there is a direct dependence
between the final outcome of the model and the feature’s value.

When the template graph containing the core Ontology
information is created, it should be filled with the data - in this
way we transform a template graph into the full graph. After
the first iteration of the model, the full graph is supplemented
by weights of the input features.

Feature Selection. The attributes used to train the model
have a significant impact on the quality of the results. Un-
informative or poorly informative features may reduce the
effectiveness of the model. Therefore, the process of selecting
features that have the closest relationship with the target
variables is performed. During each iteration, features are
being corrected, taking into account the model’s previous
iterations.

Feature Selection (as well as Data Structuring, Filtering and
Visualisation) is optimised by GDB queries. This enables the
formulation of the queries of any complexity handled by a
dedicated query language (e.g., Cypher as part of Neo4j in
our case). The efficiency of queries though is supposed to be
improved by an expert. The selected set of features feeds the
Machine Learning Engine.

Machine Learning Engine. Finally, financial analysis using
selected key features can be carried out through Machine
Learning Engine (MLE).

The MLE type choice depends on the particular input
dataset characteristics and the specific nature of the analytical
objectives (forecasting or classification). For example, for one

of the variations of GPCM – Bankruptcy Prediction Compu-
tational Model (BPCM) (see [10]), where input features are a
company’s financial ratios, we use Classical Neural Network
to identify which category a company relates to (bankrupt or
non-bankrupt).

For Market Index Prediction Computational Model (see
Section IV) the input parameters consisted of the Market Index
(FTSE 100) and Macroeconomic Indicators historical values,
so we applied a hybrid more complex engine, combining a
bunch of Long Short-Term Memory networks plus the LR.

Feedback Loop. Besides returning the outcome of the cur-
rent iteration, MLE allows for the analysis of the weights of the
input features and for the transferring of this information to the
GDB component via a feedback loop, enhancing the system
performance for future iterations. In Fig. 2 the Feedback Loop
is shown separately from the computational model.

Fig. 2. GPCM Feedback Loop Architecture

Thus, the system represents a dynamic recurrent process
of n iterations (cycles) that continually researches two central
questions: how the provided features impact the target vari-
ables and what analytical conclusion the system produced for
the particular iteration.

IV. USE CASE: IMPLEMENTATION OF THE PREDICTIVE
COMPUTATIONAL MODEL (FTSE 100)

This Section will describe how to use GPCM for the
purposes of FTSE 100 market index prediction.

The architecture of the Predictive Computational Model for
FTSE 100 – FPCM, is the special case of GPCM.

A. Input Data for Market Index Predictive Computational
Model

Macroeconomic statistics have a significant impact on the
behaviour of investors in the financial market. Despite the
rapid development of algorithmic trading, many financial
market participants continue to build their trading strategies
based on new data on the current macroeconomic situation.
For example, the publication of data on oil stocks can affect
the value of quotes for oil futures and other derivatives. Or
statistics on the number and volume of new construction can

give an idea of the phase of the economic cycle and the state of
the economy as a whole, forcing investors to withdraw money
from riskier assets and invest in safer companies.

Recently, more research has been concentrated on the anal-
ysis of the impact of macroeconomic indicators on financial
markets [12], [13], [14], etc. Standard models for predicting
the prices of market indices, such as the NASDAQ, S&P500,
FTSE 100, use the time-series of the previous values of a
given index solely [15]. We propose to supplement the input
data of FPCM by the monthly values of some macroeconomic
indicators.

FTSE 100 (abbreviated from Financial Times Stock Ex-
change, also known as Footsie) is one of the most popular
(including for trading) stock indexes. The FTSE combines
data from companies that make up approximately 80% of the
London Stock Exchange market capitalisation, and, unlike all
other indices, is not wholly-owned by the exchange: its shares
are owned by the Financial Times4.

As the input dataset for FPCM, we consider the average
monthly index data from January 1, 1985 to October 1, 2020
-that is 430 time-slots (i.e. 1 month for 1 time-slot)- and the
last 60 slots will be used as test slots for verifying the accuracy
of the model prediction.

The composition of the FTSE 100 index is determined
quarterly; it is unstable and difficult to predict, taking into
account the data of companies as of the end of the previous
business day. Every quarter, some companies that do not meet
specific requirements are dropped from the list, and other
companies are put in their place. In this regard, it was decided
not to base our research on the performance of the companies
that make up the index.

At the same time, most of the companies included in the
index are British, political and economic news from the EU
also have some impact on the FTSE. However, the main
factors still belong to the UK, and news such as decisions
on interest rates, GDP, production, and inflation influence the
index fluctuations.

After an extensive research on the most popular macroeco-
nomics indicators which are correlated with financial market
fluctuations [13], [12], we have selected 16 of them that will
help improve the predictions of the index. They are presented
in Table I.

B. Developing Ontology of Market Index Prediction

Although there are no UK or International standards which
define the relationships between macroeconomic indicators
and the market indexes, the MIPO Ontology is based on
experts opinion.

A formal physical representation of this Ontology is created
in the Protégé environment. It is far more complex than
OBP Ontology (developed for the Use Case of companies’
bankruptcy prediction in [10]).

The MIPO Ontology contains the following four classes:

4https://markets.ft.com/data/indices/tearsheet/summary?s=ftse:fsi

https://markets.ft.com/data/indices/tearsheet/summary?s=ftse:fsi

TABLE I
MACROECONOMIC INDICATORS USED AS INPUT DATA FOR MARKET

INDEX PREDICTIVE COMPUTATIONAL MODEL

Code Category Name Indicator Name
GDP 3*Economic Gross Domestic Domestic
GNIph Output Gross National Disposable Income
EG Economic Growth
IR 2*Prices Retail Price Inflation Index
CPR Consumer Price Inflation Index
UR 4*Labour Unemployment Rate
AWE Average Weekly Earnings
LC Labour Cost Index
BDIR 4*Banking & Bank Deposit Interest Rate
BCIR Investments Bank Credit Interest Rate
I Net Investment by UK financial institutions
FDI Foreign Direct Investments
RS 4*Business Retail Sales Index
IP Cycle Industrial Production Rate
HP House Price Index
PMI Purchasing Managers Index (composite)

• Prices Indexes. Here we include the FTSE 100 index as
a subclass. But the Ontology can be supplemented with
other market indexes if the user needs it.

• Macroeconomic Indicators. At the moment, this class
contains 16 indicators that affect market indexes.

• National Statistics Indicators. This is the upper class of
the indicators as compared to class Macroeconomic Indi-
cators. It consists of indicators provided and from these
macroeconomic indicators are calculated – for example,
Population figures which is the basis for Unemployment
Rate calculation.

• Changes in Government Regulations is a special class
that affect both Macroeconomic Indicators and National
Statistics Indicators classes. It includes the UK Fiscal
Policy, Monetary Policy, Labour Policy changes, etc.

The MIPO Ontology is a prototype version, and it can be
updated in future with the other factors affecting the changes
in market index price.

The MIPO Ontology hierarchy developed in the Protégé
environment is shown in Fig.3. The more detailed MIPO
Ontology diagram is given in our footnote repository.

Besides the SubClassOf structure, the Ontology includes
three types of non-hierarchical connections: hasEffectOn (e.g.,
sets the relationships between Macroeconomic Indicators and
Market Indexes), directlyRelatedTo and indirectlyRelatedTo
(e.g., establishes the relationships between Macroeconomic
Indicators and National Statistics Indicators).

Figure 4 represents the ”Usage” tab of Retail Price Inflation
(RPI) indicator in Protégé. It shows that an entity contains
three data attributes: Weight (which is the indicator importance
coefficient), Value (the actual value of the Ratio) and Date
(time-slot). The rest of the indicators and the market index
contain the same data attributes. Also, this tab shows the
relations of the indicator with other entities in the Ontology.
Moreover, every entity includes information about synonyms
and term definitions.

The full version of MIPO Ontology in OWL format –
Price Index Prediction v3.2.owl is used to create the skeleton

Fig. 3. Protégé Environment: Ontology of Market Index Prediction (MIPO)

Fig. 4. Protégé Environment: Retail Price Inflation Usages in MIPO Ontology

of the FPCM model GDB in Neo4j.

C. Developing Semantic Graph Database

The first step in creating a Neo4j GDB for Market Index
Prediction is to transfer the MIPO Ontology LSTM made in
Protégé into Neo4j.

First, we create and open an empty graph ’FTSE100’ in
the Neo4j app window. Then, we define the LAN connection
parameters to connect to the GDB in Python.

Now we need to import the LSTM itself (the Owlready2
library can help us with this) and then proceed directly to
extracting information from the MIPO Ontology using it as a
base for building a graph.

Below we describe the initial two stages of this process:
Stage 1. Establish the connection to the Neo4j database.

Stage 2. Load the Ontology into memory (assigning the
Ontology to the ”onto” variable).

Nodes and Relationships are created from Python using
Cypher queries. All elements of the Ontology are transferred
as graph nodes. To make the graph node labels more readable,
we decide to remove the name-space prefixes in the entity
names, which is how they are naturally given in RDF format.
Then hierarchical relationships between entities are added, as
well as the relationships that are hidden in the annotations of
the Ontology (non-hierarchical). Thus, an Ontology template
graph (an empty graph without values and weights) is formed
(Definition IV.2 in [10]).

To convert an Ontology template graph to an Ontology full
graph (Definitions IV.1 in [10]), a graph that is filled with
values, we store input data (from some external source) as
Processed Input Data FTSE100 1985 21.csv. In this conver-
sion the first step is to export this data file to the Python
environment and then match the names of the created nodes
with the names of the columns.

The complexity of this Use Case is due to the presentation
of the input data as a time-series (we have 430 monthly time-
slots). This means that GDB should contain 430 variations of
the Ontology full graph (these will be differentiated by the
”Date” data property).

Our software solution reflects the limitations of the Neo4j
environment. Neo4j environment doesn’t provide any built-
in tools to present the time-series data in a more convenient
way. Official Neo4j website suggests the KeyLines plug-in5,
but unfortunately it is not available for academic purposes.
Each FTSE100 and Macroeconomic Indicators nodes in Neo4j
should contain: ”Value”, taken from the external source, and
”Date” (for example, 01/10/2020 - the dataset’s last time-slot).
The dataset (Processed Input Data FTSE100 1985 21.csv)
is formed using the information from Office of National
Statistics official website6 and market indexes database on
Yahoo.Finance website7.

The code below describes nodes and edges for each time-
slot being added to Neo4j. Here, the Pandas library 8 allows
us to extract the CSV file’s contents and store in the variable
”processed input csv dates” the first column of the CSV,
containing the dates.

processed_input_csv_dates =
pd.read_csv
("Processed_Input_Data_FTSE100_
1985_21.csv").values[:, 0]

The variables for storing strings of the Cypher queries to
add and match nodes and add edges are initialised. It should be
noted that the ”match nodes queries” variable is not actually
used in this code snippet:

add_nodes_query = ""

5https://neo4j.com/blog/graphs-in-time-and-space/
6https://www.ons.gov.uk/
7https://finance.yahoo.com/quote/%5EFTSE?p=%5EFTSE
8https://pandas.pydata.org/pandas-docs/stable/user guide/index.html#user-

guide

match_nodes_queries = ""
create_edges_queries = ""

Then, two other variables are set up: i = 0, where the i
variable will keep track of how many ”add node” queries we
have accumulated so far in the ”add nodes query” variable
during the for loop. Then: row = 0. The row variable keeps
track of which row in our CSV data file we are on throughout
the for loop.

For every date in the CSV: for date in ”pro-
cessed input csv dates”:

Append a new ”add nodes” query to the ”add nodes query”
variable for the row and date we are currently on in the for
loop.

add_nodes_query =
greeter.add_nodes_in_neo4j(onto, date, row,
add_nodes_query)

Increment the i and row for every loop iteration:

row += 1
i += 1

Once ten ”add node” queries (i.e. add node queries for 10
time-slots) are stored in the ”add nodes query” variable (i.e.
this is signified when this condition is met: (i/10 == 0),
which means if i/10 results in a remainder of 0) then these 10
queries are executed on the database. The ”add nodes query”
variable is then reset to a blank string (i.e. ””). The ‘for loop’
then keeps going until the last date of the CSV file is reached.

Then the i and row variables are reset to 0:

i = 0
row = 0

Then we apply a process, similar to above, for the ”add
edge” queries. The edges are not added in batches of
10 time-slots like the nodes, as the add edge queries are
more intensive than the add node queries: for date in pro-
cessed input csv dates:

greeter.add_annotation_edges_in_
neo4j(onto, date, row)
greeter.add_subclass_edges_in_
neo4j(onto, date, row)
row += 1
i += 1

Once all the nodes and edges for all time-slots have been
added to the database, the connection to the database is closed.

To pass data from the GDB to other model components
a separate Python file, input data import from neo4j.py, is
used: it extracts the data from Neo4j to a new CSV file
Input Data from Neo4j.csv.

After the first iteration of the model, the system generates
a CSV file, weights importance uc2.csv, with the weights of
the model input indicators (see below how this file is created).
After exporting and processing this file we form the next
”layer” of the GDB - Ontology full graph with weights (see
Definition III.1).

Without going into too much detail, we state that the code
in the for loop assigns CSV values to the ”Value” properties

https://neo4j.com/blog/graphs-in-time-and-space/
https://www.ons.gov.uk/
https://finance.yahoo.com/quote/%5EFTSE?p=%5EFTSE
https://pandas.pydata.org/pandas-docs/stable/user_guide/index.html##user-guide
https://pandas.pydata.org/pandas-docs/stable/user_guide/index.html##user-guide

and the weight values to the ”Weight” properties (if the node’s
name is present in the weight columns list) of each node in
the Neo4j database. We construct and execute a Cypher query
that: finds the nodes in the database we want to update, then
sets the ”Value” and ”Weight” properties of those nodes. We
refer readers interested to see the code and the construction
of this query to the GitHub repository [1].

The full Ontology of Market Index Prediction graph with
weights, which built in Neo4j environment is given in our
GitHub repository [1].

Next, based on the weights obtained, we can proceed with
the Feature Selection. The Python file cypher queries uc2.py
is responsible for it. Then, by querying indicators of the same
category, we identify the one with the maximum weight. At
the same time, Neo4j should display a graph containing only
the indicators remaining after the selection. The data of this
graph is then passed to the next component of the system.

According to Table I the Macroeconomic Indicators in
FPCM Model are divided into five categories. For example, the
feature selection Cypher query for Economic Output Indicators
category should be present as:

economic_output_indicators_level_
2_mw_node = session.run("""MATCH
(n1:Class
{name: "Economic_Output_Indicators_Level
_2", Date: "01/10/2020"})<-
[r1:subclass_of]-(scn1:Class)

WITH max(scn1.Weight)
AS maximum
MATCH (n2:Class {name: "Economic_Output_
Indicators_Level_2",
Date: "01/10/2020"})<-[r2:subclass_of]-
(scn2:Class)
WHERE scn2.Weight = maximum
RETURN scn2""").data()

...
eoi_l2_mw_node_name = economic_output_
indicators_level_2_mw_
node[0]["scn2"]
["name"]
...
max_weighted_features = [

...,

...,

...,
eoi_l2_mw_node_name,
...]

The result of this query is shown in Fig.5.
Finally, the structured and selected Features (Ratios)

are transferred to Python environment in the format fea-
ture selection from neo4j.csv, which is served as input data
for MLE.

D. Developing Machine Learning Engine: Hybrid Engine

As part of a computational model for FTSE 100 prediction,
we developed a comprehensive Machine Learning Engine
(MLE). It consists of 17 parallel LSTMs for the market
index and 16 Macroeconomic Indicators, a Concatenation unit
and the LR unit which analyses the LSTMs merged results

Fig. 5. Neo4j Environment: Returning the Macroeconomic Indicator with the
maximum weight in Economic Output Indicators category

(interested reader is referred to our GitHub repository [1] for
detailed description of this Hybrid MLE for FPCM).

As the basis for the Python code, we use TensorFlow and
Keras libraries, which allow to creating deep learning models
quickly and easily.

a. Collecting the Data. For training the LSTMs, it is
necessary to prepare a set of training data: examples of input
data and their corresponding outputs.

As the training data, we use a monthly closing price and
indexes values starting from January 1985. So, each LSTM
and Macroeconomic Indicator input dataset has a vector form.
The output of each LTSM is the particular feature’s values for
the recent 60 months (the last date of the dataset is October
2020), also presented as a vector. Now we can compare the
result with the real data to check the accuracy of LSTMs’
predictions.

We used Office of National Statistics official
website and market indexes database on Yahoo.Finance
to collect the data needed and save it in Pro-
cessed Input Data FTSE100 1985 21.csv; it contains
430 time-slots from January 1985 to October 2020 (see our
GitHub repository [1]).

b. Design, Training and Quality Assessment of a Hybrid
Machine Learning Engine

Developing the LSTMs. The first stage of creating a
comprehensive MLE is developing a separate LSTM for each
of the 17 features, plus one for the market index – FTSE
100. As mentioned before, one of the features of LSTM is
that this approach can’t be used for processing multiple time-
series input. So we have to build an LSTM for each of the
features separately and then concatenate the results.

All 17 LSTMs have a similar code, and all of them,
including the FTSE 100 LSTM, can be found in our GitHub
repository [1].

The general algorithm we applied for LSTM construction
is the following:

• Use the Pandas library to read the input CSV data file
and extract a dataset of the values from all its rows of
the first column.

• Set aside a small sample of the last values of the dataset
for testing, add the remaining values to ”X train” and
”y train” arrays which will be used for training the
LSTM.

• Convert the ”X train” and ”y train” into NumPy arrays.
• Reshape the ”X train” array so it is suitable for use with

the LSTM.
• Initialise the Input layer of the LSTM to match the

dimensions of the ”X train” array, so ”X train” can be
fed into the LSTM.

• Use TensorFlow library functions to add three layers to
the LSTM, with 50 neurons per layer.

• Create an output layer with one neuron.
• Initialise the LSTM with the input and output layers

specified in the earlier steps.
• Compile and run the LSTM.

Besides, we used SKLearn MinMaxScaler, and NumPy
reshape functions to normalise and then denormalise the input
data.

The model includes a stack of several fully connected
network layers, each containing 50 units; the main LSTM
layer carries an activation function - LR. Then, the model
is compiled. We used the ’Mean Squared Error’ function
as a loss function and ’ADAM’ (A Method for Stochastic
Optimisation) [16] as a replacement optimisation algorithm.
Finally, the model is trained using the .fit function (for FTSE
100 – with 50 epochs and batch size 20).

The LSTMs are saved as separate Python files:
lstm FTSE 100.py, lstm GDP.py, etc.

The result of FTSE 100 LSTM prediction for 60 last months
(5 years) is visualised in Fig. 6. The output graphs of the rest
LSTMs can be found in our GitHub repository [1].

Fig. 6. FTSE 100 LSTM prediction

As we can see the LSTM-based predictions are consistently
lower than the actual figures. The next step in the process,
Linear Regression, aims to address this issue.

Developing Concatenated Output. The next unit of the
MLE is Concatenation. Using this NumPy function, we present
the output vectors of 17 LSTMs as one joint matrix – combined
output. The Python code runs from a separate file main.py.

lstm_predicted_stock_prices = [
lstm_FTSE_100.predicted_stock_price,
...
lstm_HP.predicted_stock_price,
lstm_PMI.predicted_stock_price]

number_of_lstms = len(lstm_predicted_
stock_prices)
combined_output = np.concatenate(lstm_
predicted_stock_prices, axis=1)
dataset_test = pd.read_csv(’Processed_
Input_Data_FTSE100_1985_21.csv’, header=0,
index_col=0)
real_stock_price = dataset_
test.iloc[0:, 0:1].values
real_stock_price = real_stock_
price[len(real_stock_price) -
testing_set_size:, 0:1]
combined_output = np.concatenate(
[combined_
output, real_stock_price], axis=1)

The combined output is saved as combined output.csv,
which will be used as an input data for the LR unit of MLE.
This file contains

• 18 columns – LSTM Predicted FTSE100 index, 16 LSTM
Predicted MI, Real FTSE100 index

• 60 rows (time-slots).
However, at this stage, the features are not yet reliant on

each other.
Linear Regression. To calculate the joint result, the final

most accurate prediction of FTSE 100, considering the other
16 features, we use Linear Regression (LR) and realise it in
Python by means of SKLearn library. First, the combined
output should be split into two parts. The first (the oldest)
time-slots of 17 input features plus the actual values of FTSE
100 for the same time-slots are used as the training data for
the LR. Accordingly, the LR analyses the dependency of the
features from the actual FTSE 100 price. The last (the newest)
time-slots, e.g., last 12 months, are the LR input data (for
testing).

we define dataset
combined_output = pd.read_csv(’combined_
output.csv’, header=0)
print(combined_output)
X, y = combined_output.iloc[0:testing_
set_size-12,
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16]].values,
combined_output.iloc[0:testing_
set_size-12,
-1].values
print(X)
we define the model

model = LinearRegression()
we fit the model
model.fit(X, y)
we test prediction with real data
test_X = combined_output.iloc[testing_
set_size-12:,
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16]].values
prediction = model.predict(test_X)
print(f’Prediction: {prediction}’)

The model is tested using Mean Absolute Percentage Error
(MAPE) formula to compare the accuracy of the FTSE 100
index predicted by LSTM only and by LR using multiple
features. Once LR passes the testing, the MLE is ready to
use.

Calculating the Weights for the Feedback Loop. After LR
code for FPCM Model (linear regression.py) is executed the
feature importance analysis of the input data should be made.
For these purposes the Random Forest Feature method is used.
Finally, the result is saved as (weights importance uc1.csv),
which is further transferred to the GDB (as a part of the
feedback loop).

V. APPLICATION: MARKET INDEX PREDICTION
COMPUTATIONAL MODEL FOR FTSE 100 INDEX

Once the dataset needed for the analysis is collected, it
is exported to the template Neo4j GDB as the ”Values” of
the particular nodes. There is no need to create the GDB
and OBP Ontology from scratch in every new case, as
they represent the general framework for market index data
pre-processing. Further, the data file extracted from Neo4j
containing 430 time-slots of FTSE 100 values, plus 16 MI
values (Input Data from Neo4j.csv) should be imported to the
Python environment (also see our GitHub repository [1]). After
exporting these datasets to the MLE the following files should
be run one-by-one:

• main.py – runs 17 LSTMs and generates a combined
output

• linear regression.py – runs LR using an LSTMs’ com-
bined output as input.

This model was tested using the MAPE formula to compare
the accuracy of FTSE 100 index predicted by LSTM only and
by LR using multiple features. The result of this testing (last
12 months) is presented in Fig.7 and 8.

We can see that the complex hybrid MLE prediction (using
17 LSTMs and LR) is more accurate rather than the prediction
results after LSTM.

After the NN result is received we can use fea-
ture importance uc2.py to evaluate the weights of the fea-
tures. Its output file weights importance uc1.csv can be now
added to Neo4j Graph by means of feedback loop.

The results of the Random Forest Feature Importance Anal-
ysis for FPCM are presented in Fig.9.

Then by means of Neo4j queries (cypher queries uc2.py),
the weights are used to identify the 5 most valuable MI (one
for each category of indicators). As a result, the model peaked
the following ratios: CPI, I, IP, GNIph and UR. The usage of

Fig. 7. Linear Regression (without Feature Selection) Results: Mean Absolute
Percentage Error (Python Console)

Fig. 8. Linear Regression without Feature Selection Results: the Plot

Fig. 9. Random Forest Feature Importance Analysis Result for FPCM features

only five inputs will prevent the NN from overfitting in future,
providing more accurate outcomes. To prove this, we run LR
code using as an input the five selected MI only. The testing
result (last 12 months) is presented in Fig.10 and 11.

After comparing the Final MAPE with feature selection
(Fig.10) with the previous testing Final MAPE (Fig.7), we
can state that the feature selection increased the efficiency of
the FPCM Model.

Fig. 10. Linear Regression with Neo4j Feature Selection Results: Mean
Absolute Percentage Error (Python Console)

Fig. 11. Linear Regression with Feature Selection Results: the Plot

VI. CONCLUSIONS AND FUTURE WORK

In this paper we refined a concept of the Generic Predictive
Computational Model initially developed in [9] and [10] and
applied it by building a Use Case for the FTSE 100 index
forecasting. To adapt our model for this Use Case we have
developed a special Market Index Prediction Ontology and a
Hybrid Machine Learning Engine which is based on the use
of multiple parameters related to predicting time-series data:
the market index itself and the set of macroeconomic indices,
used as additional external impact factors. Utilising LSTM,
we presented a solution to overcome its known restriction
which reduces LSTM’s application to single input parameters
only. In our solution we developed a novel Machine Learning
Engine comprising several parallel LSTMs, a Concatenation
unit, which merges the LSTMs’ outputs (into a time-series
DataFrame), and a Linear Regression Unit, which produces
the final result.

Thus, the main scientific contributions of the paper are
the following refinements of the concepts that formed the
pipeline of the Generic Predictive Computational Model ini-
tially introduced in [9] and [10]: (1) the concept of GDB
component is now defined with a third layer (weights); (2)
the model is improved by the Feedback Loop; (3) the MLE
component which utilises the combination of LSTM, able to
work with multiple parameters, and LR which improves the
accuracy of the model. Our results also demonstrate that being

implemented in this way, an LSTM is more efficient than when
it is applied as a stand-alone method (which is typically the
case).

In combination with the results of [9] and [10] this paper
introduces a novel generic framework for data analysis and
prediction, presenting ’building blocks’ for the construction
of the predictive model. In future work we will develop a new
use case tackling a different, not related to finance, dataset.
The other direction of future research is the comparison of the
obtained results with other tools used for FTSE 100 predictive
calculation.

VII. ACKNOWLEDGEMENT

We are grateful to Dr Gabriele Pierantoni and anonymous
reviewers for their useful comments and suggestions.

REFERENCES

[1] N. Yerashenia, A. Bolotov, and D. Chan, “Generic predictive computa-
tional model GPCM, GitHub repository.” https://github.com/Yerashenia/
Generic-Predictive-Computational-Model-GPCM, 2021.

[2] E. Tölö, “Predicting systemic financial crises with recurrent neural
networks,” Journal of Financial Stability, vol. 49, 2020.

[3] Y. Jang, I. Jeong, and Y. K. Cho, “Business failure prediction of
construction contractors using a LSTM RNN with accounting, construc-
tion market, and macroeconomic variables,” Journal of management in
engineering, vol. 36, no. 2, 2020.

[4] C. L. Cocianu and M. Avramescu, “Financial data forecasting using
recurrent neural networks,” Proceedings of the 18th International Con-
ference on Informatics in Economy, 2019.

[5] Y. Hu, A. Huber, J. Anumula, and S.-C. Liu, “Overcoming the vanishing
gradient problem in plain recurrent networks,” arXiv, 2018.

[6] M. Vochozka, J. Vrbka, and P. Suler, “Bankruptcy or success? the
effective prediction of a company’s financial development using LSTM.,”
Sustainability, vol. 12, no. 18, 2020.

[7] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[8] S. Edet, “Recurrent neural networks in forecasting S&P 500 index,”
Available at SSRN 3001046, 2017.

[9] N. Yerashenia and A. Bolotov, “Computational modelling for bankruptcy
prediction: Semantic data analysis integrating graph database and finan-
cial ontology,” in 2019 IEEE 21st Conference on Business Informatics
(CBI), vol. 1, pp. 84–93, IEEE, 2019.

[10] N. Yerashenia, A. Bolotov, G. Pierantoni, and D. Chan, “Semantic
data pre-processing for machine learning based bankruptcy prediction
computational model,” in 2020 IEEE 22nd Conference on Business
Informatics (CBI), IEEE, 2020.

[11] J. Pokornỳ, “Graph databases: their power and limitations,” in IFIP In-
ternational Conference on Computer Information Systems and Industrial
Management, pp. 58–69, Springer, 2015.

[12] A. Afify and H. E. Roman, “Estimating market index valuation from
macroeconomic trends,” Quantitative Finance and Economics, vol. 5,
no. 2, pp. 287–310, 2021.

[13] D. Pilinkus, “Macroeconomic indicators and their impact on stock
market performance in the short and long run: the case of the baltic
states,” Technological and Economic Development of Economy, no. 2,
pp. 291–304, 2010.

[14] B. Weng, W. Martinez, Y.-T. Tsai, C. Li, L. Lu, J. R. Barth, and F. M.
Megahed, “Macroeconomic indicators alone can predict the monthly
closing price of major us indices: Insights from artificial intelligence,
time-series analysis and hybrid models,” Applied Soft Computing,
vol. 71, pp. 685–697, 2018.

[15] D. Shah, H. Isah, and F. Zulkernine, “Stock market analysis: A review
and taxonomy of prediction techniques,” International Journal of Finan-
cial Studies, vol. 7, no. 2, p. 26, 2019.

[16] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv, 2014.

https://github.com/Yerashenia/Generic-Predictive-Computational-Model-GPCM
https://github.com/Yerashenia/Generic-Predictive-Computational-Model-GPCM

