
University of Huddersfield Repository

Mantle, Matthew

Large Scale Qualitative Spatio-Temporal Reasoning

Original Citation

Mantle, Matthew (2021) Large Scale Qualitative Spatio-Temporal Reasoning. Doctoral thesis,
University of Huddersfield.

This version is available at http://eprints.hud.ac.uk/id/eprint/35739/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

Large Scale Qualitative Spatio-Temporal

Reasoning

Matthew Mantle

A thesis submitted to the University of Huddersfield in partial fulfilment of the

requirements for the degree of Doctor of Philosophy

School of Computing and Engineering

University of Huddersfield

September 2021

Copyright statement

i The author of this thesis (including any appendices and/ or schedules to this thesis) owns any

copyright in it (the “Copyright”) and s/he has given The University of Huddersfield the right

to use such Copyright for any administrative, promotional, educational and/or teaching.

ii Copies of this thesis, either in full or in extracts, may be made only in accordance with the

regulations of the University Details of these regulations may be obtained from the Librarian.

Details of these regulations may be obtained from the Librarian. This page must form part of

any such copies made.

iii The ownership of any patents, designs, trademarks and any and all other intellectual property

rights except for the Copyright (the “Intellectual Property Rights”) and any reproductions of

copyright works, for example graphs and tables (“Reproductions”), which may be described

in this thesis, may not be owned by the author and may be owned by third Such Intellectual

Property Rights and Reproductions cannot and must not be made available for use without

permission of the owner(s) of the relevant Intellectual Property Rights and/or Reproductions.

1

Abstract

This thesis considers qualitative spatio-temporal reasoning (QSTR), a branch of artificial intelli-

gence that is concerned with qualitative spatial and temporal relations between entities. Despite

QSTR being an active area of research for many years, there has been comparatively little work

looking at large scale qualitative spatio-temporal reasoning - reasoning using hundreds of thou-

sands or millions of relations. The big data phenomenon of recent years means there is now a

requirement for QSTR implementations that will scale effectively and reason using large scale

datasets. However, existing reasoners are limited in their scalability, what is needed are new

approaches to QSTR.

This thesis considers whether parallel distributed programming techniques can be used to

address the challenges of large scale QSTR. Specifically, this thesis presents the first in-depth in-

vestigation of adapting QSTR techniques to work in a distributed environment. This has resulted

in a large scale qualitative spatial reasoner, ParQR, which has been evaluated by comparing it

with existing reasoners and alternative approaches to large scale QSTR. ParQR has been shown

to outperform existing solutions, reasoning using far larger datasets than previously possible.

The thesis then considers a specific application of large scale QSTR, querying knowledge

graphs. This has two parts to it. First, integrating large scale complex spatial datasets to gen-

erate an enhanced knowledge graph that can support qualitative spatial reasoning, and secondly,

adapting parallel, distributed QSTR techniques to implement a query answering system for spa-

tial knowledge graphs. The query engine that has been developed is able to provide solutions

to a variety of spatial queries. It has been evaluated and shown to provide more comprehensive

query results in comparison to using quantitative only techniques.

2

Contents

1 Introduction 9

1.1 Qualitative spatio-temporal reasoning (QSTR) . 9

1.2 Large scale data processing . 10

1.3 Motivation . 11

1.4 The research question . 12

1.5 Overview of chapters . 13

1.6 Publications . 14

2 Preliminaries 15

2.1 Qualitative spatial and temporal constraint calculi 15

2.1.1 Allen’s Interval Algebra . 15

2.1.2 Point Algebra . 16

2.1.3 Region Connection Calculus . 16

2.1.4 Qualitative constraint networks (QCNs) . 17

2.1.5 Reasoning over qualitative constraint networks 19

2.1.6 Applications . 27

2.2 Large scale data processing . 28

2.2.1 The basic MapReduce model . 28

2.2.2 The Apache Spark framework . 30

2.2.3 Performance issues . 34

2.3 Knowledge graphs . 37

2.3.1 Resource Description Framework (RDF) . 38

2.3.2 Querying RDF data . 39

2.3.3 GeoSPARQL . 40

3 ParQR: A large scale qualitative spatio-temporal reasoner 42

3.1 Overview of QSTR using ParQR . 42

3.2 Limiting the size of joins . 44

3.3 ParQR algorithms . 47

3.3.1 Main program execution . 47

3.3.2 The inference stage . 49

3

Contents

3.3.3 The consistency stage . 50

3.3.4 Analysis . 50

3.4 Related work . 52

3.4.1 Traditional approaches to QSTR . 52

3.4.2 Reasoning with large scale qualitative constraint networks 53

3.5 Evaluation . 55

3.5.1 Synthetically generated QCNs . 55

3.5.2 Real world knowledge graphs . 56

3.5.3 Experiment setup . 56

3.5.4 Results for synthetically generated knowledge graphs 57

3.5.5 Comparison with other reasoners . 60

3.5.6 Conclusions . 63

4 Enhanced spatial knowledge graph generation 66

4.1 Introduction . 66

4.2 Requirements for an enhanced knowledge graph . 69

4.3 Source Datasets . 71

4.3.1 YAGO 4 . 71

4.3.2 GADM . 73

4.4 Creating the knowledge graph . 75

4.4.1 Spatial Indexing . 75

4.4.2 Computing EC relations between regions . 79

4.4.3 Computing containment relations between points and regions 81

4.4.4 Matching regions with points . 83

4.4.5 Generating the final knowledge graph . 85

4.5 Evaluation . 86

4.5.1 Datasets . 87

4.5.2 Runtime . 87

4.5.3 Scalability . 88

4.6 Related work . 91

4.7 Conclusions . 92

5 ParQR-QE: A large scale QSTR query engine 93

5.1 Introduction . 93

5.2 Instance based reasoning . 94

5.3 Quantitative reasoning for window queries . 100

5.4 Query execution . 103

5.4.1 Query execution for adjacency queries . 104

5.4.2 Query execution for spatial join queries . 105

5.4.3 Query execution for window queries . 106

4

Contents

5.5 Evaluation . 107

5.5.1 Quantitative query engine . 107

5.5.2 Containment queries . 110

5.5.3 Adjacency queries . 112

5.5.4 Join queries . 113

5.5.5 Window queries . 114

5.5.6 Scalability . 114

5.6 Related work . 115

5.7 Conclusions . 118

6 Conclusions 120

6.1 Summary . 120

6.2 The research question . 121

A Queries used in Experiments 123

A.1 Containment queries . 123

A.2 Adjacency Queries . 124

A.3 Join Queries . 126

A.4 Window Queries . 128

5

List of Figures

1.1 Temporal scenario using the Interval Algebra . 10

2.1 The basic relations of RCC8 . 17

2.2 Example qualitative constraint network . 18

2.3 Possible consistent instantiations of the QCN from Figure 2.2 19

2.4 Possible relations using weak composition . 21

2.5 Iteratively refining a QCN . 23

2.6 MapReduce example . 29

2.7 Distributed Join . 35

2.8 Broadcast Join . 37

2.9 Example Knowledge Graph . 39

3.1 Simple QCN . 42

3.2 Overview of reasoning using ParQR . 43

3.3 Duplicate inferences between iterations . 45

3.4 Duplicate inferences within an iteration . 47

3.5 Experiment 1: Runtime as a function of input size on HIA IA network instances

H(n,2,1) . 57

3.6 Experiment 1: Data volume output as a function of input size on HIA IA network

instances H(n,2,1) . 57

3.7 Experiment 2: Runtime as a function of input size on HIA IA network instances

H(n,10,1) . 58

3.8 Experiment 2: Data volume output as a function of input size on HIA IA network

instances H(n,10,1) . 58

3.9 Experiment 3: Runtime as a function of input size on HIA IA network instances

H(n,2,6.4) . 59

3.10 Experiment 3: Output as a function of input size on HIA IA network instances

H(n,2,6.4) . 59

3.11 Experiment 4: Runtime as a function of input size on HIA IA network instances

H(n,10,6.4) . 59

6

List of Figures

3.12 Experiment 4: Output as a function of input size on HIA IA network instances

H(n,10,6.4) . 59

3.13 Experiment 5: Runtime as a function of number of machines in the computing cluster 60

3.14 Experiment 5: Scaled speed-up . 60

3.15 Runtime as a function of input size on scaled NUTS instances 63

3.16 Runtime as a function of input size on scaled GADM2 instances 63

3.17 Runtime as a function of input size on scaled ADM2 instances 64

4.1 Map showing the location of point geometries from Table 4.1 67

4.2 Example enhanced knowledge graph . 70

4.3 Updated map showing the regions as polygons . 71

4.4 Cell coverings at S2 level 7 for Belgium . 76

4.5 Scalability for computing S2 cell coverings and polygon-cell intersections 89

4.6 Scalability of generating S2 cell coverings with no. of machines 89

4.7 Scalability of generating polygon-cell intersections with no. of machines 89

4.8 Scalability of computing point in region with input size 90

4.9 Scalability of computing point in region relations with no. of machines 90

5.1 Simple RCC8 Network . 95

5.2 Instance based reasoning using ParQR-QE . 96

5.3 Spatial indexes for quantitative query answering . 101

5.4 Query execution for Query A4 . 104

5.5 Query execution for Query J2 . 105

5.6 Query execution for Query W1 . 106

5.7 Query execution for Query A4 using quantitative reasoning 109

5.8 Scalability of query response time for Query J4 . 115

7

List of Tables

2.1 The basic relations of IA . 16

2.2 Part of the composition table for Interval Algebra 20

2.3 Part of the composition table for RCC8 . 20

3.1 Synthetically generated interval algebra networks used in experiments 1-5 55

3.2 Real world knowledge graphs used in experiment 6 56

3.3 Largest datasets reasoners could decide ⋄-consistency for 61

3.4 Runtime for computing ⋄-consistency for real world knowledge graphs (Experi-

ment 6) . 61

4.1 Subset of the YAGO knowledge graph . 67

4.2 Vertically partitioned hasOccupation table . 72

4.3 GADM polygon table . 74

4.4 Cell ids for YAGO points . 77

4.5 Input datasets . 87

4.6 Runtime for spatial index generation . 87

4.7 Runtime for computing RCC8 relations . 88

5.1 Experimental results for containment queries . 111

5.2 Experimental results for adjacency queries . 112

5.3 Experimental results for join queries . 113

5.4 Experimental results for window queries . 114

8

Chapter 1

Introduction

The basis for this thesis lies in two different areas: qualitative spatio-temporal reasoning (QSTR)

and large scale data processing. In this introductory chapter, both topics are described briefly

before the motivation for the research is discussed and the fundamental research question of this

thesis is presented.

1.1 Qualitative spatio-temporal reasoning (QSTR)

QSTR is a branch of artificial intelligence that is concerned with non-numeric representations of

space and time. Rather than working with time as seconds, minutes hours etc. QSTR is concerned

with temporal relations between events. For example, consider the following scenario:

Bob ate his breakfast while Alice walked the dog. As soon as he finished his breakfast, Bob

drove to work.

This scenario describes a number events e.g. Alice walked the dog, and relations between these

events e.g. Bob ate his breakfast while Alice walked the dog.

Similarly, in the spatial domain, QSTR doesn’t rely on pixels, or geometric representations

such as points or polygons, instead information is represented as relations between spatial enti-

ties. For example, Huddersfield is in West Yorkshire, England contains West Yorkshire or West Yorkshire

borders Derbyshire.

Given a collection of qualitative temporal or spatial facts it is possible derive additional in-

formation about a scenario, which takes the form of common sense reasoning. Using the spatial

scenario described above we can infer that because West Yorkshire is in England, and Hudder-

sfield is in West Yorkshire, Huddersfield is also in England. QSTR can be a little more nuanced

than simple transitive relations. For example, if we consider the temporal example from above,

we can reason about the relationship between Alice walking the dog and Bob driving to work.

Figure 1.1 visually shows the possible relations between these intervals of time. Note that the

length of the time intervals is arbitrary, it is only how they are ordered that is significant. Figure

1.1 shows that Alice walking the dog might have overlapped the time interval of Bob driving to

9

Chapter 1. Introduction

work, it might have been finished by Bob driving to work (that is they finished at the same time) or

Alice walking the dog might have temporally contained Bob driving to work. These are the only

possible ways these time intervals can be arranged without contradicting the original statements.

Bob driving to work

Bob eating breakfast

Alice walking the dog

Alice walking the dog

Alice walking the dog

overlaps

finished by

contains

Figure 1.1: Temporal scenario using the Interval Algebra

Qualitative constraint calculi such as Allen’s Interval Algebra (IA) and Region Connection

Calculus (RCC) provide a formalism for representing these temporal or spatial relations. Specif-

ically they define which relations are possible in a calculus and rules for reasoning using these

relations. Chapter 2 describes qualitative constraint calculi in more detail. For example, it pro-

vides a complete list of the 13 relations of the Interval Algebra (Table 2.1) and the composition

table (Table 2.2) which encapsulates the basic rules for reasoning.

QSTR has been active area of research for many years. The properties of qualitative constraint

calculi have been explored in detail, and QSTR has been applied to solve a variety of problems,

typically in areas related to planning and scheduling and data analysis.

1.2 Large scale data processing

Since the turn of the century there has been an explosion in the size and complexity of datasets

that computing professionals are asked to work with. The origins of these datasets are numerous

and varied; for example IoT devices generate vast quantities of data from their sensors, businesses

systemically record detailed data concerning their customers’ transactions and behaviours, own-

ers of websites log the visits and interactions of their users, social media companies store the

details of every post and comment on their platforms.

The scale of these datasets is often so large they can’t be processed with traditional database

solutions using a single machine. Instead, distributed programming frameworks such as Hadoop
1 or Apache Spark 2 are used to manage the problem of large scale data processing. Distributed

programming frameworks split large datasets into separate parts which can be distributed to

different machines in a computing cluster and processed in parallel. This allows them to deal

with enormous datasets, and process them in timely manner.

1https://hadoop.apache.org/
2https://spark.apache.org/docs/latest/index.html

10

Chapter 1. Introduction

1.3 Motivation

Many large scale datasets have a significant spatial and/or temporal element to them. For ex-

ample, satellites and drones are used by cartographers to generate huge amounts of mapping

data, data generated by sensors from IoT devices is time stamped, and photographs, videos, and

social media posts are geotagged. Processing spatial and temporal data at scale raises specific

challenges including missing and/or imprecise records, integrating heterogeneous information,

and dealing with complex spatial/temporal representations. In many ways QSTR is well suited

to addressing many of these issues. In order to make the case for processing large scale datasets

using QSTR these challenges are explored in more detail below.

Incomplete/inaccurate records Many large scale datasets feature incomplete or inaccurate in-

formation. This is partially an issue of scale, the more data, the more chance there is for it to

feature errors, but is is also related to how the data is generated and the circumstances they are

generated in. For example, IoT devices may suffer from network connectivity issues, sensor errors

or power outages that result in missing data [22]. Geospatial data collections maybe incomplete

due to cloud cover affecting satellite images or legal restrictions affecting drone access [14]. In

natural disaster scenarios such as attempting to monitor flooding or wildfires, a rapidly changing

situation often means that accurate complete spatial information simply isn’t available [30].

A related problem is imprecise data. For example, the ubiquitous nature of smart phones

and IoT devices has made it possible to temporally and spatially locate an individual with high

precision. However, in order to protect an individual’s privacy, but still allow them to benefit from

location based searches, it is often necessary to obfuscate their precise location [18]. Consequently,

for privacy reasons, the resulting spatial and temporal records lack precision.

QSTR is especially well suited to working with imprecise and incomplete data. Systems that

employ quantitative reasoning i.e. performing calculations to determine temporal and spatial

facts, require complete, high precision data e.g. it is difficult to compute if Huddersfield is in

England unless we have accurate complete geometric representations of both Huddersfield and

England. Conversely, qualitative constraint calculi implicitly support unknown or imprecise in-

formation. In the scenario presented at the start of this chapter no information was provided on

the relationship between Alice walking the dog and Bob driving to work. However, we could rea-

son using the available, incomplete knowledge to identify possible scenarios and rule out others.

Heterogeneous datasets Data concerning space and time is sometimes only available in qualita-

tive form. This is especially the case if the data originates in natural language form. For example,

if asked for the location of Huddersfield, a person is likely provide a qualitative description,

’Huddersfield is east of Manchester’ or ’Huddersfield is in West Yorkshire’. Furthermore, in the

spatial domain, many vernacular or colloquial places can’t be represented as a geometry [67]. For

example, Northern England doesn’t have precise borders, its location is understood relative to

other places e.g. it touches Scotland.

11

Chapter 1. Introduction

Large scale datasets often feature spatial and/or temporal information in qualitative form e.g.

natural language descriptions from social media posts, or linked open data knowledge graphs

which feature both quantitative information (object geometries, dates and times) and qualitative

spatial information (relationships between entities). These heterogeneous datasets comprising

both qualitative and quantitative knowledge cause difficulties for systems reliant on quantitative

reasoning, they can only deal with metric information. However quantitative representations can

be converted to qualitative relations and combined with qualitative facts to generate complete

scenarios which can then be reasoned over using QSTR techniques.

Scale and complexity of datasets Despite the use of distributed programming techniques, the

scale and complexity of datasets can still pose challenges for processing. Time-stamps from sen-

sors are recorded at high precision with IoT applications often integrating data from many differ-

ent sources, resulting in billions of records. High resolution geometric representations can be very

large. For example, as we shall see in Chapter 4, regions represented as multi-polygons can be

made up of thousands of separate polygons, and millions of coordinates. Even using distributed

approaches, processing data of this scale and complexity creates challenges. In comparison, the

qualitative representation of spatial data is often lighter weight, making it suited to large scale

processing.

1.4 The research question

These arguments suggest that QSTR techniques can have some utility in reasoning over large

scale spatial and temporal datasets. However, traditional approaches to QSTR are limited in their

ability to scale. Existing state of the art reasoners are only able to reason over datasets featuring

hundreds or at most thousands of relations [60]. What is needed are alternative approaches to

QSTR that are able to deal with large scale datasets.

An obvious place to look for such an approach is distributed computing. However, despite

widespread success in processing large scale datasets, there has been very little published work

on the use of distributed approaches to implement QSTR. One possible reason is that distributed

computing presents significant challenges. QSTR algorithms need to be fundamentally re-written

to work in a distributed environment, and the implementation has to be designed in a way that

allows for effective parallelisation so that processing can scale effectively. The above discussion

brings us to the central research question for the thesis:

Can parallel distributed computing techniques address the challenges of large scale

qualitative spatio-temporal reasoning

The answer to this question forms the basis of the main contributions which are:

• The development of a novel, parallel distributed QSTR system that is able to reason over

large scale datasets and scale effectively

12

Chapter 1. Introduction

• The formulation of parallel scaleable techniques for generating qualitative relations from

large scale complex geometric spatial representations.

• The development of QSTR techniques to provide query answering for large scale heteroge-

neous spatial knowledge graphs.

1.5 Overview of chapters

• Chapter 2 - Preliminaries simply presents the background knowledge needed to under-

stand the main parts of the thesis. This includes a detailed description of qualitative con-

straint calculi and the fundamental reasoning approach used in QSTR. This is followed by

an explanation of parallel, distributed computing frameworks and the key performance

challenges faced when processing large scale datasets in a distributed environment. Finally,

this chapter ends with a discussion of knowledge graphs.

• Chapter 3 - ParQR: A large scale qualitative spatio-temporal reasoner presents ParQR

(Parallel Qualitative Reasoner), a novel approach to QSTR that works in a distributed, par-

allel context. This chapter describes in detail the algorithms used to implement QSTR in

a distributed environment. Alternative approaches to the problem of large scale QSTR are

considered, and finally ParQR is evaluated using a wide range of datasets, and through a

comparison to existing state of the art reasoners.

Chapters 4 and 5 consider a specific application of distributed QSTR techniques - to query large

scale knowledge graphs that feature heterogeneous spatial information.

• Chapter 4 - Enhanced spatial knowledge graph generation provides the motivation for

the development of querying methods for large scale spatial knowledge graphs. It also

presents innovative algorithms for generating qualitative spatial relations from quantitative

geometric representations. These algorithms are needed to generate a knowledge graph that

integrates both quantitative and qualitative spatial information.

• Chapter 5 - ParQR-QE: A large scale QSTR query engine presents a distributed spatial

query engine, ParQR-QE (ParQR-Query Engine) that implements QSTR methods to provide

solutions to a range of query types. The reasoning approach, which differs in some ways

from that presented in Chapter 3, is described in detail along with query execution plans for

a range of queries. The system is evaluated using a range of different queries and compared

to a quantitative only approach.

• Chapter 6 - Conclusions summarises the work from the previous chapters, and reflects on

the potential and limitations of parallel distributed programming techniques in the area of

large scale qualitative spatio-temporal reasoning

13

Chapter 1. Introduction

1.6 Publications

The work on ParQR presented in Chapter 3 is largely adapted from the following publications:

• Mantle, M., Batsakis, S., & Antoniou, G. (2016, October). Large scale reasoning using allen’s

interval algebra. In Mexican International Conference on Artificial Intelligence (pp. 29-41).

Springer, Cham. [38]

• Mantle, M., Batsakis, S., & Antoniou, G. (2019). Large scale distributed spatio-temporal

reasoning using real-world knowledge graphs. Knowledge-Based Systems, 163, 214-226.

[37]

For both publications the contributions are as follows: M. Mantle designed and implemented the

algorithms, carried out the experiments, and wrote the manuscripts. S. Batsakis and G. Antoniou

guided the work and gave feedback.

14

Chapter 2

Preliminaries

2.1 Qualitative spatial and temporal constraint calculi

Qualitative spatial and temporal constraint calculi provide a restricted language for describing

non-metric information about objects in space and time. The restricted language results in a for-

malism that can then be used to reason about temporal and spatial information. There are nu-

merous examples of qualitative constraint calculi, the most widely discussed are Allen’s Interval

Algebra[4], Point Algebra[66] and Region Connection Calculus[49].

2.1.1 Allen’s Interval Algebra

Interval Algebra defines 13 possible ways time intervals such as this can be related. These can be

seen in Table 2.1, and are referred to as basic or atomic relations.

Relations in AI are described as being jointly exhaustive and pairwise disjoint (JEPD). That is a

pair of time intervals must be related by one of the relations in Table 2.1, and a pair of intervals can

be related by only one of the relations. For example, it isn’t possible for interval x to be both before

and after interval y. Relations in a constraint calculi such as IA each have an inverse. For example,

the inverse of before is after, with the equals relation being symmetrical i.e. the inverse of equals is

equals. In a given temporal scenario, the exact relation between intervals may be unknown. In

such cases a set can be used to specify possible relations. For example, if x = Bob brushed his teeth

and y = Alice read her book we could state x{b, m, d}y, interval x takes place before interval y, meets

interval y, or occurs during interval y. This is known as a disjunction of relations or a disjunctive

relation. If no information is known regarding the relation between a pair of intervals, the relation

could be any one of the thirteen basic relations, {b,bi,m,mi,o,oi,s,si,d,di,f,fi,eq}. This is known as the

universal relation and denoted by the symbol B. Clearly many different relations can be described

through different combinations of the 13 basic relations, in total there are 2|B|, 213 (8192), possible

relations in the IA calculus. The empty relation ∅ describes a relation that doesn’t feature of the

basic relations. This has no actual meaning when considering the relation between two intervals

but is needed when performing some operations and indicates a consistency issue in a temporal

15

Chapter 2. Preliminaries

Relation Symbol Inverse Visual Representation

x before y b bi xxxx yyyy

x meets y m mi xxxxyyyy

x overlaps y o oi xxxx

yyyy

x starts y s si xxxx

yyyyyyyy

x during y d di xxxx

yyyyyyyy

x finishes y f fi xxxx

yyyyyyyy

x equals y eq eq xxxx

yyyy

Table 2.1: The basic relations of IA

scenario. Because the relations are described using sets of atomic relations we can use the usual

set theoretic operations, union ∪ and intersection ∩.

Other qualitative constraint calculi follow the same principles. Two of these are described in

below.

2.1.2 Point Algebra

Point Algebra (PA) [66]considers temporal objects as points on a line and is concerned with the

three possible relations between time points: precedes (<), equals (=) and after (>)

Point Algebra is a simpler calculi than AI. There are only three basic relations and the total

number of relations, 2|B|, is eight ({<}, {>}, {=}, {<,=,>}, {<,>}, {<,=}, {=,>}, {∅}). The

relative simplicity offered by PA results in a number of advantages as we shall see when we con-

sider reasoning problems for qualitative constraint calculi. However, many temporal scenarios,

such as the scenario presented in figure 1.1, lend themselves to an interval based, rather than

point based representation.

2.1.3 Region Connection Calculus

Whereas as the previous two constraint calculi are concerned with time, Region Connection Cal-

culus (RCC) [49] is concerned with topological relations between regions in space. For example,

region x is connected to region y.

There are several variants of RCC. The most widely studied is RCC8. The relations for RCC8

16

Chapter 2. Preliminaries

are shown in Figure 2.1.

X Y X Y

X Y X Y

X

Y

X

Y

Y

X

Y

X

X DC Y
Disconnected (DC)

X EC Y
Externally Connected (EC)

X PO Y
Partially Overlapping (PO)

X EQ Y
Equal (EQ)

X NTPP Y
Non-Tangential Proper Part (NTPP)

X TPP Y
Tangential Proper Part (TPP)

X NTPPi Y
Non-Tangential Proper Part inverse (NTPPi)

X TPPi Y
Tangential Proper Part inverse (TPPi)

Figure 2.1: The basic relations of RCC8

There are other simpler variants, for example RCC5 where the vocabulary is reduced to 5 re-

lations [15]. Connectedness is ignored, therefore relations such as NTTP and TTP can be reduced

to a single Proper Part (PP) relation. Relations in the region connection calculus, like those in

Interval Algebra relations have inverses e.g. TPPi is the inverse of TPP. The eight basic relations

of RCC8 mean the full calculus features 28, 256 relations.

There are other qualitative spatial calculi for example, Cardinal Directions Calculus (CDC) [23]

which describes relative positions between spatial entities e.g. equal, north, southeast etc. and

the Block Algebra [6] which is a spatial adaptation of Allen’s Interval Algebra where the relative

position of rectangles whose sides are parallel to the axes of a 2-d Euclidean space can be described

using IA relations. These calculi differ from RCC as they are concerned with orientation rather

than topology. However they follow the same principles as the calculi described above i.e. they

define qualitative relations that can be reasoned over. This thesis focusses on RCC, as does much

of the published work on spatial constraint calculi. Reasoning with orientation has challenges e.g.

how do we describe the relation between objects where their convex hulls overlap. As a result,

orientation calculi lack the easy mapping between natural language expressions and relations that

RCC provides [53].

2.1.4 Qualitative constraint networks (QCNs)

A collection of spatial or temporal entities (time intervals, regions etc,) and the relations between

pairs of entities form a Qualitative Constraint Network, a QCN. For example, consider the fol-

17

Chapter 2. Preliminaries

lowing scenario:

The Yorkshire region has a coastline on the North Sea. The inland city of Leeds is located in Yorkshire.

The town of Scarborough is located in Yorkshire. Quebecs hotel is located in Leeds. Quebecs hotel is located

in Yorkshire. The Grand Hotel is located in Scarborough.

This scenario describes a number of spatial entities and relations between these entities. The

natural language descriptions of the relations can be mapped to RCC8 relations. For example,

Yorkshire {EC} The North Sea . The more ambiguous spatial adjectives e.g. ’located in’ can be

mapped to disjunctive relations e.g. Scarborough {TPP,NTPP} Yorkshire. A complete list of relations

drawn from the above scenario is shown below.

Yorkshire {EC} The North Sea

Leeds {NTPP} Yorkshire

Scarborough {TPP, NTPP} Yorkshire

Quebecs Hotel {TPP,NTPP} Leeds

Quebecs Hotel {TPP,NTPP} Yorkshire

The Grand Hotel {TPP,NTPP} Scarborough

These relations form a QCN, a directed graph where each node represents a variable from

the domain, in this case a region in topological space, and directed edges represent the relation

between a pair of regions.

z = Yorkshire

y = The North Sea

x = Leeds

w = Scarborough

v = Quebecs Hotel

u = The Grand Hotel

z

y

x

w

v

u
{EC}

{NTPP}

{TPP,NTPP}

{TPP,NTPP}

{TPP,NTPP}

{TPP,NTPP}

Figure 2.2: Example qualitative constraint network

18

Chapter 2. Preliminaries

For simplicity, where a relation is B i.e. unknown this isn’t shown on the network, neither are

self relations e.g. (x, x), nor inverse relations.

More formally a QCN can be defined as a directed graph (V, C) where V is a non-empty finite

set of variables (time points, intervals, regions etc.). C is a mapping that links each pair of vertices

(vi, vj) ∈ V with a relation r, where r ⊆ B. For example, considering Figure 2.2 C(z, y) = {EC}.

Furthermore, for all vi ∈ V, C(vi, vi) = {Id}, the identity relation i.e the equals relation, and for

each vi, vj ∈ V, C(vi, vj) = C(vj, vi)
−1.

2.1.5 Reasoning over qualitative constraint networks

There are a number of reasoning problems associated with QCNs. The most widely studied and

important reasoning task is determining whether or not the network is consistent. Is it possible to

assign values to the variables without violating any of the relations. In the case of RCC8, can we

arrange the regions in such a way that we adhere to all the relations. If we consider the network

in Figure 2.2, this is indeed consistent. Figure 2.3 shows some of the possible ways to arrange the

regions so that all the relations are obeyed.

x

w

v

u

y

z w

v

u

x

w

v

u
y

z

Figure 2.3: Possible consistent instantiations of the QCN from Figure 2.2

Accurately representing the exact shape, position or size of the regions isn’t important, we

are only interested in the topological relationships between the different regions. Note that if the

relationship between Quebecs Hotel and Yorkshire was {EC}, the network would be inconsistent. It

wouldn’t be possible to arrange the regions so that Quebecs Hotel was {NTPP,TPP} with respect to

Leeds and {EC} with respect to Yorkshire.

Composition

The above example is trivial, and serves simply to explain the notion of consistency. Clearly in

more complex networks it wouldn’t be possible to visually re-arrange regions/intervals and man-

ually check we have obeyed the relations. Instead we need to consider more robust approaches to

reasoning. The key reasoning procedure for QCNs was first introduced by Allen[4] and is based

on the idea of composition. If we have relations C(vi, vj) and C(vj, vk), what are the possible re-

lations that could exist between vi and vk. In what way do the relations C(vi, vj) and C(vj, vk)

19

Chapter 2. Preliminaries

constrain the relation between vi and vk. These compositions are fairly common-sense. For exam-

ple, if we consider the simple RCC8 network shown in Figure 2.2. the relations C(x, z) and C(z, y)

imply a relation between x and y. In fact C(x, y) must be {DC}. There are no other ways in which

we can arrange the regions x and y while still obeying relations C(x, z) and C(z, y). Generally for

qualitative spatial and temporal calculi we describe this as weak composition, and use the ⋄ symbol

to denote this. For example, C(x, y) ⋄ C(y, z) → C(x, z) or as a concrete example from Figure 2.2:

x{NTPP}z ⋄ z{EC}y→ x{DC}y.

The results of the composition between the basic relations can be described using a composi-

tion table, simply a |B| · |B|matrix showing all possible compositions between the basic relations

in a qualitative constraint calculi. Part of the composition tables for IA and RCC8 are shown in

Table 2.2 and Table 2.3. Full composition tables for the calculi described above can be found in [4]

(IA) and [52] (RCC8).

⋄ b m o d

b {b} {b} {b} {b,m,o,s,d}

m {b} {b} {b} {o,s,d}

o {b} {b} {b,m,o} {o,s,d}

d {b} {b} {b,m,o,s,d} {d}

Table 2.2: Part of the composition table for Interval Algebra

⋄ EC TPP NTPP

EC {DC,EC,PO,TPP,TPPi,EQ} {EC,PO,TPP,NTPP} {PO,TPP,NTPP}

TPP {DC,EC} {TPP,NTPP} {NTPP}

NTPP {DC} {NTPP} {NTPP}

Table 2.3: Part of the composition table for RCC8

As noted above, the relation between entities might be a disjunction of basic relations. In

which case the composition is simply the union of the composition of all pairs of basic relations.

C(vi, vj) ⋄ C(vj, vk) =
⋃

a∈C(vi ,vj),b∈C(vj ,vk)

a ⋄ b

Again, referring to the example in Figure 2.2 The composition of the relations between (v, z)

and (z, y) can be used to infer the relation between v and y. v{TPP, NTPP}z is a disjunctive

relation so the composition will be the composition of TPP with EC in union with the composition

of NTPP with EC.

v{TPP, NTPP}z ⋄ z{EC}y→ v{DC, EC}y

20

Chapter 2. Preliminaries

Weak composition vs true composition

In the general case the composition operation for qualitative constraint calculi is an approxima-

tion and as such is described as being weak composition. An example taken from [32] and com-

monly used to illustrate this idea uses RCC8 and is described below. Consider three regions x,

y and z, with x{EC}y and y{EC}z. Using composition and Table 2.3 we can infer the relation

between x and z is the disjunctive relation {DC, EC, PO, TPP, TPPi, EQ}.

x{EC}y ⋄ y{EC}z→ x{EC, DC, PO, TPP, TPPi, EQ}z

However, if region y has a hole and region x fills this hole (this is still an EC relation) only some

of these relations are possible, see Figure 2.4. It isn’t possible for the relation between x and z to

be EC, PO or TPPi. When the composition is weak, the composition operation only presents us

with the strongest implied relation. Of course this is a consequence of region y having a hole and

region x filling this hole. When considering simpler regions without holes all the relations implied

in Table 2.3 are possible. However, RCC8 imposes no such restrictions on the characteristics of

regions, regions with holes and multi-part regions can all be legitimately represented leading to

an infinite number of possible relations between entities [50].

x z
y

x
z

y

x
z

y

x{DC}z

x{TPPi}z

x{EQ}z

Figure 2.4: Possible relations using weak composition

In simpler more structured domains e.g. time intervals as in the Interval Algebra the compo-

sition is in fact true composition (indicated by the ◦ symbol) [50]. All relations inferred through

composition are achievable i.e. it isn’t possible to present time intervals e.g. by changing their

duration or position in time in such a way that the initial relations hold and some of implied

relations can’t be realised.

Algebraic closure

The composition of relations refines the network by narrowing down the possible relations that

can exist between variables. Referring to Figure 2.2 there is a relation between v and z, v{TPP, NTPP}z.

21

Chapter 2. Preliminaries

However, the composition of v{TPP, NTPP}x and x{NTPP}z also implies a relation between v

and z, v{TPP, NTPP}x ⋄ x{NTPP}z → v{NTPP}z (see Table 2.3). By taking the intersection

of the existing relation with the newly derived relation we can prune this relation to {NTPP},

{TPP, NTPP} ∩ {NTPP} = {NTPP}.

Furthermore the composition of relations adds information into a network that can be used to

derive further relations. Again if we consider Figure 2.2, as described above we can use the weak

composition operation to infer a relation between u and z, u{TPP, NTPP}w ⋄w{TPP, NTPP}z→

u{TPP, NTPP}z. This new information can form the basis for further reasoning. This new rela-

tion can be composed with z{EC}Y to infer the relation between u and y, u{TPP, NTPP}z ⋄

z{EC}y → u{DC, EC}y. We can continue in this way, iteratively inferring new relations until a

fixed point is reached and no more relations can be derived.

These two operations, iteratively using weak composition to derive relations between differ-

ent variables, and using intersection to update the relation between variables forms the basis

for reasoning over qualitative constraint networks. More formally, iterating using the following

operations until a fixed point is reached results in the weak composition closure of the network.

∀vi, vj, vk ∈ V, C(vi, vj) ∩ (C(vi, vk) ⋄ C(vk, vj))→ C(vi, vj)

We say that the network is ⋄-consistent, algebraically closed or a-closed. In the event that the

intersection of relations derived using different paths is empty(∅) this indicates that the network

is inconsistent. If we reach a fixed point and no more relations can be derived we can conclude

that the network is consistent. Figure 2.5 shows this visually for the QCN from Figure 2.2.

22

Chapter 2. Preliminaries

z

y

x

w

v

u
{EC}

{NTPP}

{TPP,NTPP}

{TPP,NTPP}

{TPP,NTPP}

{TPP,NTPP}

z

y

x

w

v

u
{EC}

{NTPP}

{TPP,NTPP}

{TPP,NTPP}

{NTPP}

{TPP,NTPP}

{TPP,NTPP}
{DC,EC}

{DC}

{DC}

z

y

x

w

v

u
{EC}

{NTPP}

{TPP,NTPP}

{TPP,NTPP}

{NTPP}

{TPP,NTPP}

{TPP,NTPP}
{DC,EC}

{DC}

{DC}

{DC,EC}

Iteration 1

Iteration 2

Initial network

Figure 2.5: Iteratively refining a QCN

For some constraint calculi algebraic closure is equivalent to path consistency, the well known

form of local consistency that is used to prune the search space in constraint satisfaction problems.

The distinction between ⋄-consistency and path consistency is determined by whether or not the

composition operation for the calculi is true composition or weak composition. As mentioned

previously, if dealing with Interval Algebra the composition is true composition therefore the

above formula can be accurately described as path consistency.

Algebraic closure algorithms

Algorithms for deciding consistency in qualitative constraint calculi have their roots in the more

general area of constraint satisfaction problems (CSPs). Montanari [39] first introduced the idea of

local consistency, checking the consistency of three node triangles in a network as an approxima-

23

Chapter 2. Preliminaries

tion of global consistency for CSPs. Mackworth [35] later labelled this path consistency. Checking

consistency for QCNs, as described above is simply an adaptation of these techniques to the area

of qualitative spatial and temporal networks. However, there is a key difference from the general

approaches to determining path consistency in CSPs. Typically CSPs deal with finite domains

and the search space is pruned by restricting the possible values variables can hold.

In the case of qualitative constraint calculi we are dealing with infinite domains. For Interval

Algebra there are an infinite number of intervals in time. In the case of RCC8 there are an infinite

number of possible regions in 2d or 3d space. We are only interested in the relations between en-

tities. Therefore as described above the search space is pruned by filtering the relations between

variables, not the values of the variables themselves. Allen [4] first presented a constraint prop-

agation algorithm for Interval Algebra. Vilian et al then described the computational properties

of this algorithm [66]. The basic algorithm is applicable to all qualitative constraint calculi and is

shown below.
Algorithm 1: Weak consistency algorithm

1: Input: N = (V, C), N is a QCN
2: Output: ⋄-consistent N

3: Q← {(vi , vj) | vi , vj ∈ V with 0 ≤ i ≤ j ≤ |V|};
4: while (Q is not empty) {
5: (vi , vj)← Q.pop();
6: for (k← 1 to n, k ̸= i and k ̸= j) {
7: t← C(vi , vk) ∩ (C(vi , vj) ⋄ C(vj, vk));
8: if (t = ∅) {
9: inconsistency detected, end program;

10: }
11: if(t ̸= C(vi , vk)){
12: C(vi , vk)← t;
13: C(vk , vi)← t−1;
14: Q← Q.push((vi , vk));
15: }
16: t← C(vk , vj) ∩ (C(vk , vi) ⋄ C(vi , vj));
17: if (t = ∅) {
18: inconsistency detected, end program;
19: }
20: if(t ̸= C(vk , vj)) {
21: C(vk , vj)← t;
22: C(vj, vk)← t−1;
23: Q← Q.push((vj, vk));
24: }
25: }
26: }

The input to the algorithm is a QCN where V is simply an array of variables i.e. V =

{v1, v2, ...vn}, and C is mapping between a pair of variables in V and one of the 2B relations.

Consequently C is implemented as a two-dimensional array that stores all relations between all

variables in the QCN. The space requirement for such an array is O(n2), where n = |V|. At the

start of the procedure Q is initialised to hold the constraints, the pairs of variables. This is typi-

cally implemented as a queue structure. In the worst case, where there is a constraint between all

pairs of variables in a network, Q has a size of O(n2). With each iteration of the main while loop of

24

Chapter 2. Preliminaries

the algorithm, a pair of variables, (a constraint) is removed from this queue. By iterating over all

vk ∈ V, an inner for loop performs weak composition for all three variable subsets of the network

that feature both variables from this pair.

Lines 7 and 16 perform these operations. As discussed previously there are two parts to this,

inferring the possible relation between variables using composition (⋄), and checking consistency

by taking the intersection of this newly inferred relation and the existing relation. The result-

ing relation is stored in a temporary variable. A number of checks then need to be done. If this

relation is empty (∅), this indicates an inconsistency in the network (lines 8-10 and 17-19), the

algorithm has done its job and execution can be halted. If the newly inferred relation isn’t empty,

a check needs to be done to see if it is stronger than the existing relation (lines 11 and 20). A

stronger relation is one that features fewer base relations than the existing relation e.g. if con-

sidering Interval Algebra, {p, m, o} is stronger than {p, m, o, d, f i}. If this newly inferred relation

is stronger, the QCN needs to be updated with the new relation and the inverse of this relation.

Also, because this new relation could form the basis for further inferences, the variable pair for

this newly inferred relation is added to the queue. The outer while loop runs until there no more

pairs of intervals on the queue i.e. no further inferences can be made.

This algorithm runs in O(n3) time. This is a consequence of the outer while loop that runs

in O(n2) and the inner f or loop that runs in O(n) time. It is worth considering how these time

requirements have been arrived at. The run time of the outer while loop is determined by the

size of the queue. It is clear that at any point in time there can be at most O(n2) pairs of intervals

(vi, vj) on the queue (this is the case if there is a constraint between all variables). However, it

should also be clear from Algorithm 1 that pairs of variables can be added to the queue multiple

times. Although a pair of variables can be added to the queue multiple times, the number of

times a relation can be updated has an constant upper bound. This is dictated by the number

base relations in the qualitative constraint algebra, |B|. Every time the relation between a pair

of variables is updated, at least one base relation is removed from the set of relations between a

pair of intervals. For example, for the Interval Algebra calculus |B| = 13, therefore the maximum

number of times a relation can be refined is 13. Seeing as for any qualitative constraint this is

always a constant number, the time complexity for this outer loop is O(n2).

The inner f or loop takes a pair of relations from the queue and compares it to other relations in

the network, (vi, vj), is compared to (vj, vk) and (vk, vi) for all vk ∈ V. The size of V is n, therefore

this loops runs in O(n). Combining the time requirements of the two loops gives an overall time

complexity of O(n3).

Tractability

An important thing to note about computing algebraic closure for qualitative constraint calculi is

that in the general case it is an approximation. The algorithm is sound, it never makes an incorrect

inference, all the relations removed from the network cannot form part of a solution. However,

it isn’t complete. That is the algorithm doesn’t guarantee to identify all inconsistencies. Allen

25

Chapter 2. Preliminaries

was fully aware of the limitations of his consistency algorithm. In his original paper he provided

an example of a QCN that is path consistent, but contained inconsistencies, and for which no

solution exists. This idea of the algebraic closure algorithm only providing an approximation is

true for many other qualitative constraint calculi e.g. RCC8 [19].

The limitations of the algorithm are a consequence of only ever considering three node sub

graphs of the network. In order to develop a better approximation it is possible to consider larger

subgraphs. For example, van Beek [9] describes a four-consistency algorithm that considers the

relations between sets of four vertices from an Interval Algebra network. Such an algorithm runs

in O(n4) time. In fact it is is possible to get a progressively better approximation by consider-

ing larger and larger sub graphs, and more time expensive algorithms. However, for anything

other than the smallest networks, this approach quickly becomes unfeasible. In fact, in order to

guarantee that all inconsistencies are found in an Interval Algebra network, an exponential time

algorithm is required that considers all vertices in a QCN. Vilian et al. [66] provided proof that

determining consistency of Interval Algebra networks is indeed NP-complete. The same is true

of many other commonly used qualitative constraint calculi including RCC8 [52] and CDC [33].

The implications of this intractability are not as significant as they might first appear. For

less expressive algebra such a Point Algebra, computing algebraic closure is sufficient to deter-

mine satisfiability for a QCN [66]. Furthermore, for both Interval Algebra and RCC8, there ex-

ist tractable subsets of the 2|B| relations for which the ⋄-consistency algorithm is able to decide

whether or not the network is consistent.

A tractable subset is a fragment of the full calculus that is closed under composition, inverse

and intersection. The result of applying any of these operations to a relation in the subset always

results in another relation of the same subset. Consequently, as long as the initial relations found

in a network all belong to the same tractable set, the ⋄-consistency algorithm is sufficient to deter-

mine consistency. In order for a tractable subset to be of practical use, it needs to contain all the

base relations, as these represent definite knowledge, and the universal relation as this describes

relations where we know nothing. Depending on the calculus other relations are often needed e.g.

{TPP, NTPP} for RCC8, as this represents a more general contains relation. There are tractable

subsets for both Interval Algebra and RCC8 that meet these requirements. For example, Ĥ8 is a

maximal tractable subset of RCC8 containing 148 of the full 256 RCC8 relations [52]. A maximal

subset is the largest possible subset that is tractable, adding any further relations to the set would

make it intractable. Similarly, there are maximal subsets for Interval Algebra e.g. the HIA sub-

set [42]. This contains 868 relations, again this includes the 13 base relations and the universal

relation.

Minimal qualitative constraint networks

Another key point about consistency checking using the ⋄-consistency algorithm is that although

it identifies whether or not a solution exists, it doesn’t remove all redundant relations from a net-

work. Some relations may remain that can’t actually form part of a solution i.e. a disjunctive

26

Chapter 2. Preliminaries

relation between two variables that may contain a basic relation which can’t participate in a solu-

tion. However, if ∀(vi, vj) ∈ V every base relation b ∈ C(vi, vj) can form part of a solution then

the QCN is described as being minimal. Clearly a minimal network is a more constrained net-

work, consequently algorithms for computing minimal networks are more computationally ex-

pensive than determining ⋄-consistency. For example, whereas for the Point Algebra consistency

can be determined using the 3-consistency algorithm, computing a minimal network requires a

4-consistency algorithm [9].

Solving qualitative constraint networks

It is also important to note that minimal networks in themselves aren’t solutions. They simply

identify base relations between variables that can take part in a solution. Some relations can

still be disjunctive, it is just that all relations in the disjunction can form part of a solution. In a

solution every edge is labelled with a single base relation. In order to identify a specific solution

for a QCN, a backtracking algorithm is necessary. By recursively assigning base relations to edges

in the network, identifying inconsistencies and backtracking, it is possible to incrementally build

up a solution to a QCN. Again there aren’t any polynomial time backtracking algorithms that can

solve QCNs, it is an NP-complete problem [10].

Although minimal networks and finding solutions (through back tracking) have received at-

tention in the research, most of the focus has been on the consistency problem. This is for several

reasons. First, it is often determining consistency that is of most practical use i.e. we often only

care if a solution is possible, not what the solutions are. Second, real world networks tend to be

made up of basic relations (definite knowledge) and the universal relation (no knowledge). Rea-

soning about the basic relations often results in another basic relation. For example, there are 169

compositions of basic relations in the Interval Algebra i.e. each of the 13 basic relations in compo-

sition with another of the 13. Of these compositions, 97 are basic relations e.g. {b} ⋄ {b} → {b},

the other compositions result in disjunctive relations e.g. {m} ⋄ {d} → {o, s, d}. So reasoning us-

ing the ⋄-consistency algorithm using the basic relations often results in definite (useful) knowl-

edge being added to the network. Finally, the backtracking algorithms for finding a solution to

a QCN rely on consistency checking. ⋄-consistency is used as a preprocessing step to restrict the

search space, to test the consistency of proposed solutions, and as a forward checking technique

[10].

2.1.6 Applications

Broadly speaking, applications of QSTR fall into two areas, planning and scheduling, and data

extraction and analysis.

In planning type applications, a plan is created in the form of constraints (relations) between

variables in a QCN, reasoning can then be used to check consistency and determine whether or

not the plan is feasible. For example, Wallgrün [69] describes the use of the Cardinal Directions

27

Chapter 2. Preliminaries

Calculus in mobile robot navigation, specifically map learning. Wallgrün describes a qualitative

system with a graph based topological representation of the environment. Based on this map, a

QCN is constructed using relations from the CDC e.g. junction 2 is south west of junction 1. As the

robot moves through the environment and observes places and junctions, constraints are added

to the QCN, reasoning takes place, and unfeasible map hypotheses are discarded. This allows the

robot to efficiently construct a reliable map of its environment quicker than if qualitative spatial

reasoning wasn’t used.

An example application of qualitative constraint calculi for data analysis is the use of Interval

Algebra in molecular biology by Golumbic and Shamir [24]. They were interested in deciding

whether an organism’s DNA is linear in structure. Even though the problem domain wasn’t

directly concerned with time, it was concerned with the linear arrangement of entities, and there-

fore IA was applicable. Based on experimental data, some pairs of segments within the DNA were

found to intersect. However, they only had partial information, and couldn’t draw overall conclu-

sions about whether or not the DNA segments were arranged along a line. An Interval Algebra

network was constructed where DNA segments were represented as intervals, and experimental

results were used to add relations to this network. It was then possible to infer additional relations

between segments and draw conclusions about the overall structure of the DNA. For example, a

consistent network indicated that the DNA was in fact linear rather than circular in structure.

Further applications of QSTR, specifically in the area of GIS, are considered in Chapters 3,

4 and 5. For additional examples of temporal applications see Bartek [7]. Similarly Wolter and

Wallgrün [72] provide a good overview of spatial applications.

2.2 Large scale data processing

As described in the introduction to this thesis, since the turn of the century, it is common for

the size of datasets to exceed the capabilities of a single machine. In order to efficiently run

computations using these datasets, distributed, parallel approaches to data processing have been

adopted. Datasets are split and distributed to different machines in a computing cluster. Each

machine in the cluster executes computation in parallel, which allows results to be obtained in a

much shorter time.

2.2.1 The basic MapReduce model

There are various models for parallel, distributed computing e.g. MPI [25], OpenMP [16]. The

most popular and widely used are based on the MapReduce model [17]. In the basic MapReduce

model a program consist of two separate functions. A map function and a reduce function. The map

function takes input data and transforms it into key/value pairs. All the key/value pairs with the

same key are grouped and this forms the input to the reduce function. The reduce function takes

this list of values and performs a summary operation e.g. counting, finding the average. A simple

example is shown in Figure 2.6.

28

Chapter 2. Preliminaries

split shuffle reduce final outputinput map

England 8
France 11
France 38
Spain 23
Germany 9
Germany 37
France 41
England 31
Spain 41

Spain 23
Germany 9
Germany 37

France 41
England 31
Spain 42

England 8
France 11
France 38

<Spain, 23>
<Germany, 9>
<Germany, 37>

<France, 41>
<England, 31>
<Spain, 42>

<England, 8>
<France, 11>
<France, 38>

<Spain, [23,42]>
<England, [8,31]>

<France, [11,38,41]>

<Germany, [9,37]>

France, 41
Spain, 42
England, 31
Germany, 37

<Germany, 37>

<Spain, 42>
<England, 31>

<France, 41>

Figure 2.6: MapReduce example

This example computes the highest temperature recorded in a number of different countries.

The input to the program is records of different temperatures for different countries. The output

is a list of countries and the single highest temperature recorded in that country.

The input to a MapReduce application is typically data stored in the file system e.g. text files.

This data is split into a number of input splits or partitions. These are distributed to different

machines in the cluster. The map operation takes lines of input from it’s allocated input split and

outputs key/value pairs e.g. ⟨France, 11⟩. All the key/value pairs with the same key are then sent

to the same reduce function. This involves data being redistributed (shuffled) across the cluster,

and then sorted so that all values with the same key are grouped together. The reduce function

accepts the key and list of values as parameters and outputs a single value. In this case finding the

highest temperature associated with the key. These final reduced values are collected to generate

the final output. Pseudocode for this simple program is shown in Example 2.1.

Example 2.1: Example MapReduce program
map(key , value){

//key : line number , not needed

//value : a line from the input e.g. England 8

parts = value.split(" ")

country = parts [0]

temp = Integer.parseInt(parts [1])

emit(country ,temp)

}

reduce(key , values){

// key : A country e.g.France

// values: A list of temperatures e.g. [11 ,38 ,41]

maxTemp = values.next().get()

while (values.hasNext ()) {

temp = values.next().get();

if(temp >maxTemp){

maxVal = temp

}

}

emit(key , maxTemp)

}

29

Chapter 2. Preliminaries

The key point about the programming model is that it allows for problems to be parallelised.

Each map or reduce operation works independently, and the order in which specific map or reduce

invocations take place isn’t important. Consequently multiple instances of both the map and

reduce tasks can be executed simultaneously. By adding more machines to a computing cluster a

greater number of map/reduce tasks can be run in parallel speeding up the overall execution of a

program.

MapReduce implementations

There are many different distributed programming frameworks that implement the model de-

scribed above. For example, Apache Hadoop 1, Riak 2 and Apache Spark 3. Importantly, a frame-

work handles many of the tedious aspects of parallel, distributed programming. For example,

splitting the input files, distributing data to the different nodes, allocating and scheduling the dif-

ferent tasks, partitioning, grouping and sorting data after the map phase, and collating the final

results. Furthermore, frameworks have fault tolerance built in. Worker nodes are monitored, and

in the case of a worker node failing, remaining tasks can be re-scheduled on other workers. Spe-

cific implementations will also look to optimise execution, for example by scheduling tasks based

on data locality, selecting the optimal number of map and reduce tasks and balancing the load

between different worker nodes [59]. Although many of these aspects are configurable, or can be

overridden by user specified code, essentially the user of a framework writes their own program

and the framework handles the lower level details.

2.2.2 The Apache Spark framework

Initially Apache Hadoop was by far most popular implementation of the MapReduce model.

However, following its success, a number of more sophisticated frameworks have been devel-

oped that provide additional features and benefits for users. These features include richer, higher

level APIs, persisting datasets in memory, and relational database type interfaces. These topics

are discussed in the following sections where Apache Spark is used to provide concrete examples,

and illustrate these ideas. Spark has been chosen as it is the framework used to implement the

algorithms presented in Chapters 3, 4 and 5 and because it is considered ’state of the art’ in par-

allel distributed processing. However, it is important to note that many of these features aren’t

framework specific, similar features are present in other large-scale data processing frameworks.

Richer API

Basic implementations of the MapReduce model such as Hadoop have a limited API consisting

of two functions map and reduce. Although a vast range of different types of applications can be

built using these two operations, this can often involve a lot of work for the developer. Spark

provides a higher level API with a wider range of operations e.g. filter, join, flatMap, count. The

1https://hadoop.apache.org/
2https://riak.com/
3https://spark.apache.org/

30

Chapter 2. Preliminaries

following example shows the same ’find the highest temperature’ application, but implemented

using Spark. In fact the API provided by spark is at such a high level that for this simple example

actual code (written in Scala) is shown.

Example 2.2: Simple MapReduce Program Implemented in Spark
val input = spark.textFile("data.txt")

//map

val countriesAndTemps = input.map(line=>{

//line : A line from the input file e.g. England 8

val parts = line.split(" ")

val country = parts (0)

val temp = parts (1).toInt

(country , temp)

})

countriesAndTemps.cache ()

// reduce

val result = countriesAndTemps.reduceByKey ((temp1 ,temp2)=>{

if(temp1 >temp2) temp1 else temp2

})

// output

result.foreach(println)

//France , 41

//England , 31

//Spain , 42

//Germany , 37

// demonstrating some other Spark operations

// counting elements in a dataset

val totalNumOfRecords = countriesAndTemps.count ()

println(totalNumOfRecords); // outputs 9

// filtering (where highest temp is greater than 39)

val filteredResults = result.filter(countryTempTuple => {

countryTempTuple._1 > 39

})

filteredResults.foreach(println)

//France , 41

//Spain , 42

The map operation remains largely the same, a line from the input is split, and a tuple con-

sisting of the country name and recorded temperature is returned. The reduce operation from the

MapReduce model is replaced by the equivalent reduceByKey operation, where values with the

same key are grouped. This reduceByKey is a higher-order function that implements a fold on the

list of values. Again, just as with MapReduce these operations are parallelised.

The example is expanded on to show some other Spark operations (foreach, count, and filter).

The same computations can be achieved using the basic MapReduce model, the richer API simply

provides an interface where applications can be written in a more compact style.

31

Chapter 2. Preliminaries

Persisting data

Many large-scale data processing algorithms are iterative in nature and need to re-use a dataset

across a number of different iterations. For example, machine learning algorithms such as logistic

regression require a set of data points to be repeatedly revisited in order to model the probability

of an event existing. Similarly, in querying type applications a single dataset needs to be accessed

repeatedly in order to provide solutions to different queries. The basic MapReduce model was

designed for acyclic data processing, a map stage followed by a reduce stage. It is possible to

implement iterative algorithms in a framework such as Hadoop, however, doing so often involves

significant additional running costs, as each cycle runs as a separate job. At the end of a cycle,

the data is written to disk, at the start of the next cycle, this data is then read from disk. This

incurs costs such as disk I/O and serialisation that can significantly increase execution times [77].

In response to this problem a number of frameworks have emerged that provide greater support

for iterative applications e.g. Pregel [36], HaLoop [13]. The Spark framework addresses this issue

through the idea of a Resilient Distributed Dataset (RDD) [77]. Essentially, a dataset that can be

held in memory and operated on in parallel. Because it can be cached in memory, a dataset can

then be easily re-used in an application. Again referring to Example 2.2, the output of the map

operation i.e. the key/value pairs, is stored in memory (the cache operation). This collection of

key/value pairs forms the input to the reduceByKey operation. There is also a count operation

that uses the same key/value dataset. However, instead of having to read this data from disk

or re-generate the key/value pairs, the dataset can simply be loaded from memory, speeding up

execution.

Relational interface

The functional style programming interface offered by the MapReduce model and implementa-

tions such as the core Spark API described above are flexible and powerful. However, many data

processing frameworks have evolved to provide a more declarative style interface where users

can execute SQL queries on distributed datasets e.g. Pig [47] and Hive [65]. The Spark framework

also includes a relational interface for distributed data processing in the form of DataFrames [5].

Like an RDD, this is still a distributed dataset, but is structured into named columns, allowing

users to interact with it like they would a relational database table. The following example shows

the same ’highest temperature’ application implemented using Spark DataFrames.

Example 2.3: Relational Interface in Spark
// specify the schema for the DataFrame

val fields = List(

StructField("country", StringType , true),

StructField("temp", IntegerType , true))

val schema = StructType(fields)

val input = spark.textFile("data.txt")

// Create an RDD from the input

val countriesAndTempsRDD = input

32

Chapter 2. Preliminaries

.map(line=>line.split(" "))

.map(attributes => Row(attributes (0), attributes (1).toInt))

// create the DataFrame using the RDD and schema

val countriesTempsDF = sqlContext.createDataFrame(countriesAndTempsRDD ,

schema)

//using DataFrame operations

countriesTempsDF

.groupBy("country")

.max("temp")

.show()

//+-------+----+

//|country|temp|

//+-------+----+

//|France | 41 |

//|England| 31 |

//|Spain | 42 |

//|Germany| 37 |

//+-------+----+

// Executing SQL queries

countriesTempsDF.registerTempTable("countries")

sqlContext.sql("SELECT country , max(temp) FROM countries GROUP BY country")

.show()

//+-------+----+

//|country|temp|

//+-------+----+

//|France | 41 |

//|England| 31 |

//|Spain | 42 |

//|Germany| 37 |

//+-------+----+

Operations can be executed using DataFrame operations as chained procedure calls e.g. groupBy,

max or as SQL queries. The use of DataFrames offers two advantages for developers. The first

is the opportunity to use a more declarative SQL type syntax, which can be more efficient and

intuitive. Secondly, Spark offers optimisation of operations on DataFrames. Dataframes are lazy,

when subject to a series of operations, these operations aren’t executed until specific output ac-

tions are called e.g. count or show. Consequently, there is flexibility in the ordering and imple-

mentation of earlier operations such as filtering or joins. This can reduce the volume of data

being manipulated and improve the performance of an application. Furthermore, if the data

source is columnar, techniques such as predicate pushdown can be used to reduce the volume

of data read from input files [5]. There are potential disadvantages associated with the relational

abstraction, mainly that the user loses some of the fine grained control that using the procedural

core API allows for. However, the two approaches, a higher level relation type interface using

DataFrames and the lower level functional style using RDDs are both supported by Spark; they

are inter-operable, applications can make use of either or both.

33

Chapter 2. Preliminaries

2.2.3 Performance issues

As described above parallel distributed programming frameworks are designed to handle huge

datasets. However, depending on the characteristics of the dataset, and the specific operations

that need to be implemented, applications can run into performance issues resulting in excessive

execution times, and in some cases failure to complete.

Shuffle operations

Often performance issues are related to shuffling, where data is re-distributed across different

partitions and different machine in a clusters. If we consider the simple MapReduce example

in Figure 2.6, all the values with the same key need to be co-located in order to find the highest

temperature for each country. For example, following the map phase, the key/value pairs for

France can be found on the first partition and third partition. These need to be merged before

the reduce operation can be executed. At this point the shuffle re-arranges the data so that these

values will reside in the same partition. This involves disk I/O, data serialisation and network

I/O making the shuffle a costly operation.

Joins

One operation that requires data to be shuffled is the join operation. A simple natural join example

is shown in Figure 2.7. This depiction simplifies some aspects but is presented to illustrate the

problems associated with shuffling and specifically joining datasets in a distributed setting.

34

Chapter 2. Preliminaries

<1,(England, 8)>
<1,(France, 11)>
<1,(France, 38)>
<4,(Canada, 12)>
<1,(Germany, 9)>
<1,(Germany, 37)>
<1,(France, 41)>

<3,(Brazil, 33)>

<2,(Japan, 37)>

<1,(Europe)>
<4,(N.America)>

<3,(S.America)>
<2,(Asia)>

<1,(Germany, 9)>

<1,(Germany, 37)>

<1,(France, 41)>

<4,(Canada, 12)>

<1,(England, 8)>
<1,(France, 11)>
<3,(Brazil, 33)>
<1,(France, 38)>
<2,(Japan, 37)>

<1,(Europe)>
<2,(Asia)>

<3,(S.America)>
<4,(N.America)>

<1,((England, 8),(Europe))>
<1,((France, 11),(Europe))>
<1,((France, 38),(Europe))>
<1,((Germany, 9),(Europe))>
<1,((Germany, 37),(Europe))>
<1,((France, 41),(Europe))>
<4,((Canada, 12),(N.America))>

<3,((Brazil, 33),(S.America))>
<2,((Japan, 37),(Asia))>

machine 1

machine 2

machine 1

machine 2

Figure 2.7: Distributed Join

This operation simply joins countries to the continent they are located in. There are two input

datasets a country/temperature dataset and continent dataset. Each dataset is in two partitions

distributed over two machines in a cluster. The datasets have already been keyed (by a map

phase not shown). The key on the countries/temperature dataset is a foreign key that refers to

a continent from the continents dataset. In order to execute the join, both datasets need to be

shuffled so that all the records with the same key are in the same partition.

Join operations are especially expensive as both datasets need to be shuffled [28]. Furthermore,

depending on how the data is distributed, an application can place huge demands on one node

in a cluster, leaving others with minimal work to do. In some cases this data skew can largely

negate the advantages of a distributed approach. For example, in figure 2.7 there are far more

countries from Europe than from any other continent. Consequently, the first machine handles

far more work than the second . Clearly this is a trivial example, however, when dealing with

much larger, real world datasets, skew can result in a single process being overwhelmed leading

to out of memory errors or never ending execution.

There are a number of strategies than can be adopted to improve the performance of joins.

These include:

• Where possible, grouping rows to remove duplicate keys prior to the join. For example,

35

Chapter 2. Preliminaries

if we also wanted to also find the highest temperature recorded in each country, it would

make sense to execute this operation first, thus reducing the size of one of the join inputs.

• Similarly, where possible, early filtering to reduce the size of join inputs e.g. if we only

wanted the results to feature countries from Europe.

• Using a dataset that has already been partitioned. If the dataset has already been partitioned

using the same key as used in the join, when the join is executed, this data doesn’t need to

be shuffled again.

• Using a broadcast join strategy, also known as a map-side join or replicated join.

Figure 2.8 shows the same join implemented using a broadcast strategy. In a broadcast join,

one side of the join, the smaller of the two datasets, is broadcast to all machines in the computing

cluster i.e. a copy of the entire dataset is sent to each machine. In this example the broadcast

dataset is the list of continents. Each machine then performs the join using this broadcast variable

and the data that is already located at this machine. The advantage is there isn’t the need to shuffle

the records from the larger side of the join. Furthermore, because all records with the same key

no longer need to reside in the same location, the broadcast strategy is more tolerant of data skew.

The broadcast strategy does have limitations. It is only really suited to circumstances where the

broadcast dataset fits into memory, and is typically used when joining a large dataset with a much

smaller one.

36

Chapter 2. Preliminaries

<1,(Germany, 9)>

<1,(Germany, 37)>

<1,(France, 41)>

<4,(Canada, 12)>

<1,(England, 8)>
<1,(France, 11)>
<3,(Brazil, 33)>
<1,(France, 38)>
<2,(Japan, 37)>

<1,(Europe)>
<2,(Asia)>

<3,(S.America)>
<4,(N.America)>

machine 1

machine 2

machine 1

machine 2

<1,(Europe)>
<2,(Asia)>
<3,(S.America)>
<4,(N.America)>

<1,(Europe)>
<2,(Asia)>
<3,(S.America)>
<4,(N.America)>

<1,(Europe)>
<2,(Asia)>
<3,(S.America)>
<4,(N.America)>

<1,(Germany, 9)>

<1,(Germany, 37)>

<1,(France, 41)>

<4,(Canada, 12)>

<1,(England, 8)>
<1,(France, 11)>
<3,(Brazil, 33)>
<1,(France, 38)>
<2,(Japan, 37)> <1,((England, 8),(Europe))>

<1,((France, 11),(Europe))>
<1,((France, 38),(Europe))>
<3,((Brazil, 33),(S.America))>
<2,((Japan, 37),(Asia))>

<1,((Germany, 9),(Europe))>
<1,((Germany, 37),(Europe))>
<1,((France, 41),(Europe))>
<4,((Canada, 12),(N.America))>

Broadcast Variable

Figure 2.8: Broadcast Join

2.3 Knowledge graphs

There is some argument about the exact definition of a knowledge graph [20], however this thesis

uses the term knowledge graph to describe a dataset with the following widely accepted features:

• The dataset has a graph structure where the nodes define entities, and labels on directed

edges of the graph represent relationships between entities. Unlike more rigid data rep-

resentations such as the relational model, the graph structure allows for flexible linking

between entities.

• There exist reasoning mechanisms that can be used derive additional facts from the knowl-

edge graph.

Although the term knowledge graph isn’t widely used in the QSTR research community, we

can view QCNs as a specific type of knowledge graph where the entities are variables from the

QCN, labelled edges are relations from the qualitative constraint calculi, and reasoning is imple-

mented using ⋄-consistency. Throughout this thesis QCNs are often referred to as knowledge

graphs.

37

Chapter 2. Preliminaries

2.3.1 Resource Description Framework (RDF)

A commonly used data model for knowledge graphs is RDF. Chapter 4 refers to a number of

widely used large scale knowledge graphs, YAGO and DBpedia, which use the RDF data model,

so it is worth discussing here. RDF represents a knowledge graph as a collection of statements,

also known as triples. Each statement is made up of three parts, a subject, a predicate (or prop-

erty) and object. Subjects depict entities from the graph, predicates are relations between entities,

and objects are either themselves entities i.e. other subjects or literal values. Example 2.4 shows

a subset of RDF from the YAGO 4 knowledge graph, presented in the N-Triples format. Each

individual line is a statement, with the subject, predicate and object separated by whitespace. The

full-stop indicates the end of the statement. Figure 2.9 shows the same data visually as a graph.

Example 2.4: RDF Statements in N-Triples Format
<http://yago -knowledge.org/resource/Belgium > <http :// schema.org/

foundingDate > "1830 -10 -04"^^ < http :// www.w3.org /2001/ XMLSchema#date > .

<http://yago -knowledge.org/resource/Belgium > <http :// schema.org/geo > <geo

:50.64 ,4.67 > .

<http://yago -knowledge.org/resource/Belgium > <http :// schema.org/memberOf > <

http ://yago -knowledge.org/resource/European_Union > .

<http://yago -knowledge.org/resource/Belgium > <http ://www.w3.org /1999/02/22 -

rdf -syntax -ns#type > <http :// schema.org/Country > .

<http://yago -knowledge.org/resource/European_Union > <http :// www.w3.org

/1999/02/22 -rdf -syntax -ns#type > <http ://yago -knowledge.org/resource/

Political_organisation > .

<http://yago -knowledge.org/resource/France > <http ://www.w3.org /1999/02/22 -

rdf -syntax -ns#type > <http :// schema.org/Country > .

<http://yago -knowledge.org/resource/Belgium > <http :// schema.org/memberOf > <

http ://yago -knowledge.org/resource/European_Union > .

In the first statement of Example 2.4, the object is a literal value - "1830-10-04". Alternatively,

the object of a statement might itself be a subject. For example, the object of the third RDF state-

ment

<http://yago-knowledge.org/resource/European_Union>

is the subject of the fifth statement. As we can see in figure 2.9, linking entities together in this

way, gives RDF it’s graph structure.

RDF uses globally unique ids for subjects, predicates and datatypes e.g.

<http://yago-knowledge.org/resource/Belgium>

These unique ids are known as Uniform Resource Identifiers (URIs). By defining identifiers

globally, knowledge graphs can reference and link to entities in separate knowledge graphs with-

out the complication of name conflicts.

Namespaces can be used to group URIs. For example, foundingDate and containedInPlace are

both part of the http://schema.org namespace. The N-Triples format uses fully qualified URIs i.e

the namespace followed by the subject/property/object. However, it is often more convenient

and clearer to use a prefix when referring to entities e.g. yago:Belgium as used in Figure 2.9.

38

Chapter 2. Preliminaries

schema:foundingDate

schema:geo

schema:memberOf

rdf:type
schema:memberOfrdf:type

rdf:type

yago:Belgium yago:Political_Organisation

geo:50.64, 4.67

schema:Country

yago:France

"1830-10-04"^^xsd:date

yago:European_Union

Figure 2.9: Example Knowledge Graph

Reasoning using RDF isn’t considered in any detail in this thesis, the focus is solely on QSTR.

However, for completeness it is worth explaining that reasoning using RDF data is typically ac-

complished using the Web Ontology Language (OWL) or RDF Schema, which allows authors to

create ontologies in RDF which can be used to formally define classes, their properties and hier-

archical structure. These ontologies can be used to reason about RDF data and derive additional

facts.

2.3.2 Querying RDF data

RDF knowledge graphs can be queried using an SQL type query language known as SPARQL,

an example is shown in Query 2.1 which finds countries that were founded on the 4th of Octo-

ber 1830. Using the knowledge graph from Figure 2.9 this query would return a single result,

yago:Belgium.

Query 2.1: Example SPARQL Query

PREFIX http: <http :// www.w3.org /2011/ http#>

PREFIX owl: <http :// www.w3.org /2002/07/ owl#>

PREFIX sc: <http :// purl.org/science/owl/sciencecommons/>

PREFIX schema: <http :// schema.org/>

PREFIX yago: <http ://yago -knowledge.org/resource/>

PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>

PREFIX rdfs: <http :// www.w3.org /2000/01/rdf -schema#>

SELECT ?country

WHERE {

?country rdf:type schema:Country.

?country schema:foundingDate "1830 -10 -04"^^ xsd:date

}

A SPARQL query is made up of a number of triple patterns e.g.

39

Chapter 2. Preliminaries

?country rdf:type schema:Country.

These triple patterns are like RDF statements, but a variable can be used in place of the subject,

predicate or object. Variables are denoted with a question mark prefix e.g. ?country. The set of all

triple patterns in a query is referred to as a basic graph pattern. Queries are executed by matching

this basic graph pattern with the knowledge graph being queried and substituting the variables

for subjects/objects/predicates from the graph [68]. This is a simple example, in addition to basic

graph pattern matching, SPARQL supports other SQL type operations e.g. aggregation, ordering

and filtering.

2.3.3 GeoSPARQL

GeoSPARQL is a standard built on top of SPARQL and designed to support the spatial query-

ing of RDF knowledge graphs [46]. The standard has been developed by the Open Geospatial

Consortium (OGC) and it has specifies two things:

1. A specification for representing geospatial data in RDF. This includes a simple ontology for

describing spatial entities and requirements for how geometric data should be encoded in

RDF.

2. A query interface for executing spatial queries.

In order to allow more flexibility in terms of how spatial data is encoded in a knowledge

graph, the work done in this thesis doesn’t comply with the GeoSPARQL standard in terms of

representing spatial data in RDF. However, in Chapters 4 and 5 spatial querying of knowledge

graphs is considered in some detail. To test the query engine systems that have been developed,

and show wider applicability, valid GeoSPARQL queries are used.

Query 2.2: Example GeoSPARQL Query

PREFIX schema: <http :// schema.org/>

PREFIX yago: <http ://yago -knowledge.org/resource/>

PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>

PREFIX geof: <http :// www.opengis.net/def/function/geosparql/>

SELECT ?country

WHERE{

?country rdf:type schema:Country.

FILTER(geof:sfWithin (?country ," POLYGON ((4.321423 50.5882119 ,4.6269803

50.5869041 ,4.625607 50.7435868 ,4.3207364 50.7448903 ,4.321423

50.5882119))"^^ geo:wktLiteral))

}

Query 2.2 shows an example GeoSPARQL query that will find all the countries that are located

within a specified query polygon. In order to execute this query using the example knowledge

40

Chapter 2. Preliminaries

graph in Figure 2.9, a query engine could use the schema:geo property to determine whether or not

yago:Belgium is a solution. GeoSPARQL supports a wide range of spatial filters and predicates. For

example, as we shall see in Chapter 5, it is possible to query on the basis of spatial relationships

between entities such as adjacency and containment.

41

Chapter 3

ParQR: A large scale qualitative

spatio-temporal reasoner

This chapter describes an implementation of the ⋄-consistency algorithm for use in a parallel dis-

tributed environment. This application has been named ParQR (Parallel Qualitative Reasoner),

the full details concerning its working are described below.

3.1 Overview of QSTR using ParQR

Figure 3.1 shows a simple RCC8 network. This is a subgraph of the example shown in 2.1.4.

The fundamental approach to reasoning using ParQR is shown in Figure 3.2 and uses this RCC8

network as the example.

z

y

x v

{EC}

{NTPP}

{TPP,NTPP}

{TPP,NTPP}

Figure 3.1: Simple QCN

42

Chapter 3. ParQR: A large scale qualitative spatio-temporal reasoner

(v,{TPP,NTPP},x)

(x,{NTPP},z)

(v,{TPP,NTPP},z)

(z,{EC},y)

x,(v,{TPP,NTPP},x)

z,(x,{NTPP},z)

z,(v,{TPP,NTPP},z)

y,(z,{EC},y)

v,(v,{TPP,NTPP},x)

x,(x,{NTPP},z)

v,(v,{TPP,NTPP},z)

z,(z,{EC},y)

(v,{TPP,NTPP},x)

(x,{NTPP},z)

(v,{TPP,NTPP},z)

(z,{EC},y)

(x,{DC},y)

(v,{NTPP},z)

(v,{DC},y)

v#x,(v,{TPP,NTPP},x)

x#z,(x,{NTPP},z)

v#z,(v,{TPP,NTPP},z)

z#y,(z,{EC},y)

x#y,(x,{DC},y)

v#z,(v,{NTPP},z)

v#y,(v,{DC},y)

v#x,(v,{TPP,NTPP},x)

v#z,(v,{TPP,NTPP},z)

v#z,(v,{NTPP},z)

x#z,(x,{NTPP},z)

z#y,(z,{EC},y)

x#y,(x,{DC},y)

v#y,(v,{DC},y)

(v,{TPP,NTPP},x)

(x,{NTPP},z)

(v,{NTPP},z)

(z,{EC},y)

(x,{DC},y)

(v,{DC},y)

(v,{TPP,NTPP},z) (z,{EC},y) (v,{DC},y)

z,(x,{NTPP},z)

z,(z,{EC},y)

(v,{TPP,NTPP},x) (x,{NTPP},z) (v,{NTPP},z)

(x,{NTPP},z) (z,{EC},y) (x,{DC},y)

x,(x,{NTPP},z)

x,(v,{TPP,NTPP},x)

z,(z,{EC},y)

z,(v,{TPP,NTPP},z)

map

reducebyKey

map

map

join

Inference

Consistency

Figure 3.2: Overview of reasoning using ParQR

Computing algebraic closure using ParQR requires two stages, inference and consistency. In-

ference involves deriving relations between variables in a QCN using the weak composition op-

eration, and consistency is used to compare and update relations following inference.

Edges from a QCN are represented as tuples in the form (headnode, relation, tailnode) e.g.

(z, {EC}, y). Considering inference first, this involves joining edges that share a variable. In

order to execute this join, a map operation is used to output keyed tuples. This is done twice. First

with the head node as the key, and a second time with the tail node as the key. Then, tuples with

matching keys are joined. For example, in Figure 3.2 the edge (x, {NTPP}, z) is joined with the

edge (z, {EC}, y). Using these joined edges we can then use a composition table e.g. Table 2.3 to

look-up the inferred relation e.g. x{NTPP}z ⋄ z{EC}y→ x{DC}y.

Once these relations have been inferred it is necessary to check for consistency. That is we take

the newly inferred relations and compare them to the existing relations to identify inconsistencies.

This is implemented by first using a map operation to output a key for each edge in the network.

For example, all the edges that have v as the head node and z as the tail node will have a key

43

Chapter 3. ParQR: A large scale qualitative spatio-temporal reasoner

of v#z. Then a reduceBykey operation is used to group all the edges with same key and output

a single edge for the group. In the simple example shown in Figure 3.2 only one of the groups

has more than a single edge, the v#z group. In more complex QCNs, there would be many large

groups that need reducing. The reduce operation involves finding the intersection of the relations

in the group. For example, for the v#z group in figure 3.2, {TPP, NTPP} ∩ {NTPP} → {NTPP},

which results in the edge (v, {NTPP}, z). If the intersection results in an empty set this indicates

an inconsistency in the network. If there are no inconsistencies, the output from the consistency

stage feeds back into the inference stage, where the new relations can form the basis for further

inferences. The two stages, inference and consistency, continue iteratively until a fixed point

reached.

Figure 3.2 shows how these operations can work effectively in a distributed setting. Once

the input dataset has been split and distributed to different machines in a computing cluster,

operations such as using a map to generate a key for a tuple, look-up compositions, or find the

intersection of a group of relations can be executed in parallel, allowing reasoning to execute

quickly using large datasets.

3.2 Limiting the size of joins

Figure 3.2 is also useful for showing the performance bottlenecks of the reasoning process. As

described in Section 2.2.3 shuffle operations, that require data to be duplicated and copied across

different partitions and machines in the cluster, are costly operations. In Figure 3.2 we can see

that a shuffle is required at two points. During inference, edges with same key need to reside

in the same partition so they can be joined, therefore a shuffle is invoked to move these edges.

Similarly, in the consistency stage, all edges between the same pair of variables need to be moved

to the same partition for the reduce operation to execute.

Even using high memory computers (e.g. >30GB RAM), for large scale QCNs consisting of

millions of relations, a naive implementation such as that shown in Figure 3.2 would quickly

occupy the available memory. The join at the inference stage would grow larger with each subse-

quent iteration. For example, consider the IA network shown in figure 3.4 that consists of a single

chain.

44

Chapter 3. ParQR: A large scale qualitative spatio-temporal reasoner

Iteration 1

Iteration 2

Existing relations
Relations inferred during the iteration

w x zy

{bi}

{bi}

{bi} {bi} {bi}

{bi}

w x zy

{bi}

{bi} {bi} {bi}

{bi}

{bi}

{bi}

Figure 3.3: Duplicate inferences between iterations

At iteration 1, relations between nodes w and y and between the nodes x and z are inferred.

At iteration 2 an inference between nodes w and z is made. However, at iteration 2 we would

also join (w, {bi}, x) to (x, {bi}, y) and re-compute the same bi relation between w and y that was

made at iteration 1. Clearly, as we follow longer and longer chains of inference we will generate

an increasingly large join in the inference stage that soon becomes unmanageable.

Similar problems have been studied previously. For example, Afrati et al [2] consider recursive

algorithms such as computing transitive closure in distributed environments. They identify algo-

rithms that guarantee that paths are only followed once. Similar approaches have been adopted

in ParQR to limit the duplicate inferences between different rounds.

In order to limit duplicate derivations, it is necessary to track the distance between nodes in

the QCN. This distance between the nodes of an edge is then used to determine which edges will

participate in the join at a given iteration. There are various ways to do this. One strategy is to

use a linear join strategy where one side of the join has edges with a distance of one. The other

side of the join features edges where the distance between nodes is equal to the iteration number.

At iteration 1, the QCN is joined with itself. The edges output from this iteration will have a

distance of 2. At iteration 2, one side of the join will feature these newly inferred edges, with the

input QCN (edges with a distance of 1) as the other side. By limiting which edges can be joined,

duplicate derivations are avoided, see Example 3.5.

45

Chapter 3. ParQR: A large scale qualitative spatio-temporal reasoner

Example 3.5: Using a linear strategy
Input QCN

(u,{bi},v,1)

(v,{bi},w,1)

(w,{bi},x,1)

(x,{bi},y,1)

(y,{bi},z,1)

Iteration 1

(u,{bi},v,1) ⋄ (v,{bi},w,1) → (u,{bi},w,2)

(v,{bi},w,1) ⋄ (w,{bi},x,1) → (v,{bi},x,2)

(w,{bi},x,1) ⋄ (x,{bi},y,1) → (w,{bi},y,2)

(x,{bi},y,1) ⋄ (y,{bi},z,1) → (x,{bi},z,2)

Iteration 2

(u,{bi},w,2) ⋄ (w,{bi},x,1) → (u,{bi},x,3)

(v,{bi},x,2) ⋄ (x,{bi},y,1) → (v,{bi},y,3)

(w,{bi},y,2) ⋄ (y,{bi},z,1) → (w,{bi},z,3)

Iteration 3

(u,{bi},x,3) ⋄ (x,{bi},y,1) → (u,{bi},y,4)

(v,{bi},y,3) ⋄ (y,{bi},z,1) → (v,{bi},z,4)

Iteration 4

(u,{bi},y,4) ⋄ (y,{bi},z,1) → (u,{bi},z,5)

There are other strategies that can be used to prevent the same derivations being made repeat-

edly. The smart strategy [2] executes a join between edges with a distance of 2i−1 and edges with

a distance that is less than or equal to 2i−1. Unlike a linear strategy that requires a number of itera-

tions that is equal to the longest path in the QCN, using a smart strategy, closure can be computed

in just O(log n) rounds [2]. Example 3.6 shows the same example using a smart strategy.

Example 3.6: Using a smart strategy
Input QCN

(u,{bi},v,1)

(v,{bi},w,1)

(w,{bi},x,1)

(x,{bi},y,1)

(y,{bi},z,1)

Iteration 1

(u,{bi},v,1) ⋄ (v,{bi},w,1) → (u,{bi},w,2)

(v,{bi},w,1) ⋄ (w,{bi},x,1) → (v,{bi},x,2)

(w,{bi},x,1) ⋄ (x,{bi},y,1) → (w,{bi},y,2)

(x,{bi},y,1) ⋄ (y,{bi},z,1) → (x,{bi},z,2)

Iteration 2

(u,{bi},w,2) ⋄ (w,{bi},x,1) → (u,{bi},x,3)

(v,{bi},x,2) ⋄ (x,{bi},y,1) → (v,{bi},y,3)

(w,{bi},y,2) ⋄ (y,{bi},z,1) → (w,{bi},z,3)

(u,{bi},w,2) ⋄ (w,{bi},y,2) → (u,{bi},y,4)

(v,{bi},x,2) ⋄ (x,{bi},z,2) → (v,{bi},z,4)

Iteration 3

(u,{bi},y,4) ⋄ (y,{bi},z,1) → (u,{bi},z,5)

Using a smart strategy, comes at a cost, some iterations result in a large volume of derivations.

Again, this can make the size of the join so large that the execution fails to complete. Furthermore,

46

Chapter 3. ParQR: A large scale qualitative spatio-temporal reasoner

implementing these strategies is complicated when computing ⋄-consistency, as we aren’t simply

interested in whether or not nodes can be reached, we need to know whether the newly inferred

relation is stronger than the existing relation between nodes in the graph, and update the distance

value accordingly. Section 3.3.3 describes how this is implemented in ParQR.

Another key point is that using a linear or smart strategy only prevents the reasoner making

the same joins as a previous iteration, it doesn’t prevent duplicate inferences within the same

iteration. For example, in Figure 3.4 the same relation between u and z is inferred four times, each

via a different path in the QCN. If the QCN is dense, this can create an explosion of relations,

especially when using a smart strategy, that can again create performance issues for the reasoner.

w

x

y

v

zu

bi

bi

bi

bi

bi

bi

bi

bi

Figure 3.4: Duplicate inferences within an iteration

3.3 ParQR algorithms

The following section describes in detail the algorithms used by ParQR to perform QSTR. 1

3.3.1 Main program execution

Algorithm 2 shows the main program execution for ParQR. The program requires two inputs, a

QCN and a calculus. The QCN is a text file where lines represent edges in the network. Each

line is split using standard string functions to generate tuples e.g. see the tuples in Example 3.5.

ParQR is a generalised reasoner that is able to reason using any qualitative contraint calculi. In

order to do this, it also needs a calculus as an input. The calculus is a simple text file, this time

specifying the relations in a calculus, their inverses and the composition table for the calculus.

1Full code listings can be found at https://github.com/mmantle-hud/ParQR

47

Chapter 3. ParQR: A large scale qualitative spatio-temporal reasoner

Algorithm 2: ParQR - main program execution
1: ParQR(QCN, calculus)
2: QCN=QCN ∪ QCNR

3: possibleRels = generatePossibleRelations(QCN, calculus)
4: compTbl = generateCompTbl(possibleRels, calculus)
5: intersectionTbl = generateIntersectionTbl(possibleRels, calculus)
6: QCN=consistency(QCN)
7: count=0
8: i=1
9: while QCN.count() ̸= count

10: count=QCN.count()
11: newEdges=inference(QCN,i)
12: QCN=consistency(QCN ∪ newEdges)
13: i++
14: end while

Generating the reverse of the network

Before reasoning over a QCN, it is first necessary to add the reverse of each edge to the network

(line 2). This is needed to make sure that all possible derivations can be made. For example in

Figure 3.2, if the initial QCN featured the edge (y, {EC}, z) instead of (z, {EC}, y), it wouldn’t

be possible to infer a relation between the variables x and y as inference works by matching head

nodes with tail nodes. Therefore, to make sure that all possible inferences can be made, the reverse

of the input QCN is generated as a pre-processing step.

Pre-computing composition and intersection

ParQR also pre-computes the results of the composition and intersection operations. Algorithm

2 refers to a generatePossibleRelations() function. This function looks up composition for all combi-

nations of relations from the input QCN. The results of these composition operations can form the

basis for additional compositions, so the process repeats until the results of all possible composi-

tion operations that could arise from the QCN have been computed. Once all possible relations

have been computed, look-up tables for composition and intersection are generated.

This provides two performance benefits. First, as discussed in Chapter 2 if the composition

involves disjunctive relations, it is necessary to look-up the composition for each pair of basic

relations and take the union of these compositions. Typically this would be implemented as a

nested loop. However, by pre-computing the results of composition, the operation is reduced to

a single look-up, even for disjunctive relations. A second, and more important benefit, is that

by pre-computing the results of both composition and intersection, it is then possible to store

relations as integers, rather than as an array type structure. The memory demands made by the

large join in the inference stage can partially be ameliorated by reducing the memory footprint

of the datasets being joined. Using primitive data types such as integers reduces the memory

consumption of the QCN allowing ParQR to handle larger joins.

Main program loop

After completing these pre-processing steps, the QCN is then tested for consistency (line 6) be-

48

Chapter 3. ParQR: A large scale qualitative spatio-temporal reasoner

fore entering the main loop of the program. The main while loop executes the inference stage

followed by the consistency stage repeatedly until no more inferences are made and the closure

is completed. Note that the while loop also keeps track of the iteration number, which is needed

to determine which edges should be joined during the inference stage.

3.3.2 The inference stage

Algorithm 3: ParQR - inference (smart strategy)
1: inference(QCN, i)
2: //QCN: A collection of edges e.g. [(X,{TPP},Y,1), (Y,{TPP},Z,1), ...]
3: //i: The iteration number e.g. 1

4: headEdges=QCN
5: .filter(edge⇒ edge.distance = 2i−1)
6: .map(edge⇒ (edge.tailNode, edge)

7: tailEdges = QCN
8: .filter(edge⇒ edge.distance ⩽ 2i−1)
9: .map(edge⇒ (edge.headNode, edge)

10: joinedEdges = headEdges.join(tailEdges)

11: newEdges=joinedEdges.map((key, (headEdge, tailEdge))⇒{
12: headNode = headEdge.headNode
13: tailNode = tailEdge.tailNode
14: inferredRelation = lookUp(headEdge.relation, tailEdge.relation)
15: distance = tailEdge.distance + headEdge.distance
16: return (headNode, inferredRelation, tailNode, distance)
17: })
18: .filter(edge⇒ edge.relation ̸= B)
19:
20: return newEdges

Algorithm 3 shows the inference function using a smart strategy. Two sides of the join are

generated in lines 4-6 and 7-9, with the iteration number being used to filter which edges partic-

ipate in the join. A map operation is then used to iterate over the joined edges. Within this map

operation the new relation is derived using the calculus’s composition table, and the distance for

the new edge is computed.

Many qualitative spatio-temporal reasoners maintain relations between all nodes in a network

e.g. Algorithm 1, which leads to O(n2) memory requirements. This is one of the main reasons why

many reasoners can’t handle large scale networks consisting of hundreds of thousands, or mil-

lions of relations. ParQR doesn’t maintain a complete network. It only stores edges where we

know something about the relation between two variables i.e. their relation isn’t the universal

relation. In order to maintain this more streamlined QCN, ParQR filters out edges where compo-

sition results in the universal relation, see (line 18).

49

Chapter 3. ParQR: A large scale qualitative spatio-temporal reasoner

3.3.3 The consistency stage

Algorithm 4: ParQR - consistency (smart strategy)
1: consistency(QCN, i)
2: //QCN: A collection of edges e.g. [(X,{TPP},Y,1), (Y,{TPP},Z,1), ...]
3: //i: The iteration number e.g. 1

4: keyedEdges = QCN.map(edge⇒ (edge.tailInterval+’#’+edge.headInterval, edge))

5: consistentEdges=keyedEdges.reduceByKey((edgeA,edgeB)⇒ {
6: head = edgeA.headInterval
7: tail = edgeA.tailInterval
8: intersect = edgeA.relation ∩ edgeB.relation
9: if |intersect| = 0

10: //inconsistency detected
11: stop()
12: end if
13: if edgeA.distance = edgeB.distance
14: //they are the same it doesn’t matter which we use
15: distance = edgeA.distance
16: else if edgeA.distance > edgeB.distance and |edgeB.relation| > |intersect|
17: // the newly inferred relation (edgeA) is stronger
18: distance = edgeA.distance
19: else if edgeB.distance > edgeA.distance and |edgeA.relation| > |intersect|
20: // the newly inferred relation (edgeB) is stronger
21: distance = edgeB.distance
22: else
23: distance = Math.min(edgeA.distance, edgeB.distance)
24: end if
25: return (head, intersect, tail, distance)
26: }
27: return consistentEdges
28:

The consistency function for the smart strategy is shown in Algorithm 4. The input to the

consistency function is made up of the union of newly inferred edges and the complete QCN from

the previous iteration, see Algorithm 2. The consistency function generates keys for all the edges

by concatenating the value of the head node and the tail node. The reduceByKey operation then

reduces all the edges between the same two nodes to a single edge. The reduceByKey function not

only detects consistencies and removes duplicates, it also computes a distance value for the new

edge. If the newly inferred relation is weaker than the existing relation between a pair of variables,

there is no need to update the distance value of the edge. Any derivations made using this edge

will simply be duplicates of previous derivations. However, if the new relation is stronger, it

could form the basis for further derivations, in which case the distance value is updated to use

the larger distance value. This edge can then be used in the left-hand side of the join in the next

iteration.

3.3.4 Analysis

In parallel distributed applications, runtime is often dominated by communication costs and net-

work bandwidth, as data is moved between different machines in a cluster. However, it is still

50

Chapter 3. ParQR: A large scale qualitative spatio-temporal reasoner

worth considering some aspects of the computational complexity of the above algorithms.

Main program execution The number of iterations executed by the while loop in Algorithm 2,

the main program execution, has an upper bound dependent on the diameter of the input QCN,

the specific strategy being employed, and the number of basic relations in a calculus (a constant

factor). For example, for the smart strategy the time complexity is O(log(diam(QCN)).

The inference stage The initial phase involves executing a filter operation and map operation

over the entire input dataset twice, to generate the two sides of the join. Both the filter and map

functions operate in linear time, and are trivial to parallelise. There are no dependencies between

the input edges and the workload can be balanced evenly. In the worst case, the input to the

inference stage is a complete graph, resulting in this initial filtering and mapping outputting

O(n2) edges.

This output is shuffled before being joined. From a time complexity point of view, shuffling is

a linear time operation. However, in reality this is often much more expensive as data is moved

around the cluster.

The exact join strategy used by Spark is determined by it’s optimizer, it maybe be a broadcast

join, hash join or sort-merge join. Parallelisation can ameliorate the costs of these joins, keys are

distributed between partitions in the cluster, and the join is executed within a partition using a

subset of the join keys. Unlike the initial map phase, depending on the distribution of the keys,

the dataset may suffer some skew, with some join tasks taking longer to execute. In the case of a

complete graph, assuming a sort-merge join, a local join task where a node is joined to all other

nodes in the QCN will run in Ω(nlog(n) + nlog(n)).

The join in this worst case scenario outputs O(n3) joined edges. This is when each node is

joined to all other nodes, using all join keys. See figure 3.4 for an illustration of how two nodes

can be joined via many different paths. The final phase of the inference stage is a map operation

which is used to infer the relation between two nodes, which again runs in linear time.

The consistency stage This involves a map operation with the input of size O(n3) coming from

inference stage. The map emits the same volume of data as it recieves which is shuffled and

sorted for the reduceByKey operation. Again, following the worst case, where relations between

two nodes have been derived using every other node as the join key, a single reduceByKey task

has a time complexity of O(n). Following through the worst case, the entire reduceByKey phase

can output no more than O(n2) relations i.e. a complete graph, which then forms the input to the

inference stage.

What is clear is that the bottleneck of the ParQR is the join operation at the inference stage.

In reality, a complete graph doesn’t form the input. Furthermore, this is very much a worst case,

after the first iteration, the different join strategies ensure that the entire dataset doesn’t participate

in the join.

51

Chapter 3. ParQR: A large scale qualitative spatio-temporal reasoner

3.4 Related work

There are many reasoners that have implemented QSTR techniques to determine algebraic clo-

sure for QCNs. Related work can be divided into two categories, reasoners that take traditional

approaches to QSTR, and reasoners designed specifically to reason over large scale qualitative

constraint networks.

3.4.1 Traditional approaches to QSTR

Allen’s original path consistency algorithm for Interval Algebra was discussed in section 2.1.5.

Since the publication of Allen’s IA paper several QSTR reasoners have been developed that use his

original algorithm as the basis for determining ⋄-consistency for qualitative constraint networks.

The most notable of these are Nebel’s solver, [41], Renz’s solver [51] and GQR [70].

These reasoners use a variety of optimisations to speed-up the computation of algebraic clo-

sure. These include different methods for computing composition, skipping techniques, and or-

dering of relations to determine which edges in a QCN should be processed first.

The basic method for computing composition involves using a nested loop to look-up the

composition of basic relations using a |B| · |B| composition table. Similar to the pre-computation

of composition and intersection described in section 3.3.1, various approaches have been used

to speed-up this part of the reasoning process. For example, Renz’s solver, which focusses only

on RCC8, simply pre-computes all compositions to generate a 256 x 256 table. Composition then

involves a single look-up. For more generalised reasoners this approach isn’t always possible.

For example, the RCC-23 calculus, which features 23 basic relations, would require a 223 · 223

table which can prove impractical. Hogge’s method is a middle ground where relations are pre-

computed, but stored in four separate tables. Composition is then limited to four array accesses

[9]. Such an approach is used in the GQR reasoner.

Many reasoners also skip some composition operations where it is known in advance that the

result of composition will result in the universal relation e.g. if one of the relations involved is the

universal relation, the result will also be the universal relation. Rules for specific calculi have also

been implemented e.g. in the case of Interval Algebra, if one relation contains the basic relation

b(before) and the other contains bi(after) there is no value in computing the result of composition

as the result will be the universal relation.

The order in which edges are processed can effect reasoning performance. Some compositions

result in strong, highly constrained relations, whereas other compositions result in weaker rela-

tions. Consider the following example adapted from van Beek [9]. If we first derive the relation

between x and z using the following composition x{di}y ⋄ y{d}z → x{o, oi, s, si, d, di, f , f i, eq}z,

this new relation is stronger than the universal relation, therefore x{o, oi, s, si, d, di, f , f i, eq}z will

be placed on the queue to be used as the basis for further inferences. If a relation between x and

z is then derived using different edges e.g. x{ f i}w ⋄ w{d}z → x{o, s, d}z, the relation between x

and z will be updated again, and again placed on the queue. However, if the composition using

52

Chapter 3. ParQR: A large scale qualitative spatio-temporal reasoner

the edges (x,w) and (w,z) was done first, the (x,z) edge would only be placed on the queue once,

as the second composition results in a weaker relation. Clearly reducing the number of times an

edge is added to the queue will have an impact on reasoning runtimes. There are various heuris-

tics that can be used to predict which edges will generate stronger relations e.g. a simple heuristic

would simply give priority to edges featuring basic relations over disjunctive relations.

The current state of the art in terms of QSTR systems is GQR. This is a generalised reasoner

that uses weight and cardinality heuristics, and can determine an appropriate strategy for pre-

computing composition tables based on the input calculi [70].

A limitation of all the main traditional approaches to QSTR, including GQR, is that they

maintain a representation of the complete network in memory. Typically implemented as a 2-

dimensional array, this leads to O(n2) space requirements, see Algorithm 1. Reasoning over what

might not appear to be an especially large network of 10,000 nodes would require the reasoner to

store 100,000,000 relations between these nodes.

3.4.2 Reasoning with large scale qualitative constraint networks

In recent years there has been significant interest in reasoning over large scale qualitative con-

straint networks. Given the scalability limitations of traditional approaches to QSTR, a number

of different techniques have been used to determining ⋄-consistency for QCNs.

Partial ⋄-consistency using chordal networks Beik and Hammond [12] first introduced the no-

tion of partial algebraic closure. Partial algebraic closure is achieved by executing the following

operations until a fixed point is reached.

∀{vi, vj}, {vi, vk}, {vj, vk} ∈ E, C(vi, vj) ∩ (C(vi, vj) ⋄ C(vj, vk))→ C(vi, vj)

This is very similar to the algebraic closure formula presented in section2.1.5. The key differ-

ence is that partial algebraic closure doesn’t consider the relation between every pair of variables

in a QCN, it only considers edges that are part of the input QCN. Consequently, algorithms for

deciding partial algebraic closure are more efficient. They complete in O(δ · |E| · |B|) time, where

δ is the maximum degree of the graph, |E| is the number of edges and |B| the number of basic

relations in the calculus, see [12] for full details.

In the general case, partial algebraic closure isn’t equivalent to algebraic closure. However, if

a QCN is chordal then partial algebraic closure is sufficient for deciding ⋄-consistency.

A chordal network is one where any cycles that feature four or more vertices also feature an

edge (a chord) between two of the vertices in the cycle. This results in a network where the holes

have a size of three. Checking whether or not a graph is chordal can be done in O(|V|+ |E|) time.

If a graph isn’t chordal then it is possible to make it chordal by adding edges, known as fill edges,

to the graph using a process known as triangulation. Again there are efficient algorithms that will

add fill edges to a graph. However, minimal chordal completion i.e. adding the minimum number

of fill edges necessary in order to make a graph chordal has been shown to be NP-Complete [73].

53

Chapter 3. ParQR: A large scale qualitative spatio-temporal reasoner

Sioutis and Koubarakis [62] consider computing algebraic closure for chordal networks. Using

partial algebraic closure and chordal networks, they were able to limit the number of inferences

made, and reason efficiently over large scale networks. Using a reasoner called Sarissa that uses

these techniques, they were able to reason over an RCC8 network made up of 590,443 edges in 6

seconds [60]. Another key feature of Sarissa is that it doesn’t maintain a copy of the complete net-

work in memory, it only stores the edges of the chordal graph, so isn’t limited by the O(n2) space

requirements of traditional approaches to QSTR. The limitation of the triangulation approach is

that it is only really suited to sparse network. Making dense networks chordal can often require

many fill edges to be added to a network which results in an even denser network where the

benefits of reasoning using partial algebraic closure become limited [60].

Partitioning QCNs An alternative approach to the problem of reasoning over large scale QCNs

is to split a network into smaller parts, reason over each part separately and use these sub-

network results to draw conclusions about the consistency of the complete network.

Doing this is possible for constraint calculi that have the patchwork property. For calculi with

the patchwork property, if we have two ⋄-consistent QCNs, and these two QCNs are unified

into a single larger network, as long as the unified QCNs agree on the relations between the

variables they have in common, this larger network will also be ⋄-consistent [34] i.e. the two

consistent networks can be patched together to create a larger also consistent network. There

are many qualitative constraint calculi that display the patchwork property including the Point

Algebra, and tractable subset of both RCC8(Ĥ8) and IA(HIA).

If partitioning is used, deciding ⋄-consistency for large scale networks then partially becomes

a problem of efficiently partitioning a network. However, graph partitioning is an NP-hard

problem, with partitioning tools such as METIS 2 relying on approximation algorithms. The most

notable reasoner to use network partitioning is the gp-rcc8 [45] reasoner. It delegates the parti-

tioning to METIS and is then able to reason over RCC8 sub-networks using a parallel, but not

distributed approach. The experimental evaluation of gp-rcc8 presented in [60] shows mixed

results. gp-rcc8 is able to reason over large scale networks consisting of 5 million edges in 377

seconds. However, as noted in [60] this was only after some experimentation with partitioning

parameters to generate suitably sized sub-networks. Furthermore, a significant proportion of this

time was spent partitioning the network; such an approach is always going to be dependent on

how easy the network is to partition.

Distributed approaches to large scale QSTR There are QSTR systems that, like ParQR, take

a parallel distributed approach to reasoning. MRQUSAR [40] and MRQUTER[29] both use the

MapReduce framework to implement distributed spatial(MRQUSAR) and temporal(MRQUTER)

reasoners. QCNs consisting of 6 million edges were used in an evaluation of MRQUSAR showing

that it can handle large scale networks. However, both reasoners show limitations. They both take

2http://glaros.dtc.umn.edu/gkhome/metis/metis/overview

54

Chapter 3. ParQR: A large scale qualitative spatio-temporal reasoner

quite a simple approach to determining algebraic closure e.g. they don’t feature optimisations

such as those presented in Section 3.2. Furthermore, they were evaluated using synthetically

generated networks with attributes that posed few challenges for computing algebraic closure.

For example, the evaluation for MRQUSAR used networks that don’t have any cycles, and each

vertex had a degree of one.

3.5 Evaluation

The performance of ParQR was been evaluated using a number of different experiments. The

purpose of the evaluation was to find answers to the following questions:

• Can ParQR successfully reason over large scale datasets?

• Does the reasoning approach implemented in ParQR scale effectively?

• How does ParQR compare to existing state of the art reasoners?

In order to answer these questions a number of different datasets were used as the basis for

the experiments, both synthetically generated QCNs and real world knowledge graphs.

3.5.1 Synthetically generated QCNs

Table 3.1: Synthetically generated interval algebra networks used in experiments 1-5

Experiment No. of Nodes No. of Edges Ave. Degree Ave. Label Size

1 30,000,000 - 150,000,000 30,000,000 - 150,000,000 2 1

2 6,000 - 30,000 30,000 - 150,000 10 1

3 100,000,000 - 500,000,000 100,000,000 - 500,000,000 2 6.4

4 2,000,000 - 10,000,000 10,000,000 - 50,000,000 10 6.4

5 30,000,000 30,000,000 2 1

Synthetically generated QCNs were needed to test the capabilities of the reasoner. By varying

the numbers of nodes, edges and labels in a network it is possible create a wide range of QCNs

that can be used to identify the strengths and limitations of the reasoner. Previous research into

spatio-temporal reasoners used a variety of methods for generating QCNs that could be used

for evaluation purposes. The approach taken to creating synthetic QCNs for this evaluation was

based on the H-model [51] which in turn was based on the S(n,p) model [9]. The H-model accepts

three parameters, the number of nodes, the average degree for nodes in the network, and the

average label size. Label size refers to the cardinality of the relation e.g. the edge x{o, s, d}z has

a label size of three. Using these input parameters, Interval Algebra networks were generated.

First intervals were created simply by randomly selecting points on a line. Then basic relations

between these intervals were computed to obtain the desired average degree for the network.

55

Chapter 3. ParQR: A large scale qualitative spatio-temporal reasoner

Finally, if a label size greater than one was needed, the basic relations were replaced with disjunc-

tive relations that were randomly selected from the HIA subset. To ensure the resulting network

would be consistent, these swaps were limited to disjunctive relations that contained the original

basic relation. The characteristics of the synthetically generated QCNs used in the experiments

are shown in Table 3.1. QCNs featuring an increasing number of nodes were used in experiments

1-4. Experiment 5 focussed on speed-up, scalability with respect to computing resources. There-

fore a fixed QCN size was used, and this same QCN was reasoned over using different sized

computing clusters.

3.5.2 Real world knowledge graphs

A number of large scale knowledge graphs have been used in previous experimental evalua-

tions of qualitative spatio-temporal reasoners, see Table 3.2. As such they form somewhat of a

benchmark that can be used to compare the performance of different reasoners. For example, the

evaluations presented for gp-rcc8 [45] and Sarissa [60] use these knowledge graphs .

The knowledge graphs shown in Table 3.2 vary in size and degree, and at the time of writing

represent the largest real world QCNs that reasoners have been asked to work with. All the QCNs

are RCC8 networks.

Two of these QCNs, GADM1 and GADM2, feature inconsistencies. These inconsistencies are

quickly identified during the first round of reasoning. Therefore, in order to fully test the ca-

pabilities of reasoners, these inconsistencies were removed. A second reason for removing the

inconsistencies and checking for ⋄-consistency again is that there may be additional inconsisten-

cies which can only be identified at later rounds of reasoning.

Table 3.2: Real world knowledge graphs used in experiment 6

Nodes Edges Ave: Degree Ave. Label Size

NUTS 2235 3176 2.84 1.99

ADM1 11761 44833 7.62 1

GADM1 42749 159600 7.46 1

GADM2 276727 590443 4.26 1.99

ADM2 1732999 5236270 6.04 1.98

3.5.3 Experiment setup

ParQR was written using the Scala3 programming language and the Apache Spark distributed

programming framework. Experiments were conducted using computing clusters provided by

Google Dataproc4, a cloud based service for running large scale data processing. For experiments

1-4 a computing cluster made up of 16 machines was used. Each machine was equipped with

3https://www.scala-lang.org/
4https://cloud.google.com/dataproc

56

Chapter 3. ParQR: A large scale qualitative spatio-temporal reasoner

8 virtual CPUs and 52 GB of memory. Experiment 5 was concerned with speed-up. For this

experiment the same machine type was used (8 vCPUS and 52 GB of memory) but the number of

machines in the computing cluster was varied. Clusters of sizes 2, 4, 8 and 16 were used. For all

the experiments reasoning times were limited to 1 hour.

Experiment 6, reasoning using real world knowledge graphs, used the same 16 machine clus-

ter used in experiments 1-4.

For the majority of experiments the smart strategy was used by ParQR. However, in some

cases a linear strategy was used. If the linear strategy was used, this is clearly described in the

analysis of results.

3.5.4 Results for synthetically generated knowledge graphs

30 60 90 120 150

500

1,000

1,500

2,000

Input(million)

Ti
m

e(
se

cs
)

Figure 3.5: Experiment 1: Runtime as a

function of input size on HIA IA network

instances H(n,2,1)

30 60 90 120 150

200

400

600

800

1,000

Input(million)

O
ut

pu
t(

m
ill

io
n)

Figure 3.6: Experiment 1: Data volume out-

put as a function of input size on HIA IA

network instances H(n,2,1)

Experiment 1

Figure 3.5 shows the runtime for Experiment 1 which involved reasoning using basic relations

with an average degree of two. In the context of QSTR these are huge networks. The reasoner is

able to handle networks with an input size of 150 million relations. For the largest of these QCNs,

the reasoning results in an Interval Algebra network consisting of just over 1 billion relations,

see Figure 3.6. Furthermore Figure 3.5 shows how the reasoner is able to scale effectively, linear

regression analysis shows an R2 value of 0.9974, runtime grows proportionally as the input size

does.

Experiment 2

Experiment 2 involved the use of much denser networks. Like Experiment 1 basic relations were

used when constructing the QCNs, but the average degree for each node was increased to ten.

This presented a much greater challenge for ParQR. This can be seen in the runtimes in Figure 3.7

57

Chapter 3. ParQR: A large scale qualitative spatio-temporal reasoner

30 60 90 120 150

1,000

2,000

3,000

Input(thousand)

Ti
m

e(
se

cs
)

Figure 3.7: Experiment 2: Runtime as a

function of input size on HIA IA network

instances H(n,10,1)

30 60 90 120 150
0

200

400

Input(thousand)

O
ut

pu
t(

m
ill

io
n)

Figure 3.8: Experiment 2: Data volume out-

put as a function of input size on HIA IA

network instances H(n,10,1)

which are longer than Experiment 1, even though much smaller networks have been used - thou-

sands of edges, not millions. Moreover, the runtime no longer scales linearly as the input size

increases, instead the runtime approaches quadratic growth. Regression analysis confirms this

with an R2 value of 0.9966. This can be explained by the reasoner output which also no longer

grows linearly. The denser networks result in many more possible derivations e.g. reasoning us-

ing an input QCN of 150,000 edges results in final network size of 513,000,000 edges (see Figure

3.8). Even taking this into account, it may still seem unusual that the runtimes for Experiment

1 are significantly shorter. The total network sizes generated in Experiment 1 are larger, up to a

billion edges so we might expect the Experiment 1 runtimes to be longer. However, the results

can be explained by considering the analysis in Section 3.3.4; in dense networks the join can be

very large and result in many relations between two nodes being derived within a single iteration.

Many of these relations are subsequently filtered out, either because they are the universal rela-

tion, see Algorithm 3, or due to the reduceByKey phase in the consistency stage, so they don’t show

in the final dataset sizes. In fact, the join size was so large that it was necessary to use a linear

join strategy rather than a smart strategy for Experiment 2. Although a linear strategy requires

a greater number of iterations, the volume of data being processed within any given iteration is

smaller, allowing the reasoner to cope with larger QCNs. Of course, the additional iterations add

to the runtime, which also helps to explains the difference in execution time between Experiment

1 and Experiment 2.

Experiment 3 and Experiment 4

Experiment 3 was a repeat of Experiment 1 but the QCNs featured disjunctive relations. Figure

3.9 and Figure 3.10 show the results. Again, ParQR was able to handle very large scale knowledge

graphs, this time consisting of 500 million edges. Like in Experiment 1, the runtimes and output

QCN sizes scale linearly with respect to the input sizes. The runtimes for Experiments 3 are faster

than Experiment 1, and this can be explained by the fact that fewer derivations are possible e.g. an

58

Chapter 3. ParQR: A large scale qualitative spatio-temporal reasoner

100 200 300 400 500

1,000

2,000

Input(million)

Ti
m

e(
se

cs
)

Figure 3.9: Experiment 3: Runtime as a

function of input size on HIA IA network

instances H(n,2,6.4)

100 200 300 400 500

500

1,000

Input(million)

O
ut

pu
t(

m
ill

io
n)

Figure 3.10: Experiment 3: Output as a

function of input size on HIA IA network

instances H(n,2,6.4)

10 20 30 40 50

500

1,000

1,500

Input(million)

Ti
m

e(
se

cs
)

Figure 3.11: Experiment 4: Runtime as a

function of input size on HIA IA network

instances H(n,10,6.4)

10 20 30 40 50

200

400

600

Input(million)

O
ut

pu
t(

m
ill

io
n)

Figure 3.12: Experiment 4: Output as a

function of input size on HIA IA network

instances H(n,10,6.4)

input QCN featuring 100 million edges results in an output consisting of 265 million edges. This is

a consequence of using disjunctive relations. The results of composition for disjunctive relations

are much more likely to result in the universal relation, which can’t be used for further inferences,

and then limits total the number of inferences that algebraic closure generates. Experiment 4

was a repeat of Experiment 2, but used disjunctive relations. Compared to Experiment 3, the

denser knowledge graphs lead to a greater number of inferences being made, and result in slower

runtimes, Figure 3.11 and Figure 3.12. However, unlike Experiment 2, the runtime and output still

show linear growth. The presence of the disjunctive relations acts to limit the number of relations

inferred by the reasoner meaning much large networks can be used than in Experiment 2.

Experiment 5

Figure 3.13 shows the results for Experiment 5 where scalability was considered in terms of

59

Chapter 3. ParQR: A large scale qualitative spatio-temporal reasoner

2 4 8 16

1,000

2,000

3,000

4,000

Number of machines

Ti
m

e(
se

cs
)

Figure 3.13: Experiment 5: Runtime as a

function of number of machines in the com-

puting cluster

2 4 8 16
0.5

1

1.5

2

Number of machines

Sc
al

ed
Sp

ee
d-

U
p

Figure 3.14: Experiment 5: Scaled speed-up

the cluster size used to execute ParQR’s algorithms. As expected, runtime improves significantly

as the number of machines used to process the knowledge graph are doubled. This indicates the

algorithms are able to parallelise large parts of the processing effectively to speed up program

execution. Figure 3.14 shows scaled speed-up. Scaled speed-up is a standard metric used to

measure the performance of parallel systems and is specified as t1
tn
÷ n where t1 is the execution

for a single node, n is the number of nodes in the cluster, and tn the execution time for the n-

node cluster. Because of the size of the QCN, a two node cluster was used as the baseline with

the scaling factor being divided by two. Ideally we would like to see a scaled speed-up of at

least one, when we double the number of machines in the cluster we half the reasoning times.

Figure 3.14 shows super linear speed i.e. scaled speed-up greater than one, which again shows

the algorithms allow for effective parallelisation. From 8 machines to 16 machines the speed-up

slows. However, this is fairly typical for parallel distributed systems. At some point the benefits

of further parallelisation for the specific dataset become limited, at the same time the overheads

such as transferring data between different machines in the cluster increase with the number of

machines.

3.5.5 Comparison with other reasoners

The performance of ParQR was compared to two existing reasoners, GQR and Sarissa, see Section

3.4 for details on these reasoners. GQR was chosen as it is widely considered to be the most so-

phisticated of the qualitative spatio-temporal reasoners that aren’t designed specifically for work-

ing with large scale datasets. Sarissa was chosen as the research presented in [60] indicate it is the

most capable of the reasoners that are designed specifically to tackle large scale spatio-temporal

knowledge graphs. Neither the GQR or Sarissa reasoners are designed to work in a distributed

environment. Therefore experiments for these reasoners were conducted using a single machine

that had 8vCPUs and 52GB RAM.

60

Chapter 3. ParQR: A large scale qualitative spatio-temporal reasoner

Size of Largest QCN (edges)

Experiment GQR Sarissa

1 - 30,000,000

2 - -

3 - -

4 - -

Table 3.3: Largest datasets reasoners could decide ⋄-consistency for

Synthetically generated IA networks

Experiments 1-4 were repeated using both GQR and Sarissa, the results are shown in Table 3.3

which shows the maximum network size that the reasoner could successfully handle. A dash

indicates the reasoner was unable to compute ⋄-consistency for the smallest network used in the

experiment. Neither reasoner was able to successfully reason over the large scale networks that

ParQR could. The largest QCN that GQR could reason over was for Experiment 1 and consisted of

10,000 edges. As described in section 3.4.1 GQR stores a complete network in memory, resulting

in O(n2) space requirements. Clearly, using such as approach, the memory limits of a single

machine are unable to cope with large scale networks. Sarissa did return a result for Experiment

1. It was able to decide ⋄-consistency for a 30 million node network in 782 seconds. This is the

smallest network used in Experiment 1. Even though Experiments 2 and 4 used smaller networks

Sarissa failed to complete for these knowledge graphs. Experiments 2 and 4 use denser networks,

which are less suited to the triangulation technique used in Sarissa.

Runtime (seconds)

Knowledge Graph ParQR GQR Sarissa

NUTS 93 (smart strategy) 1.0 0.1

ADM1 211 (linear strategy) - 395.6

GADM1 240 (linear strategy) - 794.6

GADM2 476 (linear strategy) - 5.8

ADM2 1702 (linear strategy) - 662.8

Table 3.4: Runtime for computing ⋄-consistency for real world knowledge graphs (Experiment 6)

Real world knowledge graphs

Table 3.4 shows the runtime for computing ⋄-consistency for the real world knowledge graphs.

The NUTS dataset is comparatively small in size, made up of just 3176 edges. Compared to

Experiments 1-4, ParQR was fast, deciding ⋄-consistency in just 93 seconds. However, the dis-

tributed approach was much slower than both GQR and Sarissa that were able to decide consis-

61

Chapter 3. ParQR: A large scale qualitative spatio-temporal reasoner

tency rapidly, in 1.0 seconds and 0.1 seconds respectively. Consistent with the results in Table

3.3 this was the largest network GQR was able to successful reason over. The other knowledge

graphs in Table 3.4 either failed to fit in memory or the runtime exceeded the 1 hour limit.

Both ParQR and Sarissa were able to successfully reason over all the networks. As expected

Sarissa performed especially well on the most sparse of these networks, GADM2, completing

in just 5.8 seconds. ParQR was able to outperform Sarissa for the denser networks (ADM1 and

GADM1). For the sparse networks there is a big difference in runtime between ParQR and Sarissa.

However, this isn’t surprising. A distributed approach has inevitable overheads e.g. partitioning

and distributing data to different machines in the network, and shuffling data between machines

for operations such as join or reduceByKey. In an attempt to lessen the impact of these factors,

ParQR was tested using the NUTS knowledge graph on a single machine. This resulted in a run-

time of 55 secs. This is faster than the 16 machine cluster, but still considerably slower than GQR

and Sarissa. Even without the network communication costs, the use of a distributed framework

still places an additional burden on runtime e.g. data is still partitioned.

It is also worth comparing the runtimes for the real-world networks to the times recorded

in Experiments 1-4. A knowledge graph such as ADM2 features ≈5 million edges and has an

average degree of 6.04. It is denser than the knowledge graphs used in Experiment 1, but less

dense than those used in Experiment 2. Even so, the runtime of 1702 seconds is longer than

might be expected. The synthetically generated knowledge graphs, used in Experiment 1 were

randomly generated leading to a uniform distribution of edges. A knowledge graph such as

ADM2 has a structure that is scale-free [61] where the distribution of edges follows a power law

resulting in a small number of nodes with a large number of edges. In a distributed environment

this can lead to data skew. For example at the inference stage all the joins for a given node are

processed by the same executor within the same partition, which can lead to uneven workloads

between machines in the cluster. Even though tasks can run in parallel, the runtime is always

bound by the time it takes for the longest running task to complete.

Although it wasn’t needed for the datasets presented here there are strategies that can be used

to cope with heavily skewed datasets. These include broadcasting, see Chapter 2, or salting keys

to distribute the join more evenly.

Inflated graphs Sarissa was much faster that ParQR for the sparser, real world knowledge

graphs. A final experiment was run that considered how large these knowledge graphs would

need to be either for ParQR to decide consistency faster than Sarissa or for Sarissa to be unable

to cope with the size of the network. In order to do this the original knowledge graphs were ’in-

flated’. The knowledge graphs were copied, with the nodes of the copied graph being renamed

to avoid duplicates with the original. By generating multiple copies of the knowledge graph

and then combining these copies into a single graph, it was possible to create successively larger

QCNs that maintained similar characteristics to the original knowledge graph, and could be used

to compare Sarissa and ParQR. Figure 3.15, Figure 3.16 and Figure 3.17 show the results of these

62

Chapter 3. ParQR: A large scale qualitative spatio-temporal reasoner

experiments. Sarissa was able to reason over all the knowledge graphs faster than ParQR until

the knowledge graph reached a size where Sarissa was unable to complete. This is shown on

the charts as a missing data point for Sarissa. For NUTS it was a QCN consisting of 25 million

relations, for GADM2 the inflated graph was 30 million relations in size, and for ADM2 it was 31

million relations. These results and those of Experiments 1-4 indicate an upper limit of approxi-

mately 30 million relations for the size of knowledge graph that can be successfully handled by

Sarissa.

0 10 20

0

2,000

4,000

6,000

Input(million)

Ti
m

e(
se

cs
)

Sarissa
ParQR

Figure 3.15: Runtime as a function of input size on scaled NUTS instances

0 10 20 30

0

500

1,000

Input(million)

Ti
m

e(
se

cs
)

Sarissa
ParQR

Figure 3.16: Runtime as a function of input size on scaled GADM2 instances

3.5.6 Conclusions

Summary Chapter 3 has presented ParQR, a distributed qualitative spatio-temporal reasoner.

The reasoner uses novel techniques to implement ⋄-consistency algorithms in a distributed envi-

ronment. It features several optimisation that allow it to deal with large scale knowledge graphs

including:

• Efficient join strategies that prevent duplicate derivations.

63

Chapter 3. ParQR: A large scale qualitative spatio-temporal reasoner

10 20 30

2,000

4,000

Input(million)
Ti

m
e(

se
cs

)

Sarissa
ParQR

Figure 3.17: Runtime as a function of input size on scaled ADM2 instances

• Pre-computing calculi operations that speed-up processing and allow for streamlined data

structures.

The reasoner has been shown to efficiently compute algebraic closure for qualitative constraint

networks of very large sizes. For example, the experimental evaluation showed ParQR was able

to reason over a synthetic dataset consisting of 150,000,000 edges. The evaluation presented in

this chapter has compared ParQR to existing state of the art reasoners. Compared to traditional

approaches to QSTR such as GQR, ParQR is able to handle QCNs of far greater size.

ParQR was also compared to Sarissa, a reasoner that is also designed to handle large scale

networks. Although the results for the real world knowledge graphs showed that Sarissa was

often able to compute algebraic closure faster than ParQR, Sarissa was unable to successfully

handle all the knowledge graphs presented in the evaluation; a QCN consisting of 30 million

edges was largest knowledge graph that Sarissa was able to handle.

Discussion Sarissa was able to outperform ParQR in a runtime comparison for many of the real

world knowledge graphs. However, the distributed approach adopted in ParQR inevitably leads

to longer runtimes so this isn’t really a ’like for like’ comparison. Furthermore, the evaluation has

exposed two limitations of a reasoner such as Sarissa.

First, reasoners such as Sarissa tackle the problem of large scale QCNs by re-framing the prob-

lem as one of triangulation, similarly gp-rcc8 re-frames the problem as graph partitioning. As

a consequence they are hampered by the limitations of the specific technique they use to avoid

directly reasoning over large-scale networks. For example, Sarissa only has utility if the network

is sparse and can be easily chordally completed. Similarly, gp-rcc8 is only effective if a suitable

partitioning strategy can be found.

The second limitation is simply one of scale. Even if the characteristics of the knowledge graph

make it suitable for partitioning or triangulation, there is still an upper limit in terms of the size of

network that can be managed using a single machine approach. In the future the potential exists

for there to be many more qualitative knowledge graphs of sizes even larger than those presented

64

Chapter 3. ParQR: A large scale qualitative spatio-temporal reasoner

in Table 3.2, for example IoT applications, reasoning over these will likely require a distributed

approach such as that shown in ParQR.

65

Chapter 4

Enhanced spatial knowledge graph

generation

Chapter 3 presented techniques for large scale distributed qualitative spatio-temporal reasoning.

Chapters 4 and 5 of this thesis considers how QSTR techniques can be of use when querying large

scale knowledge graphs. Chapter 5 describes ParQR-QE, a query engine that uses QSTR to answer

spatial queries. However, before considering query answering, it is first necessary to consider the

requirements for the type of knowledge graph that can be used as a basis for spatial querying and

how such a knowledge graph can be created. This is the focus of this chapter, the creation of a

large-scale enhanced knowledge graph capable of supporting a range of spatial queries.

4.1 Introduction

Many large scale semantic knowledge graphs such as YAGO 1 and DBpedia 2 have a spatial

element to them. Spatial data is represented in these knowledge graphs in a number of ways.

There are quantitative spatial triples where the object of the triple is a point geometry with latitude

and longitude values. In YAGO these triples are defined by the schema:geo predicate e.g.

yago:Belgium schema:geo geo:50.641,4.668

There are also qualitative spatial triples. For example, in YAGO there are triples featuring the

schema:containedInPlace predicate.

yago:Wellington_Museum,_Waterloo schema:containedInPlace yago:Waterloo,_Belgium

However, spatially querying such datasets is problematic for a number of reasons. To illustrate

these problems a subset of the YAGO knowledge graph is shown in Table 4.1. The spatial elements

of this knowledge graph are shown on a map in Figure 4.1.

1https://yago-knowledge.org/
2https://www.dbpedia.org/

66

Chapter 4. Enhanced spatial knowledge graph generation

subject property object

yago:Belgium rdf:type schema:Country

yago:Belgium schema:geo geo:50.641,4.668

yago:France rdf:type schema:Country

yago:France schema:geo geo:47,2

yago:Grand_Est rdf:type yago:Regions_of_France

yago:Grand_Est schema:geo geo:48.598,7.759

yago:Hauts-de-France rdf:type yago:Regions_of_France

yago:Hauts-de-France schema:geo geo:49.920,2.70

yago:Bastogne_War_Museum rdf:type schema:Museum

yago:Bastogne_War_Museum schema:geo geo:50.010,5.739

yago:Musée_Hergé rdf:type schema:Museum

yago:Waterloo,_Belgium rdf:type schema:Place

yago:Waterloo,_Belgium schema:geo geo:50.71, 4.38

yago:Wellington_Museum,_Waterloo rdf:type schema:Museum

yago:Wellington_Museum,_Waterloo schema:containedInPlace yago:Waterloo,_Belgium

yago:Arlon schema:geo geo:49.68,5.81

yago:Arlon rdf:type schema:Place

Table 4.1: Subset of the YAGO knowledge graph

Belgium

Grand Est

Hauts de France

Musée Hergé
Waterloo

Arlon

Bastogne
War Museum

Figure 4.1: Map showing the location of point geometries from Table 4.1

Limitations of quantitative only reasoning

In traditional approaches to GIS, the focus is on quantitative data. However, large-scale knowl-

edge graphs are typically composed of a variety of disparate data sources, both quantitative and

67

Chapter 4. Enhanced spatial knowledge graph generation

qualitative, with neither providing a comprehensive coverage of all spatial information. Conse-

quently querying such a knowledge graph can lead to incomplete results. For example, consider

a window query such as the GeoSPARQL query W1 (the query polygon is the dotted rectan-

gle shown in Figure 4.1). Using quantitative querying techniques we could determine that the

Hergé Museum is within the query window. However, if we refer to Table 4.1 we can see that The

Wellington Museum has a containedInPlace relationship with Waterloo, and Waterloo is also within

the query polygon. Using a purely quantitative approach, the Wellington Museum wouldn’t be

included in the results.

Query 4.3: Query W1

SELECT ?m

WHERE{

?m rdf:type schema:Museum.

FILTER(geof:sfWithin (?m," POLYGON ((4.321423 50.5882119 ,4.6269803

50.5869041 ,4.625607 50.7435868 ,4.3207364 50.7448903 ,4.321423

50.5882119))"^^ geo:wktLiteral))

}

What is needed is a hybrid approach, once the spatial entities within the query window have

been identified, qualitative spatial reasoning is used to add in results from containedInPlace rela-

tions for these spatial entities.

Limitations of points

In semantic knowledge graphs such as DBpedia and Yago, geographic locations are approximated

in the form of a single point (centroid). While this can often suffice for smaller spatial entities such

as buildings or even towns and cities, representing large regions such as countries as a single set

of coordinates can result in inaccurate query results, and limit the type of queries that are possi-

ble. Query C1 shows a containment query, ’find all the museums in Belgium’. Even though all the

museums in Table 4.1 are within Belgium, the point based representations mean it isn’t possible

to run queries of this type. Similarly, other types of query such as adjacency queries e.g. Query

A3, find the French regions that border Belgium, aren’t possible using point based approximations.

Query 4.4: Query C1

SELECT ?m

WHERE {

?m rdf:type schema:Museum.

?m geo:sfWithin yago:Belgium.

}

Query 4.5: Query A3

SELECT ?r

WHERE {

68

Chapter 4. Enhanced spatial knowledge graph generation

?r rdf:type yago:Regions_of_France.

?r geo:sfTouches yago:Belgium.

}

A possible solution would be to replace the simple point based approximations for large re-

gions (countries, administrative areas) with full geometries i.e. polygons/multi-polygons. It

would then be possible to answer a wider variety of spatial queries.

Problems of scale

Vector based datasets covering all countries and regions on the globe do exist e.g. GADM 3, Open-

StreetMap 4. There are also country specific datasets such as the UK’s Ordnance Survey 5 dataset.

However, replacing point geometries with these high resolution polygons also brings challenges.

France’s geometry in GADM is a multi-polygon consisting of over three hundred separate poly-

gons and over 200,000 pairs of coordinates. Moreover, knowledge graphs such as YAGO and DB-

pedia can feature millions points. Geometric computation algorithms such as point-in-polygon

tests and polygon adjacency tests aren’t especially complex, but they do have time complexities

that are dependent on the number of coordinates in the geometries being tested [54]. Executing

spatial querying algorithms using a high volume of complex geometries can make query response

times unfeasible. Furthermore, solely relying on such an approach still doesn’t solve the problem

of incomplete information in the knowledge graph, and the need to perform qualitative reason-

ing.

4.2 Requirements for an enhanced knowledge graph

In order to address these issues an enhanced knowledge graph is needed where:-

• Accurate, high resolution geometries i.e. polygons/multipolygons are integrated into the

knowledge graph, and where appropriate these replace the simple point based approxima-

tions.

• Additional qualitative relations between spatial entities in the knowledge are computed e.g.

EC relations between regions, containment relations between points and regions. This will

then allow the knowledge graph to support qualitative spatial reasoning.

Figure 4.2 shows the knowledge graph from Table 4.1 with these enhancements. Figure 4.3

shows an updated map with polygons replacing the point based representations for countries and

regions e.g. France, Grand Est, and with additional regions not present in the original knowledge

graph e.g. Walloonie.

3https://gadm.org/
4https://www.openstreetmap.org/
5https://osdatahub.os.uk/downloads/open

69

Chapter 4. Enhanced spatial knowledge graph generation

The enhanced graph consists of three elements. The geometries (either points or polygons) for

spatial entities are stored in a geometries table, see Figure 4.2(c). An RCC8 network (Figure 4.2(a))

generated by computing relations between these entities and integrating existing qualitative spa-

tial relations e.g. the containedInPlace relation is mapped to a {TPP,NTPP} relation. And the triples

from the source knowledge graph vertically partitioned i.e. stored in two column tables, with a

separate table for each RDF predicate, see Figure 4.2(b).

subject object

yago:Belgium schema:Country

yago:Grand_Est schema:Administra�ve_Area

yago:Musée_Hergé schema:Museum

yago:Arlon schema:Place

… …

(b) rdf:type table

id geomid coords geomtype

yago:Belgium BEL#2 [[[…]]] polygon

yago:France FRA#23 [[[…]]] polygon

yago:Musée_Hergé yago:Musée_Hergé [[[…]]] point

yago:Hauts-de-France FRA.7_1#1 [[[…]]] polygon

… … … …

(c) geometries table

Belgium

Hauts de France
Grand_Est

France

Waterloo

WalloonieVlaanderen

Wellington Museum Bastogne War Museum

Musée Hergé

{EC}

{TPP/NTPP}

{NTPP/TPP}

{TPP/
NTPP}

{EC}

{TPP/NTPP}

{TP
P/N

TP
P}

{EC}
{EC}

{EC}
{EC}

{NTPP/TPP}

{N
TP

P/T
PP

}

{NTPP/TPP}

Arlon

{N
TP

P/
TP

P}

(a) RCC8 Network

Figure 4.2: Example enhanced knowledge graph

Using this enhanced knowledge graph, it is possible to execute a wider range of queries and

obtain more complete results. Query W1 was a window query. Executing this query can now

be done using a combination of quantitative and qualitative reasoning. First, the geometries of

spatial entities 4.2(c) can be checked to see if they are contained by the query window. This would

return Musée_Hergé and Waterloo (see Figure 4.3). Qualitative reasoning using these instances

and the RCC8 network in Figure 4.2(a) can then be used to infer that the Wellington Museum

should also be added to the results. These results can then be filtered using the rdf:type table to

leave only the museums.

70

Chapter 4. Enhanced spatial knowledge graph generation

Musée Hergé
Waterloo

Arlon

Bastogne
War Museum

Vlaanderen Belgium

Grand Est

Hauts de France

Walloonie

France

Figure 4.3: Updated map showing the regions as polygons

Using the more accurate geometries it is now possible to provide solutions to Queries C1 and

A3. However, these queries can also be answered using purely qualitative methods, by reasoning

over the RCC8 network. Without having to do any geometric computations, we can infer that all

the museums in the knowledge graph are within Belgium. Similarly, for Query A3, we can infer

that both Hauts-de-France and Grand Est are French regions that border Belgium. Moreover,

because potentially complex geometries don’t have to be checked, query answering solely using

qualitative reasoning may also provide performance benefits, with queries executing in faster

times than if a quantitative reasoning was used.

The remainder of this chapter describes the techniques used to integrate different datasets and

generate an enhanced knowledge graph such as that shown in Figure 4.2.

4.3 Source Datasets

In order to create the knowledge graph two source datasets are needed, a large scale knowledge

graph and a high quality spatial vector dataset. The example described here uses YAGO and

GADM.

4.3.1 YAGO 4

YAGO 4 6 is the latest version of the YAGO knowledge graph. The YAGO dataset was chosen

because it is large enough to warrant a distributed approach, it has a focus on precision, and has a

significant spatial dimension. As described in the introduction, spatial data is represented in the

knowledge graph in both quantitative and qualitative form. Specifically the English Wikipedia

6https://yago-knowledge.org/

71

Chapter 4. Enhanced spatial knowledge graph generation

version of the knowledge graph was used 7. This is made up of 209,591,985 triples, and includes

957,700 quantitative point-based schema:geo triples, and 1,109,652 schema:containedInPlace qualita-

tive spatial triples.

The YAGO 4 knowledge graph was downloaded in the N-Triples format. Using Spark, the

.nt files were parsed and stored in the Parquet format 8. Parquet is a distributed columnar data

storage format and was chosen for a number of reasons. Column based formats typically provide

faster retrieval when a limited subset of attributes for particular objects are needed. Furthermore,

depending on how the data has been partitioned, the Parquet format maintains statistics about

blocks such as min/max values with the block. In the case of queries featuring a WHERE clause

this can mean the entire table doesn’t need to be scanned, some blocks can be skipped, which

results in faster access times. The dataset was vertically partitioned by creating a separate table

for each of the 151 predicates in the knowledge graph. For example, Table 4.2 shows part of a

schema:hasOccupation table. Similar tables were generated for the other predicates in the knowl-

edge graph.

subject object

yago:Soe_Win_(prime_minister) yago:Politician

yago:Chimaobi_Nwaogazi yago:Football_player

yago:Finian_McGrath yago:Politician

... ...

Table 4.2: Vertically partitioned hasOccupation table

An important consideration when querying large scale RDF datasets is the data layout of the

storage. An obvious approach is to store the data as a single huge triples tables, made up of three

columns (subject, property, object), and a row for each RDF triple. However, executing anything

other than the simplest queries requires a self-join on this huge table. Each triple pattern in the

query maps to an access of the triples tables, the results of which are joined together [1]. Single

machine frameworks such as RDF-3X [43] take such an approach. However, by generating mul-

tiple indexes for the table, RDF-3X provides optimised data access for different query types, and

fast query execution times are possible, specially if the predicates are selective. The triple table ap-

proach is less suited to a distributed environment. The triple table would need to be distributed,

but doing so creates problems for indexing, where global indexes are difficult to implement and

maintain in a distributed environment [56]. An alternative is the property table approach, where

similar instances are grouped together in separate tables. The columns for these tables are the

properties these entities have in common e.g. a BookType table might have rows for each instance

of the type Book, and columns for the title, author, publication date etc. This layout can work

effectively for star-shaped queries i.e. where we need to retrieve multiple properties for an in-

stance, as this simply requires filtering on a single table. However, other query shapes e.g. linear
7https://yago-knowledge.org/data/yago4/en/
8https://parquet.apache.org/

72

Chapter 4. Enhanced spatial knowledge graph generation

queries are more problematic. Furthermore, the graph like nature of RDF means not all instances

of the same type will have all the properties defined in the table, leading to lots of NULL values.

Also multi-valued properties, just like in the relational model, can’t easily be accommodated by a

property table approach [1].

The approach adopted here is to use vertical partitioning (VP). Vertical partitioning splits

knowledge graph into separate tables, one table for each property. The resulting tables each have

two columns, for the subject and object linked by the property. Such an approach addresses many

of the issues related to property tables. For example, there is no need for NULL values when

subjects of a certain type don’t have a particular property. Subjects with multiple values for a

property can be easily accommodated as additional rows in the property table. However, the

biggest advantage in a distributed environment, is that VP can significantly limit the volume of

data that needs to be read. Only tables whose properties are referenced in the query need to be

read. This reduction in input leads to to faster query times [56].

4.3.2 GADM

The Database of Global Administrative Areas (GADM) is a high resolution, vector based dataset

of countries and their administrative areas. The most recent version of the GADM dataset, GADM

3.6, was used. The dataset covers the whole of the Earth. The data is organised in layers, for

example layer 0 contains the boundaries of countries, layer 1 the first level administrative areas

within countries. Depending on the country there may be further subdivisions e.g. French regions

are divided into departments (level 2), and then arrondissements (level 3), cantons (level 4) and

communes (level 5). The work in this thesis only uses layer 0 and layer 1. Further layers could be

used if needed, but by using the first two layers, we get a knowledge graph that is rich enough to

allow for QSTR and large enough to require a distributed approach to processing. In layer 0 there

are 256 different countries, and in layer 1 there are 3610 administrative regions.

On the face of it, the dataset doesn’t appear especially challenging to deal with. However, the

dataset has a high resolution, with many of the geometries being large and complex. For example,

Canada is a multi-polygon made up of 24,481 polygons and 3,889,947 vertices. The size of these

geometries proved to be the biggest obstacle when processing the dataset. Distributed computing

frameworks such as Spark are designed to deal with a high volume of records that have simple

data structures. These simple records can be easily shuffled and joined, and the high volume al-

lows for effective parallelisation. In comparison the GADM dataset is made up of a small number

of large records with a complex, nested data structure for the region geometry. Executing oper-

ations such as joins using such a dataset can be difficult using distributed frameworks such as

Spark.

GADM data is available as shapefile 9. Using MapShaper 10, layer 0 and layer 1 were extracted

in GeoJSON format. This formed the input to Spark. The GeoJSON data for each layer was parsed

9https://gadm.org/download_world.html
10https://mapshaper.org/

73

Chapter 4. Enhanced spatial knowledge graph generation

and, like the YAGO data, stored in Parquet format, see Table 4.3.

Multi-polygon regions were split into separate polygons e.g. the United Kingdom is a multi-

polygon made up of 920 separate polygons, each polygon was stored as a separate row. This

resulted in 116,995 polygons for layer 0 and 117,891 polygons for layer 1. For many operations,

the simpler polygon representation will suffice. For example, consider attempting to determine

if a specific administrative area has an TPP relationship with its parent country. If a spatial index

indicates that only one of the country’s polygons possibly contains the administrative area, it

isn’t necessary to check against all the different parts of a country, which will clearly speed up

geometric computation. Furthermore, dealing with a higher volume of simpler data structures,

that can be operated on in parallel, makes the dataset more suited to distributed processing.

regionid polygonid name coords partid polycount

BEL.2_1 BEL.2_1#1 Vlaanderen [[[50.7603,5.692... 1 4

BEL.2_1 BEL.2_1#2 Vlaanderen [[[51.4544,4.963... 2 4

BEL.3_1 BEL.3_1#2 Wallonie [[[50.75196,3.18... 2 2

FRA.6_1 FRA.6_1#1 Grand-Est [[[48.39027,3.41... 1 1

FRA.7_1 FRA.7_1#1 Hauts-de-France [[[51.05625,2.34... 1 2

FRA.7_1 FRA.7_1#2 Hauts-de-France [[[48.85191,3.48... 2 2

...

Table 4.3: GADM polygon table

The data structure presented in Table 4.3 forms the basis for many of the tasks that are per-

formed when generating and querying the enhanced knowledge graph so it is worth noting some

features of this table:

• Each administrative area has a unique identifier, a regionid, which comes directly from the

original GADM dataset and is based on the ISO 3166 standard e.g. FRA for France. These

are hierarchical, for example, BEL.2_1 indicates a level 1 administrative area.

• As described above, multi-polygons are stored as separate polygons. Consequently an ad-

ditional unique identifier, polygonid, was generated for each polygon based on the regionid

and a simple numbering of the polygons for that region e.g. BEL.2_1#3 is the third polygon

that makes up the region with a regionid of BEL.2_1. It was also necessary to maintain the

number of polygons that make up the region (polycount). For some operations and queries

e.g. is a region within a query window, it is necessary to know whether all the polygons

that make up the region lie within the window.

• The geometries were stored in the coords column as a nested array in the form [rings [coordi-

nates[double]]]. Polygons have an outer ring and optionally inner rings (holes). Alternative

representations were considered e.g. WKT and serialising an instance of Polygon type ob-

jects. It was found that the most effective approach was to store the raw coordinates as

74

Chapter 4. Enhanced spatial knowledge graph generation

arrays and then instantiate instances of spatial objects e.g. Points, Polygons etc. when geo-

metric operations needed to be performed.

In addition to storing the full geometries, it was also necessary to store the minimal bounding

boxes (mbbs) for regions. A minimal bounding box is the smallest rectangle that contains all the

points of a geometry. An mbb serves as a lightweight approximation of the full geometry. These

were stored in a separate table, at the region level i.e. a single mbb for each region, not each

polygon.

4.4 Creating the knowledge graph

As described above using these datasets as a starting point an enhanced knowledge graph needed

to be generated that could support GeoSPARQL queries and qualitative spatial reasoning. Specif-

ically, the following tasks needed to be performed:-

1. Compute RCC8 relations between spatial entities.

• Compute EC relations between regions.

• Compute containment relations between points and regions.

2. Match regions from GADM with points from YAGO e.g. BEL from GADM matches with

yago:Belgium. Spatial queries can then use the full geometry for a region instead of the

simple point based representation.

A note on the generality of the algorithms Although a specific case explored here uses YAGO

and GADM, it is important to note that once the input datasets have been parsed, the algorithms

described in this chapter 11 could work with any dataset. For example, DBpedia 12 instead of

YAGO or Natural Earth 13 for the region polygon data. GADM has been chosen because it pro-

vides comprehensive coverage of the planet at high resolution and therefore is reflective of the

most challenging dataset the algorithms presented here are likely to face.

4.4.1 Spatial Indexing

Before describing the specifics of each of these tasks it is worth presenting the spatial indexing

approach that forms the basis for many of these tasks and the query engine presented in Chap-

ter 5. Completing the tasks outlined above has considerable challenges. For example, consider

computing EC relations between regions in the GADM dataset. Essentially this is a huge spatial

join, where for all regions we need to find all other regions that share a border. A naive approach

would involve testing the geometry of every region with other region i.e. taking the Cartesian

product of region geometries and testing for adjacency. This isn’t feasible due to the volume of

11Full code listings can be found at https://github.com/mmantle-hud/KG-Generator
12https://www.dbpedia.org/
13https://www.naturalearthdata.com/

75

Chapter 4. Enhanced spatial knowledge graph generation

data that is generated in the join, and the need to execute a large number of complex geometric

computations.

Instead of using the full geometries for spatial entities, approximations of the geometries can

be used which significantly reduces the volume of data that needs to be joined and processed.

As such these approximations form a spatial index, where using this lightweight representation,

initial filtering is performed to remove regions that definitely won’t share a border, leaving only

candidate objects where there is a possibility of them touching. Finally, with a restricted set of

spatial objects, a much smaller set of full geometries are accessed and tested to actually determine

which regions touch.

47c1c
47c04

47bfc

47eac
47ea4

47c24

47c2c

47dcc 47c34 47c3c
47c14

47bf4

47c74

47c6c47c44
47c4c

47c0c

cellid regionid polygonid

47c4c BEL BEL#1

47c6c BEL BEL#2

47c4c BEL BEL#3

47dcc BEL BEL#3

47c34 BEL BEL#3

47c2c BEL BEL#3

… … …

(a)Cell coverings
(b) Polygon-cell intersections

cellid regionid polygonid coords

47c4 BEL BEL#1 [[[51.36, 3.37…

47c4 BEL BEL#2 [[[51.42, 4.945…

47c4 BEL BEL#3 [[[49.49, 5.470…

47dcc BEL BEL#3 [[[51.06, 2.58…

47c34 BEL BEL#3 [[[51.21, 3.27…

47c2c BEL BEL#3 [[[50.55, 3.39…

47c04 BEL BEL#3 [[[50.35, 5.35…

… … … …

Figure 4.4: Cell coverings at S2 level 7 for Belgium

The index used in processing the spatial data for the generation of the knowledge graph is

based on a grid. By splitting the surface of the planet using a grid, regions can be approximated

using cells in this grid. The S2Geometry 14 was used to provide these spatial approximations.

The S2Geometry library splits the Earth’s surface into a hierarchy of cells arranged in different

levels. For example at level 0 the Earth is divided into 6 cells, thousands of kilometres in width,

at level 19 there are billions of cells approx 20m in width. Each cell has a unique, hierarchically
14https://s2geometry.io/

76

Chapter 4. Enhanced spatial knowledge graph generation

numbered cell id. The library provides classes that will generate cell ids given a valid geometric

object e.g. a point or polygon. For example, Figure 4.4 shows a collection of S2 cells at level 7 that

cover Belgium. Using S2Geometry a number of separate spatial indexes were generated.

S2 cell coverings for GADM polygons. For each polygon in GADM layer 0 and layer 1, a list

of cells that cover the polygon were generated and stored, e.g. Figure 4.4(a). Importantly, the

geometries of the region polygons aren’t stored, only the cell ids, as a result the data in this table

can be easily joined and shuffled in parallel, distributed processing.

S2 cells for YAGO points YAGO points were indexed in a similar way. The latitude and lon-

gitude values were extracted from triples featuring the schema:geo predicate. The S2 geometry

library was used to identify which cell each point resides in. The cell id, along with the YAGO id,

and the coordinates were saved, see Table 4.4.

cellid id coords

47c1c yago:Sombreffe_Castle [50.53, 4.59]

47c3c yago:Waterloo,_Belgium [50.71, 4.38]

47c14 yago:Musée_Hergé [50.66, 4.61]

47c3c yago:Flanders_Expo [51.02, 3.69]

...

Table 4.4: Cell ids for YAGO points

Polygon-cell intersections Finally, the intersections between GADM polygons and S2 cells were

computed. Using the intersection was beneficial when executing some geometric computations.

For example, consider a point query where we need to identify which region contains a specified

point. Without the use of polygon-cell intersections this query would involve joining the table in

Figure 4.4(a) with Table 4.4 on the basis of cellid to find candidate polygons that might contain the

point. The geometries of these candidate polygons would then need to be checked by joining with

Table 4.3 to find which geometry contains the point. This can be sped up if the simpler geometry

of the intersection between the region polygon and the cell is used instead. In some cases e.g.

when a cell is completely contained by a region, the check can be reduced to a polygon that

consists of the four vertices of the cell. Figure 4.4(b) shows example polygon/cell intersections

for Belgium.

The algorithm for generating the cell ids and intersections for the polygons is described in

Algorithm 5. The algorithm has two parts, generating a cell covering for each polygon, and com-

puting the intersection between the region polygon and S2 cell. The first part is largely handled by

the S2 library. convertToS2Polygon() is a custom function that simply instantiates an instance of an

S2Polygon object by iterating through the rings and coordinates of a region’s geometry. The pro-

cess is reasonably involved, and not especially interesting, so isn’t shown. The S2RegionCoverer

77

Chapter 4. Enhanced spatial knowledge graph generation

object comes from the S2Geometry library and is used to generate the cells that cover a region.

Multiple cells are generated for each region, so this array of cells is flattened using flatMap.

Algorithm 5: Generate cell coverings
1: generateCellCoverings(polygons, s2Level, generateIntersections) {
2: //polygons: see Table 4.3
3: //s2Level: the level to generate cells for e.g. 7
4: //generateIntersections: Boolean value, specifying whether or not intersections are needed

5: //generate the cells for each polygon
6: cellCoverings = polygons.flatMap(polygon⇒ {
7: s2Polygon = convertToS2Polygon(polygon.coords)
8: regionCoverer = new S2RegionCoverer()
9: regionCoverer.setMaxLevel(s2level)

10: regionCoverer.setMinLevel(s2level)
11: cellids = regionCoverer.getCovering(s2Polygon)
12: return cellids.map(cellid⇒(cellid, polygon.regionid, polygon.polygonid)
13: })

14: cellCoverings.save() // see Figure 4.4(a)

15: if(generateIntersections) {
16: //broadcast the region polygons
17: polygonsB = spark.broadcast(polygons)

18: //generate polygon cell intersections
19: polygonCellIntersections = cellCoverings.map(polygonCellId⇒ {
20: //look-up the polygon using the broadcast variable
21: polygon = polygonsB.value(polygonCellId.polygonid)
22: //get the coordinates of the S2 cell
23: cellCoords= getCoordsFromCellId(polygonCellId.cellid)
24: //compute the intersection between the polygon and S2 cell
25: intersection = getPolygonCellIntersection(polygon.coords, cellCoords)
26: return (polygonCellId.cellid, polygonCellId.regionid, polygonCellId.polygonid, intersection)
27: })
28: polygonCellIntersections.save() //see Figure 4.4(b)
29: }
30: }

In order to generate the intersections a broadcast (or map-side join) strategy is used. A copy

of the polygon dataset is sent to each node in the computing cluster (line 17). The intersections

are then computed by looking up the coordinates for the polygon using this broadcast variable.

The broadcast strategy was used to avoid having to perform a large join. Multiple cell ids are

generated for each polygon, using a default join would involve duplicating the polygon data for

each cell the polygon overlaps. Given the size of the polygon geometries, this quickly becomes a

significant bottleneck. Using a broadcast strategy makes the join more manageable. A broadcast

strategy does have limitations, mainly that the dataset needs to fit in memory. For this reason,

computing cell coverings and intersections for polygons was executed one layer at a time.

Throughout the generation of the enhanced knowledge graph two different spatial processing

libraries were used. The S2Geometry library was used to provide the grid and perform related

functions such as identifying which cells overlap polygons. The second library used was the ESRI

78

Chapter 4. Enhanced spatial knowledge graph generation

Geometry API 15. This was used to provide fundamental topological and relational operations e.g.

intersections, touches, contains etc. The actual computation takes places in the getCellPolygonIn-

tersection() function, where the Intersection operation from the ESRI library was used to compute

the intersection. Again, for clarity, the full details aren’t shown. However, Algorithm 7 shows a

similar function for testing adjacency.

A variety of approximations were generated using Algorithm 5. Cell coverings at an S2 level

of 9 were generated for GADM layer 0 and layer 1. These provide an accurate approximation of

regions using a large number of cells per regions. Polygon-cell intersections at an S2 level of 5

were also generated for both layers. A lower level was used as this sped up the computation of

intersections, and was sufficient for the tasks where intersections were needed.

Analysis Although Algorithm 5 is heavily reliant on library code (to compute the cell coverings

for polygons (S2Geometry), and cell polygon intersections (ESRI)), it is still worth considering

some aspects of the algorithm’s computational complexity. The initial flatMap operation runs in

O(n) time where n is the number of input polygons. This can be parallelised trivially to signif-

icantly speed-up execution time. The outputs from this operation are multiple tuples for each

polygon, one for each each S2 cell the polygon overlaps. The number of cells is dependent on

the S2 level. At each increasing S2 level cells are split into 4 smaller cells. Therefore this flatMap

operation emits O(n4k) tuples, where k is the S2 level.

The second function filter implements a broadcast join, which runs in O(m + n) time where

m is the numbers of cell tuples output from the previous flatMap operation and n the number of

polygons. Again this operation can be parallelised, with the cell tuples being distributed across

machines in the cluster.

4.4.2 Computing EC relations between regions

Once these spatial approximations have been created the tasks outlined at the start of section

4.4 could be completed. Algorithm 6 shows the computation of EC relations between different

regions.

15https://github.com/Esri/geometry-api-java

79

Chapter 4. Enhanced spatial knowledge graph generation

Algorithm 6: Computing EC relations between regions
1: computeEC(cellCoverings, polygons) {
2: //cellCoverings:see Figure 4.4(a)
3: //polygons:see Table 4.3

4: //broadcast the region polygons
5: polygonsB = spark.broadcast(polygons)

6: //join using cell id to identify candidates
7: cellCoveringsL = cellCoverings
8: cellCoveringsR = cellCoverings
9: candidates = cellCoveringsL .join(cellCoveringsR,

10: cellCoveringsL.cellid = cellCoveringsR.cellid &&
11: cellCoveringsL.regionid ̸= cellCoveringsR.regionid && //no joins to self
12: cellCoveringsL.polygonid < cellCoveringsR.polygonid //prevent duplicates
13:)

14: //for each candidate pair, look up the geometries and test if they touch
15: adjacentPolygons = candidates.filter(candidatePair⇒ {
16: // get the polygon ids from the candidate pair
17: polygonid1 = candidatePair._1.polygonid
18: polygonid2 = candidatePair._2.polygonid
19: //look-up the polygon using the broadcast variable
20: polygon1 = polygonsB.value(polygonid1)
21: polygon2 = polygonsB.value(polygonid2)
22: //test if the polygons touch
23: return touches(polygon1.coords,polygon2.coords)
24: })

25: //drop the polygon ids to only leave the regionids
26: ecRelations = adjacentPolygons.map(adjacentPair⇒ {
27: return (adjacentPair.regionid1, "EC", adjacentPair.regionid2)
28: }).distinct()

29: //save the EC relations
30: ecRelations.save() e.g. (FRA.7_1, "EC", BEL.2_1)
31: }

Algorithm 6 was executed a layer at a time i.e. EC relations between different countries, and

between different level 1 regions were computed, but not between countries and level 1 regions.

This is because spatial reasoning can be used to derive the EC relation between different layers at

query time e.g.

BEL{EC}FRA ⋄ FRA{TPPi, NTPPi}FRA.7_1→ BEL{EC, DC}FRA.7_1

BEL{TPPi, NTPPi}BEL.2_1 ⋄ BEL.2_1{EC}FRA.7_1→ BEL{EC, PO, TPPi, NTPPi}FRA.7_1

BEL{EC, DC}FRA.7_1∩ BEL{EC, PO, TPPi, NTPPi}FRA.7_1→ BEL{EC}FRA.7_1

Furthermore, as described previously, processing using these large scale geometries has chal-

lenges, using a layer at a time makes the computation more manageable. Even using a layer at a

time, this is still a large scale spatial join. The program features a number of design choices that

make the computation possible. The initial, potentially expensive, join operation is done using

80

Chapter 4. Enhanced spatial knowledge graph generation

the cell coverings for polygons. This lightweight representation doesn’t feature any coordinates,

and doesn’t present any performance problems for Spark as each of these records is a simple tu-

ple made up of three strings. Computing EC relations also makes use of a broadcast variable to

implement a map-side join. Once candidate polygons have been identified through the initial cell

coverings join, the actual geometries are looked up using this local copy of the polygon geome-

tries. The actual checking of the geometries was performed using the ESRI API and the Touches

operation. Algorithm 6 refers to a touches function, this is simply a wrapper function that creates

instances of ESRI Polygon objects, and invokes the Touches operation from the ESRI library, see

Algorithm 7.

Algorithm 7: The touches function
1: touches(coords1, coords2) {
2: // coords1 Polygon coordinates: Array[Array[Array[Double]]],
3: // coords2 Polygon coordinates: Array[Array[Array[Double]]]
4: geometry1 = convertToESRIPolygon(coords1)
5: geometry2 = convertToESRIPolygon(coords2)
6: return OperatorTouches.local().execute(geometry1, geometry2,null, null)
7: }

Algorithm 6 identifies polygons that touch. Eventually, when answering queries, we are only

interested in relations between (multi-polygon) regions, not individual polygons, so the final step

of the algorithm involves dropping the polygonids to leave the regionids.

Analysis Algorithm 6 involves three stages. As with previous analyses, we assume a sort merge

join for Spark’s default join strategy, so the initial join between cell coverings will execute in

O(nlogn). A second join is then implemented in the filter operation using a broadcast strategy.

This will run with time complexity of O(m + n). The final operation involves map and distinct

operations. As always the map runs in linear timer and is an embarrassingly parallel operation.

The distinct is more complex as it requires data to be sorted and shuffled, and will run inO(nlogn)

time. As already stated, runtime in distributed parallel programs is dominated by IO operations,

and the size of the objects being processed. The first join and final map and distinct operations

involve simple tuples, so in practice they execute quickly. Although the filter operation has linear

time complexity, this dominates running time as it involves using the full polygon geometries.

4.4.3 Computing containment relations between points and regions

RCC8 relations between regions and points also need to be computed. The approach taken in

generating these containment relations is shown in Algorithm 8.

81

Chapter 4. Enhanced spatial knowledge graph generation

Algorithm 8: Computing containment between points and regions
1: computeContain(polygonCellIntersections, cellsAndPoints, partitions) {
2: //polygonCellIntersections: see Figure 4.4(b)
3: //cellsAndPoints: see Table 4.4
4: //partitions: an integer specifying the number of partitions to use

5: allGeometries = polygonCellIntersections.union(cellsAndPoints).repartition(partitions, cellid)

6: allMatchingPointsAndRegions = allGeometries.mapPartitions((iterator)⇒ {
7: partitionGeoms = iterator.toList
8: points = partitionGeoms.filter(geometry⇒ { geometry.geomtype = "point")
9: intersections = partitionGeoms.filter(geometry.geomtype = "polygon")

10: matchingPointsForPartition = intersections.flatMap(intersection⇒ {
11: candidatePoints = points.filter(point⇒ point.cellid = intersection.cellid)
12: matchingPointsForRegion = candidatePoints.filter(point⇒ {
13: contains(intersection.coords, point.coords)
14: }).map(point⇒ (point.id, intersection.regionid))
15: return matchingPointsForRegion
16: })
17: return Iterator(matchingPointsForPartition)
18: }).map(matchingPair⇒ (matchingPair.pointid, "TPP,NTPP", matchingPair.regionid)

19: allMatchingPointsAndRegions.save() // e.g. (yago:Flanders_Expo, "TPP,NTPP", BEL.2_1)
20: }

The inputs to the program are the points from the YAGO knowledge graph, and the GADM

polygon-cell intersections. cellPolygonIntersections is actually a subset of the polygon-cell intersec-

tions. It isn’t necessary to identify all the regions that contain a given point, only the highest level

region. For example, it isn’t necessary to determine that Huddersfield is within the United Kingdom,

only that Huddersfield is within England, reasoning at query time can determine further transitive

containment relations. As a result cellPolygonIntersections only features the intersections for the

highest level regions. The highest level region isn’t always level 1 e.g. the Vatican City doesn’t

have any sub-divisions. However, identifying the highest level region for each country is trivial,

and again for clarity this initial step isn’t shown in Algorithm 8

Unlike computing EC relations, a broadcast strategy wasn’t used; the volume of data that

needed to be broadcast was too great, both the intersection geometries and point geometries

needed to be broadcast. The broadcast was possible, but looking-up geometries using such a large

broadcast variable slowed computation. Instead, a spatial partitioning approach was adopted.

The polygon-cell intersections and points were combined into a single dataset, allGeomteries. This

combined dataset was re-partitioned using the cellid, so that all geometries with the same cellid

would reside in the same partition.

The mapPartitions operation was then used to iterate over each partition. Rather than operat-

ing on individual records, mapPartitions operates at a partition level, all the records for a specific

partition are presented as an iterator, computations are performed and the mapPartitions func-

tion returns another iterator. Like the broadcast strategy, this approach was adopted to avoid a

large join. Although records need to be shuffled when the dataset is re-partitioned by cellid, the

generation of duplicate records sent to different partitions is avoided.

82

Chapter 4. Enhanced spatial knowledge graph generation

Within each partition a nested loop is used to iterate over each intersection in an outer loop

and over candidate points in an inner loop to identify points that are located in the region’s inter-

section. Results from different partitions are collated and saved.

Analysis There are two stages in Algorithm 8. The first step, re-partitioning, runs in linear

time, each object is assigned to a partition. The second step, the mapPartitions operation involves

filtering the list geometries to obtain a list of points and a list of intersections. These are linear

time operations. A nested loop then looks up candidate points for each intersection. This runs in

O(n×m) time, where n is the number of intersections and m the number of points.

4.4.4 Matching regions with points

In order to take advantage of the richer geometries provided by GADM, it was necessary to match

regions in the GADM dataset with equivalent instances in the YAGO dataset. There were several

steps involved in matching between the datasets:-

1. Identify point candidates from YAGO using type information e.g. points of the type schema:Country.

2. Filter these candidates using their location i.e. only points that are spatially within a GADM

region.

3. Test the similarity of the YAGO point’s label to the region name from GADM.

For example, if an instance of schema:Country has a point representation within the bounds of

a GADM country and the point’s label has a high text similarity to the GADM country’s name, it

is assumed to be a match.

The matching is complicated by a number of factors, one of which are the point representations

in YAGO. Countries and administrative areas are approximated using a centroid, i.e. a point at the

geometric centre of the region. In the case of a multi-polygon region, this centroid can legitimately

lie outside the actual bounds of the region’s polygons. For example, Malaysia is composed of two

parts separated by the South China Sea, the YAGO point representation for Malaysia locates it in

the South China Sea. For this reason, minimal bounding boxes were used as approximations of

regions as the mbb would cover the centroid in such cases.

83

Chapter 4. Enhanced spatial knowledge graph generation

Algorithm 9: Matching regions to points
1: matchingRegionsToPoints(pointsLabels, mbbs, types, userType, cleanseArr, threshold) {
2: //pointsLabels: Table 4.4 joined with the labels for points
3: //mbbs: minimum bounding boxes for regions in the form (regionid, name, coords, cellid)
4: //types: The vertically partitioned rdfs:type table
5: //userType: string specifying the type e.g. schema:AdministrativeArea
6: //cleanseArr: array of words to cleanse name values e.g. ["principality","governate"...]
7: //threshold :threshold level for similarity matching

8: filteredTypes = type.filter(type⇒ type.object = userType)
9: filteredPoints = pointsAndLabels.join(filteredTypes, pointsLabels.id=filteredTypes.subject)

10: //get candidate points
11: candidates = mbbs
12: .join(filteredPoints, mbb.cellid = filteredPoints.cellid)
13: .filter(contains(mbb.coords, point.coords))
14: .map(candidatePair⇒ {
15: score = getSimilarityScore(candidatePair.regionname, candidatePair.pointlabel)
16: return (candidatePair.regionid, candidatePair.pointid, candidatePair.label, score)
17: })

18: //reduce to find candidate with the highest score
19: keyedCandidates = candidates.map(candidatePair⇒ (candidatePair.regionid, candidatePair))
20: matchingPoints = keyedCandidates.reduceByKey((candidate1,candidate2)⇒ {
21: if candidate1.score > candidate2.score
22: return candidate1
23: else
24: return candidate2
25: })
26: .filter(candidatePair⇒ candidatePair.score > threshold)
27: .map(candidatePair⇒ candidatePair.regionid, candidatePair.pointid)

28: matchingPoints.save() // e.g. (FRA.6_1, yago:Grand_Est)
29: }

The inputs to the program were generated during the initial parsing e.g. the rdf:type table

or were easily constructed by joining tables generated during the initial parsing e.g. pointsLabels

was built by joining the YAGO points (Table 4.4) to the vertically partitioned YAGO rdfs:label table.

The mbbs were also computed at the parsing stage (see Section 4.3.2), and then had a cell covering

generated for them. Creating these datasets involve joining comparatively simple data structures

and sizes. They use basic operations and don’t present performance issues. Therefore, the details

of these joins aren’t shown in Algorithm 9.

Algorithm 9 follows the three steps outlined above. The pointsLabels dataset is filtered by

type. These filtered points are then joined to the region mbbs on the basis of cellid, and filtered to

identify points that actually lie within each region’s mbb. mbrContainsPoint() is a custom function

that simply does a containment test using the mbb coordinates and the point’s coordinates. This

leaves only those points of the correct type that are located within the region’s mbb.

The label for these points is compared to the region’s name attribute and a similarity score

generated. This is implemented using a second custom function getSimilarityScore(). This function

first cleanses both the label and the region name by removing the type of administrative division

from the name e.g. province, oblast, canton etc. This is to encourage a greater number of matches.

84

Chapter 4. Enhanced spatial knowledge graph generation

For example, without the cleansing there wouldn’t be a match between the GADM region with

the name Chubut and YAGO point with the name Chubut Province. Once the names and labels

have been cleansed, the text similarity score was obtained using the Jaro-Winkler distance [71].

There can still be multiple candidates for a particular region, so candidates are reduced by the

regionid and all but the highest scoring point are discarded. Finally only those candidates with a

text similarity score over a specified threshold are deemed matches.

The program was executed twice, once for GADM level 0 regions (countries) using matches to

schema:Country, and again for level 1 regions, using the schema:AdministrativeArea type. For level

0 regions a threshold of 0.9 was used and matches were found for 86.7% of countries. For level 1,

to encourage a greater number of matches, a threshold value of 0.75 was used, and 59% of GADM

regions were matched.

The difference can be explained by the fact that a much higher proportion of layer 1 regions

from GADM don’t have an equivalent representation in YAGO e.g. Australian states can’t be

found in YAGO. Furthermore, many towns and cities are also administrative regions. In such

cases YAGO features a single instance with multiple properties. In contrast, a dataset such as

GADM makes distinctions between different levels of administrative division. As a result the

specific region name from GADM often isn’t matched with the more general label from YAGO.

In the case where a match wasn’t found it was still necessary to integrate GADM regions into the

combined knowledge graph. This was done by generating a URI based on the region name and

specifying a relevant rdf:type property. For example, for the GADM region AUS.7_1 Queensland,

an id of yago:Queensland was generated and a rdf:type triple added to the knowledge graph.

yago:Queensland rdf:type schema:AdministrativeArea

The matching is clearly not without weaknesses. Simply generating an id using the region

name abuses the notion of a URI, it is possible to generate duplicate identifiers. Furthermore, not

all matches are identified. However, linking entities falls outside the main focus of this thesis,

and the level of matching obtained is sufficient to allow for effective querying of the resulting

knowledge graph.

After identifying matches, it was necessary to update the knowledge graph. If a point from

the YAGO knowledge graph matched a region from GADM, the point’s schema:geo triple was re-

moved from the knowledge graph, so there was a single geometry for each instance. The polygon

table, Table 4.3 was updated to use the new matching YAGO id for each region. Finally, the RCC8

relations computed in Sections 4.4.2 and 4.4.3 were updated to use the YAGO id rather than the

GADM region id. Again these are simply a series of simple join operations, the details of which

aren’t shown.

4.4.5 Generating the final knowledge graph

Generating containment relations between GADM regions Containment relations between

regions are already implicit in geospatial datasets such as GADM in the form of region ids that

85

Chapter 4. Enhanced spatial knowledge graph generation

follow a hierarchical structure e.g. the region id for Grand Est FRA.6_1 indicates it is part of

France. {TPP, NTPP} relations were generated between level 1 regions and their parent country

using a simple substring operation on the region id.

Integrating schema:containedInPlace Relations As described in section 4.3.1 the YAGO knowl-

edge graph features a number of qualitative spatial triples featuring the containedInPlace predicate.

These relations can be viewed as being equivalent to {TPP, NTPP} relations. However, using these

containedInPlace relations has a number of issues. Often, the subjects of containedInPlace triples also

have quantitative representation through a schema:geo property. Including these triples can create

unnecessary duplication, and in some cases inconsistencies if the point in region computation

from section 4.4.3 contradicts a containedInPlace triple.

A second source of inconsistencies is if an instance has multiple containedInPlace properties

that relate to disjoint spatial entities. This tends to be due to ambiguity in the meaning of the con-

tainedInPlace predicate. For example, the river Rhine has a containedInPlace relation with multiple

regions, when in fact it overlaps them. This also occurs for roads, railway lines etc. However,

not all spatial instances with multiple containedInPlace relations describe overlapping, so it isn’t

as simple as mapping these triples to PO relations.

In light of these issues, integrating the containedInPlace data involved filtering out triples where

the subject had a schema:geo property, and where a spatial entity had multiple containedInPlace

properties, using only the first of these. This resulted in 147,071 containedInPlace relations which

were represented as {TPP, NTTP} relations.

These relations were combined with the region containment relations, along with the relations

computed in section 4.4.2 to generate an RCC8 network that could be used to answer spatial

queries. The final RCC8 network consisted of 1,095,400 nodes (spatial entities) and 1,103,074

relations.

Together with the original YAGO knowledge graph, and the geometries for spatial entities,

this formed the enhanced knowledge graph, part of which was shown in Figure 4.2.

4.5 Evaluation

The algorithms presented in Section 4.4 were evaluated in terms of runtime and scalability. There

are no similar systems i.e. distributed approaches to computation of RCC8 relations for large

scale datasets, that can be used as a comparison. Also, it is difficult to evaluate the effectiveness

of the specific algorithm design choices made in Section 4.4 e.g. using the broadcast strategy

or the spatial partitioning implemented in Algorithm 8. Without the use of these approaches,

the tasks were unable to complete. Algorithm 9, matching between YAGO and GADM used

simple geometries, points and mbbs. The execution didn’t require a parallel distributed approach,

therefore this algorithm isn’t considered in the evaluation.

The algorithms from section 4.4 were implemented using Scala, and tested using computing

86

Chapter 4. Enhanced spatial knowledge graph generation

clusters provided by Google Dataproc. For the majority of experiments a 4-node cluster was used,

with each machine in the cluster having eight virtual CPUs and 52GB of memory. When testing

scalability, clusters with a different number of nodes were used, but again each machine had the

same 8vCPUs and 52GB of memory.

4.5.1 Datasets

The following datasets, previously described in Section 4.3, were used when running the experi-

ments.

Name Count No. of coordinates

GADM level 0 polygons 116,995 32,827,198

GADM level 1 polygon 117,891 37,769,533

YAGO 4 points 957,700 957,700

GADM layer 0 mbbs 256 1024

GADM layer 1 mbbs 3610 14,440

Table 4.5: Input datasets

4.5.2 Runtime

Task Input S2 level Runtime (secs)

Compute cell covering for polygons GADM layer 0 5 115

Compute cell covering for polygons GADM layer 1 5 86

Compute cell covering for polygons GADM layer 0 9 870

Compute cell covering for polygons GADM layer 1 9 129

Compute cell for points YAGO points 5 41

Compute cell coverings for mbbs GADM layer 0 5 53

Compute cell coverings for mbbs GADM layer 1 5 44

Compute polygon-cell Intersections GADM layer 0 5 700

Compute polygon-cell Intersections GADM layer 1 5 497

Table 4.6: Runtime for spatial index generation

Table 4.6 shows the runtime for generating spatial indexes, see Section 4.4.1. Algorithm 5

computed cell coverings for polygons, and polygon-cell intersections. The other tasks shown

in Table 4.6 use a similar approach, but process points and mbbs. The S2 levels chosen for the

experiments in Table 4.6 are those that were used in subsequent tasks.

Some tasks, computing cells for points and mbbs execute quickly, the geometries of points and

87

Chapter 4. Enhanced spatial knowledge graph generation

mbbs are so simple that computing cells for these geometries poses few challenges. In fact, a dis-

tributed approach isn’t really necessary, this computation could be handled by a single machine.

There is a significant difference in runtime between simply identifying the cell covering for

polygons and computing the intersection between S2 cells and polygons. This is understandable

as computing the intersections is essentially an additional step after the cells have been identified.

The initial step of generating a cell covering is handled by the S2 library through its optimised

RegionCoverer class. The second stage of computing the intersection between these cells and the

polygon requires the precise computation of the intersection geometry and is implemented using

a more convoluted process of transforming coordinates to library objects, and back again. Fur-

thermore, referring to the analysis in section 4.4.1, in comparison to the first step, this second step

involves a much greater number of operations, an intersection computation for each cell a poly-

gon overlaps. There is also a significant difference in runtime between GADM layers, with layer 0,

countries, taking longer than layer 1, administrative regions. Again this is to be expected as even

though layer 0 is made up of a smaller number of polygons, these polygons have many more

vertices. The larger number of simpler polygons in layer 1 can be parallelised more effectively.

Task Input Runtime

Compute EC relations between regions GADM layer 0 145

Compute EC relations between regions GADM layer 1 165

Compute containment between points and regions GADM intersections and YAGO points 110

Table 4.7: Runtime for computing RCC8 relations

Table 4.7 shows the runtimes for computing RCC8 relations between spatial entities. The algo-

rithms show a good level of performance. Computing EC relations between all regions in a layer

completes in under 3 minutes. Similarly computing containment relations between points and

regions takes less than 2 minutes. Considering the overheads of parallel distributed execution,

these represent fast times for completing challenging computations. The runtime for computing

EC relations for layer 1 is longer than layer 0. Even though the geometries are smaller, a greater

number of computations need to be performed for layer 1 regions. For example, although Canada

is a larger, more complex geometry, the approximations through using S2 cells means the actual

full resolution geometry only needs to be checked once, for an EC relation with USA.

4.5.3 Scalability

The scalability of the tasks in table 4.6 are considered. For these experiments, GADM layer 0 was

used as the larger geometries are more challenging to process. Figure 4.5 shows how runtime

increases with the S2 level for both generating cell coverings and polygon-cell intersections. This

is understandable due to the four fold increase in number of cells that need to be calculated

with each increasing S2 level. A maximum S2 level of 6 was used when computing polygon-cell

intersections to keep the runtime to a reasonable limit of less than 30 mins.

88

Chapter 4. Enhanced spatial knowledge graph generation

5 6 7 8 9
0

200

400

600

800

1,000

S2 Level

R
un

ti
m

e
(s

ec
on

ds
)

Computing cell coverings for

GADM layer 0

3 4 5 6
400

800

1,200

1,600

S2 Level

R
un

ti
m

e
(s

ec
on

ds
)

Computing

polygon-cell

intersections

for GADM layer 0

Figure 4.5: Scalability for computing S2 cell coverings and polygon-cell intersections

1 2 3 4 5 6 7 8

200

400

600

800

1,000

Number of machines

R
un

ti
m

e
(s

ec
on

ds
)

Runtime for computing cell coverings

for GADM layer 0 at

S2 level 9

1 2 3 4 5 6 7 8

0.5

1

1.5

2

Number of machines

Sc
al

ed
Sp

ee
d-

U
p

Scaled speed-up for

computing cell coverings for

GADM layer 0 at

S2 Level 9

Figure 4.6: Scalability of generating S2 cell coverings with no. of machines

1 2 3 4 5 6 7 8
0

400

800

1,200

1,600

Number of machines

R
un

ti
m

e
(s

ec
on

ds
)

Runtime for computing

polygon-cell intersections

for GADM layer 0 at

S2 level 5

1 2 3 4 5 6 7 8

0.5

1

1.5

2

Number of machines

Sc
al

ed
Sp

ee
d-

U
p

Scaled speed-up for computing

polygon-cell intersections

for GADM layer 0 at

S2 level 5

Figure 4.7: Scalability of generating polygon-cell intersections with no. of machines

Figure 4.6 shows scalability for computing cell coverings at S2 level 9 for different sized com-

puting clusters. The results indicate poor scalability, with little improvement in runtime as the

cluster size is increased. This is due to the characteristics of the dataset (GADM layer 0) which

89

Chapter 4. Enhanced spatial knowledge graph generation

doesn’t parallelise effectively for this job. Runtime is bound by the longest running cell covering

calculation, regardless of how many machines are used in the cluster. Computing the cell cover-

ings for a small number of very large geometries e.g. Canada, Russia, proved to be the limiting

factor in improving the runtime of the job. Computing intersections between GADM polygons

and S2 cells scales better, see Figure 4.7. Although scaled speed-up, shows less than linear per-

formance, there is a definite decrease in runtime as the size of the cluster is increased. Although

there is still the limiting factor of a small number of very large geometries, once the cells for these

geometries have been identified, computing the intersection between the cells and polygons can

be parallelised leading to faster runtimes when more machines are used.

1 2 3 4 5
0

100

200

300

Input size (millions of points)

R
un

ti
m

e
(s

ec
on

ds
)

Runtime for computing

point in region

for a 4 node cluster

Figure 4.8: Scalability of computing point in region with input size

1 2 3 4 5 6 7 8

400

800

1,200

Number of machines

R
un

ti
m

e
(s

ec
on

ds
)

Runtime for computing

point in region

for 5 million points

1 2 3 4 5 6 7 8

0.5

1

1.5

2

Number of machines

Sc
al

ed
Sp

ee
d-

U
p

Scaled speed-up for computing

point in region for 5 million points

Figure 4.9: Scalability of computing point in region relations with no. of machines

The scalability of computing containment relations between points and regions was tested

by using different numbers of points as the input. The English version of the YAGO dataset

contains 957,700 points. In order to test the scalability of algorithm 8, this dataset of points was

enhanced with additional points from the full version of YAGO. Many of these additional points

are of less value when querying as they have fewer predicates and therefore can’t support as

90

Chapter 4. Enhanced spatial knowledge graph generation

wide a range of queries, but they are useful here as they allow us to scale up the dataset for

evaluation purposes. Figure 4.8 shows point in region computation for input sizes of between

one and five million points. The runtime increases fairly linearly as the input size does, showing

the algorithm is able to scale effectively with the input size. This is consistent with the analysis in

section 4.4.3. The algorithm hasO(n×m) time complexity. The experiment involved varying one

of the parameters, the number of points (m), so we would expect to see linear increase in time.

Figure 4.9 shows scalability in terms of the number of nodes in the computing cluster. Five

million points were used as the input dataset. Initially the algorithm shows super-linear speed

before dropping to sub-linear speeds as is often the case when more nodes are added and the

benefits of further parallelisation are limited. The initial speed-up provided by two and then four

nodes is positive, showing the scalability of the algorithm.

4.6 Related work

Computing RCC8 relations There are no direct comparisons to the algorithms described in Sec-

tions 4.4.2 and 4.4.3 i.e. parallel, distributed computation of RCC8 relations. However, there are

several established distributed spatial data processing frameworks, and it is worth considering

how they compare to the approaches presented here.

Notable distributed spatial data processing systems include SpatialHadoop [21], HadoopGIS

[3], SpatialSpark [74], GeoSpark [76] and STARK [26]. These frameworks often have a number of

features in common. For example, in order to take advantage of the distributed setting, datasets

are partitioned spatially; objects in close proximity are stored in the same partition. Given that

spatial queries rarely require the entire dataset, and focus on a particular geographical area, it

means that for many queries not all partitions need to be accessed, which can improve perfor-

mance. Furthermore, for spatial joins, if objects are already co-located in the same partition, less

data needs to be shuffled, which again can speed up query execution. Algorithm 8 can be viewed

as adopting a similar approach of spatially partitioning a dataset in order to facilitate parallel

processing. Many of these frameworks also provide spatial indexing. Typically, indexes are con-

structed at a local level i.e. within a specific partition, and are implemented using an r-tree. Some

experimentation was done with the use of r-trees for the work in this thesis. However, for the

programs in this chapter, the simpler grid based indexing approach of cell coverings proved to be

more beneficial. Experimental evaluation of frameworks such as STARK suggest impressive per-

formance. For example, using a dataset made up of 322,000 polygons, an evaluation of STARK

outperformed existing frameworks, executing point-in-polygon queries in ≈ 2 secs. However,

such queries can take advantage of not having to access the entire dataset. When the systems

were evaluated using more demanding spatial join operations, which are much more analogous

to the tasks described in Section 4.4, much smaller datasets, or polygons with smaller number

of vertices were used. Presumably this is because of the difficulties in executing join operations

using large scale geometries. For example, in [26] experiments were conducted using 38,000 poly-

91

Chapter 4. Enhanced spatial knowledge graph generation

gons and only 1328 points.

Matching spatial entities The approach to matching spatial entities described in Section 4.4.4 is

largely influenced by the LinkedGeoData Project [63]. The project uses OpenStreetMap (OSM) as

its source of geographic data. OSM is a freely available map of the world generated via crowd-

sourcing e.g. users contributing data from GPS devices, and aerial photography. The LinkedGeo-

Data project is concerned with converting this OSM to RDF and interlinking spatial entities from

this knowledge graph with entities from other knowledge graphs such as DBpedia and GeoN-

ames. The interlinking in the LinkedGeoData project was done using three criteria. Classes from

the LinkedGeoData knowledge graph were aligned with classes from other knowledge graphs

e.g. cities in LinkedGeoData (lgdo:City) were aligned with instances of DBpedia (dbo:Settlement).

Secondly, a text similarity score, between the instance labels in the two datasets was calculated. Fi-

nally, the spatial distance between the instances in the different knowledge graphs was taken into

account when deciding if there was a match. Clearly the process described in Section 4.4.4 uses

similar techniques, but with containment, rather than distance being used to determine matches.

4.7 Conclusions

Summary This chapter has presented algorithms for computing RCC8 relations in a distributed

setting and generating an enhanced knowledge graph that can support spatial queries. The ef-

fectiveness of these techniques has been shown by implementing the algorithms using GADM,

a high resolution vector dataset that covers the entire globe. The scalability has been shown

by computing point in region relations for increasingly large numbers of points. A number of

key techniques have been presented to facilitate effective parallel processing for these large-scale

datasets. Primarily these are the use of broadcast variables and spatial partitioning to mitigate

the difficulties of large scale joins.

Future work The techniques presented here could easily be extended to integrate additional

layers for the GADM dataset, or to integrate other spatial features. For example, there are vector

datasets for rivers and lakes 16. A similar approach to Algorithm 8 could be used to determine

PO or TPP relations between rivers and regions resulting in a richer RCC8 network.

16https://www.naturalearthdata.com/downloads/10m-physical-vectors/

92

Chapter 5

ParQR-QE: A large scale QSTR query

engine

5.1 Introduction

Chapter 4 described approaches for generating an enhanced knowledge graph, featuring both

quantitative and qualitative spatial information. This chapter considers the querying of such a

knowledge graph. A prototype GeoSPARQL query engine, ParQR-QE (Parallel Qualitative Rea-

soner - Query Engine) has been developed that uses QSTR techniques to provide solutions to

spatial queries. ParQR-QE takes an instance based approach to QSTR, and is also able to use

hybrid methods (quantitative and qualitative reasoning) when QSTR alone isn’t able to answer

queries.

The reasoning techniques used in ParQR-QE are described below, along with query execution

plans for a number of example queries. The following types of query are considered.

Containment Queries Chapter 4 presented containment query C1, find all the museums in Bel-

gium. Another containment query example, query C4 is shown below, find video game developers

that were founded in Canada.

Query 5.6: Query C4

SELECT ?d ?c

WHERE {

?d rdf:type yago:Video_game_developer.

?d schema:foundingLocation ?c.

?c geo:sfWithin yago:Canada.

}

Adjacency Queries Chapter 4 showed containment query A3 find the French regions that border

Belgium. A similar example is shown in query A4, find Argentinian Provinces that border Chile.

93

Chapter 5. ParQR-QE: A large scale QSTR query engine

Query 5.7: Query A4

SELECT ?p

WHERE {

?p rdf:type yago:Provinces_of_Argentina.

?p geo:sfTouches yago:Chile.

}

Join Queries Query J2 shows a spatial join query. For each US State, the query solution will

show Oscar winning actors that were born in the state.

Query 5.8: Query J2

SELECT ?a ?s

WHERE {

?a schema:Award yago:Academy_Award_for_Best_Actor.

?a schema:birthPlace ?b.

?s rdf:type yago:U.S._state.

?b geo:sfWithin ?s.

}

Window Queries Again, Chapter 4, showed an example of a window query, query W1. Query

W2 shows another example which finds the train stations located within a query polygon in South

Korea.

Query 5.9: Query W2

SELECT ?s

WHERE{

?s rdf:type schema:TrainStation.

FILTER(geof:sfWithin (?s," POLYGON ((129.3693821 35.349243 ,128.8804905

35.389557 ,128.6223118 35.3358005 ,128.5014621 35.2102298 ,128.5509006

35.0395012 ,128.9299289 34.958505 ,129.3583957 35.0350036 ,129.4517795

35.2281804 ,129.3693821 35.349243))"^^ geo:wktLiteral))

}

For clarity, prefixes haven’t been shown in the above queries, the full queries can be found in

Appendix A.4.

5.2 Instance based reasoning

Using ParQR (Chapter 3) it would be possible to reason using the enhanced knowledge graph

presented in Chapter 4. The spatial queries above could then be answered simply by looking up

relations for entities specified in the query. This would result in fast query answering, but would

94

Chapter 5. ParQR-QE: A large scale QSTR query engine

come at the cost of re-computing relations whenever new information is added to the knowledge

graph. As we saw in Chapter 3, computing closure for the entire network comes at a time cost -

reasoning takes minutes. Instead, the approach used in this Chapter, ParQR-QE, takes an instance

based approach that is better able to respond to dynamically changing knowledge graphs.

The instance based approach only derives relations for spatial objects specified in the query.

For example, for Query C4 we only need to find relations for yago:Canada. For Query J2 we only

need to find relations for spatial entities of the type yago:U.S._state. In comparison to computing

the full closure, limiting the reasoning to expressions from the query limits the size of joins, the

number of relations that are inferred, and consequently improves the runtime of the reasoning.

However, this alone doesn’t improve the performance sufficiently to provide a response time

acceptable for query answering. In order to speed-up reasoning further, ParQR-QE implements

a broadcast strategy. This is to circumvent the need for the costly shuffle operations which were

described in Chapter 3 in both the inference and consistency stages.

{NTPP}

{PO,NTPP}

{EC}

{NTPP}

{EC}{NTPP}

W

U Z

X Y

V

Figure 5.1: Simple RCC8 Network

95

Chapter 5. ParQR-QE: A large scale QSTR query engine

[w,v]

(w,{NTPP},x,1)

(w,{PO,NTPP},y,1)

(v,{EC},x,1)

(x,{NTPP},y,1)

(z,{EC},y,1)

(u,{NTPP},z,1)

(w,{NTPP},x,1)

(w,{PO,NTPP},y,1)

(w,{NTPP},y,2)

(w,{NTPP},x,1)

(w,{PO, NTPP},y,1)

(w,{NTPP},x,1)

(w,{NTPP},y,2)

(w,{NTPP},x,1)

(w,{PO,NTPP},y,1)

(v,{EC},x,1)

(x,{NTPP},y,1)

(z,{EC},y,1)

(u,{NTPP},z,1)

Partition 1

(w,{NTPP},y,2)

Inference Consistency

Broadcast QCN

R
ed

u
ce

Query expression: (w,{NTPP},x,1)

(w,{PO,NTPP},y,1)

(v,{EC},x,1)

(x,{NTPP},y,1)

(z,{EC},y,1)

(u,{NTPP},z,1)

Partition 2

Inference Consistency

Broadcast QCN

(v,{EC},x,1)

(v,{PO,TPP,NTPP},y,2)

(v,{EC},x,1)

(v,{PO,TPP,NTPP},y,2) (v,{PO,TPP,NTPP},y,2)

(v,{EC},x,1)

R
ed

u
ce

F
ilte

r a
n
d
 R

e
p
a
rtitio

n
Figure 5.2: Instance based reasoning using ParQR-QE

Figure 5.1 shows a simple RCC8 network, and Figure 5.2 shows an example of instance based

reasoning using this QCN. The pre-processing steps (generating look-up tables, generating the

reverse of the initial network) aren’t shown; they are the same as those presented in Chapter 3.

However, at the end of this stage, a copy of the complete input QCN is broadcast to all nodes in

the computing cluster.

Query answering is executed by taking an expression from the query and performing instance

based reasoning for these entities only. In the example shown in Figure 5.2, these are the variables

w and v. The input QCN is filtered to output only those edges with matching head nodes. This

subset of edges, the query edges, are re-partitioned so that all the edges with the same head node

reside in the same partition. In Figure 5.2, edges featuring w as the head node are sent to partition

1, edges featuring v are sent to partition 2. From this point forward, reasoning takes place within

partitions, with no need to shuffle data between different machines or partitions. Where the query

only has a single variable e.g. Query C4, reasoning will proceed using a single partition.

At the inference stage, the query edges form the left-hand side of the join. The previously

broadcast QCN forms the right hand side of the join. Consistency checking simply involves

checking the union of the query edges and newly inferred edges. Figure 5.2 only shows the

first iteration of reasoning. However, as with ParQR, the inference and consistency stages would

repeat until a fixed point is reached.

96

Chapter 5. ParQR-QE: A large scale QSTR query engine

Algorithm 10: ParQR-QE: Main program execution
query(completeQCNMap, queryVariables, partitions) {

//completeQCNMap: The complete QCN broadcast to each machine in the cluster
//queryExpression: An array of spatial entities from the query e.g. [w,v]
//partitions: An integer specifying the no. of partitions e.g. 64

queryEdges = completeQCNMap
.filter((head,edges)⇒ head ∈ queryExpression)
.values
.map(edge⇒ (edge.headInterval, edge))
.repartition(new HashPartitioner(partitions))
.cache()

result = queryEdges.mapPartitions(partitionEdges⇒ {
count = 0
i=1
while partitionEdges.count() ̸= count {

count = partitionEdges.count()
newEdges = inference(partitionEdges, completeQCNMap, i)
partitionEdges = consistency(partitionEdges ∪ newEdges, i)
i++

}
return partitionEdges

}).flatMap(edges⇒ edges)
return result

}

Algorithm 10 shows the implementation for query answering 1. The key aspect is the use

of the mapPartitions operation. The same while loop described in Algorithm 2 from Chapter 3 is

implemented here but will execute within individual partitions, rather than across all partitions.

Figure 5.2 has simplified some aspects which are described in more detail here. For example, the

broadcast QCN is structured as a map, with QCN nodes as keys, and an array of edges for this

node as the value. This makes it easy to filter the QCN, both when extracting the query triples,

and later for the join operation.

1Full code listings can be found at https://github.com/mmantle-hud/ParQR-QE

97

Chapter 5. ParQR-QE: A large scale QSTR query engine

Algorithm 11: ParQR-QE: Inference
1: inference(partitionEdges, completeQCNMap, i) {
2: //partitionEdges: Query edges for the current partition
3: //completeQCNMap: The complete QCN keyed by the head node
4: //i: The iteration number e.g. 1

5: headEdges = partitionEdges.filter(edge⇒ edge.distance = i)

6: partitionJoinedEdges = headEdges.map(headEdge⇒ {
7: tailNode = headEdge.tail
8: tailEdges = completeQCNMap(tailNode)
9: joinedEdges = tailEdges

10: .map(tailEdge⇒ (headEdge,tailEdge))
11: .filter((headEdge,tailEdge)⇒ {
12: headEdge.head ̸= tailEdge.tail //no joins to self
13: })
14: return joinedEdges
15: }).flatMap(joinedEdges⇒ joinedEdges)

16: partitionNewEdges = partitionJoinedEdges.map((headEdge,tailEdge)⇒ {
17: inferredRelation = lookUp(headEdge.relation,tailEdge.relation)
18: distance = headEdge.distance+tailEdge.distance
19: return (headEdge.head, inferredRelation, tailEdge.tail, distance)
20: }).filter((newEdge⇒ newEdge.relation ̸= universalRelation)
21: .flatMap(newRels⇒ newRels)

22: return partitionNewEdges
23: }

The inference operation is shown in Algorithm 11. A linear join strategy is used where one

side of the join, the broadcast QCN, remains the same with each iteration. This is necessary as

if the broadcast QCN were to update, this would need to be re-distributed, which would negate

the benefit of this ’reasoning within a partition’ approach. Newly inferred relations will always

feature a head node that is one of the partition’s query variables. There will be no need to re-

distribute these edges, consistency checking and further derivations can all be made within the

same partition.

The built-in join operator in Spark executes across multiple partitions, joining within the parti-

tion requires a lower level approach, involving a nested loop, lines 6-15. For each of the partition’s

query edges, matching edges from the broadcast QCN map are retrieved and joined to the edge.

Inference simply involves iterating over these joined edges, and looking up the composition of

their relations, see lines 16-21.

98

Chapter 5. ParQR-QE: A large scale QSTR query engine

Algorithm 12: ParQR-QE: Consistency
consistency(partitionEdges, i) {

//partitionEdges: Query edges for the current partition
//i: The iteration number e.g. 1

keyedEdges = partitionEdges
.map(edge⇒ (edge.headInterval+’#’+edge.tailInterval, edge))

keyedEdges.reduceByKey((edgeA,edgeB)⇒
intersect = edgeA.relation ∩ edgeB.relation

if |intersect| = 0
//inconsistency detected
stop()

end if

newDistance = if (edgeA.distance = (i+1) && |edgeB.relation| > |intersect|)
edgeA.distance

else if (edgeB.distance = (i+1) and |edgeA.relation| > |intersect|)
edgeB.distance

else
Math.min(edgeA.distance,edgeB.distance)

endif

return (edgeA.head, intersect, edgeA.tail, distance)
}

Algorithm 12 shows the implementation of the consistency function. This follows the same

approach as described in Chapter 3, but again is executed within a partition where it is only

necessary to check the consistency of the query edges, not the entire network.

Limitations of the Broadcast Approach Given the performance benefits described in this sec-

tion for the broadcast approach, it is reasonable to ask why this strategy wasn’t used in Chapter

3 when reasoning over complete networks. There are two reasons. First is the usual limitation of

the broadcast strategy, the broadcast variable has to fit in memory. For the dataset generated in

Chapter 4, this is fine, the reasoner is able to handle large scale QCNs consisting of millions of re-

lations. However, when dealing with even larger QCNs featuring 10s of millions of relations the

broadcast variable size becomes a limitation. Secondly, the low level approach to joining edges

described above isn’t as fast as the Spark optimised sort merge join, when reasoning using a large

number of variables or an entire network, the performance benefits of the broadcast approach are

limited.

Analysis The algorithms presented in this section are modifications of those presented in Chap-

ter 3. The key difference is that once the initial dataset has been partitioned, and the complete

QCN broadcast, execution takes place within partitions, rather than by shuffling data between

different machines for operations such as join and reduceByKey. This includes the main program

loop which is also executed within partitions, rather than by the driver. However, the number of

iterations within the partitions remains the same as for ParQR i.e. O(diam(QCN).

The join strategy is different, relying on a broadcast join. Within each partition an outer map

99

Chapter 5. ParQR-QE: A large scale QSTR query engine

operation iterates over the query edges and an inner map operation iterates over the entire QCN

to find matching edges that can be joined. For a knowledge graph with n nodes, the worst case

is when the QCN is a complete graph with n2 edges, and the query features all the nodes in the

knowledge graph. On a single machine executing using a single partition, this join would run

in quadratic time. The outer map iterates over the query edges, n2. For each query edge, an

inner map iterates over the broadcast variable of the entire graph i.e. n2 edges. Of course, in a

distributed setting, the query edges are partitioned allowing for parallel execution. Furthermore,

a complete graph is an unlikely scenario, as is a query that features all the nodes of the graph as

the query expression. Again, as with with ParQR, in the worst case the output from the inference

has a total size ofO(n3) edges. Again these would be distributed between partitions. Consistency

involves a simple map operation, followed by the reduceBykey. Just like with ParQR, the join at the

inference stage dominates runtime. This join has a more expensive time complexity than ParQR,

but in reality is able to execute faster because it doesn’t require a shuffle and one side of the join,

the query edges, is almost always smaller.

5.3 Quantitative reasoning for window queries

Using instance based qualitative reasoning alone can be used to answer a wide variety of queries,

however, providing solutions to window queries such as query W2 require a hybrid approach,

reasoning quantitatively to identify spatial objects within the query window, and then reasoning

qualitatively to add in qualitative relations. As discussed in Chapter 4 performing computations

using high resolution, large scale geometries is challenging. The following describes the spatial

indexing approach used to optimise the quantitative aspect of query answering.

100

Chapter 5. ParQR-QE: A large scale QSTR query engine

Musée Hergé
Waterloo

Arlon

47c1c

47c04

47bfc

47eac

47ea4

47c24

47c2c

47dcc 47c34

47c3c 47c14

47c0c
47bf4

47c74

47c6c47c4447c4c

Musée Hergé
Waterloo

Arlon

47c447dc

47ec

47bc

(a) Geometries partitioned by cell id

(b) Cell coverings

cellid geomid id …

47c34 yago:Waterloo yago:Waterloo …

47c14 yago:Musée_Hergé yago:Musée_Hergé …

47eac yago:Arlon yago:Arlon …

47c4c BEL#1 yago:Belgium …

47c6c BEL#2 yago:Belgium …

47c4c BEL#3 yago:Belgium …

47c3c BEL#3 yago:Belgium …

47dcc BEL#3 yago:Belgium …

… … … …

cellid geomid id coords …

47ec BEL#3 yago:Belgium [[[51.36, 3.37… …

47ec yago:Arlon yago:Arlon [[[49.68,5.82… …

cellid geomid id coords …

47dc BEL#3 yago:Belgium [[[51.36, 3.37… …

cellid geomid id coords …

47bc BEL#3 yago:Belgium [[[51.36, 3.37… …

cellid geomid id coords …

47c4 BEL#1 yago:Belgium [[[51.36, 3.37… …

47c4 BEL#2 yago:Belgium [[[51.42, 4.945… …

47c4 BEL#3 yago:Belgium [[[49.49, 5.470… …

47c4 yago:Waterloo yago:Waterloo [[[50.71, 4.38... …

47c4 yago:Musée_Hergé yago:Musée_Hergé [[[50.66, 4.61... …

Figure 5.3: Spatial indexes for quantitative query answering

Similar to Chapter 4 the query engine uses the S2 Library to identify cells for geometries. Fig-

ure 5.3 shows how S2 Cells are used in two ways to enable efficient quantitative query answering.

First, using a low level i.e. a small number of large S2 cells, the full geometries of both region poly-

gons and points are partitioned by cell id, and stored by partition to disk in the Parquet format,

see Figure 5.3(a). Secondly, cell coverings are generated for both points and region polygons, see

Figure 5.3(b).

The justification for this approach is that the full geometries are too large to fit easily into

memory without significantly affecting performance. However, spatial queries rarely require the

use of all geometric objects in the knowledge graph, only those relevant to the query. By only

loading the geometries that are needed, query execution time is much faster. For example, in

query W2, we can use the S2Geometry library to identify S2 cells that overlap the query window,

and only access the partitions that share a cell id with the query window’s cells. Limiting the size

of the geometries that are loaded, and subsequent joins involving these geometries, is the greatest

single factor affecting query performance for the quantitative reasoning in ParQR-QE.

The cell coverings, Figure 5.3(b), can be used to further reduce the set of geometries that need

to be checked. The coverings can also be filtered to identify spatial objects that share cells with the

query window. These cell coverings use a higher S2 level and therefore provide a more accurate

indication of possible results. Furthermore, in the case of multi-polygon regions, by using the cell

101

Chapter 5. ParQR-QE: A large scale QSTR query engine

coverings, a number of spatial entities can be discarded if one or more of their polygons are absent

from this list of candidates. These cell coverings can then be joined with the full geometries to

provide a final list that can be checked for containment within the query polygon. Algorithm 13

shows this implementation.

Different S2 Levels (cell sizes) are used for the geometry partitioning and the cell coverings.

Full geometries are stored for each cell the geometry overlaps e.g. in Figure 5.3(a) the geometry

for the polygon BEL#3, the main body of Belgium, overlaps four cells, therefore storage for this

polygon is duplicated in four different partitions. A balance is needed between using a higher S2

level that results in smaller partition sizes with more duplication, and a smaller S2 level which

results in less duplication but larger partitions. In practice, an S2 level of 4 was used for the

geometry partitioning. The cell coverings don’t store the actual coordinates, so can use a higher

resolution that is needed to provide an accurate approximation of spatial objects. Furthermore,

the cell coverings fit easily into memory, they are cached as a pre-processing step, allowing for

fast access at query time.

Algorithm 13: Quantitative query answering for window queries
1: windowQuery(queryPolygon, cellCoverings, geometries) {
2: //queryPolygon: The polygons specified in the query e.g. "POLYGON ((4.321423 50.5882119..."
3: //cellCoverings: See Figure 5.3(b)
4: //geometries: See Figure 5.3(a)

5: queryCellCovering = getCellCovering(queryPolygon)
6: initialCandidates = cellCoverings.filter(cellCovering⇒ cellCovering.cellid ∈ queryCellCovering)
7: candidates = filterComplete(initialCandidates)

8: filteredGeoms = geometries.filter(geometry⇒ geometry.cellid ∈ queryCellCovering).cache()
9: initResults = candidates

10: .join(filteredGeoms, candidate.geomid = filteredGeom.geomid)
11: .filter(filteredGeom⇒ queryPolygon.contains(filteredGeom.coords)

12: quanResults = filterComplete(initResults)

13: return quanResults
14: }

When testing for containment it is necessary to check whether all polygons for a multi-polygon

geometry are located within the query window. This check, filterComplete(), in Algorithm 13 is

performed first using the candidates from the cell coverings (line 7), and a second time using the

full geometries (line 12). filterComplete() isn’t shown in full, but simply involves counting records

that have been grouped by id. It is a comparatively fast operation, and is worth doing using

the candidate objects to further reduce the size of the subsequent join with the full geometries.

Of course, line 12 is necessary to ensure that all parts of a multi-polygon geometry are actually

within the query window.

Spark implements lazy loading of datasets. Even though the geometries variable has been ini-

tialised prior to the execution of the windowQuery() function, the geometries table won’t be loaded

until an action is performed on the table. This is how the query engine can take advantage of the

partitioned geometries in Figure 5.3. The first operation performed on the geometries dataset,

102

Chapter 5. ParQR-QE: A large scale QSTR query engine

line 8, filters by the partition key, only geometries from the specified partition will be loaded.

Again, like in Chapter 4 the actual checking of containment (line 11) was performed using the

ESRI Geometry API.

5.4 Query execution

Executing GeoSPARQL queries involves processing spatial query triples using ParQR-QE’s query()

function (Algorithm 10) or in the case of window queries, a combination of this function and the

windowQuery() function (algorithm 13). However, GeoSPARQL queries usually also feature non-

spatial query triples. In ParQR-QE non-spatial query triples are mapped to SQL queries which

are executed using the vertically partitioned property tables. For example, in Query C4 the non-

spatial query triples can be mapped to the following SQL statement.

SELECT type.subject AS ?d, foundingLocation.object AS ?c FROM

type JOIN foundingLocation ON type.subject = foundingLocation.subject

This mapping is handled with the assistance of Apache Jena 2 which is used to parse the

GeoSPARQL queries, and extract query triples and their component elements, so that the map-

ping to SQL or spatial querying can take place.

It should also be noted that ParQR-QE is very a much a prototype system, designed specif-

ically to test the type of queries shown in the introduction. Many SPARQL and GeoSPARQL

features haven’t been implemented e.g. restricting on numeric values, ordering, or filtering by

alternative spatial properties such as intersect.

The query execution plans for example queries are shown below.

2https://jena.apache.org/index.html

103

Chapter 5. ParQR-QE: A large scale QSTR query engine

5.4.1 Query execution for adjacency queries

?p rdf:type yago:Provinces_of_Argentina

SELECT type.subject AS ?p FROM type
WHERE type.object = yago:Provinces_of_Argentina

ParQR-QE.query([yago:Chile])

filter(relation = EC)

?p geo:sfTouches yago:Chile (join ?p = result)

map

?p

yago:Buenos_Aires_Province

yago:Chubut_Province

yago:Mendoza_Province

yago:Corrientes_Province

...

expression rela�on result

yago:Chile NTPPi/TPPi yago:Pichilemu

yago:Chile EC yago:Chubut_Province

yago:Chile NTPPi/TPPi yago:Ciruelos

yago:Chile EC yago:Mendoza_Province

… … ...

?p

yago:Chubut_Province

yago:Mendoza_Province

...

expression result

yago:Chile yago:Chubut_Province

yago:Chile yago:Mendoza_Province

… ...

Figure 5.4: Query execution for Query A4

Figure 5.4 shows the execution plan for Query A4. The spatial triple has an expression consisting

of a single value, yago:Chile. ParQR-QE performs instance based reasoning using this single value.

All relations for yago:Chile are derived until a fixed point is reached. These relations are then

filtered to leave only EC relations. Disjunctive relations e.g. {EC,PO,TPP,NTPP} are filtered out.

The results of this qualitative reasoning are then joined with the results from the non-spatial part

of the query to provide the query solution. The plan would be the same for containment queries

e.g. Query C4 but clearly there would be different query expressions, and filtering would use the

{NTPPi,TPPi} relation.

104

Chapter 5. ParQR-QE: A large scale QSTR query engine

5.4.2 Query execution for spatial join queries

?a schema:Award yago:Academy_Award_for_Best_Actor
?a schema:birthPlace ?b

?s rdf:type yago:U.S._state

SELECT award.subject AS ?a, birthPlace.object AS ?b
FROM award JOIN birthPlace
ON award.subject = birthPlace.subject
WHERE award.object = yago:Academy_Award_for_Best_Actor

SELECT type.subject AS ?s FROM
type WHERE type.object = yago:U.S._State

?a ?b

yago:Sidney_Poi�er yago:Miami

yago:Alec_Guinness yago:Marylebone

yago:Leonardo_DiCaprio yago:Hollywood

yago:Forest_Whitaker yago:Longview,_Texas

?s

yago:Florida

yago:Arizona

yago:California

yago:Texas

ParQR-QE.query([yago:Florida,...,yago:Texas])

?b geo:sfWithin ?s (join ?b = result AND ?s = expression)

?a ?s

yago:Sidney_Poi�er yago:Florida

yago:Leonardo_DiCaprio yago:California

yago:Forest_Whitaker yago:Texas

map

map

filter(relation {NTTPi,TPPi})

expression rela�on result

yago:Florida EC yago:Georgia

yago:Florida NTPPi/TPPi yago:Miami

yago:Arizona NTPPi/TPPi yago:Phoenix,_Arizona

yago:California EC yago:Oregon

yago:Texas NTPPi/TPPi yago:Space_Center_Houston

… … …

expression result

yago:Florida yago:Georgia

yago:Florida yago:Miami

yago:Arizona yago:Phoenix,_Arizona

yago:California yago:Oregon

yago:Texas yago:Space_Center_Houston

… …

Figure 5.5: Query execution for Query J2

In Query J2, first the non-spatial query triple ?s rdf:type yago:U.S._state is evaluated. These re-

sults are then passed the ParQR-QE for reasoning. Unlike Query A4 reasoning takes place using

multiple instances and can therefore take advantage of parallelisation. The reasoning doesn’t

discriminate between relations, so again filtering needs to be done on the results to identify the

containment relations. Two joins are then needed, between the reasoning result and the query

variable ?b, and also between the query expression and the variable ?s. It may seem as if it isn’t

necessary to perform this second join as the US states are already present in the results of the

qualitative reasoning. However, in the more general case, there may be additional non-spatial

results previously joined to this expression that need to be included in the query solution.

105

Chapter 5. ParQR-QE: A large scale QSTR query engine

5.4.3 Query execution for window queries

ParQR.query([yago:Musée_Hergé, yago:Waterloo,_Belgium ...])

?FILTER(geof:sfWithin(?m,"POLYGON((4.321...))"^^geo:wktLiteral))
(join ?m = result)

join id = id

filter by the cell covering for
POLYGON((4.321 50.588,...))

filter (coords is within POLYGON((4.321 50.588,...))

Load geometries from partitions that share
cells with POLYGON((4.321 50.588,...)

cellid id …

6d3ebc yago:New_Zealand …

47c03c yago:Waterloo,_Belgium …

5�30c yago:Vladivostok …

5494ec yago:Stumptown_Coffee_Roasters …

… … …

Cell Coverings

Geometries

?m rdf:type yago:Museum

SELECT type.subject AS ?m FROM
type WHERE type.object = yago:Museum

map

?m

yago:Louvre

yago:Musée_Hergé

yago:Bri�sh_Museum

yago:Wellington_Museum

…

expression rela�on result

yago:Musée_Hergé NTPP/TPP yago:Wallonie

yago:Waterloo,_Belgium NTPPi/TPPi yago:Wellington_Museum

yago:Musée_Hergé NTPP/TPP yago:Belgium

yago:Stade_Jus�n_Peeters NTPP/TPP yago:Wallonie

… … …

filter(relation {NTTPi,TPPi})

cellid id coords …

47c4 yago:Musée_Hergé [[[50.667, 4.61... …

47c4 yago:Waterloo [[[50.716,4.38… …

47c4 yago:Luxembourg [[[50.720, 4.61… …

47c4 yago:Belgium [[[51.36, 3.374... …

… … … …

?m

yago:Musée_Hergé

yago:Wellington_Museum

…

result

yago:Musée_Hergé

yago:Waterloo

yago:Stade_Jus�n_Peeters

yago:Wellington_Museum

…

result

yago:Wellington_Museum

…

id

yago:Musée_Hergé

yago:Waterloo

yago:Stade_Jus�n_Peeters

…

id

yago:Musée_Hergé

yago:Waterloo

yago:Stade_Jus�n_Peeters

…

Figure 5.6: Query execution for Query W1

Figure 5.6 considers Query W1. Query execution for window queries first involves quantitative

reasoning. As shown in Algorithm 13 the cells of the query window are used to filter the cell

coverings table and the geometries. These are joined using the id of the spatial object to restrict

106

Chapter 5. ParQR-QE: A large scale QSTR query engine

the set of geometries that are actually tested for containment within the polygon. Matching spatial

entities are passed to ParQR-QE for qualitative reasoning. The results of the qualitative reasoning

are combined with the quantitative results to provide a complete set of spatial results. Finally

these are joined with results from the non-spatial query triples ?m rdf:type schema:Museum to

provide the final query results.

5.5 Evaluation

Evaluating ParQR-QE and the algorithms presented in this chapter focuses on two key metrics,

query response times and the number of results. In terms of query response times, we are in-

terested in the general performance of qualitative query answering techniques, and also in how

response times differ for different types of query. Exploring the number of solution results will

give some indication of how successful qualitative approaches are in providing more complete

answers in comparison to using purely quantitative data.

The enhanced knowledge graph described in Chapter 4 was used as the basis of the evalua-

tion. This consisted of 1,095,400 spatial entities (nodes in an QCN) and 1,103,074 RCC8 relations.

The quantitative data was made up of 234,886 polygons, with a total number of vertices number-

ing 70,596,731, and 957,700 points.

Twenty example queries were used to evaluate the query engine. These were made up of

five containment queries, queries (C1-C5), five adjacency queries (A1-A5), five join queries (J1-J5)

and five window queries (W1-W5). The queries can be found in Appendix A.4. For each query,

the mean average response time was taken of five successive query executions. These response

times don’t include pre-processing steps such as broadcasting the input QCN or caching the cell

coverings tables. These datasets don’t change between query executions, so the broadcast and

caching operations can be implemented in advance to speed-up the query response times. A time

limit of 5 mins was placed on the execution of queries.

A final experiment was run to test the scalability of the instance based reasoning approach.

For this experiment a single query was used, Query J5.

For all experiments except for scalability, the query engine was tested using a cluster of 4

machines. As with previous experiments each machine had eight virtual CPUs and 52GB of

memory.

5.5.1 Quantitative query engine

To my knowledge there are no direct comparisons to the ParQR-QE query engine presented in this

chapter - a GeoSPARQL query engine capable of querying large scale hybrid knowledge graphs.

The related work section in Chapter 4 described large scale spatial querying frameworks e.g.

SpatialHadoop and STARK. However, these aren’t equipped to handle semantic web data and

answer SPARQL queries. The related work section in this chapter also discusses GeoSPARQL

implementations. However, these aren’t designed to work at scale in a distributed setting.

107

Chapter 5. ParQR-QE: A large scale QSTR query engine

In order to provide a comparison to ParQR-QE, a quantitative query engine has been devel-

oped, this will be referred to as Quan-QE. This system uses the same optimisations described in

Section 5.3 i.e. a cell coverings tables loaded into memory and spatially partitioned geometries

saved to disk. The query execution plan for Query A4 but executed using Quan-QE is shown in

Figure 5.7.

A key difference to the previous query execution plans involving ParQR-QE, is that quanti-

tative query execution can take advantage of early filtering. At the start of the query plan the

cell coverings table is joined to the non-spatial query results, to provide the cell coverings for all

Argentinian Provinces. This reduced set of cell coverings is then joined to the cell coverings for

yago:Chile to provide the list of candidate spatial objects i.e. Argentinian Provinces that share cells

with Chile. This greatly improves query response times, geometries are not only restricted spa-

tially by using cell coverings, but also by the type of object. This early filtering on object type is

an approach widely used in quantitative query answering engines [54].

Once candidate spatial objects have been determined, these candidates are joined with their

full geometries, and filtered to only leave those regions that touch Chile. This join is the bottle-

neck in terms of performance. Two joins need to be executed, first to retrieve the coordinates for

yago:Chile (geometry.geomid= expression.geomid), and again to retrieve the coordinates for the candi-

date provinces (geometry.geomid = candidate.geomid). Again, the biggest factor in determining the

speed of this operation is the size of the geometries dataset that is loaded from disk. The cell ids

of the candidate objects can be used to restrict the partitions that are accessed, limit the size of the

geometries dataset, and speed up these joins.

108

Chapter 5. ParQR-QE: A large scale QSTR query engine

filter id=yago:Chile

join ?p = id

?p rdf:type yago:Provinces_of_Argentina

SELECT type.subject AS ?p FROM type WHERE
type.object = yago:Provinces_of_Argentina

map

?p

yago:Buenos_Aires_Province

yago:Chubut_Province

yago:Mendoza_Province

yago:Corrientes_Province

...

join on geometry.geomid = expression.geomid
join on geometry.geomid = candidate.geomid

filter(expression.coords touches candidate.coords)

Load geometries from partitions that share
cells with the candidates join cellid = cellid

cellid id geomid …

1c06b4 yago:Botswana BWA#1 …

842e0c yago:Mexico MEX#860 …

38a1ac yago:Kazakhstan KAZ#33 …

30b754 yago:Naypyidaw yago:Naypyidaw …

… … … …

Cell coverings

expression.geomid candidate.geomid …

CHL#6050 ARG.12_1#1 …

CHL#695 ARG.23_1#29 …

CHL#698 ARG.23_1#22 …

CHL#359 ARG.23_1#29 …

… … …

?p geo:sfTouches yago:Chile (join ?p = result)

expression.geomid expression.coords candidate.geomid candidate.coords candidate.id …

CHL#6050 [[[-44.59,-74.35… ARG.12_1#1 [[[-28.00,-60.38… yago:La_Rioja_Province …

CHL#695 [[[-45.42,-74.04… ARG.23_1#29 [[[-55.60,-68.59… yago:Tierra_del_Fuego_Province …

CHL#698 [[[-52.29,-73.94… ARG.23_1#22 [[[-53.99,-72.81… yago:Tierra_del_Fuego_Province …

CHL#359 [[[-53.99,-72.81… ARG.23_1#29 [[[-52.29,-73.94… yago:Tierra_del_Fuego_Province …

… … … … … …

id geomid coords …

yago:El_Salvador_mine yago:El_Salvador_mine [[[-26.24, -69.55… …

yago:Toconce_(volcano) yago:Toconce_(volcano) [[[-22.19, -68.07... …

yago:Chubut_Province ARG.4_1#39 [[[-28.00,-60.38… …

yago:Chile CHL#359 [[[-53.99,-72.81… …

… … … …

cellid id geomid …

95d03c yago:Córdoba_Province ARG.6_1#1 …

94fa34 yago:Misiones_Province ARG.14_1#1 …

96836c yago:San_Juan_Province ARG.18_1#1 …

95c50c yago:Córdoba_Province ARG.6_1#1 …

… … … …

cellid id geomid …

bc52cc yago:Chile CHL#1726 …

96bcbc yago:Chile CHL#6050 …

bda58c yago:Chile CHL#6050 …

bd98f4 yago:Chile CHL#5593 …

… … … …

result

yago:La_Rioja_Province

yago:Tierra_del_Fuego_Province

yago:Mendoza_Province

…

candidates

?p

yago:Chubut_Province

yago:Tierra_del_Fuego_Province

yago:Mendoza_Province

…

Figure 5.7: Query execution for Query A4 using quantitative reasoning

Containment queries such as Query C4, follow a nearly identical query execution plan. In

the case of a spatial join query, the only significant difference is that instead of filtering the cell

109

Chapter 5. ParQR-QE: A large scale QSTR query engine

coverings table (which is done for yago:Chile in Figure 5.7), the cell coverings table is joined with

non-spatial query results e.g. for Query J2, the cell coverings would be joined with a table of US

States. The rest of the query execution would proceed as in Figure 5.7.

The same queries used to evaluate ParQR-QE were executed using Quan-QE. Again, pre-

processing steps e.g. caching the cell coverings table were not part of the measured query execu-

tion times.

5.5.2 Containment queries

Table 5.1 show the results for running containment queries.

The query execution times for ParQR-QE are much faster than the reasoning runtimes re-

ported in Chapter 3. The instance based reasoning approach has provided a considerable im-

provement in reasoning time.

As has been stated previously, irrespective of time complexity, the runtime in distributed par-

allel applications is dominated by aspects such as serialising/deserialising objects and shuffling

data between machines. This is why we see considerably faster exection times for ParQR-QE.

Generally the query response times for ParQR-QE are faster than those for the quantitative

query engine. However, often the differences in runtime aren’t great, and we should be cau-

tious about drawing definite, more general conclusions about the performance of qualitative vs

quantitative reasoning in spatial query answering based on these results. The response times are

dependent on the particular knowledge graph being queried, the queries (which often cover wide

geographical areas), and specific query engine implementations. It is possible that an alternative

approach to the quantitative query answering presented here is able to out perform the qualitative

reasoning.

Of more interest is how the query times differ. The query response times for ParQR-QE re-

main fairly constant. The response time is largely dependent on the number of results generated

during reasoning. If reasoning generates lots of inferences, involving several iterations with large

joins, the query execution time will be slower. As a general rule reasoning using a small number

of instances as a starting point leads to comparatively few derivations, and this is the case for

the containment queries. At most 312,874 relations are generated for queries C1-C5 which isn’t

especially demanding for the reasoner.

In comparison the response times for quantitative query answering vary widely. The dashes

for Query C3, find all the Human Settlements in China, indicate the query execution exceeded the

time limit of 5 mins and was abandoned. The response time for Query C5 Find actors from the

film Casablanca that were born in Bavaria executes in less than 10 seconds, faster than ParQR-QE.

These differences can be explained by differences in the number of full geometries that have to

be accessed and checked as part of the query execution. Query C5 focuses on a single German

state, a comparatively small geographic area, and subsequently a comparatively small subset

of geometries will be loaded. Conversely, Query C3 features China as the query expression, a

country that covers a wide area, and requires geometries from many more partitions to be loaded.

110

Chapter 5. ParQR-QE: A large scale QSTR query engine

Query ParQR-QE Quan-QE

Time No. results Time No. results

C1 9.102 149 13.779 137

C2 9.025 268 17.880 263

C3 11.015 573 - -

C4 10.686 9 42.971 9

C5 10.178 1 9.615 1

Table 5.1: Experimental results for containment queries

It can be argued these differences are particular to the approach taken here and other spatial

access methods e.g. data driven structures such as R-trees may be more efficient. However, to

some extent all quantitative spatial access methods are dependent on characteristics of the spa-

tial objects in the dataset. This is indicative of an area where QSTR spatial answering techniques

maybe advantageous. Reasoning using relations isn’t dependent on attributes such as the geo-

graphic area covered by an object or the complexity of it’s geometry.

As expected there are differences in the number of query results, with ParQR-QE finding a

greater number of results for queries C1 and C2. These difference arise for two reasons. In some

cases data only exists in qualitative form. For example the results for query C2, find Barcelona

footballers that were born in Catalonia, should include players that were born in the municipality

of Navarcles. In the YAGO knowledge graph Navarcles doesn’t have a schema:geo property, but

it does have a containedInPlace predicate so is included in the qualitative reasoning. The second

reason is inaccuracies in some of the quantitative spatial data. The results should include players

born in the coastal town of Mataró. However, the coordinates specified in the schema:geo property

for Mataró locate it in the Mediterranean Sea, just outside the GADM geometry for Catalonia.

However, Mataró also has a containedInPlace predicate so footballers born in Mataró are included

in the qualitative results.

111

Chapter 5. ParQR-QE: A large scale QSTR query engine

5.5.3 Adjacency queries

Query ParQR-QE Quan-QE

Time No. results Time No. results

A1 7.685 6 11.169 6

A2 11.029 4 46.447 4

A3 8.446 2 7.967 2

A4 7.803 10 59.967 10

A5 10.910 15 - -

Table 5.2: Experimental results for adjacency queries

The ParQR-QE results for adjacency queries in Table 5.2 show greater differences in runtime than

for containment queries. This can be explained by the particular queries. For example, Query A1

find the countries that border Chad executes in 7.685 secs. Compared to Europe and North America,

the YAGO knowledge graph features fewer spatial triples for objects located in Central Africa.

Consequently, fewer inferences are made and reasoning executes faster. For Query A1, only 17,259

relations are inferred. Although the differences between queries are greater than for containment

queries, the query response times, between 7 and 11 seconds, for ParQR-QE still remain fairly

consistent.

Again, the response times for quantitative query answering vary widely, and the explanation

is the same as for containment queries. Query A5 find the countries that border Russia covers a wide

geographic area, requires many partitions to be loaded, and failed to complete. Query A3 find

French regions that border Belgium executes quickly, as it requires a much smaller set of geometries

to be loaded. In comparison, a similar query, query A4 find Argentinian Provinces that border Chile

has a much longer execution time, not only because Chile covers a wider area than Belgium, but

also because of the complexity of Chile’s geometry. Chile is multi-polygon made up of over 6000

polygons and more than 2 million vertices.

Unsurprisingly the number of results is the same for qualitative and quantitative query an-

swering. The knowledge graph doesn’t feature qualitative adjacency properties, so all results

are consequence of computations made using the GADM dataset. However, there are inaccura-

cies, largely due to the matching discussed in Chapter 4. For example, there are 11 Argentinian

Provinces that border Chile, but Neuquén Province wasn’t matched correctly, therefore the geom-

etry wasn’t linked to the YAGO representation.

112

Chapter 5. ParQR-QE: A large scale QSTR query engine

5.5.4 Join queries

Query ParQR-QE Quan-QE

Time No. results Time No. results

J1 10.612 208 11.544 186

J2 31.718 49 16.617 48

J3 9.684 51 11.752 21

J4 154.784 307 - -

J5 143.524 50 - -

Table 5.3: Experimental results for join queries

All containment and adjacency queries involve reasoning using a single instance. For spatial join

queries the query expression consists of multiple instances, as a result we see wider differences

in query execution time. Queries J1 and J3 focus on comparatively sparse parts of the knowledge

graph. Query J3 for each South African Province, find the airports located in the province, results in

the reasoner deriving 74,495 relations. Query J4 for each nuclear power plant, find the country it is

located within requires instance based reasoning for all 256 countries, results in a reasoner output

of 63,516,401 relations, and a considerably longer query response time.

Like containment and adjacency queries quantitative query answering runtime is largely de-

pendent on the size of the geometries that need to be loaded and the size of the join involving

these geometries. For example, Query J4 fails to complete within the 5 minute limit. Query J2 (for

each US State, find Oscar winning actors that were born in the state) is interesting because it shares

some similarities with Query A2 (find US States that border Mexico) i.e. they focus on a similar

geographic area. It might appear surprising that the runtime for the spatial join, J2, is faster than

for the adjacency query A2. However, query J2 involves joining points (birthplaces) to polygons

(US States). Query A2 involves joining polygons (Mexico) to polygons (US States). The more

complex geometries in query A2 result in slower join performance and eventual checking of the

geometries. The response times for Query J2 for Quan-QE are faster than for ParQR-QE. This is

a consequence of the qualitative reasoner deriving a large number of relations (because USA is

a dense part of the KG) making query times slower, and the point based representation of birth-

places in the KG making query times faster for the quantitative implementation.

Again, as with containment queries, differences in the number of results can be attributed the

existence of qualitative only information or inaccuracies in spatial object geometries.

113

Chapter 5. ParQR-QE: A large scale QSTR query engine

5.5.5 Window queries

Query ParQR-QE (Hybrid reasoning) Quantitative only

Time No. results Time No. results

W1 23.227 4 10.330 3

W2 19.625 53 10.035 53

W3 18.504 2 9.340 2

W4 19.869 2 8.344 0

W5 40.984 50 9.487 41

Table 5.4: Experimental results for window queries

Table 5.4 shows the results for window queries. These were run using the hybrid approach shown

in Figure 5.6, and separately using a quantitative only execution. This involved the same query ex-

ecution plan as in Figure 5.6 but the qualitative reasoning stage was skipped. The query response

times for the hybrid approach are much longer than ParQR-QE’s response times for containment

and adjacency queries. This is for two reasons. First, the query involves executing both quali-

tative and quantitative reasoning, which are executed successively. Secondly, for the qualitative

part, the runtime is largely determined by the number of relations generated during reasoning.

Unlike containment/adjacency queries that reason from the basis of a single instance, for window

queries, ParQR-QE reasons for all spatial objects that have been found to be quantitatively within

the query window e.g. for Query W5, 407 instances are passed to the query() function.

In contrast quantitative only query answering runs fast in comparison to other query types

because the query polygons generally don’t cover as wide an area as the countries and adminis-

trative regions used as the expressions in the previous queries. The query polygons used are fairly

large e.g for Query W5, the polygon covers 39,305km2, but these still allow the query engine to

limit the number of geometry partitions that are loaded. Furthermore, the types of spatial objects

(museums, bridges, train stations etc.) used in these queries are all represented as points, which

limits the size of the join, and complexity of the containment tests.

Again qualitative reasoning improves the completeness of the results. Quantitative reasoning

identifies objects within the query window. Using these objects as a basis, qualitative reasoning

uses {NTPPi, TPPi} relations to check for other objects within this window. For queries W1 and

W5, the reasoner is able to find additional results using qualitative reasoning.

5.5.6 Scalability

The scalability of the instance based reasoning approach is shown in Figure 5.8. The query with

the longest runtime, Query J4, was chosen for this experiment. The containment and adjacency

queries would show little speed-up as reasoning is executed within a single partition. It is only in

the join and window queries where ParQR-QE can take advantage of parallelisation. The query

114

Chapter 5. ParQR-QE: A large scale QSTR query engine

was run using computing clusters consisting of 2, 4, 8 and 16 machines, and only executed for

ParQR-QE. The results show that although the speed-up isn’t optimal, the reasoner does scale

effectively, as more machines are added to the cluster, greater parallelisation is possible and query

execution times improve significantly. Depending on the dataset and the specific query there will

be a point where adding more machines to the computing cluster doesn’t significantly improve

runtime. For Query J4 we can see the improvement in query response time reduces as we move

from 8 to 16 machines. Although the exact results would differ, we would expect to see some

speed-up for all the join and window queries. The query expression for all these queries features

multiple spatial objects. These can be distributed and the query executed in parallel.

2 4 8 16
0

50

100

150

200

250

300

Number of machines

R
un

ti
m

e
(s

ec
on

ds
)

Query response time

for Query J4

2 4 8 16

0.5

1

1.5

2

Number of machines

Sc
al

ed
Sp

ee
d-

U
p

Scaled speed-up

for Query J4

Figure 5.8: Scalability of query response time for Query J4

5.6 Related work

There are no direct comparisons to the system described in this chapter, i.e. a hybrid query en-

gine that integrates QSTR reasoning to answer spatial queries over large scale knowledge graphs.

However, there has been work conducted exploring query answering using RCC8 reasoning, hy-

brid spatial query systems for RDF data, and RDF querying using distributed computing frame-

works.

Qualitative spatial reasoning and GIS The idea of a GIS query answering system that uses

RCC8 relations was first presented by Bennett in 1996 [11]. He described a prototype system that

contained a database of geometrical polygon data and qualitative relations between regions. The

system was implemented using Prolog, with queries being entered via the Prolog intepreter e.g.

?- dbq(ec(town,forest)) Queries were answered by adding the query as a constraint to the RCC8

network, and reasoning to determine whether the query is consistent with the database. The

prototype system dealt with toy datasets that were very small in scale; it was presented as an

example of possible application of RCC8 in GIS.

Stocker and Sirin described PelletSpatial, a qualitative spatial reasoning engine for semantic

115

Chapter 5. ParQR-QE: A large scale QSTR query engine

web data built on top of the Pellet reasoner [64]. They implemented two different approaches to

qualitative spatial reasoning. The first approach was implemented by translating RCC8 relations

into OWL-DL class axioms. Queries were then answered by reasoning using the resulting RDF

knowledge graph. This approach proved to be impractical even for very small networks. The

second approach was similar to the one described in this chapter. The spatial parts of SPARQL

queries were answered by reasoning over RCC8 relations e.g. find all regions connected to a

specified region, and the non-spatial parts by querying RDF triples that contained additional

information about spatial entities e.g. filter these regions based on the size of their population.

This reasoner demonstrated the promise of such an approach, reasoning over networks of 10,000

relations, but it also suffered from limitations. Reasoning was limited to the base relations of

RCC8, and the reasoner failed to cope with networks of larger sizes.

More recently, Younis et al. presented hybrid geo-spatial query methods using the DBpedia

knowledge graph [75]. Faced with the same issues described in Chapter 4 i.e. point based ge-

ometries in DBpedia, they used a detailed vector based dataset alongside the spatial data present

in DBpedia. For the detailed vector dataset, they limited the area to a single country, the UK,

and used vectors from the UK’s Ordnance Survey (OS) maps, which were stored in a PostGIS

database. Using DBpedia they extracted spatial entities and their point based geometries for spe-

cific types of feature e.g. churches, hospitals, and also stored these in a PostGIS database. They

were then able to run queries such as Find Churches within 1km of the River Thames. To execute such

a query, the geometry of the River Thames was looked up using the OS database, this geometry

was then used to query the database of DBpedia spatial objects to find matches. Other types of

query and further integration with DBpedia was possible e.g. running a query such as find the

mouths of Rivers that cross Oxford. This involved finding rivers that cross Oxford using the OS

database, and then running SPARQL queries against a DBpedia endpoint to find the mouths of

these rivers. The system also demonstrated simple hybrid methods. These were used for contain-

ment queries e.g. find all the libraries in Bath. To execute such a query, the polygon for Bath was

extracted from the OS database, the spatial index of DBpedia spatial entities was queried using

this geometry. These quantitative results were then combined with the result of running SPARQL

queries against the DBpedia endpoint using the containment properties e.g. ?x dbpd:locationCity

Bath . Their experimental results make a strong case for a hybrid approach that integrates more

sophisticated polygon based geometries. Using both quantitative and qualitative methods they

found that in some cases they were able to nearly double the number of instances retrieved. The

system described by Younis et. has a number of significant differences compared to ParQR-QE.

They focussed on computation that can be handled by a single machine. Presumably, because of

scale and complexity involved in dealing with geometries for the entire globe, they limited their

system to the UK only, and a subset of spatial features. Furthermore, even though they took a

hybrid approach to query answering, there wasn’t any reasoning over qualitative spatial predi-

cates, after obtaining results from quantitative data, they simply ran a separate SPARQL query to

integrate entities linked by containment predicates. Finally, their implementation also relies on

116

Chapter 5. ParQR-QE: A large scale QSTR query engine

simply piping together separate systems, as such they have little fine grained control over issues

such as query execution.

GeoSPARQL implementations

An obvious place to look for comparisons with the ParQR-QE system described in this chapter

is RDF stores that implement GeoSPARQL. A number of RDF stores support geospatial queries

over rdf data e.g Parliament [8], and Strabon [31]. Such RDF stores are capable of executing the

queries described in the introduction to this chapter. They typically implement features such as

spatial indexing and query optimisation by executing the most selective part of a query first.

RDF triple stores such as Parliament are relevant as examples that can execute GeoSPARQL

queries. However, they differ significantly from the work being presented here. These systems

all focus on quantitative reasoning. Although the GeoSPARQL standard supports qualitative

predicates, this is simply the query syntax. RDF stores don’t support qualitative reasoning, they

would either need the query to be written to explicitly reference object geometries see Query 5.10

or use query re-writing to transform the Query A4 into Query 5.10.

Query 5.10: Query A4 after query re-writing

SELECT ?p

WHERE{

?p rdf:type yago:Provinces_of_Argentina.

?p geo:hasGeometry ?pgeo

yago:Chile geo:hasGeometry ?cgeo

?pgeo geo:sfTouches ?cgeo.

}

Furthermore scalability remains an issue for GeoSpatial RDf stores [27], example workloads

have tended to focus on limited geographical extents e.g. a single country or area. As shown in

Section 5.5 the parallel, distributed approach as presented here is able to handle large scale spatial

data.

Distributed approaches to RDF querying As the size and volume of RDF knowledge graphs

has grown, there have been a number of attempts to implement distributed approaches to ex-

ecuting SPARQL queries over large scale knowledge graphs e.g. SHARD [55], H2RDF+ [48],

PigSPARQL [56], S2RDF [57]. Spark based system tend to perform better as SPARQL queries of-

ten require multiple jobs, and as noted previously, MapReduce is suited to acyclic workflows. The

state of the art in terms of distributed RDF querying is S2RDF, which is able to query very large

RDF graphs, with a variety of query shapes, in fast times. Like the work presented in this chapter,

S2RDF uses vertical partitioning (VP) to store RDF data. S2RDF uses a more sophisticated form

of VP than that presented in this chapter; they pre-compute semi-join reductions between pairs

of tables to speed up join performance [56]. The performance the S2RDF query engine is impres-

sive. For example, an evaluation using a WatDiv generated dataset, consisting of over 100 million

117

Chapter 5. ParQR-QE: A large scale QSTR query engine

triples, found that queries were typically executed in less than a second. The obvious limitation

of distributed approaches to querying RDF graphs, such as S2RDF, is they don’t support spatial

queries.

5.7 Conclusions

Summary This chapter presented ParQR-QE, a GeoSPARQL query engine that uses QSTR tech-

niques to answer spatial queries. The query engine uses a novel, instance based reasoning ap-

proach to provide fast response times, and is able to integrate quantitative methods for hybrid

query answering. The evaluation of the query engine showed that ParQR-QE provides richer

query results in comparison to quantitative only methods, and was able to outperform a quanti-

tative approach to spatial query answering. The performance benefits were especially noticeable

where quantitative reasoning involved accessing a high volume of complex geometries.

Limitations Although the runtimes for instance based reasoning presented in this chapter are

significantly faster than in Chapter 3, a response time 10 secs is considered to be the limit of

keeping the user’s attention [44] and many of the query response times for ParQR-QE, especially

for spatial joins and window queries, are considerably slower

The evaluation used a large scale knowledge graph. However, in future reasoning over even

larger knowledge may be desirable. For example, as suggested in Chapter 4, more interesting

queries could be answered if the geometries for physical spatial features such as rivers or national

parks, were integrated into the knowledge graph. Furthermore, it would be beneficial to integrate

further layers of GADM, as users may also be interested in more localised queries e.g. museums

within their immediate vicinity rather than all the museums in a country. Using the additional

layers that feature smaller administrative regions such as cities would allow for this. Additions

like this would significantly increase the size of the knowledge graph, and the response times for

the query engine. Furthermore, at some point the broadcast strategy would become unfeasible.

Furthermore, the focus here has been on a very specific scenario involving the YAGO knowl-

edge graph. However, the techniques used by ParQR-QE have widespread applicability, and

could feasibly be used for many different temporal or spatial scenarios, which could be larger in

scale than the example knowledge graph presented here.

There are other limitations to qualitative spatial query answering presented here. For example,

it isn’t possible answer distance queries e.g. find musems within 3km of my current location.

Further work It may be possible to address some of these limitations. First, there is room to

improve the performance of the instance based reasoning:

• In the case of join queries, the reasoner always uses instances from the right-hand side of the

query triple e.g. for Query J2, the variable ?s rather than the variable ?b. However, if there

are fewer edges in the RCC8 network that have a head node from the query expression ?b,

118

Chapter 5. ParQR-QE: A large scale QSTR query engine

we are likely to reach a fixed point sooner. Being selective over which query expression to

use for reasoning would speed-up query execution.

• Currently, ParQR-QE filters on the type of relation after the reasoning has completed. For

transitive relations such as containment, it would be possible to filter during the reason-

ing, only following lines of reasoning where there is an existing containment relation. This

would result in fewer derivations and faster execution times.

Secondly, the performance and potential scalability issues could be addressed simply by pre-

computing all possible relations. In scenarios involving dynamically changing knowledge graphs,

reasoning using the entire knowledge graph (or stable parts of it) could be executed ahead of

querying. Further derivations could then be made at query time for recently added information.

With many relations already inferred, this would speed-up query response time. The scenario

presented in this chapter would be suited to a hybrid approach as the geometries of countries,

administrative regions and cities are reasonably stable, and unlikely to change.

Beyond simply improving query response times, a second area of potential future work con-

cerns the relations that are derived. To a certain extent the work presented here uses a carefully

orchestrated scenario. The computation of RCC8 relations in Chapter 4 ensured that reasoning

would produce meaningful results for query answering. For example, ensuring that at least one

containment relation was computed for all the points in the knowledge graph meant queries such

as Query C1 would return a complete solution.

In situations where the QCN being queried isn’t as comprehensive or we don’t have as much

control over the construction of the knowledge graph, ParQR-QE may have more utility in pre-

senting possible results, represented as disjunctive relations. This narrowing down of solutions,

could then be used as the basis for further decision making or even serve as a form of early filter-

ing for subsequent quantitative computations.

119

Chapter 6

Conclusions

6.1 Summary

The work presented in Chapter 3 is the first in-depth look at using parallel distributed program-

ming techniques to reason over large scale qualitative constraint networks. This involved the

development of a novel, distributed parallel reasoner - ParQR - which has the following notable

features:

• Implementation of ⋄-consistency algorithms that can take advantage of parallelisation and

execute in a distributed environment.

• Optimisations that allow the reasoner to handle large scale knowledge graphs

– The capacity to use different join strategies dependent on the input knowledge graph.

– Pre-computation of the results of algebraic operations which speeds up reasoning times.

– Efficient representation of QCNs which allows the reasoner to handle large scale datasets.

Chapters 4 and 5 considered a specific application of distributed parallel approaches to QSTR

- reasoning over large scale knowledge graphs to answer spatial queries.

Chapter 4 considered the problems of spatial data representation in large scale knowledge

graphs and used a variety of techniques to generate an enhanced knowledge graph with im-

proved, richer spatial representations. These techniques included:

• Integrating high resolution geometries into existing large scale knowledge graphs.

• Using distributed programming techniques to compute RCC8 relations from large scale,

vector based geometries.

There is no published work on the computation of RCC8 relations using parallel distributed

programming techniques, as such the work presented in Chapter 4 establishes the first work in

this area.

120

Chapter 6. Conclusions

Chapter 5 presented ParQR-QE, an adapted version of ParQR for use in a querying context.

The specific use case of query answering meant an instance based approach to reasoning could be

used. Using this instance based, broadcast approach, the reasoner was able to execute reasoning

in much faster times compared to Chapter 3.

Again the techniques and approaches used were innovative, ParQR-QE is the first of its kind,

a large scale QSTR query engine.

6.2 The research question

The research question posed at the start of this thesis was:

Can parallel distributed computing techniques address the challenges of large scale

qualitative spatio-temporal reasoning

The short answer to this question is ’yes’. In Chapter 3 ParQR was evaluated using a vari-

ety of large scale knowledge graphs and was able to successfully reason over graphs featuring

150,000,000 relations. ParQR also successfully computed algebraic closure for a number of real

world knowledge graphs. As of writing, these are the largest, most challenging real world knowl-

edge graphs in the QSTR research area. Also, importantly, the algorithms presented in Chapter 3

were able to scale effectively, indicating that even larger networks, using larger computing clus-

ters, could be handled. Furthermore, in comparison to existing state of the art reasoners, ParQR

was able to reason over much larger networks. Traditional approaches to QSTR struggled with

anything other than the smallest networks. Even approaches adopted specifically to address the

challenge of large scale QSTR, such as triangulation and graph partitioning, were limited in terms

of the size and topology of the knowledge graphs they could successfully reason over.

However, there are a number of caveats for the use of parallel distributed computing tech-

niques to implement QSTR

• The distributed approaches presented in Chapter 3 did struggle with some knowledge

graphs. Specifically, there were two factors that exposed the limitations of ParQR

– Dense graphs where each node has a high degree, results in a vast number of deriva-

tions computed in a short number of cycles.

– Skewed datasets where some nodes in the knowledge graph have a disproportionately

large number of relations leads to some partitions becoming very large which creates

an imbalance of work in the computing cluster.

To a certain extent these issues can be mitigated e.g. by using different join strategies to spread

the workload over a greater number of iterations. However, the possibility of unmanagable

knowledge graphs still exists. Despite this, the techniques presented in Chapter 3 are still a sig-

nificant step forward in comparison to existing approaches to large scale QSTR.

121

Chapter 6. Conclusions

Whereas Chapter 3 considered the general case of consistency for QCNs, Chapters 4 and 5

considered a specific example, and considered whether parallel, distributed techniques can be

used to create datasets for use in QSTR and be used to query large scale knowledge graphs.

Again, the simple answer to this question is ’yes’. Computing qualitative relations from quan-

titative data at scale is necessary if systems are to take advantage of both quantitative and qual-

itative data. The algorithms for computing {EC} relations between regions and {TPP, NTPP}

relations between points and regions presented in Chapter 4 were able to work with high resolu-

tion, complex geometries and scale effectively.

Using the resulting knowledge graph, ParQR-QE was able to provide complete query solu-

tions where quantitative only methods could only provide partial results. Furthermore ParQR-

QE was able to adapt the techniques presented in Chapter 3 to implement an instance based

approach that significantly sped up reasoning times. In comparison to quantitative reasoning,

the use of QSTR in ParQR-QE also showed that it has potential in cases where quantitative rea-

soning involves accessing large, complex geometries. Reasoning using the lighter weight RCC8

representation resulted in faster response times for many queries.

Again, there are limitations to the work presented in Chapter 5.

• The query times, often over 10 seconds, aren’t really viable for real world use.

• The reasoning approach was dependent on the use of a broadcast variable. Although ParQR-

QE was successful in reasoning over a large scale knowledge graph of over 1 million rela-

tions, the broadcast approach can’t scale indefinitely. Larger, more complex knowledge

graphs will exceed the memory limits of the reasoner.

Despite these limitations, ParQR-QE still shows the utility of distributed parallel QSTR for

query answering, namely providing comprehensive query results, and fast response times for

some types of query.

122

Appendix A

Queries used in Experiments

A.1 Containment queries

Query C1

PREFIX schema: <http :// schema.org/>

PREFIX yago: <http ://yago -knowledge.org/resource/>

PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>

PREFIX geo: <http :// www.opengis.net/ont/geosparql#>

SELECT ?m

WHERE {

?m rdf:type schema:Museum.

?m geo:sfWithin yago:Belgium.

}

Query C2

PREFIX schema: <http :// schema.org/>

PREFIX yago: <http ://yago -knowledge.org/resource/>

PREFIX geo: <http :// www.opengis.net/ont/geosparql#>

SELECT ?f

WHERE {

?f schema:memberOf yago:FC_Barcelona.

?f schema:birthPlace ?b.

?b geo:sfWithin yago:Cataluna.

}

Query C3

PREFIX yago: <http ://yago -knowledge.org/resource/>

123

Appendix A. Queries used in Experiments

PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>

PREFIX geo: <http :// www.opengis.net/ont/geosparql#>

SELECT ?h

WHERE {

?h rdf:type yago:Human_settlement.

?h geo:sfWithin yago:China.

}

Query C4

PREFIX schema: <http :// schema.org/>

PREFIX yago: <http ://yago -knowledge.org/resource/>

PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>

PREFIX geo: <http :// www.opengis.net/ont/geosparql#>

SELECT ?d ?l

WHERE {

?d rdf:type yago:Video_game_developer.

?d schema:foundingLocation ?c.

?c geo:sfWithin yago:Canada.

}

Query C5

PREFIX schema: <http :// schema.org/>

PREFIX yago: <http ://yago -knowledge.org/resource/>

PREFIX geo: <http :// www.opengis.net/ont/geosparql#>

SELECT ?a ?b

WHERE {

schema:Casablanca_(film) schema:actor ?a.

?a schema:birthPlace ?b.

?b geo:sfWithin yago:Bayern.

}

A.2 Adjacency Queries

Query A1

PREFIX schema: <http :// schema.org/>

PREFIX yago: <http ://yago -knowledge.org/resource/>

PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>

124

Appendix A. Queries used in Experiments

PREFIX geo: <http :// www.opengis.net/ont/geosparql#>

SELECT ?c

WHERE {

?c rdf:type schema:Country.

?c geo:sfTouches yago:Chad.

}

Query A2

PREFIX yago: <http ://yago -knowledge.org/resource/>

PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>

PREFIX geo: <http :// www.opengis.net/ont/geosparql#>

SELECT ?s

WHERE {

?s rdf:type yago:U.S._state.

?s geo:sfTouches yago:Mexico.

}

Query A3

PREFIX yago: <http ://yago -knowledge.org/resource/>

PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>

PREFIX geo: <http :// www.opengis.net/ont/geosparql#>

SELECT ?r

WHERE {

?r rdf:type yago:Regions_of_France.

?r geo:sfTouches yago:Belgium.

}

Query A4

PREFIX yago: <http ://yago -knowledge.org/resource/>

PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>

PREFIX geo: <http :// www.opengis.net/ont/geosparql#>

SELECT ?p

WHERE {

?p rdf:type yago:Provinces_of_Argentina.

?p geo:sfTouches yago:Chile.

}

125

Appendix A. Queries used in Experiments

Query A5

PREFIX yago: <http ://yago -knowledge.org/resource/>

PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>

PREFIX geo: <http :// www.opengis.net/ont/geosparql#>

SELECT ?c

WHERE {

?c rdf:type yago:Country.

?c geo:sfTouches yago:Russia.

}

A.3 Join Queries

Query J1

PREFIX schema: <http :// schema.org/>

PREFIX yago: <http ://yago -knowledge.org/resource/>

PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>

PREFIX geo: <http :// www.opengis.net/ont/geosparql#>

SELECT ?m ?p

WHERE {

?p rdf:type yago:Prefectures_of_Japan.

?m rdf:type schema:Mountain.

?m geo:sfWithin ?p.

}

Query J2

PREFIX schema: <http :// schema.org/>

PREFIX yago: <http ://yago -knowledge.org/resource/>

PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>

PREFIX geo: <http :// www.opengis.net/ont/geosparql#>

SELECT ?a ?s

WHERE {

?a schema:Award yago:Academy_Award_for_Best_Actor.

?a schema:birthPlace ?b.

?s rdf:type yago:U.S._state.

?b geo:sfWithin ?s.

}

126

Appendix A. Queries used in Experiments

Query J3

PREFIX schema: <http :// schema.org/>

PREFIX yago: <http ://yago -knowledge.org/resource/>

PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>

PREFIX rdfs: <http :// www.w3.org /2000/01/rdf -schema#>

PREFIX geo: <http :// www.opengis.net/ont/geosparql#>

SELECT ?a ?p

WHERE {

?p rdf:type yago:Provinces_of_South_Africa.

?a rdf:type schema:Airport.

?a geo:sfWithin ?p.

}

Query J4

PREFIX schema: <http :// schema.org/>

PREFIX yago: <http ://yago -knowledge.org/resource/>

PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>

PREFIX rdfs: <http :// www.w3.org /2000/01/rdf -schema#>

PREFIX geo: <http :// www.opengis.net/ont/geosparql#>

SELECT ?p ?c

WHERE {

?p rdf:type yago:Nuclear_power_plant.

?c rdf:type schema:Country.

?p geo:sfWithin ?c.

}

Query J5

PREFIX schema: <http :// schema.org/>

PREFIX yago: <http ://yago -knowledge.org/resource/>

PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>

PREFIX geo: <http :// www.opengis.net/ont/geosparql#>

SELECT ?c ?b

WHERE {

?b schema:memberOf yago:Council_of_the_Baltic_Sea_States.

?c rdf:type schema:Country.

?c geo:sfTouches ?b.

}

127

Appendix A. Queries used in Experiments

A.4 Window Queries

Query W1

PREFIX schema: <http :// schema.org/>

PREFIX yago: <http ://yago -knowledge.org/resource/>

PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>

PREFIX geof: <http :// www.opengis.net/def/function/geosparql/>

SELECT ?m

WHERE{

?m rdf:type schema:Museum.

FILTER(geof:sfWithin (?m," POLYGON ((4.321423 50.5882119 ,4.6269803

50.5869041 ,4.625607 50.7435868 ,4.3207364 50.7448903 ,4.321423

50.5882119))"^^ geo:wktLiteral))

}

Query W2

PREFIX schema: <http :// schema.org/>

PREFIX yago: <http ://yago -knowledge.org/resource/>

PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>

PREFIX geof: <http :// www.opengis.net/def/function/geosparql/>

SELECT ?s

WHERE{

?s rdf:type schema:TrainStation.

FILTER(geof:sfWithin (?s," POLYGON ((129.3693821 35.349243 ,128.8804905

35.389557 ,128.6223118 35.3358005 ,128.5014621 35.2102298 ,128.5509006

35.0395012 ,128.9299289 34.958505 ,129.3583957 35.0350036 ,129.4517795

35.2281804 ,129.3693821 35.349243))"^^ geo:wktLiteral))

}

Query W3

PREFIX schema: <http :// schema.org/>

PREFIX yago: <http ://yago -knowledge.org/resource/>

PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>

PREFIX geof: <http :// www.opengis.net/def/function/geosparql/>

SELECT ?b

WHERE{

?b rdf:type schema:Bridge.

FILTER(geof:sfWithin (?b," POLYGON ((-62.4419835 8.6966246 , -62.9253819

8.4630621 , -63.2384923 8.4630621 , -63.430753 8.3652495 , -63.7493565

128

Appendix A. Queries used in Experiments

8.240231 , -63.7054112 8.0118347 , -63.6614659 7.9030293 , -63.2165196

8.0009555 , -62.9638341 8.1749882 , -62.727628 8.2674123 , -62.3870519

8.3706842 , -62.1783116 8.4956609 , -62.4419835 8.6966246))"^^geo:

wktLiteral))

}

Query W4

PREFIX schema: <http :// schema.org/>

PREFIX yago: <http ://yago -knowledge.org/resource/>

PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>

PREFIX geof: <http :// www.opengis.net/def/function/geosparql/>

SELECT ?h

WHERE{

?h rdf:type schema:Hospital.

FILTER(geof:sfWithin (?h," POLYGON ((35.9535636 34.5728538 ,35.6129874

34.4687574 ,35.53059 34.2647148 ,35.5168571 34.0442466 ,35.6651725

33.8893489 ,35.931591 33.8003833 ,36.2501945 33.8893489 ,36.4122428

34.0715522 ,36.5275993 34.1579619 ,36.4864005 34.4053307 ,36.2776603

34.4778144 ,36.2199821 34.5796381 ,35.9700431 34.6180725 ,35.9535636

34.5728538))"^^ geo:wktLiteral))

}

Query W5

PREFIX schema: <http :// schema.org/>

PREFIX yago: <http ://yago -knowledge.org/resource/>

PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>

PREFIX geof: <http :// www.opengis.net/def/function/geosparql/>

SELECT ?o

WHERE{

?o rdf:type schema:EducationalOrganization.

FILTER(geof:sfWithin (?o," POLYGON ((86.0366359 21.2718418 , 85.0918116

21.0669432 , 84.7292628 20.6768591 , 84.8940577 19.800688 , 85.838882

19.4488513 , 87.0583644 19.873029 , 87.1682277 20.9951618 , 86.0366359

21.2718418))"^^ geo:wktLiteral))

}

129

Bibliography

[1] Daniel J. Abadi et al. “Scalable Semantic Web Data Management Using Vertical Partition-

ing”. In: Proceedings of the 33rd International Conference on Very Large Data Bases, University of

Vienna, Austria, September 23-27, 2007. Ed. by Christoph Koch et al. ACM, 2007, pp. 411–422.

URL: http://www.vldb.org/conf/2007/papers/research/p411-abadi.pdf.

[2] Foto N. Afrati and Jeffrey D. Ullman. “Transitive closure and recursive Datalog imple-

mented on clusters”. In: 15th International Conference on Extending Database Technology, EDBT

’12, Berlin, Germany, March 27-30, 2012, Proceedings. 2012, pp. 132–143. URL: http://doi.

acm.org/10.1145/2247596.2247613.

[3] Ablimit Aji et al. “Hadoop-GIS: A High Performance Spatial Data Warehousing System

over MapReduce”. In: Proc. VLDB Endow. 6.11 (2013), pp. 1009–1020. DOI: 10.14778/2536222.

2536227. URL: http://www.vldb.org/pvldb/vol6/p1009-aji.pdf.

[4] James F. Allen. “Maintaining Knowledge about Temporal Intervals”. In: Commun. ACM

26.11 (1983), pp. 832–843. DOI: 10.1145/182.358434. URL: http://doi.acm.org/10.

1145/182.358434.

[5] Michael Armbrust et al. “Spark SQL: Relational Data Processing in Spark”. In: Proceedings of

the 2015 ACM SIGMOD International Conference on Management of Data, Melbourne, Victoria,

Australia, May 31 - June 4, 2015. Ed. by Timos K. Sellis, Susan B. Davidson, and Zachary G.

Ives. ACM, 2015, pp. 1383–1394. DOI: 10.1145/2723372.2742797. URL: https://doi.org/

10.1145/2723372.2742797.

[6] Philippe Balbiani, Jean-François Condotta, and Luis Fariñas del Cerro. “Tractability Results

in the Block Algebra”. In: J. Log. Comput. 12.5 (2002), pp. 885–909. DOI: 10.1093/logcom/

12.5.885. URL: https://doi.org/10.1093/logcom/12.5.885.

[7] Roman Barták, Robert A. Morris, and Kristen Brent Venable. An Introduction to Constraint-

Based Temporal Reasoning. Synthesis Lectures on Artificial Intelligence and Machine Learn-

ing. Morgan & Claypool Publishers, 2014. DOI: 10 .2200/ S00557ED1V01Y201312AIM026.

URL: https://doi.org/10.2200/S00557ED1V01Y201312AIM026.

[8] Robert Battle and Dave Kolas. “Enabling the geospatial Semantic Web with Parliament and

GeoSPARQL”. In: Semantic Web 3.4 (2012), pp. 355–370. DOI: 10.3233/SW-2012-0065. URL:

https://doi.org/10.3233/SW-2012-0065.

130

http://www.vldb.org/conf/2007/papers/research/p411-abadi.pdf
http://doi.acm.org/10.1145/2247596.2247613
http://doi.acm.org/10.1145/2247596.2247613
https://doi.org/10.14778/2536222.2536227
https://doi.org/10.14778/2536222.2536227
http://www.vldb.org/pvldb/vol6/p1009-aji.pdf
https://doi.org/10.1145/182.358434
http://doi.acm.org/10.1145/182.358434
http://doi.acm.org/10.1145/182.358434
https://doi.org/10.1145/2723372.2742797
https://doi.org/10.1145/2723372.2742797
https://doi.org/10.1145/2723372.2742797
https://doi.org/10.1093/logcom/12.5.885
https://doi.org/10.1093/logcom/12.5.885
https://doi.org/10.1093/logcom/12.5.885
https://doi.org/10.2200/S00557ED1V01Y201312AIM026
https://doi.org/10.2200/S00557ED1V01Y201312AIM026
https://doi.org/10.3233/SW-2012-0065
https://doi.org/10.3233/SW-2012-0065

Bibliography

[9] Peter van Beek. “Approximation Algorithms for Temporal Reasoning”. In: Proceedings of

the 11th International Joint Conference on Artificial Intelligence. Detroit, MI, USA, August 1989.

Ed. by N. S. Sridharan. Morgan Kaufmann, 1989, pp. 1291–1296. URL: http://ijcai.org/

Proceedings/89-2/Papers/071.pdf.

[10] Peter van Beek and Dennis W. Manchak. “The Design and Experimental Analysis of Algo-

rithms for Temporal Reasoning”. In: J. Artif. Intell. Res. 4 (1996), pp. 1–18. DOI: 10.1613/

jair.232. URL: https://doi.org/10.1613/jair.232.

[11] Brandon Bennett, Anthony G. Cohn, and Amar Isli. “A Logical Approach to Incorporating

Qualitative Spatial Reasoning into GIS (Extended Abstract)”. In: Spatial Information Theory:

A Theoretical Basis for GIS, International Conference COSIT ’97, Laurel Highlands, Pennsylva-

nia, USA, October 15-18, 1997, Proceedings. Ed. by Stephen C. Hirtle and Andrew U. Frank.

Vol. 1329. Lecture Notes in Computer Science. Springer, 1997, pp. 503–504. DOI: 10.1007/3-

540-63623-4_73. URL: https://doi.org/10.1007/3-540-63623-4%5C_73.

[12] Christian Bliek and Djamila Sam-Haroud. “Path Consistency on Triangulated Constraint

Graphs”. In: Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence,

IJCAI 99, Stockholm, Sweden, July 31 - August 6, 1999. 2 Volumes, 1450 pages. Ed. by Thomas

Dean. Morgan Kaufmann, 1999, pp. 456–461. URL: http://ijcai.org/Proceedings/99-

1/Papers/066.pdf.

[13] Yingyi Bu et al. “HaLoop: Efficient Iterative Data Processing on Large Clusters”. In: Proc.

VLDB Endow. 3.1 (2010), pp. 285–296. DOI: 10.14778/1920841.1920881. URL: http://www.

vldb.org/pvldb/vldb2010/pvldb%5C_vol3/R25.pdf.

[14] Aileen Buckley. Dealing with incomplete data for mapping and spatial analysis. Accessed: 2021-

08-10. URL: https://www.slideshare.net/aileenbuckley/dealing-with-incomplete-

data-for-mapping-and-spatial-analysis.

[15] Anthony G. Cohn et al. “Qualitative Spatial Representation and Reasoning with the Re-

gion Connection Calculus”. In: GeoInformatica 1.3 (1997), pp. 275–316. DOI: 10.1023/A:

1009712514511. URL: https://doi.org/10.1023/A:1009712514511.

[16] Leonardo Dagum and Ramesh Menon. “OpenMP: an industry standard API for shared-

memory programming”. In: IEEE computational science and engineering 5.1 (1998), pp. 46–55.

[17] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: simplified data processing on large clus-

ters”. In: Commun. ACM 51.1 (2008), pp. 107–113. DOI: 10.1145/1327452.1327492. URL:

http://doi.acm.org/10.1145/1327452.1327492.

[18] Matt Duckham and Lars Kulik. “A Formal Model of Obfuscation and Negotiation for Loca-

tion Privacy”. In: Pervasive Computing, Third International Conference, PERVASIVE 2005, Mu-

nich, Germany, May 8-13, 2005, Proceedings. Ed. by Hans-Werner Gellersen, Roy Want, and

Albrecht Schmidt. Vol. 3468. Lecture Notes in Computer Science. Springer, 2005, pp. 152–

170. DOI: 10.1007/11428572_10. URL: https://doi.org/10.1007/11428572%5C_10.

131

http://ijcai.org/Proceedings/89-2/Papers/071.pdf
http://ijcai.org/Proceedings/89-2/Papers/071.pdf
https://doi.org/10.1613/jair.232
https://doi.org/10.1613/jair.232
https://doi.org/10.1613/jair.232
https://doi.org/10.1007/3-540-63623-4_73
https://doi.org/10.1007/3-540-63623-4_73
https://doi.org/10.1007/3-540-63623-4%5C_73
http://ijcai.org/Proceedings/99-1/Papers/066.pdf
http://ijcai.org/Proceedings/99-1/Papers/066.pdf
https://doi.org/10.14778/1920841.1920881
http://www.vldb.org/pvldb/vldb2010/pvldb%5C_vol3/R25.pdf
http://www.vldb.org/pvldb/vldb2010/pvldb%5C_vol3/R25.pdf
https://www.slideshare.net/aileenbuckley/dealing-with-incomplete-data-for-mapping-and-spatial-analysis
https://www.slideshare.net/aileenbuckley/dealing-with-incomplete-data-for-mapping-and-spatial-analysis
https://doi.org/10.1023/A:1009712514511
https://doi.org/10.1023/A:1009712514511
https://doi.org/10.1023/A:1009712514511
https://doi.org/10.1145/1327452.1327492
http://doi.acm.org/10.1145/1327452.1327492
https://doi.org/10.1007/11428572_10
https://doi.org/10.1007/11428572%5C_10

Bibliography

[19] Frank Dylla et al. “Algebraic Properties of Qualitative Spatio-temporal Calculi”. In: Spatial

Information Theory - 11th International Conference, COSIT 2013, Scarborough, UK, September

2-6, 2013. Proceedings. Ed. by Thora Tenbrink et al. Vol. 8116. Lecture Notes in Computer

Science. Springer, 2013, pp. 516–536. DOI: 10.1007/978-3-319-01790-7_28. URL: https:

//doi.org/10.1007/978-3-319-01790-7%5C_28.

[20] Lisa Ehrlinger and Wolfram Wöß. “Towards a Definition of Knowledge Graphs”. In: Joint

Proceedings of the Posters and Demos Track of the 12th International Conference on Semantic Sys-

tems - SEMANTiCS2016 and the 1st International Workshop on Semantic Change & Evolving

Semantics (SuCCESS’16) co-located with the 12th International Conference on Semantic Systems

(SEMANTiCS 2016), Leipzig, Germany, September 12-15, 2016. Ed. by Michael Martin, Martıé

Cuquet, and Erwin Folmer. Vol. 1695. CEUR Workshop Proceedings. CEUR-WS.org, 2016.

URL: http://ceur-ws.org/Vol-1695/paper4.pdf.

[21] Ahmed Eldawy and Mohamed F. Mokbel. “SpatialHadoop: A MapReduce framework for

spatial data”. In: 31st IEEE International Conference on Data Engineering, ICDE 2015, Seoul,

South Korea, April 13-17, 2015. Ed. by Johannes Gehrke et al. IEEE Computer Society, 2015,

pp. 1352–1363. DOI: 10.1109/ICDE.2015.7113382. URL: https://doi.org/10.1109/ICDE.

2015.7113382.

[22] Berihun Fekade et al. “Probabilistic Recovery of Incomplete Sensed Data in IoT”. In: IEEE

Internet Things J. 5.4 (2018), pp. 2282–2292. DOI: 10.1109/JIOT.2017.2730360. URL: https:

//doi.org/10.1109/JIOT.2017.2730360.

[23] Andrew U. Frank. “Qualitative Spatial Reasoning: Cardinal Directions as an Example”.

In: Int. J. Geogr. Inf. Sci. 10.3 (1996), pp. 269–290. DOI: 10.1080/02693799608902079. URL:

https://doi.org/10.1080/02693799608902079.

[24] Martin Charles Golumbic and Ron Shamir. “Complexity and Algorithms for Reasoning

about Time: A Graph-Theoretic Approach”. In: J. ACM 40.5 (1993), pp. 1108–1133. DOI: 10.

1145/174147.169675. URL: https://doi.org/10.1145/174147.169675.

[25] William Gropp et al. “A High-Performance, Portable Implementation of the MPI Message

Passing Interface Standard”. In: Parallel Comput. 22.6 (1996), pp. 789–828. DOI: 10.1016/

0167-8191(96)00024-5. URL: https://doi.org/10.1016/0167-8191(96)00024-5.

[26] Stefan Hagedorn, Philipp Götze, and Kai-Uwe Sattler. “The STARK Framework for Spatio-

Temporal Data Analytics on Spark”. In: Datenbanksysteme für Business, Technologie und Web

(BTW 2017), 17. Fachtagung des GI-Fachbereichs „Datenbanken und Informationssysteme" (DBIS),

6.-10. März 2017, Stuttgart, Germany, Proceedings. Ed. by Bernhard Mitschang et al. Vol. P-265.

LNI. GI, 2017, pp. 123–142. URL: https://dl.gi.de/20.500.12116/679.

[27] Theofilos Ioannidis et al. “Evaluating Geospatial RDF stores Using the Benchmark Geo-

graphica 2”. In: CoRR abs/1906.01933 (2019). arXiv: 1906.01933. URL: http://arxiv.org/

abs/1906.01933.

132

https://doi.org/10.1007/978-3-319-01790-7_28
https://doi.org/10.1007/978-3-319-01790-7%5C_28
https://doi.org/10.1007/978-3-319-01790-7%5C_28
http://ceur-ws.org/Vol-1695/paper4.pdf
https://doi.org/10.1109/ICDE.2015.7113382
https://doi.org/10.1109/ICDE.2015.7113382
https://doi.org/10.1109/ICDE.2015.7113382
https://doi.org/10.1109/JIOT.2017.2730360
https://doi.org/10.1109/JIOT.2017.2730360
https://doi.org/10.1109/JIOT.2017.2730360
https://doi.org/10.1080/02693799608902079
https://doi.org/10.1080/02693799608902079
https://doi.org/10.1145/174147.169675
https://doi.org/10.1145/174147.169675
https://doi.org/10.1145/174147.169675
https://doi.org/10.1016/0167-8191(96)00024-5
https://doi.org/10.1016/0167-8191(96)00024-5
https://doi.org/10.1016/0167-8191(96)00024-5
https://dl.gi.de/20.500.12116/679
https://arxiv.org/abs/1906.01933
http://arxiv.org/abs/1906.01933
http://arxiv.org/abs/1906.01933

Bibliography

[28] Holden Karau and Rachel Warren. High performance Spark: best practices for scaling and opti-

mizing Apache Spark. " O’Reilly Media, Inc.", 2017.

[29] Jonghoon Kim and Incheol Kim. “Scalable Distributed Temporal Reasoning”. In: Advances

in Computer Science and Ubiquitous Computing - CSA/CUTE 2017, Taichung, Taiwan, 18-20 De-

cember. Ed. by James J. Park et al. Vol. 474. Lecture Notes in Electrical Engineering. Springer,

2017, pp. 829–835. DOI: 10.1007/978-981-10-7605-3_132. URL: https://doi.org/10.

1007/978-981-10-7605-3%5C_132.

[30] Manolis Koubarakis et al. “Challenges for qualitative spatial reasoning in linked geospatial

data”. In: IJCAI 2011 Workshop on Benchmarks and Applications of Spatial Reasoning (BASR-11).

2011, pp. 33–38.

[31] Kostis Kyzirakos et al. “The Spatiotemporal RDF Store Strabon”. In: Advances in Spatial

and Temporal Databases - 13th International Symposium, SSTD 2013, Munich, Germany, August

21-23, 2013. Proceedings. Ed. by Mario A. Nascimento et al. Vol. 8098. Lecture Notes in Com-

puter Science. Springer, 2013, pp. 496–500. DOI: 10.1007/978-3-642-40235-7_35. URL:

https://doi.org/10.1007/978-3-642-40235-7%5C_35.

[32] Sanjiang Li and Mingsheng Ying. “Region Connection Calculus: Its models and composi-

tion table”. In: Artif. Intell. 145.1-2 (2003), pp. 121–146. DOI: 10.1016/S0004- 3702(02)

00372-7. URL: https://doi.org/10.1016/S0004-3702(02)00372-7.

[33] Gerard Ligozat. “Reasoning about Cardinal Directions”. In: J. Vis. Lang. Comput. 9.1 (1998),

pp. 23–44. DOI: 10.1006/jvlc.1997.9999. URL: https://doi.org/10.1006/jvlc.1997.

9999.

[34] C. Lutz and M. Milicic. “A Tableau Algorithm for DLs with Concrete Domains and GCIs”.

In: Journal of Automated Reasoning 38.1–3 (2007), pp. 227–259.

[35] Alan K. Mackworth. “Consistency in Networks of Relations”. In: Artif. Intell. 8.1 (1977),

pp. 99–118. DOI: 10.1016/0004-3702(77)90007-8. URL: https://doi.org/10.1016/0004-

3702(77)90007-8.

[36] Grzegorz Malewicz et al. “Pregel: a system for large-scale graph processing”. In: SPAA 2009:

Proceedings of the 21st Annual ACM Symposium on Parallelism in Algorithms and Architectures,

Calgary, Alberta, Canada, August 11-13, 2009. Ed. by Friedhelm Meyer auf der Heide and

Michael A. Bender. ACM, 2009, p. 48. DOI: 10.1145/1583991.1584010. URL: https://doi.

org/10.1145/1583991.1584010.

[37] Matthew Mantle, Sotirios Batsakis, and Grigoris Antoniou. “Large scale distributed spatio-

temporal reasoning using real-world knowledge graphs”. In: Knowl. Based Syst. 163 (2019),

pp. 214–226. DOI: 10.1016/j.knosys.2018.08.035. URL: https://doi.org/10.1016/j.

knosys.2018.08.035.

133

https://doi.org/10.1007/978-981-10-7605-3_132
https://doi.org/10.1007/978-981-10-7605-3%5C_132
https://doi.org/10.1007/978-981-10-7605-3%5C_132
https://doi.org/10.1007/978-3-642-40235-7_35
https://doi.org/10.1007/978-3-642-40235-7%5C_35
https://doi.org/10.1016/S0004-3702(02)00372-7
https://doi.org/10.1016/S0004-3702(02)00372-7
https://doi.org/10.1016/S0004-3702(02)00372-7
https://doi.org/10.1006/jvlc.1997.9999
https://doi.org/10.1006/jvlc.1997.9999
https://doi.org/10.1006/jvlc.1997.9999
https://doi.org/10.1016/0004-3702(77)90007-8
https://doi.org/10.1016/0004-3702(77)90007-8
https://doi.org/10.1016/0004-3702(77)90007-8
https://doi.org/10.1145/1583991.1584010
https://doi.org/10.1145/1583991.1584010
https://doi.org/10.1145/1583991.1584010
https://doi.org/10.1016/j.knosys.2018.08.035
https://doi.org/10.1016/j.knosys.2018.08.035
https://doi.org/10.1016/j.knosys.2018.08.035

Bibliography

[38] Matthew Mantle, Sotirios Batsakis, and Grigoris Antoniou. “Large Scale Reasoning Using

Allen’s Interval Algebra”. In: Advances in Soft Computing - 15th Mexican International Con-

ference on Artificial Intelligence, MICAI 2016, Cancún, Mexico, October 23-28, 2016, Proceedings,

Part II. Ed. by Obdulia Pichardo-Lagunas and Sabino Miranda-Jiménez. Vol. 10062. Lecture

Notes in Computer Science. Springer, 2016, pp. 29–41. DOI: 10.1007/978-3-319-62428-

0_3. URL: https://doi.org/10.1007/978-3-319-62428-0%5C_3.

[39] Ugo Montanari. “Networks of constraints: Fundamental properties and applications to pic-

ture processing”. In: Inf. Sci. 7 (1974), pp. 95–132. DOI: 10.1016/0020-0255(74)90008-5.

URL: https://doi.org/10.1016/0020-0255(74)90008-5.

[40] Sangha Nam and Incheol Kim. “MRQUSAR: A web-scale distributed spatial reasoner us-

ing MapReduce”. In: 2017 IEEE International Conference on Big Data and Smart Computing,

BigComp 2017, Jeju Island, South Korea, February 13-16, 2017. 2017, pp. 296–303. URL: https:

//doi.org/10.1109/BIGCOMP.2017.7881681.

[41] Bernhard Nebel. “Solving Hard Qualitative Temporal Reasoning Problems: Evaluating the

Efficiency of Using the ORD-Horn Class”. In: Constraints An Int. J. 1.3 (1997), pp. 175–190.

DOI: 10.1007/BF00137869. URL: https://doi.org/10.1007/BF00137869.

[42] Bernhard Nebel and Hans-Jürgen Bürckert. “Reasoning about Temporal Relations: A Max-

imal Tractable Subclass of Allen’s Interval Algebra”. In: J. ACM 42.1 (1995), pp. 43–66. DOI:

10.1145/200836.200848. URL: https://doi.org/10.1145/200836.200848.

[43] Thomas Neumann and Gerhard Weikum. “The RDF-3X engine for scalable management of

RDF data”. In: VLDB J. 19.1 (2010), pp. 91–113. DOI: 10.1007/s00778-009-0165-y. URL:

https://doi.org/10.1007/s00778-009-0165-y.

[44] Jakob Nielsen. Usability engineering. Morgan Kaufmann, 1994.

[45] Charalampos Nikolaou and Manolis Koubarakis. “Fast Consistency Checking of Very Large

Real-World RCC-8 Constraint Networks Using Graph Partitioning”. In: Proceedings of the

Twenty-Eighth AAAI Conference on Artificial Intelligence, July 27 -31, 2014, Québec City, Québec,

Canada. Ed. by Carla E. Brodley and Peter Stone. AAAI Press, 2014, pp. 2724–2730. URL:

http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8234.

[46] OGC. GeoSPARQL - A Geographic Query Language for RDF Data. https://www.ogc.org/

standards/geosparql. Accessed: 2021-08-10.

[47] Christopher Olston et al. “Pig latin: a not-so-foreign language for data processing”. In: Pro-

ceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD 2008,

Vancouver, BC, Canada, June 10-12, 2008. Ed. by Jason Tsong-Li Wang. ACM, 2008, pp. 1099–

1110. DOI: 10 . 1145 / 1376616 . 1376726. URL: https : / / doi . org / 10 . 1145 / 1376616 .

1376726.

134

https://doi.org/10.1007/978-3-319-62428-0_3
https://doi.org/10.1007/978-3-319-62428-0_3
https://doi.org/10.1007/978-3-319-62428-0%5C_3
https://doi.org/10.1016/0020-0255(74)90008-5
https://doi.org/10.1016/0020-0255(74)90008-5
https://doi.org/10.1109/BIGCOMP.2017.7881681
https://doi.org/10.1109/BIGCOMP.2017.7881681
https://doi.org/10.1007/BF00137869
https://doi.org/10.1007/BF00137869
https://doi.org/10.1145/200836.200848
https://doi.org/10.1145/200836.200848
https://doi.org/10.1007/s00778-009-0165-y
https://doi.org/10.1007/s00778-009-0165-y
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8234
https://www.ogc.org/standards/geosparql
https://www.ogc.org/standards/geosparql
https://doi.org/10.1145/1376616.1376726
https://doi.org/10.1145/1376616.1376726
https://doi.org/10.1145/1376616.1376726

Bibliography

[48] Nikolaos Papailiou et al. “H2RDF+: High-performance distributed joins over large-scale

RDF graphs”. In: Proceedings of the 2013 IEEE International Conference on Big Data, 6-9 October

2013, Santa Clara, CA, USA. Ed. by Xiaohua Hu et al. IEEE Computer Society, 2013, pp. 255–

263. DOI: 10.1109/BigData.2013.6691582. URL: https://doi.org/10.1109/BigData.

2013.6691582.

[49] David A. Randell, Zhan Cui, and Anthony G. Cohn. “A Spatial Logic based on Regions and

Connection”. In: Proceedings of the 3rd International Conference on Principles of Knowledge Rep-

resentation and Reasoning (KR’92). Cambridge, MA, USA, October 25-29, 1992. 1992, pp. 165–

176.

[50] Jochen Renz and Gérard Ligozat. “Weak Composition for Qualitative Spatial and Tempo-

ral Reasoning”. In: Principles and Practice of Constraint Programming - CP 2005, 11th Interna-

tional Conference, CP 2005, Sitges, Spain, October 1-5, 2005, Proceedings. Ed. by Peter van Beek.

Vol. 3709. Lecture Notes in Computer Science. Springer, 2005, pp. 534–548. DOI: 10.1007/

11564751_40. URL: https://doi.org/10.1007/11564751%5C_40.

[51] Jochen Renz and Bernhard Nebel. “Efficient Methods for Qualitative Spatial Reasoning”.

In: J. Artif. Intell. Res. 15 (2001), pp. 289–318. DOI: 10.1613/jair.872. URL: https://doi.

org/10.1613/jair.872.

[52] Jochen Renz and Bernhard Nebel. “On the Complexity of Qualitative Spatial Reasoning: A

Maximal Tractable Fragment of the Region Connection Calculus”. In: Artif. Intell. 108.1-2

(1999), pp. 69–123. DOI: 10.1016/S0004-3702(99)00002-8. URL: https://doi.org/10.

1016/S0004-3702(99)00002-8.

[53] Jochen Renz and Bernhard Nebel. “Qualitative Spatial Reasoning Using Constraint Cal-

culi”. In: Handbook of Spatial Logics. Ed. by Marco Aiello, Ian Pratt-Hartmann, and Johan

van Benthem. Springer, 2007, pp. 161–215. DOI: 10.1007/978-1-4020-5587-4_4. URL:

https://doi.org/10.1007/978-1-4020-5587-4%5C_4.

[54] Philippe Rigaux, Michel Scholl, and Agnès Voisard. Spatial databases - with applications to

GIS. Elsevier, 2002. ISBN: 978-1-55860-588-6.

[55] Kurt Rohloff and Richard E. Schantz. “Clause-iteration with MapReduce to scalably query

datagraphs in the SHARD graph-store”. In: DIDC’11, Proceedings of the Fourth International

Workshop on Data-intensive Distributed Computing, San Jose, CA, USA, June 8, 2011. Ed. by

Tevfik Kosar. ACM, 2011, pp. 35–44. DOI: 10.1145/1996014.1996021. URL: https://doi.

org/10.1145/1996014.1996021.

[56] Alexander Schätzle et al. “PigSPARQL: A SPARQL Query Processing Baseline for Big Data”.

In: Proceedings of the ISWC 2013 Posters & Demonstrations Track, Sydney, Australia, October 23,

2013. Ed. by Eva Blomqvist and Tudor Groza. Vol. 1035. CEUR Workshop Proceedings.

CEUR-WS.org, 2013, pp. 241–244. URL: http://ceur-ws.org/Vol-1035/iswc2013%5C_

poster%5C_16.pdf.

135

https://doi.org/10.1109/BigData.2013.6691582
https://doi.org/10.1109/BigData.2013.6691582
https://doi.org/10.1109/BigData.2013.6691582
https://doi.org/10.1007/11564751_40
https://doi.org/10.1007/11564751_40
https://doi.org/10.1007/11564751%5C_40
https://doi.org/10.1613/jair.872
https://doi.org/10.1613/jair.872
https://doi.org/10.1613/jair.872
https://doi.org/10.1016/S0004-3702(99)00002-8
https://doi.org/10.1016/S0004-3702(99)00002-8
https://doi.org/10.1016/S0004-3702(99)00002-8
https://doi.org/10.1007/978-1-4020-5587-4_4
https://doi.org/10.1007/978-1-4020-5587-4%5C_4
https://doi.org/10.1145/1996014.1996021
https://doi.org/10.1145/1996014.1996021
https://doi.org/10.1145/1996014.1996021
http://ceur-ws.org/Vol-1035/iswc2013%5C_poster%5C_16.pdf
http://ceur-ws.org/Vol-1035/iswc2013%5C_poster%5C_16.pdf

Bibliography

[57] Alexander Schätzle et al. “S2RDF: RDF Querying with SPARQL on Spark”. In: Proc. VLDB

Endow. 9.10 (2016), pp. 804–815. DOI: 10.14778/2977797.2977806. URL: http://www.vldb.

org/pvldb/vol9/p804-schaetzle.pdf.

[58] James G. Schmolze. “Physics for Robots”. In: Proceedings of the 5th National Conference on Ar-

tificial Intelligence. Philadelphia, PA, USA, August 11-15, 1986. Volume 1: Science. 1986, pp. 44–

50. URL: http://www.aaai.org/Library/AAAI/1986/aaai86-008.php.

[59] Konstantin Shvachko et al. “The Hadoop Distributed File System”. In: IEEE 26th Symposium

on Mass Storage Systems and Technologies, MSST 2012, Lake Tahoe, Nevada, USA, May 3-7, 2010.

Ed. by Mohammed G. Khatib, Xubin He, and Michael Factor. IEEE Computer Society, 2010,

pp. 1–10. DOI: 10.1109/MSST.2010.5496972. URL: https://doi.org/10.1109/MSST.2010.

5496972.

[60] Michael Sioutis. “Triangulation Versus Graph Partitioning for Tackling Large Real World

Qualitative Spatial Networks”. In: 26th IEEE International Conference on Tools with Artifi-

cial Intelligence, ICTAI 2014, Limassol, Cyprus, November 10-12, 2014. IEEE Computer Society,

2014, pp. 194–201. DOI: 10.1109/ICTAI.2014.37. URL: https://doi.org/10.1109/ICTAI.

2014.37.

[61] Michael Sioutis and Jean-François Condotta. “Tackling Large Qualitative Spatial Networks

of Scale-Free-Like Structure”. In: Artificial Intelligence: Methods and Applications - 8th Hellenic

Conference on AI, SETN 2014, Ioannina, Greece, May 15-17, 2014. Proceedings. 2014, pp. 178–

191. URL: https://doi.org/10.1007/978-3-319-07064-3_15.

[62] Michael Sioutis and Manolis Koubarakis. “Consistency of Chordal RCC-8 Networks”. In:

IEEE 24th International Conference on Tools with Artificial Intelligence, ICTAI 2012, Athens,

Greece, November 7-9, 2012. IEEE Computer Society, 2012, pp. 436–443. DOI: 10.1109/ICTAI.

2012.66. URL: https://doi.org/10.1109/ICTAI.2012.66.

[63] Claus Stadler et al. “LinkedGeoData: A core for a web of spatial open data”. In: Semantic Web

3.4 (2012), pp. 333–354. DOI: 10.3233/SW-2011-0052. URL: https://doi.org/10.3233/SW-

2011-0052.

[64] Markus Stocker and Evren Sirin. “PelletSpatial: A Hybrid RCC-8 and RDF/OWL Reason-

ing and Query Engine”. In: Proceedings of the 5th International Workshop on OWL: Experi-

ences and Directions (OWLED 2009), Chantilly, VA, United States, October 23-24, 2009. Ed.

by Rinke Hoekstra and Peter F. Patel-Schneider. Vol. 529. CEUR Workshop Proceedings.

CEUR-WS.org, 2009. URL: http://ceur-ws.org/Vol-529/owled2009%5C_submission%

5C_20.pdf.

[65] Ashish Thusoo et al. “Hive - a petabyte scale data warehouse using Hadoop”. In: Proceedings

of the 26th International Conference on Data Engineering, ICDE 2010, March 1-6, 2010, Long

Beach, California, USA. Ed. by Feifei Li et al. IEEE Computer Society, 2010, pp. 996–1005.

DOI: 10.1109/ICDE.2010.5447738. URL: https://doi.org/10.1109/ICDE.2010.5447738.

136

https://doi.org/10.14778/2977797.2977806
http://www.vldb.org/pvldb/vol9/p804-schaetzle.pdf
http://www.vldb.org/pvldb/vol9/p804-schaetzle.pdf
http://www.aaai.org/Library/AAAI/1986/aaai86-008.php
https://doi.org/10.1109/MSST.2010.5496972
https://doi.org/10.1109/MSST.2010.5496972
https://doi.org/10.1109/MSST.2010.5496972
https://doi.org/10.1109/ICTAI.2014.37
https://doi.org/10.1109/ICTAI.2014.37
https://doi.org/10.1109/ICTAI.2014.37
https://doi.org/10.1007/978-3-319-07064-3_15
https://doi.org/10.1109/ICTAI.2012.66
https://doi.org/10.1109/ICTAI.2012.66
https://doi.org/10.1109/ICTAI.2012.66
https://doi.org/10.3233/SW-2011-0052
https://doi.org/10.3233/SW-2011-0052
https://doi.org/10.3233/SW-2011-0052
http://ceur-ws.org/Vol-529/owled2009%5C_submission%5C_20.pdf
http://ceur-ws.org/Vol-529/owled2009%5C_submission%5C_20.pdf
https://doi.org/10.1109/ICDE.2010.5447738
https://doi.org/10.1109/ICDE.2010.5447738

Bibliography

[66] Marc B. Vilain and Henry A. Kautz. “Constraint Propagation Algorithms for Temporal Rea-

soning”. In: Proceedings of the 5th National Conference on Artificial Intelligence. Philadelphia, PA,

USA, August 11-15, 1986. Volume 1: Science. 1986, pp. 377–382. URL: http://www.aaai.org/

Library/AAAI/1986/aaai86-063.php.

[67] Thomas Vögele, Christoph Schlieder, and Ubbo Visser. “Intuitive modelling of place name

regions for spatial information retrieval”. In: International Conference on Spatial Information

Theory. Springer. 2003, pp. 239–252.

[68] W3C. SPARQL 1.1 Query Language. https://www.w3.org/TR/sparql11-query/. Accessed:

2021-08-10.

[69] Jan Oliver Wallgrün. “Exploiting Qualitative Spatial Constraints for Multi-hypothesis Topo-

logical Map Learning”. In: Spatial Information Theory, 9th International Conference, COSIT

2009, Aber Wrac’h, France, September 21-25, 2009, Proceedings. Ed. by Kathleen Stewart Hornsby

et al. Vol. 5756. Lecture Notes in Computer Science. Springer, 2009, pp. 141–158. DOI: 10.

1007/978-3-642-03832-7_9. URL: https://doi.org/10.1007/978-3-642-03832-

7%5C_9.

[70] Matthias Westphal, Stefan Wölfl, and Zeno Gantner. “GQR: A Fast Solver for Binary Qual-

itative Constraint Networks”. In: Benchmarking of Qualitative Spatial and Temporal Reasoning

Systems, Papers from the 2009 AAAI Spring Symposium, Technical Report SS-09-02, Stanford,

California, USA, March 23-25, 2009. AAAI, 2009, pp. 51–52. URL: http://www.aaai.org/

Library/Symposia/Spring/2009/ss09-02-011.php.

[71] William E Winkler. “String Comparator Metrics and Enhanced Decision Rules in the Fellegi-

Sunter Model of Record Linkage.” In: (1990).

[72] Diedrich Wolter and Jan Oliver Wallgrün. “Qualitative spatial reasoning for applications:

New challenges and the SparQ toolbox”. In: Geographic Information Systems: Concepts, Method-

ologies, Tools, and Applications. IGI Global, 2013, pp. 1639–1664.

[73] Mihalis Yannakakis. “Computing the minimum fill-in is NP-complete”. In: SIAM Journal on

Algebraic Discrete Methods 2.1 (1981), pp. 77–79.

[74] Simin You, Jianting Zhang, and Le Gruenwald. “Large-scale spatial join query processing in

Cloud”. In: 31st IEEE International Conference on Data Engineering Workshops, ICDE Workshops

2015, Seoul, South Korea, April 13-17, 2015. IEEE Computer Society, 2015, pp. 34–41. DOI:

10.1109/ICDEW.2015.7129541. URL: https://doi.org/10.1109/ICDEW.2015.7129541.

[75] Eman M. G. Younis et al. “Hybrid Geo-spatial Query Methods on the Semantic Web with

a Spatially-Enhanced Index of DBpedia”. In: Geographic Information Science - 7th Interna-

tional Conference, GIScience 2012, Columbus, OH, USA, September 18-21, 2012. Proceedings. Ed.

by Ningchuan Xiao et al. Vol. 7478. Lecture Notes in Computer Science. Springer, 2012,

pp. 340–353. DOI: 10.1007/978-3-642-33024-7_25. URL: https://doi.org/10.1007/

978-3-642-33024-7%5C_25.

137

http://www.aaai.org/Library/AAAI/1986/aaai86-063.php
http://www.aaai.org/Library/AAAI/1986/aaai86-063.php
https://www.w3.org/TR/sparql11-query/
https://doi.org/10.1007/978-3-642-03832-7_9
https://doi.org/10.1007/978-3-642-03832-7_9
https://doi.org/10.1007/978-3-642-03832-7%5C_9
https://doi.org/10.1007/978-3-642-03832-7%5C_9
http://www.aaai.org/Library/Symposia/Spring/2009/ss09-02-011.php
http://www.aaai.org/Library/Symposia/Spring/2009/ss09-02-011.php
https://doi.org/10.1109/ICDEW.2015.7129541
https://doi.org/10.1109/ICDEW.2015.7129541
https://doi.org/10.1007/978-3-642-33024-7_25
https://doi.org/10.1007/978-3-642-33024-7%5C_25
https://doi.org/10.1007/978-3-642-33024-7%5C_25

Bibliography

[76] Jia Yu, Zongsi Zhang, and Mohamed Sarwat. “Spatial data management in apache spark:

the GeoSpark perspective and beyond”. In: GeoInformatica 23.1 (2019), pp. 37–78. DOI: 10.

1007/s10707-018-0330-9. URL: https://doi.org/10.1007/s10707-018-0330-9.

[77] Matei Zaharia et al. “Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-

Memory Cluster Computing”. In: Proceedings of the 9th USENIX Symposium on Networked

Systems Design and Implementation, NSDI 2012, San Jose, CA, USA, April 25-27, 2012. Ed. by

Steven D. Gribble and Dina Katabi. USENIX Association, 2012, pp. 15–28. URL: https :

//www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia.

138

https://doi.org/10.1007/s10707-018-0330-9
https://doi.org/10.1007/s10707-018-0330-9
https://doi.org/10.1007/s10707-018-0330-9
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia

	Introduction
	Qualitative spatio-temporal reasoning (QSTR)
	Large scale data processing
	Motivation
	The research question
	Overview of chapters
	Publications

	Preliminaries
	Qualitative spatial and temporal constraint calculi
	Allen's Interval Algebra
	Point Algebra
	Region Connection Calculus
	Qualitative constraint networks (QCNs)
	Reasoning over qualitative constraint networks
	Applications

	Large scale data processing
	The basic MapReduce model
	The Apache Spark framework
	Performance issues

	Knowledge graphs
	Resource Description Framework (RDF)
	Querying RDF data
	GeoSPARQL

	ParQR: A large scale qualitative spatio-temporal reasoner
	Overview of QSTR using ParQR
	Limiting the size of joins
	ParQR algorithms
	Main program execution
	The inference stage
	The consistency stage
	Analysis

	Related work
	Traditional approaches to QSTR
	Reasoning with large scale qualitative constraint networks

	Evaluation
	Synthetically generated QCNs
	Real world knowledge graphs
	Experiment setup
	Results for synthetically generated knowledge graphs
	Comparison with other reasoners
	Conclusions

	Enhanced spatial knowledge graph generation
	Introduction
	Requirements for an enhanced knowledge graph
	Source Datasets
	YAGO 4
	GADM

	Creating the knowledge graph
	Spatial Indexing
	Computing EC relations between regions
	Computing containment relations between points and regions
	Matching regions with points
	Generating the final knowledge graph

	Evaluation
	Datasets
	Runtime
	Scalability

	Related work
	Conclusions

	ParQR-QE: A large scale QSTR query engine
	Introduction
	Instance based reasoning
	Quantitative reasoning for window queries
	Query execution
	Query execution for adjacency queries
	Query execution for spatial join queries
	Query execution for window queries

	Evaluation
	Quantitative query engine
	Containment queries
	Adjacency queries
	Join queries
	Window queries
	Scalability

	Related work
	Conclusions

	Conclusions
	Summary
	The research question

	Queries used in Experiments
	Containment queries
	Adjacency Queries
	Join Queries
	Window Queries

