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Development of nondestructive techniques for estimating egg parameters requires a comprehensive approach based
on mathematical theory. Basic properties used to solve theoretical and applied problems in this respect are volume
(V) and surface area (S). There are respective formulae for calculating V and S of spherical, ellipsoidal, and ovoid
eggs in classical egg geometry; however, the mathematical description and calculation of these parameters for pyri-
form eggs have remained elusive. In the present study, we derived the appropriate formulae and established that
this would be not only applicable and valid for the category of pyriform eggs, but also universal and explicit for all
other naturally occurring avian egg shapes. Thus, we have demonstrated “mathematical progression” of this natural
object, considering the egg as a sequence of geometric figures that transform from one to another in the following
sequence of shapes: sphere→ ellipsoid→ ovoid (whose profile corresponds to Hügelschäffer’s model)→ pyriform
ovoid.

Keywords: egg shape geometry; egg volume; surface area; nondestructive measurement; mathematical progression

Introduction

Since the middle of the 20th century, there have
been continual attempts to derive a mathematical
model for the contours of a bird’s egg. The starting
point can be considered the work of Preston,1 who
proposed the basic approaches to the development
of such equations. Although Preston1 mentioned
that his “investigation was not undertaken primar-
ily as a mathematical amusement,” he did state
the more important aim that his contribution may
eventually “throw some light on several biological
and ecological problems.” Carter,2 when creating
his model of an egg-shaped ovoid, pointed out that
these mathematical developments are necessary
primarily for the derivation of the basic geometric
parameters of the egg, that is, volume and surface
area.

We recently developed a theoretical formula
that can be used to describe the contours of any
standard bird egg found in nature:3

y = ±B
2

√
L2 − 4x2

L2 + 8wx + 4w2 ·
[
1 −

√
5.5L2 + 11Lw + 4w2 · (√3BL − 2DL/4

√
L2 + 2wL + 4w2 )√

3BL(
√
5.5L2 + 11Lw + 4w2 − 2

√
L2 + 2wL + 4w2 )⎛

⎝1 −
√

L(L2 + 8wx + 4w2 )
2(L − 2w)x2 + (L2 + 8Lw − 4w2 )x + 2Lw2 + L2w + L3

⎞
⎠
⎤
⎦

(1),

where B and L are themaximumbreadth and length
of the egg, w is a measure of the displacement of
the B axis from the center of the egg, and DL/4 is
the egg diameter at the point corresponding to
1
4 of its length from the pointy end. A schematic
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Figure 1. The geometry of the pyriform egg (adapted from Narushin et al.19).

representation of each of these parameters is shown
in Figure 1.
Fully agreeing with opinions of previous

researchers1,2 that such dependencies, in addition to
satisfying scientific interest, should also have a cer-
tain applied value, we aimed to continue the work
of Preston1 targeting derivation of mathematical
dependencies for main geometrical egg parameters.
In the poultry industry, breeding, and ornithol-

ogy, not only egg production traits, but also egg
quality, including egg volume, V, and surface area,
S, are considered as the most important charac-
teristics. This is because the size of both table and
breeder eggs can be used to judge egg weight,4–7 air
exchange,8–10 incubation properties,11 shell thick-
ness and strength,12,13 and egg content quality.14
Most often, these indicators are targeted in research
relevant to the poultry industry, and therefore, the
calculation formulae for defining the egg volume
and surface area, as derived in previous studies, were
based both on empirical data4,5,15 and theoretical
computation.16–19 Theoretically inferred formulae
are of particular research and practical interest,
since they do not depend either on the number of
measurements or on the sample of eggs used in
an experiment. As a result, their adequacy is not
questioned as, for example, the theoretical formulae
for findingV and S of an ellipsoid or a sphere.When
deriving such theoretical dependencies concerning

the egg characteristics, the following fundamental
formulae of integral geometry can be employed:

V = π

b∫
a

y2dx (2),

S = 2π
b∫

a

y

√
1 +

(
dy
dx

)2
dx (3),

where a and b are the limits of integration of the
function y, which describes the contour of the egg.

Despite the well-developed mathematical appa-
ratus for integral calculations, it is sometimes quite
difficult to carry out this operation, even using
approximate calculation methods. We encountered
this obstacle when deriving a formula for SH of
chicken eggs, the profile of which is described quite
accurately by Hügelschäffer’s model,18,19 named
after the German mathematician, engineer, and
inventor Fritz Hügelschäffer.20 Only using simula-
tion methods and the minimum step in division
of the integrated function enabled us to obtain an
accurate result.21
Formula (1) is so complex to integrate that even

approximate methods do not allow for mathemati-
cal transformations (2) and (3) to derive theoretical
formulae that could be used to compute the volume

2 Ann. N.Y. Acad. Sci. xxxx (2022) 1–14 © 2022 The Authors. Annals of the New York Academy of Sciences
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Figure 2. Possible egg contours (adapted fromNarushin et al.19): black line, conical egg (parabola+Hügelschäffer’s model); red
line, usual ovoid egg (Hügelschäffer’s model); green line, an egg whose profile lays just between the pyriform and ovoid contours.

and surface area for eggs of any shape, especially for
not quite typical ones found in the poultry indus-
try, that is, the so-called pyriform (pear-shaped)
eggs.
In our previous study on deriving Eq. (1),3 we

assumed the progression of mathematical shapes
of bird eggs from the simpler, spherical to the most
complex, pyriform ones through the intermediate
stages of ellipsoidal and ovoid shapes, the latter
of which corresponds to Hügelschäffer’s model.21
Here, the availability of calculation formulae for
VH and SH is limited to the first three forms, that is,
spherical, ellipsoidal, and ovoid. Whereas calcula-
tion of spheres and ellipsoids is given in geometric
reference books, to obtain adequate dependences
for ovoids, whose shape obeys Hügelschäffer’s
model, we carried out a series of theoretical and
experimental studies18,19,21 that resulted in the
following formulae:

VH = πB2

256w3

(
4wL(L2 + 4w2 ) − (L2 − 4w2 )2 · ln

∣∣∣∣L + 2w
L − 2w

∣∣∣∣
)
(4),

SH = πBL
[(

0.043
w
L

+ 0.292
) B
L

− 0.061
w
L

+ 0.704
]

(5).

Thus, the problem was narrowed down to
obtaining the calculated dependences Vpyr and
Spyr for pyriform eggs. As we showed earlier,3 the
boundary shape for such eggs is the combination
of the paraboloid at the pointy end and the ovoid of
Hügelschäffer’s model at the blunt end (Fig. 1).
We further conditionally distinguish this subcat-

egory of the pyriform shape as a separate one and
call it conical.
As was also shown in our previous study,3

between the contours of conical eggs and the pro-
files of all other types of eggs existing in nature
and described with sufficient accuracy using
Hügelschäffer’s model, there are combinations of
some intermediate contours corresponding to the
green line in Figure 2 (taken from Ref. 3).
These eggs corresponding to the intermediate

contours (green line in Fig. 2) are referred to below
as pyriform.

3Ann. N.Y. Acad. Sci. xxxx (2022) 1–14 © 2022 The Authors. Annals of the New York Academy of Sciences
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With the above in mind, the objective of this
study was to derive the theoretical dependencies
Vpyr and Spyr for pyriform eggs (based on conical to
ovoid ones), as well as establish their mathematical
adaptation for universal use in any bird’s eggs found
in nature.

Methodology
We proceed from the premise that theoretically
derived formulae are to be preferred to empirically
obtained formulae, since the accuracy of the latter
may be adversely affected by small sample sizes
and the materials or tools used. In this work, we,
therefore, focus on theoretical investigations only.
Currently, a large amount of data have been

accumulated on the size, shape, and variability
of avian eggs in specific bird groups and for a
broad diversity of the avian world. In our previous
investigations,3,21 we already substantiated possi-
ble variations in the ratios of basic geometric egg
parameters: B/L and w/L, which made it possible
to use simulation methods to create a virtual series
of eggs with a full range of their geometric sizes.
A similar methodological approach has been used
here when performing these studies.
Since the derivation of theoretical dependences

for calculating the egg volume and surface area
was based on the classical equations of integral
geometry (2) and (3), we also exploited a numerical
method in MS Excel, as was proposed elsewhere.22
The accuracy of the obtained equations was

tested using a classical statistic of the percentage
error, ε, that equals the ratio of the difference
between the predicted and actual data to the latter
one, taken as a percentage.23

Theory and results

Conical eggs
Considering the subcategory of conical eggs
(Fig. 1), egg volume, Vcon, and surface area, Scon,
can be conventionally represented as a sum of
the respective parameters for two egg constituent
parts, a paraboloid (i.e., solid of revolution of the
parabola) at the pointy end and an ovoid (i.e., solid
of revolution of the Hügelschäffer’s model ovoid) at
the blunt side. Let us consider below the derivation
of formulae for each part separately.

Volume at the pointy end. To describe the pointy
end of a conical egg, the following formula of the
parabola was deduced by Narushin et al.:3

y = ±B
2

·
√

L − 2x
L + 2w

(6).

Considering Eq. (6) and the interval for x of this
parabolic part of the egg as [–w, L/2] (Fig. 1), the
volume of the conic egg at the pointy end, Vcon(p), is
determined using Eq. (2) as follows:

Vcon(p) = πB2

4

L
2∫

−w

L − 2x
L + 2w

dx (7).

Integration of Eq. (7) gives the following out-
come:

Vcon(p) == πB2(L + 2w)
16

(8).

The respective integration steps are presented in
more detail in File S1.1 (online only).

Surface area at the pointy end. When determin-
ing the surface area of the conical egg at the pointy
end, Scon(p), the interval for x will be similar, that is,
[–w, L/2]. Then, using Eq. (3), the value of Scon(p)
can be determined as follows:

Scon(p) = 2π

L
2∫

−w

B
2

·
√

L − 2x
L + 2w

√
1 + B2

4(L + 2w)(L − 2x)
dx (9).

This results in the following final equation:

Scon(p) = πB ·
√(

4(L + 2w)2 + B2
)3 − B3

24(L + 2w)2
(10).

The solution to integral (9) is detailed in File S1.2
(online only).

Volume at the blunt end. The blunt end of the
pyriform (conical) egg can be described with the
formula of Hügelschäffer’s model, as was presented
in Narushin et al.:18

y = ±B
2

√
L2 − 4x2

L2 + 8wx + 4w2 (11).

Considering the interval for x of the egg blunt
end as [–L/2, –w] (Fig. 1), the volume of this part of
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the egg, Vcon(b), can be defined using the following
classic formula of the integral geometry:

Vcon(b) = πB2

4

−w∫
− L

2

L2 − 4x2

L2 + 8wx + 4w2 dx (12).

Integration of Eq. (12) leads to the following final
formula:

Vcon(b) = πB2(L − 2w)
128w2(

L2 + 2Lw + 8w2 − (L − 2w)(L + 2w)2

4w
· ln

∣∣∣∣L + 2w
L − 2w

∣∣∣∣
)

(13).

The integration steps are given in more detail in
File S1.3 (online only).

Surface area at the blunt end. Considering the
integration interval for x at the egg blunt end as
[–L/2, –w] (Fig. 1) and the original equation for y
following Hügelschäffer’s model (11), Eq. (3) for
the blunt part of the egg will be rewritten as:

Scon(b) = 2π
−w∫

− L
2

y

√
1 +

(
dy
dx

)2
dx (14).

Previously, we faced certain difficulties when
trying to solve such an integral for the eggs defined
per Hügelschäffer’s model.18,19 In our follow-up
article,21 we used numerical methods for solving
this integral to derive an improved formula for
recalculating S. In this regard, the same algorithm
was taken as the basis for solving Eq. (14), which
leads to the following result:

Scon(b) = πBL[(
0.2051

w
L

+ 0.1452
) B
L

− 0.7066
w
L

+ 0.3531
]

(15).

A detailed analysis of the integration process is
demonstrated in File S1.4 (online only).

Final formulae for conical eggs. To infer the
final formulae for Vcon and Scon of conical eggs,
the volume and surface area of the whole egg are
considered as a sum of the corresponding egg
constituents, that is, its pointy and blunt ends,
which will be equal to Vcon = Vcon(p) + Vcon(b) and

Scon = Scon(p) + Scon(b), respectively. Hence,

Vcon = πB2

16

[
L + 2w + L − 2w

8w2

(
L2 + 2Lw + 8w2

− (L − 2w)(L + 2w)2

4w
· ln

∣∣∣∣L + 2w
L − 2w

∣∣∣∣
)]

(16),

Scon = πB

⎛
⎝
√(

4(L + 2w)2 + B2
)3 − B3

24(L + 2w)2

+0.2051
B
L
w + 0.1452B − 0.7066w + 0.3531L

)

(17).

Pyriform eggs
As we mentioned in the Introduction, we mean
by the pyriform type of eggs all possible contours
between the conical profile and the ovoid one,
whose shape corresponds to Hügelschäffer’s model
(Fig. 2).
It should be noted that for all types of eggs, the

blunt end shape corresponds to Hügelschäffer’s
model.3 That is, keeping the same principle of
assigning subscript indices we have adopted, the
volume and surface area at the blunt end of pyriform
eggs are denoted by Vpyr(b) and Spyr(b), which will be
identical to Vcon(b) (Eq. 13) and Scon(b) (Eq. 15).
Therefore, our task has been reduced to finding

only the volume and surface area at the sharp end of
pyriform eggs, that is,Vpyr(p) and Spyr(p), respectively.

Volume at the pointy end. The boundary con-
tours of the sharp end of the pyriform egg are the
conical shape on the one side, and Hügelschäffer’s
model, on the other side. For the conical profile, we
derived the calculation formula of Vcon(p) (Eq. 8).
This value reflects the minimum possible volume
of a pyriform egg. The maximum value is obtained
when the outline of the pyriform egg reaches the
ovoid profile in Hügelschäffer’s model (see the red
line in Fig. 2). Then, our further theoretical calcula-
tions were aimed at defining the calculated depen-
dences forVH(p), that is, the volume at the sharp end
of ovoid eggs described by Hügelschäffer’s model.
The calculated formula for VH(p) will be similar

to the initial one in Eq. (12), only with different

5Ann. N.Y. Acad. Sci. xxxx (2022) 1–14 © 2022 The Authors. Annals of the New York Academy of Sciences
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integration intervals corresponding to the contour
of the pointy end (Fig. 1):

VH(p) = πB2

4

L
2∫

−w

L2 − 4x2

L2 + 8wx + 4w2 dx (18).

As a result of the integration of Eq. (18), the
following computation formula is produced:

VH(p) = πB2(L + 2w)
128w2(

L2 − 2Lw + 8w2 − (L − 2w)2(L + 2w)
4w

· ln
∣∣∣∣ L + 2w
L − 2w

∣∣∣∣
)

(19).

The integration process is presented in File S2.1
(online only).
Having the calculated formula for the volume

at the sharp end of ovoid eggs corresponding to
Hügelschäffer’s model, that is, VH(p) (Eq. 19), and
conical eggs, that is, Vcon(p) (Eq. 8), we can proceed
to deriving the volumeVpyr(p) of intermediate forms
(Fig. 1, green line).
Earlier, as a defining indicator of the contour of

eggs of any shape, we justified the use of the diame-
terDL/4 of the egg at the point corresponding to 1

4 of
its length, that is, taken at a distance of L/4 from the
pointy end of the egg.3 At the same time,DL/4 for an
ovoid egg corresponding to Hügelschäffer’s model
will be determined as twice the value of y from
formula (11) after substituting the value x = L/4.
DL/4 for a conical egg will be similarly defined as
twice the value of y from formula (6) after the same
appropriate substitution.
Then, keeping the indexing adopted by us for the

eggs of the respective shape, the following equations
can be produced:

DH(L/4) =
√
3BL

2
√
L2 + 2wL + 4w2

(20),

Dcon(L/4) = B

√
L

2(L + 2w)
(21).

The next step was to find the relationship
between the difference in the volume of the pointy
part of the egg when changing from its “primary,”
conical shape to the “final” one that is consistent
with the principles of Hügelschäffer’s model. To do
this, we established the functional dependence of
the difference in volumes of the abovementioned

boundary shapes on the respective difference in
diameters at the point L/4:

�Vp = VH(p) −Vcon(p) (22),

�DL/4 = DH(L/4) − Dcon(L/4) (23).

Let us rewrite Eq. (22) using Eqs. (19) and (8),
and Eq. (23) using Eqs. (20) and (21), respectively.
Then:

�Vp = πB2(L + 2w)
16[(

L2 − 2Lw + 8w2

8w2 − (L − 2w)2(L + 2w)
32w3 · ln

∣∣∣∣ L + 2w
L − 2w

∣∣∣∣
)

− 1
]

(24),

�DL/4 = B
√
L ·

√
6L(L + 2w) − 2

√
L2 + 2wL + 4w2

2
√
2(L + 2w)(L2 + 2wL + 4w2)

(25).

To determine the dependence of �Vp on �DL/4,
we looked for the ratio of Eqs. (24) and (25). As
a result of simplifications and transformations
detailed in File S2.2 (online only), the following
functional dependence is obtained:

�Vp = 0.91�DL/4 · BL
[(w

L

)2
+ 0.84

w
L

+ 0.44
]

(26).

If we operate with a certain measured diameter
DL/4 at the point L/4, it can be represented as:

DL/4 = Dcon(L/4) + n · �DL/4 (27),

where n is a certain coefficient ranging from 0 to 1.
The value n = 0 will mean that the egg meets the
conical criterion, that is, its pointy end is conical and
parabolic, while for n= 1, the contour of the eggwill
correspond toHügelschäffer’smodel. Based on (27),
the following equation is obtained:

n = DL/4 − Dcon(L/4)

�DL/4
(28).

Therefore, to expand formula (26) to all “inter-
mediate” egg profiles between the parabola and
Hügelschäffer’s model (green line, Fig. 2), instead
of �DL/4, its product by the value of the coefficient
n, that is, n�DL/4, will be used, and to avoid confu-
sion, the value of the difference in volumes will be
denoted by �Vpyr(p). This will match the difference
in the volume at the pointy end of the egg, whose
contours are described by Hügelschäffer’s model,
that is, VH(p), and, accordingly, the volume of any

6 Ann. N.Y. Acad. Sci. xxxx (2022) 1–14 © 2022 The Authors. Annals of the New York Academy of Sciences
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of the intermediate shapes of the pyriform profile
(green line, Fig. 2), that is, Vpyr(p).

Hence, like our approach expressed by formula
(27), the real volume of the sharp part of the
pyriform egg, that is, Vpyr(p), can be written as:

Vpyr(p) = Vcon(p) + �Vpyr(p) (29).

In this case,�Vpyr(p) is determined from (26) as:

�Vpyr(p) = 0.91n · �DL/4 · BL
[(w

L

)2
+ 0.84

w
L

+ 0.44
]
(30).

Considering formulae (8), (21), (23), (26), (27),
and (28), the following equation can be obtained:

Vpyr(p) = πB2(L + 2w)
16

+ 0.91BL

(
DL/4 − B

√
L

2(L + 2w)

)[(w
L

)2
+ 0.84

w
L

+ 0.44
]

(31).

A detailed derivation of formula (31) is shown in
File S2.3 (online only).

Volume of the pyriform egg. Taking into consid-
eration the obtained expression (31) for the volume
at the pointy end and Eq. (13) at the blunt one,
the total volume of all combinations of the pyri-
form egg, Vpyr, is determined as the sum of these
equations, which results in the following formula:

Vpyr = 0.992B2L
[(

DL/4

B
− 0.426

)
w
L

+ 0.396
DL/4

B
+ 0.182

]
(32).

A detailed derivation of formula (32) can be seen
in File S2.4 (online only).

Surface area at the pointy end. To find an algo-
rithm for calculating the surface area at the pointy
end of a pyriform egg, that is, Spyr(p), the same
methodwas used as for determining its volume, that
is, the relationship between the difference in the sur-
face area of the pointy part of the eggwhen changing
from a conical shape to Hügelschäffer’s model and
the difference in diameters at the L/4 point.
Similar to Eq. (22), the following equation can be

formulated:

�Sp = SH(p) − Scon(p) (33).

If we consider an egg, whose contours corre-
spond to Hügelschäffer’s model, the surface area at
its pointy end, SH(p), can be found as the difference
between the surface areas of the entire egg, S (Eq. 5),
and its blunt end, Scon(b) (Eq. 15). As mentioned

above, when deriving formulae for calculating
the volumes of various parts of an egg, following
our theoretical studies to determine a universal
formula for the mathematical description of the
profile of bird eggs,3 the blunt end is the same for
both conical eggs and those whose contours obey
Hügelschäffer’s model, and therefore, the areas of
their surfaces are also identical.
If Scon(b) (Eq. 15) is subtracted from SH (Eq. 5),

the following formula can be obtained:

SH(p) = πBL
[(

0.1468 − 0.1621
w
L

) B
L

+ 0.6456
w
L

+ 0.3509
]
(34).

Then, considering Eq. (10), Eq. (33) takes the
following form:

�Sp = BL

[(
0.0902

(
B
L

)2
− 0.245

B
L

− 0.123

)
w
L

− 0.1784
(
B
L

)2
+ 0.3274

B
L

+ 0.0848

]
(35).

A detailed derivation of formula (35) is presented
in File S2.5 (online only).
Next, we determined the dependence of �Sp

on �DL/4 by determining the ratio of Eqs. (25)
and (35). As a result of simplifications and trans-
formations detailed in File S2.6 (online only), the
following functional dependence is obtained:

�Sp = L · �DL/4 ·[(
−9.6025

(
B
L

)2
+ 14.845

B
L

+ 1.7629

)(w
L

)2

+
(

−0.9759
(
B
L

)2
+ 1.5087

B
L

+ 0.1793

)
w
L

− 1.1068
(
B
L

)2
+ 2.0284

B
L

+ 0.5231

]
(36).

The actual surface area of the pointy part of a
pyriform egg, Spyr(p), can be written similarly to Eq.
(29):

Spyr(p) = Scon(p) + �Spyr(p) (37),

where, by analogy with Eq. (30):

�Spyr(p) = L · n · �DL/4 ·[(
−9.6025

(
B
L

)2
+ 14.845

B
L

+ 1.7629

)(w
L

)2
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+
(

−0.9759
(
B
L

)2
+ 1.5087

B
L

+ 0.1793

)
w
L

− 1.1068
(
B
L

)2
+ 2.0284

B
L

+ 0.5231

]
(38).

Taking into consideration formulae (10), (21),
(23), (27), (28), and (38):

Spyr(p) = πB ·
√(

4(L + 2w)2 + B2
)3 − B3

24(L + 2w)2

+ L

(
DL/4 − B

√
L

2(L + 2w)

)
[(

−9.6025
(
B
L

)2
+ 14.845

B
L

+ 1.7629

)(w
L

)2

+
(

−0.9759
(
B
L

)2
+ 1.5087

B
L

+ 0.1793

)
w
L

− 1.1068
(
B
L

)2
+ 2.0284

B
L

+ 0.5231

]
(39).

A detailed derivation of formula (39) is given in
File S2.7 (online only).

Surface area of the pyriform egg. In view of the
obtained formula (39) for the surface area at the
pointy end, Spyr(p), and Eq. (15) for the blunt end,
Spyr(b), the total surface area of all combinations
of the pyriform eggs, Spyr, can be determined as
the sum of these equations, which results in the
following formula:

Spyr = 0.2447BL{(
B
L

− 0.0838
)
w
L

+ 3.5039
B
L

+ 8.3032

− 39.2419
(
DL/4

B
+ 0.5165

w
L

− 0.7016
)

[(
B2

L2
− 1.546

B
L

− 0.1836
)(w

L
+ 0.1016

) w
L

+ 0.1153
(
B
L

)2
− 0.2112

B
L

− 0.0545

]}
(40).

A detailed derivation of formula (40) is presented
in File S2.8 (online only).

Mathematical progression of avian egg shape
In our previous article,3 when concerning the main
types of geometric shapes for all observed varieties
of bird eggs in nature, we proposed a concept of
mathematical evolution. Nevertheless, the use of
this term may raise questions and even a certain
objection regarding its appropriateness among
researchers working in egg-related studies. There-
fore, in the present investigation, we suggested to
change the term mathematical evolution to math-
ematical progression. The meaning of this concept
and its formulation is that each subsequent shape
contains the characteristics of the previous one with
a potential of a further simple, stepwise transforma-
tion. These egg shape types can be represented by
the following sequence: sphere → ellipsoid →
ovoid (with the profile described by Hügelschäffer’s
model) → pyriform ovoid. At each stage of the
transition from one shape to the next one, we
can see that a shape transforms from the previous
one, and then into the subsequent one by adding
one more key parameter to describe this shape
mathematically. For a sphere, this key parameter
is its diameter, that is, in our case, the maximum
breadth of the egg, B. Another parameter is added
to its formulae for the ellipsoid description, which
is the egg length, L. Furthermore to describe
the ovoid with Hügelschäffer’s model, we need
to determine the value of the parameter w, and
for the pyriform egg, its diameter at the point
corresponding to 1

4 the length of the egg, that
is, DL/4.
To test how this theory of the mathematical

change in the egg shape works with our formulae
for the egg volume, Vpyr, and surface area, Spyr,
that describe the pyriform profile, we carried out a
step-by-step transformation from a pyriform ovoid
to a sphere using the obtained formulae (32) and
(40). This stepwise transformation also enabled
checking possible calculated errors when using the
formulated mathematical relationships for eggs of
various profiles.

Mathematical progression of egg volume. If we
assume that the derived formula (32) is universal
for all types of eggs, it should be transformed
into Eq. (16) after substituting Eq. (21) instead of
DL/4, making it possible to calculate the volume of
conical eggs as the boundary shape of a pyriform
profile.
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Verification of this assumption results in the
following formula:

Vcon(Eqn32) = B2L
(
0.46 − 0.0542

w
L

)
(41),

which was comparable with the formula similarly
transformed from Eq. (16):

Vcon(Eqn16) = B2L
(
0.46 − 0.0543

w
L

)
(42).

A detailed derivation of both Eqs. (41) and (42)
is demonstrated in File S3.1 (online only).
Based on Eqs. (41) and (42), we can calculate

the percent error, ε, resulting from using Eq. (32)
instead of Eq. (16) when defining the volume of
conical eggs:

ε =
∣∣∣∣Vcon(Eqn32) −Vcon(Eqn16)

Vcon(Eqn16)

∣∣∣∣ · 100%
=
∣∣∣∣ 0.0001w

L

0.46 − 0.0542w
L

∣∣∣∣ · 100% (43).

Knowing the value of possible variations in the
ratio w/L ∈ [0, 0.25], the determined maximum
error does not exceed 0.006%.
The next test was to check the validity of Eq. (32)

when computing the volume of classical ovoid eggs,
the shape of which corresponds to Hügelschäffer’s
model. In this case, it is necessary to substitute its
calculated formula, that is, Eq. (20), instead of DL/4
into Eq. (32), and compare the resulting expression
with the classical computation formula (4) for eggs
of this type.
As a result of transformations like those per-

formed for conical eggs, the following equation is
produced:

VH(Eqn32) = B2L
(
0.5269 − 0.1081

w
L

)
(44),

which can be compared to the classical but pretrans-
formed Eq. (4):

VH(Eqn4) = B2L
(
0.5273 − 0.1084

w
L

)
(45).

A comprehensive derivation of both Eqs. (44)
and (45) is provided in File S3.2 (online only).
Based on Eqs. (44) and (45), the percent error, ε,

was found that results from using Eq. (32) instead
of Eq. (4) when calculating the volume of ovoid
eggs, whose shape corresponds to Hügelschäffer’s

model:

ε =
∣∣∣∣VH(Eqn32) −VH(Eqn4)

VH(Eqn4)

∣∣∣∣ · 100%
=
∣∣∣∣0.0003

w
L − 0.0004

0.5273 − 0.1084w
L

∣∣∣∣ · 100% (46).

Using the value of possible variations in the ratio
w/L ∈ [0, 0.25], the estimated maximum error will
not exceed 0.076%.
The next step in testing Eq. (32) included its use

to calculate the volume of elliptical and spherical
eggs. Here, we need to substitute DL/4 in Eq. (32)
with its value that would be similar to that for the
ellipsoid and/or the sphere, and also equate w to 0.

In SupplementaryMaterial S2.4 (online only), the
DL/4 value for the sphere is determined as follows:

Dsph(L/4) =
√
3
2

B (47).

Let us proceed similarly with the calculation of
DL/4 for ellipsoids. The appropriate formula for an
ellipse adapted to the basic geometric egg dimen-
sions, L and B, will be deduced using the following
mathematical expression:

x2

(L/2)2
+ y2

(B/2)2
= 1 (48),

which can be transformed to the more suitable
form:

y = B
√
L2 − 4x2

2L
(49).

Substituting the value x = L/4 and doubling y,
the following equation is produced:

Dell(L/4) =
√
3
2

B (50).

We can conclude that the DL/4 value is the same
for both ellipsoidal (Eq. 47) and spherical (Eq. 50)
shapes. Finally, substituting Eq. (47) into Eq. (32)
and taking w = 0, the obtained result can be com-
pared with the classical formulae for calculating the
volume of an ellipsoid, Vell, and a sphere, Vsph:

Vell(Eqn32) = 0.5207B2L (51),

Vell = 0.5236LB2 (52),

Vsph(Eqn32) = 0.5207B3 (53),
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Vsph = 0.5236B3 (54).

A step-by-step derivation of formulae (51)–(54)
is presented in File S3.3 (online only).
Computation of the percent error, ε, resulting

from using Eq. (32) instead of the classical geo-
metric formulae, that is, Eqs. (52) and (54), when
calculating egg volume of eggs, whose shape corre-
sponds to an ellipsoid and/or a sphere, showed an
estimate of 0.55%.
Thus, the obtained Eq. (32) for calculating

the volume of pyriform eggs can be considered
universal concerning the volume of eggs of any
shape, as supported by a minimum calculation
error. Depending on the DL/4 value, this formula
is transformed into the respective dependencies
for calculating the volume of ovoids, ellipsoids,
and spheres, thereby confirming the principle of
mathematical progression that we proposed for the
geometry of birds’ eggs.

Mathematical progression of egg surface area.
In considering the correspondence of the principles
of mathematical progression for the surface area
of bird eggs, we used a similar approach that we
applied when analyzing the formulae for calculating
their volumes.
In the case of surface area, the initial equation

is Eq. (40) that we first compared with Eq. (17)
for Scon. If formula (40) is universal for all types of
eggs, after substituting DL/4 in it with Eq. (21), it
should be transformed into Eq. (17) to calculate the
volume of conical eggs.
Verification of this assumption makes it possible

to obtain the following formula:

Scon(Eqn40) = BL[(
0.2452

B
L

− 0.0127
)
w
L

+ 0.8574
B
L

+ 2.0309
]

(55),

which is further compared with that one similarly
transformed from Eq. (17):

Scon(Eqn17) = BL[(
0.2447

B
L

− 0.0205
)
w
L

+ 0.8574
B
L

+ 2.0318
]

(56).

A thorough derivation of both Eqs. (55) and (56)
is shown in File S3.4 (online only).

Based on the generated Eqs. (55) and (56), we
can compute the percent error, ε, resulting from
using Eq. (40) instead of Eq. (17) when calculating
the surface area of conical eggs:

ε =
∣∣∣∣Scon(Eqn40) − Scon(Eqn17)

Scon(Eqn17)

∣∣∣∣ · 100%
=
∣∣∣∣∣

(
0.0005B

L + 0.0078
) w

L − 0.0009(
0.2447B

L − 0.0205
) w

L + 0.8574B
L + 2.0318

∣∣∣∣∣
·100% (57).

Because of the value of possible variations in
the ratio w/L ∈ [0, 0.25] and B/L ∈ [0.5, 1], the
calculated maximum error does not exceed 0.045%.
The next stage in our testing was to check the

conformity of using Eq. (40) to calculate the surface
area of classical ovoid eggs, whose shape obeys
Hügelschäffer’s model. In this case, it is necessary
to substitute DL/4 in Eq. (40) with its calculation
formula per Eq. (20) and compare the resulting
expression with the classical calculation formula
(5) for eggs of this type.
As a result of the transformations, the following

equation is obtained:

SH(Eqn40) = BL[(
0.1358

w
L

+ 0.917
) B
L

− 0.188
w
L

+ 2.2114
]

(58).

A complete derivation of Eq. (58) is presented in
File S3.5 (online only).
Based on the obtained Eq. (58), we calculated

the percent error, ε, resulting from using Eq. (40)
instead of Eq. (5) when computing the surface
area of eggs whose profile matches Hügelschäffer’s
model:

ε =
∣∣∣∣SH(Eqn40) − SH(Eqn5)

SH(Eqn5)

∣∣∣∣ · 100%
=
∣∣∣∣∣
(
0.0008w

L − 0.0003
) B

L + 0.0036w
L − 0.0003(

0.135w
L + 0.9173

) B
L − 0.1916w

L + 2.2117

∣∣∣∣∣
·100% (59).

Considering the value of possible variations in
the ratio w/L ∈ [0, 0.25] and B/L ∈ [0.5, 1], the
calculated maximum error does not exceed 0.021%.
At the final verification step, the applicability

of Eq. (40) is evaluated for identifying values of
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the surface area of eggs of elliptical and spherical
shapes. Here, we would require substituting DL/4
in Eq. (40) with its value, which corresponds to
the analogous value for the ellipsoid and/or the
sphere and equating w to 0. As we found out earlier,
the DL/4 value is the same for ellipse and circle, as
can be seen from Eqs. (47) and (50). Therefore,
substituting any of them into Eq. (40) and taking
w = 0, the obtained result can be compared with
the classical formulae for calculating the surface
area of an ellipsoid, Sell, and a sphere, Ssph:

Sell = πBL
2

⎛
⎝arcsin

√
1 − B2

L2√
1 − B2

L2

+ B
L

⎞
⎠ (60),

Ssph = πB2 (61).

As a result of the appropriate transformations,
the following expressions are produced:

Sell(Eqn40) = BL
(
0.9178

B
L

+ 2.2149
)

(62),

Ssph(Eqn40) = 3.1267B2 (63).

At the same time, for the convenience of com-
paring Eq. (62) with Eq. (60), the latter can be
transformed to the following form:

Sell = BL
(
0.9153

B
L

+ 2.2167
)

(64).

A step-by-step derivation of Eqs. (62)–(64) is
provided in File S3.6 (online only).
Computation of the percent error, ε, resulting

from using Eq. (40) instead of the classical formula
(60), when calculating the surface area of elliptical
eggs, shows the following result:

ε =
∣∣∣∣Sell(Eqn40) − Sell

Sell

∣∣∣∣ · 100%
=
∣∣∣∣∣0.0025

B
L − 0.0018

0.9153B
L + 2.2167

∣∣∣∣∣ · 100% (65).

Knowing the value of possible variations in the
ratio B/L ∈ [0.5, 1], the estimated maximum error
does not exceed 0.022%.
For spherical eggs, the corresponding percent

error calculated from Eqs. (61) and (63) was 0.48%.
Thus, the produced calculation formula for the

surface area of pear-shaped eggs, that is, Eq. (40),

can be suggested as a universal one for computing
the surface area of eggs of any shape with a min-
imum calculation error. Depending on the DL/4
value, this equation can be transformed into the
respective dependencies for computing the surface
area of ovoids, ellipsoids, and spheres, which ver-
ifies the concept of mathematical progression we
postulated for the geometry of bird eggs.

Discussion

The mathematical description of egg shape, includ-
ing formulae for volume and area, has both pure
mathematical interest and application value. In the
poultry industry, calculating the egg’s geometric
parameters has relevance for breeding and the incu-
bation and storage of eggs. In other words, the effi-
ciency of the poultry industry is highly dependent
on egg quality characteristics.24–27 For example, egg
quality parameters can be instrumental in devel-
oping nondestructive techniques for hatchability
improvement,28–32 in ovo sex identification,33–36
and embryo growth modeling.37,38 Because an
increasing number of different domesticated bird
species are currently used, there is a wide variability
in the shape of eggs produced in poultry houses,
aviaries, and free-range farms, similarly to what
can be seen in wildlife. This shape variation ranges
from round eggs, like in the African ostrich, to
elliptical ones, for example, in emu, and from the
classic ovoid, like in chickens, to elongated eggs,
for example, in some species of waterfowl. Given
the fact that a whole army of breeders is working
on creating various poultry crosses, we could not
exclude the prospect that in the foreseeable future,
commercially used avian species may appear that
carry even conical eggs. Perhaps this might increase
the occupancy rate of incubators or, for example,
improve their air exchange. Or it would create some
marketing advantage of conical eggs with such an
exotic look, in comparison with ordinary table eggs.
Thus, our theoretical research can have direct prac-
tical application not only for ornithology, including
oomorphology as its separate subdiscipline, and
evolutionary biology, but also for the practical
needs of commercial poultry farming.
In this study, we provided an explicit and univer-

sal formulation for the key egg quality parameters,
that is, the volume and surface area, and demon-
strated their concordance with the concept of
mathematical progression of avian egg shape (see
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further discussion in File S4, online only). Our
theoretical studies are also of an applied nature.
Using the mathematical apparatus, we obtained the
theoretical formulae for calculating the egg volume
(Eq. 32) and surface area (Eq. 40) that are valid for
computing these parameters in eggs of any shape,
provided their profile meets the condition of sym-
metry. Herewith, the initial key parameters of such
a calculation are four basic geometric egg measure-
ments: (1) the length, L; (2) the maximum diameter
(breadth), B; (3) the value of the displacement of
the maximum diameter from the central axis, w;
and (4) the egg diameter at the point corresponding
to 1

4 of the length from its sharp end, that is, DL/4.
The importance of the generated formulae lies

in the fact that for the first time, we were able to
derive mathematical relationships not only for key
geometric figures that help describe the shape of
a bird’s egg (e.g., a sphere, an ellipsoid, etc.) but
also for intermediate profiles that mainly account
for the so-called pyriform types of eggs (Fig. 2).
In our previous work,3 we demonstrated that the
boundary geometric shape for eggs of this type is
a summation of a parabola and an ovoid described
by Hügelschäffer’s model. Further transformation
of this profile that we conditionally called conical
leads to a shape fitting Hügelschäffer’s ovoid that
we described in detail and examined its features
in the previous studies of chicken eggs.18,19,21 This
summation of possible egg profiles between the
conical one and Hügelschäffer’s ovoid falls under
the category of pyriform eggs. The latter shape
caused the most difficulties and gave the maximum
calculation error in the earlier investigations.39,40
The merit of the formulae we have derived is

their explicitly theoretical grounding, meaning that
the results of our research rely on a solid mathe-
matical basis. Our approach advantageously differs
from other studies that were based on the use of
empirical data, albeit a large but still limited set of
research material.
We have also shown that the formulae for cal-

culating the volume and surface area of pyriform
eggs can be easily converted into classical calcula-
tion expressions for other well-known geometric
figures, whose shape also corresponds to eggs of
various types, that is, a sphere, an ellipsoid,41 and
an ovoid, as supported by a very small calculation
error. Thus, we can confidently rewrite Eqs. (32)
and (40), without using the subscript index pyr we

assigned, considering their adequacy in calculating
any bird’s egg, as follows:

V = 0.992B2L[(
DL/4

B
− 0.426

)
w
L

+ 0.396
DL/4

B
+ 0.182

]

(66),

S = 0.2447BL{(
B
L

− 0.0838
)
w
L

+ 3.5039
B
L

+ 8.3032

− 39.2419
(
DL/4

B
+ 0.5165

w
L

− 0.7016
)

[(
B2

L2
− 1.546

B
L

− 0.1836
)(w

L
+ 0.1016

) w
L

+ 0.1153
(
B
L

)2
− 0.2112

B
L

− 0.0545

]}
(67).

Conclusion

In this study of the egg volume and surface area, we
have considered the concept of the mathematical
progression of the two major parameters of avian
eggs in the explicit and universal formulation. How-
ever, we do not assume that we have the right to
draw any analogies regarding the sequence of evo-
lutionary variability in the shape of bird eggs and,
accordingly, did not set out to address the following
questions: (1) whether this process was carried
out from a simpler, mathematical point of view,
spherical object to a more complex, pear-shaped
one; and (2) how logical it would be to assume that
the biological laws of such a modification would
correspond to mathematical principles. There are
four fundamental geometric shapes of bird eggs that
exist in nature.42,43 This variability can be traced
not only in the evolutionary variability of the math-
ematical functions describing these shapes,3 but
also in the calculating formulae characterizing their
main geometric parameters, which we have demon-
strated in these studies. The proposed formulae can
be conducive to further developing technological
solutions in poultry industry and research.
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