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Abstract: Impact delivery of prebiotic compounds to the early Earth from an impacting comet is
considered to be one of the possible ways by which prebiotic molecules arrived on the Earth. Given
the ubiquity of impact features observed on all planetary bodies, bolide impacts may be a common
source of organics on other planetary bodies both in our own and other solar systems. Biomolecules
such as amino acids have been detected on comets and are known to be synthesized due to impact-
induced shock processing. Here we report the results of a set of hypervelocity impact experiments
where we shocked icy mixtures of amino acids mimicking the icy surface of planetary bodies with
high-speed projectiles using a two-stage light gas gun and analyzed the ejecta material after impact.
Electron microscopic observations of the ejecta have shown the presence of macroscale structures
with long polypeptide chains revealed from LCMS analysis. These results suggest a pathway in
which impact on cometary ices containing building blocks of life can lead to the synthesis of material
architectures that could have played a role in the emergence of life on the Earth and which may be
applied to other planetary bodies as well.

Keywords: amino acids; polypeptides; impact ejecta; icy moons; astrobiology

1. Introduction

Extraterrestrial impacts are thought to be one of the potential ways that provided the
necessary chemical ingredients to the early Earth and thus played a major role in the origin
of life [1,2]. Indeed, the detection of biomolecules in meteorite samples has confirmed the
abiotic origin of such molecules [3], with recent measurements confirming high abundances
of amino acids in meteorites [4]. The detection of the simplest amino acid glycine from the
sample return of the NASA Stardust mission to comet 81P/Wild 2 [5] and confirmation by
the ROSINA mass spectrometer of its presence in Comet 67P during the Rosetta mission [6],
has demonstrated that larger bodies in space contain important organics. Recent reports
have suggested a mechanism of glycine formation in the interstellar medium without the
presence of any energetic sources [7]. The role of meteorites has also been studied in terms
of assisting the synthesis of nucleosides and nucleotides [8,9]. Thus exogenous sources
could have provided a potential amount of biologically important organics to the early
Earth and thus could have been a major source of the Earth’s organic budget.

However, given the catastrophic nature of large-scale impact and its related events,
the survival of organics in such extreme environments of high temperature and pressure
remains uncertain. In addition, impact bombardment of comets and asteroids cause
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significant damage to the planetary surface upon impact, resulting in the formation of
craters, melts, shocked surface materials and vapours [10]. Many impact craters have been
observed on the surface of various planetary bodies, a record of impact history that shows
impacts are widespread in the solar system and play a significant role in solar system
formation and evolution. Impact induced shock provides a sharp increase in pressure and
temperature due to sudden shock compression and subsequent cooling due to expansion
within a very short time scale which has the potential for driving chemical reactions [11–13].
Thus, the role of impact bombardments in prebiotic chemistry and the emergence of life on
Earth must be explored.

Many experimental and theoretical simulations are available in the literature that
discusses the role of impact processes in prebiotic chemistry and the origin of life. The
famous Urey-Miller experiment [14] on the synthesis of amino acids in simulated Earth’s
atmosphere (using a simple mixture of gases), triggered the search for the synthesis and sur-
vivability of amino acids and other biomolecules. Many experiments have been performed
to investigate the survivability of amino acids and other organics in impact-shock environ-
ments, many of which have confirmed their survivability and determined the survival rates,
e.g., [11,15–20]. Not only do these biomolecules survive, but shock environments can assist
the synthesis of biomolecules. For example, Bar-Nun et al. [21] reported the shock synthesis
of amino acids in a simulated Earth’s primitive atmosphere by shock processing of simple
gases using a shock tube. Further experimental investigations reported the formation of
many amino acids by simulating the impact on icy bodies of the solar system [22] and
impact into an early ocean [23–25]. Nucleobases are also known to be a product of pro-
cesses related to impact events [24,26]. Ferus et al. [27–30] recently reported the synthesis
of nucleobases and amino acids starting from formaldehyde, mimicking high-velocity
asteroidal impact using a high-intensity laser. Di- and tri-peptides are also synthesized by
simulating impacts into icy bodies starting from the amino acid [31,32]. Studies have also
shown chemical complexity in the interstellar environment as a result of shock compression
resulting from icy dust collision [33]. All of these studies have confirmed the availability of
a vast number of biologically important molecules in prebiotic Earth and other planetary
bodies due to impact bombardment and related events.

However, given the history of impact bombardment on early Earth, the study of
the effect of impact events and their influence on complex molecular synthesis must be
explored. In previous investigations, we have shown the formation of complex macroscale
structures due to the shock processing of amino acids at extreme temperatures [34]. In
this study, we report finding complex organized structures comprised of polypeptides,
synthesized in the ejecta material after a projectile is fired on a target containing amino
acid embedded in water ice. We started the experiments with the simplest amino acid
glycine and then glutamine, which has an amide group in the side chain. Though glycine
was perhaps the major product in a prebiotic scenario, the significance of other amino
acids cannot be neglected [35]. Further experiments were performed with the mixture of
the two amino acids, which is a more realistic scenario for the prebiotic chemistry where
interaction among different amino acids occurred [36,37]. The concentration of amino acids
used in the present investigation is unusually high compared to the meteoritic abundance
or any plausible prebiotic scenario. It is essential to mention that the reactions in simulated
prebiotic conditions proceed in an uncontrolled way and result in unwanted products [38],
and desirable products must be within the detection limit [39]. So the present study
requires a higher concentration of amino acids. In our future studies, we will be performing
experiments with realistic concentrations of amino acids mimicking meteoritic composition.

2. Materials and Methods

The hypervelocity impact experiments were performed utilizing a two-stage light gas
gun facility at the University of Kent. The instrument is capable of firing projectiles of
size 0.1 mm to 3.0 mm diameters over a velocity range of 0.3 to 7.5 km s−1. The detailed
instrument parameters and capabilities can be found in Burchell et al. [40] and Hibbert
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et al. [41]. In the present investigations, we impacted a spherical projectile (stainless steel
420), 1 mm in diameter, at a velocity of approximately 5 km s−1 on amino acid-water ice
targets. The amino acids of purity >99% were procured from Sigma-Aldrich. Single amino
acids glycine and glutamine, as well as a mixture of the two amino acids mixed in an
equal weight ratio to a total weight of 3.5 g were dissolved entirely in 150 mL HPLC grade
water using a magnetic stirrer in a glass beaker and then cooled to 1.5 ◦C. In a separate
steel beaker, water ice is prepared frozen at −20 ◦C. The solution of amino acid-water was
then poured into the beaker containing the water ice, and this whole mixture is cooled
to 140 K in a freezer. These steps are detailed in Supplementary Figure S1. The targets
were kept in the freezer for almost 15–20 h and removed from the freezer just before the
firing and mounted in the target chamber (Supplementary Figures S2 and S3). The target
chamber walls were covered with aluminium foil to collect the ejecta from the target after
the impact process. The target chamber was evacuated to 50 mbar before the firing of the
gun. After the firing was done and the target chamber returned to atmospheric pressure,
the ejected materials from the target were left on the aluminium foil in the chamber to dry
out entirely at room temperature and then collected for further analysis. The peak shock
pressure for each experiment is estimated using planar impact approximation [42]. This
method assumes a linear shock-wave speed relationship for each material in the impact
(water ice and stainless steel bullet) [43,44]. The material-specific empirical constants are
obtained from Melosh [42]. The experimental parameters for different experiments are
shown in Table 1. A target with only water ice, when impacted, did not show any residue
on the aluminium foil, while an amino acid-water ice target resulted in a white residue
left on the aluminium foil as shown in Supplementary Figure S4. The foils containing the
residues were sealed in boxes and transported to PRL Ahmedabad. These residues were
then further analyzed using SEM, TEM and LCMS. The detailed methodology for SEM,
TEM and LCMS are provided in the Supplementary Material (Figure S5).

Table 1. Experimental parameters for each experiment.

Target Impact Velocity (km s−1)
Accurate to ±1%

Peak Shock Pressure
(GPa) Ejecta

Pure water ice 4.80 29.0 No residue

Glycine 5.09 32.1 White ejecta

Glutamine 4.66 27.6 White ejecta

Glycine-Glutamine 4.77 28.7 White ejecta

3. Results
3.1. Morphological Analysis of Ejecta

Motivated by our previous results revealing fascinating structures produced by shock
processing of amino acids [34], we explored the intricate details of surface morphology and
structures found in the ejecta using a field emission scanning electron microscope (FESEM).
FESEM observations revealed remarkable morphological features that are present in the
ejecta. Ejecta from different targets yielded unique morphological characteristics. Glycine
ejecta showed the formation of large clumps, hundreds of microns in size, as shown in
Figure 1a. More magnified images showed various sharp structures clumped together, as
shown in Figure 1b,c. Ejecta from different places of foil showed similar results.

When observed using FESEM, ejecta from shocked glutamine revealed an entirely
different pattern. Large dendritic structures with various branching features were observed
with an upward orientation from nucleation points ranging in size up to few millimetres,
as shown in Figure 2a. More magnified structures of these branching features are shown
in Figure 2b,c. These dendritic structures have a resemblance with dendritic structures
observed in the self-assembly of peptides [45]. Apart from dendritic structures, a spherical
assembly of rods were also found as shown in Figure 2d. More magnified images show these
rods to have geometrical shapes and to be of varying size, typically tens of micrometres
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(Figure 2e,f). Images were from multiple sites on the aluminium foils were analyzed in the
SEM and similar structures were found.

Figure 1. SEM micrographs of glycine ejecta after impact show (a) large clumped structures (b,c) more
magnified images reveal sharper structures.

Figure 2. SEM micrographs of glutamine ejecta show (a) large dendritic structures (b,c) more
magnified images show branching features (d) spherical assembly of nanorods (e,f) more magnified
images shows rod-like structures of various length.

Ejecta from the mixture of glycine and glutamine revealed large aggregates a few
millimetres in size (Figure 3a). More magnified images revealed nest-like intertwined
organized structures formed by association of thin ribbons tens of micrometres in length.
Sample collected from another site on the foil, for the same mixture, we found entirely dif-
ferent structures as shown in Figure 3d. An array of needle-shaped fibers 100 micrometres
in size were observed oriented in various directions. More magnified microstructures are
shown in Figure 3e,f. The difference in various structures that are observed in different
amino acids may be due to the difference in the side chains of amino acids and the various
interactions responsible for driving such assembly [46]. Amino acids and peptides are
known to form self-assembled nanostructures [46,47]; however, formation of complex
structures at such extreme conditions is rarely reported.
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Figure 3. SEM micrographs of glycine-glutamine ejecta show (a) an array of large aggregates
(b,c) magnified images show organized structures made of micro-ribbons, (d) assembly of needle-
shaped fibers, and (e,f) more magnified microstructures.

Ejecta residues were also subjected to a high resolution transmission electron mi-
croscope (HRTEM). HRTEM micrographs of glycine and glycine–glutamine samples are
shown in Figure 4. HRTEM observation of both the samples showed a multi-layered porous
structure with membrane-like appearances at the nanometre scale.

Figure 4. TEM micrographs of (a–c) glycine ejecta and (d–f) glycine–glutamine ejecta.
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During target preparation for experiments, while dissolving the amino acid in water,
control samples were prepared by drop casting the amino acid-water solution on aluminium
foil. These samples, when analyzed in the FESEM did not show any such organized
structure formation as shown in Supplementary Figure S6. This confirms that the organized
structures that are observed in the ejecta materials results from impact induced processes.

3.2. Mass Spectrometry of Ejecta Materials

Ejecta residue showing the complex macroscale structures were analyzed using liq-
uid chromatography mass spectrometry (LCMS). The appropriate steps taken for LCMS
analysis are provided in the Supplementary File. An approach to LCMS analysis as a tool
to obtain chemical composition and fragmentation details in macromolecular complexes
has been well reported in literature [48]. The major advantage in deploying LCMS in
the present study includes the improved characterization of complex samples with an
enhanced resolution, which increases the analytical value of the samples while simultane-
ously combining its optical and mass data. The chances of occurrence of false positives
can be ruled out since the LCMS spectra of the blank solution (Milli-Q water), containing
all the components other than the respective amino acids under study, have also been
analyzed at the same conditions. A comparative study between the blank solution and the
test samples showed that the reported peaks are characteristic only to the test samples and
not the blank. The mass spectra from glycine, glutamine and glycine–glutamine mixtures
are shown in Figures 5 and 6, and Supplementary Figures S7–S14. Long polypeptide chains
were identified in the ejecta by comparing the theoretical value of peptides calculated
from the peptide mass calculator [49] by putting in the constituent amino acids. These
values for different peptides are listed in Table 2 for all three samples. LCMS analysis
of ejecta from glycine showed that various polypeptides were synthesized as a result of
the impact. The different peptide sequence which could be identified corresponds to the
sequence of three, five, nine and twelve glycines, as shown in Figure 5 and Supplementary
Figures S7–S9. Ejecta from the glutamine sample also showed long polypeptide chains,
as shown in Figure 6 and Supplementary Figures S10 and S11. The identified peptide
sequence corresponds to the sequence of two, three and five amino acids. Further, the
mixture of glycine and glutamine also showed synthesis of long polypeptide chains with
various combinations of two amino acids, as shown in Supplementary Figures S12–S14 and
the corresponding sequences are listed in Table 2. These results prove that long polypep-
tide chains are synthesized in the ejecta as a result of the impact on amino acids. Long
polypeptide chains up to sequence of twelve amino acids as observed in case of glycine is
remarkable and has never been reported before. Previous studies have reported shorter
peptides using gas gun experiments [31,32] and ball milling techniques [50] simulating
extraterrestrial impacts.

There may be other products present in the ejecta that could not be found among
the different products identified by LCMS analysis. Also, as shown in the Supplementary
Figure S4, the ejecta on the aluminium foils is scattered on various places in an area of
aluminium foil of about one-meter square. Extensive analysis will be needed to scan the
samples from multiple positions of foil and identify those undetermined products.
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Table 2. Identified peptide mass number and retention time obtained from the mass spectra
(Figures 5 and 6 and Supplementary Figures S7–S14) corresponding to the calculated average mass
and sequence of peptides obtained from the Peptide Synthetics peptide mass calculator [49].

Peak Value (m/z) Retention Time (min) Sequence Calculated Value

Glycine (G)

189.0200 0.553 GGG 189.155

246.2485 4.963 GGGG 246.207

531.4402 13.094 GGGGGGGGG 531.466

702.9087 17.011 GGGGGGGGGGGG 702.621

Glutamine (Q)

275.0708 2.625 QQ 274.261

403.1232 9.447 QQQ 402.391

659.3535 15.439 QQQQQ 658.652

Glycine (G)-Glutamine (Q)

204.0777 8.389 1 G and 1 Q 203.182

332.2456 8.389 1 G and 2 Q’s 331.312

517.2334 9.675 2 G’s and 3 Q’s 516.495

773.6675 10.981 2 G’s and 5 Q’s 772.756

Figure 5. Mass spectra of glycine residue obtained after impact. Identified peptide peak (M+) is shown
in the red box corresponds to 531.4402 matches with calculated value 531.466 (peptide sequence of
9 G’s). Y-axis shows relative abundance.
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Figure 6. Mass spectra of glutamine residue obtained after impact. Identified peptide peak (MH+)
is shown in red box corresponds to 403.1232 matches with calculated value 402.391 (peptide
sequence—3 Q’s). Y-axis shoes relative abundance.

4. Discussion

The hypervelocity impact experiments on amino acid targets performed in the present
study at impact speed of approximately 5 km s−1, creating a peak pressure of approximately
30 GPa. The typical impact speed observed in natural impact events cover a wide range
of values and may be significantly different from those achieved in the laboratory and are
almost impossible to simulate [44]. The rational for the choice of impact speed in the present
study is to maximally mimic the physical conditions observed in natural impact events.
There are several plausible scenarios where the pressure values in natural impacts can be
reduced significantly due to atmospheric drag, airburst in the atmosphere, fragmentation
and oblique impacts [31,44,51,52]. Further, in a single impact, pressure values can differ
significantly as pressures are distributed heterogeneously around various points of an
impacting object [52]. Thus, a range of pressure values are achieved in natural impact
events and we have tried to simulate a part of such values in our experiments.

The results obtained from SEM and LCMS analysis demonstrate that amino acids
reacted strongly within a short time scale to form organized structures and long polypeptide
chains due to the high pressures and temperatures incurred during the impact and in post-
impact relaxation. The individual chemical composition of each structure is difficult to
determine; however, their similarity with known structures obtained from various peptide
self-assembly indicates that these structures can possibly arise as a result of the assembly of
various polypeptides synthesized upon impact.

Previous studies have suggested that extraterrestrial impacts can contribute to the
synthesis of peptides by impact-driven processes on prebiotic Earth and other planetary
bodies [11,31,32]; however, the study of ejecta material with such complex structure has
not been previously reported. The extant biology is characterized by an interconnecting
network of biopolymers such as proteins, lipids, nucleic acids with peptides playing a
central role in mediating these cellular networks because of their unique architecture and
functionality [53]. Thus, the abiotic synthesis of peptides is an important step in the prebi-
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otic chemistry that led to the emergence of life on the primitive Earth. Various scenarios
have been suggested on the synthesis of peptides on the prebiotic Earth, which include
synthesis in hydrothermal vents and dehydrating condition under dry and wet cycles [54];
synthesis triggers by activating agents [55,56]; presence of mineral catalysis [57,58], high en-
ergy protons and UV irradiation [59,60]; volcanic environment [37] and mechanochemical
synthesis [50]. However, long polypeptide chains, as found in the present investigation, has
not been reported before. The result that the various sequence of different amino acids can
combine together to form long polypeptide chain due to impact process is thus interesting.

The first step among the many challenges in the origin of life is to look for a simple
structure formed by self-assembly, which is sufficiently complex to assume the properties
of biological system and to determine how these processes happened on the early Earth
environment. The origin of life conundrum requires the availability of building blocks
of life that are compatible with the environments that may have existed on early Earth
and a further increase in molecular complexity via self-organization processes [61–63].
However, a great challenge remains on the design of such structural architecture from basic
ingredients in the plausible prebiotic environment [64–67]. The role of synthetic microstruc-
tures in the origin of life has been discussed previously, and various prebiotic conditions
have been suggested for the synthesis of such structures, which includes quenched spark
discharge experiments [68], formation of lipid-like structures [69–71] and tubular structures
in mineral surfaces [72]. In particular, various protocellular structures were obtained from
polypeptide formation from four amino acids simulating in a hydration-dehydration cycle
of the tidal pool [73], and microspheres were synthesized from simple molecules under
the simulated condition of prebiotic times [74]. Further, lipid-like self-assembling peptides
were synthesized from amino acids forming tubular and vesicle structures [75]. However,
the formation of complex organized structures from the building blocks of life as a result of
impact processes, as revealed in the present investigation, provides a new and significant
route towards the origin of life. Many significant challenges in this field are yet to be
explored. The formation of complex architectures revealed in the present investigations are
the first step among the many challenges in this path.

5. Conclusions

Thus, our results demonstrate that complex macroscale structures were synthesized
in the impact and can be observed in the ejecta. Mass spectrometric analysis shows the
presence of many polypeptides in the ejecta. These results provide a pathway for the
building blocks of life to evolve into complex organized structures, which has implications
for the origin of life. This is the first report on the formation of long polypeptide chains to
be synthesized under plausible prebiotic conditions with a combination of the same and
two different amino acids. As impacts are widespread in the solar system, these results
could be applied to the icy bodies of the solar system, such as the icy satellites of Jupiter and
Saturn, to understand the chemical composition and evolution of icy surfaces. It is expected
that these icy bodies must have been supplied with a significant amount of organics as a
result of impact events and thus could possibly have synthesized peptides as well due to
impact-induced shock processes. If we are looking for the signature of precursors of life on
icy bodies, the ejecta materials around the craters will be an ideal place to search for them.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/life12040508/s1, Figures S1–S5: Experimental details; Figures S6 and S7:
SEM micrograph; Figures S7–S14: LCMS data.
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