
Kent Academic Repository
Full text document (pdf)

Copyright & reuse
Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all
content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions 
for further reuse of content should be sought from the publisher, author or other copyright holder. 

Versions of research
The version in the Kent Academic Repository may differ from the final published version. 
Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the 
published version of record.

Enquiries
For any further enquiries regarding the licence status of this document, please contact: 
researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down 
information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Shafiee, Mahmood   (2022) Wind Energy Development Site Selection Using an Integrated Fuzzy
ANP-TOPSIS Decision Model.   Energies, 15  (12).    ISSN 1996-1073.

DOI

https://doi.org/10.3390/en15124289

Link to record in KAR

https://kar.kent.ac.uk/95395/

Document Version

Publisher pdf



 
 

 

 
Energies 2022, 15, 4289. https://doi.org/10.3390/en15124289 www.mdpi.com/journal/energies 

Article 

Wind Energy Development Site Selection Using an Integrated 
Fuzzy ANP-TOPSIS Decision Model 
Mahmood Shafiee 

Mechanical Engineering Group, School of Engineering, University of Kent, Canterbury CT2 7NT, UK; 
m.shafiee@kent.ac.uk 

Abstract: The identification of appropriate locations for wind energy development is a complex 
problem that involves several factors, ranging from technical to socio-economic and environmental 
aspects. Wind energy site selection is generally associated with high degrees of uncertainty due to 
the long planning, design, construction, and operational timescales. Thus, there is a crucial need to 
develop efficient methods that are capable of capturing uncertainties in subjective assessments pro-
vided by different stakeholders with diverse views. This paper proposes a novel multi-criteria de-
cision model integrating the fuzzy analytic network process (FANP) and the fuzzy technique for 
order performance by similarity to ideal solution (TOPSIS) to evaluate and prioritize the potential 
sites for wind power development. Four major criteria, namely economic, social, technical, and ge-
ographical, with nine sub-criteria are identified based on consultation with wind farm investors, 
regulatory bodies, landowners and residents, developers and operators, component suppliers, ecol-
ogists, and GIS analysts. The stakeholders’ preferences regarding the relative importance of criteria 
are measured using a logarithmic least squares method, and then the alternative sites are prioritized 
based on their relative closeness to the positive ideal solution. The proposed model is applied to 
determine the most appropriate site for constructing an onshore wind power plant consisting of 10 
wind turbines of 2.5 MW. Finally, the results are discussed and compared with those obtained using 
the traditional AHP, ANP and ANP-TOPSIS decision-making approaches. 

Keywords: wind energy; site selection; uncertainty; multi-criteria decision making (MCDM);  
analytic hierarchy process (AHP); analytic network process (ANP); technique for order of  
preference by similarity to ideal solution (TOPSIS) 
 

1. Introduction 
Many industrialized nations have recently paid more attention to using renewable 

energy sources as the most effective means of reducing energy-related greenhouse gas 
(GHG) emissions. Among the renewable energy sources, wind energy is considered as 
the fastest-growing energy source, currently supplying over 3% of global electricity con-
sumption. The cumulative installed capacity of wind power in the world has increased 
from 24 gigawatts (GW) in the year 2001 to 837 GW at the end of 2021, which represents 
compound annual growth rate (CAGR) of about 20 percent [1]. Numerous wind power 
plants are planned to be built over the next decade in different countries around the 
world. Presently, China, with a total capacity of 281,993 MW, is the world leading wind 
energy producer, followed by the US, with a cumulative installed capacity of 117,744 MW. 
The United Kingdom (UK), with 2594 onshore and 40 offshore operational wind projects 
(consisting of 11,092 wind turbines), is ranked as the world’s sixth-largest producer of 
wind power [2]. 

One of the most important decisions in the development of future wind energy pro-
jects, from both a technical and financial perspective, is to select an appropriate location 
for the siting of wind turbines and related infrastructure. Site selection plays a critical role 
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in the lifecycle performance of wind power plants in terms of energy yield, financial prof-
itability, installation cost and time, maintenance and repair accessibility, and decommis-
sioning and removal costs. The site selected for wind energy projects cannot easily be fur-
ther modified when the project is approved and the installation process begins. Therefore, 
it is crucial for wind energy developers to adopt a whole lifecycle approach to assess the 
potential wind energy development sites, so as to minimize changes after the acceptance 
and approval of the project and during the construction phase. 

The selection of a suitable site for wind energy development is a complex decision-
making problem that involves many technical, economic, social, environmental, and reg-
ulatory factors such as wind speed, road access, population density, electrical grid infra-
structure, industrial support for construction, tourism infrastructure, etc. [3,4]. Tegou et 
al. [5] identified some social and environmental factors affecting the decisions concerning 
wind turbine siting, such as visual pollution, topographic and geographic constraints, 
public opposition, and local, state, and federal regulatory barriers. In addition to this, the 
site selection process for wind energy projects is generally associated with high degrees 
of uncertainty due to the long investment cycle (usually between 25 and 30 years) and 
complex environmental changes. The selection process may become further complicated 
when project stakeholders, including investors, government authorities, landowners, 
technology suppliers and residents who live near the site have different interests, and 
these interests may be in conflict. 

The above-mentioned complexities in the selection of wind farm locations have 
caused the existing Geographic Information System (GIS) tools to be less practical in 
multi-stakeholder multi-criteria environments. Advancements in multi-criteria decision-
making (MCDM) and fuzzy systems have prompted the development of new data-driven 
approaches that can capture uncertainties in subjective assessments provided by different 
stakeholders with diverse views. These approaches can take qualitative data in the form 
of linguistic variables and then transform such information into equivalent crisp queries. 

MCDM approaches have become very popular in recent years for evaluating and 
prioritizing the potential sites for renewable energy development, including solar, on-
shore and offshore wind, wave, tidal, hydro, hydrogen and biomass [6]. In this approach, 
each candidate site is evaluated with respect to some attributes (i.e., decision criteria) us-
ing some suitable measures. Then, the evaluation ratings are aggregated to obtain a global 
evaluation for each site. Finally, the sites are prioritized according to their ratings and the 
best option is selected. Based on their methodological concepts, the MCDM approaches 
can also be classified into: (i) weighting methods such as simple addictive weighting 
(SAW), the analytic hierarchy process (AHP) and the analytic network process (ANP); (ii) 
compromising methods such as the Technique for Order of Preference by Similarity to Ideal 
Solution (TOPSIS) and Višekriterijumsko Kompromisno Rangiranje (VIKOR); (iii) outrank-
ing methods such as Elimination Et Choix Traduisant la Realité (Elimination and Choice 
Expressing Reality) (ELECTRE) and the Preference Ranking Organization Method for En-
richment of Evaluations (PROMETHEE); and (iv) structural methods such as Decision 
Making Trial and Evaluation Laboratory (DEMATEL). There are also a new generation of 
MCDM methods, such as: multi-objective optimization on the basis of ratio analysis 
(MOORA), weighted aggregated sum product assessment (WASPAS), combinative dis-
tance-based assessment (CODAS), evaluation based on distance from average solution 
(EDAS), simultaneous evaluation of criteria and alternatives (SECA), mixed aggregation 
by comprehensive normalization technique (MACONT), additive ratio assessment 
(ARAS), pivot pairwise relative criteria importance assessment (PIPRECIA), stepwise 
weight assessment ratio analysis (SWARA), and so on. Some of these methods are used 
for weight determination, whereas some are applied to rank the alternatives. The readers 
can refer to [7,8] for additional information and more specific details. In what follows, we 
provide a brief overview of the previous studies exploring the use of MCDM methods to 
solve the wind farm site selection problem. 
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Aras et al. [9] proposed an AHP method to identify the most suitable location for 
building a wind observation station on the campus of a university in Turkey. Lee et al. 
[10] proposed an MCDM model based on the AHP-associated benefits, opportunities, 
costs and risks (BOCR) approach to select the most suitable sites for wind farm projects. 
Hwang et al. [11] utilized the AHP, fuzzy AHP, and the TOPSIS method to choose the best 
site among two locations for wind power development in Malaysia. Talinli et al. [12] ap-
plied the fuzzy AHP technique to determine technical, economic, environmental, and so-
cio-political aspects of wind farm site selection. Georgiou et al. [13] developed a hybrid 
SAW-AHP decision analysis method for wind farm site selection in the Larnaca District 
area in the island of Cyprus. Chatterjee and Bose [14] developed a fuzzy MCDM approach 
based on the complex proportional assessment (COPRAS) methodology to solve the wind 
farm site selection. Kang et al. [15] proposed a combined fuzzy ANP and BOCR approach 
to solve the wind farm site selection decision-making problem. Azizi et al. [16] presented 
an integrated ANP-DEMATEL method to assess the feasibility of establishing a wind farm 
in Ardabil province in the northwest of Iran. The DEMATEL technique was used to de-
termine the relationships among criteria, and then, the ANP technique was applied to 
obtain the importance weights of evaluation criteria. Fetanat and Khorasaninejad [17] pro-
posed an integrated fuzzy ANP-DEMATEL-ELECTRE methodology to identify the best 
site among four sites in Bandar Deylam in the southwest of Iran for offshore wind farm 
development. The sites were evaluated with respect to six criteria, namely depths and 
heights, environmental conditions, proximity to facilities, economic performance, availa-
bility of technical resources, and culture. Rezaian and Jozi [18] applied the AHP technique 
to determine suitable areas for the construction of a wind farm in Qazvin Province in the 
north of Iran. Wu et al. [19] proposed a fuzzy ELECTRE-III model to determine potential 
sites for offshore wind energy development in China. Asadi and Karami [20] used the 
AHP technique to find the most suitable locations for the construction of a wind farm in 
Sistan and Baluchistan province in the southeast of Iran. The alternative locations were 
evaluated based on five criteria, namely climate, geography, socio-economy, environ-
ment, and geology. Chaouachi et al. [21] used the AHP technique to identify suitable off-
shore wind sites in the Baltic States based on some criteria such as power network secu-
rity, economic performance, operational costs, and capacity factors. Gigović et al. [22] de-
veloped a hybrid ANP-DEMATEL model to identify the most suitable locations for the 
construction of wind farms in the province of Vojvodina in Serbia. Vasileiou et al. [23] 
used the AHP technique to identify the most appropriate offshore sites for the develop-
ment of a hybrid offshore wind and wave energy system in Greece. Vagiona and Ka-
milakis [24] proposed an integrated methodology of GIS, AHP and TOPSIS for the evalu-
ation of alternative sites for the development of offshore wind energy in the South Aegean 
in Greece. The methodological framework included several technical, spatial, economic, 
social, and environmental criteria. Rehman et al. [25] proposed an integrated quantitative 
and qualitative MCDM framework based on PROMETHEE for selecting wind power 
plant locations in Saudi Arabia. The model was applied to determine the most suitable 
site among five possible locations based on 17 evaluation criteria. Moradi et al. [26] used 
the AHP technique to identify suitable sites for wind energy development in Alborz prov-
ince in Iran. Their methodology considered the slope of the terrain, wind speed, proximity 
to electricity grid and substations, distance from urban areas, and access to highways and 
roads as performance criteria. Xu et al. [27] proposed a novel method integrating GIS with 
AHP and VIKOR techniques to solve wind energy site selection problem in the Wafang-
dian region in China. Two factors, namely biodiversity conservation and production 
safety, were considered to determine alternative locations. Then, the AHP method was 
applied to determine the weights of evaluation criteria, including the social-economical 
impacts and environment protection. Finally, the suitability indexes of various alterna-
tives were calculated by the VIKOR method. Elgabiri et al. [28] employed the AHP and 
pairwise comparison methods in a GIS environment to identify the optimal sites for wind 
energy development in Bahrain. The land information as well as infrastructure and 
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transport data were used to exclude those areas with physical and safety hazards. Feng 
[29] proposed a fuzzy AHP method integrated with a satisfaction degree-based fuzzy ax-
iomatic design approach to determine the optimal onshore wind farm site based on geo-
graphic, technical, economic, social, and environmental criteria. Caceoğlu et al. [30] pre-
sented a quantitative methodology for offshore wind power plant site selection in North-
west Turkey using GIS and AHP. Five alternative suitable sites were evaluated with re-
spect to 17 selection criteria, including the power grid connection, average wind speed, 
environmental concerns, etc. Wang et al. [31] developed a hybrid MCDM framework, 
combining the fuzzy AHP and an extended version of SAW, to choose the best location 
for an offshore wind power station construction in Vietnam. 

Table 1 summarizes the past studies that have used the MCDM methods to solve the 
wind farm site selection problem. 

Table 1. A review of the MCDM methods applied to solve the wind farm site selection problem. 

Ref Year Type of Model  MCDM Technique 
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[9] 2004  √  √         
[10] 2009  √  √        √ 
[11] 2011 √   √  √       
[12] 2011 √   √         
[13] 2012  √ √ √         
[14] 2013 √       √     
[15] 2013 √    √       √ 
[16] 2014  √   √  √      
[17] 2015 √    √  √  √    
[18] 2016  √  √         
[19] 2016 √        √    
[20] 2017  √  √         
[21] 2017  √  √         
[22] 2017  √   √  √      
[23] 2017  √  √         
[24] 2018  √  √  √       
[25] 2019  √        √   
[26] 2020  √  √         
[27] 2020  √  √       √  
[28] 2021  √  √         
[29] 2021 √   √         
[30] 2022  √  √         
[31] 2022 √  √ √         

The integrated approach of Fuzzy-ANP-TOPSIS is a novel and a highly effective 
methodology to capture uncertain information in group decision-making process and 
solve complicated interrelationships between multiple factors and variables. The tech-
nique has been highlighted in several past studies in the context of the optimal marketing 
strategy [32], technology selection [33], assessing the integrity of medical devices [34], etc. 
However, to the best our knowledge, there has been no research developing a Fuzzy-
ANP-TOPSIS methodology to evaluate and optimize the placement of wind turbines and 
other supporting infrastructure. In an attempt to fill this research gap, we propose a 
Fuzzy-ANP-TOPSIS framework to solve the wind farm site selection decision-making 
problem in complex, multi-stakeholder, and uncertain environments. The performance of 
this method is compared with other MCDM methods reported in the literature and its 
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advantages and limitations are discussed. The site evaluations are conducted based on 
four major criteria, namely economic, social, technical, and geographical, and nine sub-
criteria identified by consultation with wind farm investors, regulatory bodies, landown-
ers and residents, developers and operators, component suppliers, ecologists, and GIS an-
alysts. Furthermore, the dependences between criteria and alternatives are investigated 
and represented by a network structure in the ANP model. The stakeholders’ preferences 
regarding the relative importance of criteria are obtained in the form of linguistic terms 
and represented by fuzzy triangular numbers. The fuzzy weights of criteria and sub-cri-
teria with respect to the overall goal are derived by a logarithmic least square method, 
and finally, the alternatives are prioritized based on their distance from the ideal or anti-
ideal solutions. To evaluate and compare the efficacy of the proposed model, we provide 
a real-life application of an onshore wind farm consisting of 10 wind turbines of 2.5 MW 
in Iran. Three potential locations in the country are studied for wind energy development, 
including Ardabil, Zabol and Takestan, and the most suitable location for the construction 
of the wind farm is determined based on the Fuzzy-ANP-TOPSIS approach. The results 
of the analysis are then compared with those obtained from the traditional AHP, ANP 
and ANP-TOPSIS decision-making approaches. 

The rest of the paper is organized as follows. In Section 2, we provide some back-
ground information on the fuzzy theory and the ANP and TOPSIS approaches. Section 3 
presents the Fuzzy-ANP-TOPSIS decision model to select the most suitable location for 
wind turbine installation. In Section 4, we provide a real-life application to illustrate the 
applicability of the proposed method. Finally, Section 5 concludes the paper and indicates 
future directions for research. 

2. Research Background 
2.1. Fuzzy Theory 

In cases when there is no clear idea or a lack of information about an event, the public 
and experts will be more likely to express their opinions in subjective ways using verbal 
language variables such as ‘much better’, ‘better’, ‘equal’, etc. These subjective terms are 
not as good as numbers in terms of information representation accuracy. The fuzzy the-
ory, introduced by Zadeh in 1965 [35], is a powerful tool to handle the uncertainty and 
vagueness associated with humans’ subjective perceptions and experience in decision-
making processes. In this paper, the fuzzy linguistics approach is used to obtain the stake-
holders’ judgments or preferences based on words such as “equally”, “moderately”, 
“strongly”, “very strongly”, “extremely” or “significantly”. In this approach, the linguistic 
terms are represented by fuzzy numbers such as triangular and trapezoidal fuzzy num-
bers. A triangular fuzzy number (TFN) is a special type of fuzzy number whose member-
ship is defined as a triple Õ = (l, m, u), where l is the smallest possible value, m is the most 
promising value, and u is the largest possible value. The mathematical expression of the 
membership function for Õ = (l, m, u) is defined by Equation (1) as follows: 

𝜇ை෨ (𝑥) = ൞ ௫ି௟௠ି௟ ; 𝑙 ≤ 𝑥 ≤ 𝑚௨ି௫௨ି௠ ; 𝑚 ≤ 𝑥 ≤ 𝑢0; otherwise

 . (1)

The membership function, 𝜇ை෨ (𝑥) is depicted in Figure 1. 
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Figure 1. The membership function of a triangular fuzzy number Õ = (l, m, u). 

Assume Õ1 and Õ2 are two TFNs represented by (l1, m1, u1) and (l2, m2, u2), respec-
tively. The main algebraic operations of these two TFNs are defined as follows: 

Addition of two TFNs 𝑂෨ଵ(+)𝑂෨ଶ = (𝑙ଵ + 𝑙ଶ , 𝑚ଵ + 𝑚ଶ , 𝑢ଵ + 𝑢ଶ); 𝑙ଵ, 𝑙ଶ   ≥ 0. (2)

Subtraction of two TFNs 𝑂෨ଵ(−)𝑂෨ଶ = (𝑙ଵ − 𝑙ଶ , 𝑚ଵ − 𝑚ଶ , 𝑢ଵ − 𝑢ଶ); 𝑙ଵ, 𝑙ଶ   ≥ 0. (3)

Multiplication of two TFNs 𝑂෨ଵ(×)𝑂෨ଶ = (𝑙ଵ𝑙ଶ , 𝑚ଵ𝑚ଶ , 𝑢ଵ𝑢ଶ); 𝑙ଵ, 𝑙ଶ   ≥ 0. (4)

Division of two TFNs 𝑂෨ଵ(÷)𝑂෨ଶ = (𝑙ଵ/𝑙ଶ , 𝑚ଵ/𝑚ଶ , 𝑢ଵ/𝑢ଶ); 𝑙ଵ, 𝑙ଶ   ≥ 0. (5)

Multiplication of a TFN by a constant 𝑘 × 𝑂෨ଵ = (𝑘𝑙ଵ ,  𝑘𝑚ଵ ,  𝑘𝑢ଵ); 𝑘 , 𝑙ଵ   ≥ 0. (6)

Inverse of a TFN 𝑂෨ଶିଵ = (1/𝑢ଶ ,  1/𝑚ଶ ,  1/𝑙ଶ); 𝑙ଶ, 𝑚ଶ, 𝑢ଶ > 0. (7)

Distance between two TFNs according to the vertex method 𝑑(𝑂෨ଵ, 𝑂෨ଶ) = ට ଵଷ [(𝑙ଵ − 𝑙ଶ)ଶ + (𝑚ଵ − 𝑚ଶ)ଶ + (𝑢ଵ − 𝑢ଶ)ଶ].  (8)

2.2. Analytic Network Process (ANP) 
The analytic hierarchy process (AHP) is a decision analysis method proposed by 

Saaty [36] in the 1970s to deal with complex decision-making problems with multiple at-
tributes, multiple decision-makers, and high uncertainty. The AHP method comprises 
various steps including the collection of data for pairwise comparisons, the estimation of 
criteria weights, and the calculation of consistency of the comparison matrix. The relative 
importance of each factor with respect to others is determined based on a 1 to 9 scale, 
where a score of 1 represents equal importance between the two factors and a score of 9 
indicates the extreme importance of one factor compared to another one. AHP also allows 
the decision markers to evaluate the consistency of the pairwise comparisons by calculat-
ing a consistency ratio (CR). If the value of CR is smaller than or equal to 10%, the incon-
sistency is acceptable. However, if the CR value is greater than 10%, then the matrix is 
inconsistent, and it needs to be revised. 
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In the AHP method, the problem is modelled in a hierarchical structure where the 
goal, decision criteria, and alternatives are arranged in multi-level. Each element in the 
hierarchy is independent of all the other elements, and hence, the interactions and feed-
back between the elements are ignored. To overcome this limitation, the analytic network 
process (ANP) method was introduced by Saaty [37]. The ANP is a generalization of the 
AHP by considering the dependence between the clusters and elements within a cluster 
(see Figure 2). In other words, the ANP provides a general framework to deal with com-
plicated decisions without making assumptions about the independence of higher-level 
elements from lower-level elements and about the independence of the elements within a 
level. The ANP is a coupling of two parts: (i) a control hierarchy or a network of criteria 
and sub-criteria that control the interactions in the system; and (ii) a network of influences 
among the elements and clusters [38]. 

 

Figure 2. An ANP model structure. 

2.3. Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) 
TOPSIS is a practical and useful MCDM methodology which was developed for the 

first time by Hwang and Yoon in 1981 [39]. The technique is based on the concept that the 
selected alternative should have the shortest geometric distance from the positive ideal 
solution (PIS) and the farthest distance from the negative ideal solution (NIS). The relative 
closeness of each alternative to the PIS can be calculated by dividing the distance from the 
NIS with the summation of the distance from PIS and distance from NIS. Finally, the al-
ternatives are ranked based on their relative closeness index. The TOPSIS procedure con-
sists of the following steps: the calculation of the normalized decision matrix, the deter-
mination of the PIS and NIS, the calculation of the separation measures using the n di-
mensional Euclidean distance, the evaluation of the relative closeness to the PIS, and rank-
ing the preference order. 

In both the ANP and TOPSIS methods, there is a need to integrate mathematical 
models with human experiences. To obtain the relative importance of decision elements, 
a pairwise comparison should be carried out between all pairs of criteria. Moreover, to 
construct the decision matrix, the performance rating of each alternative with respect to 
criteria needs to be determined. Such information is often obtained from experts with 
knowledge and experience in relevant areas. However, there still may exist some inherent 
uncertainties associated with the mapping of the decision-makers’ perception onto crisp 
values. These uncertainties in the initial stages of the decision-making process may limit 
the chances of obtained satisfactory results. For this reason, an integrated Fuzzy-ANP–
TOPSIS approach is developed in the next section, wherein fuzzy numbers are used in-
stead of crisp values. 
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3. The Proposed Methodology 
Our proposed methodology to determine the most favorable location for wind farm 

development is shown in Figure 3. The steps of the methodology are described in detail 
in the following sections: 
Step 1: Form a group of wind energy project stakeholders 

The selection of a suitable site for the development of a wind energy project is a multi-
stakeholder, multi-agency, and multi-stage activity. For this reason, a group of decision 
makers and experts including investors, local authorities and public sector bodies, land-
owners and residents, developers and operators, component suppliers and service pro-
viders, environmentalists, geologists, and financial analysts must be involved in the pro-
cess. Each stakeholder has their own interests and reasons to either support or reject the 
project. The stakeholders’ opinions and assessments are often gathered by conducting sur-
veys or brief interviews. In such a process, the experts are asked separately about their 
views on different elements considered. After collecting the opinions of stakeholders, 
some feedback will be provided to individuals about the other stakeholders’ opinions. 
The stakeholders will have the opportunity to change their opinions after getting this feed-
back, if desired. 

 
Figure 3. The proposed Fuzzy-ANP–TOPSIS methodology for wind farm site selection. 
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Step 2: Identify some possible locations for wind farm placement using GIS tools 
Many countries have regulatory limitations on the installation of wind turbines in 

residential districts. These regulations may be local (town, city), state, or federal. GIS is a 
computer software tool that stores geographic information or spatial data for the purpose 
of manipulation and analysis to find some possible locations for the construction of wind 
power plants in a particular region. GIS tools can help to build a spatial database with 
geographical features, such as topography, land use, road networks, locations of public 
interest, etc. 
Step 3: Identify the site selection criteria and their dependences 

In this step, we identify the most significant criteria and determine the corresponding 
factors that are considered to be important for selecting a suitable wind farm site. Different 
stakeholders may have different interests and priorities. For this study, we first prepared 
an extensive list of criteria that are important for the site selection of wind energy projects 
by reviewing the relevant literature. Then, we classified the identified criteria into differ-
ent groups based on their similar and dissimilar characteristics. Next, we gathered the 
stakeholders’ opinions on the list of criteria by means of a Delphi questionnaire survey. 
The questionnaire used a Likert scale between 1 to 5, where a score of 1 expresses ‘very 
unimportant’, 2 expresses ‘unimportant’, 3 expresses ‘general’, 4 expresses ‘important’, 
and 5 expresses ‘very important’. After analyzing the stakeholders’ feedback, the criteria 
with low importance scores were deleted from the list. Eventually, four groups of criteria, 
namely economic, social, technical, and geographical, with nine sub-criteria, were agreed 
as the most influencing factors in wind farm siting. All of these criteria and sub-criteria 
are further described in the following sections: 

C1. Economic criteria 
To determine the most suitable location for a wind farm, all economic costs and ben-

efits throughout the lifetime of the project must be evaluated by the stakeholders. The 
factors contributing to the economic criteria are: 

C1.1 Energy security 
The regions with scarce fossil fuel resources will have a higher priority for establish-

ing the desired wind power plant. Siting wind farms in such areas will have positive im-
pact on the region’s energy security and economic well-being. 

C1.2 Job creation 
The development, construction, operation, and maintenance of renewable wind en-

ergy projects will create many job opportunities, some of which will be filled by local res-
idents. 

C1.3 Overall economic profit 
Constructing a new wind farm requires some new infrastructure to be built or the 

existing infrastructure to be rehabilitated. A proportion of the project’s profit should be 
spent on the region’s economic development to support constructing new roads, schools, 
libraries, hospitals, and other infrastructure. The overall economic profit represents the 
difference between revenues of the wind energy project (from selling power to the na-
tional grid) and its expenses (including pre-development, installation, operation, and 
maintenance) during the lifecycle. The local communities benefit from these infrastructure 
facilities, as they provide an improved business environment for local inhabitants to per-
form their activities and quality of life. 

C2. Social criteria 
Public perception and attitude towards wind power play an important role in the 

placement decision-making. Social criteria include the following sub-criteria: 
C2.1 Social acceptance 
Many people find wind farms to be an interesting feature of the landscape. However, 

the residents living near wind farms usually have a negative perception and attitude to-
wards noise disturbance and visual pollution from wind turbines. These perceptions must 
be addressed to maximize social acceptability. 
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C2.2 Regional reputation 
This criterion represents the human and social benefits of the wind energy project 

development in a region. Establishing a wind farm in a deprived region can help improve 
morale among locals. 

C3. Technical criteria 
Technical issues are among the most important considerations in determining the 

location of a wind power plant. These issues are extensive but can be grouped into wind 
conditions and the technology situation of the alternative regions. 

C3.1 Wind efficiency 
Wind efficiency (intensity, direction, consistency, and uniformity) plays a key role in 

wind farm placement. The wind project investors are more likely to invest in regions with 
better wind conditions. 

C3.2 Readiness of domestic technologies 
To establish a wind power plant in a particular region, the readiness of domestic 

technologies (e.g., materials’ supply, energy storage, grid connection, power transfer, re-
cycling facility, etc.) must be considered. 

C4. Geographic criteria 
The geographical suitability of the potential locations for establishing a wind energy 

project should be examined. The geographic criteria include the following sub-criteria: 
C4.1 Land suitability 
Land suitability plays an important role in the wind farm development planning. 

This factor includes the land use, land ownership, access to the land, distance from cities 
or the coast, distance from power lines, distance from substations, distance from urban 
areas, distance from highways and roads, proximity to natural resources, distance from 
the epicenters of earthquakes, etc. 

C4.2 Environmental friendliness 
Environmental pollution (e.g., visual and noise pollution, bird mortality, and inter-

ference with radar) is an important issue in the process of wind farm site selection. The 
locations in which the construction and operation of wind turbines cause less pollution 
will have higher priority for selection. 

The evaluation criteria for wind farm site selection might be dependent on each other; 
for instance, the dependence between two criteria of “job creation” and “social ac-
ceptance” is such that a wind energy project with higher job-creation potential will gen-
erally have more acceptance from residents of the region. The dependences among deci-
sion criteria and sub-criteria are identified and shown in Tables 2 and 3, respectively. 

Table 2. Dependences among decision criteria for wind farm site selection. 

Criteria C1 C2 C3 C4 
C1  √ √ √ 
C2 √  √ √ 
C3 √ √  √ 
C4 √ √ √  

Table 3. Dependences among decision sub-criteria for wind farm site selection. 

Sub-Criteria C11 C12 C13 C21 C22 C31 C32 C41 C42 
C11 √  √   √ √ √  
C12   √ √   √   
C13 √ √  √ √ √ √ √ √ 
C21  √ √  √    √ 
C22   √ √      
C31 √  √     √  
C32 √ √ √       
C41 √  √   √   √ 
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C42   √ √    √  

Step 4: Construct a network structure 
In this step, a network structure is built to show all the decision-making criteria, sub-

criteria and alternatives and their interactions. Figure 4 illustrates a network model for the 
decision problem of selecting a suitable wind farm placement. 

 
Figure 4. A network model for wind farm site selection. 

Step 5: Perform pairwise comparisons using a TFN linguistic scale 
After constructing the network model, the stakeholders will be asked to express their 

opinions about the preference/importance of criteria/sub-criteria with respect to the over-
all goal. One of the most common methods for weighing the criteria/sub-criteria is the 
pairwise comparison technique. In this technique, the stakeholders are asked to compare 
the importance of decision elements with respect to one another. In this study, a triangular 
fuzzy scale 1෨ − 9෨  as presented in Table 4 was used. The results of the pairwise compari-
sons are presented in the form of a matrix, called fuzzy pairwise comparison matrix. This 
is a square matrix of size n × n that is represented by 𝐴ሚ௞ = [𝑎෤௜௝௞], where 𝑎෤௜௝௞ denotes the 
comparative importance of criterion i with respect to criterion j from the point of view of 
expert k. Thus, 𝑎෤௜௝௞ can be defined by a TFN as follows: 𝑎෤௜௝௞ = ൜ (𝑙௜௝௞ , 𝑚௜௝௞ , 𝑢௜௝௞) 𝑖 ് 𝑗(1 ,  1 ,  1) 𝑖 = 𝑗 , 𝑖 ,  𝑗 = 1,  2 , . . . ,  𝑛, and 𝑘 = 1,  2 , . . . ,  𝐾, (9)

where K is the number of stakeholders. The preference of element j over element i for 
expert k is represented by 𝑎෤௝௜௞, which is the inverse of fuzzy number 𝑎෤௜௝௞ and is defined 
by Equation (7). 
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Table 4. Triangular fuzzy scale used for pairwise comparisons [40]. 

TFN Linguistic Scale for Importance Triangular Fuzzy Scale 
1 Equally preferred (1, 1, 1) 
2 Equally to moderately preferred (1, 1.5, 1.5) 
3 Moderately preferred (1, 2, 2) 

4 
Moderately to strongly pre-

ferred 
(3, 3.5, 4) 

5 Strongly preferred (3, 4, 4.5) 

6 
Strongly to very strongly pre-

ferred 
(3, 4.5, 5) 

7 Very strongly preferred (5, 5.5, 6) 

8 
Very strongly to extremely pre-

ferred 
(5, 6, 7) 

9 Extremely preferred (5, 7, 9) 

Step 6: Test the consistency of fuzzy pairwise comparisons 
The consistency test aims to make sure that the fuzzy pairwise comparison results 

are accurate and reliable. According to Buckley [41], a fuzzy comparison matrix is con-
sistent if: 𝑎෤௜௝௞ ≈ 𝑎෤௜௣௞(×)𝑎෤௣௝௞ ; 𝑖 ,  𝑗 ,  𝑝 = 1,  2 , . . . ,  𝑛, and 𝑘 = 1,  2 , . . . ,  𝐾, (10)

where ≈ denotes fuzzy equal to, and (×) represents the multiplication operation on 
fuzzy numbers and is defined by Equation (4). For a comparison matrix which fails the 
consistency test, the stakeholders will be asked to revise their pairwise comparisons. 
Step 7: Calculate the aggregated fuzzy weights of criteria and solve the super-matrix 

When all fuzzy comparison matrices pass the consistency test, an aggregated fuzzy 
comparison matrix is established. The aggregated fuzzy comparison matrix for a group of 
stakeholders is represented by 𝐴ሚ = [𝑎෤௜௝]n×n, where 𝑎෤௜௝ = (𝑎௜௝௟ , 𝑎௜௝௠, 𝑎௜௝௨ ) denotes the aggre-
gation of responses from all experts and can be obtained by the following equation: 𝑎෤௜௝ = ଵ௄ × [𝑎෤௜௝ଵ(×)𝑎෤௜௝ଶ(×). . . (×)𝑎෤௜௝௄], 𝑖 ,  𝑗  = 1,  2 , . . . ,  𝑛. (11)

where × represents the multiplication by a constant and is defined as in Equation (6). 
After establishing the aggregated fuzzy pairwise comparison matrix, the logarithmic 

least squares method is used to estimate the fuzzy weights of criteria. The aggregated 
fuzzy weights of the criteria i can be obtained using the following equations [42]: 𝑤෥௜ = (𝑤௜௟ , 𝑤௜௠ , 𝑤௜௨) , 𝑖  = 1,  2 , . . . ,  𝑛, (12)

𝑤෥௜௦ = (∏ ௔೔ೕೞ೙ೕసభ )భ೙∑ (∏ ௔೛ೕ೘೙ೕసభ )భ೙೙೛సభ  , 𝑠 ∈ {𝑙, 𝑚, 𝑢}. (13)

where 𝑎௜௝௟ , 𝑎௜௝௠ and 𝑎௜௝௨  represent the lower limit value, the most promising value, and 
the upper limit value of TFN 𝑎෤௜௝. 

The way that decision elements impact one another in a network is presented by a 
matrix, termed the unweighted super-matrix. The unweighted super-matrix is a parti-
tioned matrix where each sub-matrix consists of the fuzzy weights obtained from the pair-
wise comparisons. The columns of the super-matrix represent the relationships between 
two clusters and the corresponding values in the columns reflect the influence that the 
elements of the clusters on the left-hand side of the matrix exert on those in the header of 
the matrix. If there exists no relationship between two clusters, the corresponding entry 
in the super-matrix will be (0, 0, 0). The unweighted super-matrix elements are multiplied 
by the corresponding weights of criteria with respect to the goal and the weighted super-
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matrix is obtained. Eventually, the final weights are obtained by raising the weighted su-
per-matrix by large powers, usually 2k + 1 (where k is a large arbitrarily number), until the 
matrix converges into a stable super-matrix. All the columns of the limit super-matrix are 
the same, so the final weights of the elements can be derived from any column in the 
matrix. 
Step 8: Construct the decision matrix based on the criteria weights obtained from the fuzzy ANP 

After obtaining the weights of criteria from the fuzzy ANP model, the next step is to 
apply the fuzzy TOPSIS method to rank the alternative wind farm sites. The fuzzy TOPSIS 
method uses linguistic variables with different semantic word sets to rate the alternatives, 
including ‘very poor’, ‘poor’, ‘medium poor’, ‘medium’, ‘medium good’, ‘good’ and ‘very 
good’. The linguistic terms with their corresponding TFNs used for rating the alternative 
wind farm sites are given in Table 5. 

Table 5. Linguistic terms used for rating the alternative wind farm sites [43]. 

Linguistic Terms Very Poor Poor Medium 
Poor Medium Medium 

Good Good Very Good 

TFN (0, 0, 1) (0, 1, 3) (1, 3, 5) (3, 5, 7) (5, 7, 9) (7, 9, 10) (9, 10, 10) 

The performance ratings of the alternative wind farm sites with respect to criteria are 
expressed in a decision matrix format 𝐷෩, as shown in Equation (14). This matrix has a size 
of m × n, where m and n are the number of alternatives and the number of evaluation 
criteria (sub-criteria), respectively. 

 

 C1 C2 … Cn 

1w  2w  … nw  

A1 11x  12x  … 1nx  

A2 21x  22x  … 2nx  

… … … … … 

Am 1mx  2mx  … mnx  

(14)

Step 9: Normalize the decision matrix and compute the weighted normalized matrix 
Denote by 𝑅෨ the normalized fuzzy decision matrix which is a matrix of size m × n. 

We use a linear normalization method to normalize each element 𝑥෤௜௝ in the decision ma-
trix 𝐷෩  into a corresponding element �̃�௜௝  in the normalized decision matrix 𝑅෨ . In this 
method, each element �̃�௜௝, i = 1, 2, …, m; j = 1, 2, …, n, is obtained by the following equations 
[44]: �̃�௜௝ = ൬௫೔ೕ೗௫ೕೠ , ௫೔ೕ೘௫ೕೠ , ௫೔ೕೠ௫ೕೠ൰, for j∈P; 𝑥௝௨ = 𝑚𝑎𝑥௝ {𝑥௜௝௨ },  (15)

�̃�௜௝ = ൬ ௫ೕ೗௫೔ೕೠ , ௫ೕ೗௫೔ೕ೘ , ௫ೕ೗௫೔ೕ೗ ൰, for j∈N; 𝑥௝௟ = 𝑚𝑖𝑛௝ {𝑥௜௝௟ }, (16)

where 𝑥௜௝௟ , 𝑥௜௝௠ and 𝑥௜௝௨  represent the lower limit value, the most promising value, and the 
upper limit value of the TFN of 𝑥෤௜௝, respectively, and P and N represent the sets of positive 
criteria and negative criteria, respectively. After normalizing the decision matrix, the 
weighted normalized decision matrix, 𝑣 = [𝑣௜௝], should be calculated. To achieve this aim, 
each element of the normalized decision matrix is multiplied by the fuzzy weights for 
criteria/sub-criteria that were obtained using the fuzzy ANP model in Step 7. Thus, 𝑣෤௜௝ = �̃�௜௝(×)𝑤෥௝, for i = 1, 2,…, m; j = 1, 2,…, n. (17)
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Step 10: Determine the fuzzy positive and negative ideal solutions 
After calculating the weighted normalized decision matrix, the fuzzy positive ideal 

solution (FPIS, 𝐴ሚା) and the fuzzy negative ideal solution (FNIS, 𝐴ሚି) are determined ac-
cording to Equations (18) and (19), respectively [45]: 𝐴ሚା = [𝑣෤ଵା, 𝑣෤ଶା, . . . , 𝑣෤௡ା], where 𝑣෤௝ା = (1,1,1)(×)𝑤෥௝ = 𝑤෥௝, (18)𝐴ሚି = [𝑣෤ଵି , 𝑣෤ଶି , . . . , 𝑣෤௡ି ], where 𝑣௝ି = (0,0,0). (19)

Step 11: Measure the distances of each alternative from FPIS and FNIS 
The distances of alternative i (i = 1, 2,…, m) from fuzzy positive and negative ideal 

solutions (𝑑௜ାand 𝑑௜ି , respectively) are calculated by Equation (20): 𝑑௜ା = ∑ 𝑑(𝑣෤௜௝, 𝑣෤௝ା)௡௝ୀଵ  and 𝑑௜ି = ∑ 𝑑(𝑣෤௜௝, 𝑣෤௝ି )௡௝ୀଵ , (20)

where d represents the distance between two TFNs according to the vertex method given 
in Equation (8). 
Step 12: Rank the alternatives and select the most suitable wind farm site 

The alternative wind farm sites are ranked by preference according to their closeness 
to the FPIS. The closeness coefficient (CL) of alternative i with respect to the FPIS is de-
fined as follows: 𝐿௜ା = ௗ೔షௗ೔షାௗ೔శ, for i = 1, 2, …, m. (21)

A larger CL means a more favorable wind farm site. The alternative with the largest 
CL will be chosen as the most suitable site for wind energy development. 

4. Application 
In this section, a case study is provided to illustrate the applicability of the proposed 

integrated fuzzy ANP and fuzzy TOPSIS decision model to select the most suitable loca-
tion for constructing a 10 × 2.5 MW wind power plant in Iran. Three potential locations in 
the country were considered for wind energy development: 
- Ardabil (A1) is a city located in the northwest of Iran. The city stands about 70 km 

from the Caspian Sea and has an average altitude of 1350 m and total area of 11,081 
km2. The city’s temperature ranges from −8 °C in winter to 23 °C in summer. The 
highest wind power potential occurs during months of September and October. 

- Zabol (A2) is a city in and the capital of Zabol County, Sistan and Baluchestan Prov-
ince, in the southeast of Iran. The city is located in a region subject to seasonal winds 
from different directions. The “120-day winds” locally known as Levar are a distin-
guishing feature of the region, showing its great potential for energy production. 

- Takestan (A3) is a city in and the capital of Takestan County in Qazvin, a province in 
the north-central region of Iran. This region has favorable wind resources for produc-
ing energy. At 70 m height, the wind speed is in the range of 6.69–12.45 m/s. The 
highest wind power potential occurs during the months of January and December. 
The information required for the analysis included social, economic, financial, natu-

ral resources, and environmental indicators. This information was gathered from a litera-
ture review, interviews with key stakeholders involved in the project, and GIS databases, 
as well as wind energy resource atlases. The criteria and sub-criteria presented in Section 
3 were agreed upon by all stakeholders. The dependences between four main criteria and 
nine sub-criteria were also considered as presented in Tables 2 and 3, respectively. 

The fuzzy pairwise comparison matrix of all criteria with respect to each other was 
formed and presented in Table 6. The linguistic terms and corresponding TFNs given in 
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Table 4 are used for pairwise comparisons in this study. Using the data of pairwise com-
parison matrix and applying Equation (13), the fuzzy weights of all criteria are calculated. 
For instance, the fuzzy weights of economic criteria are obtained as below: ෍ ቌෑ 𝑎௣௝௠௡

௝ୀଵ ቍ௡
௣ୀଵ = (1 × 1.5 × 4 × 2)ଵସ + (0.667 × 1 × 2 × 1.5)ଵସ

+ (0.25 × 0.5 × 1 × 0.667)ଵସ + (0.5 × 0.667 × 1.5 × 1)ଵସ = 4.428 𝑤෥ଵ௟ = (1 × 1 × 3 × 1)భర/4.428 = 0.297;  𝑤෥ଵ௠ = (1 × 1.5 × 4 × 2)భర/4.428 = 0.42 ; 𝑤෥ଵ௨ = (1 × 1.5 × 4.5 × 2)ଵସ/4.428 = 0.433 

 

Table 6. Pairwise comparison matrix of four criteria with respect to each other. 

Criteria C1 C2 C3 C4 Fuzzy Weights 
C1 (1, 1, 1) (1, 1.5, 1.5) (3, 4, 4.5) (1, 2, 2) (0.297, 0.42, 0.433) 
C2 (0.667, 0.667, 1) (1, 1, 1) (1, 2, 2) (1, 1.5, 1.5) (0.204, 0.269, 0.297) 
C3 (0.222, 0.25, 0.333) (0.5, 0.5, 1) (1, 1, 1) (0.667, 0.667, 1) (0.118, 0.121, 0.172) 
C4 (0.5, 0.5, 1) (0.667, 0.667, 1) (1, 1.5, 1.5) (1, 1, 1) (0.172, 0.19, 0.25) 

After performing pairwise comparisons with respect to every criterion, the priority 
weights of criteria with respect the overall goal are obtained. The results are presented in 
Table 7. 

Table 7. Fuzzy weights of criteria with respect to the overall goal. 

Criteria C1 C2 C3 C4 
C1 (0.5, 0.5, 0.5) (0.206, 0.248, 0.26) (0.272, 0.328, 0.356) (0.197, 0.258, 0.268) 
C2 (0.067, 0.07, 0.091) (0.5, 0.5, 0.5) (0.061,0.063,0.091) (0.048, 0.052, 0.066) 
C3 (0.274, 0.331, 0.358) (0.18, 0.19, 0.227) (0.5, 0.5, 0.5) (0.172, 0.19, 0.226) 
C4 (0.083, 0.099, 0.105) (0.057, 0.062, 0.069) (0.083, 0.109, 0.114) (0.5, 0.5, 0.5) 

After computing the fuzzy weights of all criteria with respect to the overall goal, the 
pairwise comparison matrices of sub-criteria with respect to each other and their corre-
sponding criterion are formed, and their fuzzy weights are calculated. Table 8 gives the 
fuzzy weights of sub-criteria with respect to the economic criterion. 

Table 8. Pairwise comparison matrix of sub-criteria with respect to the economic criterion. 

 C1 C2 C3 C4 
C11 (0.558, 0.647, 0.703) (0, 0, 0) (0, 0, 0) (0, 0, 0) 
C12 (0.134, 0.14, 0.186) (0, 0, 0) (0, 0, 0) (0, 0, 0) 
C13 (0.163, 0.213, 0.234) (0, 0, 0) (0, 0, 0) (0, 0, 0) 
C21 (0, 0, 0) (0.471, 0.667, 0.667) (0, 0, 0) (0, 0, 0) 
C22 (0, 0, 0) (0.333, 0.333, 0.471) (0, 0, 0) (0, 0, 0) 
C31 (0, 0, 0) (0, 0, 0) (0.72, 0.778, 0.831) (0, 0, 0) 
C32 (0, 0, 0) (0, 0, 0) (0.208, 0.222, 0.24) (0, 0, 0) 
C41 (0, 0, 0) (0, 0, 0) (0, 0, 0) (0.807, 0.846, 0.884) 
C42 (0, 0, 0) (0, 0, 0) (0, 0, 0) (0.147, 0.154, 0.161) 

Next, the logarithmic least squares method is applied to determine the fuzzy priority 
weights of criteria/sub-criteria with respect to each other. These weights will be used in 
an unweighted super-matrix. To find the final weights of the criteria with respect to the 
overall goal, the weighted super-matrix is calculated. The fuzzy weights of sub-criteria 
with respect to the overall goal are presented in Table 9. 
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Table 9. Fuzzy weights of sub-criteria with respect to the overall goal. 

Sub-Criteria Fuzzy Weights 
C11 11w  = (0.117, 0.193, 0.267) 

C12 12w  = (0.036, 0.068, 0.095) 

C13 13w  = (0.092, 0.161, 0.244) 

C21 21w  = (0.045, 0.082, 0.112) 

C22 22w  = (0.030, 0.044, 0.076) 

C31 31w  = (0.102, 0.166, 0.229) 

C32 32w  = (0.043, 0.073, 0.107) 

C41 41w  = (0.105, 0.169, 0.232) 

C42 42w  = (0.027, 0.044, 0.061) 

After computing the weights of criteria and sub-criteria by means of the fuzzy ANP 
method, the normalized decision matrix is calculated. Then, it is multiplied by the weights 
of sub-criteria determined by the fuzzy ANP method to obtain the weighted normalized 
decision matrix. Table 10 gives the weighted normalized decision matrix. 

Table 10. Weighted normalized decision matrix. 

 C11 C12 C13 
A1 (0.07, 0.15, 0.27) (0.01, 0.03, 0.07) (0.01, 0.04, 0.08) 
A2 (0.04, 0.11, 0.21) (0, 0.02, 0.05) (0, 0.02, 0.06) 
A3 (0.04, 0.11, 0.21) (0.03, 0.06, 0.1) (0.03, 0.07, 0.11) 

 C21 C22 
A1 (0, 0.02, 0.06) (0, 0.01, 0.04) 
A2 (0.01, 0.04, 0.08) (0.01, 0.02, 0.05) 
A3 (0.04, 0.07, 0.11) (0.02, 0.04, 0.08) 

 C31 C32 
A1 (0.09, 0.15, 0.22) (0.02, 0.06, 0.11) 
A2 (0.05, 0.12, 0.21) (0.02, 0.06, 0.11) 
A3 (0.03, 0.08, 0.16) (0.01, 0.04, 0.08) 

 C41 C42 
A1 (0.01, 0.05, 0.12) (0.02, 0.03, 0.06) 
A2 (0.05, 0.12, 0.21) (0.01, 0.02, 0.05) 
A3 (0.07, 0.15, 0.23) (0, 0, 0.02) 

The best and the worst attribute values for each sub-criterion are then calculated and 
the FPIS and FNIS are obtained. The distances of each alternative from the FPIS and FNIS 
are measured using Equation (20). After computing the distances from the best and the 
worst attribute values, the closeness coefficients of the three alternative locations are de-
termined and then the superior alternative is chosen. The distances and the relative close-
ness of alternatives with respect to the FPIS are given in Table 11. As shown, the third 
alternative (Takestan city) with a relative closeness of 0.4801 is chosen to be the most fa-
vorable location for the installation of the wind turbines, followed by the first alternative 
(Ardabil city) with a closeness coefficient of 0.4352 and the second alternative (Zabol city) 
with a closeness coefficient of 0.4244. 

Table 11. The distances and relative closeness of three alternatives with respect to the positive idea 
solution (Note: superscript numbers represent the rank of the alternatives). 

Alternatives 𝒅𝒊ା 𝒅𝒊  CL 
A1 0.77 0.59 0.4352 (2) 
A2 0.79 0.58 0.4244 (3) 
A3 0.73 0.66 0.4801 (1) 
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To evaluate the efficacy of the proposed hybrid Fuzzy-ANP-TOPSIS model, the re-
sults of this study were compared with those obtained from the classical techniques of 
AHP and ANP as well as with an integrated ANP and TOPSIS approach. We implemented 
these techniques by the software packages of ‘Expert Choice’ (http://Expertchoice.com), 
‘Super Decisions’ (http://www.superdecisions.com), and ‘Fuzzy Topsis Solver’ 
(https://fuzzy-topsis-solver-2013.software.informer.com/), respectively. The final priori-
ties obtained from these techniques and the ranking of the alternatives are presented in 
Table 12. While comparing the results, it is found that the results from the proposed model 
are in good agreement with those obtained from AHP and ANP-TOPSIS. All three of these 
techniques ranked Takestan as the first, Ardabil as the second, and Zabol as the third most 
favorable location for wind farm development in the country. However, in the proposed 
approach, the stakeholders were more comfortable with expressing their preferences in 
the form of linguistic terms rather than mathematical expressions. According to the ANP 
method, Ardabil was chosen to be the most suitable location for establishing the planned 
wind farm, closely followed by Takestan. 

Table 12. The score of alternatives obtained from traditional AHP, ANP and hybrid ANP-TOPSIS 
models. (Note: superscript numbers represent the rank of the alternatives). 

Alternatives AHP ANP ANP-TOPSIS 
A1 0.118840 (2) 0.238306 (1) 0.496078 (2) 
A2 0.088101 (3) 0.190649 (2) 0.392679 (3) 
A3 0.126393 (1) 0.237711 (3) 0.543322 (1) 

5. Conclusions 
Selection of the most suitable location or site for the placement of wind turbines is a 

key decision in the future development of both onshore and offshore wind power. Im-
proper siting of wind turbines can have adverse effects on energy yield, financial profita-
bility, installation cost and time, maintenance and repair accessibility, and decommission-
ing and removal costs of wind farms. The site selection process for wind turbines is a 
complex decision-making problem that involves high degrees of uncertainty due to the 
long investment cycle and complex environmental changes, different or conflicting inter-
ests of the stakeholders, and several technical, economic, social, environmental, and reg-
ulatory factors that need to be considered in the analysis. 

In this paper, a novel multi-criteria decision-making (MCDM) approach was pro-
posed for the evaluation, prioritization, and selection of suitable sites for wind farm de-
velopment by involving all key stakeholders and state and non-state actors. To address 
uncertainties associated with all aspects of the wind farm site selection decision-making 
process, an integrated fuzzy analytic network process (FANP) and fuzzy technique for 
order performance by similarity to ideal solution (FTOPSIS) decision model was devel-
oped. Several evaluation criteria were identified through consultation with wind energy 
investors, local authorities and public sector bodies, landowners and residents, develop-
ers and operators, component suppliers and service providers, environmentalists, geolo-
gists, and financial analysts. These criteria were then categorized into four main groups, 
namely economic, social, technical, and geographic factors. The fuzzy weights of criteria 
with respect to the overall goal were derived by a logarithmic least square method and 
the alternatives were prioritized based on their relative closeness to the positive ideal so-
lution. 

To illustrate the applicability of the proposed Fuzzy-ANP-TOPSIS decision model, it 
was applied to determine the most favorable location for constructing an onshore wind 
farm with a power capacity of 25 MW in Iran. Three potential locations, namely Adrabil 
(in the northwest of the country), Zabol (in the southeast of the country) and Takestan (in 
the north-center of the country) were considered. The required information was collected 
from a literature review, Delphi and on-site interviews with key stakeholders involved in 
the renewable energy sector of the country, GIS platforms, and the country’s wind energy 
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resource atlas. Finally, the results were compared with those obtained using the tradi-
tional AHP, ANP and hybrid ANP-TOPSIS models. The results obtained from the pro-
posed model show good agreement with those obtained from AHP and ANP-TOPSIS 
analyses. Based on these results, Takestan was chosen as the most suitable location for 
establishing the planned wind farm, followed by Ardabil and Zabol. However, Ardabil is 
ranked first, Takestan is ranked second, and Zabol is ranked third according to the ANP 
technique. 

There is substantial scope for future research in the area of optimal site selection for 
renewable energy systems. The following are some possible extensions: 
(a) The proposed decision model can be extended to determine suitable sites for the de-

velopment of hybrid renewable energy systems (e.g., wind-solar or wind-wave); 
(b) Although the proposed methodology was shown to be efficient from an accuracy 

point of view, it was found to be computationally intensive. In order to address this 
issue, some other new MCDM models can be developed. For instance, the weights of 
criteria can be determined using methods such as Fuzzy FUCOM and Fuzzy BWM. 
The ranking of alternatives can be obtained through methods such as Fuzzy MABAC, 
Fuzzy MARCOS, Fuzzy EDAS, Fuzzy ARAS, Fuzzy CODAS, etc. 

(c) A sensitivity analysis can be carried out to support the decision-making process. This 
will help decision-makers find out how robust the results are. 

(d) Designing an interactive and web-based dashboard to use for site selection of renewable 
energy projects could be very beneficial to industries. 
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Nomenclature 
K Number of decision-makers 
n Number of criteria/sub-criteria 
Õ = (l, m, u) A fuzzy triangular number 𝑨෩𝒌 = [𝒂෥𝒊𝒋𝒌] Fuzzy pairwise comparison matrix for expert k; k = 1, 2, … K 𝒂෥𝒊𝒋𝒌 Comparative importance of criterion i with respect to criterion j from the point of view 

of expert k; i, j = 1, 2, …, n 𝒘෥ 𝒊 Aggregated fuzzy weights of criteria i 𝑨෩ା Fuzzy positive ideal solution (FPIS) 𝑨෩ି Fuzzy negative ideal solution (FNIS) 𝒅𝒊ା Distance of alternative i from fuzzy positive ideal solution 𝒅𝒊  Distance of alternative i from fuzzy negative ideal solution 
CL Closeness coefficient 𝑫෩  Fuzzy decision matrix 𝑹෩ Normalized fuzzy decision matrix 𝒗෥ Weighted normalized decision matrix 
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