
Evaluation of Live Forensic Techniques in
Ransomware Attack Mitigation

Simon Rhys Davies

Submitted in partial fulfilment of

the requirements of Edinburgh Napier University

for the degree of Master of Science in

Advanced Security and Digital Forensics

Edinburgh Napier University

School of Computing

December 2019

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

Submission Checklist

Milestones Date of Completion Target Deadline
Proposal Week 7 Week 7
Initial Report Week 13 Week 13
Full Draft week 10 Week 10
Final Submission Week 12 Week 14

Learning Outcome The Markers will assess Pages Hours
Spent

Learning Outcome 1
Conduct a literature search using
an appropriate range of informa-
tion sources and produce a crit-
ical review of the findings.

•Range of materials and
quality and identifica-
tion/understanding of the
quality of sources; list of
references
•The critical literature
review/exposition/back-
ground information chapter
•Critical analysis and discus-
sion of the related work, and
highlighting of key findings
•Does the work/key findings
inform the method (LO2)

6 4001

Learning Outcome 2
Demonstrate professional com-
petence by sound project man-
agement and (a) by applying ap-
propriate theoretical and prac-
tical computing concepts and
techniques to a non-trivial prob-
lem, or (b) by undertaking an
approved project of equivalent
standard.

•Evidence of project man-
agement (Gantt chart, diary,
etc.)
•Depending on the topic:
chapters on design, im-
plementation, methods,
experiments, results, etc.
•Method justification from
literature/applying appro-
priate method, and typically
solid scientific method

90

25,41,
55

25

200

1Includes time spent on research area that was later rejected

i

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

Learning Outcome 3
Show a capacity for self-appraisal
by analysing the strengths and
weakness of the project out-
comes with reference to the ini-
tial objectives, and to the work of
others.

•Chapter on evaluation
•Assessing your outcomes
against the project aims and
‘objectives’. A good things to
do is align your objectives
against the main chapters in
your dissertation – lit review,
design, implement/exper-
iment/results, evaluation
and then you can copy and
rewrite your conclusions
from these chapters!
•Discussion of your project’s
output compared to the
work of others. With refer-
ence to other sources found
in the literature review/-
comparison against other
work/how this has built on
previous work
•Future work – how might
we take forward. If student
carried out work again how
might they have been done
things differently

55
75

75

78

125

Learning Outcome 4
Provide evidence of the meet-
ing learning outcomes 1-3 in
the form of a dissertation which
complies with the requirements
of the School of Computing both
in style and content.

• Is the dissertation well-written
(academic writing style, gram-
matical), spell-checked, free of
typos, neatly formatted.

• Does the dissertation contain all
relevant chapters, appendices,
title and contents pages, etc.

• Style and content of the disser-
tation.

200

ii

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

Learning Outcome 5
Defend the work orally at a viva
voice examination.

• Performance
• Confirm authorship

1
Hour

Have you previously uploaded your dissertation to Turnitin? Yes/No

Has your supervisor seen a full draft of the dissertation before submission? Yes/No

Has your supervisor said that you are ready to submit the dissertation? Yes/No

iii

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

Authorship Declaration

I, Simon Rhys Davies, confirm that this dissertation and the work presented in
it are my own achievement.

Where I have consulted the published work of others this is always clearly at-
tributed;

Where I have quoted from the work of others the source is always given. With
the exception of such quotations this dissertation is entirely my own work;

I have acknowledged all main sources of help;

If my research follows on from previous work or is part of a larger collaborative
research project I have made clear exactly what was done by others and what I
have contributed myself;

I have read and understand the penalties associated with Academic Miscon-
duct.

I also confirm that I have obtained informed consent from all people I have in-
volved in the work in this dissertation following the School’s ethical guidelines.

Signed: Simon Rhys Davies

Date: 1st December 2019

Matriculation no: 40290841

iv

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

General Data Protection Regulation Declaration

Under the General Data Protection Regulation (GDPR) (EU) 2016/679, the Uni-
versity cannot disclose your grade to an unauthorised person. However, other
students benefit from studying dissertations that have their grades attached.

Please write your name below one of the options below to state your prefer-
ence.

�3 The University may make this dissertation, with indicative grade, avail-
able to others.

� The University may make this dissertation available to others, but the
grade may not be disclosed.

� The University may not make this dissertation available to others.

v

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

Abstract

Ransomware continues to grow in both scale, cost, complexity and
impact since its initial discovery nearly 30 years ago. Security prac-
titioners are engaged in a continual "arms race" with the ransom-
ware developers attempting to defend their digital infrastructure
against such attacks. Recent manifestations of ransomware have
started to employ a hybrid combination of symmetric and asym-
metric encryption to encode user’s files.

This report describes an investigation to determine if the techniques
currently employed in the field of digital forensics could be lever-
aged to discover the encryption keys used by these types of mali-
cious software.

A safe, isolated virtual environment was created and ransomware
samples were executed within it. Memory was captured from the
infected system and its contents was examined using three differ-
ent live forensic tools in an attempt to identify the symmetric en-
cryption keys being used by the ransomware. NotPetya, BadRabbit
and Phobos ransomware samples were were tested during the in-
vestigation on two different operating systems. The samples were
chosen as they were recent, high profile attacks generating signi-
ficant ransom payments and causing serious disruption to many
organisations.

If keys were discovered, the following two steps were also performed.
Firstly, a timeline was manually created to show when the keys were
present in memory and how long they remained there. Secondly,
an attempt was made to decrypt the files encrypted by the ransom-
ware using the found keys. In all cases the investigation was able
to confirm that it was possible to discover the encryption keys used
and these found keys successfully decrypted files that had been en-
crypted by the ransomware samples.

No research was found that conducted cryptographic key exam-
ination specifically on ransomware using live forensic techniques,
however research was found that investigated other types of cryp-
tographic programs. The results of this investigation matched sim-
ilar findings from these related research fields, as the keys used by
the cryptographic programs were successfully recoved and used to
decrypt the files.

The ransomware time lining also highlighted different key manage-

vi

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

ment processes used by these ransomware programs, where some
tended to leave the key in memory for the whole execution while
others practiced more dynamic key management.

Keywords: Ransomware, Live Forensics

vii

Contents

1 Introduction 1
1.1 Background . 1
1.2 Aims and objectives . 2
1.3 Ethical compliance . 3
1.4 Structure . 4

2 Literature Review 6
2.1 Introduction . 6
2.2 Ransomware definition . 6

2.2.1 History of ransomware . 8
2.2.2 Current status and future trends 10
2.2.3 Ransomware infection path 12

2.3 Live forensics . 14
2.3.1 Static analysis . 15
2.3.2 Dynamic analysis . 15
2.3.3 Memory acquisition . 15

2.4 Cryptanalysis live forensics . 16
2.4.1 Keys present in memory . 17
2.4.2 Examination of memory methods 18
2.4.3 Identifying keys in memory 19
2.4.4 Identifying AES keys . 20
2.4.5 Method . 22
2.4.6 Issues . 23

2.5 Conclusion . 23

3 Design 25
3.1 Introduction . 25
3.2 Research methodology . 25
3.3 Environment design . 27

3.3.1 Safe environment proposal 27
3.3.2 Technology options available 27
3.3.3 Software selection . 28
3.3.4 Environment design . 28

3.4 Experiment design . 29
3.4.1 Experiment 1 - Is the key in memory 31
3.4.2 Experiment 2 - How long is the key present 31
3.4.3 Experiment 3 - Does the key decrypt files 31

viii

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

3.4.4 Combined experiment . 32
3.4.5 Control file example . 37

3.5 Results and analysis . 38
3.5.1 Analysis method . 38
3.5.2 Data capture . 38

3.6 Conclusion . 39

4 Implementation and results 41
4.1 Introduction . 41
4.2 Ransomware sample selection . 41

4.2.1 Other ransomware . 43
4.3 Laptop configuration . 43
4.4 Virtual hardware configuration . 44
4.5 Virtual network topology . 45
4.6 Tools . 46
4.7 Experiments . 47

4.7.1 Experiment 1 - Is the key in memory 47
4.7.2 Experiment 2 - How long is the key present 49
4.7.3 Experiment 3 - Does the key decrypt files 49

4.8 Experimental process overview . 50
4.9 Experimental results . 52

4.9.1 Ransomware execution on Windows 7 52
4.9.2 Ransomware execution on Windows 10 52

4.10 Conclusion . 53

5 Evaluation 55
5.1 Introduction . 55
5.2 NotPetya . 55

5.2.1 Experiment 1 – Is the key in memory 57
5.2.2 Experiment 2 – How long is the key present 58
5.2.3 Experiment 3 – Does the key decrypt files 59

5.3 Bad Rabbit . 60
5.3.1 Experiment 1 – Is the key in memory 62
5.3.2 Experiment 2 – How long is the key present 63
5.3.3 Experiment 3 – Does the key decrypt files 64

5.4 Phobos . 64
5.4.1 Experiment 1 – Is the key in memory 65
5.4.2 Experiment 2 – How long is the key present 66
5.4.3 Experiment 3 – Does the key decrypt files 67

5.5 Conclusions . 69

ix

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

6 Conclusion 71
6.1 Aims and Objectives . 71
6.2 Objective One – Literature Review 72
6.3 Objective Two – Experiment Design 73
6.4 Objective Three – Design and Implementation 74
6.5 Objective Four – Evaluation . 75
6.6 Self Appraisal . 77
6.7 Future Work . 78

References 80

Appendices 89

Appendix A Project management 90
A.1 Project proposal . 90
A.2 Project timeline . 91
A.3 Project diary . 92

Appendix B Code and Command Samples 103
B.1 Decrypted file modification . 103
B.2 decrypt.py . 104
B.3 RansomAES.py . 105

x

List of Figures

2.1 F-Secure explosion of Ransomware. (F-Secure, 2017) 9
2.2 Notable Attacks. (Vanderburg, 2019) 10
2.3 Malware Infection Growth Rate (Purplesec, 2019) 11
2.4 McAfee 6 Phase Ransomware Model.(McAfee Labs, 2016) 12
2.5 NotPetya Attack Phases.(Microsoft Defender ATP Research Team,

2017) . 14
2.6 AES Key and Key Schedule (Maartmann-Moe, Thorkildsen & Årnes,

2009) . 21

3.1 Experiment Overview . 30
3.2 Overview of Experiment-1 & Experiment-2 31
3.3 Overview of Experiment-3 . 32
3.4 Experiment Flow . 33
3.5 Windows 7 and 10 adoption rate in N. America and Western Europe

from 2017 to 2019 . 34
3.6 Control pdf.pdf file . 37
3.7 Control pdf.pdf file contents . 37

4.1 VirusTotal Results for NotPetya . 42
4.2 VirusTotal Results for Bad Rabbit . 42
4.3 VirusTotal Results for Phobos . 43
4.4 Conceptual Laptop Software Stack 45
4.5 Windows 7 Test Environment . 46
4.6 Experiment Process Overview . 51

5.1 Fake Chkdsk . 56
5.2 NotPetya Ransom Message . 56
5.3 NotPetya AES Encryption Key . 57
5.4 NotPetya Interrogate Output . 57
5.5 NotPetya findaes Output . 57
5.6 NotPetya RansomAES Output . 58
5.7 NotPetya Timeline . 58
5.8 File Encrypted by NotPetya . 59
5.9 Partially Decrypted NotPetya File . 59
5.10 Decrypted NotPetya File . 60
5.11 Bad Rabbit Ransom Note . 61
5.12 Bad Rabbit AES Encryption Key . 62
5.13 Bad Rabbit Interrogate Output . 62

xi

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

5.14 Bad Rabbit findaes Output . 62
5.15 Bad Rabbit RansomAES Output . 63
5.16 Bad Rabbit Timeline . 63
5.17 Phobos Ransom Message . 65
5.18 Phobos AES Encryption Key . 65
5.19 Phobos Interrogate Output . 66
5.20 Phobos findaes Output . 66
5.21 Phobos RansomAES Output . 66
5.22 Phobos Timeline . 67
5.23 File Encrypted by Phobos . 68
5.24 Partially Decrypted Phobos File . 68

A.1 Project Plan . 91
A.2 Project Dairy 20190802 . 92
A.3 Project Dairy 20190816 . 93
A.4 Project Dairy 20190823 . 94
A.5 Project Dairy 20190830 . 95
A.6 Project Dairy 20190906 . 96
A.7 Project Dairy 20190913 . 97
A.8 Project Dairy 20190920 . 98
A.9 Project Dairy 20190927 . 99
A.10 Project Dairy 20191011 . 100
A.11 Project Dairy 20191018 . 101
A.12 Project Dairy 20191025 . 102

xii

List of Tables

3.1 Control file details . 36
3.2 Example of Results Matrix . 38

4.1 Ransomware Samples . 42
4.2 Laptop Configuration . 44
4.3 Virtual Hardware Configurations . 44
4.4 Virtual Network Configuration . 45
4.5 Windows 7 Results . 52
4.6 Windows 10 Results . 52

5.1 NotPetya Sample Details . 55
5.2 Bad Rabbit Sample Details . 60
5.3 Phobos Sample Details . 64

xiii

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

Acknowledgements

I would like to thank my thesis advisor Rich MacFarlane of the School of Com-
puting at Edinburgh Napier University. Both the physical and virtual door to
Rich’s office was always open whenever I ran into a trouble or had a question
about my research or writing. He consistently allowed this paper to be my own
work, but steered me in the right the direction whenever he thought I needed
it. Throughout the project he continually guided me while challenging my as-
sumptions, proving to be an invaluable interlocutor allowing this project to be-
come far deeper and more complete than I could have ever hoped for. For this
I am extremely grateful.

xiv

Chapter 1

Introduction

The aim of this project was to investigate if the techniques commonly used in
live forensics can be applied to the analysis of ransomware and in so doing al-
low the investigator to discover useful cryptographic fragments from the mal-
ware that could later be used to reverse the effects of the ransomware’s execu-
tion.

The techniques described in this report are not designed to specifically identify
the presence of ransomware on a machine, but rather to provide remedial tech-
niques that could be employed to mitigate an on-going attack.

1.1 Background

While ransomware first appeared more than 30 years ago (Salvi, 2015), its initial
impact on the computing community was small with only a few people being
affected and recovery from the attack being trivial.

The threat landscape changed in 2013 with the release of the CryptoLocker
ransomware (Bradley, 2016) where attackers adopted the three new technolo-
gies of crypto currency, TOR onion routing and cryptography. Combining them
to produce a new breed of ransomware programs that have become more ef-
fective and aggressive than anything previously experienced. These new soph-
isticated attacks have generated large amounts of money for the perpetrators.
Culminating in two of the biggest ransomware attacks in recent times, Wan-
naCry which is estimated to have cost $8 billion and NotPetya which is estim-
ated to have cost $10 billion(Mekynyk, Speier-Pero & Connors, 2019).

The number of malware attacks is generally considered to be growing year on
year (Europol, 2016; Intelligence & Analysis, 2019). It was observed that the ma-
jority of research into ransomware could be broken down in to three distinct
areas. One concentrating on the detection of ransomware attacks using tech-
niques such as machine learning or neural networks. A summary of the most
recent work performed in this area is presented by Al-rimy (Al-rimy, Maarof
& Shaid, 2018) and describes the current techniques used and anticipated fu-
ture direction of this research area. The second area of ransomware research

1

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

was found to concern itself with dissecting the mechanics of an attack and the
techniques used by the ransomware program for encryption, persistence, in-
fection and propagation. Prime examples of this type of research being the
work performed by Akkas (Akkas, Chachamis & Fetahu, 2017) into the analysis
of the WannaCry or Sai (Sai & Kumar, 2019) for the NotPetya ransomware fam-
ilies. The final area of research being prevention techniques such as education,
phishing identification (Gupta, Arachchilage & Psannis, 2018), social engineer-
ing and other techniques found by the researchers to be effective in preventing
ransomware from entering the system (F-Secure Labs, 2016).

There exists a separate research field concerning itself with the study and de-
velopment of live forensics techniques and more specifically with live memory
analysis. Some research performed in this field has been into the recovery of
cryptographic fragments, specifically encryption keys, from the contents of the
systems memory where cryptographic processes are active. A lot of this re-
search has proven very successful (Balogh & Pondelik, 2011; Maartmann-Moe
et al., 2009) allowing the researchers to determine the encryption keys used by
the cryptographic programs and then using them to decrypt files. However no
specific research has been found where these techniques have been applied to
machines that have ransomware active on them.

The current advice to users who discover that they are under a ransomware at-
tack is that they should switch off their machine immediately (Sittig & Singh,
2019). However if the user follows this advice then the critical data in memory,
such as encryption keys, would be unrecoverable. The findings of this investig-
ation may suggest that another course of action could possibly be considered.
These alternative solutions may provide techniques that could be used to re-
cover affected files, without the user having to pay the requested ransom.

1.2 Aims and objectives

The aim of this project is to determine if the techniques currently employed in
live forensics could be applied to the mitigation of the affects of a ransomware
attack. More specifically if the inspection of the live memory, of a system where
ransomware is currently running, could provide information that could be used
to reverse the impact of the ransomware program.

To achieve this the following sub aims have also been identified:

1. Conduct a critical literature review on the subject of ransomware and
live forensics. Included in this would be an analysis of the current status
of ransomware attacks, trends, techniques for delivery, general steps in-

2

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

volved in such an attack as well as live forensic techniques relating to
memory analysis with regards to cryptanalysis.

2. Develop and validate a robust, isolated, realistic test environment that
can be used to execute the designed experiments.

3. Building on the findings from the literature review, design and develop
specific experiments to test the hypothesis that live forensic techniques
may be used in mitigating the affects of a ransomware attack. Using three
different detection tools on three examples of ransomware. These exper-
iments being run on two different operating systems.

4. Discuss and evaluate the results and findings from the experiments and
compare them to similar research on the subject. Draw conclusions from
the experiments, results and findings and critically evaluate the project.

1.3 Ethical compliance

Dealing with malware, and ransomware in particular should be performed with
the utmost care. Adequate safeguards were incorporated in to all experiments
in order to prevent the accidental dissemination of the code from the test en-
vironment. By its very nature, these types of programs are designed to try and
bypass security and network controls and attempt to propagate themselves to
other machines. So particular care was taken in designing and implementing a
safe test environment ensuring that no accidental leak of the code could occur.

Criminal laws and professional codes of conduct also stipulate how a computer
scientist should work. The British Computer Society’s code of conduct (BCS,
2015) states that the computer researcher should:

"have due regard for public health, privacy, security and well being
of others and the environment"

And

"avoid injuring others, their property, reputation, or employment by
false or malicious or negligent action or inaction"

In the UK, the researcher is also under the jurisdiction for the Computer Misuse
act (Spiritual, 2017) which stipulates in section 3 that the researcher should not
perform:

“Unauthorised acts with intent to impair, or with recklessness as to
impairing, operation of computer, etc."

3

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

Bearing these laws and guidelines in mind, the management and execution of
the ransomware samples was performed with great care an attention. Steps
taken during the project to comply with these laws and guidelines were:

1. The execution of the sample was only performed in a virtual environment
that contained no external connections.

2. The virtual environment used during the experiments was hosted on a
machine that itself had no external connections. This provided a double
isolation and an "air gap" to the test machine.

3. The test environment and its host machine were deleted and the hard
disk reformatted after completion of the tests.

4. Files were transferred to the test machine via a removable USB stick, which
was reformatted after each transfer.

5. Only encrypted document files were transferred from the test machine.

6. No personal or private data was present on the test machines.

7. The test machines, snapshots, infected files and ransomware samples
were deleted on completion of the project.

8. An up-to-date anti-virus program was running on the host machine.

9. Documented proof that these safe guards were performed.

It is believed that the implementation of these safe guards provide sufficient
protection from the intentional execution of these ransomware programs and
demonstrate that no malicious intent existed by the researcher in executing
them.

1.4 Structure

The remainder of this document is structured as follows:

Chapter 2 - A literature review in to ransomware. Specifically focusing on the
techniques used for delivery, infection process, general steps in ransomware
execution, techniques for prevention, current status and future trends. A sec-
ondary literature review in to live forensic techniques specifically focusing on
the acquisition of memory fragments relating to cryptanalysis and the recovery
of symmetric keys from memory.

Chapter 3 - Describes the philosophy guiding the design of the test method-
ology developed, including the environment and the experiments that will be

4

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

performed within it. This section also covers the criteria used during the selec-
tion of hardware and software packages.

Chapter 4 - Presents the reasoning used in the ransomware sample selection. It
goes on to describe the implementation of the experiments performed together
with the results achieved when these experiments were executed.

Chapter 5 - Critical analysis of the experimental results and comparison to sim-
ilar work in the field. Also contains critical analysis of the techniques and meth-
ods employed.

Chapter 6 –Discussion on the findings from the literature review and how they
relate to the experiments performed in this work. A critical review of the over-
all project, design and implementation highlighting key finding and identifying
areas of strength and weakness. The section concludes with suggestions of fu-
ture work that could be performed.

5

Chapter 2

Literature Review

2.1 Introduction

The aim of this project was the evaluation of live forensic techniques in ransom-
ware attack mitigation. The following literature review is structured as follows.
It begins with a definition of ransomware and the main classifications used
when describing it. The review then continues to describe the history of ransom-
ware attacks and the current status, demonstrating that they remain a real and
serious threat. The first section of the literature review ends with a description
of the main phases of a ransomware attack.

The second part of the literature review focuses on live forensic techniques and
how other researchers have used these techniques to gather cryptographic in-
formation. This is followed by a discussion of how the experiments were de-
signed and the methods used by the researchers. The review concludes with a
critical discussion of the findings and what aspects of previous research can be
leveraged in this project.

2.2 Ransomware definition

Ransomware is one of the most widespread and damaging threats that internet
users face today (Sophos, 2019). In its simplest form the definition of ransom-
ware is a “malicious program that after its execution prevents a user from ac-
cessing their data”. These programs are classified under a broader family of
programs known as malware which also include viruses, worms, Trojans, bot-
nets, spyware and rootkits (Grégio, Afonso, Filho, Geus & Jino, 2014).

More specific definitions are also provided by (Salvi, 2015) where they expand
and broaden the definition to be “a program that prevents you from using your
computer or your documents whether stored locally or in the cloud, locking
them with unbreakable encryption until a ransom in bitcoin is paid”. While
this definition is more specific, not all ransomware programs use bitcoin as
the payment method, or are able to reverse the encryption used. Also some
ransomware programs attack other elements of the computer system such at

6

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

the Master Boot Record (MBR) which is used in the management of the file sys-
tem.

Morato (Morato, Berrueta, Magaña & Izal, 2018) try to improve the definition
by categorising the different behaviours of ransomware in to different classi-
fications. For example if the program just prevents access to the machine it is
referred to as lockscreen ransomware, where as if access to the files are preven-
ted by the use of encryption then these programs are referred to as encryption
ransomware, crypto ransomware or cryptoware. However they do not expand
these definitions to include ransomware that contain a combination of both
behaviours and programs that masquerade as ransomware, but in fact are not.
For example programs that encrypt the data with no intention of being able
to decrypt it even if the ransom is paid are sometimes referred to as wipers
(O’Brien, 2017) as they effectively permanently remove access to the user’s files.

The types of encryption used by the ransomware is also used to classify ransom-
ware types (Al-rimy et al., 2018). The main classifications are show below:

Symmetric Crypto-Ransomware (SCR) uses, as the name suggests one key
for both encryption and decryption which allows the attack to complete in a
shorter time, reducing the chances of it being discovered. SCR can be imple-
mented by several symmetric key algorithms, such as Advanced Encryption
Standard (AES), Data Encryption Standard (DES), and Rivest Cipher 4 (RC4)
(Kong, Ang & Seng, 2015), however this type of cryptography has some limit-
ations when it comes to keeping the keys secret (Sihim, 2016).

Asymmetric Crypto-Ransomware (ACR) uses different keys for encryption and
decryption, using techniques such as RSA and is more robust but slower than
symmetric encryption. ACR-based crypto-ransomware is more likely to be able
to survive decryption attempts (Al-rimy et al., 2018). Having said that, public
key cryptography is not an ideal solution as it is possible that after one victim
has paid the ransom and received the private key for decryption, they could
then theoretically distribute it to all other affected users, who could then use
it to recover their own files. To avoid such a situation, crypto-ransomware au-
thors generate lists of private keys, one for each victim, which makes it quite
difficult (but not impossible) for these unique private keys to be shared with all
victims. However this turn raises a second problem of key management for the
attacker.

Hybrid Key Crypto-Ransomware (HCR) combines the best of both the previ-
ous classes of ransomware into a hybrid solution. Firstly it uses symmetric en-
cryption to encrypt the user’s files as fast as possible. After which the symmetric
key is encrypted using asymmetric encryption. The AES key is encrypted using

7

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

the attackers public key that is delivered with the ransomware software. The
ransom message will ask the victim to send the encrypted key, together with
payment, back to the attacker, whereby the AES key is extracted by the attacker
using their own private key and the AES key is sent back to the victim allowing
them to decrypt their files.

There is currently no definition for ransomware which also takes in to account
the psychological aspect of ransomware relating to the extortion message. This
extortion is imposed by exploiting victim’s fear of losing valuable data, revealing
sensitive information or locking key resources (Al-rimy et al., 2018) .

2.2.1 History of ransomware

It is generally agreed (Furnell & Security, 2017; Salvi, 2015) that the first recog-
nised ransomware was the AIDS (Aids Info Desk) Trojan, released in 1989. This
program was propagated using floppy disks and once a machine was infected,
it would encrypt files and render the machine unusable. The user then needed
to pay $189 to recover their files. The payment being processes via a cheque
sent to a bank in Panama.

Although proposed by Young (Young & Yung, 1996) in 1996, the use of strong
encryption in attacks didn’t gain popularity until the mid 2000’s when GPCode
was released (Furnell & Security, 2017). GPCode represented the first real world
implementation of the schemes proposed by Young and Yung; encrypting disk
content and demanding ransom payment. Many variants of GPCode contained
flaws including poorly implemented encryption routines, insecure encryption
keys, or poor file deletion strategies, which allowed recovery of deleted con-
tent; significantly however, GPCode continued to evolve, its deletion strategies
became stronger and the encryption schemes and key lengths improved over
time (Hampton & Baig, 2015).

2013 was the breakthrough year for ransomware attacks (Bradley, 2016). Crypto-
Locker streamlined the ransomware process by adding the ability to pay the
ransom using an electronic payment method called Bitcoin. This efficiency in
collection meant that CryptoLocker was able to collect an estimated $5 million
dollars during four months in 2013. This ransomware combined elliptic curve
cryptography, anonymous onion routing using the Tor network and bitcoins
and gave rise to the CTB acronym (Curve,Tor,Bitcoin) which is used to describe
many forms of ransomware today. The use of these technologies further obfus-
cate the perpetrator of the attack making them even more difficult to identify
or trace (Savage, Coogan & Lau, 2015).

Technically capable cyber criminals then developed and enhanced ransom-

8

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

ware techniques over the coming years moving from SCR and ACR to the more
robust HCR encryption solutions.

Occasionally, the implementation of a ransomware strain has contained a pro-
gramming or design error which has allowed researchers to reverse engineer
the code and develop techniques to recover systems. For example in the CryptoDe-
fense attack (Symantec, 2014), the developers left copies of the encryption keys
used on the file system. These mistakes are however uncommon and the gen-
eral consensus for mitigating such attacks remains to use up to date firewalls
and take regular backups (Europol, 2018). There have been no recorded incid-
ents where the actual encryption algorithm used has been broken, so currently
as long as it is implemented correctly it remains a robust approach.

The explosion of ransomware attacks can easily seen in a diagram produced by
F-Secure (F-Secure, 2017) and shown below in Figure 2.1. This explosion has
been attributed to several factors including the fact that Ransomware as a Ser-
vice (RaaS) became available, ransomware development kits and guides could
be purchased and code from previous strains were also available for purchase
(Sultan, Khalique, Alam & Tanweer, 2018).

Figure 2.1: F-Secure explosion of Ransomware. (F-Secure, 2017)

Notable examples of attacks being Cryptowall in 2013 which used a fake cam-
paign on an advertising network for propagation, CTB locker using bitcoin for
payments in 2014, Chimera in 2015 which threatened to leak the files if the

9

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

ransom was not paid, Petya which was non recoverable, jigsaw and Zcrypt in
2016 which used horror film references to further distress the victim, WannaCry
and NotPetya in 2017 which have netted the largest payouts and Ryuk in 2018
designed to specifically target enterprise environments.

A time line of the most financially successful ransomware attacks is provided
by Vanderburg (Vanderburg, 2019) and shown in the Figure 2.2 below, with just
the last two strains alone netting in excess of $18 billion (Kapersky, 2018).

Figure 2.2: Notable Attacks. (Vanderburg, 2019)

The most recent ransomware variants are using HCR for each infection and
supposedly wiping the session key from memory after usage. As discussed
earlier, the advantages of using HCR becoming apparent as the attack com-
pletes in a significantly shorter time period increasing the likelihood that it is
undetected. They also use privacy-enabling services, such as Tor, and favour
bitcoins for payment. Making it virtually impossible to trace the attackers or
recover the affected files without paying the ransom (Savage et al., 2015).

2.2.2 Current status and future trends

While historically the incidents of ransomware have been increasing year on
year prompting Interpol to declare in 2016 that ransomware had become “the
most prominent malware threat [. . .] for citizens and enterprises alike” (Europol,
2016) a later report from 2019 (2019 Malwarebytes LABS, 2019) has indicated

10

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

that there was a in fact a decrease of 26% in detected cases during 2018. This is
however contradicted by a report by Sonicwall(Intelligence & Analysis, 2019)
who claim that they have witnessed a 11% increase during this time frame.
Reasons for these difference in recorded incidents could be attributed to a couple
of factors:

1. Attackers have shifted focus from private individuals towards enterprises
(Malwarebytes, 2019; Symantec, 2019) and the authors of these reports
may be gathering their statistics from different areas of the industry (Davies,
2019).

2. Reduction in available online ransomware exploit kits available for ransom-
ware development (Europol, 2018).

However, this decline is predicted to reverse dramatically in 2019 (Malwarebytes,
2019) with the data from the first quarter showing a 500% year on year increase
in attacks and the trend upwards is set to continue (Levy & Cto, 2019). Europol
confirming in 2018 that they believe that ransomware will retain its dominance
for several years to come (Europol, 2018).

The ‘Cyber Security Breaches Survey 2019’ indicated that 12% of businesses had
experienced a ransomware attack in the past 12 months making it the fourth
most frequent encountered category of identified breaches. (Klahr, Amili, Shah,
Button & Wang, 2019) and Microsoft confirming that the threat is an evolving
menace (Microsoft, 2017).

Even at the time of writing American government agencies are struggling with
the affects of a recent ransomware attack (O’Donnall, 2019) and US authorit-
ies are preparing for similar attacks during the voter registration for the 2020
elections (Hautala, 2019).

These reports of increased activity are corroborated by the latest malware stat-
istics for 2019 (Purplesec, 2019) shown in Figure 2.3 below:

Figure 2.3: Malware Infection Growth Rate (Purplesec, 2019)

11

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

The damage from the NotPetya cyberattack is estimated at $10 billion, whereas
WannaCry, according to various estimates, lies in the $4–$8 billion range. Not-
Petya is considered the costliest global cyberattack in history (Kapersky, 2018).

2.2.3 Ransomware infection path

According to Wang (Wang & Wang, 2015), ransomware follows the same ap-
proach as traditional malware when exploiting a system’s vulnerabilities. For
example email attachments or compromised websites are leveraged as attack
vectors in order to infect a victims computer. Several different organisations
have proposed models that attempt to describe the behaviour of ransomware.
Many of which suggest that the classification of a ransomware attack can be di-
vided up in to six distinct phases (Al-rimy et al., 2018; Sultan et al., 2018; Eric
Vanderberg, 2018). An example of one such proposal is the model published by
McAfee (McAfee Labs, 2016) shown in Figure 2.4.

Figure 2.4: McAfee 6 Phase Ransomware Model.(McAfee Labs, 2016)

Distribution - This phase deals with the packing of the ransomware and de-
livery of the malicious code to the victims system. Different exploitation tech-
niques are employed to facilitate the delivery such as phishing attacks, spam
mail campaigns, social engineering, infiltration and drive by download.

Infection - This phase deals with the execution of the ransomware and its initial
behaviour. During this phase the software explores the running environment
and collects information about the victim’s device, such as platform type, OS
version, and installed programs. (Prakash, Nafis & Sankar Biswas, 2017)

12

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

Communication – During this phase the ransomware retrieves the encryption
keys from the command and control (C&C) server. This is an external machine
controlled by the attacker and is used to supply the encryption keys and execu-
tion modules required at a later stage of the infection. Not all ransomware per-
form this task as some variations have the keys already attached to its payload
(Sgandurra, Muñoz-González, Mohsen & Lupu, 2016). Some ransomware will
also try and pivot to other machines on the network during this phase.(Sophos,
2019)

File Search – During this phase the ransomware starts looking for targeted re-
sources such as user’s files, resources, and accessibility functions. Files are nor-
mally selected based on their file extensions (Sultan et al., 2018)

Encryption - Based on its family type, the ransomware starts hijacking the tar-
geted resources found in the previous phase and locks and/or encrypts these
resources (Mbol, Robert & Sadighian, 2016; Paik, Shin & Cho, 2016). Depend-
ing on its family type, if the attack is a wiper (e.g. Petya), then the encryption
key is not handled in any way and just thrown away. For other families (e.g.
Wannacry, NotPetya), then the key is communicated back to the attacker via
the C&C server or via the ransom message. As highlighted earlier, the major-
ity of modern ransomware programs are now a hybrid key crypto-ransomware
(HCR) type using a combination of encryption techniques to improve perform-
ance. Files maybe moved or renamed and backups may also be spoiled during
this phase (Klein, 2017). The machine may reboot and also encrypt the MBR.
If the ransomware has been successfully covert during its execution, the reboot
of the machine maybe be the first time a user is aware of its presence.

Ransom demand - Once the encryption process completes, a message is shown
to the victim demanding a ransom accompanied by payment instructions. Pay-
ing the ransom does not guarantee that a decryption key would be sent, but it
does increase the chances of data recovery (Richardson & North, 2017).

This model was used during the evaluation phase of this project as the fine
granularity of each steps was useful in being able to capture specific inform-
ation concerning a ransomware’s execution. However not everyone is in agree-
ment regarding the number of phases that should be included in an infection
model. Ahmadian(Ahmadian, Shahriari & Ghaffarian, 2016), Kumar(Kumar &
Kumar, 2013) and Gazet (Gazet, 2010) prefer a simpler, less granular three phase
model that is more generalised and easier to adapt to specific instances of ransom-
ware behaviour. It is worth noting that no model was found which includes a
phase for the user paying the ransom and hopefully recovering their files.

An example of a ransomware attack is provided by Microsoft (Microsoft De-

13

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

fender ATP Research Team, 2017) is shown in Figure 2.5.

Figure 2.5: NotPetya Attack Phases.(Microsoft Defender ATP Research Team, 2017)

The diagram describes the attack process of the NotPetya ransomware family
and highlights the difference phases that the ransomware attack goes through
including infecting the MBR, lateral movement to other machines on the net-
work by exploiting SMB connections or credential harvesting, before finally en-
crypting the victims files and displaying the ransom note.

2.3 Live forensics

Static forensic analysis methods are used in analysing evidence from a com-
puter system that has been turned off. The problem with this approach is that
significant information stored in the computers volatile memory is lost when
the machine is switched off. Examples of information that could be present
in memory are encryption keys, open connection details, running processes,
logged in users etc.(Bashir & Khan, 2013)

To address this issue a complimentary forensics approach has also been de-
veloped know as live forensics. Live forensic analysis primarily targets the com-
puters volatile data which can only be collected from a running system; hence,
the term "live". Live forensics is a methodology to extract memory, system
processes and network related information from a running system helping to

14

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

understand the overall state of the system under investigation.(Bashir & Khan,
2013). When applied to ransomware analysis, the live forensics techniques can
be complimented by combining them with malware analysis techniques. These
techniques can be generally divided in to two main categories static analysis
and dynamic analysis.

2.3.1 Static analysis

This is a passive technique where the code of a suspicious piece of software is
examined, without it being executed. The structure of the code is analysed and
attempts are made to determine if its purpose is malicious.(Wang & Wang, 2015;
Zhang & Tan, 2015). This form of analysis is safe to perform and will not neg-
atively affect the system where it is done. A lot of information may be gathered
using this technique for example execution paths and file access(Galal, Mahdy
& Atiea, 2016). However this technique is unable to work with programs that
have been packed or obfuscated (Choudhary & Vidyarthi, 2015) and can be in-
effective against sophisticated programs(Sai & Kumar, 2019) or programs that
have their modules encrypted until just before they are required for execution
(Malwarebytes, 2018). Advanced forms of this technique require deep know-
ledge and understanding of OS concepts, machine code and assembly languages
(Sai & Kumar, 2019)

2.3.2 Dynamic analysis

This approach actually executes the malicious code in an isolated controlled
environment such as a sandboxed or virtual environment and the programs
activities and interaction with the system are analysed (Kaur & Singh, 2014).
The dynamic approach is more effective in identifying the actual intent of the
program under scrutiny, as it observes what the malicious code does rather
than what it looks like. Likewise, employing dynamic analysis contributes to
detection of previously unknown malicious code variants, based on the gen-
eral behavioural signature of the ransomware family(Al-rimy et al., 2018). Us-
ing this technique it is possible to obtain information that is difficult to gather
using other methods(Sai & Kumar, 2019).

2.3.3 Memory acquisition

One important aspect of live forensics is the examination of the systems memory
where the malicious code is running. This examination is normally performed
off-line so that the contents of the memory are not affected by the examination

15

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

or the memory capture tools used. To achieve this, the memory of the system
to be examined needs to be captured and saved.

According to (Ruff, 2008) there are three main memory capturing techniques:

1. Software-based, which typically involves executing extraction programs.
An issue with this approach being that the execution of software would
impact the contents of the captured systems memory.

2. Hardware-based, which typically involves connecting devices, such as
PCMCIA cards or USB sticks and are not always practical in live scen-
arios as physical access to the machine is required (McLaren, Russell,
Buchanan & Tan, 2019).

3. Virtualization technology-based techniques.

The memory acquisition process is especially unstandardised, and different re-
searchers have used different methods (Maartmann-Moe et al., 2009). A de-
tailed compilation of the techniques available is provided in (Carvey & Casey,
2009) along with advantages and disadvantages of each approach.

Using the virtualization approach, a snapshot of the analysed system’s volatile
memory is extracted using tools provided by the virtualization software. This
snapshot is then inspected by an analyst using a variety of specialised forensic
tools(Nissim, Lahav, Cohen, Elovici & Rokach, 2019). Obviously to use this tech-
nique the system must be running in a virtualised environment. The advant-
ages of this approach being that no trace of any extraction program exists in
the captured memory and any running malicious programs are unaware that
they are being analysed or that the memory dump was taken (Ligh, Case, Levy
& Walters, 2014; Dinaburg, Royal, Sharif & Lee, 2008; McLaren, Buchanan, Rus-
sell & Tan, 2019).

The challenge of memory acquisition in this context is to discover cryptographic
artefacts, such as the encryption keys, in a manner that allows the target device
to continue to operate normally, while the memory is being acquired (McLaren,
Russell et al., 2019).

2.4 Cryptanalysis live forensics

The idea of extracting cryptographic material from a large body of plain text
was first discussed in 1998 (Shamir & Van Someren, 1998) and was framed in
the concept of a “lunchtime attack”. The scenario discussed in this type of side
channel attack focuses on the concept of a time restricted attack window, such

16

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

as a user leaving their machine unlocked while they are away from their desk,
for instance while going for lunch.

The paper discusses the ability to quickly and efficiently identify cryptographic
key material in large amounts of data. The researchers did not inspect volatile
memory at this time rather they focused on locating asymmetric RSA keys on
a plain text disk. Although such keys are often encrypted when stored on disk,
the idea of exploiting the cryptographic properties of the keys to efficiently find
them was rather novel. They used simple statistical and visual methods to loc-
ate regions that are likely to contain encryption keys (Maartmann-Moe et al.,
2009). In a more recent article it was proposed to use the structural properties
of the code to identify the cryptographic keys (Pettersson, 2007), however this
technique is not realistic as it would require access to the source code of the
cryptographic program for it to be applicable.

Some work has been previously performed into the possibility of using dynamic
analysis techniques to discover encryption keys that may be present in a com-
puters memory. It was not possible to find any literature that focused specific-
ally on ransomware in particular, however similar work on key determination
in volatile memory has been performed for SSH tunnels, encrypted volumes,
WinRAR, WinZip and Skype (Maartmann-Moe et al., 2009; Balogh & Pondelik,
2011; McLaren, Russell et al., 2019).

2.4.1 Keys present in memory

Several research papers confirm the assumption that for a system to be able to
encrypt/decrypt data, then the cryptographic algorithm needs to have access
the encryption keys and these are normally held in volatile memory. Balogh
(Balogh & Pondelik, 2011) state that encryption in real-time is only performed
in memory which means that the encryption keys must also be present there.
So in the case of symmetric encryption it means that the keys also needed for
decryption will also be recoverable from memory.

When discussing the TrueCrypt and BitLocker software Hargreaves (Hargreaves
& Chivers, 2008) states that these packages only decrypt content as it is re-
quired. Therefore the keys needed for decryption have to be continuously ac-
cessible and should always be recoverable from memory.

With regards to key management Maartmann-Moe (Maartmann-Moe et al., 2009)
state that it is clear that cryptographic keys need to be present in memory dur-
ing encryption when using standard computer hardware.(Maartmann-Moe et
al., 2009). It is recommended by these researchers that keys that reside in memory
while the application is running should be purged the moment it terminates.

17

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

When examining encryption keys for ssh tunnels in virtual environments McLaren
(McLaren, Russell et al., 2019) suggest that if timely acquisition of target device
memory is obtained, the stream or artefacts may be discovered, enabling the
compromise of secure communications. Similarly, in extensive tests conduc-
ted on 10 different cryptographic systems the researchers (Maartmann-Moe et
al., 2009) were always able to retrieve all the cryptographic keys from memory
for every application tested using their specifically developed tool called ’in-
terrogate’. While neither of these researchers have investigated ransomware in
particular, their findings strongly indicate that it would be possible to extract
ransomware cryptographic keys using similar techniques.

2.4.2 Examination of memory methods

The usual process for locating something is to try to identify some character-
istic of what is being located and then to look for that characteristic. One char-
acteristic of cryptographic keys is that they are usually chosen at random. Most
code and data is not chosen at random and it turns out that this differentiation
is significant (Shamir & Van Someren, 1998). When data is random it has higher
entropy than patterned information that is not random. This means that it
should be possible to locate cryptographic keys among other data by locating
sections with unusually high entropy (Balogh & Pondelik, 2011). The authors
found that the block where the main and the auxiliary ASE keys are located has
a recognizable structure and high entropy.

One technique investigated by Hargreaves(Hargreaves & Chivers, 2008) was to
treat the memory as a large blob of bytes and sequentially traverse through it
looking for candidate keys, which seemed to be an overly time intensive ap-
proach. Memory is in fact quite structured containing known patterns and
hierarchies (Maartmann-Moe et al., 2009). In reality, symmetric cryptographic
keys are just short sequences of random looking data, often 16–32 bytes long
residing amongst other pieces of data with a much lower entropy.

Another technique investigated, when looking for encryption keys for the Bit-
Locker program was to search for the keyword “External Key” or a hidden read
only file with the extension “.BEK” in the memory image (Saravanan & Mukesh,
2014). While this technique does work for this product, it is too specific for the
application to ransomware as their keys do not have any such identifying titles
or labels. This, like any other method that relies on access to the source code
to determine a keys features or structures would not be useful when dealing
with ransomware (Balogh & Pondelik, 2011) as the structure of this code would
be unknown. Techniques that focus on the cryptographic keys properties and
attributes have proven to be a more successful approach for identifying cryp-

18

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

tographic keys in memory for ransomware.

2.4.3 Identifying keys in memory

In order to extract encryption keys from memory, they must first be identified
(Halderman et al., 2009). To do this, techniques needs to be developed that can
identify the keys. Several researchers have discovered (Halderman et al., 2009;
Ptacek, 2008; Shamir & Van Someren, 1998), that encryption keys in memory
are far more structured than previously believed, several strategies to locate the
keys have been proposed and are discussed below.

A brute-force approach using the memory image as a dictionary (Kaplan, 2007;
Hargreaves & Chivers, 2008). In this approach sequential segments of memory
are taken and then used as the key to determine if it decrypts the data. If not
the next segment of memory is read and the process repeats until the end of
the memory is reached. This method does not require any understanding of
the memory structure and does not use any logic to improve the performance.
This type of approach for ransomware is obviously unrealistic due to the large
amount of work that would be required to check all the data as candidate keys.

Using a high entropy searching approach as suggested by Shamir (Shamir &
Van Someren, 1998) and tested by (Maartmann-Moe et al., 2009). Key entropy
or randomness, means that the sequence of bits cannot be easily predicted
and can be evaluated using Shannon’s entropy measure for discrete variables
(Shannon, 1948). Since it is known that key data has more entropy than non-key
data, one way to locate a key is to divide the data into small sections, measure
the entropy of each section and display the locations where there is particularly
high entropy (Shamir & Van Someren, 1998). There is no real need to calculate
the exact entropy value of a section as the entropy of most program code is ex-
tremely low and it is a relatively simple task to identify encryption keys of high
entropy amongst this data. This technique is also program agnostic with no
knowledge of the programs structure being required. Having the large concen-
tration of entropy in the key data makes it easy to identify amongst many other
types of memory regions(McLaren, Russell et al., 2019).This approach should
have a better performance than the brute force approach as only certain spe-
cific memory segments are tested for valid keys.

Try and search for identifiable structural properties of the encryption program
(Pettersson, 2007; Walters & Petroni, 2007; Klein, 2017). As mentioned above
this is also not realistic as access to the source code or significant reverse en-
gineering of the program would be required.

Search for certain known patterns in the memory such as key schedule which

19

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

are specific to certain types of encryption (Halderman et al., 2009; Ptacek, 2008).
These patterns could also consist of known memory offsets, specific lengths of
high entropy memory locations, or known patterns of entropy, as discussed be-
low. This approach could in theory provide the best performance as it would
result in the lowest number of candidate keys and these would have the highest
probability of being correctly identified.

2.4.4 Identifying AES keys

From the literature review it has been found that the majority of modern crypto
ransomware are now hybrid in nature (HCR) (Al-rimy et al., 2018) using both
symmetric and asymmetric encryption. The public key of the asymmetric en-
cryption being delivered with the ransomware, while the private key is retained
by the attacker. As the private key of the asymmetric encryption is never present
on the machine, this investigation will concentrate on the identification of the
key used during the symmetric encryption phase of the ransomware’s execu-
tion which in the majority of cases is the Advanced Encryption Standard (AES)
key.

The Rijndael cipher was selected as the Advanced Encryption Standard (AES)
in 2001 (NIST, 2001) formed from a proposal by Joan Daemen and Vincent Rij-
men. It is a Substitution-Permutation (SP)-network based cipher that works
on 128-bit blocks, and can use either 128, 198 or 256 bit keys. AES is widely
used, fast and is regarded as the de-facto standard in most new cryptographic
applications. It is considered by some of the researchers that AES is virtually
unbreakable (Saravanan & Mukesh, 2014) and impossible to decrypt without
the correct key (Maartmann-Moe et al., 2009). AES encryption is present in a
vast range of applications, among others TrueCrypt, Vista BitLocker, OS X Fil-
eVault, BestCrypt, PGP, Protect- Drive and Pointsec. (Maartmann-Moe et al.,
2009).

Modern symmetric key cryptosystems are constructed by repeatedly applying a
simpler function where several iterations or “rounds,” are done. From the mas-
ter key, a derivation function, derives different sub-keys in each round. This is
known as the key schedule algorithm and has been stated by many researchers
that this information needs to be present in memory (Balogh & Pondelik, 2011;
Hargreaves & Chivers, 2008; Maartmann-Moe et al., 2009). This knowledge of
the cryptosystem can be used to search for this key pattern within the memory
(Balogh & Pondelik, 2011). The search criteria being that there is a mathemat-
ical relationship between the master key and sub-keys, and the key schedule is
often computed ahead of time, in what appears to be a security-performance
trade-off, and kept in the memory while encryption/decryption is performed

20

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

(Maartmann-Moe et al., 2009). An example of an 128-bit empty AES key (all
zeros) and its associated key schedule (Maartmann-Moe et al., 2009), extracted
from memory is shown below in Figure 2.6.

Figure 2.6: AES Key and Key Schedule (Maartmann-Moe et al., 2009)

Notably, the key schedule for a 128 bit AES key is represented as a flat array of
bytes in memory, where the first 16 bytes (or 128 bits) constitutes the original
key. The remaining 160 bytes are the round keys derived from this key. For
larger AES keys, the corresponding key schedule is also larger.

Balogh et al. propose that there are two major approaches as to how the en-
cryption keys can be located in memory or memory image (Balogh & Pondelik,
2011):

• By looking for the keys at a fixed address in memory - it uses the fact that
all installations of an application usually contain the password/key in the
same fixed location in the memory. However for each kind of encryption
package investigated this address would have to be determined some-
how.

• By locating a particular pattern in the memory placed always in the con-
stant distance from the encryption keys and then searching for this pat-
tern.

Several tools have been developed that use these criteria to identify AES keys in
memory for example AESFinder has been developed (Halderman et al., 2009;
Heninger & Feldman, 2008) , Volatools (Walters & Petroni, 2007), interrogate
(Maartmann-Moe et al., 2009) and Findaes (Kornblum, 2019). The AESFinder
and interrogate tools were even able to identify and recreate AES keys that had
some errors, by using the information held in the key schedule.

21

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

2.4.5 Method

Several of the papers reviewed have used the same basic experimental method
during their evaluation of their hypotheses,(Walters & Petroni, 2007; Hargreaves
& Chivers, 2008; Maartmann-Moe et al., 2009; Balogh & Pondelik, 2011; Nissim
et al., 2019).

The fundamentals of their methods being firstly running the program under
investigation in a virtual environment, then using tools from the virtual envir-
onment to capture memory dumps of the systems memory in a secured and
trusted manner. Once the required number of memory captures has been com-
pleted then they are analysed.

All the papers reviewed, relating to the discovery of cryptographic information
in volatile memory were successful in extracting the encryption keys.

Halderman states that the keys used to encrypt the disk were found to reside
in RAM, in scheduled form, for as long as the disk is mounted (Halderman
et al., 2009). McLaren was able to confirm that in each experiment, encryp-
tion keys were discovered and valid plain text produced (McLaren, Russell et
al., 2019) and memory analysis identifies cryptographic artefacts with 100%
success (McLaren, Buchanan et al., 2019). Balogh successfully recovered en-
cryption keys from a memory dump of a live system (Balogh & Pondelik, 2011).
Maartmann-Moe(Maartmann-Moe et al., 2009) confirm that cryptographic sys-
tems that pre-compute key schedule have all been found to be vulnerable to key
schedule searches also stating that the chances of locating encryption keys are
surprisingly high.

One thing to remember when applying this method to the ransomware samples
analysed in this report is that these samples perform several fundamental steps
before they actually begin encrypting data on the victims system (Nissim et al.,
2019). So unlike the programs investigated by other researchers the ransom-
ware encryption keys will not be immediately present in the memory when the
programs starts executing and determining when to capture the memory be-
comes critical to the success of the experiments. Examples of steps performed
prior to encryption could be a scanning phase, in which it scrutinizes which
files it should encrypt (e.g., documents) and which files it should avoid encrypt-
ing (e.g., system files). When considering the phases of a ransomware attack
(Al-rimy et al., 2018), ideally the memory should be captured after phase 4 has
completed and when a ransomware starts encrypting files in phase 5. The en-
cryption process can last from several minutes to a few hours, and the program
may perform good key management on the completion of encryption by re-
moving the keys from memory, so determining the point when the memory

22

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

capture should be performed is crucial.

2.4.6 Issues

Some of the techniques discussed have some limitations with regards to their
application to ransomware. For example some tools required that the key sched-
ule keys being stored in consistent patterns in memory (Balogh & Pondelik,
2011) or were ineffective if the memory contained even a small amount of er-
rors. Some techniques required access to the source code to identify key struc-
tures (Hargreaves & Chivers, 2008) but on the whole the tools used and the res-
ults achieved proved encouraging.

2.5 Conclusion

This chapter presents the findings from the literature review conducted firstly
on ransomware and then on live forensic techniques. It begins with a brief
history of ransomware after which it moves on to discuss the current threat
landscape and expected future trends of this type of attack. The review con-
firms from multiple sources that ransomware attacks remains a real and cur-
rent threat to computer systems and that their impact, complexity and relev-
ance is projected to grow in the foreseeable future (Europol, 2018). While there
is some discussion regarding the trajectory of growth during 2018 (2019 Mal-
warebytes LABS, 2019), the difference of opinion can be explained by the dif-
ferent sample sets used by the researchers. Some researchers proposing that
the focus of the attacker is moving more from private individuals towards en-
terprise targets(Symantec, 2019). There is little doubt for 2019 that the number
of incidents will be the highest so far recorded (Malwarebytes, 2019; Levy & Cto,
2019).

The methods of ransomware infection is then discussed together with a de-
scription of two different models that can be used to describe ransomware be-
haviour. The six phase model (McAfee Labs, 2016) with quite high granularity
was preferred by the author due to the ability for this type of model to capture
more precise details of the programs execution as apposed to a more general-
ised three stage model (Kumar & Kumar, 2013). The six phase model is used
throughout the report as an aid in describing the behaviour of a ransomware
sample. Techniques, approaches and terminology from this model were also
used during the work relating to timelining of ransomware execution. Ana-
lysis of ransomware samples using this six step model also aided in the work
performed during ransomware sample selection. The model provided a tech-
niques that allowed different samples behaviour to be compared to each other

23

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

and aided in the identification of samples that exhibited the preferred beha-
viour. Guidance when selecting the ransomware samples was also derived from
this literature review as the researcher wished to use recent, high profile samples
that had a wide spread well documented impact and be familiar to a wider audi-
ence.

The chapter then moves on to cover the subject of live forensics, starting with a
discussion of the different terminology and techniques used in this field. Clas-
sification of ransomware based on the encryption techniques were presented
and it was identified that most of the modern crypo ransomware families were
hybrid in nature (HCR) using both symmetric and asymmetric encryption dur-
ing an attack. Due to this and the fact that the private key for the asymmetric
encryption is never present on the target machine, it was proposed to focus on
the identification of the symmetric key and more specifically the AES key. Ap-
proaches that can be used to identify AES keys in memory were described, two
of which were "entropy" and "key schedule" searching. These would be used at
later stages in the project.

While no specific research in to using dynamic analysis techniques to combat
ransomware were found, several key papers describing work using these tech-
niques to recover artifacts from other cryptographic programs were presented
(Maartmann-Moe et al., 2009; Balogh & Pondelik, 2011; Shamir & Van Someren,
1998). Information gathered from these papers featured heavily in the design
and implementation of this reports environment and experiments. Some of
the tools identified in these papers were also tested during the experimenta-
tion phase, achieving similar success rates as the original papers.

The literature review presented in this chapter containing the background to
the subject area, why this research remains relevant, examples of comparable
research in related fields and how this can be applied to investigate the hy-
pothesis of determining if live forensic techniques can by used to mitigate a
ransomware attack, aligns perfectly with the learning outcome 1 in the mark-
ing scheme.

24

Chapter 3

Design

3.1 Introduction

The chapter starts with a determination of what the most applicable research
methodology to use would be, to fulfil the projects objectives, ensuring that the
conducted experiments have a methodical, rigorous and well based approach
(Edgar & Manz, 2017a). The chapter then moves on to apply the findings made
in the literature review to the design and development of specific experiments
to validate the hypothesis on the usefulness of live forensic techniques in the
mitigation of the affects of a ransomware attack. The chapter also describes
how the findings from the literature review were used to design and develop an
appropriate test environment that can be used to execute these experiments
safely.

3.2 Research methodology

The process of science has evolved with the goal of instilling confidence in what
can be learnt from observation (Edgar & Manz, 2017a). With the majority of
research methods having the following characteristics:

• Providing a rigorous and methodical approach to study.

• Providing a process to empirically ground theories and conceptual mod-
els.

• Ensuring that the evidence is driven by logical and reasoned thinking.

• Continually challenging the approach and results found.

There are three main forms of research methods:

Observational - The phenomenon of interest is embedded in a larger system
that is dynamic. The investigator can seek instances where the dynamics are
less noisy, but it’s not possible to conduct an experiment free of influences from
uncontrolled or uncontrollable variables. The vast majority of science research

25

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

engages in some form of observational experiments, using simplifications to
gain understanding.

Mathematical - is based upon logic and formal proofs.

Experimental - The investigator has full control of the phenomenon being ob-
served and the mechanisms for data collection. All of the variables are known
and can be either held constant or made to change in order to assess the con-
sequences of those changes on the phenomenon of interest.

The research carried out in this project falls in to the experimental classification
and more specifically when following the guidelines of Edgar (Edgar & Manz,
2017a) this turns out to be a Hypothetico-deductive research project. This type
of research covers what is largely considered the traditional scientific method;
experimentation. Experimentation is one of the strongest methods available to
understand the behaviour and response of a system under varied conditions.
In general, hypothetico-deductive experimentation is good for eliminating or
reinforcing prior knowledge about a system.

This project employed the generally accepted six step scientific method (Khan
Academy, 2017; Lin, 2019) which is an abstract simplification of the process
that a researcher goes through when performing this type of research. The six
steps and how they were applied to this project is shown below:

1. Purpose.

2. Research. Conduct background research and literature reviews in to the
field to determine what is already known about the subject. The outcome
of this being presented in Chapter 2.

3. Hypothesis. Propose a hypothesis which predicts the outcome of the ex-
periment. Outlined in Chapter 1.

4. Experiment. Design and perform experiments that test the hypothesis.
The outcome of this step appearing in Chapters 3 and 4.

5. Data analysis. Record the observations and analyse the meaning of the
data. A full analysis of the results is given in Chapter 5.

6. Conclusions. Conclude whether to accept or reject the proposed hypo-
thesis.This being done in Chapter 6. It is possible that no conclusive find-
ings are made and further investigation maybe required.(Khan Academy,
2017).

26

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

3.3 Environment design

3.3.1 Safe environment proposal

For both safety and ethical reasons (BCS, 2015), it is imperative that any re-
search performed on malware analysis be conducted in a controlled and re-
sponsible manner and that the systems used have sufficient safeguards in place
to reasonably prevent any damage , infection or propagation of the malicious
code. A safe environment will allow analysis of the program without exposing
the machine or networks to unnecessary risk (Sikorski & Hong, 2012).

When designing a test environment the following points have been suggested
by Sanabria (Sanabria, 2007) regarding its content:

• Simplicity. The environment should be as complex as necessary but no
more. The more complex an environment is the harder it is to maintain.

• Containment is paramount when designing an environment for testing
malware and can be thought of as the safety net when control is lost.

• A flexible, stable environment that is easy to start and revert.

3.3.2 Technology options available

In order to conduct valid, realistic malware experiments the test victim’s ma-
chine needs to be as close to a real machine as possible with any private or
confidential information removed(Hoopes, 2009) and ideally isolated from the
internet(Ahmad, Woodhead & Gan, 2016).

The four main methods used to construct realistic test environments are dis-
cussed below:

Dedicated physical systems with no wifi or cable connection and being isol-
ated from the network. This approach is sometimes referred to as an ‘air gapped’
system (Sikorski & Hong, 2012). However this configuration can be fairly labor-
ious to revert back to its original state after testing.

Simulation systems use tools and processes to imitate and model a real net-
work environment. Simulation is an accepted and widely used technology how-
ever it does do not scale well and is resource intensive (Ahmad et al., 2016).

Emulation systems are generally better than simulation systems and scale bet-
ter. They are often used by AnitVirus programs when testing samples (Egele,
Scholte, Kirda & Kruegel, 2012).

27

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

Virtualisation systems use the technique of separating resources and services
from the underlying physical platform to form an environment with virtual ma-
chines and other network infrastructure (Ahmad et al., 2016). They exhibit bet-
ter performance than emulation systems, provide strong isolation of resources
and can be reverted quickly (Hoopes, 2009)

3.3.3 Software selection

When dealing with malware samples that do not actively interrogate for the
presence of virtualisation, a popular and flexible way to create a malware ana-
lysis lab involves using virtualization software. This approach uses a single
physical computer for hosting multiple virtual systems, each running a po-
tentially different operating system (Zeltser, 2015). This approach has long
been recognised as an efficient, isolated substitute for real physical machines
(Goldberg, 1974). Increased flexibility is also provided by the snapshot func-
tionality which can be used to quickly revert virtual machines back to their ori-
ginal pristine state. It has been shown that this approach provides benefits on
cost, flexibility and network isolation (Sanabria, 2007) when compared to the
alternatives.

Free virtualization software options considered for this project include

• VirtualBox

• VMWare vSphere Hypervisor

• Microsoft Virtual Server

Based on the research performed by Bose (Bose, 2018), the experience of the re-
searcher and the cost it was decided to implement the test environment for this
project using the VirtualBox virtualization software provided by Oracle (Virtualbox,
2019).

Testing in a virtual machine (VM) that is isolated from the host device, as well
as isolated from the production network, ensures that a security analyst can ex-
ecute malware safely and repeatably in a manner that yields the most accurate
test results (Carvey, 2018)

3.3.4 Environment design

When designing a test environment, one of the key recommendations from
Rossow (Rossow et al., 2012) was that it should be as realistic as possible. Using
these guidelines as well as the three points raised by Sanabria (Sanabria, 2007),
the test environment was designed to contain three virtual machines.

28

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

Two of these virtual machines were victim test machines. While previous re-
searchers (Maartmann-Moe et al., 2009; Shamir & Van Someren, 1998) have
used test machines running the windows operating system, the versions that
they used were outdated. It was decided that the test machines in this invest-
igation would use the Windows 7 and Windows 10 operating systems as these
have the highest market penetration (Statista, 2019). Only one of these victim
machines was ever active at any given time and it is on these where the ransom-
ware was executed.

In all but the most basic experiments at least one other system is required,
providing network support services (Sanabria, 2007) for the victim, as deny-
ing all-network access to the sample under analysis will most likely result in
incomplete observations of the malware’s behaviour (Egele et al., 2012). There-
fore a common technique (Sikorski & Hong, 2012) in malware analysis was used
where a third virtual machine was present on the virtual network to provide
network services to the victim machines such as DNS, IRC, HTTP as well as
handling possible requests made by the malware back to its command and con-
trol (C&C) server (Sanabria, 2007).

These machines were connected via a ‘host-only’ virtual network connection,
and they were the only machines on this virtual network. This configuration
provides complete isolation of these guest machines from the host machine
and thus the host’s network connections. The physical host machine consisted
of a laptop which itself was “air gapped,” thus providing a second layer of isol-
ation.

To prevent the victim virtual machine from appearing too sterile, it contained
an assortment of content spread across its file system. This pseudo content
was sourced from GovDocs (Open Preservation Soceity, 2019) which is a large
collection of approximately 1 million documents that are freely available for re-
search. Having both network access and content on the victim virtual machine
contributed significantly to it appearing to the malware as a real machine, en-
couraging the malware to behave normally. Appropriate containment policies
such as firewall and anti-virus were also deployed on the host machine (Rossow
et al., 2012).

3.4 Experiment design

In its most abstract level the designed experiments could be considered as fol-
lows. A ransomware sample is executed within a virtual environment. Dur-
ing this execution, copies of the machines volatile memory are taken. Forensic

29

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

tools are then used to analyse these captured memory files in an attempt to dis-
cover the encryption key. The found keys are then used to decrypt the files and
confirm that the correct key was identified.

Using the terminology proposed by Edgar (Edgar & Manz, 2017b) when de-
scribing a hypothetical-deductive research experiment, the memory dump files
and decrypted files are all "dependent variables". These are variables that are
expected to show if there is an effect from the intervention applied in an exper-
iment. Analysis of these variables will allow the researcher to confirm or dis-
prove the hypothesis. The virtual machines, ransomware samples and forensic
tools are all under the control of the researcher and remain fixed during the ex-
periment and are all examples of "independent variables". These types of vari-
ables are inputs to the system and have the potential to cause an effect to the
dependent variables. The found keys are dependent variables in experiment-1
and independent variables in experiment-3.

A high level graphic representation of the combined experiments is shown in
Figure 3.1.

Figure 3.1: Experiment Overview

This investigation can be broken down in to three separate sub experiments.
The results of which, when combined were used to validate or disprove the hy-
pothesis that live forensic techniques could be used to mitigate a ransomware
attack. Each round of experiments began with a fresh version of a virtual ma-
chine that reflected a realistic workstation being started and an example of the
ransomware under investigation being executed. The following three experi-
ments were then performed.

30

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

3.4.1 Experiment 1 - Is the key in memory

It was found during the literature review that most modern crypto ransomware
programs are hybrid (HCR) in nature using both symmetric and asymmetric
encryption. The public key being delivered with the ransomware, while the
private key is retained by the attacker (Al-rimy et al., 2018). As the private key of
the asymmetric encryption is never present on the machine, these experiments
concentrated on the recovery of the key used during the symmetric encryp-
tion phase of the ransomware’s execution. A memory dump from the machine
where the ransomware was being executed was captured. It was known dur-
ing selection of the ransomware samples for these experiments that AES was
being used for the symmetric part of the encryption, so once the dump had
been completed it was analysed using live forensics tools to determine if the
AES key can be discovered. A graphic representation of this and the following
experiment is shown in Figure 3.2.

Figure 3.2: Overview of Experiment-1 & Experiment-2

3.4.2 Experiment 2 - How long is the key present

A memory dump was taken at regular intervals during the complete execu-
tion life cycle of the ransomware to determine at what point the key is loaded
into memory and for how long it remains there. This aids the execution of
experiment-1 by determining when to execute point A in Figure 3.4 and can
also be used to determine when the execution of the ransomware enters phase
5 of the 6 phase ransomware model discussed in the literature review(McAfee
Labs, 2016). An outcome of this experiment was an approximate timeline for
the execution of the ransomware.

3.4.3 Experiment 3 - Does the key decrypt files

If any keys were discovered during experiment-1, they were tested to determ-
ine if they could decrypt any of the control files encrypted by the ransomware.

31

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

As indicated by points B and C in Figure 3.4. A tool developed by the author
using the Python programming language was used to perform the decryption
attempt on both the Windows 7 and Windows 10 memory dumps. An example
of the code for this decryption program can be found in Appendix B.2.

A graphic representation of this experiment is shown in Figure 3.3.

Figure 3.3: Overview of Experiment-3

3.4.4 Combined experiment

The overall experimental suite was based on similar methods identified in the
literature review (Walters & Petroni, 2007; Maartmann-Moe et al., 2009; Har-
greaves & Chivers, 2008; Balogh & Pondelik, 2011; Nissim et al., 2019). An over-
all representation of the steps involved in these experiments is shown below in
Figure 3.4. While the designed experiments in this investigation have signific-
ant similarities with previous work such as using windows operating systems on
virtual machines and using similar tools for key extraction. These experiments
differ in that multiple key extraction tools on multiple operating systems were
tested and the discovered keys were checked to confirm that they decrypted the
files. Also multiple memory dumps were taken during the experiment to allow
for the creation of a timeline of the ransomware’s execution.

32

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

Figure 3.4: Experiment Flow

33

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

The main steps of the experiments are discussed below:

Iterate over Operating Systems versions A paper by Rossow(Rossow et al., 2012)
has been extensively consulted during the design of these experiments. When
discussing realism in experimentation Rossow cautioned against performing
experiments against just one operating system and then drawing general con-
clusions. To guard against this potential criticism, the experiments performed
in this research were conducted against the top two most commonly used ver-
sions of the windows operating systems currently in use, these being Windows
10 and Windows 7 as confirmed by Statista (Statista, 2019) and shown below in
Figure 3.5.

Figure 3.5: Windows 7 and 10 adoption rate in N. America and Western Europe from 2017 to 2019

Start a fresh VM Prior to each execution of a ransomware sample the virtual
test machine was reverted back to its original state using the virtualbox snap-
shot functionality. This is done to ensure that each execution of a ransomware
sample begins with the victim’s machine being in the same state containing
the same amount of information, allowing for direct comparisons to be made
between each execution cycle. Results are only comparable if each sample is
executed in an identical environment (Hoopes, 2009). This approach is know
as baselining and has been used in many similar experiments (Egele et al., 2012;
Ahmad et al., 2016).

Install Ransomware The three ransomware samples are already present in an
archive on the victims virtual machine. The sample to be tested was extracted
from the archive and prepared for execution. The decision to use three malware
samples was a result of a trade-off between limited time available for testing

34

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

against performing the tests on a representative sample of ransomware famil-
ies. (Rossow et al., 2012).

Execute Ransomware The chosen ransomware sample was executed from the
command line.

Capture Memory The timings of when to take a copy of the working memory
of the virtual machine was determined by the outcome of experiment-2. If the
keys became available in memory, then a copy of the machines memory was
taken.

There are several options available to capture a memory sample, for example
by running a tool from within the test virtual machine to dump the memory
to a file using a tool like RamCapturer (Belkasoft, 2019), however it was found
that this approach caused contamination of the captured memory by the ex-
ecuting program. The technique employed during these experiments was to
take a snapshot, from the virtualbox host machine, of the test victims virtual
volatile memory using tools provided by the virtualization software in similar
techniques used by other researchers (McLaren, Buchanan et al., 2019; Nissim
et al., 2019).

Stop VM Once the required number of memory captures has been performed,
or if the ransomware had completed, then the victim virtual machine is halted.

Attempt to determine AES keys from captured memory Analysis was performed
on the captured memory samples with the aim of identifying candidate AES
keys, using some of the dynamic analysis forensic tools identified in the liter-
ature review. The first two tools shown below were selected due to the success
that the researchers had achieved with them during their own investigations.
The tools used in this investigation being:

1. findaes - This was a tool developed by Kornblum (Kornblum, 2019) based
on the work by Trenholme (Trenholme, 2014; Halderman et al., 2009) and
tries to find the keys using the AES key schedule.

2. interrogate - This was a tool developed by Maartmann-Moe (Maartmann-
Moe et al., 2009) also based on the work by Trendholme (Trenholme, 2014),
and was used during their research to investigate both RSA and AES keys
in cryptographic applications such as disk encryption and PGP.

3. RansomAES - A hybrid tool developed by the author which incorporates
logic from the Volatility Framework (Volatility, 2019) together with the lo-
gic from findaes in an attempt to improve the accuracy and performance
of the key detection. A listing of this code is shown in Appendix B.3. This
tool firstly extracts a copy of the malware processes memory from the

35

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

dump file using the ’volatility’ tool and then checks this extract for AES
keys using the ’findaes’ program.

Extract Encrypted Files The control files described in Table 3.1 were placed in
the documents directory of the target virtual machine prior to the execution of
the ransomware sample.

File Name Comment
word.doc Basic MS Word document containing one line of text in

old format
word.docx Basic MS Word document containing one line of text in

new format
excel.xls Basic MS Excel document containing one line of text in

old format
excel.xlsx Basic MS Excel document containing one line of text in

new format
pdf.pdf Basic PDF document containing one line of text
pdf-large.pdf A large PDF document containing more that 100 pages
text.txt A simple text file containing one line of text
jpeg.jpg A small jpeg picture

Table 3.1: Control file details

The original contents of these files is known to the researcher and they rep-
resent typical formats targeted by ransomware (Sittig & Singh, 2019; Sultan et
al., 2018; CERT-EU, 2017). Once the ransomware had executed for a specified
period, these files were copied from the test victims virtual machine to the
host machine to analyse if they had been encrypted. If they had not, then the
ransomware was allowed to continue and the process repeated after a specified
period. The execution of the ransomware occasionally changed the name or
attribute of the control files, however in all cases it was still possible to identify
these encrypted control files and from which original control file they had been
generated from.

Attempt to decrypt files If any candidate keys were discovered during the ana-
lysis stage of the experiment, they were then used to try and decrypt the encryp-
ted control files extracted from the victim virtual machine. The AES Initialisa-
tion Vector (IV) required for decryption, were contained within the encrypted
file and used in combination with the candidate keys to decrypt the file. The
results of the decryption attempts were recorded and presented in sections 5.2,
5.3 and 5.4.

36

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

3.4.5 Control file example

As mentioned previously a set of standard files were placed on the machine
prior to the execution of the ransomware. These files being referred to as con-
trol files. The purpose of these files is to provide a simple method for the re-
searcher to test the decryption of a file and confirm that the found key was the
one used by the ransomware. For example one of the control files was called
pdf.pdf and looked like the document shown in Figure 3.6

Figure 3.6: Control pdf.pdf file

Its contents is shown Figure 3.7

Figure 3.7: Control pdf.pdf file contents

37

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

3.5 Results and analysis

3.5.1 Analysis method

The results obtained from the execution of the experiments presented in this
chapter can then be used to draw conclusions on the validity of the hypothesis
into the usefulness of forensic techniques in mitigating the affects of a ransom-
ware attack. The expected results will fall in to the following categories:

1. Were any possible keys extracted from memory.

2. How long were the keys present in memory.

3. Could the found keys be used to successfully decrypt the control files,
thus confirming that they were the symmetric keys used by the ransom-
ware program.

4. How quickly did each of the symmetric key analysis tools take to identify
the keys.

While no experiments were found during the literature review that could be
used for direct comparison of results, using a well defined and understood re-
search method allowed the researchers to be able to draw techniques taken
from other research that performed analysis in a similar area using the same
model. This gave the researcher an opportunity to be able to make comparis-
ons to the results with these projects.

3.5.2 Data capture

In accordance with a scientific approach the results for the execution of the
experiments described above will be recorded in a table to aid presentation. An
example of such a results table is shown in Table 3.2.

findaes interrogate RansomAES
Key

Found
Time

Taken (s)
Files

Decrypted
Key

Found
Time

Taken(s)
Files

Decrypted
Key

Found
Time

Taken(s)
Files

Decrypted
NotPetya
Bad Rabbit
Phobos

Table 3.2: Example of Results Matrix

When the ’findaes’ and ’interrogate’ tools were used in other research projects,
just their success in key identification was recorded and not their total execu-
tion time. This extra measurement was included during the experiments per-

38

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

formed in this research to allow for a more robust comparison of the tools per-
formance compared to the hybrid tool, ’ransomaes’ developed by the author.

3.6 Conclusion

This chapter described the design process used to identify the fundamental
concepts applied in the development of this projects experimental method.
After thorough analysis of the proposed hypothesis and how the results would
be validated, it was decided that the most suitable approach would be to use
the hypothetico-deductive research project (Edgar & Manz, 2017a) and this was
then used to guide the design choices. Once the research method had been
defined, it was then easier for the researcher to find a generally accepted model
that could be used (Khan Academy, 2017) to base the designs on.

When deciding on the environment design two key factors were considered;
Firstly the suitability of the environment, as it was key that the environment
used was as realistic as possible. This is critical to the quality of the results as if
the environment was not realistic, then no relevant conclusions could be drawn
from the experiments, making the whole project of limited use. To achieve
the required realism, operating systems with a high market penetration were
used on machines that appeared to be connected to a functioning network.
The second main design criteria being the safety and isolation of the environ-
ment as it would be totally unacceptable, as well as unethical, for any deliberate
execution of a malware sample to have an impact on assets outside the test en-
vironment.

By definition, when selecting specific software for an environment, the gen-
erality of the experiments and their results is impacted. To counteract this,
the software that was selected were some of the most common software cur-
rently in use and being based on recommendations taken from the literature
review. This should allow for the findings to remain relevant. The chosen soft-
ware proved to offer the best compromise between a real physical environment
and a safe and flexible environment that could be recreated quickly and shield
external assets.

The only disadvantages of this configuration being that the host laptop can not
and should not be used for any other tasks during testing and will have to be
reinstalled at the conclusion of the experiments.

The resulting experiments and environment design relied considerably on the
findings from the literature review, most significantly the recommendations
from Rossow (Rossow et al., 2012) for the overall structure of the experiments

39

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

and Sanabria (Sanabria, 2007) for configuring the environment to be more real-
istic and robust. The information provided by these authors contributing to a
final design which is considered to be contained and realistic. The designed
environment is able to provide a safe and stable platform allowing for the ex-
ecution of a comprehensive set of experiments in a controlled manner. Being
in control of the environment is critical when working with malware due to
its nature and the possible catastrophic consequences of unrestricted execu-
tion. While no specific implementation details are provided by other research-
ers conducting similar malware and live forensics testing (Maartmann-Moe et
al., 2009; Balogh & Pondelik, 2011; Walters & Petroni, 2007), it is considered that
this projects environment is of at least a similar quality and would only require
slight modifications for it to be used for other experiments, such as the ones
conducted by the other researchers in this area.

There were several options available for memory acquisition and during this
project, after review, it was decided to utilize the hypervisor tools executed on
the VM host machine to capture the volatile memory of the victims machine.
The benefits of non contamination of the memory dumps by the acquisition
method while relying on product specific hypervisor tools was considered to
be better alternative than using memory capture tools from within the oper-
ating system of the victims machine which while being more generic would
contaminate the captured memory.

The chapter concludes with an overview of the types of results expected from
the execution of the experiments and how they will be presented.

It is felt that the work performed for this chapter and the resulting description
contributes significantly to the second learning outcome as it clearly demon-
strates a robust environment and methodical experiment design, based on well
known design methodologies sourced from a strong literature review.

40

Chapter 4

Implementation and results

4.1 Introduction

This chapter discusses in detail the configuration of the test environment used
to perform the experiments to determine if live forensic techniques can be used
to mitigate the affects of a ransomware attack. The chapter provides specific
information on which ransomware samples were used, how they were selec-
ted, how the test environment was created and configured and what tools were
used for the analysis. The chapter then goes on to define in detail how the
experiments were performed and ends with a presentation of the raw results
achieved.

There exists sufficient information in this chapter to allow for third party re-
searchers to replicate the experiments performed and validate the findings.

4.2 Ransomware sample selection

Recent ransomware attacks were researched in depth as part of the literature
review (Comodo, 2018; Kapersky, 2018; Vanderburg, 2019; O’Donnall, 2019;
Hautala, 2019) and based on the findings, combined with initial validation, it
was decided to select the following three ransomware examples for analysis.
All of which were examples of the HCR type of ransomware strains using AES
for the symmetric portion of the encryption. They have occurred in the last two
years and have received significant coverage in the mainstream press (Fruhlinger,
2019).

NotPetya. This ransomware attack is considered to be the most damaging at-
tack ever (Kapersky, 2018) and has been estimated to have cost more than $10
Billion (Mekynyk et al., 2019). Unlike the WannaCry ransomware, NotPetya
used multiple propagation techniques to infect other computers in the network
(Sai & Kumar, 2019).

Bad Rabbit. This is an even more recent adaptation of the NotPetya ransom-
ware family that emerged in 2018(SonicWall, 2019). It is reported to use the re-

41

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

cently discovered NSA EternalBlue exploit (Perekalin, 2018; Mamedov, Sinitsyn
& Ivanov, 2018) and is propagated via a fake flash plugin update.

Phobos. This is one of the most recent ransomware samples found where de-
tailed information is available (Issa, 2019). This ransomware appeared in the
spring of 2019. It is believed to be a new strain of ransomware strongly based
on the previously known ransomware family: Dharma (a.k.a. CrySis), and prob-
ably distributed as a Ransomware as a Service (Raas) by the same group as
Dharma.

Specific details of the ransomware samples are given in Table 4.1.

Name SHA256 Checksum Date
NotPetya 027cc450ef5f8c5f653329641ec1fed91f694e0d229928963b30f6b0d7d3a745 2019-08-20
Bad Rabbit 630325cac09ac3fab908f903e3b00d0dadd5fdaa0875ed8496fcbb97a558d0da 2019-08-20
Phobos a91491f45b851a07f91ba5a200967921bf796d38677786de51a4a8fe5ddeafd2 2019-08-20

Table 4.1: Ransomware Samples

Once the samples were retrieved, they were loaded to VirusTotal (wwww.virustotal.com)
to confirm that they were valid ransomware programs, the results of which are
shown below in Figures 4.1, 4.2 and 4.3

Figure 4.1: VirusTotal Results for NotPetya

Figure 4.2: VirusTotal Results for Bad Rabbit

42

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

Figure 4.3: VirusTotal Results for Phobos

4.2.1 Other ransomware

Several alternative ransomware samples were considered before deciding to
use the three examples mentioned above. The following were initially con-
sidered before being rejected.

Wannacry - Testing confirmed what was detailed in the literature that this strain
used unique AES keys for each encrypted file(Vipre Security, 2017; Berry, Ho-
man & Eitzman, 2017). After conducting multiple tests of the memory acquired
during the execution of this malware using all the live forensics tools, no recov-
erable AES keys were found.

Cerber - This ransomware appears not to use AES encryption.

Lucky/nmare - The sample of this ransomware required access to the internet
to be able to download the file encryption modules as they are not delivered
with the initial sample. The services provided by the Debian virtual machine
were not able to trick the ransomware into executing normally. It was deemed
too risky to allow this external network access.

Satan, SamSam & GrandCab - It was not possible to trigger these samples of
ransomware to encrypt any of the control the files or display the ransom mes-
sage.

4.3 Laptop configuration

A laptop with the following specifications was used as the main hardware plat-
form for the investigation, details of which are given in Table 4.2.

43

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

Hardware Details
CPU Intel Core i7-3667U
Memory 8GB
Software
Operating System Windows 10 Pro Version 1809
Virtual Box 5.2.8

Table 4.2: Laptop Configuration

This laptop has no external network connections and as an added precaution
was set to airplane mode and had the wifi card switched off. When discussing
the virtual environments this physical machine is referred to as the host ma-
chine as it hosts the virtual environment within VirtualBox.

4.4 Virtual hardware configuration

Using the design concepts outlined in section 3.3.4 , three guest machines were
defined in the virtual environment. Two victim machines with different oper-
ating systems on each, used to test the behaviour of the ransomware code and
one network services machine that was used to provide any network services
that maybe required by the software running on the victim machines. Details
of the virtual guest machines are given in Table 4.3.

Guest Machine
Name

Operating
System

CPU Memory Purpose

Windows 7 Windows 7
Ultimate

Core i7-3667 4GB Ransomware
Victim
Machine

Windows 10 Windows
10 Pro

Core i7-3667 4GB Ransomware
Victim
Machine

Debian Debian
5.2.9

Core i7-3667 2GB Network Services

Table 4.3: Virtual Hardware Configurations

VirtualBox technology is also referred to as hypervisor type-2 (Simic, 2019) and
a conceptual representation of how this technology is utilized in our test envir-

44

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

onment is shown in Figure 4.4 below. During an experiment only one victim
machine was active at any one time.

Figure 4.4: Conceptual Laptop Software Stack

4.5 Virtual network topology

The guest machines were connected together using the recommended ‘host-
only’ connection technique (Bellardo & Savage, 2003; Hoopes, 2009). This cre-
ates a separate virtual LAN and provided isolation of the guest machines from
the host machine as well as providing containment for the malware execution.
The network details of this virtual LAN is shown in Table 4.4.

Machine IP Address Purpose
Windows 7 10.1.1.7 Victim machine
Windows 10 10.1.1.10 Victim machine
Debian 10.1.1.30 Default gateway, DNS server

Table 4.4: Virtual Network Configuration

The virtual LAN and the guest machines were run in two separate configura-
tions depending on what operating system was being tested. If the behaviour of
the ransomware sample was being tested on the Windows 7 operating system,

45

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

then the windows 10 machine was switched off. An example of this configura-
tion is shown in Figure 4.5.

Figure 4.5: Windows 7 Test Environment

Likewise, if the behaviour of the ransomware sample was being tested on the
Windows 10 operating system, then the windows 7 machine was switched off.

Switching unused machines off was done to reduce the possible attack surface
for the ransomware and also to conserve the host machine resources. The oper-
ating system of the machine providing network services was chosen to be Linux
which is known to be more resilient to ransomware attacks thus further limiting
the available attack surface.

4.6 Tools

The following tools were used during the configuration of the test environment
and execution of the experiments.

fakedns.py – This is a python script running on the Debian machine that provides
DNS services to the network. The other guest machines are configured to use

46

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

this as their DNS server. This server will always return the IP address of the
Debian machine for whatever domain it is queried for. This was configured to
prevent any attempted external network connections.

INetSim - Is a free, Linux-based software suite for simulating common internet
services and was installed on the Debian machine. INetSim is considered to be
the best free tool (Sikorski & Hong, 2012) for providing fake services, emulating
services such as HTTP, HTTPS, FTP, IRC, SMTP, and others. This combined with
the services provided by fakedns.py will create the illusion of a realistic pseudo
network that the malware can interact with if required.

Interrogate – This was a tool developed by Maartmann-Moe (Maartmann-Moe
et al., 2009) and was used during their research to investigate AES keys in cryp-
tographic applications such as disk encryption and PGP. This is one of the three
tools that will be used to examine the captured memory try and discover the
ransomware’s AES keys.

findaes – This was a tool developed by Kornblum (Kornblum, 2019) and tries to
find the AES key using the AES key schedule. This is one of the three tools that
will be used to try and discover the ransomware’s AES key from the captured
memory.

RansomAES – This is a program that was developed by the author. It com-
bines the logic from findaes program together with some logic from the volat-
ility framework (Volatility, 2019) that targets the specific ransomware memory
portion of a memory dump. This was developed with the aim of improving the
performance and accuracy of key identification. This will be the third tool used
to examine the captured memory and a listing of the code for this tool can be
found in Appendix B.3.

4.7 Experiments

Copies of the ransomware code was already present on the virtual guest ma-
chines in the directory:

C:\dissertation\ransomware

Details of the experiments performed are given below:

4.7.1 Experiment 1 - Is the key in memory

A fresh VM was started and the researcher connected to the machine (Hoopes,
2009). A copy of the machines memory was taken prior to the execution of the

47

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

ransomware, so that any AES keys that are present in the machines memory
prior to the execution of the ransomware could be identified and excluded from
the experiments results. The researcher then opened a command prompt win-
dow and one of the test ransomware programs was started, using one of the
commands below:

For NotPetya

C:\windows\system32\rundll32.exe
c:\dissertation\ransomware\netpetya.dll, #1 30

For BadRabbit

c:\dissertation\ransomware\sample.badrabbit1.bin.exe

For Phobos

c:\dissertation\ransomware\1saas.bin.exe

After waiting for a short period, a copy of the guest’s machines memory was
taken. The length of waiting time varied between ten seconds and two minutes
depending on the ransomware strain. The time required to wait was determ-
ined through trial and error. To capture the memory, the following command
was executed on the host machine:

VBoxManage.exe debugvm <VBox Machine Name> dumpvmcore --filename
<filename>.elf

The format of the memory dump file was elf, which is the default dump format
for VirtualBox memory capture. The memory dump file was then analysed
by each of the selected live forensics memory tools, using the following com-
mands:

findaes <filename>.elf
or
interrogate -a aes -k 128 <filename>.elf
or
ransomaes -p <ransomware pid> -t Win7SP0x86 <filename>.elf

48

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

Any keys found resulting from the execution of these tools were recorded and
used as input for experiment-3. If no keys were found then the experiment was
extended in one minute intervals and new memory dumps taken. The exper-
iment terminated when keys were found or the execution of the ransomware
completed.

4.7.2 Experiment 2 - How long is the key present

If keys were discovered in experiment-1, then this experiment was also per-
formed. It is similar to experiment-1, except the memory dumps are taken reg-
ularly throughout the execution time frame of the ransomware. The time inter-
val used between memory dumps varied depending on the ransomware sample
and was determined via trial and error over multiple executions. The dumps
were analysed using one of the selected tools to confirm that they keys were
still present. The times when the keys were present was recorded and a basic
timeline for the ransomware execution was created. The timeline creation pro-
cess was predominantly a manual task, combining the results recorded from
the experiments, observations of system behaviour, descriptions gained from
the literature review and utilisation of the six step ransomware model also de-
scribed in the literature review (McAfee Labs, 2016)

4.7.3 Experiment 3 - Does the key decrypt files

If candidate AES keys were discovered in experiment-1, then the found keys
were used in an attempt to decrypt the control files extracted from the guest
machine after the ransomware had completed. This was partially an automated
task with some manual steps. A tool decrypt.py was created by the author
to perform the basic AES decryption using the ’AES’ cipher object from the
’Crypto.Cipher’ python library. A copy of the decryption program appears in
Appendix B.2 and an example of the command used to decrypt a file is shown
below:

python decrypt.py --file <encrypted file> --key <key-file>

The tool will attempt to use all the keys present in the <key-file> to try and de-
crypt the the <encrypted-file>. The contents of the key-file are the keys found
by the live forensics tools. The program was able to determine the required IV
from the supplied encrypted file and then use this together with the candidate
keys to try and decrypt the file. Determination if the file was correctly decrypted

49

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

remained a manual task. The resulting decrypted file normally required extra
modifications such as adding a header or removing a trailer.

4.8 Experimental process overview

As an example of how the experiments were performed, the order of the ex-
ecuted commands and their purpose is described here. This section describes
a theoretical walk through of an experiment chain. Figure 4.6 below gives a
graphic example of how the different steps are performed , a description of the
individual steps, and where appropriate, an example of the commands that are
performed to complete each step.

This example focuses on recovering the control text file called "text.txt" which
is initially encrypted by the ransomware, then extracted from the victims ma-
chine, moved to a Linux machine, decrypted and finally modified back to its
original state. The reason why the files are moved to a Linux machine is purely
due to the fact that the live forensic and AES decryption tools were installed on
this machine. These steps could in theory have been performed on the host
laptop, if the correct tools had existed there.

50

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

Figure 4.6: Experiment Process Overview

51

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

4.9 Experimental results

The following sections present the results achieved from executing the described
experiments. Tables 4.5 and 4.6 show the outcome of executing the three differ-
ent live forensics programs on memory dump files taken during the execution
of the three ransomware samples. The results show if each of the live forensics
programs were able to identify the encryption key used by the ransomware,
how long the tool took to complete execution and if the found key did in fact
decrypt the control files encrypted by the ransomware.

4.9.1 Ransomware execution on Windows 7

It can be clearly seen from the results in Table 4.5 that all three live forensics
tools were able to correctly identify an AES encryption key in the memory dump
file, and the found key was successful in decrypting the encrypted control files.
The performance of the interrogate tool being significantly longer than the other
tools used.

findaes interrogate RansomAES
Key

Found
Time

Taken (s)
Files

Decrypted
Key

Found
Time

Taken(s)
Files

Decrypted
Key

Found
Time

Taken(s)
Files

Decrypted
NotPetya yes 198 yes yes 17,813 yes yes 191 yes
Bad Rabbit yes 151 yes yes 17,659 yes yes 127 yes
Phobos yes 113 yes yes 17,887 yes yes 119 yes

Table 4.5: Windows 7 Results

4.9.2 Ransomware execution on Windows 10

As with the results from the tests performed on the Windows 7 operating sys-
tem, again it can be clearly seen from the results in Table 4.6 that all three
live forensics tools were able to correctly identify an AES encryption key in the
memory dump file, and the found key was successful in decrypting the encryp-
ted control files.

findaes interrogate RansomAES
Key

Found
Time

Taken(s)
Files

Decrypted
Key

Found
Time

Taken(s)
Files

Decrypted
Key

Found
Time

Taken(s)
Files

Decrypted
NotPetya yes 125 yes yes 17,812 yes yes 168 yes
Bad Rabbit yes 163 yes yes 17,692 yes yes 179 yes
Phobos yes 170 yes yes 17,779 yes yes 185 yes

Table 4.6: Windows 10 Results

52

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

4.10 Conclusion

This chapter documents the implementation of the environment and experi-
ments, taken from the previous design chapter. The chapter describes in detail
the experimental processes followed and the commands executed in trying to
prove the hypothesis that live forensic techniques can be used to mitigate a
ransomware attack. The chapter concludes with a presentation of the results
collected from the experiments.

During the execution of the ransomware samples, no external effects of their
execution were observed and no assets outside the experimental environment
were affected. This is considered to be a good endorsement of quality of the
implemented experimental environment.

The experiments were conducted on two different operating systems and as
suspected by the researcher, these systems behaved in a similar manner with
similar times and results. It was felt that the extra effort required to perform
these parallel experiments was worthwhile as it allowed the researcher to draw
realistic conclusions from the experiments (Rossow et al., 2012) and also de-
fend the findings and drawn conclusions. It also provided a defence against
possible criticisms that could otherwise be raised about the experiments being
unrepresentative or too specific.

The presence of the Debian machine on the virtual network, supplying net-
work services to the victims machine, was implemented to allow the network
connected to the victims machine to appear to be as realistic as possible. How-
ever during the execution of the three ransomware samples selected for invest-
igation, no network traffic was observed leading the researchers to conclude
that the ransomware samples used were self contained and did not require
network access to function correctly. However network traffic was generated
when executing some of the ransomware samples that were rejected, for ex-
ample the ’Lucky/nmare’ ransomware, which attempted to contact it’s C&C
server to download the encryption modules required for its execution. When
testing ransomware samples whose behaviour is unknown, it is recommended
that this Debian machine remains active on the network. Monitoring the logs of
this machine could provide some useful information regarding the behaviour
of the ransomware sample under investigation.

Some implementation issues were encountered while trying to determine which
ransomware samples would be included in the investigation. For example, the
researchers were not able to capture any keys when executing the ’wannacry’
ransomware sample, while this could have been used as a good example for a

53

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

null hypothesis (Edgar & Manz, 2017a), it was decided to reject this sample and
focus the research on samples where the capture was successful. Difficulties
were also encountered in having some of the other ransomware samples ex-
ecute correctly, or in a way that was described in the literature and for these
reasons, they were also rejected.

It is felt that the work performed for this chapter and the resulting descrip-
tion contributes significantly to learning outcome two, as the decisions and
processes involved in the implementation of the environment and experiment
design are presented in depth and discussed in detail here. Discussion towards
the end of the chapter relating to the provisional results and issues experienced
during execution should also contribute in part to the learning outcome three.

54

Chapter 5

Evaluation

5.1 Introduction

The aim of this project was to determine if live forensic techniques could be
used in the mitigation of a ransomware attack. This chapter evaluates how well
the objectives have been met and whether the aim has been achieved.

This chapter is divided into separate sections one for each of the ransomware
samples tested. Each of these sections discusses the results of the three experi-
ments conducted.

One thing to note is that no significant differences were observed in the beha-
viour or results of the experiments when performing them on the Windows 7
and Windows 10 operating systems apart from differing key values which is to
be expected as these will change with every execution of the ransomware pro-
gram. Bearing this in mind, for the remainder of this section the report will
concentrate on the results of the experiments performed on the Windows 7 op-
erating system.

5.2 NotPetya

The sample described in Table 5.1 was used during these experiments.

Name NotPetya
SHA256 027cc450ef5f8c5f653329641ec1fed91f694e0d229928963b30f6b0 d7d3a745

URL https://github.com/fabrimagic72/malware-
samples/tree/master/Ransomware/NotPetya

Table 5.1: NotPetya Sample Details

During an experiment only one victim machine was active at any one time.

The execution of the ransomware appeared to follow the descriptions provided
by (Berry et al., 2017; Vipre Security, 2017). The main steps being:

55

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

1. Adding persistence and gathering user’s credentials.

2. Scanning the machine for files to encrypt. This sample seems to ignore
the control files with the ’txt’ extension.

3. Encrypting the identified files using AES encryption with what appears to
be the same AES key being used for all the files. Interestingly neither the
filename or the file meta information changes when the file is encrypted.

4. Attempting lateral movement to other machines, however no actual evid-
ence of this was discovered.

5. After 1 hour, rebooting the machine automatically.

6. Displaying the screen shown in Figure 5.1, while encrypting the Mater
Boot Record.

Figure 5.1: Fake Chkdsk

7. Once the fake chkdsk completes, the machine reboots automatically again.

8. After reboot, the ransomware message shown in Figure 5.2 is displayed

Figure 5.2: NotPetya Ransom Message

56

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

5.2.1 Experiment 1 – Is the key in memory

While the ransomware was executing, memory dumps were taken at regular
intervals and used as input to the live forensic tools. All three live forensics
tools used to examine the memory dumps were able to identify AES keys in
memory, some of the found keys were ignored as they were present prior to the
execution of the ransomware. However all the tools also successfully identified
the key used by the ransomware to encrypt the files. The key discovered in this
experiment is shown below in Figure 5.3.

Figure 5.3: NotPetya AES Encryption Key

The tool interrogate gave the output shown in Figure 5.4 below.

Figure 5.4: NotPetya Interrogate Output

The tool findaes gave the output shown in Figure 5.5 below:

Figure 5.5: NotPetya findaes Output

The RansomAES tool gave the output shown in Figure 5.6 below:

57

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

Figure 5.6: NotPetya RansomAES Output

5.2.2 Experiment 2 – How long is the key present

For each operating system a total of fifteen memory dumps were taken at regu-
lar intervals during the execution of the ransomware. These dumps were then
analysed to determine in which of them, the AES keys were present. When re-
viewing the memory dumps for this execution it was identified that the key be-
came available within 2 minutes of the start of the ransomware, and remained
in memory until the machine was rebooted by the ransomware program after
60 minutes. The key did not survive the reboot and was not recoverable from
memory after this. A graphical representation of some of the ransomware’s be-
haviour and key availability is shown below in Figure 5.7 below.

Figure 5.7: NotPetya Timeline

This timeline correlates well with the findings of other researchers who have
analysed the general behaviour of this ransomware from a malware perspect-
ive (Berry et al., 2017; Vipre Security, 2017). However no work was found that
analysed when and for how long the actual key remains in memory. Using this

58

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

diagram it is clear to see that it is present for a total 59 minutes, which is the
majority of the ransomware’s execution time.

Also no similar graphical representation of the ransomware time line was found
in the literature, the one shown in Figure 5.7 being generated by the author. It is
felt that this type of representation aids understanding of the overall behaviour
of the ransomware and could provide an area for future research.

5.2.3 Experiment 3 – Does the key decrypt files

When the NotPetya ransomware encrypts a file, the first 16 bytes of the file are
overwritten with the AES Initialisation Vector (IV) value (Sood & Hurley, 2017).
A program was developed that firstly reads the IV value from the encrypted file,
then used this together with the key found in experiment-1 to decrypt the files
contents. The process used to recover a file is shown below. In this example a
PDF file was being recovered.

The content of a PDF file encrypted by the NotPetya ransomware is show in
Figure 5.8.

Figure 5.8: File Encrypted by NotPetya

After execution of the decryption program, using the AES key extracted from
the memory dump, the contents of the file can be seen in Figure 5.9.

Figure 5.9: Partially Decrypted NotPetya File

As the file header information was overwritten by the IV during encryption, the

59

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

final stage involves recreation of the file header. In this example the file is a
PDF, so the following command was used to recreate the header information
and insert it back in to the decrypted file.

printf
"\x25\x50\x44\x46\x2d\x31\x2e\x35\x0a\x25\xc7\xec\x8f\xa2\x0a\x35"
| cat - pdf-decrypted.pdf > reconstructed-pdf.pdf

The resulting decrypted file is shown in Figure 5.10. This decrypted file can
be read by any PDF reader without any issue and is exactly the same as the
example control file shown in Figure 3.7.

Figure 5.10: Decrypted NotPetya File

Using this technique pdf, doc, docx, xls and xlsx extracted control files were
successfully recovered using the same AES key. Each of these file types re-
quired different headers to be inserted and some files required that some bytes
be removed from the end of the file. All the commands used to do this are
provided in Appendix B.1. In the future this logic could be incorporated in to
the decrypt.py tool directly.

5.3 Bad Rabbit

The sample described in Table 5.2 was used during these experiments.

Name Bad Rabbit
SHA256 630325cac09ac3fab908f903e3b00d0dadd5fdaa0875ed8496fcbb97a558d0da

URL https://www.hybrid-analysis.com/sample/
630325cac09ac3fab908f903e3b00d0dadd5fdaa0875ed8496fcbb
97a558d0da?environmentId=100

Table 5.2: Bad Rabbit Sample Details

60

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

The execution of this ransomware followed the description provided by (Perekalin,
2018; Mamedov et al., 2018; 2017 Malwarebytes LABS, 2017) and is similar to the
steps used by the NotPetya ransomware.The main steps being:

1. Adding persistence.

2. Scanning the machine for files to encrypt. This sample seems to ignore
control files with the ’txt’ and ’jpg’ file extensions.

3. Encrypting the identified files using AES encryption with what appears to
be the same AES key being used for all the files.

4. After 14 minutes a ransom note file is created on the C drive.

5. One minute later the machine is automatically rebooted.

6. The machine restarts with what appears to be a normal windows desktop.
However in the background the MBR is being encrypted.

7. 22 minutes after the initial execution of the ransomware, the machine
automatically reboots again.

8. After reboot, the ransomware message shown in Figure 5.11 is displayed
and the user is prevented from accessing their windows installation.

Figure 5.11: Bad Rabbit Ransom Note

61

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

5.3.1 Experiment 1 – Is the key in memory

All three live forensics tools used to examine the memory dumps were able to
identify AES keys in memory, some of the found keys were ignored as they were
present prior to the execution of the ransomware. However all the tools also
successfully identified the key used by the ransomware to encrypt the files. The
key used in this experiment is shown below in Figure 5.12.

Figure 5.12: Bad Rabbit AES Encryption Key

The tool interrogate gave the output shown in Figure 5.13 below.

Figure 5.13: Bad Rabbit Interrogate Output

The tool findaes gave the output shown in Figure 5.14 below.

Figure 5.14: Bad Rabbit findaes Output

The RansomAES tool gave the output shown in Figure 5.15 below:

62

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

Figure 5.15: Bad Rabbit RansomAES Output

5.3.2 Experiment 2 – How long is the key present

For each operating system a total of fifteen memory dumps were taken at regu-
lar intervals during the execution of the ransomware. These dumps were then
analysed to determine in which of them, the AES keys were present. When re-
viewed it was identified that the key became available within 1 minute of the
start of the ransomware execution, and only remained in memory while the
encryption was being done. An approximation of this being 30 seconds. The
key did not appear again even after the machine reboot. A graphical repres-
entation of some of the ransomware’s behaviour and key availability is shown
below in Figure 5.16 below.

Figure 5.16: Bad Rabbit Timeline

This timeline correlates well with the findings of other researchers who have
analysed the general behaviour of this ransomware from a malware perspective
(2017 Malwarebytes LABS, 2017). However no work was found that analysed
when and for how long the actual key remains in memory. Using this diagram

63

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

it is clear to see that it is only present for 30 seconds which is a fraction of the
overall execution time and much shorter than the NotPetya ransomware. The
key could possibly be present at other times, but missed due to the sampling
period.

Also no similar graphical representation of the ransomware time line was found
in the literature, the one shown in Figure 5.16 being generated by the author. It
is felt that this type of representation aids understanding of the overall beha-
viour of the ransomware and could provide an area for future research.

5.3.3 Experiment 3 – Does the key decrypt files

Files are encrypted using the same format as the NotPetya ransomware and the
steps described in section 5.2.3 can be used to decrypt the files encrypted with
the Bad Rabbit ransomware. Using this technique pdf, doc, docx, xls and xlsx
files were successfully recovered using the same AES key.

5.4 Phobos

The sample described in Table 5.3 was used during these experiments.

Name Phobos
SHA256 a91491f45b851a07f91ba5a200967921bf796d38677786de51a4a8fe5ddeafd2

URL https://any.run/report/a91491f45b851a07f91ba5a200967921bf
796d38677786de51a4a8fe5ddeafd2/deebe359-037a-405d-
a863-3c72cc3d8442

Table 5.3: Phobos Sample Details

The execution of the ransomware followed the description provided by (Issa,
2019). The main steps being:

1. Adding persistence and gathering credentials.

2. Scanning the machine for files to encrypt. This sample encrypted all the
control files.

3. Encrypting the identified files using AES encryption with what appears to
be the same AES key being used for all the files initially encrypted. The
file names were also changed.

4. After approximately 2 minutes the ransom note shown in Figure 5.17 is
displayed.

64

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

Figure 5.17: Phobos Ransom Message

5. Interestingly the machine still operates to some extent and any new files
created are encrypted using a different AES key. The researcher was not
able to discover this secondary AES key. This could be an area of further
research as these keys must be accessible somehow.

6. The machine does not reboot automatically. If the user reboots the ma-
chine, then the same ransomware message is displayed.

5.4.1 Experiment 1 – Is the key in memory

All three live forensics tools used to examine the memory dumps were able to
identify AES keys in memory, some of the found keys were ignored as they were
present prior to the execution of the ransomware. However all the tools also
successfully identified the 256 bit key used by the ransomware to encrypt the
files. The key used in this experiment is shown below in Figure 5.18.

Figure 5.18: Phobos AES Encryption Key

The tool interrogate gave the output shown in Figure 5.19 below.

65

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

Figure 5.19: Phobos Interrogate Output

The tool findaes gave the output shown in Figure 5.20 below:

Figure 5.20: Phobos findaes Output

The RansomAES tool gave the output shown in Figure 5.21 below:

Figure 5.21: Phobos RansomAES Output

5.4.2 Experiment 2 – How long is the key present

For each operating system a total of fifteen memory dumps were taken at regu-
lar intervals during the execution of the ransomware. These dumps were then

66

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

analysed to determine in which of them, the AES keys were present. When re-
viewed it was identified that the key initially became available within 1 minute
of the start of the ransomware execution. The same AES key was loaded in to
memory and removed several times during this initial encryption of the ma-
chine. The key was erased when the ransom message was displayed. The ransom-
ware continued to encrypt any new files created, using a different AES key. Sev-
eral unsuccessful attempts were made to try and capture this secondary key
from memory. A graphical representation of some of the ransomware’s beha-
viour and key availability is shown in 5.22 below.

Figure 5.22: Phobos Timeline

This timeline correlates well with the findings of other researchers who have
analysed the general behaviour of this ransomware from a malware perspective
(Issa, 2019; Panda Security, 2017). However no work was found that analysed
when and for how long the actual key remains in memory. Using this diagram
it is clear to see that the same AES key is present in memory on several different
occasions. It is also worth bearing in mind that there could be occasions where
the keys presence was missed due to the sampling period. No similar graphical
representation of the ransomware time line was found in the literature, the one
shown in Figure 5.22 being generated by the author. It is felt that this type of
representation aids understanding of the overall behaviour of the ransomware
and could provide an area for future research.

5.4.3 Experiment 3 – Does the key decrypt files

Additional information is added to the end of a file that has been encrypted by
the Phobos ransomware. This extra information includes some padding, fol-
lowed by what is believed to be the AES IV value, then followed by 128 bytes

67

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

that is the same for all the encrypted files. A detailed description of the encryp-
ted file appears in the work by Issa (Issa, 2019) who hypothesis that this 128
byte block could be the encrypted asymmetric key. There is also a fixed string
at the end of the block, in this case it is ’LOCK96’ but other versions of Phobos
have been observed with different keywords such as ’DAT260’.

A program was developed that firstly reads the IV value from the encrypted file,
then uses this together with the key found in experiment-1 to decrypt the file.
The process used to recover a text file is shown below.

The content of a text file encrypted by the Phobos ransomware is show in Fig-
ure 5.23.

Figure 5.23: File Encrypted by Phobos

After execution of the decryption program using the AES key extracted from the
memory dump, the contents of the file looks like Figure 5.24.

Figure 5.24: Partially Decrypted Phobos File

68

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

The final step is to remove the trailer added by Phobos. This trailer is a constant
length so the following command can be used.

dd if=<decrypted file> of=<final file> bs=$((‘cat text.txt| wc -c‘
- 225)) count=1

The resulting decrypted file without the trailer is exactly the same as the file,
prior to encryption. Using this technique pdf, jpg, txt, doc, docx, xls and xlsx
files were successfully recovered using the same AES key.

5.5 Conclusions

All three live forensic tools successfully identified the AES key used by all three
ransomware samples tested in these experiments, supporting the hypotheses
that live forensic techniques could be used to mitigate a ransomware attack.
These results correlate well with the findings of other researchers who have
worked on AES key recovery from volatile memory (Maartmann-Moe et al.,
2009; Balogh & Pondelik, 2011; Hargreaves & Chivers, 2008), though none of
them directly with ransomware in particular.

It can be seen from the generated time lines that for two of the ransomware
samples the found keys were only available in memory for a limited time and
once the encryption completed they were removed from the memory, did not
return and were not recoverable. Any encryption performed after the original
AES keys used for the initial encryption have been removed, is achieved using a
secondary AES key which could not be recovered using the same technique. In
all cases the key does not survive a machine reboot. The graphical timelining
of the execution proved a valuable tool for understanding the behaviour of the
ransomware and this together with more analysis of the the secondary AES keys
used for encryption after the initial run could be good candidates for further
research work.

Similar execution times and results were recorded for the findaes and RansomAES
live forensic tools, while the time taken for the interrogate tool to complete was
almost 100 times longer. Apart from this extended execution time the final res-
ults from all three tools were identical. The author believes that the increased
execution time of the interrogate tool could be caused by the implementation
of the logic this tool used to identify the AES key as fundamentally it is based on
the same research as findaes (Trenholme, 2014). Also, this tool is more generic
than the findaes tool as it is also able to find other key types such as RSA and
this extra logic could possibly be the reason for the degradation in perform-

69

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

ance of the tool. This extreme computation time means that the interrogate
tool does not lend itself for use in this type of analysis. A separate test was per-
formed to determine if this tools logic would help in identifying AES keys for the
’wannacry’ ransomware, but it was not able to extract any useful information,
despite its enhanced functionality. The RansomAES tool created by the author,
which combined the logic of the volatility framework (Volatility, 2019) together
with the logic from the findaes (Kornblum, 2019), had similar results as the pure
findaes tool, indicating that the added extra functionality for ransomware did
not result in an improvement in performance. However the time spent on de-
veloping this tool was limited and it may prove beneficial to spend some more
time in trying to improved its design and hence performance.

The three chosen ransomware samples were similar to each other in that they
all used AES symmetric encryption and also all used the same key for all files
encrypted. Other ransomware samples that used different keys for each file,
different encryption algorithms such as DES or purely asymmetric encryption
were rejected.

It has been proposed (LogRhythm Labs, 2017) that the encryption techniques
employed by the Bad Rabbit ransomware are different from the ones used by
NotPetya. However, this is not supported by the results from our experiments as
it seems that both use a single AES key for all the encrypted files and the format
of the encrypted files are the same. The only recorded difference between the
two programs with regards to encryption appears to be that the Bad Rabbit
ransomware removes the keys from memory immediately after the encryption
has completed, thus reducing the window of opportunity to capture the key
from memory.

A significant amount of time was spent researching the formats of the files en-
crypted by the ransomware samples (Sood & Hurley, 2017; Mamedov et al.,
2018; Issa, 2019). It seems that each ransomware uses a different file format
and it was necessary to discover the format used so that the IV could be de-
termined. Without this value it would be much harder to decrypt the files even
when the encryption key was known. Although the papers produced by Issa
(Issa, 2019) on the Phobos sample, Sood (Sood & Hurley, 2017) on the Petya
sample and Mamedov (Mamedov et al., 2018) on the BadRabbit sample, were
not peer reviewed, the fact the information provided by them, gave the author
enough information to be able to decrypt the file, strongly suggests that the
information contained within these papers is accurate and reliable.

The information presented in this chapter together with the discussions, evalu-
ation and comparison aligns well with the learning outcome three mainly, how-
ever some parts should also contribute to learning outcome two.

70

Chapter 6

Conclusion

All three live forensic tools successfully identified the AES key used by all three
ransomware samples tested in these experiments, supporting the hypotheses
that live forensic techniques could be used to mitigate a ransomware attack.
While there is no known similar research in this specific area, these results do
correlate well with the findings from other researchers who have worked on
AES key recovery from volatile memory (Maartmann-Moe et al., 2009; Balogh &
Pondelik, 2011; Hargreaves & Chivers, 2008) in similar areas such as key recov-
ery from TrueCrypt or Skype applications.

However these results support the hypothesis with some caveats. These be-
ing that the machine has not been rebooted since the commencement of the
attack, and also that the memory capture is performed near the start of the
ransomware’s execution, to ensure that the required keys are still present in
memory. Also this technique cannot be applied to all ransomware families,
as demonstrated by the analysis of the ’wannacry’ sample, where no AES keys
were able to be identified.

It was also observed that in cases of a ransomware attacks where the user was
still able to interact with the operating system after the initial encryption has
completed, a different AES key was used to perform any subsequent encryp-
tion. It is still believed by the author and corroborated by others (Hargreaves &
Chivers, 2008; Balogh & Pondelik, 2011), that the AES keys must be in memory
for this secondary encryption to take place. A further area of research could be
to analyse the ransomware and memory dumps further to determine if capture
of these secondary keys is also possible.

6.1 Aims and Objectives

To critically assess the success of this project, it should be evaluated against its
original aims and objectives bearing in mind that the overall objective was the
evaluation of live forensics techniques in ransomware attack mitigation. The
stated aims of the project being:

1. Conduct a critical literature review on the subject of ransomware and

71

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

live forensics. Included in this would be an analysis of the current status
of ransomware attacks, trends, techniques for delivery, general steps in-
volved in such an attack as well as live forensic techniques relating memory
analysis with regards to cryptanalysis.

2. Develop and validate a robust, isolated, realistic test environment that
can be used to execute the designed experiments.

3. Building on the findings from the literature review, design and develop
specific experiments to test the hypothesis that live forensic techniques
may be used in mitigating the affects of a ransomware attack. Using three
different live forensic tools on three examples of ransomware. These ex-
periments being run on two different operating systems.

4. Discuss and evaluate the results and findings from the experiments and
compare them to similar research on the subject. Draw conclusions from
the experiments, results and findings and critically evaluate the project.

6.2 Objective One – Literature Review

The outcome from the literature review is presented in Chapter 2. It is divided
in to two main parts; firstly on ransomware and secondly on live forensic tech-
niques focusing on AES key recovery.

The review begins with a brief history of ransomware, documenting recent well
know attacks before moving on to discuss the current threat landscape, con-
firming that the risk of a ransomware attack remains a current and real one
and a valid field that warrants further research. A description using the authors
preferred six phase model (McAfee Labs, 2016) to describe the behaviour of the
ransomware is given. This model was selected over an alternative three phase
models proposed (Kumar & Kumar, 2013; Gazet, 2010), as it provides a finer
granularity for the description of the program’s actions, allowing the model to
capture more precise details of the execution process and timeline. However it
is harder to implement than the three phase model.

The preferred model also provided techniques for comparing different ransom-
ware sample behaviour and aided in the identification of samples that exhib-
ited the preferred behaviour for this project. Guidance when selecting the ransom-
ware samples was also derived from this literature review as the author wished
to use recent, high profile samples that had a wide spread well documented
impact and would be familiar to a wider audience.

The chapter then moves on to cover the subject of live forensics, starting with

72

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

descriptions of the different terminology and techniques used in this field. While
no specific research papers in to using live forensic techniques to combat ransom-
ware were found, several other papers describing similar techniques to recover
artifacts from other cryptographic program were presented, the key papers that
most closely resembled the work performed on this project being Maartmann-
Moe (Maartmann-Moe et al., 2009), Balogh (Balogh & Pondelik, 2011) and Shamir
(Shamir & Van Someren, 1998). Information and recommendations gathered
from these papers contributed significantly to the design of the environment
and experiments shown in Chapter 3 and their implementation shown in Chapter
4.

Some of the tools identified in these papers were also tested during the exper-
imentation phase of this project. In all experiments, with all the used forensic
analysis tools, the researcher was able to recover the AES keys, mirroring the
success that authors of these reference papers had also achieved.

A part of this review also describes the techniques these tools employed to
identify the keys used by the ransomware when it encrypts the files. How these
tools use entropy and the existence of the pre-calculated key schedule or in
some cases both to be able to identify the AES keys amongst the other data
structures in the memory dump.

All of the proposed goals for this aim have been met and fulfilled the require-
ments for objective one.

6.3 Objective Two – Experiment Design

The design chapter took the findings from the literature review and using a
good scientific approach applied them to designing and developing a system
suitable for testing the hypothesis.

The design process was divided in to two distinct parts; the first concerned with
the underlying environment design and the second relating to the actual exper-
imental process design.

The environmental design relied heavily on the descriptions found in literat-
ure on how ideal test environments should be configured when working with
malware samples (Rossow et al., 2012; Sanabria, 2007; Bose, 2018). These re-
commendations were combined with examples found in the literature review
of environments used by researchers working in similar areas (Maartmann-
Moe et al., 2009; Balogh & Pondelik, 2011; Shamir & Van Someren, 1998) to
produce the final design. It is felt that the resulting design used in this project

73

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

provided a realistic, flexible and safe environment allowing the researchers to
define and develop the experiments in a robust and isolated environment. Sat-
isfying the criteria for a good environment design as stipulated in the literature
(Bose, 2018; Sanabria, 2007).

While no experiments were found in the literature that could be directly util-
ized to test the hypothesis, good experiment design techniques (Edgar & Manz,
2017a) were used to develop the three hypothetico-deductive experiments where
the dependant and independent variables were clearly identified. Basing the
experiment design on these principles provided a high degree of certainty over
the quality of the results achieved and allowed the findings from these experi-
ments to be compared to the findings from experiments performed in related
fields.

There were several options available for memory acquisition and during this
project it was decided to utilize the hypervisor tools to capture the memory
from outside the system. The benefits of non contamination of the memory
dumps by the acquisition method while relying on product specific hypervisor
tools was considered to be a better alternative than using memory capture tools
from within the operating system of the victims machine which while being
more generic, would contaminate the captured memory.

On review the work performed mainly in Chapter 3 and partially in Chapter 4
fully met the requirements for objective two.

6.4 Objective Three – Design and Implementation

The design of the environment and experiments is covered in Chapter 3 and
their implementation in Chapter 4. During the execution of the ransomware
samples as part of the experiments, no external effects of their execution were
observed and no assets outside the experimental environment were affected.
This is considered to be a good endorsement of quality of the implemented
experimental environment.

Despite the fact that there were no identifiable differences between the execu-
tion times or results recorded when investigating the ransomware samples on
Windows 7 or Windows 10 operating system, it is felt that the extra effort in-
volved in performing these parallel experiments was worthwhile as it allowed
the researcher to draw realistic conclusions from the experiments (Rossow et
al., 2012) as well as providing a platform for defending the findings and drawn
conclusions. It also provided a defence against possible criticisms that could
otherwise be raised about the experiments being unrealistic or too specific.

74

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

The experimental environment was designed with an additional third machine
present on the virtual network, identified as the Debian machine. The pur-
pose of this machine was to supply network services to the victims machine
(Sanabria, 2007). However during the execution of the three ransomware samples
selected for investigation, no network traffic was observed leading the author
to conclude that the ransomware samples used were self contained and did not
require network access to function correctly. Even though no network traffic
was recorded during these experiments, it was still considered worthwhile to
have this Debian machine and its associated services available on the network.
The reason for this being that prior to execution of the ransomware, the re-
searcher could not know what network services the sample would require, these
would only become apparent after examination of the Debian machine logs on
completion of the ransomware’s execution. Also the presence of this Debian
machine on the network may have misled the ransomware to behave normally
as it believed that it was executing on a typical network and not a simulated
one (Egele et al., 2012). However this benefit was not investigated as part of the
experiments.

Some issues were encountered during the selection of the ransomware samples
that would be included in the investigation. For example, the researchers were
not able to capture any keys when executing the ’wannacry’ ransomware sample,
while this could have been used as a good example for a null hypothesis (Edgar
& Manz, 2017a), it was decided to reject this sample and focus the research on
samples where the capture was successful. Difficulties were also encountered
in having some of the other ransomware samples execute correctly, or in a way
that was described in the literature and for these reasons, they were also rejec-
ted.

Apart from these minor issues, the environment performed in a safe and flex-
ible manner (Sikorski & Hong, 2012) allowing the experiments to be executed
and the results collected without encountering any issues or having any 3r d

party computer assets affected.

On review the work performed mainly in Chapter 4 and partially in Chapter 3
fully met the requirements for objective three.

6.5 Objective Four – Evaluation

All three live forensic tools successfully identified the AES key used by all three
ransomware samples tested in these experiments, supporting the hypotheses
that live forensic techniques could be used to mitigate a ransomware attack.

75

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

These results correlate well with the findings of other researchers who have
worked on AES key recovery from volatile memory (Maartmann-Moe et al.,
2009; Balogh & Pondelik, 2011; Hargreaves & Chivers, 2008), though none of
them directly with ransomware in particular.

It can be seen from the generated time lines that for two of the ransomware
samples the found keys were only available in memory for a limited time and
once the encryption completed they were removed from the memory, did not
return and were not recoverable. Any encryption performed after the keys used
for the initial encryption have been removed is achieved using a secondary AES
key which could not be recovered using the same technique. In all cases the key
does not survive a machine reboot. The graphical timelining of the execution
proved a valuable tool in understanding the behaviour of the ransomware and
this together with more analysis of the the secondary AES keys used for encryp-
tion after the initial run could be good candidates for further research work.

The performance of the findaes and RansomAES live forensic tools were sim-
ilar and were both successful in identifying the correct AES keys. Either of these
can be recommended as a useful tool when performing this type of research.
In contrast, it is felt that the performance of the interrogate tool prohibits is
use in this type of investigation. The RansomAES tool created by the author,
which combined the logic of the volatility framework (Volatility, 2019) together
with the logic from the findaes (Kornblum, 2019), had similar results as the pure
findaes tool, indicating that the added extra functionality for ransomware did
not result in an improvement in performance. However the time spent on de-
veloping this tool was limited and it may prove beneficial to spend some more
time trying to improved its design and hence performance.

The three chosen ransomware samples were similar to each other in that they
all used AES symmetric encryption and also all used the same key for all files
encrypted. This sample selection may have contributed to the fact that the
project was successful in identifying the AES keys for all three samples. Other
ransomware samples that used different keys for each file, different encryption
algorithms such as DES or purely asymmetric encryption were rejected prior to
the commencement of the experiments.

A significant amount of time was spent researching the file formats of the files
encrypted by the ransomware samples (Sood & Hurley, 2017; Mamedov et al.,
2018; Issa, 2019). It seems that each ransomware uses a different file format and
it was necessary to discover the format used so that the IV could be determined.
Without this value it would be much harder to decrypt the files even when the
encryption key was known.

76

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

The success of the experiments combined with the analysis of the results, the
evaluation performed in Chapter 5 and the discussion in this conclusion chapter
fully meet the requirements for objective four.

6.6 Self Appraisal

The fact that the project was able to confirm that some live forensic techniques
could prove useful when dealing with some types of ransomware attacks is con-
sidered by the author to be a successful outcome of the investigation, especially
as the main aims of the project were also met. Another positive achievement
being the design and implementation of a safe, robust and flexible test envir-
onment that allowed the researcher to perform the experiments without any
adverse affects on external systems.

However, on reflection, if the project would be repeated, then a reduced scope
should be considered as too many research questions were attempted to be
answered, resulting in the necessity of conducting a large set of experiments.

In summary the following themes were investigated. Ransomware execution
timelining, decryption techniques of files encrypted by ransomware, identi-
fication and extract of AES keys from memory, multiple ransomware sample
comparisons, AES extraction tool comparison and ransomware behaviour on
multiple operating systems.

While some of these combinations were useful and enhanced the overall relev-
ance of the project, such as using the found AES keys to decrypt the file. This
both confirmed that the correct AES keys were found and that the decryption
technique was valid. Another example being the testing on multiple operating
systems. While this gave the researcher the ability to draw more realistic con-
clusions from the results, it also doubled the number of experiments that were
required to be performed. The overall number of experiments conducted was
quite high putting a significant workload on the project.

One solution would have been to run separate projects each investigating a
subset of this projects scope.

Additional ideas for further research generated during this projected were re-
corded and are described in section 6.7

77

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

6.7 Future Work

It has been shown that ransomware is and continues to be, a significant threat
to individuals and organisations so further research into some of the techniques
identified and utilized during this investigation could prove to be beneficial in
supporting users strengthen their systems and provide tools that would be use-
ful in mitigating future attacks. Some specific topics covered in this research
that could benefit from further investigation are:

Timelining of ransomware execution. One way to understand and possibly cat-
egorise ransomware execution is the graphical timelining of the steps involved
and the consequences of each phase of the ransomware execution. This ap-
proach proved very useful during this project and it is believed that further in-
vestigation and research could result in some useful findings. Currently there
does appear to be much work being performed on this subject and the little
research that does appear in the literature use differing notation systems and
granularity.

Specific tool development Mostly standard tools were used to perform the AES
key discovery during this project. These tools were initially developed for cases
of key discovery in different circumstances and for different cryptographic pro-
grams. One area of further research could be to develop a tool specifically for
ransomware with the aim of using its particular behaviour to design a tool with
greater performance and accuracy.

Integration in to Volatility Framework(Volatility, 2019). This is an open frame-
work tool used for live forensics. It is designed to allow 3rd party developers to
create plugins for this framework. A good future area of research would be to
develop a specific plugin for ransomware that could either be used to identify
the presence of ransomware within the system or key recovery for attack mitig-
ation and recovery.

Memory capture techniques The technique used during this project relied on
the fact that the victim’s system was running as a virtual machine on a Virtu-
alBox hypervisor. Further research could be performed to try and identify a
more generic solution for memory acquisition that could be used both with the
virtual machine, within a normal machine (non virtual) or from other types of
hypervisor implementations.

Real time memory monitoring During these experiments, memory dumps were
analysed to discover the AES keys. Further research could be to try and adapt
these analysis techniques so that the memory is analysed directly and not via
a dump file. An expected result of this approach would be an increase in per-

78

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

formance and a reduction in the AES key discovery time as currently there is a
delay between initiating the memory dump and the dump becoming available
for analysis.

Post infection investigation It was observed that when the user still had access
to the computer after it had been infected, a different AES key than the one
originally used for the initial encryption, was being used to encrypt the new
files. Further research in to how to capture this secondary AES key would be
helpful in mitigating this type of ransomware attack.

79

References

2017 Malwarebytes LABS. (2017). Bad Rabbit: a closer look at
the new version of Petya/NotPetya. Retrieved 2019-08-23, from
https://blog.malwarebytes.com/threat-analysis/2017/10/
badrabbit-closer-look-new-version-petyanotpetya/

2019 Malwarebytes LABS. (2019). State of Malware (Tech. Rep.). Retrieved
from https://resources.malwarebytes.com/resource/2019-state
-malware-malwarebytes-labs-report/

Ahmad, M. A., Woodhead, S. & Gan, D. (2016). The V-network testbed for
malware analysis. Proceedings of 2016 International Conference on Ad-
vanced Communication Control and Computing Technologies, ICACCCT
2016, 629–635. doi: 10.1109/ICACCCT.2016.7831716

Ahmadian, M. M., Shahriari, H. R. & Ghaffarian, S. M. (2016). Connection-
monitor & connection-breaker: A novel approach for prevention and de-
tection of high survivable ransomwares. 12th International ISC Confer-
ence on Information Security and Cryptology, ISCISC 2015, 79–84. doi:
10.1109/ISCISC.2015.7387902

Akkas, A., Chachamis, C. N. & Fetahu, L. (2017). Malware Analysis of WanaCry
Ransomware. Semantics Scholar, 1–11.

Al-rimy, B. A. S., Maarof, M. A. & Shaid, S. Z. M. (2018). Ransomware
threat success factors, taxonomy, and countermeasures: A survey and
research directions. Computers and Security, 74, 144–166. Retrieved
from https://doi.org/10.1016/j.cose.2018.01.001 doi: 10.1016/
j.cose.2018.01.001

Balogh, Š. & Pondelik, M. (2011). Capturing encryption keys for digital analysis.
Proceedings of the 6th IEEE International Conference on Intelligent Data
Acquisition and Advanced Computing Systems: Technology and Applica-
tions, IDAACS’2011, 2(September), 759–763. doi: 10.1109/IDAACS.2011
.6072872

Bashir, M. S. & Khan, M. N. A. (2013). Triage in Live Digital Forensic Ana-
lysis. The International Journal of Forensic Science, 35–44. doi: 10.5769/
J201301005

BCS. (2015). conduct.pdf (No. June). The British Computer Socienty. Retrieved
2019-08-27, from https://www.bcs.org/upload/pdf/conduct.pdf

Belkasoft. (2019). RamCapturer. Retrieved 2019-09-01, from https://
belkasoft.com/ram-capturer

Bellardo, J. & Savage, S. (2003). 802.11 Denial-of-Service Attacks: Real Vulner-
abilities and Practical Solutions. Usenix, 1–13. Retrieved from http://

80

https://blog.malwarebytes.com/threat-analysis/2017/10/badrabbit-closer-look-new-version-petyanotpetya/
https://blog.malwarebytes.com/threat-analysis/2017/10/badrabbit-closer-look-new-version-petyanotpetya/
https://resources.malwarebytes.com/resource/2019-state-malware-malwarebytes-labs-report/
https://resources.malwarebytes.com/resource/2019-state-malware-malwarebytes-labs-report/
https://doi.org/10.1016/j.cose.2018.01.001
https://www.bcs.org/upload/pdf/conduct.pdf
https://belkasoft.com/ram-capturer
https://belkasoft.com/ram-capturer
http://cseweb.ucsd.edu/{~}savage/papers/UsenixSec03.pdf
http://cseweb.ucsd.edu/{~}savage/papers/UsenixSec03.pdf

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

cseweb.ucsd.edu/{~}savage/papers/UsenixSec03.pdf
Berry, A., Homan, J. & Eitzman, R. (2017). Threat Research WannaCry Malware

Profile. Retrieved 2019-08-20, from https://www.fireeye.com/blog/
threat-research/2017/05/wannacry-malware-profile.html

Bose, M. (2018). A Complete Comparison of VMware and VirtualBox. Re-
trieved 2019-09-20, from https://www.nakivo.com/blog/vmware-vs
-virtual-box-comprehensive-comparison/

Bradley, S. (2016). Information Security Reading Room Ransomware (Tech.
Rep.). SANS Institute. Retrieved from https://www.sans.org/reading
-room/whitepapers/awareness/paper/37317

Carvey, H. (2018). Setting Up A Testing Environment. Investigating Windows
Systems, 97–115. doi: 10.1016/b978-0-12-811415-5.00005-6

Carvey, H. & Casey, E. (2009). Windows Forensic analysis DVD toolkit (2nd ed.).
Burlington, MA : Syngress.

CERT-EU. (2017). WannaCry Ransomware Campaign Exploiting
SMB Vulnerability (Tech. Rep.). Computer Emergency Response
Team - EU. Retrieved from https://cert.europa.eu/static/
SecurityAdvisories/2017/CERT-EU-SA2017-012.pdf

Choudhary, S. P. & Vidyarthi, M. D. (2015). A Simple Method for Detection of
Metamorphic Malware using Dynamic Analysis and Text Mining. Pro-
cedia Computer Science, 54, 265–270. doi: 10.1016/j.procs.2015.06.031

Comodo. (2018). 8 Ransomware Attacks that have Occurrred Recently. Re-
trieved 2019-09-20, from https://enterprise.comodo.com/forensic
-analysis/ransomware-attacks.php

Davies, D. B. (2019). Ransomware Activity Declines, But Remains Dangerous
Threat. Retrieved 2019-09-05, from https://www.symantec.com/
blogs/expert-perspectives/ransomware-activity-declines
-remains-dangerous-threat

Dinaburg, A., Royal, P., Sharif, M. & Lee, W. (2008). Ether: Malware Analysis via
Hardware Virtualization Extension. , 51–62.

Edgar, T. W. & Manz, D. (2017a). Research Methods for Cyber Security. Syngress.
Edgar, T. W. & Manz, D. (2017b). Research Methods for Cyber Security. In

Research methods for cyber security (p. 213). Syngress, Boston.
Egele, M., Scholte, T., Kirda, E. & Kruegel, C. (2012). A survey on automated dy-

namic malware-analysis techniques and tools. ACM Computing Surveys,
44(2). doi: 10.1145/2089125.2089126

Eric Vanderberg. (2018). Part 3: The 6 Phases of an Advanced Ransomware
Threat. Retrieved 2019-09-03, from https://www.tcdi.com/6-phases
-advanced-ransomware-threat/

Europol. (2016). INTERNET ORGANISED CRIME 2016 IOCTA (Tech.
Rep.). Retrieved from https://www.europol.europa.eu/

81

http://cseweb.ucsd.edu/{~}savage/papers/UsenixSec03.pdf
http://cseweb.ucsd.edu/{~}savage/papers/UsenixSec03.pdf
https://www.fireeye.com/blog/threat-research/2017/05/wannacry-malware-profile.html
https://www.fireeye.com/blog/threat-research/2017/05/wannacry-malware-profile.html
https://www.nakivo.com/blog/vmware-vs-virtual-box-comprehensive-comparison/
https://www.nakivo.com/blog/vmware-vs-virtual-box-comprehensive-comparison/
https://www.sans.org/reading-room/whitepapers/awareness/paper/37317
https://www.sans.org/reading-room/whitepapers/awareness/paper/37317
https://cert.europa.eu/static/SecurityAdvisories/2017/CERT-EU-SA2017-012.pdf
https://cert.europa.eu/static/SecurityAdvisories/2017/CERT-EU-SA2017-012.pdf
https://enterprise.comodo.com/forensic-analysis/ransomware-attacks.php
https://enterprise.comodo.com/forensic-analysis/ransomware-attacks.php
https://www.symantec.com/blogs/expert-perspectives/ransomware-activity-declines-remains-dangerous-threat
https://www.symantec.com/blogs/expert-perspectives/ransomware-activity-declines-remains-dangerous-threat
https://www.symantec.com/blogs/expert-perspectives/ransomware-activity-declines-remains-dangerous-threat
https://www.tcdi.com/6-phases-advanced-ransomware-threat/
https://www.tcdi.com/6-phases-advanced-ransomware-threat/
https://www.europol.europa.eu/activities-services/main-reports/internet-organised-crime-threat-assessment-iocta-2016
https://www.europol.europa.eu/activities-services/main-reports/internet-organised-crime-threat-assessment-iocta-2016

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

activities-services/main-reports/internet-organised-crime
-threat-assessment-iocta-2016 doi: 10.2813/275589

Europol. (2018). INTERNET ORGANISED CRIME 2018 IOCTA (Tech. Rep.). Re-
trieved from https://www.europol.europa.eu/internet-organised
-crime-threat-assessment-2018 doi: 10.2813/858843

F-Secure Labs. (2016). Ransomware: How to prevent, predict, de-
tect & respond (Tech. Rep. No. November). F-Secure. Retrieved
from https://www.f-secure.com/documents/996508/1030745/
Ransomware{_}how{_}to{_}ppdr.pdf

Fruhlinger, J. (2019). The 6 biggest ransomware attacks of the last 5 years.
Retrieved 2019-09-20, from https://www.csoonline.com/article/
3212260/the-5-biggest-ransomware-attacks-of-the-last-5
-years.html

F-Secure. (2017). F-Secure State of Cyber Security (Tech. Rep.). Retrieved
from https://www.f-secure.com/content/dam/f-secure/en/labs/
whitepapers/Cyber{_}Security{_}Report{_}2017.pdf

Furnell, S. & Security, C. (2017). The ABC of ransom- ware protection. Computer
Fraud and Security(October), 5–11.

Galal, H. S., Mahdy, Y. B. & Atiea, M. A. (2016). Behavior-based features model
for malware detection. Journal of Computer Virology and Hacking Tech-
niques, 12(2), 59–67. doi: 10.1007/s11416-015-0244-0

Gazet, A. (2010). Comparative analysis of various ransomware virii. Journal in
Computer Virology, 6(1), 77–90. doi: 10.1007/s11416-008-0092-2

Goldberg, R. P. (1974). Survey of Virtual Machine Research. Computer, 7(6),
34–45. doi: 10.1109/MC.1974.6323581

Grégio, A. R. A., Afonso, V. M., Filho, D. S. F., Geus, P. L. D. & Jino, M. (2014).
Toward a Taxonomy of Malware Behaviors. Computer Journal, 58(10),
2758–2777. doi: 10.1093/comjnl/bxv047

Gupta, B. B., Arachchilage, N. A. & Psannis, K. E. (2018). Defending
against Phishing Attacks : Taxonomy of Methods , Current Issues and
Future Directions. Telecommunication Systems, 67(2), 247–267. Re-
trieved from https://link.springer.com/article/10.1007/s11235
-017-0334-z

Halderman, J. A., Schoen, S. D., Heninger, N., Clarkson, W., Paul, W.,
Calandrino, J. A., . . . Felten, E. W. (2009). Lest We Remember : Cold Boot
Attacks on Encryption Keys. Communications of the ACM,, 52(5), 91–98.
doi: 10.1145/1506409.1506429

Hampton, N. & Baig, Z. A. (2015). Ransomware: Emergence of the cyber-
extortion menace. The Proceedings of the13th Australian Information Se-
curity Management, 2015, 47–56. doi: 10.4225/75/57b69aa9d938b

Hargreaves, C. & Chivers, H. (2008). Recovery of encryption keys from memory

82

https://www.europol.europa.eu/activities-services/main-reports/internet-organised-crime-threat-assessment-iocta-2016
https://www.europol.europa.eu/activities-services/main-reports/internet-organised-crime-threat-assessment-iocta-2016
https://www.europol.europa.eu/activities-services/main-reports/internet-organised-crime-threat-assessment-iocta-2016
https://www.europol.europa.eu/internet-organised-crime-threat-assessment-2018
https://www.europol.europa.eu/internet-organised-crime-threat-assessment-2018
https://www.f-secure.com/documents/996508/1030745/Ransomware{_}how{_}to{_}ppdr.pdf
https://www.f-secure.com/documents/996508/1030745/Ransomware{_}how{_}to{_}ppdr.pdf
https://www.csoonline.com/article/3212260/the-5-biggest-ransomware-attacks-of-the-last-5-years.html
https://www.csoonline.com/article/3212260/the-5-biggest-ransomware-attacks-of-the-last-5-years.html
https://www.csoonline.com/article/3212260/the-5-biggest-ransomware-attacks-of-the-last-5-years.html
https://www.f-secure.com/content/dam/f-secure/en/labs/whitepapers/Cyber{_}Security{_}Report{_}2017.pdf
https://www.f-secure.com/content/dam/f-secure/en/labs/whitepapers/Cyber{_}Security{_}Report{_}2017.pdf
https://link.springer.com/article/10.1007/s11235-017-0334-z
https://link.springer.com/article/10.1007/s11235-017-0334-z

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

using a linear scan. ARES 2008 - 3rd International Conference on Avail-
ability, Security, and Reliability, Proceedings, 1369–1376. doi: 10.1109/
ARES.2008.109

Hautala, L. (2019). States brace for ransomware assaults on voter registries.
Retrieved 2019-09-03, from https://www.cnet.com/news/wi-fi-6-is
-barely-here-but-wi-fi-7-is-already-on-the-way/

Heninger, N. & Feldman, A. (2008). AESKeyFind. Retrieved from
https://github.com/eugenekolo/sec-tools/tree/master/
crypto/aeskeyfind/aeskeyfind

Hoopes, J. (2009). Chapter 6. Malware Analysis Solutions. In Virtualization
security protecting virtualized environments (1st ed., chap. Chapter 6.).
O’Reilly. Retrieved from https://learning.oreilly.com/library/
view/virtualization-for-security/9781597493055/{#}toc

Intelligence, T. & Analysis, I. (2019). 2019 SonicWall Cyber Threat Report (Tech.
Rep. No. July). SonicWall. Retrieved from www.sonicwall.com

Issa, J. (2019). A deep dive into Phobos ransomware. Retrieved 2019-09-10,
from https://blog.malwarebytes.com/threat-analysis/2019/07/
a-deep-dive-into-phobos-ransomware/

Kapersky. (2018). Top 5 most notorious cyberattacks. Retrieved 2019-09-
06, from https://www.kaspersky.com/blog/five-most-notorious
-cyberattacks/24506/

Kaplan, B. (2007). RAM is Key Extracting Disk Encryption Keys From Volat-
ile Memory (Doctoral dissertation, Carnegie Mellon). Retrieved from
https://cryptome.org/0003/RAMisKey.pdf

Kaur, R. & Singh, M. (2014). A survey on zero-day polymorphic worm detection
techniques. IEEE Communications Surveys and Tutorials, 16(3), 1520–
1549. doi: 10.1109/SURV.2014.022714.00160

Khan Academy. (2017). The Scientific Method. Retrieved 2019-09-15, from
https://www.khanacademy.org/science/high-school-biology/hs
-biology-foundations/hs-biology-and-the-scientific-method/
a/the-science-of-biology

Klahr, R., Amili, S., Shah, J. N., Button, M. & Wang, V. (2019). Cyber Security
Breaches Survey 2019. Cyber Security Breaches Survey 2016, 56. Retrieved
from https://assets.publishing.service.gov.uk/government/
uploads/system/uploads/attachment_data/file/521465/
Cyber_Security_Breaches_Survey_2016_main_report_FINAL.pdf

Klein, T. (2017). 5 Phases of Ransomware Attacks. Retrieved 2019-09-
03, from https://www.edci.com/2017/03/5-phases-of-ransomware
-attacks/

Kong, J. H., Ang, L. M. & Seng, K. P. (2015). A comprehensive survey of mod-
ern symmetric cryptographic solutions for resource constrained environ-

83

https://www.cnet.com/news/wi-fi-6-is-barely-here-but-wi-fi-7-is-already-on-the-way/
https://www.cnet.com/news/wi-fi-6-is-barely-here-but-wi-fi-7-is-already-on-the-way/
https://github.com/eugenekolo/sec-tools/tree/master/crypto/aeskeyfind/aeskeyfind
https://github.com/eugenekolo/sec-tools/tree/master/crypto/aeskeyfind/aeskeyfind
https://learning.oreilly.com/library/view/virtualization-for-security/9781597493055/{#}toc
https://learning.oreilly.com/library/view/virtualization-for-security/9781597493055/{#}toc
www.sonicwall.com
https://blog.malwarebytes.com/threat-analysis/2019/07/a-deep-dive-into-phobos-ransomware/
https://blog.malwarebytes.com/threat-analysis/2019/07/a-deep-dive-into-phobos-ransomware/
https://www.kaspersky.com/blog/five-most-notorious-cyberattacks/24506/
https://www.kaspersky.com/blog/five-most-notorious-cyberattacks/24506/
https://cryptome.org/0003/RAMisKey.pdf
https://www.khanacademy.org/science/high-school-biology/hs-biology-foundations/hs-biology-and-the-scientific-method/a/the-science-of-biology
https://www.khanacademy.org/science/high-school-biology/hs-biology-foundations/hs-biology-and-the-scientific-method/a/the-science-of-biology
https://www.khanacademy.org/science/high-school-biology/hs-biology-foundations/hs-biology-and-the-scientific-method/a/the-science-of-biology
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/521465/Cyber_Security_Breaches_Survey_2016_main_report_FINAL.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/521465/Cyber_Security_Breaches_Survey_2016_main_report_FINAL.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/521465/Cyber_Security_Breaches_Survey_2016_main_report_FINAL.pdf
https://www.edci.com/2017/03/5-phases-of-ransomware-attacks/
https://www.edci.com/2017/03/5-phases-of-ransomware-attacks/

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

ments. Journal of Network and Computer Applications, 49, 15–50. Re-
trieved from http://dx.doi.org/10.1016/j.jnca.2014.09.006 doi:
10.1016/j.jnca.2014.09.006

Kornblum, J. (2019). findaes. Retrieved 2019-08-10, from http://
jessekornblum.com/tools/findaes/

Kumar, S. & Kumar, M. R. (2013). Cryptoviral Extortion: A virus based ap-
proach. International Journal of Computer Trends and Technology, 4(5),
1149–1153. Retrieved from http://www.ijcttjournal.org

Levy, J. & Cto, S. (2019). Sophoslabs 2019 threat report (Tech. Rep.). Sophos. Re-
trieved from https://www.sophos.com/en-us/medialibrary/PDFs/
technical-papers/sophoslabs-2019-threat-report.pdf

Ligh, M. H., Case, A., Levy, J. & Walters, A. (2014). The Art of memory Forensics.
Wiley.

Lin, H. (2019). Six Steps of the Scientific Method. Retrieved 2019-09-
15, from https://www.thoughtco.com/steps-of-the-scientific
-method-p2-606045

LogRhythm Labs. (2017). Bad Rabbit Ransomware Technical Analysis. Re-
trieved from https://logrhythm.com/blog/bad-rabbit-ransomware
-technical-analysis/

Maartmann-Moe, C., Thorkildsen, S. E. & Årnes, A. (2009). The persistence
of memory: Forensic identification and extraction of cryptographic keys.
DFRWS 2009 Annual Conference, 6, 132–140. doi: 10.1016/j.diin.2009.06
.002

Malwarebytes. (2018). What’s new in TrickBot? Deobfuscating ele-
ments. Retrieved from https://blog.malwarebytes.com/
threat-analysis/malware-threat-analysis/2018/11/whats-new
-trickbot-deobfuscating-elements/

Malwarebytes. (2019). Cybercrime Tactics and Techniques Q1 2019 (Tech.
Rep.). Retrieved from https://www.malwarebytes.com/pdf/labs/
Cybercrime-Tactics-and-Techniques-Q1-2017.pdf

Mamedov, O., Sinitsyn, F. & Ivanov, A. (2018). Bad Rabbit ransom-
ware. Retrieved 2019-10-15, from https://securelist.com/bad
-rabbit-ransomware/82851/

Mbol, F., Robert, J.-M. & Sadighian, A. (2016). An Efficient Approach to De-
tect TorrentLocker Ransomware in Computer Systems. In 15th inter-
national conference, cans 2016 (pp. 532–41). Retrieved from http://
www.worldwidewebsize.com. doi: 10.1007/978-3-319-48965-032

McAfee Labs. (2016). Understanding Ransomware and Strategies to Defeat it.
Network Security, 1–18. Retrieved from https://www.mcafee.com/
us/resources/white-papers/wp-understanding-ransomware
-strategies-defeat.pdf

84

http://dx.doi.org/10.1016/j.jnca.2014.09.006
http://jessekornblum.com/tools/findaes/
http://jessekornblum.com/tools/findaes/
http://www.ijcttjournal.org
https://www.sophos.com/en-us/medialibrary/PDFs/technical-papers/sophoslabs-2019-threat-report.pdf
https://www.sophos.com/en-us/medialibrary/PDFs/technical-papers/sophoslabs-2019-threat-report.pdf
https://www.thoughtco.com/steps-of-the-scientific-method-p2-606045
https://www.thoughtco.com/steps-of-the-scientific-method-p2-606045
https://logrhythm.com/blog/bad-rabbit-ransomware-technical-analysis/
https://logrhythm.com/blog/bad-rabbit-ransomware-technical-analysis/
https://blog.malwarebytes.com/threat-analysis/malware-threat-analysis/2018/11/whats-new-trickbot-deobfuscating-elements/
https://blog.malwarebytes.com/threat-analysis/malware-threat-analysis/2018/11/whats-new-trickbot-deobfuscating-elements/
https://blog.malwarebytes.com/threat-analysis/malware-threat-analysis/2018/11/whats-new-trickbot-deobfuscating-elements/
https://www.malwarebytes.com/pdf/labs/Cybercrime-Tactics-and-Techniques-Q1-2017.pdf
https://www.malwarebytes.com/pdf/labs/Cybercrime-Tactics-and-Techniques-Q1-2017.pdf
https://securelist.com/bad-rabbit-ransomware/82851/
https://securelist.com/bad-rabbit-ransomware/82851/
http://www.worldwidewebsize.com.
http://www.worldwidewebsize.com.
https://www.mcafee.com/us/resources/white-papers/wp-understanding-ransomware-strategies-defeat.pdf
https://www.mcafee.com/us/resources/white-papers/wp-understanding-ransomware-strategies-defeat.pdf
https://www.mcafee.com/us/resources/white-papers/wp-understanding-ransomware-strategies-defeat.pdf

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

McLaren, P., Buchanan, W. J., Russell, G. & Tan, Z. (2019). Deriving
ChaCha20 Key Streams From Targeted Memory Analysis. Journal
of Information Security and Applications, 48. Retrieved from
http://arxiv.org/abs/1907.11941{%}0Ahttp://dx.doi.org/
10.1016/j.jisa.2019.102372 doi: 10.1016/j.jisa.2019.102372

McLaren, P., Russell, G., Buchanan, W. J. & Tan, Z. (2019). Decrypting live SSH
traffic in virtual environments. Digital Investigation, 29, 109–117. doi:
10.1016/j.diin.2019.03.010

Mekynyk, S. A., Speier-Pero, C. & Connors, E. (2019). Blockchain is Vastly Over-
rated; Supply Chain Cyber Security is Vastly Underrated. Supply Chain
Management Review, June. Retrieved from scmr.com

Microsoft. (2017). Ransomware: A declining nuisance or an evolving men-
ace? Retrieved from https://www.microsoft.com/security/blog/
2017/02/14/ransomware-2016-threat-landscape-review/

Microsoft Defender ATP Research Team. (2017). Windows 10 platform resi-
lience against the Petya ransomware attack. Retrieved from https://
www.microsoft.com/security/blog/2017/06/29/windows-10
-platform-resilience-against-the-petya-ransomware-attack/

Morato, D., Berrueta, E., Magaña, E. & Izal, M. (2018). Ransomware early de-
tection by the analysis of file sharing traffic. Journal of Network and Com-
puter Applications, 124(June), 14–32. Retrieved from https://doi.org/
10.1016/j.jnca.2018.09.013 doi: 10.1016/j.jnca.2018.09.013

Nissim, N., Lahav, O., Cohen, A., Elovici, Y. & Rokach, L. (2019). Volatile memory
analysis using the MinHash method for efficient and secured detection of
malware in private cloud. Computers & Security, 87.

NIST. (2001). Announcing the ADVANCED ENCRYPTION STANDARD (AES).
US Department of Commerce, National Institute of Standards and Tech-
nology. doi: 10.6028/NIST.FIPS.197

O’Brien, D. (2017). Internet Security Threat Report (ISTR) Ransomware 2017
(Tech. Rep.). Symantec. Retrieved from https://www.symantec.com/
content/dam/symantec/docs/reports/istr-22-2017-en.pdf

O’Donnall, L. (2019). Coordinated Ransomware Attack Hits 23 Texas Govern-
ment Agencies. Retrieved 2019-09-03, from https://threatpost.com/
coordinated-ransomware-attack-hits-23-texas-government
-agencies/147457/

Open Preservation Soceity. (2019). Open Preservation Society. Retrieved 2019-
09-20, from https://openpreservation.org/technology/corpora/
govdocs/

Paik, J.-Y., Shin, K. & Cho, E.-S. (2016). Poster: Self-Defensible Storage Devices
based on Flash memory against Ransomware. In 37th ieee symposium on
security and privacy (pp. 2–3).

85

http://arxiv.org/abs/1907.11941{%}0Ahttp://dx.doi.org/10.1016/j.jisa.2019.102372
http://arxiv.org/abs/1907.11941{%}0Ahttp://dx.doi.org/10.1016/j.jisa.2019.102372
scmr.com
https://www.microsoft.com/security/blog/2017/02/14/ransomware-2016-threat-landscape-review/
https://www.microsoft.com/security/blog/2017/02/14/ransomware-2016-threat-landscape-review/
https://www.microsoft.com/security/blog/2017/06/29/windows-10-platform-resilience-against-the-petya-ransomware-attack/
https://www.microsoft.com/security/blog/2017/06/29/windows-10-platform-resilience-against-the-petya-ransomware-attack/
https://www.microsoft.com/security/blog/2017/06/29/windows-10-platform-resilience-against-the-petya-ransomware-attack/
https://doi.org/10.1016/j.jnca.2018.09.013
https://doi.org/10.1016/j.jnca.2018.09.013
https://www.symantec.com/content/dam/symantec/docs/reports/istr-22-2017-en.pdf
https://www.symantec.com/content/dam/symantec/docs/reports/istr-22-2017-en.pdf
https://threatpost.com/coordinated-ransomware-attack-hits-23-texas-government-agencies/147457/
https://threatpost.com/coordinated-ransomware-attack-hits-23-texas-government-agencies/147457/
https://threatpost.com/coordinated-ransomware-attack-hits-23-texas-government-agencies/147457/
https://openpreservation.org/technology/corpora/govdocs/
https://openpreservation.org/technology/corpora/govdocs/

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

Panda Security. (2017). Technical Analysis of Bad Rabbit. Panda Security, 5,
1–5.

Perekalin, A. (2018). Bad Rabbit: A new ransomware epidemic is on the
rise. Retrieved 2019-10-15, from https://www.kaspersky.com/blog/
bad-rabbit-ransomware/19887/

Pettersson, T. (2007). Cryptographic key recovery from Linux memory dumps.
Chaos Communication Camp, 1–14.

Prakash, K. P., Nafis, T. & Sankar Biswas, S. (2017). Preventive Measures and
Incident Response for Locky Ransomware. International Journal of Ad-
vanced Research in Computer Science, 8(5), 392–395. doi: 10.26483/
ijarcs.v8i5.3311

Ptacek, T. (2008). Recover a Private Key from Process Memory. Retrieved from
http://www.matasano.com/log/178/recovera-{%}0Aprivate-key
-from-process-memory

Purplesec. (2019). The Ultimate List Of Cyber Security Statistics For 2019.
Retrieved 2019-09-03, from https://purplesec.us/resources/cyber
-security-statistics/

Richardson, R. & North, M. (2017). Ransomware: Evolution, Mitigation and
Prevention. International Management Review, 13(1), 10.

Rossow, C., Dietrich, C. J., Grier, C., Kreibich, C., Paxson, V., Pohlmann, N., . . .
Van Steen, M. (2012). Prudent practices for designing malware experi-
ments: Status quo and outlook. Proceedings - IEEE Symposium on Secur-
ity and Privacy, 65–79. doi: 10.1109/SP.2012.14

Ruff, N. (2008). Windows memory forensics. Journal in Computer Virology,
4(2), 83–100. doi: 10.1007/s11416-007-0070-0

Sai, R. L. P. & Kumar, T. P. (2019). Reverse Engineering the Behaviour of NotPetya
Ransomware. International Journal of Recent Technology and Engineer-
ing(6), 574–578.

Salvi, H. U. (2015). Ransomware : A Cyber Extortion. Asian Journal of Conver-
gence in Technology, II(III 2350-1146).

Sanabria, A. (2007). Malware Analysis : Environment Design and Architecture
(Tech. Rep.). SANS Institute. Retrieved from https://www.sans.org/
reading-room/whitepapers/threats/paper/1841

Saravanan, M. & Mukesh, K. (2014). Forensic Recovery of Fully Encrypted
Volume. International Journal of Computer Applications, 91(7), 18–21.
doi: 10.5120/15892-4896

Savage, K., Coogan, P. & Lau, H. (2015). The evolution of ransomware (Tech.
Rep.). Symantec. Retrieved from https://www.symantec.com/
content/en/us/enterprise/media/security{_}response/
whitepapers/the-evolution-of-ransomware.pdf

Sgandurra, D., Muñoz-González, L., Mohsen, R. & Lupu, E. C. (2016). Auto-

86

https://www.kaspersky.com/blog/bad-rabbit-ransomware/19887/
https://www.kaspersky.com/blog/bad-rabbit-ransomware/19887/
http://www.matasano.com/log/178/recovera-{%}0Aprivate-key-from-process-memory
http://www.matasano.com/log/178/recovera-{%}0Aprivate-key-from-process-memory
https://purplesec.us/resources/cyber-security-statistics/
https://purplesec.us/resources/cyber-security-statistics/
https://www.sans.org/reading-room/whitepapers/threats/paper/1841
https://www.sans.org/reading-room/whitepapers/threats/paper/1841
https://www.symantec.com/content/en/us/enterprise/media/security{_}response/whitepapers/the-evolution-of-ransomware.pdf
https://www.symantec.com/content/en/us/enterprise/media/security{_}response/whitepapers/the-evolution-of-ransomware.pdf
https://www.symantec.com/content/en/us/enterprise/media/security{_}response/whitepapers/the-evolution-of-ransomware.pdf

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

mated Dynamic Analysis of Ransomware: Benefits, Limitations and use
for Detection. Cornell University(October). Retrieved from http://
arxiv.org/abs/1609.03020

Shamir, A. & Van Someren, N. (1998). Playing ‘hide and seek’ with stored keys.
Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), 1648, 118–124.

Shannon, C. (1948). A Mathematical Theory of Communication. Bell System
Technology, 27(I), 379–656.

Sihim, K.-a. (2016). A survey of public-key cryptographic primitives in wire-
less sensor networks. IEEE Communications Surveys and Tutorials, 18(1),
577–601. doi: 10.1109/COMST.2015.2459691

Sikorski, A. & Hong, A. (2012). Practical Malware Analysis. San Francisco: No
Starch Prtess.

Simic, S. (2019). What is a Hypervisor? Types of Hypervisors 1 & 2. Retrieved
2019-10-20, from https://phoenixnap.com/kb/what-is-hypervisor
-type-1-2

Sittig, D. F. & Singh, H. (2019). A Socio-Technical Approach to Prevent-
ing , Mitigating , and Recovering from Ransomware Attacks (Tech.
Rep.). PWC. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/
articles/PMC4941865

SonicWall. (2019). Unmasking the threats that target glkobal enterprises, gov-
ernments abd SMBs. Journal of Chemical Information and Modeling, 53.

Sood, K. & Hurley, S. (2017). NotPetya Technical Analysis – A Triple Threat:
File Encryption, MFT Encryption, Credential Theft. Retrieved from
https://www.crowdstrike.com/blog/petrwrap-ransomware
-technical-analysis-triple-threat-file-encryption-mft
-encryption-credential-theft/

Sophos. (2019). Ransomware: How an attack works - Sophos Community.
Sophos, 1–2. Retrieved from https://community.sophos.com/kb/en
-us/124699

Spiritual, L. (2017). Computer Misuse Act 1990 (oct-2017) (Vol. 18; Tech. Rep. No.
October). UK Government. Retrieved from https://www.legislation
.gov.uk/ukpga/1990/18/data.pdf

Statista. (2019). Windows 7 and 10 adoption rate in North Amer-
ica and Western Europe from 2017 to 2019. Retrieved 2019-
09-20, from https://www.statista.com/statistics/897222/north
-america-western-europe-windows-7-10-adoption/

Sultan, H., Khalique, A., Alam, S. I. & Tanweer, S. (2018). A SURVEY ON
RANSOMEWARE: EVOLUTION, GROWTH, AND IMPACT. International
Journal of Advanced Research in Computer Science, 9(2), 187–192. Re-
trieved from http://dx.doi.org/10.26483/ijarcs.v9i2.5858Volu

87

http://arxiv.org/abs/1609.03020
http://arxiv.org/abs/1609.03020
https://phoenixnap.com/kb/what-is-hypervisor-type-1-2
https://phoenixnap.com/kb/what-is-hypervisor-type-1-2
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4941865
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4941865
https://www.crowdstrike.com/blog/petrwrap-ransomware-technical-analysis-triple-threat-file-encryption-mft-encryption-credential-theft/
https://www.crowdstrike.com/blog/petrwrap-ransomware-technical-analysis-triple-threat-file-encryption-mft-encryption-credential-theft/
https://www.crowdstrike.com/blog/petrwrap-ransomware-technical-analysis-triple-threat-file-encryption-mft-encryption-credential-theft/
https://community.sophos.com/kb/en-us/124699
https://community.sophos.com/kb/en-us/124699
https://www.legislation.gov.uk/ukpga/1990/18/data.pdf
https://www.legislation.gov.uk/ukpga/1990/18/data.pdf
https://www.statista.com/statistics/897222/north-america-western-europe-windows-7-10-adoption/
https://www.statista.com/statistics/897222/north-america-western-europe-windows-7-10-adoption/
http://dx.doi.org/10.26483/ijarcs.v9i2.5858Volu

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

doi: http://dx.doi.org/10.26483/ijarcs.v9i2.5858Volu
Symantec. (2014). CryptoDefense, the CryptoLocker Imitator, Makes Over

$34,000 in One Month. Retrieved from https://www.symantec.com/
connect/blogs/cryptodefense-cryptolocker-imitator-makes
-over-34000-one-month

Symantec. (2019). Internet Security Threat Report (Vol. 24; Tech. Rep. No. Febru-
ary). Semantec. Retrieved from https://www.symantec.com/content/
dam/symantec/docs/reports/istr-24-2019-en.pdf

Trenholme, S. (2014). findaes. Retrieved 2019-09-01, from https://
sourceforge.net/projects/findaes/

Vanderburg, E. (2019). A Timeline of Ransomware Advances. Retrieved 2019-
09-02, from https://www.tcdi.com/ransomware-timeline/

Vipre Security. (2017). WannaCry Technical Analysis : Support. Retrieved 2019-
09-24, from https://support.threattracksecurity.com/support/
solutions/articles/1000250396-wannacry-technical-analysis

Virtualbox. (2019). VirtualBox. Retrieved 2019-09-20, from https://www
.virtualbox.org/

Volatility. (2019). Volatility Foundation. Retrieved 2019-09-14, from https://
www.volatilityfoundation.org/

Walters, A. & Petroni, N. L. (2007). Volatools: Integrating Volatile Memory
Forensics into the Digital Investigation Process. Black Hat DC, 1–18.

Wang, P. & Wang, Y. S. (2015). Malware behavioural detection and vaccine de-
velopment by using a support vector model classifier. Journal of Com-
puter and System Sciences, 81(6), 1012–1026. Retrieved from http://
dx.doi.org/10.1016/j.jcss.2014.12.014 doi: 10.1016/j.jcss.2014
.12.014

Young, A. & Yung, M. (1996). Cryptovirology: extortion-based security threats
and countermeasures. Proceedings of the IEEE Computer Society Sym-
posium on Research in Security and Privacy, 129–140.

Zeltser, L. (2015). 5 Steps to Building a Malware Analysis Toolkit Using
Free Tools. Retrieved 2019-09-20, from https://zeltser.com/build
-malware-analysis-toolkit/

Zhang, P. & Tan, Y. (2015). Hybrid concentration based feature extraction ap-
proach for malware detection. Canadian Conference on Electrical and
Computer Engineering, 2015-June(June), 140–145. doi: 10.1109/CCECE
.2015.7129175

88

https://www.symantec.com/connect/blogs/cryptodefense-cryptolocker-imitator-makes-over-34000-one-month
https://www.symantec.com/connect/blogs/cryptodefense-cryptolocker-imitator-makes-over-34000-one-month
https://www.symantec.com/connect/blogs/cryptodefense-cryptolocker-imitator-makes-over-34000-one-month
https://www.symantec.com/content/dam/symantec/docs/reports/istr-24-2019-en.pdf
https://www.symantec.com/content/dam/symantec/docs/reports/istr-24-2019-en.pdf
https://sourceforge.net/projects/findaes/
https://sourceforge.net/projects/findaes/
https://www.tcdi.com/ransomware-timeline/
https://support.threattracksecurity.com/support/solutions/articles/1000250396-wannacry-technical-analysis
https://support.threattracksecurity.com/support/solutions/articles/1000250396-wannacry-technical-analysis
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.volatilityfoundation.org/
https://www.volatilityfoundation.org/
http://dx.doi.org/10.1016/j.jcss.2014.12.014
http://dx.doi.org/10.1016/j.jcss.2014.12.014
https://zeltser.com/build-malware-analysis-toolkit/
https://zeltser.com/build-malware-analysis-toolkit/

Appendices

89

Appendix A

Project management

Further evidence to support that the project has archived a high level of fulfill-
ment of learning outcome 2. Below is presented evidence of project manage-
ment including project plans, Gantt charts and project diaries.

A.1 Project proposal

This was agreed verbally during the meeting held between S.Davies and R.Macfarlane
on the 20th of August 2019.

90

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

A.2 Project timeline

Figure A.1: Project Plan

91

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

A.3 Project diary

Figure A.2: Project Dairy 20190802

92

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

Figure A.3: Project Dairy 20190816

93

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

Figure A.4: Project Dairy 20190823

94

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

Figure A.5: Project Dairy 20190830

95

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

Figure A.6: Project Dairy 20190906

96

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

Figure A.7: Project Dairy 20190913

97

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

Figure A.8: Project Dairy 20190920

98

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

Figure A.9: Project Dairy 20190927

99

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

Figure A.10: Project Dairy 20191011

100

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

Figure A.11: Project Dairy 20191018

101

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

Figure A.12: Project Dairy 20191025

102

Appendix B

Code and Command Samples

B.1 Decrypted file modification

commands used to recreate header and footer information in decrypted files

NotPetya
header reconstruction for pdf
printf

"\x25\x50\x44\x46\x2d\x31\x2e\x35\x0a\x25\xc7\xec\x8f\xa2\x0a\x35"
| cat - pdf-decrypted.pdf > reconstructed-pdf.pdf

header reconstruction for xlsx
printf

"\x50\x4b\x03\x04\x14\x00\x06\x00\x08\x00\x00\x00\x21\x00\x7c\x6c"
| cat - excel-decrypted.xlsx > reconstructed-xlsx.xlsx

we then need to cut off the last 3 bytes
dd if=reconstructed-xlsx.xlsx of=reconstructed-xlsx1.xlsx

bs=$((‘cat reconstructed-xlsx.xlsx| wc -c‘ - 3)) count=1

header reconstruction for doc
printf

"\xd0\xcf\x11\xe0\xa1\xb1\x1a\xe1\x00\x00\x00\x00\x00\x00\x00\x00"
| cat - Word-decrypted.doc > reconstructed-doc.doc

header reconstruction for dox
printf

"\x50\x4b\x03\x04\x14\x00\x06\x00\x08\x00\x00\x00\x21\x00\x09\x24"
| cat - Word-decrypted.docx > reconstructed-docx.docx

we then need to cut off the last 7 bytes
dd if=reconstructed-docx.docx of=reconstructed-docx1.docx

bs=$((‘cat reconstructed-docx.docx| wc -c‘ - 7)) count=1

103

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

B.2 decrypt.py

The following is the code used to extract the IV value from the first 16 bytes
of the encrypted file and then decrypt files encrypted using NotPetya or Bad
Rabbit ransomware

"""
Script to decrypt a file encrypted with AES
The script uses a file that can contain multiple AES keys and it will try each in turn

Simon Davies simonrdavies@yahoo.com
Version 1.0
20190822

"""

import os, random, struct, argparse, ntpath
import binascii
from Crypto.Cipher import AES

def decrypt_file(key, in_filename, out_filename=None, chunksize=24*1024):
""" Decrypts a file using AES (CBC mode) with the

given key. Parameters are similar to encrypt_file,
with one difference: out_filename, if not supplied
will be in_filename without its last extension
(i.e. if in_filename is ’aaa.zip.enc’ then
out_filename will be ’aaa.zip’)

"""
print "key: ", key
print "in_filename: ", in_filename
if not out_filename:

out_filename = os.path.splitext(in_filename)[0]

with open(in_filename, ’r’) as infile:
iv = infile.read(16)
decryptor = AES.new(key, AES.MODE_CBC, iv)

with open(out_filename, ’wb’) as outfile:
#outfile.write(iv)
#print "here"
#exit()
while True:

chunk = infile.read(chunksize)

if len(chunk) == 0:
break

if len(chunk) <> 16:
break

outfile.write(decryptor.decrypt(chunk))

#generate a file name for the decrypted file based on the encrypted filename and the key
def destination_filename(source_filename,key):

head,tail = ntpath.split(source_filename)
if len(head) == 0:
head = "."
f, e = os.path.splitext(tail)

newfilename = head+"/"+f+"-decrypted-"+key+e
print "newfilename: " , newfilename
return newfilename

def process_keyfile(key_file, encrypted_filename):
if not os.path.exists(key_file):

print "Key file doesnot exist: ",key_file
return

with open(key_file, ’rb’) as infile:
keyline = str.rstrip(infile.readline())
while keyline:

if keyline.find("Found",0, 50)>=0:
print "found a comment row: ", keyline

elif keyline.find("#",0, 50)>=0:
print "found a comment row: ", keyline

else:
key_nospace=keyline.replace(" ","")
#get rid of the carrage return
fkey=binascii.unhexlify(key_nospace)
decrypt_file(fkey,encrypted_filename,destination_filename(encrypted_filename,key_nospace),16)
keyline = infile.readline()

infile.close()

104

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

def main():
parser_description = "Decrypt a file encoded with AES encryption"
parser = argparse.ArgumentParser(description=parser_description)
parser.add_argument("--file",

help="Path to the encrypted file",
required=True)

parser.add_argument("--key",
help="Path to the file which holds the AES key(s)",
required=True)

args = parser.parse_args()

process_keyfile(args.key, args.file)

if __name__ == "__main__":
main()

The above file can be modified with the following lines for it to decrypt files
encrypted using the Phobos ransomware. This ransomware places the IV at a
different position. Replace the code on line 39

iv = infile.read(16)

with the lines

infile.seek(-158,2)
#read IV from near end of the file
iv = infile.read(16)
#reset pointer to file start
infile.seek(0,0)

B.3 RansomAES.py

This code was developed by the author and combines the functionality of the
live forensic tool volatitlity (Volatility, 2019) with the functionality of findaes
(Trenholme, 2014). Arguments to this program are a memory dump file and a
process id. This program uses the volatility program to extract the specific
memory associated with the supplied process id from the memory dump file.
Once the memory for this process has been extracted, it is searched for AES
keys using the logic found in the findaes program.

// FindAES version 1.2 by Jesse Kornblum
// http://jessekornblum.com/tools/findaes/
// This code is public domain.
//
// Revision History
// 24 Sept 2019 - Modified to use volatitity
// 7 Feb 2012 - Added processing of multiple files

105

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

// 3 Feb 2012 - Added entropy check. Limited to one file
// 18 Jan 2011 - Initial version

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <inttypes.h>

#include "aes.h"

// Use a 10MB buffer
#define BUFFER_SIZE 10485760
#define WINDOW_SIZE AES256_KEY_SCHEDULE_SIZE

/// @brief Hex-dump sz bytes of data to standard output
///
/// @param key Bytes to display
/// @param sz Number of bytes to display
void display_key(const unsigned char * key, size_t sz)
{

size_t pos = 0;
while (pos < sz)
{

printf("%02x ", key[pos]);
++pos;

}
printf("\n");

}

/// @brief Returns true if any byte in the block repeats more than eight times
///
/// @param buffer Buffer to scan
/// @param size The size of the buffer
/// @param first Is this the first buffer in the file? Used to clear
/// the previous values, if any.
/// @return Returns TRUE iff. the buffer contains more than eight repititions
/// of any single byte, even if not next to each other. Otherwise, FALSE.
int entropy(const unsigned char * buffer, size_t size,int first)
{

size_t i;
static unsigned int count[256];
static int first_entropy = 1;
int result = 0;

if (first)
first_entropy = 1;

// We only need to compute the full frequency count the first time
if (first_entropy)
{

first_entropy = 0;

// Set the entropy to all zeros, then count values
for (i = 0 ; i < 256 ; ++i)

count[i] = 0;
for (i = 0 ; i < size ; ++i)

count[buffer[i]]++;
}

// Search for repititions
for (i = 0 ; i < 256 ; ++i)
{

if (count[i] > 8)
{

result = 1;
break;

}
}

// Shift the frequency counts
count[buffer[0]]--;
count[buffer[size]]++;

return result;
}

void scan_buffer(unsigned char * buffer, size_t size, size_t offset)
{

uint64_t pos;
for (pos = 0 ; pos < size ; ++pos)

106

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

{
int first = FALSE;
if (0 == offset +pos)

first = TRUE;
if (entropy(buffer + pos, AES128_KEY_SCHEDULE_SIZE,first))

continue;

if (valid_aes128_schedule(buffer + pos))
{

printf ("Found AES-128 key schedule at offset 0x%"PRIx64": \n",
offset + pos);

display_key(buffer + pos, AES128_KEY_SIZE);
}
if (valid_aes192_schedule(buffer + pos))
{

printf ("Found AES-192 key schedule at offset 0x%"PRIx64": \n",
offset + pos);

display_key(buffer + pos, AES192_KEY_SIZE);
}
if (valid_aes256_schedule(buffer + pos))
{

printf ("Found AES-256 key schedule at offset 0x%"PRIx64": \n",
offset + pos);

display_key(buffer + pos, AES256_KEY_SIZE);
}

}
}

// Use a sliding window scanner on the file to search for AES key schedules
int scan_file(char * fn)
{

size_t offset = 0, size;
unsigned char * buffer;
FILE * handle;
size_t bytes_read;

if (NULL == fn)
return TRUE;

buffer = (unsigned char *)malloc(sizeof(unsigned char) * BUFFER_SIZE + WINDOW_SIZE);
if (NULL == buffer)

return TRUE;
memset(buffer, 0, sizeof(unsigned char) * (BUFFER_SIZE + WINDOW_SIZE));

handle = fopen(fn,"rb");
if (NULL == handle)
{

perror(fn);
free(buffer);
return TRUE;

}

printf ("Searching %s\n", fn);

while (!feof(handle))
{

// Clear out the buffer except for whatever data we have copied
// from the end of the last buffer
memset(buffer + WINDOW_SIZE, 0, BUFFER_SIZE);

// printf ("Reading from 0x%"PRIx64"\n", ftello(handle));

// Read into the buffer without overwriting the existing data
bytes_read = fread(buffer + WINDOW_SIZE,1,BUFFER_SIZE,handle);

if (0 == offset)
{

if (bytes_read < BUFFER_SIZE)
size = bytes_read;

else
size = bytes_read - WINDOW_SIZE;

scan_buffer(buffer + WINDOW_SIZE, size , 0);
}
else

scan_buffer(buffer, bytes_read, offset - WINDOW_SIZE);

offset += bytes_read;

// Copy the end of the buffer back to the beginning for the next window
memcpy(buffer, buffer + BUFFER_SIZE, WINDOW_SIZE);

}

107

S.R.Davies, MSc Advanced Security and Digital Forensics, 2019

free(buffer);
return FALSE;

}

int main(int argc, char **argv)
{

if (argc < 5)
{

printf ("FindAES version 1.1 by Jesse Kornblum\n");
printf ("Searches for AES-128, AES-192, and AES-256 keys\n\n");
printf ("Modified by Simon Davies 20190924\n\n");

printf ("Usage: findaes -p <pid> -t <profile type> [FILES]\n");
return EXIT_FAILURE;

}

int i = 1;
int pid = atoi(argv[2]);
printf ("Looking for process id: %d\n", pid);
//char profile_type[20] = argv[4];:wq
//weh
printf ("Using profile type: %s\n", argv[4]);
char command[1024] = "/usr/bin/volatility --profile ";
snprintf(command, sizeof(command),"/usr/bin/volatility --profile %s -f %s memdump -p %d --dump-dir .", argv[4],

argv[5],pid);
printf ("Command is: %s\n", command);
system(command);
snprintf(command, sizeof(command),"%d.dmp",pid);
printf ("Command is: %s\n", command);
scan_file(command);
exit(0);
while (i < argc-4)
{

scan_file(argv[5]);
++i;

}

return EXIT_SUCCESS;
}

108

	Introduction
	Background
	Aims and objectives
	Ethical compliance
	Structure

	Literature Review
	Introduction
	Ransomware definition
	History of ransomware
	Current status and future trends
	Ransomware infection path

	Live forensics
	Static analysis
	Dynamic analysis
	Memory acquisition

	Cryptanalysis live forensics
	Keys present in memory
	Examination of memory methods
	Identifying keys in memory
	Identifying AES keys
	Method
	Issues

	Conclusion

	Design
	Introduction
	Research methodology
	Environment design
	Safe environment proposal
	Technology options available
	Software selection
	Environment design

	Experiment design
	Experiment 1 - Is the key in memory
	Experiment 2 - How long is the key present
	Experiment 3 - Does the key decrypt files
	Combined experiment
	Control file example

	Results and analysis
	Analysis method
	Data capture

	Conclusion

	Implementation and results
	Introduction
	Ransomware sample selection
	Other ransomware

	Laptop configuration
	Virtual hardware configuration
	Virtual network topology
	Tools
	Experiments
	Experiment 1 - Is the key in memory
	Experiment 2 - How long is the key present
	Experiment 3 - Does the key decrypt files

	Experimental process overview
	Experimental results
	Ransomware execution on Windows 7
	Ransomware execution on Windows 10

	Conclusion

	Evaluation
	Introduction
	NotPetya
	Experiment 1 – Is the key in memory
	Experiment 2 – How long is the key present
	Experiment 3 – Does the key decrypt files

	Bad Rabbit
	Experiment 1 – Is the key in memory
	Experiment 2 – How long is the key present
	Experiment 3 – Does the key decrypt files

	Phobos
	Experiment 1 – Is the key in memory
	Experiment 2 – How long is the key present
	Experiment 3 – Does the key decrypt files

	Conclusions

	Conclusion
	Aims and Objectives
	Objective One – Literature Review
	Objective Two – Experiment Design
	Objective Three – Design and Implementation
	Objective Four – Evaluation
	Self Appraisal
	Future Work

	References
	Appendices
	Appendix Project management
	Project proposal
	Project timeline
	Project diary

	Appendix Code and Command Samples
	Decrypted file modification
	decrypt.py
	RansomAES.py

