
EAI Endorsed Transactions  
on Industrial Networks and Intelligent Systems Research Article 

1 

Using Deep Neural Networks to Classify Symbolic Road 

Markings for Autonomous Vehicles 

Daniel Suarez-Mash1,2, Arfan Ghani*3, Chan H. See4, Simeon Keates5, and Hongnian Yu4  

1 School of Computing, Electronics and Maths, Coventry University, CV1 5FB, UK 
2 Data Scientist, UK Home Office, Sheffield, S3 8NU, UK (email: daniel.suarez.mash@gmail.com) 
3 School of Engineering, American University of Ras al Khaimah, United Arab Emirates (Arfan.ghani@aurak.ac.ae) 
4 School of Engineering and the Built Environment, Edinburgh Napier University, Edinburgh, Scotland, EH10 5DT, UK 

(email: c.see@napier.ac.uk, h.yu@napier.ac.uk) 
5 University of Chichester, College Lane, Chichester, West Sussex, PO19 6PE, UK (email: s.keates@chi.ac.uk) 

Abstract 

To make autonomous cars as safe as feasible for all road users, it is essential to interpret as many sources of trustworthy 

information as possible. There has been substantial research into interpreting objects such as traffic lights and pedestrian 

information, however, less attention has been paid to the Symbolic Road Markings (SRMs). SRMs are essential information 

that needs to be interpreted by autonomous vehicles, hence, this case study presents a comprehensive model primarily 

focused on classifying painted symbolic road markings by using a region of interest (ROI) detector and a deep convolutional 

neural network (DCNN). This two-stage model has been trained and tested using an extensive public dataset. The two-stage 

model investigated in this research includes SRM classification by using Hough lines where features were extracted and the 

CNN model was trained and tested. An ROI detector is presented that crops and segments the road lane to eliminate non-

essential features of the image. The investigated model is robust, achieving up to 92.96 percent accuracy with 26.07 and 

40.1 frames per second (FPS) using ROI scaled and raw images, respectively. 
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1. Introduction

Symbolic Road Markings (SRMs) convey instructions that 

are essential components of all modern highways that 

enable road users to identify, understand and obey their 

respective highway codes. Studies have shown that 

detecting or classifying SRMs can greatly enhance vehicle 

localisation for autonomous vehicles [1]. Localisation 

enhances the capacity for road users to read the road ahead 

and although humans are competent at this task, 

autonomous vehicles have yet to grasp this capability fully. 

Previous research in classifying SRMs typically involves 

methods that can be split into two main categories [1][2]. 

The first involves explicitly specifying features such as 

colour and edges and using machine learning to extract 

*Corresponding author. Email: Ghani_786@yahoo.com, Arfan.ghani@aurak.ac.ae 

those features in images. The second uses deep learning to 

detect more abstract and complex features.  

     Deep learning methods can be further split into two 

categories: two-stage such as R-CNN [2], Fast R-CNN [3], 

Faster R-CNN [4], Feature Pyramid Networks (FPN) [5] 

and mask R-CNN [6], whereas single-stage models include 

Single Shot Detector (SSD) [7] and the You Only Look 

Once (YOLO) [8] model. Two-stage models consist of a 

region proposal unit that pre-processes images in 

preparation for processing by deep learning architectures. 

The latest research in the classification and detection of 

SRMs has begun to involve deep learning. 

     Retrospectively, a much lower amount of research has 

been conducted when compared with research into 

detecting pedestrians, vehicles, lane markings and traffic 

lights. This is mainly due to the lack of ground truth data 

available for SRMs. Examples of datasets that have 
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emerged within the past 10 years include Cambridge [10], 

Daimler [11], Malaga [12], and KITTI [13]. 

     Authors in [14] presented an SRM detection model and 

a fully annotated dataset based on Maximally Stable 

Extremal Regions (MSER) feature matching. It produced a 

competitive accuracy rate of 90.1% and a computational 

efficiency meant that special GPU hardware was not 

required. In the dataset used in [14], there are many more 

left-turn images than any other class. This dataset bias is 

discussed thoroughly later in that paper. Nevertheless, the 

provision of annotation and labelling has led several 

papers, some of which are discussed in this section, to use 

this dataset as a benchmark for their models. Therefore, for 

retrospective analysis, the same dataset was used in this 

paper which includes 1443 annotated images from roads in 

the United States as shown in Table 1.  

     Feature matching learning method MSER was used to 

search for previously unseen imagery [1] which was based 

on blob detection. If a feature match was found, then the 

corresponding class was attached to the image. Since 

MSER features are based on regions, this model is also able 

to provide a bounding box to each classification in an 

image. However, perspective problems may arise when 

SRMs are further away or closer to the camera, causing 

them to appear to have the same shape, but different sizes.  

Table 1. Dataset breakdown 

No. Value Count Percentage 
1 left-turn 705 48.8565 
2 35 112 7.7616 
3 right-turn 101 6.9993 
4 rail 90 6.2370 
5 forward 80 5.5440 
6 40 69 4.7817 
7 xing 64 4.4352 
8 ped 54 3.7422 
9 stop 49 3.3957 

10 bike 41 2.8413 
11 25 15 1.0395 
12 forward&right 13 0.9009 
13 yield 7 0.4851 
14 X-crossing 6 0.4158 
15 clear 6 0.4158 
16 forward&left 6 0.4158 
17 keep 6 0.4158 
18 hump 3 0.2079 
19 school 3 0.2079 
20 stripe 3 0.2079 
21 30 2 0.1386 
22 slow 2 0.1386 
23 speed 2 0.1386 
24 car 1 0.0693 
25 diamond 1 0.0693 
26 lane 1 0.0693 
27 pool 1 0.0693 

The authors in [15] proposed a two-stage deep learning 

model aimed at detecting SRMs. The first stage consisted 

of an adaptive Region of Interest (ROI) detector that uses 

vanishing point detection to create an ROI image. These 

images are then fed into a deep CNN based on RetinaNet 

[16] for both training and testing. Three datasets were used

in this research, namely the Cambridge, Daimler and 

Malaga urban datasets. The ROI detector used a Line 

Segment Detector (LSD) [17] together with CannyLines 

[18] to calculate a vanishing point. The architecture

consisted solely of a lightweight CNN, without a region

proposal system. Tests were undertaken on five iterations

of deep CNN based on LeNet [19], with each containing a

different number of convolutional and pooling layers. The

dataset used to train the CNNs in this model was the same

as used in this paper, consisting of 1443 images and 27

classes of SRM. However, data augmentation in the form

of in-plane rotation was implemented in [9]15] which led

to a total number of 20,479 images, as shown in Table 2.

       Despite the significance of data augmentation, Table 2 

still shows a large bias between classes in the augmented 

dataset where left-turn’ is still the most represented class in 

the dataset. There are almost 6 times more ‘left-turn’ 

images compared with the next most represented class ‘35’. 

This bias is measured and analysed in the following 

sections. 

Table 2. Dataset resulting from data augmentation 

Road Marking Class Number of instances 

STOP 674 

LEFT 10433 

RIGHT 1600 

RAIL 1419 

35 1793 

FORWARD 1118 

BIKE 590 

40 1067 

PED 799 

XING 986 

Total 20479 

Authors in [20] created a real-time traffic light detector 

using a heuristic ROI detector followed by a lightweight 

CNN. The authors in [20] used three techniques in CNN 

architecture to reduce computational complexity. Small 

kernels of 1 × 1 and 3 × 3 were used to reduce the 

number of parameters in each layer. The CNN architecture 

also used stacked convolutional layers in contrast to the 

typical convolutional pooling modules seen in other 

research.  

     Inspired by the research published in [14] [15] [20], this 

paper demonstrates a novel classification method for 

painted symbolic road markings by using a region of 

interest (ROI) detector and a deep convolutional neural 

network (DCNN). The technique involves reducing the 

size of images before using Hough lines to achieve 

vanishing point calculation and image segmentation, which 

offers a unique advantage of classification accuracy and 

computational efficiency essential for real-world 

applications, such as SRM classification for autonomous 

cars. 
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The aims of this paper are categorised into three parts. 

Firstly, to create a region of interest (ROI) detector. 

Secondly, to join the ROI detector with a deep 

convolutional neural network. Finally, to ensure the 

completed model is computationally lightweight and 

accurate for real-time application. 

2. Design Methodology

This research primarily focuses on investigating a model 

that is efficient in terms of Frames per Second (FPS) with 

improved classification accuracy. This paper used 

embedded hardware with a single CPU, 3 GHz, 6-Core 

Intel i5. Although this CPU has multiple cores, it does not 

offer the same capabilities as GPU.  

Figure 1. Model Architecture 

Figure 2. Sobel (left) vs Canny (right) edge 
detectors 

   The model workflow can be seen in Figure 1. The 

topology behind this architecture is to eliminate non-

essential information which would reduce classification 

accuracy and speed by the CNN. The first pre-processing 

stage of the ROI detector is to apply a bottom-up vertical 

crop of 150 pixels to the image before the grayscale 

conversion. This section of the images contains only the 

bonnet of the camera vehicle. Therefore, this presents a 

good option to reduce the load on the rest of ROI detector 

as it has fewer pixels to work on, leading to reduced code 

run-time as evidenced by [9]. 

2.1. Edge Detection 

Tests were run to distinguish the quality of both Sobel and 

Canny edge detectors for this application. Both algorithms 

have proven to be the most efficient amongst others; Canny 

is particularly useful for pattern matching in noisy images 

whereas Sobel is best as heavy data transfer of video and 

images. This was backed up when it was concluded that 

Sobel enabled the model to achieve higher FPS compare to 

its counterpart whilst retaining the same accuracy levels. It 

took 4.3 and 33.8 ms respectively to binarize the image in 

Figure 2 using Sobel and Canny detectors respectively. 

This is an 82% improvement in speed over the Canny edge 

detector. During real-time SRM classification of 412 

images, the total time savings in code run-time averaged 6 

seconds over 10 code executions. This is a substantial 

difference and the biggest reason Sobel was chosen over 

Canny. 

Figure 3. Raw image from training data 

2.2. Hough Line Detection 

In this paper, Hough lines were detected to segment the 

lane and calculate a vanishing point. The segmentation of 

the lane is important as it removes image content unlikely 

to contain SRMs. As shown in Figure 3, the building, trees, 

sky and grass do not provide either insight or indication as 

to what SRM is present on the road.  

       The first stage in detecting Hough lines is to apply the 

Hough transform. This involves a voting procedure 

whereby each pixel on a line vote for that line. The Hough 

transform does not make use of the traditional straight-line 

equation form. Instead, it uses the Hesse normal form as 

shown in Figure 4 and equation (1). In this space, a straight 

line is defined using the following general equation: 

𝜌 = 𝑥𝑐𝑜𝑠(𝜃) + 𝑦𝑠𝑖𝑛(𝜃) (1)
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Where ρ and θ denote the distance from the origin 

perpendicular to the line and angle from the horizontal x-

axis respectively. This is different to the general equation: 

y=mx + c, where 𝑚 and 𝑐 denote the gradient and y-axis 

intercept of the line respectively. The reason for not using 

this form is because vertical lines would cause 𝑚 to be 

infinitely large. A thresholds for ρ and θ can be specified; 

as lane markings are never vertical nor horizontal, a θ 

threshold was defined and is shown below: 

 

25 ≤ 𝜃 ≤ 75    &  − 25 ≥ 𝜃 ≥ −75 (2) 

 

 
Figure 4. Hough plan 

 

 
Figure 5. Peaks in the Hough plane from 
the left side of the road 

 

These inequalities ensure that realistic lane lines, from both 

the left- and right-hand sides of the road, are detected. As 

there are two inequalities, two Hough transforms are 

applied to the image with either inequality. To save 

computational weight, the inequalities above in equation 

(2) are discretised in steps of 0.5.  

      After the Hough transform has been applied, Hough 

peaks are determined which are the Hough lines with the 

most votes. The more votes a line receives, the more 

predominant the line. In this model, the two lines within 

both inequalities with the most votes are selected and their 

parameters sorted into arrays. Two lines were chosen to 

ensure there is a redundant line in case one of the lines is 

inaccurate of the lane marking. Figure 5 shows the Hough 

plane and the small squares which denote the two pairs of 

ρ and θ with the most votes from the left-hand side of the 

road.  

 

Figure 6 shows the four lines plotted visibly on an image 

from the dataset. The green lines are the same ones marked 

in squares in Figure 5. 

 

 
 

Figure 6. Hough lines plotted on image 
 

To calculate the vanishing point and image mask, it is 

necessary to rearrange each line into 𝑦 = 𝑚𝑥 + 𝑐 form. 

The following equation (3) can be obtained by rearranging 

the general Hesse normal form as follows: 

 

        𝑦 = −𝑥 (
cos(𝜃)

sin(𝜃)
) +

𝜌

sin(θ)
                         (3) 

 

By using this equation, it is clear that the gradient (𝑚) and 

y-intercept (𝑐) of each line is − (
cos(𝜃)

sin(𝜃)
) and 

𝜌

sin(𝜃)
 

respectively. However, the gradient was calculated by 

using equation 4.  

 

                 𝑚 =
𝑦(800)−𝑦(0)

800
         (4) 

 

Where 𝑦(800) and 𝑦(0) are calculated using equation (3). 

The y-intercept is also taken to be 𝑦(0). Number 800 is 

significant because it is the largest x-value in the image. 

      To calculate intersections, the coefficients of x and y 

and the y-intercept values are stored in arrays that mimic 

the form−𝑚𝑥 + 𝑦 = 𝑐. An example of this is shown below 

for the first line from the left- hand side: 

 

𝑙𝑒𝑓𝑡 𝑙𝑖𝑛𝑒 1 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 =  (−𝑚1𝑙 1) (5) 
𝑙𝑒𝑓𝑡 𝑙𝑖𝑛𝑒 1 𝑦 − 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 =  (𝑐1𝑙) 

 

 

Where 1𝑙 denotes line 1 from the left- hand side 

respectively. 

The vanishing point is calculated as being the 

average mean intersection between the 2 pairs of Hough 

lines. The intersections are calculated using matrix 

operations. An example of a system of simultaneous 

equations between one left- and one right- hand side line is 

shown below in (6).  

 

(
−𝑚1𝑙 1

−𝑚1𝑟 1
) (

𝑥

𝑦) = (
𝑐1𝑙

𝑐1𝑟
) (6) 

 

Where the intersection is calculated as: 

EAI Endorsed Transactions on 
Industrial Networks and Intelligent Systems 

 Online First



 Using Deep Neural Networks to Classify Symbolic Road Markings for Autonomous Vehicles 

 

 

 

5 

 

(
𝑥

𝑦) = (
𝑚1𝑙 1

𝑚1𝑟 1
) \ (

𝑐1𝑙

𝑐1𝑟
) (7) 

 

Figure 7 shows the Hough lines and their intersections 

between all lines in an image from the dataset.  

 

 
 

 
 

Figure 7. Hough lines (left), intersections (right), 
cropped image (bottom) 

The y-coordinate of the vanishing point is then considered 

the maximum vertical height of the image and 

consequently used to crop the image. The result of this 

process can be seen in the bottom image of Figure 7. 

To segment the lane from the rest of the image, a mask 

was placed on the image. One line from each side of the 

road is chosen and two inequalities are defined using the 

following principle: 

 

−𝑚𝑥 + 𝑦 ≥ 𝑐   (8) 

 

Any pixels which satisfy this inequality are set to 0 since 

they are above one of the lines. A mask such as the one 

shown in the left image of Figure 8 is placed on the image, 

which results in the image on the right. The overall effect 

of the vanishing point calculation and image segmentation 

is shown in Figure 9. 

 

 

Figure 8. Image mask (left), segmented image 
(right) 
 

 

 
 
Figure 9. ROI detector output 

 
Figure 10. Colour CNN classification matrix 

3. Deep Convolutional Neural Network 
(DCNN) Architecture and Testing 

The CNNs used in this paper are AlexNet [21], SqueezeNet 

[22] and GoogleNet [23]. Their architectures are composed 

of 25, 68 and 144 layers respectively. All networks have an 

input size requirement of [227, 277, 3] and so each image 

that is fed into the CNNs needs to be resized to fulfil this 

requirement. In total, 5 deep CNN networks were used as 

listed in Table 3 where various networks were trained using 

images from the top 10 most represented classes.  

In the case of AlexNet and GoogleNet, the fully 

connected layer, by default, outputs 1000 classes. 

Therefore, in AlexNet and GoogleNet based networks 

shown in Table 2, this layer was replaced with a fully 

connected layer with only 10 outputs. A different 

procedure was needed to adapt SqueezeNet to this 

application since it has a different architecture. Since 

SqueezeNet’s last learnable layer is a convolutional layer 

and not fully connected, it is the final convolutional layer 

and classification layer which need to be replaced. This was 

done interactively by using the Deep Network Designer 

application.  

To train the CNNs, the weights were randomly 

initialised and ‘adam’ was used as the learning method by 

which the CNN change its parameters to minimise its cost 

function. Adam computes individual adaptive learning 

rates for different parameters in the neural network which 

results in a faster learning algorithm when compared with 

the SGD (Stochastic Gradient Descent) learning method. 

The learning rate was specified as 0.0001 to ensure that the 

loss function can be truly minimised. If the learning rate 

was too large, it would cause gradient descent to overshoot 

the parameters needed to minimise the loss function.  
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The dataset was split into 60%, 30% and 10% for 

training, testing and validation respectively. This was done 

using the splitEachLabel function in MATLAB whilst 

specifying the randomized option which ensures the 

images are randomly allocated. By using the ‘include’ 

parameter, the algorithm was able to complete all testing 

using only the 10 most represented classes in the dataset. 

 

 

 

  
 

 
 
Figure 11. Scores for training image with left and 
right arrow, Colour CNN (top) vs Raw CNN (bottom) 
& Class number (right) 

 
Table 3. CNN names and descriptions 

CNN name Description 

Grayscale CNN AlexNet-based CNN trained using 
grayscale segmented images. 

Colour CNN AlexNet-based CNN trained using 
colour segmented images. 

Raw CNN AlexNet-based CNN trained using 
raw images.  

Colour 
CNN_SqueezeNet 

SqueezeNet-based CNN trained 
using colour segmented images. 

Colour 
CNN_GoogleNet 

GoogleNet- based CNN trained 
using colour segmented images. 

 
Figure 12. Image segmentation and prediction 
scores  
 

 
Figure 13. Montage of segmented training data for 
class '35' used for Colour CNN 
 
To develop a successful deep learning model, a large 

dataset was a requirement for CNNs. The dataset was 

obtained from the research presented in [14] and 

downloaded from 

http://www.ananth.in/RoadMarkingDetection.html. It was 

chosen due to its size of manually labelled 1443 images 

organised into 27 classes of SRM. Figure 14 shows the 

training graph of ROI RESIZED + Colour CNN. It shows 

the training accuracy (blue graph) alongside the training 

loss (orange graph). The dotted black line shows the 

validation performance.  Whereas the dataset was split into 

60%, 30% and 10% for training, testing and validation 

respectively.  

 

 

 

 
Figure 14. Training and test accuracy of ROI 
RESIZED + Colour CNN model 

 

In this paper, multiple CNNs were developed and 

trained. Almost each CNN was trained using a different 

dataset to test what types of images worked best for image 

classification. For example, Colour CNN, Grayscale CNN 

and Raw CNN were trained using colour & grayscale 

segmented and raw images respectively.  Table 4 shows the 

datasets and their corresponding CNNs. 
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Table 4. Datasets 

Dataset Trained CNN 

Colour segmented 
dataset 

Colour CNN 
Colour CNN_SqueezeNet 
Colour_CNN_GoogleNet 

Raw images Raw CNN 
Grayscale segmented 
images 

Grayscale CNN 

 

 

Figure 15. Hough lines on the image (left) and 
Hough line segments (right)  

 

 
Figure 16. Line segments detected on image 

 

To investigate and improve on the performance 

reported in the literature, accuracy rate and maximum 

supported frames per second were the two important 

factors for this study to assess the overall performance of 

the proposed models. All results shown in Table 5 are 

found using the test set consisting of 412 images. Table 5 

shows the results of each model where the fastest 

ROI+CNN model presented in this paper is highlighted in 

bold achieved an accuracy rate of 92.96%. With respect to 

FPS, it is shown that the Raw CNN outperforms the other 

models reported in the literature. All accuracies and FPS 

figures are a mean average of 10 results.  

 

 

 

 

 

 
Figure 17. Confusion matrix for ROI_RESIZED 
detector + Colour CNN with top 10 classes 

4. Discussions 

Table 5 summarises the relevant performances 

retrospectively. In the dataset used, only the top 10 most 

represented classes were tested. The proposed work offers 

a unique perspective where not only SRMs were detected, 

rather bounding boxes were also provided along with 

retrospective classification accuracies.  

The classification accuracy disparity in this case study 

is primarily due to the lack of true data augmentation to the 

dataset used. It is well established that CNNs perform 

better with more training samples. Hence, without this type 

of data augmentation, classes such as bike only contained 

41 images. Not only is this not enough, but it is also far less 

than the most represented class, leftturn, which has 705 

images. With regards to the models presented based on 

SqueezeNet and GoogleNet, the results are promising.  

 

To understand the ROI detector models performances 

in terms of accuracy, the classification matrix was used to 

search for examples of misclassification. The classification 

matrix for Colour CNN can be seen in Figure 10. It was 

observed that the most misclassifications (18 in total) occur 

between left-turn and right-turn classes, i.e., when the true 

label is right-turn, but the predicted label was left-turn. In 

comparison, Figure 11 shows the scores for the Raw CNN 

when classifying an image from the training data. It shows 

a much more even prediction confidence between right-

turn and left-turn classes. This is much more realistic and 

promising if this model was to be implemented in a real-

world scenario. These confidence levels allow for future 

development of special scenarios whereby the CNN can 

output two classes to indicate that both arrows are present 

on the road. This therefore represents an area where the 

Raw CNN has more realistic conviction about its 

predictions in this scenario with multiple symbolic road 

markings. An unusual misclassification occurred when an 

image is segmented as intended but misclassified by 

Colour CNN. Raw CNN classifies this image correctly 

which makes this example a prime one to investigate the 

differences between the models.  
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      As shown in the classification matrix, this 

misclassification only occurs three times between these 

two classes. By observing the scores in the bottom left 

image of Figure 12, the CNN was most confident about 

leftturn followed by 40 and finally 35.  

 

 

Table 5. Model Results 

 

 

Using further investigation, those images are classified 

correctly due to the segmentation. This can be seen in the 

montage in Figure 13 which consists of the segmented 

training data for Colour CNN. During the further 

investigation into the accuracy disparity between raw and 

ROI detector models, it was found that some images were 

being segmented incorrectly. Despite being correctly 

classified by Colour CNN, certain images are not 

segmented correctly by the ROI detector which caused 

accuracy disparity since inconsistencies like these cause 

the CNN to learn inaccurate features which may not exist 

in other datasets such as the testing, validation or more 

importantly, real-time imagery. 

      Hough lines were not always representative of the 

edges of the lane as shown in Figure 15. By using the image 

on the right, the edges which triggered the detection of the 

left- hand side Hough lines are the side of the bonnet and 

the texture of the road. The right side of the vehicle bonnet, 

in particular, is primarily responsible for the detection of 

the disruptive Hough line which is the lower red line.  

       However, it is clear that there were no other reliable 

Hough lines that could have been chosen instead of this 

one. This can be deduced by the very small segments 

detected on the right-hand side compared with the left-hand 

side. This shows that there were not many options for the 

houghpeaks function to select. Figure 16 shows much 

longer line segments detected on certain images which later 

led to its accurate segmentation. This is what occurs in 

most images.  

Despite the performance disparity of the standard 

ROI_detector, the modified ROI_RESIZED detector + 

Colour CNN outperformed the Raw CNN model by almost 

2%. A confusion matrix for this improved model is shown 

in Figure 17. The confusion matrix shows much lower 

numbers of misclassification compared with Figure 10. 

This is partly because certain images were segmented 

better than before. For example, the segmentation of some 

images was improved by using the revised ROI detector as 

shown in Figure 18. The image reveals more of the stop 

SRM marking than the output from the other models 

presented in this paper.  

 

 
 

Figure 18. Training data image improved 
segmentation by ROI_RESIZED detector 
 

Figure 19. Flame graph for FPS test on 412 images 
using standard ROI detector 

 

Furthermore, the code profiler was used to analyse and 

ascertain why the ROI-based models perform at a lower 

FPS. A screenshot of this is shown in Figure 19. The 

profiler ran the standard ROI detector and passed through 

412 raw images from the Raw CNN test dataset. The blue 

and grey bars represent user-defined and Math Works 

functions respectively. The line taking the most time is the 

detection of Hough lines within the θ thresholds, which 

consumes a combined 34.2% of the time for the ROI 

detector. This is almost 6 times longer than the next most 

time-consuming line of code which is the calculation of an 

adaptive threshold for binarization. Given this analysis, it 

could be established that the runtime is strongly correlated 

to the number of pixels in the image. By reducing the 

number of pixels in the image, the voting space in the 

Hough transform will decrease and the inequality regions 

will decrease in size along with the time taken to calculate 

an adaptive threshold. This is led to the creation of a second 

ROI detector, ROI_RESIZED detector. This function 

changes the size of the input image to 227 × 227 at the 

start of the script. The rationale behind this was to use small 

input sizes of 96 × 96 and smaller for their CNNs. A 

smaller input size ensures that all functions now have fewer 

pixels to compute with. The results in Table 5 show a 

Model 

purpose 

Model 

architecture 

Accuracy 

rate (%) 

Frames 

per 

second 

(FPS) 

Hardware Raw image 

resolution 

SRM 

Classification 

(Proposed) 

ROI detector + 

Grayscale CNN 

87.38 23.37 

Single 

CPU –  3 

GHz 6-

Core 

Intel 

Core i5 

800 × 600 

ROI detector + 

Colour CNN 

85.68 15.9 

ROI_RESIZED 

detector + 

Colour CNN 

92.96 26.07 

Raw CNN 91.26 40.1 

ROI detector + 

Colour 

CNN_SqueezeNet 

63.33 28.03 

ROI_RESIZED 

detector + Colour 

CNN_GoogleNet 

69.9 24.41 

SRM 

Detection 

Template 

matching using 

MSER features 

[14] 

90.1 N/A CPU 800 × 600 

SRM 

Detection 

ROI (vanishing 

point) + deep 

CNN [15] 

96.9 18.87 NVIDIA 

Jetson 

TX2  

 

Multiple: 

960 × 720 
1012
× 328 
800 × 600 
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significant increase of 38.85% in speed and FPS compared 

with the standard ROI detector using Colour CNN.    

5. Conclusion 

This paper investigated several CNN based SRM 

classification models where the proposed model focused on 

classifying painted symbolic road markings by using a 

region of interest (ROI) detector and a deep convolutional 

neural network (DCNN). This work also provided an in-

depth analysis of the misclassification of images and 

aspects that leads to it. The model was demonstrated with 

the benchmark application and has shown promising 

performance and accuracy retrospectively. Reducing the 

size of images before using Hough lines to achieve 

vanishing point calculation and image segmentation is an 

energy-saving method that has not been attempted before 

in this application. More importantly, the best model 

shown in this paper strikes an important balance between 

accuracy and computational efficiency which is essential 

for real-world applications such as SRM classification for 

autonomous cars.  
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