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Abstract

The rise of Internet of Things has provided platforms mostly enhanced by real-time
data-driven services for reactive services and Smart Cities innovations. However, IoT
streaming data are known to be compromised by quality problems, thereby influencing
the performance and accuracy of IoT-based reactive services or Smart applications.
This research investigates the suitability of the semantic approach for the run-time
validation of IoT streaming data for quality problems. To realise this aim, Semantic
IoT Streaming Data Validation with its framework (SISDaV) is proposed. The novel
approach involves technologies for semantic query and reasoning with semantic rules
defined on an established relationship with external data sources with consideration for
specific run-time events that can influence the quality of streams. The work specifically
targets quality issues relating to inconsistency, plausibility, and incompleteness in IoT
streaming data.

In particular, the investigation covers various RDF stream processing and rule-based
reasoning techniques and effects of RDF Serialised formats on the reasoning process.
The contributions of the work include the hierarchy of IoT data stream quality prob-
lem, lightweight evolving Smart Space and Sensor Measurement Ontology, generic
time-aware validation rules and, SISDaV framework- a unified semantic rule-based
validation system for RDF-based IoT streaming data that combines the popular RDF
stream processing the system with generic enhanced time-aware rules.

The semantic validation process ensures the conformance of the raw streaming data
value produced by the IoT node(s) with IoT streaming data quality requirements and the
expected value. This is facilitated through a set of generic continuous validation rules,
which has been realised by extending the popular Jena rule syntax with a time element.
The comparative evaluation of SISDaV is based on its effectiveness and efficiency based
on the expressivity of the different serialised RDF data formats.

The results are interpreted with relevant statistical estimations and performance metrics.
The results from the evaluation approve of the feasibility of the framework in terms of
containing the semantic validation process within the interval between reads of sensor
nodes as well as provision of additional requirements that can enhance IoT streaming
data processing systems which are currently missing in most related state-of-art RDF
stream processing systems. Furthermore, the approach can satisfy the main research
objectives as identified by the study.
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Abbreviation

• CEP: Complex Event Processing

• DSMS: Data Stream Management System

• EEG: Electroencephalogram

• GSN: Global Sensor Network

• IoT: Internet of Things

• IRI: Internationalise Resource Identifier

• JSON: JavaScript Object Notation

• OWL: Web Ontology Language

• RDF: Resource Description Framework

• RDFS: RDF Schema

• RSP: RDF Stream Processing

• SPARQL: Simple Protocol And RDF Query Language

• SSN: Semantic Sensor Network

• URI: Uniform Resource Identifier

• W3C: World Wide Web Consortium
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; First Chapter <

Introduction

1.1 Problem Statement

The Internet of Things (IoT) focuses on infrastructure issues by identifying and connect-

ing real-life objects. In this domain, the streaming data produced from these objects

are useful in driving actuation and data-driven services on the web with support of

semantic stream processing systems. Despite growing efforts to apply the semantic

stream processing approaches to provide a unifying model, foundations, techniques,

and tools necessary to integrate data streams with semantic processing systems, the

only focus has been to improve interoperability through semantic stream querying

(Anicic et al., 2011; Barbieri et al., 2009; Calbimonte et al., 2010; Le-Phuoc et al., 2011).

There still exists significant research gaps in the application of semantic stream pro-

cessing systems in terms of managing the quality requirements of IoT data streams

(Karkouch et al., 2016), providing reasoning capabilities and, integrating background

knowledge with streams(Valle et al., 2009). As a result, this calls for an approach to

manage these issues with consideration for IoT streaming data towards the realisation

of both effective and efficient data-driven service delivery at the lowest granularity levels

of IoT applications. Furthermore, there is need to consider the direct impact of the

quality issues attributed to IoT streaming data on data-driven decision-support systems

at the operational level of smart city. This implies that a poor quality IoT streaming data

in an IoT environment will result in a false positive events and poor quality of decisions

1



CHAPTER 1. INTRODUCTION

and actuation.

1.2 Motivation

In general, enhancing the IoT streaming data with semantics is a step to revolutionize

the performance of IoT-based reactive services and data-driven decision-making pro-

cesses for relevant web-based applications. This is because the recent paradigm shift

in IoT technologies for the realisation of monitoring and controlling system aimed at

achieving accurate real-time reactive services such as decision making and incident

response activities within the domain of application can be guaranteed. Many of these

real-time reactive services currently deployed in smart manufacturing process (Bi et

al., 2014; Wang et al., 2004), process control in smart home automation(Wang et al.,

2013) or environmental monitoring systems(D’Aniello et al., 2018; Dividino et al., 2018;

Kamilaris et al., 2016) are allowed to make real-time decisions based on the IoT/sensor

streaming data without proper quality validation.

These streaming data are known to be confronted with several quality problems relating

to inconsistent (redundancy or noise), incompleteness (Missing data) and plausibility

(Cross Sensitivity) (Ang et al., 2017; Barnaghi et al., 2015; Karkouch et al., 2016), thereby

compromising the accuracy of the data points in IoT-based data-driven decision sup-

port systems and reactive applications subscribing to them. For example, the quality of

output of such reactive services can also produce false-positive results (e.g. false fire

alarm) or erroneous decisions in the presence of inconsistent or missing readings from

sensors or related IoT nodes (Brown et al., 2019), hence making the system’s efficiency

to be compromised at run-time.

The rule-based taxonomy (Li et al., 2011) have identified the use of validity rules as one

of the methodologies for ensuring high data quality in enterprise applications. Specific-

ally, the data validity rules targets similar stream data quality relating to incompleteness,

inconsistency and plausibility of data. Also, the IoT research community has continue
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to provide technologies to ensure seamless integration of physical devices with reactive

IoT applications without envisaging IoT streaming data quality issues. Providing a

run-time validation and analysis of the IoT streaming data can guarantee effective and

efficient controlling, monitoring, alerting and fault detection in a situation that requires

rapid response to critical events within the smart IoT environment.

To deal with the IoT streaming data quality issues, requirements for a typical Semantic

IoT Streaming data validation system are identified. These requirements are considered

when developing the proposed semantic approach and its resultant framework for

run-time validation of IoT streaming data, to detect quality issues relating to incom-

plete, inconsistent and plausible IoT/sensor streaming data. Consequently, the unified

framework combines semantic stream processing and reasoning techniques capable of

integrating the background knowledge with the streaming data. The reasoning system

of the proposed framework is built with enhanced Jena Inference subsystem to guaran-

tee continuous semantic reasoning process over IoT streaming data. The approach can

produce inference while emphasizing on the expressivity of data representation and

time requirement for IoT-based reactive applications and data-driven decision making

in the IoT environment.

1.3 Research Aims and Objectives

Prompt by the motivations in the previous section, the main goal of the research is to

provide an effective and efficient semantic validation of IoT streaming approach with

a unified framework for IoT streaming data quality at run-time. Effective validation

refers to the vision of the system to produce desired results in terms of stream relevance

and accuracy metrics of the semantic validation approach evidenced by establishing

that the predetermined specifications for the IoT streaming data are met. Similarly,

Efficient validation focuses on the time performance of the validation framework by

specifically considering the semantic reasoning time, processing time and latency of

the semantic validation approach. Accordingly, the aim of this thesis is to convey the

3



CHAPTER 1. INTRODUCTION

features and data quality requirements of the IoT streaming data validation through a

unified Semantic IoT Streaming data Validation framework. In this thesis, the semantic

framework is a layered structure that combines semantic data modelling approaches,

IoT streaming data ontologies, semantic reasoning, semantic rule selection algorithm

and system requirements for semantic validation. Specifically, this aim is realised

through the following objectives.

1.3.1 Objective I: To Establish the Relationship Among the IoT Streams

Quality Problems

The fact that sensor streams are prone to quality issues is a major concern for researchers

and smart solution providers when deploying an effective solution. Previous research

findings have defined these sensor stream quality problems in a different context with

different interpretations. It has resulted in continuous improvement of statistical ap-

proaches to combat the problems in near real-time.

The first object is to define a relationship for the quality issues such as: data ambi-

guity. inconsistency and incompleteness, relating to IoT/sensor streaming data. This

relationship will provide a foundation for tackling the IoT stream quality problem as a

holistic approach, and will provide a better understanding of IoT stream quality problem

as consequent of other related quality issues. Hence, it will provide an unambiguous

interpretation of the common sensor data quality issues.

1.3.2 Objective II: To Develop a Method for Effective IoT Resource

and Sensor Streams Specification and Integration

Despite the wide availability of sensors and domain ontologies, inadequacies in the

construction and vocabularies of the ontologies in the specific domain of applications

still exist. Besides, they are only suitable for managing static knowledge, which renders

them less relevant to frequent changes in domain applications with dynamic streams.

Most of the available sensor ontology models are either lacking in the specification of
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sensor streaming data or categorisation of specific domain related resources.

The second objective will provide a lightweight and evolving ontology model that can be

translated into RDF graph by adopting the ontology design best practices. The ontology

model will be beneficial for the persistence and management of previously validated

IoT streams. It will also provide a means for annotating IoT streaming data at run-time.

The ontology model will perform update upon addition of new IoT node or arrival of

new data stream and maintenance of domain knowledge.

1.3.3 Objective III: To Develop a Method for the Continuous Semantic

Reasoning of IoT Streaming Data

In the past years, several semantic reasoning engines have been developed and applied

to process semantic web data including ontology models, for the purpose of producing

new knowledge. However, these reasoning engines and corresponding subsystems

have been applied only to static data held within the knowledge base but are currently

lacking in their ability to provide support for run-time streaming data and continuous

semantic reasoning with custom production rules.

The third objective will focus on adopting a semantic rule language that can support

many of the RDF serialised data formats and can be coupled with RDF stream pro-

cessing system to realise a forward chained inference. This approach will facilitate

continuous reasoning of the semantic IoT streaming data produced from raw data

streams. Consequently, it will also improve the performance of reactive IoT services

and data-driven decision support systems in smart city applications.
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1.3.4 Objective IV: To Integrate the Developed Semantic Methods with

Mechanisms for Semantic validation of IoT streaming Data into

a Unified Approach and Framework

Currently, it is rare to find a semantic stream processing system that combines the

generation of logical/semantic streams from raw IoT streaming data, with semantic

querying and reasoning function. Targeting the gap in fulfilment of semantic streaming

data validation, the fourth objective is to integrate the aforementioned components

and develop a unified framework and prototype implementation.

An API call is used to perform the continuous IoT streaming data validation tasks by IoT-

bases reactive systems. A mapper from IoT middleware and connection infrastructure

is required for invoking services for generating equivalent machine process-able data.

1.3.5 Objective V: To Conduct Case Study Evaluation with focus on

RDF Serialised Data Formats

To demonstrate the feasibility and evaluation of the approach, the last objective of the

thesis is to apply some real-life scenarios in domain of smart city and smart space with

evidence of poor quality sensor/IoT data streams in various experimental runs. The

experiments will provide a platform to critically examine the proposed approach with

resultant framework and prototype implementations. Considering the possible range

of alternative RDF data serialised formats for sensor streaming data representation/-

modelling, the experimental results is expected to provide comparisons under various

operating conditions of IoT nodes with associated stream quality problem.

1.4 Research Questions

Considering the research objectives in section 1.3, a number of research questions have

been presented as follows:

6



CHAPTER 1. INTRODUCTION

• RQ1: How can the smart space domain and sensor network ontology support

the incremental update of IoT streaming data caused by an addition of new data

instance?

• RQ2: In what manner can the native Jena rule be adapted to support real-time

an continuous time-aware reasoning?

• RQ3: How can the RDF stream processing system be combined with a forward

chained rule to achieve the semantic reasoning and quality validation task of IoT

streaming data in a run-time manner?

• RQ4: Can the Semantic validation approach with the reference framework be

applied to detect inconsistency of IoT streaming data in smart home and air

quality datasets?

• RQ5: To what extent is the effectiveness and efficiency of the semantic validation

approach with focus on the serialised RDF data formats?

1.5 Contributions to Knowledge

The research presented in this thesis enhances the existing popular RDF stream pro-

cessing system to support continuous reasoning and investigates its suitability in smart

applications within the context of data-driven reactive services and decision-support

systems. Further, it achieves this by providing a unified semantic-driven data validation

approach with its framework for run-time validation and detection of quality issues in

IoT streaming data. As result, a series of contributions have been identified. Specifically,

these contributions and how they satisfy the research questions are highlighted as

follows:

• Regarding RQ1, a lightweight IoT domain and sensor streaming data Ontology

(SmartSUM) with embedding and evolving functionality was developed. In con-

trast to other Semantic Sensor Ontologies, SmartSUM is built from re-engineering
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exiting related ontology models and enhanced such with an evolving feature to

support the dynamic nature of the IoT streaming environment

• Generic stream quality validation rules and continuous Time-Aware Reasoning

system based on enhanced RDF stream processing system for IoT streaming data.

This provides answer to RQ2 as the stream quality validation rule extends the Jena

rule syntax with both time component and streaming window attribute of IoT

streaming data. In attempt to provide answer to RQ3, the continuous reasoning

engine have been layered with the popular Continuous Simple Protocol And RDF

Query Language (Barbieri et al., 2010c) to perform run-time semantic inference.

• The Semantic IoT Streaming Data Validation Approach (SISDaV ) for Plausibility,

Incompleteness and Inconsistency in Streaming Data. By consulting previous

works on related aspects of semantic modelling, Semantic and RDF stream pro-

cessing systems including semantic processing techniques, an integrated frame-

work is constructed while combining the above derived semantic techniques. SIS-

DaV framework provide a unified semantic approach for pre-processing, model-

ling, reasoning and validating IoT streaming data quality requirement for reactive

applications and data-driven decision making systems in web-based applications

and related IoT environment. This provides answer to RQ4 by facilitating the

development of domain specific framework.

1.6 Structure of Thesis

The remainder of this thesis is organised as follows: Chapter Two provides the back-

ground and the related work relevant to the research in this thesis.The details of the

general taxonomy of data uncertainty as well as the taxonomy for IoT streaming data are

discussed. section 2.4 provides relevant semantic technologies related to the research

with emphasis on data modelling, RDF stream processing systems (RSPs), semantic

reasoning and ontology. The details of the applied evaluation metrics based on related

work is introduced and explained in section 5.2.
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Chapter three provides the design and implementation of SmartSUM model. It provides

unambiguous concepts specification with data stream quality dimensions. It is used to

annotate the IoT streaming data and enhance the semantic streaming data validation

approach. The unique evolving feature of the model is discussed in section 3.4.

Details of the novel unified semantic approach and its resultant framework are dis-

cussed in chapter five. Section 4.3 provides details of the semantic approach while the

resulting framework is described in section 4.4.

An evaluation of the novel unified semantic approach and its resultant framework

is presented in Chapter six. The evaluation case studies, including a description of the

IoT streaming/sensor data sets, used to test effectiveness and efficiency of the approach

are described in Section 5.3 and 5.7 respectively. Section 5.8 later details general discus-

sions of results from experiments involving the case studies.

Finally, Chapter seven summarises the thesis by presenting the conclusions and future

directions of the research.

1.7 List of Publications

Parts of the research have been published.

• Bamgboye, O., Liu, X., & Cruickshank, P. (2018). Towards modelling and reasoning

about uncertain data of sensor measurements for decision support in smart

spaces. In 2018 IEEE 42nd annual computer software and applications conference

(COMPSAC) Vol. 2, pp. 744-749.

• Bamgboye, O., Liu, X., & Cruickshank, P. (2019). Semantic Stream Management

Framework for Data Consistency in Smart Spaces. In 2019 IEEE 43rd Annual

Computer Software and Applications Conference (COMPSAC) Vol. 2, pp. 85-90
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; Second Chapter <

Research Background and Related Work

2.1 Introduction

The Semantic IoT Streaming data Validation approach and its Framework are based on

the fundamental aspects of Semantic Stream processing and semantic web technologies.

In this chapter, the general taxonomy of data uncertainty problem as it relates to data

quality problem is presented in 2.2. In attempt to satisfy the first objective of the

study, a taxonomy of uncertainty in IoT streaming data with data quality requirements.

Approaches to various sensor data quality issues are discussed in 2.3. Section 2.4

provides related research in semantic technologies with emphasis on data modelling,

RDF stream processing systems (RSPs), semantic reasoning and ontology. Semantic

stream Validation requirements and how these requirements are satisfied by RSPs

are presented in 2.5 and 2.6 respectively. Section 2.7 provides background insights

into smart city models in relation to its application to smart spaces, while section 2.8

concludes the chapter.

2.2 Taxonomy of Data Uncertainty

Generally, data uncertainty describes a situation where human or machine (software

agent/system), only possess partial knowledge about the truth-value of a given piece of

data. The categorisation of data uncertainty can also perceived as either objective or

subjective (Kläs & Vollmer, 2018). The objective uncertainty in data refers to the degree
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of the probability about the truth of a particular data whereas the subjective refers to the

agent’s opinion about the truth-value. Subjective uncertainty is also considered as most

common data and it describes the degree of deviation from accuracy, completeness and

consistency of measurement data. A number of classifications have been established in

various domain in order to provide better understanding of the data quality problems

Figure 2.1 describe the current classification of uncertainty in a related sensor-based

Figure 2.1: Classification of Data Uncertainty in GIS

information systems (Jekjantuk et al., 2016). The classification attributed the sensor

anomalies to data uncertainty, which can often be expressed as error, vagueness and

ambiguity in measurements within the Geographical Information Systems (GIS). The

notion of ambiguity and vagueness have been considered to be equivalent in the initial

classification for intelligent environments (Gu et al., 2004). The quality problem relating

to vagueness can be viewed as either qualitative or quantitative (Kumar et al., 2006).

Vagueness is quantitative in sensor observation when there is lack of precise boundaries

along one or more quality dimensions (e.g. High Temperature, cold weather). It is

considered qualitative if there exist a variety of conditions, which makes it impossible

to make any crisp identification of those combinations that are sufficient for an applic-

ation e.g. the term Season can contain a qualitative vagueness, this is because there

are several weather conditions that can determine a particular season in the year. In

the same perspective, source of uncertainties in sensor measurement are related to

inconsistencies, ambiguity, imprecision and noise (Leyk et al., 2005). Furthermore,

the taxonomy for uncertainty in sensor data at database level is seen in (Almeida &

López-de-Ipiña, 2011). It comprises of the point uncertainty, interval uncertainty and

probabilistic uncertainties.
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Most of the existing classifications are yet to provide the holistic view of the uncer-

tainty problem as it relates to IoT and smart spaces. In the present research involving

IoT including smart spaces, subjective uncertainty is the most common data quality

problem. This is also perceived as errors in distributed sensor readings or measure-

ments within smart spaces. Providing an explicit description of the uncertainty problem

in relation to IoT streaming and smart spaces will facilitate the development of a more

holistic approach to solve the quality problems.

2.2.1 Taxonomy of Data Uncertainty in IoT Streaming Data

The desire to improve service construction of smart spaces continues to grow with the

aim of achieving an efficient ubiquitous computing environment, even as the cost of

sensors continues to remain relatively cheap. The high volume of data produced in

this environment is mainly generated from a range of IoT nodes including sensors. The

sensors itself can represent one of the main sources or contributors to data quality

issues (Karkouch et al., 2016).

Generally, data quality issues in IoT/sensor streams occurs at the instance-level, which

can collectively be described as data uncertainties. The definition emanates from the

ambiguous interpretation of the data at lower level of abstraction during run-time be-

fore it is eventually interpreted by a sensor instrumentation or the data analytic engine.

Uncertainties in IoT and sensor streams are considered to result from several quality

problems that include imprecision, noise, ambiguity and inconsistency of readings or

measurement values (Kumar et al., 2006). In both Smart Space and IoT domain, this

research describes uncertainty as the degree of deviation from accuracy, completeness

and consistency of IoT streaming data. It perceives the deviation from accuracy to be

an indication of the presence of vagueness or plausibility. This is because a vague or

plausible IoT/sensor data can often be true in it own sense but usually lacking clear

boundaries during interpretation by a subscribing systems. The category of uncertainty
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proposed in this section can be considered to be window-based. This is because it is

possible to experience each type of quality issue within separate windows in a particular

streaming cycle.

Similarly, the taxonomy of IoT data quality problems have been used to describe un-

certainty within the smart spaces (Bamgboye et al., 2018). Figure 2.2 considered the

uncertain data from sensors and IoT nodes as transient and also provided an holistic

view of the related data quality problems in this domain. It provide a way to take the

peculiarity of IoT/sensor data into account by considering the temporal characteristics

of the data and how it can quickly become plausible based on expired streaming window

session. The hierarchical relationship of the quality issues in the taxonomy has been

established based on various classifications from relevant literatures(Anja, 2009; Cheng,

2003; Karkouch et al., 2016; Kumar et al., 2006; Sta, 2016) in sensor data.

The taxonomy clearly shows the category of uncertainty in IoT and sensor streams

Data Uncertainty

Data 

Ambuiguity

Data 

Inconsistency

Data 

Incompleteness

Plausibility

Imprecision

Data loss

Unbounded data 

Data Conflict

Noisy data

Untrustworthiness about 

measurements

Lack of clarity in data, 

inaccurate measurement

Out of range in sensor readings or 

observation

Different readings for a single 

observed phenomena within same 

domain of measurements

Missing data as result of signal 

loss

Presence of outliers  in data 

streams

Categorisation
Sub-

Categorisation
Possible Forms

Figure 2.2: Taxonomy of Uncertainty in IoT Streaming Data

along the dimension of Data Ambiguity, Inconsistency and Incompleteness of readings

or measurements. The description of the possible causes of the uncertainty problems
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is discussed in table 2.1. Inconsistency and Incompleteness in IoT streaming data are

considered to occur at the lower observing layer of the sensor readings while Data

Ambiguity is a quality problem often experienced at the higher contextual level of smart

space applications. Earlier study (Elnahrawy & Nath, 2003) associated quality problems

relating to imprecision, inconsistency and noise to random errors. This type of errors

exists distinctively in smart spaces. For example, inconsistency can arise when two

sensors of the same type deployed within the same space give different readings. We

define this case of the problem as data conflict in our proposed taxonomy. In a similar

perspective, the investigation by (Tan et al., 2005) suggests incompleteness in sensor

reading is mostly caused by sensor failure which often results in data loss. Commonly,

the majority of the IoT and sensor connected devices will represent missing or incom-

plete data streams with specific data string format output. IoT streaming data produced

from multiple sources are available with several inconsistencies due to the nature of

structured, semi-structured and unstructured formats (Mishra et al., 2015; Rao, 2019;

Vongsingthong & Smanchat, 2015).

The accuracy and reliability of sensor measurement are dependent on the technique

for managing the plausibility and related quality issues in sensor readings to improve

Smart City and smart space experience (Kuemper et al., 2016). However, defining a kind

of holistic approach to solving these issues may require setting out some data quality

requirements for intelligent or Smart Spaces where the IoT nodes including sensors will

play an active role in data provisioning.

2.2.2 Data quality Requirements for IoT Nodes and Smart Spaces

Data remains an essential ingredient for categories of automated systems such as

decision support systems and other critical systems that heavily depends on sensor

readings in delivering related services. It is therefore important to ensure the data

quality requirements are satisfied to deliver high quality services. These automated

systems must then agree data meets one or more of the following quality requirements,
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Table 2.1: Description of uncertainty problems in IoT Streaming Data

Quality Problem Description Appearances/Possible
causes

Data Ambiguity Data ambiguity describes
data quality problem in
terms of false interpret-
ations arising from inac-
curacy due to inexactness
contexts or measurement
values (Eppler, 2006; Paulus
et al., 2019).

Observation measurement
having blurred boundaries
disallowing precise or clear
distinction between values
or data

Plausibility Forged or nearness in the
agreement between the ex-
pected value of measure-
ment and the accepted refer-
ence value because of impre-
cise or uncertain IoT node
(Bißmeyer et al., 2012).

Mostly caused by false posit-
ives or impreciseness in val-
ues

Imprecision The degree of inexactness
or inaccuracy of agreement
arising from uncertainty
between measurement
quantity values (Cheng et al.,
2003; Dhillon et al., 2002)

Obtained as a result of rep-
licate measurements on the
same or similar object under
specified conditions

Incompleteness It describes the extent to
which data is missing and
insufficient or inconsistent
in breadth and depth for the
task and purpose at hand,
thereby resulting in uncer-
tain information (Pipino et
al., 2002; Tan et al., 2005).

Totally or partially Missing
value/data caused by net-
work failure or data damage

Inconsistency It arises whenever there are
incorrect or different ver-
sions (redundancy) of the
same data or measurement
value due to uncertainties
based on ambiguous and
noisy data streams (Kumar
et al., 2006)

It can be due to data gener-
ated at different time snap-
shots, or different sources or
even abstraction level.

which are derived from a review of relevant literature. In particular. the data quality

problems in table 2.1 remains the major impediments in the fulfilment of these quality

requirements, which are also considered to be essential as part of the smart space
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components.

• Accessibility refers to the availability and ease of IoT streaming data exploita-

tion/retrieval within the space despite the heterogeneous or multi-modal charac-

teristics of devices and data. The current deployment of sensors in smart space

allows each separate or individual sensor to generate its data format unilaterally

without a common interface for accessing similar or other heterogeneous data. It

will be necessary to provide an infrastructure for common exploitation/retrieval

of heterogeneous streaming data with the same protocol.

• Accuracy is the degree at to which sensor readings represents the measured

phenomena and the extent to which value v from sensor readings belongs to a

closed interval of −β ≤ v ≤ β, for the absolute systematic error β. It tells how

closely the output of an IoT node or sensor reading from an instrument or device

corresponds to its ‘true’ value. For example, a sensor calibrated at < ± 0.1% of

measurement will mean the actual reading will be applied to ± 0.010 units of

measurement or less. This means that any variation between the ‘true’ values is

referred to as ‘error’.

• Completeness is the extent to which an IoT node producing sensor readings at

specific data points contains no missing data point including the timestamp and,

are sufficient in the ratio of the breadth and depth of the data within a particular

streaming window. For example, an active sensor may suffer from intermittent

signal or network failures thereby registering wrong values for these data points.

It is therefore imperative to ensure the missing data points are not delivered as

part of complete realistic measurements.

• Consistency refers to the extent to which data produced at IoT nodes by a particu-

lar or group of sensors are available in the same format without undue repetitions

or redundancies within same timestamp and window for subsequent collaborat-

ive or intelligent processing. As an illustration, multiple numbers of sensors of

the same type and measuring the same phenomena can be placed in the same
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domain while providing the individual readings to a specific application. It is

important for each instance of measurement to be uniquely identified before its

consumption by an application.

• Interpretability refers to the degree of the appropriateness and clarity of data in

terms of meaning and format. It is noticed not all sensor interprets reading in

understandable forms easily for machine-to-machine communication e.g. some

sensor to interpret measurements as “0” and “1” while others can interpret using

integer and real number values. Also, it can result in efficient processing and

makes more sense if the meaning of this measurement is part of streaming data

processing.

• Implausibility plausibility refers to the extent of which a given IoT node or sensor

reading is considered as true and acceptable or credible for a given measurement.

For instance, it may be important to ascertain that a sensor such as a temperature

sensor is actually giving the reading of the space it is being deployed and not the

temperature of the human body or other objects within the Smart Space. Implaus-

ibility emphasises on the quality of IoT data streams to possess unambiguous

representation of the data.

• Timeliness represents the requirement for IoT node to be able to process stream-

ing data in a timely manner and differentiate the actual timestamp of streaming

data from the registering timestamp of IoT processing node during measurement.

Also, the interval of time between when the sensor measures the real-life event

and is available for use by other smart space components should be minimal.

There has been continued efforts to improve the performance and efficiency of

smart computing systems that rely on sensor streaming data. Many of the efforts

separately concentrate on improving the connectivity of IoTs and quality of sensor data.

The approaches for sensor data processing are categorised into two different types

that are based on statistical and semantic techniques. In the subsequent sections, we

described these techniques in relation to how they have been applied to sensor streams.

17



CHAPTER 2. RESEARCH BACKGROUND AND RELATED WORK

The next sections focus on the various techniques and approaches to deal with the

quality problems in line with satisfying the quality requirements of IoT streaming data.

2.3 Approaches to Sensor Data quality Problems

There have been several attempts to improve the quality of data produced at IoT node

including sensor device in an attempt to reduce the level of uncertainty associated with

streaming data. Though the semantic approach to processing IoT/sensor data is still at

the early stage of research, there have been a number of statistical techniques applied to

solve the quality issues in sensor data. In the general perspective, these attempts or ap-

proaches to data quality in sensor measurements are described as statistical approaches.

The problem relating to missing data points in sensor measurement has often been

addressed through the method of statistical interpolation (Appice et al., 2013; Yoon et al.,

2018) while other data quality-related problems have been addressed with traditional

statistical approaches such as regression analysis. All these approaches are shown to

have fallen short in the ability to capture the known challenges of velocity and variability

that defines the nature of IoT streaming data. Besides, these approaches are unable

to provide data integration, which is required to leverage interpolation by inferring

missing values based on other or available IoT or sensor readings (Karkouch et al., 2016).

The adoption of the Bayesian approach and Gaussian distribution was used to com-

pute an estimate of accuracy in sensor readings at base station (Elnahrawy & Nath,

2003). In particular, errors in form of the inaccuracy of measurements, imprecision of

observations, and environmental factors are attributed to noise. The approach includes

an uncertainty model for cleaning and interrogating sensor readings. The approach,

however, ignores the aspects of inconsistency and incompleteness that may be predom-

inant at the sensor node. A similar problem of noisy and incomplete sensor streams

was also managed with the use of the Kalman Filter and regression models (Tan et al.,

2005) to perform cleaning of noise and eventual interpolation of incomplete on raw
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sensor data. Though the approach was introduced to improve the limitation of the

traditional data cleaning method, it is still inadequate for managing inconsistency in

the sensor data. To address this problem, a multisensory data fusion that combines

modified Bayesian fusion with Kalman filtering algorithms was proposed (Abdulhafiz &

Khamis, 2013). In the context of smart city applications, sensor data quality problems

related to inaccuracy and, being a subset of data uncertainty have been subjected to a

statistical model involving the use of Dempster-Shafer Theory (DST) combined with

the evidential databases (Sta, 2016). Though this approach suggests being promising

in dealing with noise, it does not prove to be applicable for run-time or continuous

reasoning of sensor streams and fails in achieving data interoperability.

The use of metadata to improve the accuracy and correctness of retrieved sensor values

with spatial-temporal characteristics at database level has been implemented with the

introduction of enhanced Probabilistic threshold query (Prabhakar, n.d.). The approach

is strictly applied to sole the related data quality problems in database system and does

not clearly represents the meta-data approach within the semantic web. One step in

that direction is to consider the use of a semantic approach in managing the quality

issues of sensor data to support other related applications (Calder et al., 2010).

The Semantic data processing approaches are becoming popular in the IoT domain.

Various approaches consider the use of knowledge (or knowledge graph) representation

in combination with linked data and reasoning techniques. The knowledge repres-

entation techniques involve the application of standard semantic model languages

such as the OWL, RDF and Frame-based languages. RDF has become the most popular

and widely used language for data representation and data exchange across semantic-

based and web-based systems. The use of the RDF data model in the processing of

sensor streaming data provides different levels of expressivity, especially with different

serialisation formats.
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2.4 Semantic Web Technologies

Semantic Web - the initiative of Tim Bernes-Lee, is built on standards to enable the

extension of the Web with machine-interpretable meaning, hence facilitating data in-

tegration/sharing and interoperability amongst interconnected machines (Berners-Lee

et al., 2001). The concept of semantic Web is based on the formalism of the Resource

Description Framework (RDF). This allows the linking and merging of relations between

entities from multiple resources on the Web through the use of IRI. The common vocab-

ulary recognised by the RDF to model and provide a description for data are the RDF

Schema (RDFS) and ontology. Semantic technologies can enable smart objects to

interact in an intelligent manner with each other on IoT. The application of these tech-

nologies to IoT systems automate data/information acquisition and decision-making

process, while enhancing the development of advanced applications.

2.4.1 Semantic Data Representation with RDF

Semantic data representation is often employed in the description of semantic web

resources which may also include certain data manipulations. The description of the

RDF data or resources is available as Property-Value often referred to as Triples or RDF

statements, which provides logical representations of data as a network of graph (also

called Knowledge Graph) in semantic web applications(Beckett & McBride, 2004). RDF

statement contains elements that is of the form S, P, O where each element corresponds

to Subject, Property and Object respectively. Each of the element is processed using the

RDF signature similar to (X ∪Y )×X × (X ∪Y ∪Z ) where X, Y and Z may represent a set

of respective URI resources that points to the nodes and RDF literals.

RDF provides rule-based axiomatization of the RDFS semantics that can be executed

over any RDF graph. RDF data can be represented using the alternative W3C standard

for publishing and exchanging semantic data. These formats include RDF/XML, Turtle,

N3 and N-Triples, representations. These formats often differ in terms of expressivity
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and resource usage (Su et al., 2015) as it can be seen in various domains of application.

Similarly, both issues are envisaged to place a major constraint on the semantic IoT

streaming data validation approach, where time plays a major role. Therefore, it is

worthwhile to compare the RDF data formats to understand which will support the

semantic validation approach effectively and efficiently.

The serialised RDF data models mostly adopted by IoT systems is broadly categor-

ised as XML-based and Non-XML based. The classification of the formats is based

on their expressivity, simplicity and applicability. These formats are suitable for IoT

streaming data modelling and related web applications in IoT domain (Maarala et al.,

2017).

• RDF/XML: As previously discussed, RDF/XML serialised format enhances IoT

<rdf:RDF
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:smartSpace="http://localhost:8080/smartSpace#"
    xmlns:owl="http://www.w3.org/2002/07/owl#"
    xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="http://localhost:8080/smartSpace#pressureReading8">
    <smartSpace:hasPressureReading rdf:datatype="http://www.w3.org/2001/

XMLSchema#float">752.17</smartSpace:hasPressureReading>
    <smartSpace:pressureHasTimestamp rdf:datatype="http://www.w3.org/2001/

XMLSchema#dateTime">2020-01-20T09:42:12.084Z</
smartSpace:pressureHasTimestamp>

  <rdf:type rdf:resource="http://localhost:8080/smartSpace#pressureValue"/>
  </rdf:Description>
  <rdf:Description rdf:about="http://localhost:8080/smartSpace#pressureReading10">
    <smartSpace:hasPressureReading rdf:datatype="http://www.w3.org/2001/

XMLSchema#float">753.76</smartSpace:hasPressureReading>
    <smartSpace:pressureHasTimestamp rdf:datatype="http://www.w3.org/2001/

XMLSchema#dateTime">2020-01-20T09:42:22.085Z</smartSpace:pressureHasTimestamp>
    <rdf:type rdf:resource="http://localhost:8080/smartSpace#pressureValue"/>
  </rdf:Description>

Figure 2.3: RDF/XML Listing

processing node to parse, store and serialise XML data in a simplified manner.

The listing in figure 2.3 shows a snapshot of RDF/XML serialisation format for

IoT streaming data. In this case, a sensor streaming data with sliding windows
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is represented as quadruple statements that contain the equivalent <Subject,

Predicate, Object, Timestamp> of individual sensor streaming data within the RDF

graph. The listing indicates the combination of two different structures: a tree

structure and quadruple-based graph. The possible implication of the underlying

structures is that it can make serialisation more complex and too wordy when

compared with the other serialisation standards (Su et al., 2015). Besides, the

regular RDF/XML format does not clearly show the triple pattern in static data

and hence it may only be useful when the developer is only interested in working

with XML.

• Notation3(.n3) : The n3 serialisation was introduced to provide better express-

iveness as against the RDF/XML format. This can guarantee a more compact

and readable alternative for serialising real-time sensor streaming data. Consid-

ering the listing in figure 2.4, n3 serialisation improves the readability of sensor

streaming data and allows easy integration with semantic rules for reasoning pur-

poses during the sensor streaming data validation process. These prospects are

realised through the use of URI abbreviations that are bounded to a namespace,

appropriate quantification that allows rules to be expressed, and simple grammar

with a measure of consistency. The n3 is capable of encoding the streaming data

statements as well as its meaning. Also, .n3 are supported as synonyms for the

Turtle serialisation when implemented in java programs.

• Turtle ( .ttl) : The terseness of Turtle serialisation format contributed to its wide

popularity, which also made it to be considered as another alternative of RDF data.

Being a subset of .n3 (figure 2.5) because of its support for @prefixes, the present

research considers Turtle format as one of the potentials RDF serialisations for

the IoT/sensor streaming data over a streaming window. The choice for Turtle is

inspired by its ease to generate semantic data streams, and support by popular

tools and common APIs including Jena and OWL API (Horridge, n.d.). Though

the serialisation of static data using Turtle as modelling choice shares limitation

with the RDF/XML format in that it is more expensive to parse unlike the N-Triple
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@prefix owl:   <http://www.w3.org/2002/07/owl#> .
@prefix rdf:   <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix xsd:   <http://www.w3.org/2001/XMLSchema#> .
@prefix rdfs:  <http://www.w3.org/2000/01/rdf-schema#> .
@prefix smartSpace: <http://localhost:8080/smartSpace#> .

smartSpace:humidityMeanValue
        a       rdfs:Class .

smartSpace:tempReadings9
        a                            smartSpace:tempValue ;
        smartSpace:hasId             "Sensor 1"^^xsd:string ;
        smartSpace:hasSeason         "winter"^^xsd:string ;
        smartSpace:hasValue          "23.53"^^xsd:float ;
        smartSpace:tempHasTimestamp  "2020-01-
23T18:06:16.263Z"^^xsd:dateTime .

smartSpace:humitidyReadings11
        a                              smartSpace:humidityValue ;
        smartSpace:hasHumidityReading  90 ;
        smartSpace:humidityHasTimestamp
                "2020-01-23T18:06:26.249Z"^^xsd:dateTime .

smartSpace:tempValue  a  rdfs:Class .

smartSpace:tempReadings12
        a                            smartSpace:tempValue ;
        smartSpace:errorData         "Missing Value"^^xsd:string ;
        smartSpace:hasId             "Sensor 1"^^xsd:string ;
        smartSpace:hasSeason         "winter"^^xsd:string ;
        smartSpace:hasValue          "8888.88"^^xsd:float ;
        smartSpace:tempHasTimestamp  "2020-01-
23T18:06:31.265Z"^^xsd:dateTime .

Figure 2.4: N3 Listing

and N-Quads counterpart, It will be interesting to measure the impact of this

limitation on reasoning with dynamic data such as the sensor streaming data in a

fast dynamic environment.

• N-Triple (.nt): The suitability of N-Triple for machine-to-machine communica-

tion is one of the reason for consideration in serialising the sensor streaming data

at run-time. It is considered suitable for storage of millions of triples especially, in
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@prefix owl:   <http://www.w3.org/2002/07/owl#> .
@prefix rdf:   <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix xsd:   <http://www.w3.org/2001/XMLSchema#> .
@prefix rdfs:  <http://www.w3.org/2000/01/rdf-schema#> .
@prefix smartSpace: <http://localhost:8080/smartSpace#> .

smartSpace:temp2Readings5
        a                            smartSpace:tempValue ;
        smartSpace:hasId             "Sensor 2"^^xsd:string ;
        smartSpace:hasSeason         "winter"^^xsd:string ;
        smartSpace:hasValue          "18.35"^^xsd:float ;
        smartSpace:isInconsistent    "Erroneous reading" ;
        smartSpace:tempHasTimestamp  "2020-01-20T09:51:55.005Z"^^xsd:dateTime .

smartSpace:tempReadings6
        a                            smartSpace:tempValue ;
        smartSpace:errorData         "Missing Value"^^xsd:string ;
        smartSpace:hasId             "Sensor 1"^^xsd:string ;
        smartSpace:hasSeason         "winter"^^xsd:string ;
        smartSpace:hasValue          "8888.88"^^xsd:float ;
        smartSpace:isInconsistent    "Erroneous reading" ;
        smartSpace:tempHasTimestamp  "2020-01-20T09:52:00.040Z"^^xsd:dateTime .

smartSpace:temp2Readings3
        a                            smartSpace:tempValue ;
        smartSpace:hasId             "Sensor 2"^^xsd:string ;
        smartSpace:hasSeason         "winter"^^xsd:string ;
        smartSpace:hasValue          "27.18"^^xsd:float ;
        smartSpace:isInconsistent    "Erroneous reading" ;
        smartSpace:tempHasTimestamp  "2020-01-20T09:51:45.004Z"^^xsd:dateTime .

Figure 2.5: Turtle Listing

the case of IoT streaming data where a large number of data will require to be pro-

cessed. Serialising each element of the sensor streaming data with an individual

timestamp as indicated in figure 2.6 is also one way of verifying its suitability

for IoT web-based applications. N-Triple is known for its high performance in

parsing common static data. The N-triple is known to have the potential to used

by webs services and clients systems that consume the data.

2.4.2 RDF Stream Processing Systems

The research in the field of semantic stream processing particularly, RDF Stream Pro-

cessing (RSP) systems have continued to evolve in two aspects: providing support for

semantic representation of temporal attribute of the data streams and developing an

approach to allow continuous semantic query during processing the data in motion.

Majority of the semantic stream processing system currently developed are based on the

native SPARQL query language and RDF data model. In principle, these systems extend
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<http://localhost:8080/smartSpace#humitidyReadings11> <http://www.w3.org/1999/02/22-rdf-
syntax-ns#type> <http://localhost:8080/smartSpace#humidityValue>.

<http://localhost:8080/smartSpace#humitidyReadings11> <http://localhost:8080/
smartSpace#hasHumidityReading> "69"^^<http://www.w3.org/2001/

XMLSchema#integer>.
<http://localhost:8080/smartSpace#humitidyReadings11> <http://localhost:8080/
smartSpace#humidityHasTimestamp> "2020-01-20T10:14:10.811Z"^^<http://

www.w3.org/2001/XMLSchema#dateTime>.
<http://localhost:8080/smartSpace#tempReadings9> <http://www.w3.org/1999/02/22-rdf-
syntax-ns#type> <http://localhost:8080/smartSpace#tempValue>.

<http://localhost:8080/smartSpace#tempReadings9> <http://localhost:8080/
smartSpace#hasValue> "17.48"^^<http://www.w3.org/2001/XMLSchema#float>.

<http://localhost:8080/smartSpace#tempReadings9> <http://localhost:8080/
smartSpace#tempHasTimestamp> "2020-01-20T10:14:00.824Z"^^<http://www.w3.org/

2001/ XMLSchema#dateTime>.
<http://localhost:8080/smartSpace#tempReadings9> <http://localhost:8080/

smartSpace#hasId> "Sensor 1"^^<http://www.w3.org/2001/XMLSchema#string>.
<http://localhost:8080/smartSpace#tempReadings9> <http://localhost:8080/

smartSpace#hasSeason> "winter"^^<http://www.w3.org/2001/XMLSchema#string>.

Figure 2.6: N-Triple Listing

SPARQL query with a streaming operator to achieve continuous query and RDF data

model with time annotations for proper semantic representation of data stream. The

differences in the semantics and syntax of various stream query languages necessitated

the introduction of a unified query model proposed by (Dell’Aglio et al., 2014). The

subsequent paragraphs consider the details of the semantic stream processing systems

from the perspectives of the RDF and SPARQL extensions.

Most works in the field of semantic stream representation perceive data streams as an

unbounded sequence of data with individually annotated timestamps. This descrip-

tion follows same from the field of DSMS. Apart from INSTANS (Rinne et al., 2012b)

that implicitly handles the time component of data streams within the schema, other

RSPs including Streaming SPARQL (Bolles et al., 2008), C-SPARQL (Barbieri et al., 2009),

CQELS (Le-Phuoc et al., 2011), C-ASP (Pham et al., 2019), RSP-QL (Dell’Aglio et al.,

2014) and SPARQLStr eam (Calbimonte et al., 2010) uses the RDF statement to represent

timestamp as single point associated to each RDF statement. An exception in the expli-

cit time representation is EP-SPARQL (Anicic et al., 2011) and Streaming SPARQL which

considers interval between timestamps to represent the time dimension and check the
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validity of each corresponding RDF statements.

In terms of achieving continuous query, many of the proposed RSP with SPARQL ex-

tension adapt the relational Continuous Query Language Model (CQL). The adaptation

of the CQL model involves the use of three categories of operators to process the RDF

streams. The first operator is the window operator that is used to transform the RDF

streams into a form that support mappings. This operator has been implemented a

way that supports time-based and triple-based sliding in windows in existing systems

such as C-SPARQL , CQELS , C-ASP, RSP-QL and SPARQLStr eam . Another operator

adapted from CQL is the relation-to-relation operator that is used for the representation

of SPARQL algebra. It allows the language extension to directly process the inputs and

outputs without necessarily redefining the operators. The third category is relation-to-

stream used in the mapping set transformation of previously produced class into RDF

stream.

The type of execution strategy currently in use by the existing RSP varies between sys-

tems. Periodic update of input window is common to RSP systems such as C-SPARQL,

Streaming SPARQL and SPARQLStr eam while other RSP systems like CQELS, INSTANS

and EP-SPARQL are mainly based on data-driven strategy. Systems based on window up-

date will always re-execute the existing query against the subsequent new data streams

window.

In general comparison, despite the effective implementation of the temporal operators,

Streaming SPARQL still lacks aggregation function and the requirement for multiple

stream query is currently not supported by the system. Both INSTANS and C-SPARQL

are able to address this problem. The C-SPARQL library is built to support concur-

rent query over multiple streaming data and supports most of the alternative formats

for RDF data serialisation format. However, the ability to perform reasoning over the

continuous data point is still lacking in this system despite its ability to fully support

temporal processing. Similarly, CQELS "white-box" approach for temporal processing
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is able to achieve some degree of scalability and query optimisation but the approach is

completed only on a fixed number of data streams. At higher abstraction level is the

category of event processing systems such as EP-SPARQL that is also based on SPARQL

extension. The time element used for the RDF processing is computed as the interval

of time between events.This makes is rather impossible to understand the specific

time-instant for each stream element.

Therefore, most of the RSP is still considered to be lacking in terms of providing reas-

oning functionality over RDF/OWL and streaming data at any level of application or

context. Furthermore, the application of the RSP has been seen to be implemented at

different systems’ granularity levels (Bamgboye et al., 2019; Jajaga et al., 2015). Some

systems apply the RSP at schema level while others implement them at event or data

levels depending on the focus of the application. In this case, the application context

can either be event-driven or data-driven applications. However, in the IoT domain

including the Smart Spaces, where many of the applications rely on sensor network

including streaming data, the RSP will be required at the data layer. In this research,

the popular C-SPARQL will be enhanced to support reasoning based on it support for

serialised RDF data formats and compatibility for rule-based reasoning.

2.4.3 Semantic Stream Reasoning

The Semantic Stream Reasoning is an emerging field that combines the approach used

for continuous querying over IoT data streams with reasoning usually with SPARQL

extension languages. The expressivity of the reasoning system refers to how to rule lan-

guages can represent various axioms and how those axioms are interpreted or processed

by the reasoner. The reasoning methods imply the various strategies or approaches

adopted by the reasoning system. The feature relating to soundness means the ability

of the reasoner to produce all possible inference or speed-up reasoning.

The reasoning process is realised through a reasoning engine or reasoners, which are
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described as software or tool that relies on rules to achieve reasoning tasks. Reasoners

have had a long history of application support for deriving new facts from ontological

models including knowledge graphs. The limitations of the current ontology-based

reasoners concerning the computational complexity, inference with raw data streams

and data validation of streaming data have been identified by (Aufaure et al., 2016;

Lehmann & Völker, 2014). They are able to resolve redundancy and inconsistency

among ontological concepts of TBoX (describing the specific domain class and proper-

ties) and static individual held within the ABox (describes the domain assertion). ABox

reasoning is a feature of reasoner that allows inferences to be drawn from a set of an

individual in a knowledge graph. Varieties of reasoners that currently exist can perform

reasoning at schema level while using the RDFS and OWL vocabularies including most

of the serialised RDF data formats.

Stream reasoning systems are considered effective only if they can consider the time

elements and the window intervals of the continuous infinite streams by adopting a

set of rules (Stuckenschmidt et al., 2010). The primary goal of performing reasoning

is usually to generate new set of knowledge from existing data or information made

available by the domain of interest during semantic inference. The new knowledge

or information is later applied to solve a specific problem or used to trigger an event

such as making a decision or reactive services. Unlike the statistical inference such

as machine learning that trains a model on historical data before applying the model

to process data, Semantic inference leverages the knowledge about data through data

interoperability before it can be used for processing. In this way, the semantic inference

technique will provide faster and efficient processing in a dynamic environment that

data or information often changes over time. Though statistical inference involving

machine learning is increasingly becoming popular, it requires more time to update

the model with the new changes to data produced within the dynamic environment

before it can be applied to solve the domain problems. Considering the differences

between these reasoning/inference types, the choice of reasoning strategy for run-time

IoT Streaming data and application should be determined by the ability to infer new
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knowledge without necessarily having to re-train the model in a time-critical reactive

domain. A semantic approach to sensor streams reasoning (Compton et al., 2009) and

validation (Calder et al., 2010) of anomalies in sensor data has earlier been suggested

for new knowledge discovery in sensor-driven applications. Both approaches do not

reflect the capabilities to support streaming data, as it does not consider the temporal

characteristics of the data.

This section explores the category of semantic rule-based reasoning developed for

semantic stream processing by adapting relevant features earlier defined for ontology

reasoning (Abburu, 2012), which include: expressivity, methods, soundness, support

for ABox reasoning, incremental classification and, Jena support. Jena support de-

scribes the reasoning engine that is compatible with the Jena API or/and Jena rule

language. The characteristics relating to incremental classification refers to the category

of reasoner that allows Knowledge graph or ontology to be updated by classification

that involves addition or removal of the newly produced assertion that results in the

new hierarchy.

In the remaining part of the section, semantic reasoning have been considered in two

separate categories that consist of the schema-level stream reasoners and Enhanced

C-SPARQL Stream reasoning.

2.4.3.1 Schema-Level Stream Reasoning

The majority of the early stream reasoning system is based on the RDFS and OWL2

ontology language. For example, TelegraphCQ (Chandrasekaran et al., 2003) was de-

veloped to achieve RDF entailment regime with sets of continuous entailment rules to

determine the subclass database events of the particular target event. The reasoning

engine uses a black-box approach and presents low expressivity when dealing with the

major RDFS properties (including subClassOf, subPropertyOf, range, and domain) and

the OWL relationship (that is, inverseOf ).

In an attempt to enhance the popular C-SPARQL RSP system with incremental reas-
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oning capability the authors (Barbieri et al., 2010b) developed rule-based reasoning

with forward chaining inference implemented with approach later described as IMaRS

by (Dell’Aglio & Della Valle, 2014) to perform the incremental maintenance of materi-

alisation for ontological entailment with RDF stream. The inference system uses the

Jena Generic Rule Language and processes the streaming data based on the order of

arrival. A set of the built-in function is used to add the expiration time to RDF statement

to compute the materialisation. The system requires a fixed time window with DRed

algorithm (Gruber et al., 1993) to manage the deletions of RDF triples that no longer

exist within the current window to achieve complete materialisation.

An approach to scalable reasoning over ontology streams through a method of syntactic

approximation was introduced in (Ren et al., 2010). The approach was introduced to

facilitate stream reasoning in particular for expressive ontology by a combination of

DRed algorithm with a syntactic approximation to achieve some degree of soundness,

expressivity and tractability through entailment of logical axioms and consequences.

The approach mainly considers providing incremental classification through the reas-

oning of concepts in the TBox and does not indicate support for external API such as

the Jena API.

Sparkwave (Komazec & Cerri, 2012) is another incremental approach to reasoning

based on the basic RETE algorithm (which adopts forward-chaining reasoning ) and

RDF/RDFS rules, developed for pattern detection of the schema describing RDF data

streams. It provides leverage for RDF schema to compute the entailment but not for

incremental classification of a new axiom or RDF stream. It performs the reasoning

operation on an individual element of ABox while using fixed RDF schema with a pre-

processing network called Epsilon that acts as the entry point into the RETE network.

The entailment rules for the RDF/RDFS does not have an impact on RDF stream at

run-time since it operates on fixed RDF schema. Though the primary aim of Sparkwave

is to complement existing RSP, expressivity was not part of the focus and support for

Jena API was not clearly stated. Besides, Sparkwave is considered to share similarity
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with IMaRS in terms of limitation to support temporal and arithmetic operators which,

also forms key aspects for run-time reasoning for streaming data.

Majority of the Schema-Level reasoning is adequate for performing reasoning on imple-

ment class/subclass subsumption on the element of TBox and inferred axiom or data

element of ABox but are still inadequate in performing run-time reasoning on stream-

ing data. Also, most reasoners developed with OWL-DL will require more computing

resources and computational time (Thomas et al., 2010). One of the recent approaches

of providing reasoning for streaming data currently involves the application of semantic

rules at a higher level of context or applications.

The existing approaches comprising of lightweight and complex reasoning over on-

tologies and its schema is not adequate when it comes to performing reasoning task

over raw IoT streaming data that has dynamic characteristics to change over time. It,

therefore, calls for an alternative approach of performing reasoning outside the schema

in a way that still supports semantic processing in a streaming environment. In this

way, the alternative approach will still rely on the prior knowledge about the stream

and/or ontology that provides the formal description of the stream including the related

concepts and the relationships. In the following section, a review of the current and

existing approaches that aim at providing reasoning support for data streams at a higher

level of abstraction are discussed in relation to the IoT streaming data.

2.4.3.2 Enhanced C-SPARQL Stream Reasoning

In an attempt to complement and enhance the existing RSP technologies with adequate

reasoning capabilities, many unified semantic reasoning approaches have continued to

evolve. Most of the approaches attempt to layer the RSP systems with more expressive

semantic rules that are sufficient to manage the data streams within the specific applic-

ation. The following paragraph describes these categories of systems.

Most of the approaches (D’Aniello et al., 2018; Hoeksema & Kotoulas, 2011; Jajaga
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& Ahmedi, 2017; Maarala et al., 2017) adopting the enhanced C-SPARQL reasoning

are tied to specific domains such as Smart Cities or social media analysis. Most of

these approaches rely on the use of C-SPARQL systems for accessibility, filtering or

aggregation of raw data or RDF data streams and, later apply semantic rules or analytic

algorithms to achieve some level of reasoning for inferring new knowledge about the

data. One of the first categories of this approach is the Inductive stream reasoning

system (Barbieri et al., 2010a) that combines C-SPARQL with statistical and machine

learning technique to infer new knowledge. The approach aims at improving accuracy

in the validation of a real-life scenario from social media analysis (Barbieri et al., 2009)

by combining both methods of inductive and deductive reasoning. C-SPARQL is used

to query RDF streams, while the deductive reasoning proposes an efficient technique to

achieve materialization of the ontology entailment. The expressivity and soundness of

the approach rely on the rule profile of OWL 2. Despite better performance in terms of

latency, the approach does not support incremental classification and the Jena API. S4

(Hoeksema & Kotoulas, 2011) is another distributed high-performance reasoning sys-

tem for RDF streams. In S4, C-SPARQL is enhanced with new operators to perform triple

filtering, join, selection, projection, and aggregation to allow splitting of processing

across many machines. The rule processing called RuleProcessingPE uses a key-value

on all property of triples to perform the RDFS reasoning task on instances. The objective

of S4 is centred around improving the performance throughput and scalability with no

consideration for expressivity, classification or support for external API.

Recently, the focus has shifted into providing high-level reasoning by layering C-SPARQL

systems with sets of rules. For example, (Jajaga & Ahmedi, 2017) is able to combine

SWRL(Horrocks et al., 2004) with C-SPARQL filtering to achieve the C-SWRL system. The

system was applied to water quality management (Jajaga et al., 2015) in an attempt to

deduce the change in the water property. Though the approach was able to produce new

knowledge, the system does not consider the classification or re-use of the knowledge

produced. (D’Aniello et al., 2018) proposes a layered semantic reasoning-based archi-

tecture that combines the C-SPARQL with TrOWL(Thomas et al., 2010) to process sensor
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streams generated within the context of Smart City in attempt to generate knowledge to

support operational decisions by the government. In their implementation, C-SPARQL

is applied for aggregation, filtering and searching of RDF streams. The reasoning layer is

based on the method of syntactic approximation (Ren et al., 2010) which implemented

in Java. The approach is aimed at reducing the reasoning complexity from 2NEXPTIME-

Complete to PTIME-Complete. The expressiveness of the approach is defined around

the ability to abstract high-level information from low-level data streams. Despite the

improvement of reasoning over open time-annotated datasets, the effectiveness of the

reasoning approach on run-time IoT streaming data is not guaranteed.

The expressivity and soundness of these approaches depend on the underlying rule

language that is being adopted. All the reasoning tasks are performed on IoT and

sensor data streams. There is no consideration for incremental classification by the ap-

proaches and only a few of them can support the Jena API for further or complementary

IoT stream processing.

2.4.4 Ontology

Ontology refers to the formal specification of concepts and for knowledge representa-

tion(Gruber, 1995). It also facilitates knowledge sharing as well as merging and reusing

of the represented knowledge. In general, Ontology models developed in OWL are

mainly provided and exchanged as RDF graph or documents. This language formalism

has made it easier for various semantic web groups (such as SSN incubator group, SWE,

OGC, etc.) to standardize and facilitate interoperability of the sensor network while

providing an approach to annotating sensor and IoT streams with a formal semantics

that makes it more accessible.

2.4.4.1 Sensor Ontology and Domain Modelling

Sensor ontology models are designed specifically as either context-based/domain-

specific models or as sensor network ontology models. The models usually forms the
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basis for ontology extension in specific application or domain. In most application/domain-

specific models (Gu et al., 2004; Psyllidis, 2015; Sandra Geisler, Sven Weber & Quix, 2011),

the aspects of modelling and integrating sensor nodes with heterogeneous domain

entities are the major focus. For example, in order to facilitate semantic context model-

ling, reasoning and knowledge sharing, the Context-based Ontology (Ali et al., 2017; Gu

et al., 2004; Korpipää & Mäntyjärvi, 2003) was developed. Similarly, a number of specific

domain-based ontology (Jajaga et al., 2015; Kim et al., 2008; Psyllidis, 2015; Sandra

Geisler, Sven Weber & Quix, 2011) has continued to emerge in order to achieve better

interaction among components in these domains. These Ontology models applied

to various context or application domains appears to be parallel in terms of structure

and fulfilling the requirements for interoperability, but the usage is often not domain-

agnostic. In addition, very few of the ontology model consider quality dimensions of

sensor stream as part of ontology model. Most Ontology models only focus on sensor

node as context observing entity or physical device.

There have been a number of ontological models developed in the past years by re-

searchers to represent sensors and sensor networks. Most of the sensor and sensor

network Ontologies (Compton et al., 2012; Haller et al., 2018; Holger Neuhaus, 2009;

Kim et al., 2008; Pease et al., 2002; Russomanno et al., 2005) are developed mainly

to model sensor measurements, facilitate data fusion and provide a description for

heterogeneous sensor nodes in a network environment. One of such ontology is used to

model sensor nodes in adaptive wireless sensor network describing it as a concept with

multiple components and relationships which is useful in modelling environmental

and operating conditions (Avancha et al., 2004).

In observatory management, The OntoSensor (Russomanno et al., 2005) ontology

is developed by using concepts from SUMO (Pease et al., 2002) to create a general know-

ledge base for the sensor in support for semantic query and inference. The ontology

lacks clarity in the description of sensor measurement data and observation. A layered

framework for the development of a universal sensor ontology model is developed by
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(Eid et al., 2007) for the description of hierarchical sensor knowledge model, observa-

tional properties of transducers and support for domain-specific ontology models. The

major focus of the ontology is on sensor data and measurements with little focus on the

description of sensor nodes, systems and, procedures.

In the domain of coastal sensing, CSIRO ontology model (Holger Neuhaus, 2009)

provides a description and metadata for sensors, procedures, groundings, process and

measurement data. Its metadata does not include the description of sensor platforms.

CESN ontology (Calder et al., 2010) describes physical sensors, properties, location and

deployment in Coastal Environmental Sensor Networks. Similar to CSIRO ontology, it

is inadequate in terms of describing the device/instrument and platform for sensor

networks. The concept description is also limited to ten sensors instances and six

individuals without consideration for the origin of the data. OOSTethys (Bermudez

et al., 2009) is a similar ontology that provides a description of the ocean observation

system. It is built with concepts that include the sensors, instrument, platforms and

observation to support real-time data streaming. The model is observation-centric

and perceives this as a system comprising of other systems or atomic processes. As

a domain-dependent ontology, it does not consider the accuracy in the estimation of

property values belonging to a feature of interest and fails to fully support querying.

As an attempt to encourage re-usability, the SSN Ontology (Compton et al., 2012) based

on OWL2 is developed as an initial attempt to provide a comprehensive and reusable

sensor ontology to provide a general description for sensors with sensors capabilities,

accuracy, observations, performance as well as the operating and survival ranges. SSN

ontology reused DOLCE-UltraLite1 in the upper ontology and fully supports semantic

query and data discovery in a sensor network environment. However, the system’s

perspective of the ontology does not include actuation procedures. The relatively recent

version is the Modular SSN Ontology (Haller et al., 2018) that extends the previous

SSN Ontology (Compton et al., 2012) to include the description of actuators, samplers

1http://www.loa.istc.cnr.it/ontologies/DUL.owl(Accessed 29/11/2020)
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and observations including the sensor concept within its vocabulary. Developed as a

lightweight Ontology, the core module contains SOSA (Sensor, Observation, Sampler,

and Actuator) vocabulary2 along with that of SSN. The Modular SSN Ontology was

developed to support a wide range of applications including data-driven ontology en-

gineering and Internet of Things applications.

In a related domain of IoT environment, the IoT-Lite ontology (Bermudez-Edo et al.,

2016) was proposed with a motivation to reduce processing time. Built as an extension

of the semantic sensor network (SSN) ontology, it provides a description for major IoT

concepts allowing interoperability and discovery of sensory data in heterogeneous IoT

platforms. The lightweight semantic of the ontology provides minimum concepts and

relationship descriptions that do not include an aspect of the sensor data quality and

support for evolution.

Reusing the existing ontology tremendously reduce cost(time/effort), resolves unne-

cessary ambiguous concept interpretations and, eliminate repetitions of properties

and notions. Therefore, adoption of the re-use process involves a number of activities

that includes Ontology search, assessment and selection. The search process was con-

ducted using a set of inclusion and exclusion criteria. The inclusion criteria consider

only models that consist of concepts describing sensors and measurement with other

related concepts. Exclusion criteria provide a means to reject ontology models that are

non-extensible and not in conformance to the Semantic Web standards. All relevant

ontology models identified through the search process are subjected to Ontology as-

sessment. Among the candidate Ontology models that were subjected to assessment

includes SmartOntoSensor (Ali et al., 2017), OntoSensor (Russomanno et al., 2005),

Sensor Node Ontology (Avancha et al., 2004), CSIRO (Holger Neuhaus, 2009),CESN

ontology (Calder et al., 2010), SSN/SOSA ontology (Haller et al., 2018), Time ontology

(Zhou & Fikes, 2002) and OOSTethys (Bermudez et al., 2009). The approach to Ontology

assessment of the selected models involves a thorough inspection of the models at the

2https://www.w3.org/ns/sosa/ (Accessed 29/11/2020)
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granularity levels of the objects and data properties to understands the suitability of the

model. The result of the assessment activity is compared with the selected criteria for

the target IoT and streaming data quality ontology during the Ontology Comparison

activity. The specific requirements for the target Ontology (SmartSUM) include light-

weight support, quality, re-usability, structure clarity and deployment cost. The most

suitable ontology models based on the specified requirements are the Time ontology

(Zhou & Fikes, 2002) for modelling temporal entity, and the SSN/SOSA ontology (Haller

et al., 2018) based on its lightweight support and explicit definition of actuation and

sampling procedures. The lightweight support (Poli et al., 2010) is described as one that

provides a simple formalization of concept that is sufficient to manage the task under

consideration. The selected ontology models are integrated into a target ontology and

subjected to Ontology re-engineering using the Web Ontology Language (OWL) and

protege 4.3.0(build 304) modelling tool. Despite the availability of various sensor and

related domain ontology models within the semantic web community, it is essential to

consider a more generic and lightweight ontology model that will be suitable for IoT

stream quality management and efficient stream processing. The lightweight feature

is expected to fully express the IoT domain and data quality concepts unambiguously.

Therefore, providing a more expressive and reusable model. Similarly, the efficient

stream processing feature must be able to support IoT streaming environment with an

incremental updates.

2.5 Semantic IoT Stream Validation Requirements

It is common for different scenarios of stream applications to have different require-

ments because of stream characteristics (such as input rate, volume, or bursts), resource

constraints, and the nature and complexity of rules. It is on this note that the essen-

tial requirements for a semantic-based validation system for IoT streaming data are

proposed. Many of the requirements identified by this work are based on the general

requirements earlier proposed by (Stonebraker et al., 2005) for stream Processing sys-

tems and (Margara et al., 2014) which detailed the requirements for stream reasoning
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systems. These requirements are considered in addition to inference support which

applies to semantic streams.

1. Time Consideration (R1)

The requirement describes one of the essential characteristics of IoT streaming

data as being known to be dynamic, which mean they can change over time. A

stream processing system will require putting this into consideration especially

when it is integrated as part of applications such that the applications consuming

the data can further process and responds in a timely manner. As an example,

web-based controlling application responsible for the control of smart home tem-

perature should be able to evaluate changes in sensor readings with timestamps,

produced from various sources to validate the true reading of the actual room

temperature in a timely manner. To achieve this, it means the streaming data

from the sensor must be annotated with the individual timestamps(2014) and

processed using a time-aware processing model that can define the relationships

among these data.

2. Data Integration(R2)

In IoT applications, it is necessary to allow data from different external sources

to be combined during information processing and knowledge extraction. For

instance, it is possible to combine data from various sensors including the stream-

ing data produced by same sensors to have detail knowledge of the environment.

There has been continued recommendations for possible ways of integrating the

sensor data from other sources(Gyrard, 2013; Psyllidis, 2015) to achieve inter-

operability. This justifies why the use of ontology modelling approach and RDF

serialisation methods for sensor streaming data can be considered as part of the

options in satisfying this requirement.

3. Data-Driven processing (R3)

Data-driven systems are normally constrained by data rather than the human

experience or intuition. Most applications relying on IoT streaming data are

required to be able to handle data processing and produce the result almost
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the same time as it is generated by IoT node or sensing device. In time-critical

applications like the health monitoring system for patients with heart related

disease, the system must be able to process the sensor data "on-the-fly" before

it becomes outdated. This means that results are produced just as the data are

received by the application. This type of applications or systems are also regarded

as active systems (Stonebraker et al., 2005), while its Passive counterpart are

dormant until they triggered by external entity before they can start processing.

As such, it ensures that the latency3 of such system is kept within minimum.

4. Semantic Stream Querying (R4)

Developing a realistic mechanism for querying sensor and other IoT streaming

data in IoT-based application provides an approach to retrieving and computing

data of interest in real-time. Semantic stream processing system should be able

to interrogate the streaming data over a processing window without resulting in

overhead for the system. In addition, adopting an efficient query mechanism

in a dynamic environment is a way to manage the memory consumption and

response time of streaming applications. This requirement is applicable to data

stream that is processed at the lower granularity level of the streaming application

to ensure continuous real time data retrieval, and avoid undue conflict with the

user view of the streaming application.

5. Inference Ability (R5)

Expressiveness is a key issue in semantic web applications as it determine the

inference capabilities of the used model. Most IoT-based reactive applications

should be able to support models that can handle streaming data in an efficient

manner as well as reasoning functionality. The essence of enhancing semantic

data model with reasoning system is to enable inference support to produce new

set of knowledge from raw sensor streaming data. The process of extracting know-

ledge can require operator that facilitate data computation and transformation.

3Latency means the time between the arrival of new sensor reading and the generation of output or
inference result
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Such situation can include aggregating the readings from multiple sensors to

compute the average reading.

6. Stream Quality Management (Missing data, Out-of-Range Data) (R6)

In real-time streaming application scenarios, data does not need stored before

they are processed. In such situations, it is not advisable to allow applications to

wait endlessly in order to identify erroneous data point within streaming windows

. Hence, such type of application must be able to contain mechanisms that are

driven by window-based strategy for denying access to erroneous or imperfect

data, subscribed by a data processing model until the session or processing

window is expired. It is therefore important to consider a basic infrastructure

that must make provision for management of imperfections relating to missing

and out-of-range data. The rule specified for stream processing requirement by

emphasized on strategy that allow built-in mechanism to guarantee a resilient

system against imperfect data streams from the real-world streaming data.

7. Historical Stream Management (R7)

The direct access to static IoT data previously produced by sensors, including

the schema with background knowledge can provide a better understanding of

the behaviour of a particular sensor. Combining such knowledge with the run-

time IoT streaming data will update the system with information on how it is

interacting with the environment at each streaming window. The application

of semantic IoT data model with an evolving feature can also improve the rate

at which streaming data with the associated timestamps is directly stored or

persisted as new individual and historical data on the background knowledge

graph following an update. This can be used in the prediction of future sensor

reading or behaviour. Therefore, the historical stream management can involve

any activity or process that realises stream querying, update or materialization of

previously produced data streams.

The requirements contained in the survey on stream reasoning (Margara et al.,

2014) also reflect similar requirements as those that have been identified above. The
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work defined the requirements to include: integration which refers to data integration;

efficiency which related to the data-driven processing and low latency in this work;

time management is similar to time consideration in our case; expressivity similar to

Inference ability; uncertainty management that relates to stream quality management

in the present context; historical data management corresponds to the historical sensor

stream processing; and big data Management which is directly tied to the data integra-

tion requirement in this work. The other requirements such as distribution and quality

of service specified by the literature are not within the scope of this research and it will

be considered as part of the future research.

On the other part, the requirements are motivated by the 8 rules defined for stream

processing by (Stonebraker et al., 2005). The first requirement Rule 1: "Keep data Mov-

ing" is associated with requirement (R3) in this section which considers window-based

processing and latency requirement. Rule 2: "query using SQL streams". This requires

that streaming data must be retrievable before the elapse time using a compatible query

language which is related to the requirement (R4). Rule 3: "Handle stream Imperfections"

in part is similar to requirement (R6), which explains the stream quality management.

Other specific rules such as Rule 5: "Integrate stored and streaming data " is closely

related to requirements (R2 and R7) in this section. Rule 8: "Process and Respond Instant-

aneously" which corresponds to requirement (R1) and requirement (R3) ensures that

streaming data are processed more quickly with reduced latency. The remaining rules

that include Rule 6: "Guarantee Data Safety", "Rule 7: Partition and Scale Application

Automatically" and "Rule 4: Generate Predictable Outcomes" are similar to requirement

related to distribution in (Margara et al., 2014), which are not considered to be within

the scope of this research.
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2.6 Analysing Requirements in RDF Stream Processing Sys-

tems

To provide an appropriate semantic stream validation system that supports the IoT

streaming data for the quality validation process, analysis of the existing semantic

stream processing systems are being conducted based on the requirement defined in

section 2.5. The summary of the analysis is shown in Table 2.2.

Apart from C-ASP that is based on Answer Set Programming system (Gebser et al.,

2013) , most of the semantic stream processing systems (Anicic et al., 2011; Barbieri

et al., 2009; Bolles et al., 2008; Calbimonte et al., 2010; Komazec & Cerri, 2012) extends

the native SPARQL query language, originally used for static RDF data processing. These

systems introduced new operators or grammar that can support the temporal charac-

teristics of semantic data streams. Among all the available semantic stream processing

systems, EP-SPARQL, Sparkwave, C-SPARQL and INSTANS supports multiple streams

query.

Time dimension (R1 ) is exhibited by all the systems but with little differences. C-

SPARQL, C-ASP, SPARQLST RE AM , and CQELS uses a single point timestamp whereas,

EP-SPARQL and IMaRS represents the time as an interval of timestamps. The only

exemption to these timestamp dimension is INSTANS that relies on implicit schema

definition.

As data integration (R2 ) remains the vital benefit of semantic web technology, all the

existing stream processing systems can achieve this requirement irrespective of the

semantic processing techniques adopted by each of the systems.

Majority of event-driven systems are known to be strictly bound by data, not all se-

mantic stream processing system is driven by data (R3 ). For example, C-SPARQL,
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SPARQLST RE AM , IMaRS and Streaming are controlled by model while EP-SPARQL, C-

ASP, INSTANS, Sparkwave and CQELS are event-based and data-driven systems.

Mechanisms for gaining access to data streams of interests and/or outputs from the real-

time computation of streaming data through semantic query (R4 ) has been exhibited

by the majority of the stream processing systems except in Sparkwave and IMarS. Both

systems are enhanced by external reasoning systems and are used to complement other

semantic stream processing systems. In other words, they are only used to support

other stream processing systems as they cannot perform a semantic query on their own.

The ability to produce new knowledge from underlying semantic data streams or facts

is facilitated through a process of semantic inference (R5 ), which can be vital to the ef-

fective application of the semantic processing. This process is what has been described

as semantic reasoning. Apart from EP-SPARQL, Sparkwave and IMaRS that has shown

support for inference with external reasoner, the remaining systems do not include the

feature as part of the stream processing approach. EP-SPARQL and Sparkwave are only

able to provide inference on a subset of the RDF schema, while IMaRS is only able to

provide inference for transitive property between RDF classes or nodes.

The quality requirement (R6 ) of streaming data is not considered as part of most of

the existing semantic processing systems for data streams. It was observed that only

INSTANS can capture a little aspect of the quality problems which has to do with the

inconsistent data schema. Hence, processing stream quality at the data layer is not

considered as part of the approach.

The integration and storage of previously processed IoT data streams with real-time gen-

erated streaming data is a demonstration of historical data management (R7 ). Previous

Semantic streams processing systems such as C-SPARQL, EP-SPARQL and CQELS can

combine the two types of data during processing as a way of fulfilling the requirement.

There is still pending need to consider the requirements as part of the future semantic
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streaming processing systems. Some aspects of the requirements may be sufficiently

captured during the pre-processing stage or semantic serialisation of IoT streaming

data.
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Figure 2.7: IBM Smart City Model

2.7 Smart City Model

In the past decade, a new revolution of city developments has been seen in most of

the developed/developing nations, mostly driven by the Smart City models. Various

models have been proposed by different researchers and organisations. These models

are used to describe the abstract frameworks for all the different assets and aspects of a

Smart City innovations (D’Aniello et al., 2018). Among all the models, IBM smart city

model (Kehoe et al., 2011) and Smart city Layered framework (Kumar, 2015) are the most

preferred models for data-driven decision. The models place control on technological

infrastructures to facilitate better smarter cities and thus, supports smaller fragments of

the smart city innovations including smart spaces as well as another related intelligent

environment.
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2.7.0.1 IBM Smart City Model

IBM smart city model proposed by (Kehoe et al., 2011) focuses on creating a smarter

public environment. The model as depicted in figure 2.7 presents a formal technology-

based infrastructure that is suitable for smarter city as well as providing support for city

Governance in long-term planning activities. Compared to other Smart City models,

IBM model is based on the concept of Decision Support Systems (DSS). The main ob-

jectives of the model on the Smart Cities vision are defined with two perspectives.

Firstly, it targets the quality of life of citizens and visitor of the Smart City with the

purpose of adequate management, safety, sustainability, and good governance while

incorporating people cultures and specific events. It also advocates for the need to

focus on citizens by providing information and accessibility to smart city services in a

convenient and usable manner. Consequently, the citizens and the government can

benefit tremendously.

Secondly, the objective targets business growth and development as a means of building

the economy of the city. In other words, digital innovation and commerce should form

the basis for building the Smart City. Similarly, the challenges of city transport should be

addressed by seeking to improve the cost of effectiveness and efficiency of the various

city’s transport methods.

2.7.0.2 Smart City Layered Model

The layered model (Kumar, 2015) is considered a building block of many layers involving

various aspects of technologies enhancing data generation and gathering, data aggrega-

tion and analysis, and capability for optimal response. The model places emphasis on

city operations as being data-driven and consists of five layers (see figure 2.8) essential

for the success of the Smart City deployment. The connectivity layers comprise of

various sensors/IoTs, Bluetooth or other connectivity infrastructure owned privately

or publicly, that facilitates or allows cities to capture data across systems and responds
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Application Layer

End-User Layer

Analytics Layer

Data Centre/Operation Layer

Connectivity Layer

Figure 2.8: Smart City Layered Model

in an efficient manner. Based on the vast amount of data expected to be generated,

Data centre/Operations Layer provides and manages both data storage and accessibility

across various departments and applications. The Analytics Layer enables cities to

exploits valuable insights from data collected from previous layers, thereby leveraging

such as predictive analytics used by Smart Cities for optimal allocation of resources.

Cities are able to implement various industry-specific and horizontal applications at

the Application layer. The layer allows seamless integration with various services from

entities, which can improve the overall Smart Cities efficiency. The end-user layer is

the last layer of the building block that encompasses all resident, citizens, visitors and

government of the cities. The layer captures data through smart devices including

sensors and eventually subscribes to the outcomes of the Smart Cities initiatives.

Based on the emphasis from the two model to ensure the integration of various smart

devices within the IoT ecosystem, effective use of these models can also promote the

realisation of intelligent or Smart Spaces. The two models share similarities to the

requirements that define the concepts of Smart Spaces, which is to support data-driven

operations and decision support activities.
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2.8 Conclusion

In this chapter, a survey of different but related quality problems associated with IoT

streaming data has been presented. The problems are transient and require a validation

approach (Kumar et al., 2006) that can identify and possibly eliminate them before

they are exploited by other systems or applications. There has been an established

indication that many of the statistical approaches lack completeness in modelling all

types of problems and integrating these data for inference purposes.

The application of semantic technologies in solving many of the IoT or sensor streaming

data quality issues is a step in the right direction as it has been successfully implemented

in processing incremental RDF data related to event processing systems (Rinne et al.,

2012a). In addition, serialised RDF data formats and RSP systems with the extension

of SPARQL adequately supports the implementation of semantic stream processing

systems. Most of the systems in this category are able to manage the temporal charac-

teristics of the IoT data streams with pattern matching techniques.

There have been many contributions in the area of data stream processing (Garofalakis

et al., 2016; Golab & Özsu, 2003; Hammad et al., 2004; Krämer & Seeger, 2004) in recent

years. Many of these approaches consider relational and XML-based data streams

that do not provide support for rich semantic elements (Bolles et al., 2008). Until now,

contributions in the area of semantic stream processing systems have considered how

IoT streaming data are applied at a higher level of context to support smart applica-

tions(D’Aniello et al., 2018; Jajaga & Ahmedi, 2017; Kamilaris et al., 2016; Maarala et al.,

2017) and generate a new set of knowledge in the application domains. Furthermore,

many of the RSP systems still require the support of formal specification of the data

streams to enable them to perform effective stream processing task. This requirement

is either done by using an existing ontology model for annotation of the data stream or

embed such as external library within the RSP system for a unified system. Most of the
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available RDF stream processing systems cannot still perform complex reasoning tasks

such as handling the common-sense reasoning, recursion or preferences. For example,

the attempt to provide reasoning functionality in C-SPARQL4 only succeeded in allow-

ing for RDFS entailment regime5. Hence, the ability of the stream processing systems

to handle incomplete and inconsistent data streams while extracting knowledge for

decision-making purposes in real-world applications is limited (Dell Aglio et al., 2017).

Ontology models so far developed for sensors and sensor networks can facilitate inter-

operability, and few of them are also able to represent sensor outputs using a generic

description. A non-domain dependent lightweight ontology model like the Modular

SSN (Haller et al., 2018) is able to provide a basis for the development of the ontology

model for semantic stream applications. However, the ontology cannot be directly

applied to the RDF stream processing systems due to variation in scope, lack of explicit

concepts for stream quality and inconsistency in concept usage. This will be considered

with the view of enhancing the Modular SSN ontology to support IoT Streaming data

Validation in the subsequent chapter.

Developing the semantic validation approach using the combination of the ontology

models, semantic reasoning and RDF stream processing technique is step in the right

direction in overcoming the shortcoming of RSP in the aspect of reasoning. This will

further provides a more effective use of ontology model on real time data rather than it

well-known application on static data. Finally, the field of semantic processing of IoT

streaming data is still at emerging stage and there are no standard benchmark for the

semantic IoT stream processing systems currently proposed by researchers. Most of the

current approaches only considered time-based evaluation without considerations for

effectiveness of the approach. The various metrics have been put into consideration

in this research and will be applied to a number of case studies for evaluation of the

proposed approach.

4http://streamreasoning.org/resources/c-sparql
5https://www.w3.org/TR/rdf-schema/
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Lightweight and Evolving Semantic

Model for IoT Domain and Streaming

Data

3.1 Contribution

The contribution of this chapter consists of a new lightweight and evolving semantic

model called SmartSUM ontology, which describes the related IoT resources including

the streaming data with the quality metadata. Being lightweight allows unambiguous

specification of concepts hierarchy and subsumption of relations between IoT nodes.

SmartSUM ontology provides a semantic foundation for the machine understanding of

the IoT stream data. SmartSUM ontology is built upon existing generic SSN/SOSA and

Time Ontology with IoT stream quality annotation extension and it is able to provide

the evolution features that support continuous updates and scalability of IoT resources

including the semantic streams. The details of the features and processes are explained

in this chapter.

3.2 Introduction

In an attempt to meet the second objective and to answer the first research question

(RQ1): How can the smart space domain and sensor network ontology support the in-
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cremental update of IoT streaming data caused by an addition of new data instance?

the Smart Sensor Measurement-driven Ontology (SmartSUM) has been developed.

SmartSUM differs from the counterpart sensor ontology models in that it is a light-

weight model that leveraged the most recent modular SSN/SOSA ontology to provide

descriptions for sensor streams quality dimensions and support popular RSP systems

with continuous reasoning capabilities. As such, it enhances the RSP systems to simplify

the process of stream quality validation in IoT streaming data at the lower level of con-

text before IoT streaming data are being exploited by reactive services. Unlike similar

sensor ontology models, SmartSUM is able to provide the common schema for the

main actors of IoT environment and smart spaces including the temporal characteristic

and quality dimensions of IoT data streams. The detail design and construction of

SmartSUM ontology is discussed in section 3.3.

The second unique feature of SmartSUM ontology is the support run-time incremental

updates resulting from addition of new data instances. The resulting ontology from

updates describes the evolving functionality of the ontology model. The evolving func-

tionality of the ontology is enhanced with Knowledge Graph (KG) embedding techniques

for the semantic space so as to allow for the classification and relationship extraction of

newly identified entities in the space. Adequate consideration for the time requirement

of a semantic matching process during the evolutionary process is part of the choice

considered for the KG embedding process. This is discussed in more detail in section

3.4.

3.3 Ontology Model Design

Providing metadata for heterogeneous sensors and the observations is no doubt one

way of ensuring effective interoperability and accessibility to measurement data within

Smart Spaces and sensor network environment. Achieving this task is facilitated by

the development of SmartSUM Ontology. The SmartSUM model consists of a formal

conceptualisation and specification of Smart Space components/resources and sensors
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including the types, taxonomy, relationships, and metadata for sensor characteristics,

performance, and data quality metrics. In addition, SmartSUM contains statements

describing associations between smart space resources and sensor concepts as well as

aspects of the operating principles, platforms, observations and measurements, and

other related semantic contents. The main justification of the SmartSUM Ontology are

given as follows:

1. Provide a semantic model for the description of essential features of Smart Spaces

including physical sensors with their measurements thereby, enhancing IoT-based

reactive applications to make effective data-driven decisions and actions;

2. Support IoT-based reactive applications with a semantic interface for discovery,

semantic processing, integrating, and annotating heterogeneous IoT streaming

data produced by sensors including the timestamps;

3. Support the process of semantic reasoning and inference for the realisation of

Ontology Evolution during the addition of new ontology instances and concepts.

In order to achieve the semantic model sufficient for the description of sensor and

the major smart space resources, the design considered an extension of a number of

existing generic and related ontological models as the base models. This allows for the

unambiguous description of IoT and smart space domain concepts with the relation-

ships. Specifically, the semantic model identified the essential smart space resources

(i.e. sensor, actuator, measurement data, controllers and hub) in the class hierarchy

description with the class relationships to related domain concepts.

Based on the time constraints and dynamic nature of data within the IoT environment

(Tu et al., 2020), the second contribution of the model is able to capture the temporal

characteristics of the measurement data by supporting discovery and run-time an-

notation of sensor streaming data using the serialised RDF data format. Therefore,

providing support for improved expressivity and interoperability among heterogeneous

IoT entities.
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SmartSUM Ontology

SSN Ontology

SOSA 
Ontology

O&M Schema

Quality Attributes

Domain 
Resources

includes

Time Ontology

extends

Figure 3.1: Abstract Ontology Reuse Framework

The third feature involving the ontology evolution supports the incremental storage

the streaming data as historical data on the semantic model as a sequence of RDF data

format rather than OWL format. The feature is based on the non-heuristic classification

method that involves RDF graph embedding with semantic matching to manage the

application of a change in the dynamic IoT environment.

Since the SmartSUM ontology will be required for the annotation IoT streaming data at

a lower level of granularity, its design pattern follows the scenario on "Ontological Re-

source Re-use" process as contained in the Neon Methodology (Suárez-Figueroa et al.,

2012) for Ontological development. The pattern involves activities including ontology

assessment, comparison, and selection in the ontology reuse phase. It is suitable for

the description of heterogeneous distributed objects in the real world. This is often

realized by shared and common theories defined on a certain domain. This will not only

help in human understanding but also helps the machine to communicate easily by

exchanging the semantics of the data or object instead of the syntax. This Ontological

re-use activities are later complemented with the Ontology re-engineering process to

achieve the novel evolving semantic model.
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3.3.1 SmartSUM Design Process

The design and construction of SmartSUM ontology have been achieved with the res-

use model which involve the use of existing and related ontological model as the upper

ontology for concepts description. Specifically, the design pattern is similar to scenario 4

of Neon methodology, which clearly explains the process of Re-use and Re-engineering

of Ontological concepts.

3.3.2 Ontology Reuse and Re-engineering for SmartSUM Construc-

tion

The combined SSN/SOSA with the Time ontology formed the basis for the Ontology

re-engineering and reuse process during the construction of SmartSUM. Figure 3.1

shows the abstract framework of the ontological resources that form part of the reuse

and re-engineering process. In this work, the ontology re-engineering process is used

to facilitate the process involved with the introduction of new features representing the

class concepts and properties to the base ontology model. During the Ontology re-use

process, all the related base ontological models are linked together through a method

of ontology alignment. The application of both ontology re-engineering and re-use

process therefore re-innovated and created the new semantic model called SmartSUM.

The resulting new Ontology model consists of six separate logical modules organised

into upper Ontology models and domain concepts. The upper Ontology consists the

Time Ontology (Zhou & Fikes, 2002), SSN ontology (Compton et al., 2012) and SOSA

Ontology (Janowicz et al., 2019), while the domain concepts are the specific domain re-

lated resources. This includes the details of IoT streaming data quality attributes, sensor

steams and measurement data specification formally adapted from O&M schema and

specific objects or resources in smart spaces.

The SmartSUM hierarchical class diagram in Figure 3.2 represents the taxonomy of
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concepts that describes the major concepts involved in the construction of SmartSUM

ontology. The ontology is mainly developed from concepts that are specific to IoT

streaming data and smart environment/spaces. The hierarchical arrangement of the

class or concepts is determined by the relationship that exists between them, which

allow a concept to be either a superclass or subclass. The major concepts from the

upper ontological model are used directly and extended where applicable to avoid

unnecessary ambiguity among concepts and to achieve a reusable lightweight model.

In addition, concepts with the same semantics from the reused upper ontologies are

declared as equivalent (e.g. SSN : Out put ≡ SOS A : Resul t ). New domain-related

concepts not found within the upper ontology models are explicitly created as either a

superclass or subclass in the concept hierarchy.

SmartSUM Ontology currently contains a total of 144 new concepts with 59 object

properties and 42 data properties. Each concept is unique and is defined according

to the specific requirement of the semantic validation approach and the domain of

application. A snippet of the object properties and data properties with domain con-

cepts are shown in Figure 3.3. The namespace adopted by SmartSUM ontology model

is known as SMARTSPACE. For instance, to re-engineer and reuse the upper ontology

for the ontology construction, SmartSUM extends the SOSA ontology by organising the

concept as SM ART SPAC E : Hub ⊆ SOS A : Pl at f or m. This means SMARTSPACE:Hub

is a kind of Platform for hosting other sensors, actuators, controllers and other smart

space systems. The SMARTSPACE:DoorActuator, SMARTSPACE:VoiceRecognition and

SMARTSPACE:Controller are all subclass of SSN : Sy stem to enable proper identifica-

tion of what classifies as system and differentiate from other concepts. Furthermore,

the SOSA:Sensor enables the definition of any object that can respond to stimulus. A

sensor detects inputs and produces certain outputs. Therefore, both SMARTSPACE:

PhysicalSensor and SMARTSPACE:VirtualSensor are a subclass of SOSA:Sensor in the

concept taxonomy. The SMARTSPACE:PhysicalSensor represents the hardware-based

sensors (such as temperature sensor, camera, pressure sensor, etc.) while SMARTSPACE:

VirtualSensor concept is for non hardware-based or software-based sensor (such as
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crowd, feelings) captured within the space. The sensor hierarchy can be further ex-

tended to allow more detail specification of sensor type in a domain of application.

As an example, SOSA: FeatureOfInterest is used as a superclass for concepts such as

SM ART SPAC E : Temper atur e,SM ART SPAC E : CO2,SM ART SPAC E : NO2. The

SM ART SPAC E : Sensor Readi ng ⊆ SOS A : Obser vabl ePr oper t y is a concept that

describes various sensor readings from various properties such as temperature, pres-

sure, humidity, Benzene, etc. Each of the readings is associated with SM ART SPAC E :

T i mest amp ⊆ T I ME : Tempor alEnti t y . Likewise the SMARTSPACE:ResultTime is

a subclass of TIME:TemporalEntity and it represents the time that the result of the

IoT streaming data validation process is completed. Both SMARTSPACE:Disturbance

and SMARTSPACE: Season is subclasses of SSN:Stimulus as they model a set of events

that can trigger the sensor readings and influence the observable properties within

the space. Another major class concept that was introduced to the ontology model is

SMARTSPACE: QualityAttribute that describes the major quality dimensions attributed

to IoT streaming data.

Finally, the use of class axioms provides means of binding classes to other axioms in

order to form Object or individual instance in a semantic and non-conflicting manner.

For instance, a disjoint axiom is declared on classes that belong to the same hierarchy

to restrict separate individuals’ classification such that SMARTSPACE:VirtualSensor and

SMARTSPACE:PhysicalSensor are disjointed to ensure that an individual instance can

only belong to a maximum of one Class at a time and not more.

Comparing SmartSUM ontology with the base ontology models involved in the re-

use process, it is established that none of the base ontology models considered data

uncertainty and data quality dimensions as part of the concept description. For ex-

ample, SSN and SOSA ontology only identify the output of observation from a particular

measurement as ssn:Result without a specification for the quality attributes of the result.

SmartSUM ontology does not only specify the output of measurements but also differ-

ent the types of results that can be produced by sensors while including the various data
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quality dimensions. Similarly, the SSN ontology have integrated the Time ontology as

part of the modular SSN/SOSA ontology. The current re-use of the Time ontology only

specify the generic time instant of the measurement. In the SmartSUM ontology model,

the Time ontology has been updated to include the season that a particular result or

measurement is recorded.

3.4 Evolving functionality of Domain Sensor Streaming

Data Ontology

Domain Ontology construction often involves manual specification of concepts and

properties resulting in huge taxonomy of classes. It is ideal to consider that this tax-

onomy of classes are subject to a process of evolution especially in a very dynamic

environment such as smart spaces (e.g. smart home) where IoT sensors or resources

can join or leave the environment at regular interval. The evolution process can happen

through the application of change involving addition or removal of specific resource/IoT

device from the environment. The manual method (involving experts) of updating the

base ontology to reflect the new changes has been the only reasonable approach. How-

ever, this method may become very expensive and complex especially with a large

knowledge graph comprising various classes and properties.

This section proposes an automatic approach for annotating and classifying IoT re-

source new to smart space environment at the point of device profile registration. The

approach provides meta-data for IoT resources including the streaming data, which

will be complemented by non-heuristic classification and with support of graph em-

bedding process. The technique of non-heuristic classification has been investigated

in semantic web services (Corella & Castells, 2006). The non-heuristic classification is

able to perform the assignment of specific IoT resource or device that recently joined

the smart environment, to the taxonomy of the domain ontology. The IoT resource

classification with a non-heuristic approach is achieved with the support of one or more
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base ontological models within the ontology registry or Knowledge base.

3.4.1 Significance of SmartSUM Ontology Evolution

In the past few decades, considerable efforts have been put into the development of

various ontology models to describe and support various domains for sensor applica-

tions. Most of these ontology models can encapsulate the domain knowledge within

its structure and yet fails to evolve with it rapidly. Nevertheless, it is evident that the

domain knowledge keeps evolving continuously in an open dynamic environment

(Fensel, 2001). One of such dynamic environment is the open pervasive sensing envir-

onment like the smart spaces. In smart spaces, the evolution from ontology change

can be caused by the Environment, users which in this case can either be the ontology

engineers or system applications (Stojanovic, 2004), and IoT Resource Classification.

1. Environment : This confirms the environment of the system or smart space can

change thereby altering the initial ontology conceptualisations which the system

was built. For instance, an ontology may have been built to support a Smart

home environment, trying to use the same to support similar processes in a smart

manufacturing environment will require certain change process.

2. Users : The software or application requirement of a system may require certain

changes once it has been deployed. As an example, adding a new type of sensor

to support the task of IoT-based reactive application will lead to new system

requirements.

3. IoT Resource Classification : Resource classification is the key strategy for ontology

construction. IoT and smart object classification must always be accompanied

with detail specifications of the sensor streams to enable the semantic under-

standing of the space whenever the data change.

An ontology is usually developed using an iterative method for it to be useful by ap-

plications. Once it has been deployed for use, it is normal for its underlying knowledge

to change over time. For instance, the use of an ontology to process sensor information
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and measurements in critical systems or reactive services (e.g. fraud detection, fire

and safety, etc.) often comes with the need for further or continuous updates to the

knowledge base to reflect new findings or support the recent changes to related applica-

tions. The cost of developing a new ontology or modify the existing one to reflect the

changes using the traditional methods is usually very expensive in terms of time and

efforts by the ontology engineers. This is because the ontology engineer cannot track

and understand all the effects of changes throughout the ontology. The evolving feature

of SmartSUM therefore facilitate ontology evolution process in order to accommodate

all the changes and maintain consistency of classes and relations.

3.4.2 RDF Graph Embedding with Semantic Matching Model for On-

tology Evolution

Process embedding was first proposed for sophisticated real-time control systems and

reactive systems that involve graph structures (Kaelbling et al., 1987). The SmartSUM

ontology can alternatively be implemented as a Knowledge Graph (KG) while being

processed as RDF triple statements, which as a result provides the semantic descriptions

of the IoT objects, sensors and measurements with timestamps. The Knowledge graph

is embedded to support the automatic classification and relationship extraction to

describe the IoT domain semantic model. One of the major downstream application of

Knowledge graph applications is considered in terms of the embedding process during

entity resolution (Wang et al., 2017). The use of KG embedding models provides an

automatic method for transforming data into an existing feature that is based on the

underlying knowledge and principles. Here, the proposed concept of KG embedding

is used to enhance the scalability of the SmartSUM ontology in terms of its evolving

characteristics and related reactive IoT applications. In this regards, the process of

knowledge graph embedding is designed to enhance the automatic addition of new IoT

entity and streaming data into the base ontology.

The techniques for Knowledge Graph embedding is categorised into Translational
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Distance Models (TDM) and Semantic Matching Models (SMM). A reasonable approach

to embed the RDF graph with IoT vocabulary into a dynamic space will require the

adoption of the techniques for Semantic Matching models. It will allow the matching

and automatic classification of new IoT concept or resource for proper integration with

the base RDF Graph (SmartSUM Ontology). Unlike the Translational Distance Model,

Semantic Matching model can facilitate the process of ontology evolution by adopt-

ing the semantic-based scoring functions to determine the similarity of IoT resources

and sensor streaming data. The technique is also able to compute the plausibility of

RDF statements or facts through the latent semantics matching of the statements(or

entities) and the relationships contained in the RDF graph. A fact is often described

as triple F+= ( s,r,o) with the relationship. The Semantic Matching model adopts a

special class of model called ANALOGY (Liu et al., 2017) to achieve this task. ANALOGY

is a bilinear model that extends RESCAL (Nickel et al., 2011), which determines the

Latent Semantics by associating each entity with a vector. ANALOGY model analo-

gical relations r and concepts s, o such as "TemperatureReading-is-a-SSN:Output" as

"PressureReading-is-a-SOSA:Result", by using a bilinear scoring function as follows:

fr (s,o) = sT Mr o

where s,o ∈Rd are the vector embedding for entities and Mr ∈Rd×d is the linear map

associated with relation. To further model the analogical relations, it is necessary to

determine the normality and the cummutativity of the linear map of the relation as

follows:

Nor mal i t y : Mr Mr
T = Mr

T Mr ,∀r ∈R

Commut ati vi t y : Mr Mr ′ = Mr ′Mr ,∀r,r ′ ∈R

A multi-dimensional property of linear maps of two relations is usually considered as

a directed path with similar Subject nodes and object nodes that forms a "Compositional

Equivalence". These equivalent compositions of the linear paths are described as

the Commutativity Property of the linear maps, which is a necessary requirement for

defining the analogical structure for the evolving model.
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3.4.3 Consistency Model for ontology Evolution

The use of semantic reasoner is an approach to maintaining consistency in Ontology

models. The Pellet reasoner is considered as an appropriate choice to manage consist-

ency of newly added or defined ontological concepts or resources. The choice is due to

some reasons that include the fact that Pellet supports incremental classification (addi-

tion and removal of concepts) and ABox reasoning with high expressivity. Compared

to other ontology reasoners, the pellet is available as open-source, compatible with all

platforms, provide native rule support and work well with both OWL and Jena APIs. It

supports Java as an implementation language and can significantly improve reasoning

with its soundness and completeness.

Furthermore, the consistency model is currently defined as IoT streaming data per-

sistence during the ontology evolution process. The ontology evolution based on IoT

streaming data results from a frequent update of the persisted data or addition of new

data instance. Here, IoT streaming data is described as RDF triple (containing the

readings and its semantics) with a timestamp. The goal of the evolving property of

SmartSUM ontology is to ensure that the application of changes must result in the

ontology conformity to consistency without any loss of data.

Definition 4.1: A single stream STr within a particular time window Tw is consistent

iff it maintains specified constraints for each individual time window Tw within each

timestamp. Since the streams consistency for a particular ontology is defined, the set

constraints will then depends on the underlying semantic rules. In the remaining part

of this section, It is worth noting that most of the definition of concepts provided in this

section is similar to (Stojanovic, 2004). Then, the stream consistency model M(STr ) is

defined as:

MSTr =CRul es ∪Sconstr ai nt s ∪Uconstr ai nt s

Where CRul es are the consistency rules of the model, Sconstr ai nt s are the soft-constraints

and the Uconstr ai nt s are the user-defined constraints. These constraints are defined in

relation to sensor streams. The same situation holds for the consistency of ontology
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concepts.

The evolving feature of SmartSUM ontology is perceived as elementary changes that rep-

resent simple, fine-grained changes caused by frequent automatic update performed

on the ontology instance. The propagation of this change is closely monitored to

maintain and preserve the consistency of the ontology throughout the process. The

meta-change transformation of the ontology is best described as AddConcept or AddIn-

stanceOf depending on the complexity of the change (higher or lower). For example,

each concept representing a property or phenomena is automatically populated with

its instance without conflict. Suppose a single Smart space ontology subject to changes

is represented as SpaceOnt:

Definition 4.2: The change ∆ between ontologies is a direct mapping between

SpaceOnt1 (initial ontology) and SpaceOnt2 (resulting ontology) such that

SpaceOnt2 =∆SpaceOnt1

It is important to note that in the definition SpaceOnt2 is the changed ontology. This

change is tracked along with the individual sensor reading. A change is additive when

the entities (i.e. concepts or instance) of the resulting ontology are added without

altering the existing one. In the present work, data instance can be added to the existing

ontology while a new set of sensor reading is being produced. Likewise, new concepts

can be added automatically whenever a new sensor node is detected in the space.

3.5 Conclusion

In general, semantic models are not meant to be used as a main or overall solution to a

problem. They only usually form part of a target solution, which are often expected to

be transparent to the end-user applications. Sometimes used as semantic annotation

models, it should be offered with effective approaches, API and tools to process the

semantics during the extraction of actionable information from raw IoT streaming data.
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The present-day non-semantic stream processing systems including the DSMS and

CEPs enhances processing of data and event-driven applications without the use of

ontology or knowledge graph models which is required to define common metadata

for streaming data. Hence, they are unable to perform the reasoning task on sensor

streaming data. The strength of the semantic modelling provides a solid foundation for

the present study to provide more structured metadata for sensors and IoT streaming

data including domain concepts for easy integration and interoperability of various het-

erogeneous streaming data and resources. This chapter provides a new semantic model

for the Smart space and IoT domain to support the description of domain concept

including the IoT/Sensor streaming data. The SmartSUM Ontology can be further

adapted and re-used in the related domain of application.

The Semantic Sensor Network Ontology is known to be the most widely adopted upper

ontology for many sensor applications but its potential to handle the evolving feature

that supports sensor streaming data is not yet evident. Furthermore, efforts have been

committed to the semantic modelling and reasoning for IoT data streams within various

smart cities projects (D’Aniello et al., 2018; Gu et al., 2004; Gyrard & Serrano, 2016; Jajaga

& Ahmedi, 2017). However, what is lacking is a generic unified framework that integrates

the semantic model with deductive with temporal capabilities to facilitates the run-time

quality validation of IoT streaming data. Besides, the method of IoT Streaming data

validation is still open for further research and remains unexplored.

The following chapter provides an evaluation method for the SmartSUM ontology

through the application-based evaluation approach (Wang et al., 2014), where SmartSUM

will integrate with the validation framework that largely influences outputs of the se-

mantic validation process. Details of the proposed unified semantic validation frame-

work for IoT streaming data will be presented in the next chapter.
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Semantic Validation Approach and

Unified Framework- SISDaV

4.1 Contribution

The contributions of this chapter include; specification of requirements for the Se-

mantic validation of IoT streaming data quality; the development of a unified semantic

approach with its supporting framework for IoT streaming data quality validation. In

an attempt to achieve the validation requirements, the other key contributions include;

the Semantic time-aware forward inference rules; the RDF streaming data selection;

and the continuous semantic reasoning.

4.2 Introduction

The previous chapter provides the semantic modelling and description for IoT stream-

ing data and smart spaces with the use of web ontology language. While the model

provides a generic method for IoT streaming data annotation, it is not yet sufficient for

complete IoT streaming data validation. In an attempt to satisfy the third and fourth ob-

jectives and, in view of answering the research questions (RQ2. and RQ3.), a Semantic

IoT Streaming Data Validation (SISDaV ) approach and its resultant framework is de-

veloped. The approach adopts methods of semantic modelling and reasoning to achieve

the quality validation process against plausibility, inconsistency and incompleteness
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in IoT streaming data. The semantic modelling aspect of the approach is based on

SmartSUM model developed in the previous chapter. Section 4.3 provides the details of

the semantic IoT streaming data validation approach while the approach integration

resulting into the generic framework is presented in section 4.4. section 4.5 presents

the chapter conclusion.

4.3 Semantic IoT Streaming Data Validation Approach

As semantic modelling of the IoT data streams is often realised with the use of the RDF

data model in conjunction with other semantic processing systems, most semantic

stream processing systems based on RDF stream processing are still not fully explored

(Zhang et al., 2012) in the aspect of reasoning on RDF streams. Also, the quality of the

IoT streaming data during context reasoning is still subject to question especially in

terms of inconsistent, plausibility or missing sensor and related IoT readings.

This section describes the major features of the semantic approach for validating the

IoT streaming data based on the requirements specified in section 2.5. The framework

(SISDaV) based on semantic approach is applied to the processing of the raw IoT

streaming data to enable the accomplishment of the full quality validation process

of IoT streaming data. Besides, it provides run-time data representation, integration,

and querying over large IoT streaming data. Instead of directly applying one of the

existing ontology/RDFS reasoners, the framework enhanced the Jena rule including

the reasoning subsystem with some temporal characteristics to support IoT streaming

data processing with a rule-based approach. The distinguishing design decisions and

features of SISDaV are described in detail in the subsequent sub-sections.

4.3.1 Data Transformation

To ensure proper interoperability and integration of the IoT streaming data, it is import-

ant to consider the adoption of a unifying model such as the one for data representation

that will facilitate these objectives. In this way, it will be possible to query and reason

across the semantic streaming data produced by the various heterogeneous IoT nodes.
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The RSP systems described in chapter three uses the RDF data model for data streams

processing. They define RDF stream as an individual ordered sequence of RDF triples

with an associated time element.

The raw IoT streaming data (usually infinite sequence of data) represented as d str

can be perceived as physical streaming data (also called internal streaming data) having

a validity modelled as a time interval. This is meant to be transformed into an equivalent

semantic or logical streaming data for proper quality validation to be possible. The

validity associated with physical streaming data refers to the application time and not

the system time. It is based on the fact that the modelling of time element from raw

IoT streaming data will be based on a specific application. The time element of raw

IoT streaming data is considered expired, once it has no direct impact on subsequent

processing result. The pre-processing approach of IoT streaming data borrows some

aspects of the techniques used for continuous data streams queries (Krämer & Seeger,

2004), while adapting such to suit the semantic approach.

Let T be defined as discrete pair of time instant and order total, such that T = (T,

≤ ) (Bettini et al., 1998). Let

IT i me = {[tst ar t , tend ) ∈T×T|tst ar t < tend

be set of the partially closed time intervals.

Definition 5.1: A set of pair

SPhy si cal = (K,≤t )

is considered a physical IoT streaming data if :

• K represents an infinite sequence of IoT streaming data with its associated

timestamps within a time interval:

[tst ar t , tend ) ∈ I

• Each IoT streaming data is associated with a specific streaming window
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• ≤t is the order relation for whichK usually ordered by timestamps.

Definition 5.2: SLog i cal is defined as a semantic streaming data containing a triple

(s, p,o) ∈ L such that L ∈K G and, a point in time t ∈T holding the following conditions:

SLog i cal : ∀(L, t ) ∈ SLog i cal ∗Ø(L1, t 1) ∈ Sl og i cal ∈ L= L1 ∧ t = t 1

where K G is the domain Knowledge graph modelled as RDF graph. The transformation

of raw IoT streaming data (also known as physical streaming data) into semantic stream-

ing data follows the assumption that IoT nodes comprise of sensors and applications

that produces streaming data with associated timestamps. It is generally believed that

IoT streaming data are ordered by the corresponding timestamps. If IoT streaming data

arrives at a stream quality validation system without a timestamp, the validation system

can append the streaming data with the timestamp at their arrival using the internal

system clock.

At the initial processing stage, the start timestamp is considered as the start of the

physical stream with the corresponding end timestamp as ∞, based on the assumption

that each d str will remain valid throughout. In that regard, each d str is directly mapped

to (d str [tst ar t ,∞)) in SPhy si cal , where tst ar t represents the timestamp associated with

d str . The implication is that the Order of d str is well preserved in SPhy si cal . Therefore,

the structure of SPhy si cal is able to extends d str with additional two timestamps that

represents the start and end timestamps respectively.

In order to transform from Physical to Semantic streaming data, Let SPhy si cal = (K,≤t ) ∈
SPhy si cal be Physical streaming data. A transformation ∂ : ℜ(SPhy si cal × I) −→ SLog i cal

holds for a physical streaming data from SPhy si cal to its semantic SLog i cal equivalence

as follows:

∂(K) = {(l , t , w) ∈ L×T ×W |w = |{(l , [tst ar t , tend )) ∈K|t ∈ [tst ar t , tend )}|}

.

All individual IoT streaming data (d str , [tst ar t , tend ) ∈K in form of physical streaming
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data are converted into triple (s,p.o) patterns by establishing the relationships with

other IoT components including related streaming data, using the underlying domain

ontology. The interval time requires to be split into point of time (time instant) at lowest

time granularity. This will provide an idea of all the exact time instants that the IoT

streaming data is valid. Since each IoT streaming data or physical streaming data is

produced on a window basis, it is ideal to consider the window size w as part of the

transformation process. The transformation of the raw IoT streaming data into semantic

or logical representation provides a foundation for semantic serialisation process.

The serialised formats of semantic IoT streaming data (as discussed in section 2.4.1) is

accessible to the framework to achieve a complete data pre-processing requirement and

a unified data representation. Subjecting the raw IoT streaming data to these serialisa-

tion options of the RDF data will allow the framework to carefully evaluate and suggest

the best alternative for semantic modelling or representation of the IoT streaming data.

The semantic serialised format of IoT streaming data can be easily taken as input

during query processing. In this regard, the selection and ordering of the semantic are

more achievable. The semantic pre-processing approach to raw IoT streaming data

that is currently adopted by the framework is Data-driven and therefore satisfies the

requirement R3 for semantic stream validation system.

4.3.2 Multiple Streaming Data Selection

Based on the characteristics of streaming data, it is practically impossible to store

raw IoT streaming data entirely before processing them. One may be able to register

a stream query that can process serialised IoT streaming data as they are produced.

Among all the various semantic stream processing systems, the C-SPARQL grammar

with the corresponding syntax is currently adopted for enhancement by the semantic

validation approach. This is due to the availability of its test libraries, support for Jena

API during pattern matching, and the support for multiple stream processing. Other
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types of RSP systems are either closed source or are not capable of supporting serialised

RDF data. Also, based on the requirement for the semantic process to support data

integration and semantic inference from the combination of heterogenous and related

IoT streaming data, C-SPARQL suggests being the best candidate for the actualisation

of the stream validation approach. The approach has used the syntax of C-SPARQL in

figure 4.1 to achieve selection and ordering of semantic IoT streaming data available as

serialised RDF streams at run-time through a continuous semantic query.

C-SPARQL has shown to be promising for the approach (SISDaV) as it presents an

FromStrClause  := 'From' [NAMED] 'STREAM' StreamIRI
         '[ RANGE  Window ]'

Window      :=  LogicalWindow 
LogicalWindow  :=  IntNumber TimeUnit WindowOverlap
TimeUnit       :=  'ms'|| 's'|| 'm'
WindowOverlap  :=  'STEP' IntNumber TimeUnit
ORDER      :=  'ASC' || 'DESC' [ ?variable ]

Figure 4.1: Syntax for IoT streaming Data Selection and Ordering

execution framework built on top of existing stream management systems and triple

stores. The inclusion of the triple store provides an alternative for IoT stream frame-

work to manage memory and disk utilisation during processing. This is because the

triple store uses the dictionary encoding method to realise this task. SISDaV adopts

the technique to reduce the semantic streams to make the stream fit into the memory

during the semantic processing. It is however important to note that in the case of the

IoT streaming data, data input done at a high rate may result in performance issues.

Therefore, the remedy is to map RDF streams represented as binary digits to an identi-

fier that is represented as a 64-bit integer. In principle, the first bit tells if RDF stream is

encoded or not while the next five bits are used for the data type such as float or integer,

etc. The remaining bits are used to represents that actual stream value. In cases where
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the RDF stream cannot be represented as bits, it will have to be stored in the dictionary

while the identifier is stored as the remaining sixty-three bits.

Furthermore, the framework uses a window-based strategy to access IoT streaming

data with well defined IRI. In practice, the IRI represents the IP address and port that

is used in gaining access to the streaming data. A window contains the latest sets of

data streams from continuous streams that are to be considered in part by each query

execution. The other reasons why C-SPARQL is considered suitable for the approach

is due to its capability to perform nested aggregations and, supports for loading the

bindings of the static part of the base SmartSUM ontology into the relations so that

continuous queries over IoT streaming data are being executed against these relations.

It also supports the closed world and time-aware reasoning with semantic rules over

streaming data, without affecting any underlying domain knowledge or ontology. The

Semantic Multiple Stream Processing addresses the requirements for Time consider-

ation (R1), Data Integration (R2), Data-Driven Processing (R3) and Semantic Stream

Querying (R4) .

4.3.3 Semantic Time-Aware Stream Validation Rules (SenTAR)

The use of data quality rules in defining methodologies for processing and detecting an-

omalies in data is an approach considered in ensuring high data quality (Li et al., 2011).

Validity rules have been identified to govern quality issues related to data values, which

specifically targets quality dimensions such as incompleteness, ambiguity, outdated

and inconsistent data values (Adelman et al., 2005).

The validation rules used by SISDaV for the IoT streaming data quality validation

borrows from the general concepts of interpolation and semantic integration. This

facilitates the process to achieve semantic inference on streaming data produced by

IoT nodes. These two approaches allow to performs stream validation for quality is-

sues relating to IoT stream incompleteness, plausibility and inconsistencies including
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structural differences in IoT streaming data. The rule specification for the semantic

validation is based on heuristics and constructed from the established relationships

among the set of variables or specific parameters present in the domain of application.

This approach to rule specification provides inference based on the combination with

corresponding values of external related data or events within the streaming space. For

example, a validation rule can combine the streaming data from heterogeneous but

related sensors including the status of actuators in a smart space to provide inference

or validate IoT streaming data while also considering the time element of the streaming

data.

Generally, rules derived from sets of assertions or axioms are usually based on es-

tablished known facts or knowledge from domain experts defined from production

logic such as Jena rule. Jena basic rule syntax is currently used for the implementation

of both RDFS and OWL reasoners combined with individual native rules. These rules

are developed for schema and static data within the knowledge graph model. A sensor-

based rule for data processing in IoT applications can be developed using the Jena rule

syntax. In the SISDaV a[[roach], the Jena rule language 1 is preferred as a declarative

language to express the rules and evaluates matching against the semantic IoT stream-

ing data. The reason is that the rule language supports the semantic web standards

due to compatibility with OWL and RDF. Besides, its corresponding subsystems are

based on Java, which is openly available thereby making it more adaptable to wide

areas of applications. In the current SISDaV approach, instead of executing the rules

against static ABox (schema for data individual within ontology model) as can be seen

in traditional semantic web ontology reasoners, the continuous rules will be fired or

evaluated against the run-time IoT streaming data.

It is a fact that IoT streaming data are usually boundless and cannot be stored be-

fore rules can be evaluated against them. An approach adopted by the SISDaV approach

to address this challenge is by enhancing the Jena rule syntax to extract (using a binding

1Available: http://jena.apache.org/documentation/inference
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on stream selection in section 4.3.2) a subset of the streaming data into a time-based

window and then processing the data as an intermediate finite set of IoT streaming data

by matching them against the validation rules. Due to the reason that the window is

facilitated by the time component, it is necessary to include both the processing and

time component as part of the rule language so that user can use them as part of the

rules.

To enable the validation process to support the time-based window processing,

the basic Jena rule syntax is extended with a new time and window components to

accommodate the temporal characteristics of IoT streaming data. The original structure

of Jena rule syntax mainly comprises of the Header, Rule and Node. The Header is used

to locate and define the namespaces of the underlying RDF models and Ontology. The

rule specifies the set of conditions including the primitives that are required by the

ruleset. The Node indicates the actual variables, prefix and specific values that form the

ruleset.

The extension of Jena syntax currently being introduced is shown in bold in figure

4.2. Ordinarily, Jena rules and syntax are applied to static data for reasoning purposes,

in the current framework, it is adapted in a way to support reasoning over IoT streaming

data. To allow the system to differentiate between the IoT streaming data and static data

the STREAMWINDOW is introduced to define the subset of a finite set of IoT streaming

data at per time. The STREAMWINDOW implementation of the rule is implicitly achieved

with similar window processing infrastructure of RDF stream processing systems. Be-

sides, Jena uses a native built-in primitive NOW(?X) to indicate the current system

date/time values for rule instance but not for data stream instance. The new syntax

addressed the issue by adding the TIMESTAMP to differentiate between the system time

and the actual timestamps on each element of streaming data as they are contained

within individual STREAMWINDOW.
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Header     :=   URI...URI  || 
              [ prefix   namespace ] ||
              [ prefix   namespace : url ]

Rule          :=    bare-rule   ||  
               [ bare-rule ]  ||
               [ ruleName : bare-rule ]

bare-rule    :=   term*streamWindow, ..., term*streamWindow 
                  ----> hterm  ||    // forward strategy

            bhterm   <----   term*streamWindow, ..., 
term*streamWindow                   //backward strategy

term*streamWindow :=  (node*Window,  node*Window,  node*Window)  ||    
                          //triple pattern

        (node*Window,  node*Window,  functor)||              
                        //extended triple pattern

        builtin(node*Window,  ...  node*Window)
                            //invoke procedural primitive

Window  :=  dateTime (timeStamp ...timeStamp)  
                      //selected window based on RSP

timeStamp  :=  variableTime, ...  variableTime  
                              //value of annotated time 

Functor  :=   functorName(node, ...  node) //structured literal

Node    :=  uri-ref                     ||
       prefix : localname   || //e.g.  rdf:type
       ? variableTime   || // annotated timestamp on variable
       ? variable || // vriable 
       ' a literal ' || // a plain string literal 
       ‘lex '^^typeURI|| // a typed literal 
        number // e.g. 45 or 54.8

Figure 4.2: Extended Jena rule Syntax (Extensions appears in bold)

Furthermore, the specification of STREAMWINDOW with the rule can be optional, this is

because there are circumstances that rules with non-blocking operators may need to

be processed without time component (e.g. filtering). The modified Jena rule syntax

can be implemented or accessed by instantiating the GENERICRULEREASONER class.

Specifically, the rule syntax is applied to develop domain-specific rules that will be used

by the framework for validation of IoT streaming data for quality requirements relating

to consistency, completeness and plausibility checks in an explicit manner ( figure 4.3).
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Figure 4.3: Sensor Streaming Data Validation Rules

4.3.3.1 Time Element of Jena Syntax

The time element specified in the extended Jena syntax is a set of primitive temporal

entities for interpreting the time concept in semantic IoT streaming data. As previously

introduced in section 4.3.1, temporal entities are ordered by ≤ relationship. For simpli-

city, the expression t < t ′ and t 6= t ′′ to define a strict order.

Time element can typically be considered as either Dense or Discrete. A time element

is Dense if is an infinite set and ∀t , t ′ ∈ T with t < t ′,∃t ′′ ∈ T : t < t ′′ < t ′. On the other

hand, time element will be considered as Discrete if it is a specific last element from a

series and is assumed not to have an immediate successor with other elements having

a predecessor except the first.

As an example, if an IoT application emphasises a fixed smallest granularity (e.g.

seconds), the Discrete time element is the most appropriate choice. However, if a

lower granularity such as rational number is required, then the choice of Dense time

element is more suitable. The current assumption that the time elements in IoT applic-

ations follow some sort of linearity is much reasonable and most of these applications
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will support time elements with rule-based processing approach.

4.3.3.2 IoT streaming Data Validation Rules

The following paragraph provides the generic rules required to validate the specific IoT

streaming data quality problem as previously identified by this research. The rules are

family of first-order predicate logic with forward inference strategy. The namespace

adopted by the rule construct is defined by the URI of the SmartSUM model ( section

3.3). The generic validation rule specified in this section specifically targets numeric

IoT/sensor streaming values produced at the IoT node. Apart from the completeness

rule that takes place at the entry point of the validation system, the other two rules are

triggered at the point of the semantic reasoning process.

• Completeness Rule The completeness rule (also called Discrimination Rule) for

semantic validation process is essential for ensuring missing data points within

the streaming windows of IoT streaming data are spotted or possibly eliminated

from a streaming window. Missing data points in IoT streaming data are often

indicated by IoT applications as the replicated value of previous data point with

the same timestamp (e.g. as seen in EEG instrumentation) within a streaming

window. Other streaming IoT nodes can alternatively use a specific literal value or

specific constant to indicate the missing data in a streaming window. To enable

identify and validate each IoT streaming window for missing data, it is assumed

that each streaming window is of fixed length based on the streaming rate. The

procedure in Listing 5.1 embeds a discrimination rule to prune all identified

incomplete streaming data that may likely be present during a streaming win-

dow. The Completeness/Discrimination rule consider the notion of discrete-time

t’ and triple patterns Tpattern for evaluating IoT streaming data. A streaming

triple corresponds to (s,p,o) = M ∈ (SLog i cal ) with discrete timestamp (t’, M) with

non-decreasing timestamps t’ ≤ t” where t’ is the current timestamp. A Discrim-

ination rule is described by repeated matching of IoT streaming triples Tpattern

of the form (?a, p1, ?b1, t’), (?c, p2, ?b2, t’), (?x, p3, ?b3, t’) representing IoT stream-
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ing data, where textita, c and x are variables that represents subject of triples

with the corresponding objects and timestamp. The matching is usually a done

between the previous and current variables of an identical IoT streaming triple by

using the subject-subject, object-Object and timestamp-timestamp mappings

for the triple pattern. The STREAMWINDOW is only considered for the current

streaming triples during matching. In the rule, M , N ∈ SLog i cal represents pre-

vious and current Streaming triples respectively with the individual timestamp.

The matching technique of the rule is similar to the RETE matching algorithm

(Forgy, 1989) except that it does not perform join operation during processing,

as it only considers individual streaming triple elements for matching. It runs a

α−memor y which is temporary memory to holds intermediate streaming triples

during matching operation. The discrimination rule executes against IoT stream-

ing data represented as triples over stipulated streaming windows by matching

the triple components of previous (M ) streaming data against the current one

(N ) including the timestamps. The output of matching is propagated into the

β−memor y or pruned from the STREAMWINDOW.
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Structure : Discrimination Rule

LS is the streaming triple; M is previous streaming triple;

N is the current streaming triple; ω is the current window size,

k=′ F i xedl i ter al value ′

t’,t” are initial and current timestamps respectively

Procedure: Read ( M, N)

1. if N = LS ∈ω : ω ∈ W

2. load N , M into α−memor y

3. Split M, N := (sM , pM ,oM , tM ), (sN , pN ,oN , tN ) = (Tpattern, t) ∈ LS

Procedure: Match-Prune (N)

1. while (t’ < t”) ∧ (N ∈ω )

2. Match (sM ' sN ;oM ' oN ; tM ' tN )

3. if {N:= M ∧ N(t’):=M(t’) }∨ {N := ;} ∨ { N:= k}

4. Remove N from α−memor y

5. else

6. set β−memor y := N

7. nextN ∈ LS

Listing 5.1: Completeness Rule
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• Consistency Rule

Based on the quality problems associated with sensor streaming data as discussed

in section 2.2, inconsistency problem can arise when streaming data produced by

sensor node applied to a specific context produces data that suggests being out of

range in value, or there are disparities in the values of streaming data provided by

similar IoT nodes deployed within the same space.

The consistency rule showing in listing 5.2 is a forward rule and will execute

during the reasoning windows. It consists of the rule body and the head. The rule

body consists of a set of conditions denoted as Ci where i = 1, 2,3,...n. Each Ti is a

rule set that is expressed as a triple pattern with a logical connector that labels

the streaming values with its associated discrete timestamps produced within

each streaming window. It consists of additional test statement that verifies the

validity of the streaming values based on defined domain expert knowledge or

specific user-defined values. There is also an expression containing a comparative

operator that is used to check whether the timestamp of specific context value

falls within the same timestamps of similar and related sensing nodes.

The head provides the method and format for representing the output after infer-

ence has taken place by the reasoner. In other words, it represents the implication

of the combination of the ruleset that was defined in the rule body following a for-

ward inference strategy performed by the reasoner. The domain expert can craft

or format the output in any way as desired. It is worthy to note the method part

of the rule head (_action) can come from any of the available built-in primitives

(remove, drop or print) of Jena rule syntax.
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Structure :

C1,C2,C3· · ·Cn are set of rule conditions.

X is the specific measurement value of the target triple with timestamp.

φ represents the nth related triple value with timestamp.

Ω represents set of logical operators that can exist among rule conditions.

∆ is a set of possible comparison operator for IoT measurement timestamp.

PROPruleMode := "forward"

1. [ consistencyCheck :

2. C1 = { (?x namespace:p ?K) ∧(?x namespace:q ?xTimeStamp)

3. ∧ (lowerBound < x < upperBound) }Ω

4. C2 = { (?y namespace:p ?K) ∧(?y namespace:q ?yTimeStamp)

5. ∧ (lowerBound < y < upperBound) }Ω

6. C3 = { (?z namespace:p ?K) ∧(?z namespace:q ?zTimeStamp)

8. ∧ (lowerBound < z < upperBound) }Ω

9. · · ·
10. CN = { (?φ namespace:p ?K) ∧(?φ namespace:q ?φTimeStamp)

11. ∧ (lowerBound < φ < upperBound) }Ω

12. ∆( ?xTimeStamp,yTimeStamp)Ω

13 ∆( ?xTimeStamp,zTimeStamp)Ω

14. · · ·
15 ∆( ?xTimeStamp,φTimeStamp)

16. ⇒ _action(?x namespace:p ’ literal string’ ∥ X)

17. ]

Listing 5.2: Stream Consistency Rule
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• Plausibility Rule Plausibility may arise from poor clarity in IoT streaming data,

which are often due to some false positives present in the data. In a typical IoT

environment, common sources of data are from different types of sensors which

includes the interaction of things. As an example, the false positive or plausible

value of sensor streaming data may result from the interference of temperat-

ure sensor deployed to measure the indoor temperature but was measuring the

human body temperature close to the location of its deployment. In another

dimension, a false positive reading can be perceived as measurements produced

repeatedly by a battery-powered sensor that still produces streaming data despite

faulty battery. To validate IoT streaming data against errors from plausibility, a

forward strategy rule shown in listing 5.3 is required to interpolate and process ex-

ternal data related to the IoT streaming data of interest when the rule is triggered.

The rule executes, based on outcomes of specific events that are identified to be

peculiar to certain settings or domains. The outcomes or state of the events are

usually processed as boolean types in the domain of applications. Since the values

of sensor reading are interpreted as real or integer types aside that of actuators

that interprets as boolean type, it makes sense for the domain experts to be able

to set some threshold values at the time of deployment of the validation system.

These values are represented as the lowerbound and upperbound variables in the

rule syntax. The implication of the rule is similar to the consistency rule. It can

assume any of the possible action defined as built-in primitives from the native

Jena rule syntax such as remove, drop or print. The effect of this primitives is

actually what the name implies.
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Structure : C1,C2,C3· · ·Cn are set of rule conditions.

X is the specific measurement value of the target triple with timestamp.

φ represents the nth related triple value with timestamp.

Ω represents set of logical operators that can exist among rule conditions.

∆ is a set of possible comparison operator for IoT measurement timestamp.

PROPruleMode := "forward"

1. read() Pre-Conditions:

2. if ( (actuatorState == ’True’)∥(motionDetected == ’True’)∥
3. (sensorState == ’False’)∥
4. (actuatorState == ’True’ && motionDetected == ’True’)∥
5. (actuatorState == ’True’ && sensorState == ’False’)∥
6. (motionDetected == ’True’ ∥ sensorState == ’False’)∥
7. (actuatorState == ’True’ ∥ motionDetected == ’True’)

8. ) Then

9. [ plausibilityCheck :

10. C1 = { (?x namespace:p ?K) ∧(?x namespace:q ?xTimeStamp)

11. ∧ (lowerBound < x < upperBound) }Ω

12. C2 = { (?y namespace:p ?K) ∧(?y namespace:q ?yTimeStamp)

13. ∧ (lowerBound < y < upperBound) }Ω

14. C3 = { (?z namespace:p ?K) ∧(?z namespace:q ?zTimeStamp)

15. ∧ (lowerBound < z < upperBound) }Ω

16. · · ·
17. CN = { (?φ namespace:p ?K) ∧(?φ namespace:q ?φTimeStamp)

18. ∧ (lowerBound < φ < upperBound) }Ω

19. ∆( ?xTimeStamp,yTimeStamp)Ω

13 ∆( ?xTimeStamp,zTimeStamp)Ω

20. · · ·
21 ∆( ?xTimeStamp,φTimeStamp)

22. ⇒ _action(?x namespace:p ’ literal string’ ∥ X) ]

Listing 5.3: Stream Plausibility Rule
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The rules form the main building block for the semantic reasoning process of the

semantic validation approach, and they are designed to execute explicitly in any smart

space scenario where applications will have to rely on IoT streaming data for smart or

intelligent processing at a higher level of context. The selection of appropriate rule for

execution is also coordinated during the semantic reasoning activity.

The feature of the semantic time-aware validation rules satisfies the requirements for

Time consideration R1, Data Integration R2, Inference Ability R5 and Stream Quality

Management R6.

4.3.4 Semantic Reasoning for IoT Streaming Data- ConTAR

Instead of developing a separate method for streaming processing from scratch, it is

reasonable to consider enhancing a suitable existing semantic streaming processing

system to deliver a semantic reasoning for IoT stream quality validation tasks. The

method of layering a semantic stream processing system with some set of semantic

rules is considered one of the possible ways of achieving effective semantic reasoning

and inference. In order to realise a semantic reasoning system for IoT streaming data

and to actualise a solution for dealing with quality issues in IoT streaming data, a

centralised continuous stream reasoning system built on C-SPARQL and the continuous

semantic stream validation rules (section 4.3.3.2) is developed. The new semantic

reasoning system is known as a Continuous Time-aware Reasoning (ContAR) and is

shown in figure 4.4.

IoT
Node

IoT  

Node

IoT  
Node IoT  

Streams  
Selection  

&        
Ordering

Jena Reasoner  

&SubsytemsRDF

streams

Centralised ReasoningSystem

RDFDatabase

Smart 
Application

Data 
Consumers

Figure 4.4: Centralised Reasoning Architecture
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4.3.4.1 Continuous Reasoning System for IoT Streaming Data

After investigating the capability of various semantic rule-based reasoning systems to

support IoT streaming data validation process, the GENERICRULEREASONER have been

considered as most suitable for use. The reasoner is bounded to the IoT Streaming

model available as a serialised data model. Apart from being able to reason over RDF

schema, GENERICRULEREASONER supports the processing of the major RDF data serial-

isation format and serves as the underlying framework for C-SPARQL during schema

matching, these features are missing in other semantic rule-based reasoners. As part of

the development of the semantic validation approach, a Continuous Time-aware Reas-

oning system called ContAR have been considered as an essential aspect of the semantic

validation approach. ConTAR combines C-SPARQL with the continuous validation rules

developed in section 4.3.3.2 to achieve the continuous reasoning process while using

the GENERICRULEREASONER for inference purposes. The GENERICRULEREASONER is a

posteriori inference system that allows computing inference on-demand (i.e runtime)

with the support of deductive rules and query processing. The reasoning system exploits

the logical or sliding windows (Golab & Özsu, 2003) strategy to support the continuous

reasoning process of semantic validation approach. The sliding window strategy allows

semantic reasoning to be performed progressively at a given time interval that is usually

shorter than the window’s time interval. In that sense, ConTAR uses C-SPARQL for

Selection and Ordering of the run-time IoT streaming data within each sliding window

and allows the validation rules to execute against each window, based on the new time

extension of the Jena rules.

4.3.4.2 Selection of Validation Rules for Reasoning Windows

The selection of specific validation rules will usually be triggered by certain conditions

or events that are detected within an application context of the execution environ-

ment. Algorithm 1 recognises the three rules (in subsection 4.3.3.2) with the respective

stream quality issues identified earlier in section 2.2. It relies on the specific state of

event(s) that are occurring within the streaming space for the selection of specific rules
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Algorithm 1: Semantic Validation Rule Selection

Input: eventState (ESt ate ), deviceState (DSt ate ), streamValue (Svalue ) , I DSvalue

timePoint (t) , rules (r1,r2,r3 ∈R), I DSvalue and Threshold(Ψ).
Output: Inferred Quadruple statement ((s, p,o, t ) ∈Q) with node αQ ∈ (K G )

gets assigned to rule.
(s, p,o, t ) ∈Q = r ∈R;
repeat

SW i ndow = Svalue , t, i ndex;
DSt ate = T RU E ;
for each (s, p,o, t ) ∈Q within current streaming window ( SW i ndow ) do

r1 = CompletenessC heck;
execute r1;
if ((ESt ate =′ T RU E ′) AND ( Svalue 6= ;));
then

r2 = Pl ausi bi l i t yC heck;
execute r2;
break;

end
end
if ((ESt ate =′ F ALSE ′) AND (( Svalue == q ∈Q) OR (Svalue >Ψ)));
then

r3 = Consi stenc yC heck;
execute r3;
break;

else
r2 = Pl ausi bi l i t yC heck;
execute r2;
break;

end
if ((ESt ate =′ F ALSE ′) AND (( Svalue == q ∈Q) ));
then

r1 = CompletenessC heck;
execute r1;
break;

else
i ndex ++;

end
until DSt ate =′ F al se ′;

that will be triggered for the validation process. These type of events can vary from

actions triggered by an actuator (e.g open/close window, doors, light, etc) to activities

influenced by human beings such as standing close to temperature sensor meant for

indoor temperature measurement. At the start of the semantic reasoning process, the

algorithm executes the completeness rule on each quadruple statement that models
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each IoT streaming data produced at run-time. The output is further matched against

the conditions set for the plausibility check and executes r2 if the condition is satisfied.

r3 is executed against the quadruple statement once the condition for r2 is violated. The

pattern continues until the status of the target streaming device is inactive or false. For

multiple target devices or streaming data sources, the rule can be deployed in parallel

over a distributed network nodes.

All instances of the semantic IoT streaming data that are subscribed by the reactive

service with space, which does not violate the quality requirement will be later held

by the KG through incremental data persistence. The semantic continuous reasoning

feature of the framework allows Integration R2, Time consideration R1, inference Ability

R5 and Stream Quality Management R6 requirements for semantic stream processing

systems.

4.3.5 Incremental Data Persistence

This section provides an approach for management of inferred RDF statements as his-

torical IoT data and also facilitates query over static IoT data. This feature of SISDaV

approach operates outside the IoT streaming data validation environment discussed in

the previous sections. One benefit of incremental persistent of the inferred triples with

an annotated timestamp (called Quadruple statement) is to facilitate the provision of

reliable and usable SPARQL endpoint that can support complete SPARQL query over

archived or stored streamed data. Central to the process of persistence is a modifica-

tion arising from continuous updates that relate to addition or removal of quadruple

statements from the background KG, which the process must be able to support incre-

mentally. This means the persistence of the inferred quadruple statements on the RDF

graph (describing the KG) is done on an incremental basis as a new set of quadruples

arrives on the graph. As a result, previous quadruple statements are joined with the

recent statement using the Subject-Subject join.

In principle, statements produced from series of expired windows constitutes the ele-
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ment of the incremental persistence on NoSQL storage. Suppose a set of q1, q2 ∈Qe
1and

q3, q4 ∈Qe
2 represents a successive inferred quadruple statements, and set ωe1,ωe2 are

representing corresponding expired windows respectively. At the initial process of per-

sistence, the schema for the most recent statement q3, q4 ∈Qe
2 ∈ωe2 is held within the

temporary memory while the previously inferred statement q1, q2 ∈Qe
1 ∈ωe1 is directly

indexed and stored on the disk. During the subsequent persistence of Qe
2, the set of

quadruple statements in Qe
1 is extended in the memory with statements from Qe

2

using the Subject-Subject join operation which results in q1, q2, q3, q4 ∈Qe
2 and later

indexed and stored on the disk. This process will continue to operate incrementally

until the validation process is terminated. The storage of the new set of statements will

override the previous quadruple statements to optimise storage and prevent overhead

once a new session of semantic data validation begins. To provide a better view of the

incremental persistence of the inferred quadruple, an architecture that adopts a native

RDF data persistence (Blin et al., 2012) is introduced as shown in figure 4.5 .

Figure 4.5 contains multiple formats RDF data storage with partitioning for disk map-

ping to achieve the Incremental data persistence. During the process of data persistence,

the RDF-based Web application with inference module provides an interface to initiate

storage of expired IoT streaming data by using the RDF parser. RDF parser with the

model registry can map the quadruple statement to a specific NoSQL database while

also determining which NoSQL model translation the statement will adopt. The Dic-

tionary informs the Partition Manager on how to determine the appropriate partition

of the NoSQL database to store the inferred statement. The NoSQL database can be

one of the columnar Database, Graph database, document database or Key/Value data-

base. In this architecture, the columnar database is considered for implementation

because it supports vertical partitioning that involves fast Subject-Subject joins, and

column-oriented storage that benefits from compressibility and performance of not

having to read entire row into memory from disk. In addition, the vertical partitioning

approach to RDF statement storage offers benefits of multi-valued Subject attribute

such as tempReading with multiple readings Object values in the RDF graph.
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Figure 4.5: IoT Data Persistence Architecture

Similarly, query request initiated with SPARQL language is decomposed into sub-queries

by Query Parser and Optimiser, which later report the outputs to Model Registry. It, in

turn, looks for the component of the dictionary that contains the partition in which the

query statement is possibly stored on the database. It uses the information to verify

which statement are currently available in the Cache and interprets the SPARQL query

for the missing statement to graph, columnar and/or document database queries. In

the final part of the query processing, the SPARQL Query Parser uses the dictionary to

convert the results back to the RDF statement for the RDF-Based web Application.

This approach further provides a foundation for the method of realising the incremental

materialisation of the inferred triples. Incremental materialization (Urbani et al., 2013)

suggests being a realistic approach to updating a knowledge graph with new fact es-

pecially in computationally expensive situations that involve dynamic and large data

volumes such as IoT streaming data. Therefore the feature corresponds to the Historical

Stream Management R7 requirement for stream validation systems.
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4.4 Integration of SISDaV Approach as Unified Framework

The SISDaV framework is primarily based on two different technologies: the RDF stream

processing system and the continuous stream reasoning system. These two technolo-

gies have been carefully outlined and integrated into SISDaV in a manner that allows

run-time validation of IoT streaming data before it can be eventually consumed by

reactive applications or other categories of Decision Support Systems. The architecture

presents a unified semantic validation system which is available as API for software

applications. In general, the SISDaV architecture is built on three layers as depicted

in figure 4.6 by incorporating the features identified in section 4.3. All the layers are

described in detail within the following subsections.

4.4.1 Streaming Layer

This layer forms a physical connection between the heterogeneous IoT streaming nodes

such as sensors (Physical and Virtual sensors), actuators and other ubiquitous devices.

The data produced by these nodes are usually of heterogeneous formats and con-

tains certain temporal aspects. The layer typically consists of the Semantic Query and

Semantic Annotation Engine. The raw IoT streaming data can be admitted into the

architecture through the Java Message Service with the support of ActiveMQ Message

broker. Further processing is performed by creating an index structure on each raw IoT

streaming data using the hash table within the Hash Map module. This makes it pos-

sible to eliminate possible redundancies among raw streaming data due to overlapping

streaming windows, by defining unique Id on the raw streaming values. Each stream-

ing values are now converted into a unique RDF stream. The equivalent RDF stream

is achieved using the data transformation with the support of Semantic annotation

Engine during data pre-processing. The engine relies mainly on the vocabulary of the

SmartSUM ontology to define the semantic streaming data. The semantic streaming

data (also called Quadruple statement) are triple representation (subject, predicate

object) with timestamps of the raw streaming data.
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Semantic representation of the streaming data is necessary to facilitate the semantic

query and multiple quadruple statement selection as required by the unified IoT stream-

ing validation system. Selection or identification of semantic streaming data cannot be

achieved by any of the native database query languages (such as SQL) or tools. It can

only be realised with an equivalent dynamic semantic approach that can support the

temporal characteristics of the stream. In this regards, the use of semantic continuous

querying (C-SPARQL) is recommended for the stream selection. The continuous query

is considered applicable for the semantic stream selection over continuous sliding

windows during the semantic stream retrieval task.

To speed up the query processing, a caching method is introduced within the query

processing module. This approach to querying semantic streaming data can support

multiple and parallel selection of RDF representation of the IoT streaming data. The

output of the semantic selection usually in form of semantic streams are pushed into

the immediately upper layer of the architecture for further processing.

4.4.2 Matching Layer

The entry point to the matching layer is the RDF serializer which is responsible for

converting the RDF stream into an alternative RDF data. The module works alongside

the repository for the RDF schema containing the background knowledge graph with

ontology-based reasoner used to maintain consistency from the new instance. The

RDF schema is used by the RDF serializer to define the new RDF formats. The RDF

serializer recognises the four types of serialisation format discussed in section 2.4.1.

The importance of the RDF serializer module is to provide an encoding that will provide

expressiveness and effectiveness with efficiency for semantic validation of the semantic

IoT streaming data. The output of the module is supplied to the α−memor y which

forms part of the RETE network. One advantage of the RETE network is the ability to

save state and computes partial results for future use without the need for re-processing
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request when new semantic streams arrive at the module. In addition, it allows the net-

work nodes to be shared thereby reducing the computing overhead within the memory.

Theα−memor y executes the completeness rule (see section 4.3.3.2) to perform primary

matching on each stream in order to check if the statement conforms to the pre-defined

schema for all semantic streams. Any of the semantic stream that violates the matching

process is classified as Identity stream and immediately removed from the current

window by pushing it to the Identity Stream Manager that contains static methods

for processing such stream. Otherwise, the output is received by the β−Memor y of

the RETE network that forms interface with upper Reasoning layer and facilitates the

secondary semantic matching process.

4.4.3 Reasoning Layer

The reasoning layer of the framework can access the serialised format of the semantic

IoT streaming data from the matching layer through the β−Memor y . The layer ma-

jorly consists of the Rule base, Inference Manager and the Inference Graph modules.

The Rule base keeps knowledge about the current states of events related to actuators

within the space, as well as the generic rules that are defined based on consistency and

plausibility checks on IoT streaming data. The generic rules are modified or applied to

suit specific events and IoT related domain where IoT streaming data are consumed by

reactive applications. The selection of specific validation rule is determined by a special

module known as the Rule manager which is within the Inference Manager.

Specifically, before semantic reasoning process, the rule manager relies on rule se-

lection algorithm 1 to select specific rule that is suitable for the secondary matching

and the eventual semantic reasoning and validation process. Usually the current states

of all events are retrieved from the Rule base module and with the help of the RETE

matching it can identify the specific statement for the plausibility check. Otherwise, the

consistency rule will be executed against the semantic streams.
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The reasoning engine unit is based on continuous reasoning approach described in

section 4.3.4 by layering the window session of the stream query with a forward strategy

rules stored in the rule base. It runs over a sliding windows by executing the selected

rules over the semantic stream query window that contains the current snapshots of

the semantic streams. This reasoning approach is facilitated with use of the open Jena

library 2 and its corresponding subsystems. The reasoning process is further enhanced

with BIND or SCHEMABIND calls on the sliding windows to ensure there is no inform-

ation loss during the continuous reasoning process. The purpose of the reasoning is

to produce new set of knowledge by a method of semantic inference while taking into

consideration the time component of the data. The inferred knowledge represents the

output of the validation process involving the raw IoT streaming data.

The validated output from reasoning unit is managed by the inference graph com-

ponent of the architecture. The module holds an in-memory structure to temporarily

store the intermediate RDF statement in form of a graph network before it is eventually

stored permanently on the base Knowledge Graph. The approach to in-memory storage

of the semantic statements adopts the method of Incremental persistence discussed

in section 4.3.5, where the continuous inferred statements are added to the KG with

Join operation before being stored on the RDF table and domain ontology. Typically,

treating the IoT data streams as historical data during storage involves two separate

approaches, the first one being through the method of incremental persistence on the

RDF graph. The second storage operation involves the process of additive change for

ontology evolution on the domain ontology (SmarSUM Ontology). The importance

of this change is to enable the update of the SmartSUM ontology to reflect not only

the new streamed IoT data but also new set of nodes that may have been added to

streaming space. The ontology maintains consistency with Pellet reasoner, which is one

of the native ontology-based reasoners.

2http://jena.sourceforge.net/
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4.5 Conclusion

This chapter presented the main contribution of this work: the generic design require-

ments for IoT stream quality validation systems, and the unified architecture for the IoT

streaming data quality validation approach, namely SISDaV as a rule-based semantic-

driven approach with continuous reasoning. The design requirements are based on

the common requirements of stream processing systems but with support for stream

quality management for IoT/sensor Streaming data.

Furthermore, SISDaV provides semantic inference capability with the generic rules

that natively extends the Jena rule grammar to enhance the continuous semantic reas-

oning operations. Adding semantics with RDF data to raw IoT streaming data and

sensing nodes is expected to significantly improve the interoperabilty of heterogeneous

IoT streaming data. Consequently, improve the quality validation of these streaming

data to reduce the false positive alarms during actuation or decision making process.

Also, the choice of RDF for modelling the sensor streaming data can leaves the pro-

grammer with the question of which serialisation format will be suitable for the sensor

streaming validation. The alternatives RDF serializations identified in this section are

developed to be used by web applications. However the aspect of its effects on IoT

streaming data processing was not considered when these formats were designed.

The general stream processing systems including those for semantic applications has

always been used to solve problems relating to data stream retrieval, high volume and

latency of streaming data in the past. The approach implemented by this work extends

the capability of existing semantic stream processing system with the feature that will

support the quality validation of the IoT streaming data for reactive applications. In the

next chapter, some concrete application cases studies are presented along with both

effectiveness and efficiency evaluations of the framework.
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; Fifth Chapter <

Evaluation of Approach and the Unified

Framework

5.1 Introduction

This chapter provides a detailed comparative evaluation of the proposed semantic

IoT Streaming data Validation approach and its framework presented in the previous

chapter. This is required to enable satisfy the fifth research objective and, provide

answer to the research questions RQ4 and RQ5. Evaluation Metrics for effectiveness

and efficiency of the semantic validation approach for the case study in smart home

and smart city applications are provided in section 5.2. Section 5.3 describes the Smart

Home Automation case study including the related sensor streams data set(section

5.3.1). This is followed by the description of the prototype architecture implementation

in section 5.4. The second application case study evaluation is contextualised in the

smart city project with air quality dataset in section5.7 The remaining part of the chapter

provides the detail discussion of results and conclusion of the chapter in sections 5.8

and 5.9 respectively.

5.2 Evaluation Metrics

The metrics described in this section provides a means to evaluate the effectiveness

and efficiency of SISDaV through its integration and deployment in a relevant use case
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scenarios. These metrics are derived from the well established precision, recall and

accuracy metrics (Powers, 2020), which has recently becomes the means of evaluating

framework for IoT streaming data (Balakrishna et al., 2020). Furthermore, the evaluation

metrics will be applied to the domain of Smart Home IoT-based control system (Wang

et al., 2013) and Smart city Decision Support System (D’Aniello et al., 2018) later in this

thesis.

5.2.1 Effectiveness Evaluation Metrics

The effectiveness of the framework is determined by the estimation of Relevance score

and Validation Accuracy of the intervals of validation cycles involving the serialised RDF

formats. The Relevance score provides an estimate of how precise the framework can

identify the actual inconsistent streaming data with the occurrence of plausible data

in each cycle. In the same manner, the Validation Accuracy is an imbalanced accuracy

that estimates the combined effects of incomplete streaming data (True Negatives)

and Plausible streaming data on the validation of inconsistent streaming data. The

evaluation will further conducts a comparison of the four alternatives of RDF data

serialised formats based on the results of the estimations.

The method of deriving the effectiveness of the framework is similar to what is currently

used Information Retrieval (IR). This similarity is seen in terms of classification problem,

which also adopt a similar technique for pattern matching during the semantic query

and reasoning process. These methods of estimation express and compute the ratio

of relevant and inconsistent instances of sensor streaming data among raw IoT stream

instances within each streaming window. However, the notion of recall is estimated as

an expression of the accuracy of the validation score. More importantly, since the cost

of false negatives (in this case, represented as consistent streaming data) is considered

to be very low in this context as it is expected that an IoT streaming node will produce

more consistent values for the majority of the streaming lifetime, which results in a

limited search space.
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The metric considers the influence of plausible streaming data for each validation

cycles of Inconsistent streaming data. This provides a practical method of estimating

the exact or precise effectiveness of validation process in an IoT streaming environment

where these type of stream quality problems persists. A similar example is a single smart

home sensor such as temperature sensor that produces false-positive data and outliers

at different streaming windows, which can ultimately result in a false alarm. In such a

case, the estimation technique must be able to cater to both types of erroneous data

when determining the number of relevant streaming windows and the accuracy of the

system. Adapting the statistical method of estimation expressed as the ratio of true

positives to overall false positives with true positives, We define the Relevance Ratio as

follows:

Relevance Ratio =

N∑
i=1

ICi

n∑
i=1

ICi +PCi

(5.1)

where, IC represents the inconsistent streaming data per streaming window SW , PC

represents plausible value (i.e total false positive values) and, both N and n are the total

Inconsistent count and combined overall plausibility with Inconsistent count for all

validation windows respectively.

Similarly, to obtain the estimate of the validation Accuracy of the framework over

every successive validation cycle. It becomes necessary to consider the effectiveness

of the validation process for inconsistent streaming data in the presence of plausible

or incomplete streaming data, because of the cost and possible multi-class Class Clas-

sification problem associated with data during validation cycles. The estimation or

evaluation metric recognises the imbalance or Asymmetric nature in the distribution of

the streaming data per cycle. Therefore, it first computes the Sensitivity (T PR ) of each
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validation cycle to determine the true positives rate as follows;

T PR =

n∑
i=1

ICi

n∑
i=1

ICi +C Ri

(5.2)

where, IC and CR are respectively the number of Inconsistent and Consistent streaming

window in every cycle.

Secondly, an estimation of the Specificity (T NR ) rate is derived to understand the

total Specificity (T NR ) per validation cycle. This estimation represents the number of

true negatives per validation cycle and is derived as follows;

T NR =

n∑
i=1

NCi

n∑
i=1

PCi +NCi

(5.3)

where NC and PC corresponds to the number of Incomplete/missing and Plausible

streaming data produced within each cycle respectively. By combining both equations

5.2 and 5.3, the resulting validation score as a measure of the balanced accuracy for

each validation cycle is therefore given as;

Validation Accuracy = (T PR +T NR )

2
(5.4)

The validation score estimation will be able to normalise the distribution of the val-

idation output produced from the imbalanced or Asymmetric streaming data set. In

addition, it will facilitate the comparison between actual raw streaming data and annot-

ated validated outputs by the framework.

5.2.2 Efficiency Evaluation Metrics

Efficiency Metrics further evaluate the performance of the framework as a means of its

cost on the system resources in which it is deployed. In an IoT domain that is heavily

dependent on streaming data for data-driven processing such as reactive services, the

importance of time is inevitable. As such, systems or applications will require to op-

erate promptly with possible limited resources. For this reason, the efficiency metrics
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considered for the evaluation of the application case studies are based on time. The

time-based metrics include the Semantic reasoning time, Processing time and, Latency

of the semantic validation approach with the framework.

Semantic Reasoning time estimates the time interval between the receipt of the seri-

alised RDF data and when inference is produced. The semantic reasoning time is

exclusive of the time it requires to perform ontology reasoning on the embedded do-

main ontology during ontology evolution as this is performed separately by the native

ontology reasoner. It specifically measures the total duration to perform inference on

each semantic streaming data per streaming window within every validation cycle.

In a similar perspective, the processing time is a combined estimate of the total duration

that the semantic framework will require to process or validate the raw IoT Streaming

data. This includes the time requires to perform a semantic query for semantic stream

selection and, the time it requires to complete the semantic reasoning task.

The processing time is computed for individual streaming data per streaming win-

dow within each validation cycle. In principle, suppose Sd represents an individual

semantic streaming data within a validation Cycle (V c ycle ), RT i me and QT i me represents

reasoning time and semantic query time respectively. Therefore, ∀Sd ∈V c ycle

Pr ocessi ng T i me = RT i me +QT i me

Latency is used as a performance metric to estimate the total delay between intervals of

response time during the validation process. It is the total time taken by the framework

to produce the first request from streaming data validation. In order words, it estimates

the duration of delay experienced by the framework between intervals of semantic

streaming data validation cycles. The metric describes the trend in the performance

over intervals of validation cycles.

The metrics for effectiveness and efficiency evaluation described in this section will be

applied for the evaluation of the use case scenarios described later in this chapter. The
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interpretation of the performance testing will be interpolated over validation cycles for

each of the RDF serialised formats considered in the experiments.

5.3 Case Study 1: Smart Home Automation System

The present application case study considers the case of a smart home IoT-based con-

trol system (Wang et al., 2013) with a corresponding dataset in smart home1. A number

of issues associated with the characteristics and outputs from sensors and actuators

are found to be relevant to the features of the smart home automation initiative. The

motivation for the choice of solution to the case study is necessitated by the need for

effective and efficient management of the appliances and operations that are mostly

coordinated through the data managed by SHIS. Focusing on this component is a way

of maintaining continuous interoperability with clean data processing requirements for

the smart controller and actuator within the smart home. Web-based data modelling

and processing for interoperability of various data produced within the smart home

environment can only be guarantee through the semantic approach. This can play

major aspects in the actualisation of a fully functioning and accurate smart controlling

system.

Again, plausible values represent sensor readings that are greater than the initial con-

troller set point or permissible range of values. Plausible readings in the case study

are values which may have been compromised by external influence e.g. in the case

study, a sensor reporting the value of body temperature/outdoor temperature instead of

indoor air temperature. The objective of the Home Automation scenario is to evaluate

the effectiveness and efficiency of SISDaV at different conditions of Inconsistent data

points per streaming window.

1https://www.refitsmarthomes.org/datasets/
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5.3.1 Description of Smart Home Dataset

The dataset used for the evaluation of the Home automation use case is currently

obtained from the REFIT Smart Home project. One of the goals of the data set is to

inform of the Internal environmental conditions and energy demands in UK homes.

The data was collected from twenty homes with Smart Home technologies that include

a series of sensor measurements. A brief description of the models and type of sensor

technology are presented in table 5.1.

As reported by the contributors of the project, some of the data from the air tem-

perature sensors contain duplicated and missing data points. Data were gathered from

a total of 1,567 sensors that produced a total of 25,312,397 raw sensor readings with

timestamps. The description of the smart home data providing the measurements for

property of context such as temperature, humidity, pressure, door and window status

are provided as follows

• Sensor_ID: unique identity of each physical sensor deployed within the home

• Start_time: time instant that mark the beginning of producing the sensor reading

for each stream window.

• End_Time: elapse time instant before the start of the next sensor reading

• Manufacturer: brand name of the sensor manufacturer

• Measurement_ID: unique Id of each sensor reading or measurement value

• DateTime_value: date and timestamp associated with each measurement

• Temperature_value: actual value of air temperature reading

• Humidity_value: actual value of the indoor humidity

• Pressure_value: value of the indoor pressure within the smart home

• Window_ status: current state (open/close) of the window as controlled by an

actuator
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Table 5.2: Extract of Raw Indoor Air Temperature Values

Measurement_ID DateTime_Value Temperature value

TimeSeriesVariable41 2013-10-02T05:00:00Z 17.772

TimeSeriesVariable41 2013-10-02T05:30:00Z 18.081

TimeSeriesVariable41 2013-10-02T06:00:00Z 18.176

TimeSeriesVariable42 2013-10-02T06:30:00Z 18.176

TimeSeriesVariabl41 2013-10-02T07:00:00Z 18.105

TimeSeriesVariable43 2013-10-02T07:30:00Z 18.01

TimeSeriesVariabl30 2013-10-02T08:00:00Z 17.891

TimeSeriesVariable39 2013-10-02T08:30:00Z 17.772

TimeSeriesVariable40 2013-10-02T09:00:00Z 17.701

TimeSeriesVariable40 2013-10-02T09:30:00Z 17.677

TimeSeriesVariable40 2013-10-02T10:00:00Z 17.677

TimeSeriesVariable22 2013-10-02T10:30:00Z 17.701

TimeSeriesVariable29 2013-10-02T11:00:00Z 17.701

TimeSeriesVariable41 2013-10-02T11:30:00Z 17.843

TimeSeriesVariable43 2013-10-02T12:00:00Z 17.938

TimeSeriesVariable43 2013-10-02T12:30:00Z 17.986

TimeSeriesVariable32 2013-10-02T13:00:00Z 18.01

TimeSeriesVariable40 2013-10-02T13:30:00Z 18.057

TimeSeriesVariable39 2013-10-02T14:00:00Z 18.081

TimeSeriesVariable32 2013-10-02T14:30:00Z 18.247

The dataset also contains climate data that were collected at the Loughborough Uni-

versity campus weather station. These data describes measurements relating to atmo-

spheric temperature, pressure and relative humidity.

Specifically, the case study considered only aspects of data describing measurements

from the room air temperature, relative humidity and pressure, interior motion de-

tectors, door and window opening sensors and smoke alarms. The description of the

relevant data set for the experiments including the description of sensor types, sensor

manufacturer, sensor models and measurement Ids are presented in table 5.2. A snap-

shot of measurement values of the indoor air temperature with individual timestamp

and measurement id considered for the case study are presented in table
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5.4 Prototype Framework Implementation

Considering the importance of the sensor streaming data in the case study (presented

in section 5.3), a prototype software architecture is developed as presented in figure 5.1.

It is used to validate the sensor streaming data for optimal processing and controlling

activities by smart home actuators. The design of the prototype architecture is based

on SISDaV, which has been described in section 4.4. It consists of four layers with each

upper layer relying on the immediate lower layer for input. The description of each layer

and the interaction with the upper layer during the validation process are presented in

the following sub-sections.

Sensors Network 
Hardware

Actuator

Data Stream 
aggregator

Application Layer

Decision support
Smart 

Applications

Monitoring System
Recommendation 

Manager
Context mgt. 

System

Data
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Engine

 

Generation of 
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Extension
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    Data flow
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Sensing /Physical Layer

Figure 5.1: Prototype Architecture
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5.4.1 Sensing/Physical Layer

The layer acts as an interface between the physical devices including sensors and the

streaming data. It contributes to the large volume of data stream produced within the

Smart Space. It consists of sensors and physical network devices. The Data Aggregator

receives streaming data from different sensor nodes within the space with the use of

MQTT protocol2. Data Aggregator pre-processes the data for semantic validation with

the support of the sub-component integrated with this layer. Flexible data aggregation

and delivery between physical layer and the immediate upper layer of the architec-

ture are managed by Apache camel3. Apache Camel is a lightweight data/file transfer

framework that allows integration between different components of a system. It accepts

streaming data in any serialised format and routes the data between modules of the

architecture. Most of the data produced at this layer come with temporal characteristics

and are heterogeneous based on their representation by physical sensors producing the

values.

In an attempt to provide a suitable data model for semantic querying and reason-

ing, each of the sensor streaming data is annotated with the support of RDF manager

using the SmartSUM ontology that describes the smart spaces domain. The annotation

converts each data to triple statement with the timestamps (Quadruple statement)

by extracting the namespace including class and property types from the SmartSUM

ontology. The resulting statement is read as RDF stream, which is further processed

by the Stream Service. The stream Service runs in the background to re-write the RDF

data using the native Jena RIOT API4 to convert the RDF streams into alternative RDF

serialization formats to achieve expressivity and faster processing. It also resolves the

possibility of redundant quadruples statement by using the hash table indexing key/-

value to provide unique identification for each quadruple. This is later facilitated for

further processing by the upper layer of the architecture.

2Available: http://mqtt.org/
3Available: http://camel.apache.org/
4https://jena.apache.org/documentation/io/rdf-output.html
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5.4.2 Modelling and Integration Layer

The main function of this layer is to provide interoperability among various hetero-

geneous IoT nodes and facilitates continuous integration of the sensor streaming data.

The layer consists of the domain ontology model and its equivalent RDF graph for data

persistence. In the scenario, the ontology is used to model the IoT nodes, physical prop-

erties and its observation data within the smart home. The observation data of interest

include the temperature, pressure, humidity readings and actuators with related smart

home objects. The domain ontology can support the addition of a new sensor node

through its evolving functionality while maintaining the consistency among concepts

through the pellet reasoner API. The ontology is also able to model the data from the

new sensor node through relationship construction of data properties and concepts on

the ontology model.

Another important use of the domain ontology is to provide the background know-

ledge necessary to facilitate continuous semantic reasoning and inference generation

process. During the run-time sensor streams generation, the layer relies on the domain

ontology and system memory to ensure the generation of RDF streams. It will eventually

be applied to facilitate the run-time selection of semantic sensor streaming data in the

upper reasoning layer.

5.4.3 Reasoning Layer

The entry point to this layer is the Query Engine. The engine is integrated with C-

SPARQL query language for the continuous selection of multiple streaming quadruple

statement over a continuous streaming window. It adopts window-based processing to

support run-time RDF streams selection. This is performed by executing the listing in

5.2 for the smart home case study. During the C-SPARQL query processing stage, con-

tinuous pattern matching of concepts and properties are performed on each semantic

statement describing physical properties, which includes temperature, pressure and

humidity and the corresponding values and timestamps. The selection of the streaming
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data variable within each streaming window is ordered by timestamps and executed

over a period of 25 seconds with step interval of 7 seconds for indoor temperature val-

ues and 7 seconds for other related physical properties (indoor pressure and humidity

values). The execution interval of the query is kept reasonably short to allow the system

REGISTER QUERY sensorValueOf  AS 
PREFIX smartSpace: http://localhost:8080/smartSpace#
?pressureValue ?humidityReadings ?humidityValue "
   SELECT *       
   FROM STREAM http://localhost:8080/smartSpace/streamTemperature [RANGE 25s STEP 7s]
   FROM STREAM http://localhost:8080/smartSpace/streamPressure [RANGE 25s STEP 7s] 
   FROM STREAM http://localhost:8080/smartSpace/streamHumididty [RANGE 25s STEP 7s]

WHERE {
            ?tempReadings smartSpace:hasValue ?tempValue.
            ?tempReadings smartSpace:hasTimestamp ?tempTime.
            ?tempReadings smartSpace:hasId ?tempId.
            ?tempReadings smartSpace:hasSeason ?tempSeason.
            ?tempReadings smartSpace:hasTimestamp ?tempTime.
            ?pressureReadings smartSpace:hasPressureReading ?pressureValue.
            ?pressureReadings smartSpace:pressureHasTimestamp ?pressureTime.
            ?humidityReadings smartSpace:hasHumidityReading ?humidityValue.
            ?humidityReadings smartSpace:humidityTimestamp ?humidityTime.
          }
        ORDER BY ASC(?tempTime)

Figure 5.2: C-SPARQL Query for selection of Sensor Streaming Data

to be subjected to stress test in a way to investigate its support for categories of sensors

(such as location/movement sensor) with high streaming rate. Also, this will enhance

the increase in detection rate within the sliding windows. It is expected that using a

shorter step length than the streaming window length will result in some unnecessary

duplication of the query result. The results from each query processing window are

received by the ActiveMQ broker which is later managed by Java Message Service (JMS)

and subsequently processed concurrently by the reasoning engine.

The reasoning engine implements an in-memory structure of Jena API used to temporar-

ily hold semantic sensor streams from the current window during reasoning operation.

The reasoning engine can access the serialised format of the semantic IoT streaming

data from the current window with the support of RDF API to enable the continuous

processing of the chosen serialisation format. The reasoning engine works in conjunc-
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tion with the rules from the ruleset, which are defined based on domain regulations.

Specifically, in the smart home case study base its validation rules on domain know-

ledge from occupational health and safety5 recommendation for indoor temperature,

pressure and humidity.

@prefix rdf: http://www.w3.org/1999/02/22‐rdf‐syntax‐ns#
@prefix owl: http://www.w3.org/2002/07/owl#
@prefix rdfs: http://www.w3.org/2000/01/rdf‐schema#
@prefix xsd: http://www.w3.org/2001/XMLSchema#
@prefix smartSpace: http://localhost:8080/smartSpace#
[consistencyCheck:

(?humidityReadings smartSpace:hasHumidityReading ?humidityValue)
(?humidityReadings smartSpace:humidityHasTimestamp ?humidityTime)
greaterThan(?humidityValue,39)
lessThan(?humidityValue,51)
(?tempReadings smartSpace:tempHasTimestamp ?tempTime)
(?tempReadings smartSpace:hasValue ?tempValue)
greaterThan(?tempValue,17)
lessThan(?tempValue,24)
(?pressureReadings smartSpace:hasPressureReading ?pressureValue)
(?pressureReadings smartSpace:pressureHasTimestamp ?pressureTime)
greaterThan(?pressureValue,750.1)
lessThan(?pressureValue,761.0)
le(?tempTime,?humidityTime)
le(?tempTime,?pressureTime)
‐>
(?tempReadings smartSpace:isValid 'Consistency Check')

]

Figure 5.3: Consistency Validation Rule for Temperature Stream

The sample validation rule in figure 5.3 is used for checking the consistency in

temperature readings. Specific validation rules for possible plausible IoT streaming

data resulting from outdoor temperature and indoor event interference are listed in ap-

pendix D. The semantic reasoning module also implements the rule selection algorithm

to determine the appropriate rule to execute from the ruleset based on an event that

is predominant within the space during sensor streaming. It is configured to process

snapshots of the semantic streaming data based on the domain background knowledge

combined with the chosen rule using the forward inference strategy. The reasoning en-

gine executes at run-time to provide sensor streaming values that satisfy the conditions

5http://www.ohsrep.org.au/hazards/workplace-conditions/heat
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in the rules and make such available to web applications (in this case IoT-based Control

system interface) through API. Finally, the output of the reasoning process is a new

knowledge available as a quadruple statement. The quadruple statement or inferred

RDF quadruple is added to the existing RDF graph using the method of Incremental

persistence. The new inferred knowledge and streaming value can also be retrieved

through the SPARQL query as static data.

The prototype implementation is realised based on three different java libraries. Spe-

cifically, the libraries include Jena6, C-SPARQL7 and JSON8. Each of the libraries is

implemented as a plug-in and integrated with a cloud-based Microsoft Azure platform

to demonstrate the feasibility of the semantic IoT streaming data validation approach.

The platform allows for continuous integration and validation of sensor streaming data

at run time.

Figure 5.4: Section of run-time Temperature Values

6https://jena.apache.org/download/apache-jena-3.15.0
7http://streamreasoning.org/resources/c-sparql/CSPARQL-ReadyToGoPack-0.9.6
8json-simple-1.1.1.jar
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To deploy the architecture in a way that is suitable for IoT-based controlling system

in the home automation case study, a dynamic endpoint for user computer and the

cloud-based server has been created. This makes it possible for the server to process

data from a remote machine. The endpoint also facilitates the user’s request through a

personal computing device to remotely create a set point for the smart control system

or get the status of each sensor within the smart home environment. The figures 5.4 and

5.5 contains the implementation of the user interface that keep track of the controller

set points and the real-time analytics of the validation process respectively. More detail

screenshots of the implementation are contained in Appendix B.

Figure 5.5: Real-Time Data Validation Analytic

5.5 Experiments

The aim of the experiment with the smart home scenario is to understand the effects

of error rate and streaming rate of raw IoT data, on the effectiveness and efficiency of

the semantic data validation approach. To allow for proper evaluation of the approach

including its framework with the smart IoT-based Control system in home automation,
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consideration is given to the run-time quality validation of the sensor streaming data. In

the experiment, the focus is placed on the range of values published by smart home data

set (refer to section 5.3.1). In particular, values produced by air temperature sensors,

relative humidity and pressure sensor, door and window sensors, motion sensor and

climate data. This data are reproduced in an experiment through a simulation library

to allow for detail analysis of the framework in a real-life and run-time manner and

applications. The detailed analysis data were collected in real-time for evaluation

during each stage of the experiments. Given the importance of time and the influence

of climatic season on the sensor streams, the experiment and evaluation approach

considers both notions during the implementation and experimental process.

5.5.1 Sensor Streaming Data Generation

In a smart space environment (e.g. smart home), access to streaming data is usu-

ally through the deployment and configuration of physical sensors and related IoT

nodes. In the current study, this practical approach seems to be a more expensive,

time-consuming and labour-intensive task, which cannot be accommodated into the

research. Therefore, to help determine the effectiveness and efficiency of the approach

with the framework, real-time sensor streaming data are simulated using the C-SPARQL

streamer library. The library is used to generate sensor streaming data with the indi-

vidual associated timestamps using the current computer system time and date. In

this way, it was possible to have access to the run-time streaming data and perform

the run-time streaming data validation process. The generated values represent the

streaming data produced by several different sensors present within the smart home

based on the openly published data described by the open REFIT smart home data.

In particular, outputs from ten sensor nodes that measures temperature, pressure, hu-

midity, door open/close, window open/close, the motion of body and climate data

are simulated. Specifically, the configuration of the sensors consists of 3 temperature

sensors, 2 humidity sensors, 2 pressure sensors, 1 door sensor, 1 window sensor and 1

motion sensor. Correspondingly, each class of sensors generates the related streaming
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data for the property it measures at a different streaming rate measured in seconds.

5.5.2 Experimental Setup

The experimental set up was conducted on a single node centralized server running

on multiple processor computer (Pentium Core (TM) i7-4770 CPU @ 3.40GHz – 16GB

RAM). The background memory structures that were allocated to the processes consists

of an initial and maximum heap size memory of 1024m and 2048m respectively. The

experiment involves a simulation of sensor streaming session that consists of eight

rounds in total and with a duration of six hours for each round of the experiment. The

total round of experiments was completed in two separate experimental runs. Each of

the two experimental runs is allowed to perform semantic validation on the same type

data set generated by streamer using the four RDF serialised formats.

To enable a better view of the performance of the framework in terms of its ability

to continuously perform the validation process over the sensor streaming data, all the

categories of sensor configuration in section 5.5.1 are employed. Each of the temperat-

ure sensor nodes is simulated to generate both true values and erroneous streaming

values that explicitly represents typical Inconsistent, Plausible and missing readings

respectively. Inconsistent streaming data values were injected into specific streaming

windows at different intervals of a single (1) and ten (10) data points in separate experi-

mental runs

Raw streaming data produced in both experimental runs represent outputs from phys-

ical sensor nodes and are implemented from separate concurrent java threads. Error

injection rates of inconsistent streaming data were also completed in two separate

experimental runs. Specifically, the evaluation focused on the semantic validation of

inconsistent streaming data points in each of the three temperature sensors. In the first

round of the experiment, single point of inconsistent error injection occurs at every al-

ternate second streaming window following the consistent streaming data produced by
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the first temperature sensor (Temp_Sensor1). Similarly, the second temperature sensor

(Temp_Sensor2) is configured to produce plausible values at every second alternate

streaming window with the consistent streaming data. The third temperature sensor

node (Temp_Sensor3) is configured to generate an arbitrary value of ’8888’ to represent

the data points that are interpreted as missing or incomplete data, as experienced by the

sensor node. The simulated value is produced at every alternate first and second stream-

ing windows with alternate window producing the consistent streaming data. Usually,

the description of missing data points is defined by the sensor instrumentation schema.

Ideally, consistent values in the experiment represent true temperature readings that

fall within the permitted range of values and are simulated based on intra-variability

levels of comfort and standard indoor temperature recommendations.

The maximum streaming duration for each of the three temperature sensor node occurs

at every 1 second, 2 seconds and 2 seconds respectively. Besides, the streaming duration

for relative humidity and pressure sensor nodes are set to 7 seconds and 5 seconds res-

pectively. The streaming duration for each of the sensors has been deliberately kept low

to demonstrate the suitability of the framework to support real-time scenario with the

high streaming rate (e.g location sensor), associated with tracking of a sudden change

in quality requirements of the sensor streaming data. In all rounds of the experiment,

inconsistent and missing streaming data points have been represented explicitly by a

pseudo-value of −27.40 Celsius and ’8888’ respectively. Plausible values are temperature

readings recorded from direct interference with external or climatic/weather temperat-

ure readings.

In the second experimental run, (Temp_Sensor1) was configured to produce ten (10)

inconsistent data points in each affected streaming window. The streaming interval

of each category of erroneous or stream quality issue is similar to the first experiment.

Similarly, the streaming duration of each sensor node remains unchanged with the

same pseudo-value for the representation of inconsistent and missing values during

raw streaming data generation throughout the experimental run.
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The semantic representation of the raw data is produced with an annotated timestamp

using the domain RDF graph (derived from SmartSUM ontology) and RDF manager.

The resulting RDF quadruple statement is further re-written with the RIOT API to derive

the four serialisation formats discussed in 2.4.1. These serialised RDF formats consist of

the RDF/XML, NTriple, Turtle and Notation Formats. The new serialised RDF formats

are then subjected to further processing by the framework for the semantic validation

process. The output of semantic validation was later subjected to evaluation over con-

tinuous validation cycles using the established evaluation metrics. The evaluation of

the two experimental runs was conducted over 2000 cycles each.

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:smartSpace="http://localhost:8080/smartSpace#"
xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 

<rdf:Description rdf:about="http://localhost:8080/smartSpace#temp2Readings2">

<smartSpace:isInconsistent>Erroneous reading</smartSpace:isInconsistent>

<smartSpace:hasValue rdf:datatype="http://www.w3.org/2001/XMLSchema#float">-27.4</smartSpace:hasValue>
<smartSpace:tempHasTimestamp rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-07-28T03:32:58.992Z                             

</smartSpace:tempHasTimestamp>

<smartSpace:hasId rdf:datatype="http://www.w3.org/2001/XMLSchema#string">Sensor 2</smartSpace:hasId>
<smartSpace:hasSeason rdf:datatype="http://www.w3.org/2001/XMLSchema#string">summer</smartSpace:hasSeason>
<rdf:type rdf:resource="http://localhost:8080/smartSpace#tempValue"/>

</rdf:Description>

<rdf:Description rdf:about="http://localhost:8080/smartSpace#humitidy2Readings2">
<smartSpace:hasHumidityReading

rdf:datatype="http://www.w3.org/2001/XMLSchema#integer">43</smartSpace:hasHumidityReading>
<smartSpace:humidityHasTimestamp rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-07-28T03:33:01.984Z 

</smartSpace:humidityHasTimestamp>
<rdf:type rdf:resource="http://localhost:8080/smartSpace#humidityValue"/>

</rdf:Description>
<rdf:Description rdf:about="http://localhost:8080/smartSpace#pressureReading2">

<smartSpace:hasPressureReading
rdf:datatype="http://www.w3.org/2001/XMLSchema#float">756.75</smartSpace:hasPressureReading>

<smartSpace:pressureHasTimestamp rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-07-
28T03:33:21.986Z</smartSpace:pressureHasTimestamp>

<rdf:type rdf:resource="http://localhost:8080/smartSpace#pressureValue"/>
</rdf:Description>

</rdf:RDF>

Figure 5.6: Sample output from Semantic Validation with RDF/XML serialisation

5.6 Evaluating Effectiveness and Efficiency of SISDaV in

Home Automation

The evaluation considers the metrics defined in section 5.2 to estimate both the ef-

fectiveness and efficiency of SISDaV framework as contextualised in the Smart Home
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@prefix owl:   <http://www.w3.org/2002/07/owl#> .
@prefix rdf:   <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix xsd:   <http://www.w3.org/2001/XMLSchema#> .
@prefix rdfs:  <http://www.w3.org/2000/01/rdf-schema#> .
@prefix smartSpace: <http://localhost:8080/smartSpace#> .
smartSpace:temp2Readings2

a                            smartSpace:tempValue ;
smartSpace:hasId "Sensor 2"^^xsd:string ;
smartSpace:hasSeason "summer"^^xsd:string ;
smartSpace:hasValue "15.15"^^xsd:float ;

smartSpace:isInconsistent "Erroneous reading" ;
smartSpace:tempHasTimestamp "2020-08-03T04:22:03.125Z"^^xsd:dateTime .

smartSpace:tempReadings5
a                            smartSpace:tempValue ;
smartSpace:errorData "Missing Value"^^xsd:string ;
smartSpace:hasId "Sensor 1"^^xsd:string ;
smartSpace:hasSeason "summer"^^xsd:string ;
smartSpace:hasValue "8888.88"^^xsd:float ;
smartSpace:tempHasTimestamp "2020-08-03T04:22:09.154Z"^^xsd:dateTime .

smartSpace:humidityMeanValue
a       rdfs:Class .

smartSpace:pressureMeanValue
a       rdfs:Class .

smartSpace:pressure2Reading2
a                              smartSpace:pressureValue ;
smartSpace:hasPressureReading "753.21"^^xsd:float ;
smartSpace:pressureHasTimestamp

"2020-08-03T04:21:40.124Z"^^xsd:dateTime .

smartSpace:humitidy2Readings2
a                              smartSpace:humidityValue ;
smartSpace:hasHumidityReading 40 ;
smartSpace:humidityHasTimestamp

"2020-08-03T04:21:40.124Z"^^xsd:dateTime .

Figure 5.7: Sample output from Semantic Validation with Notation3 (.n3) serialisation

case study. The number of erroneous quadruples processed by SISDaV in each valid-

ation cycle differs in the two experimental runs. A single completed validation Cycle

is considered to be the combined window of semantic streaming data selection and

reasoning in the experiment. This excludes the window containing the raw sensor

streaming data generation and its translation into a logical stream or semantic triple

pattern. The reasoning window (also called validation window) describes the actual

inference performed on each semantic stream, based on conditions in the validation

rule.

The evaluation process specifically targets estimating the semantic validation of

Inconsistent data point produced within each validation window. Figure 5.6 and 5.7

show sample outputs of semantic validation of sensor streaming data in a particular

validation window, produced as a triple pattern. The summary of semantic validation

is produced over continuous validation windows with the cycle. Figure 5.8 indicate a

typical summary of semantic validation on semantic streaming data within a validation

cycle based on specific event and validation rule. In an attempt to get a smooth trend in

interpreting the output of each validation cycle concerning the effectiveness and effi-
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Door leakage: true
Window leakage: false
Heat Regulator: OFF
Coolant Regulator: ON
Season of the year: summer
Rule File: H:\multistream\dataset\rule\summer.txt
PlausibiltyCheck count: 1
ConsistencyCheck count: 4
InconsistencyCheck count: 1
nullCheck count: 1
Relevance : 0.50
Recall Ratio: 0.50
Validation Score: 0.71
Total Quadruple inferred: 5834
Total Window Cycle: 268
CSPARQL Query Time: 10.0014

Figure 5.8: Snapshot of Output from a Validation Cycle

ciency evaluation, the Cumulative Moving Average (CMA) is applied in all the evaluation

results. In the first round of the experiment involving a single point of an inconsistent

data point, the semantic validation framework can perform semantic validation on

average of 49 quadruples in each streaming window and a total of 3150 per validation

cycle. The SISDaV framework can produce a total of 338,904 inferred quadruples over

2000 validation cycles.

Similarly, in the second experimental run, SISDaV framework is able to produce an

average of 103 quadruples in each streaming window with a total of 3035 quadruples

per each validation cycle. The reduction in the total quadruples processed by each

validation cycle in the second experiment is due to the presence of the Hash function

built as part of the framework. This is responsible for removing duplicate value with the

same timestamps among raw streaming data. A total of 341,472 inferred quadruples are

produced at the end of 2000 validation cycles.
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Figure 5.9: Relevance Ratio of Serialised RDF Formats at two different experimental Runs with
Injections of Inconsistent Data Points per Streaming window

5.6.1 Effectiveness Evaluation of SISDaV in Home Automation

The two experimental runs are able to produce a total of 680,376 inferred quadruple

statements (triple statement with timestamp) from the semantic validation process.

The number of quadruples produced within each streaming window depends on the

maximum duration of semantic stream selection and sleep duration. Figure 5.9 shows

the results of the estimation of the Relevance score of the validation of SISDaV from

both experimental runs. The score was stable between 86% and 88% for the two ex-

perimental runs with not much significant difference among the serialised formats.

The spike in the first 10 windows is due to low plausibility count at the earlier stage

of the streaming node. In addition, the drop in the relevance ratio between the 250th

and 1000th validation cycle is caused by aggregated streaming windows with a signi-

ficant number of Plausibility count. Table 5.3 and Table 5.4 provides a more detail

account of the relevance ratios of the four RDF serialised formats across interval of 400

cycles. The values were reduced to range 0 to 1 and computed with Cumulative Moving

Average(CMA) over successive intervals of validation cycles .

Similarly, Figure 5.10 presents the validation score showing the Validation score

(accuracy) of SISDaV framework above 88% across all the validation cycles in both

experimental run. Furthermore, the RDF serialise formats do not have any significant
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Table 5.3: Relevance Score SISDaV with Single Inconsistent Data Point per Streaming Window

Format
Cumulative Mean Average of Relevance Score

400 800 1200 1600 2000

RDF/XML 0.86 0.87 0.88 0.88 0.88

Turtle 0.86 0.87 0.88 0.88 0.88

NTriple 0.86 0.87 0.88 0.88 0.88

N3 0.89 0.87 0.88 0.88 0.88

Table 5.4: Relevance Score of SISDaV with Ten (10) Inconsistent Data Point per Streaming
Window

Format
Cumulative Mean Average of Relevance Score

400 800 1200 1600 2000

RDF/XML 0..86 0..86 0.87 0.86 0.86

Turtle 0..86 0..86 0.87 0.86 0.86

NTriple 0..86 0..86 0.87 0.86 0.86

N3 0.86 0.86 0.87 0.86 0.86

Table 5.5: Validation Score of SISDaV with Single Inconsistent Data Point per Streaming Window

Format
Cumulative Mean Average of Validation Score

400 800 1200 1600 2000

RDF/XML 0.89 0.89 0.89 0.9 0.9

Turtle 0.89 0.89 0.89 0.89 0.89

N-Triple 0.89 0.89 0.89 0.89 0.89

N3 0.89 0.89 0.9 0.9 0.9

Table 5.6: Validation Score of SISDaV with Ten (10) Inconsistent Data Point per Streaming
Window

Format
Cumulative Mean Average of Validation Score

400 800 1200 1600 2000

RDF/XML 0.88 0.89 0.89 0.89 0.89

Turtle 0.88 0.89 0.89 0.89 0.89

N-Triple 0.88 0.89 0.89 0.89 0.89

N3 0.88 0.89 0.89 0.89 0.89
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Figure 5.10: Validation Score of RDF Formats at Two Experimental runs with Injection of
Inconsistent Data Points per Streaming window

effect on the semantic validation process as all of them can reach a peak of 90% in both

experiments from the 10TH Cycle. Table 5.5 and Table 5.6 shows the exact value of the

validation score computed as CMA at separate interval of 400 cycles for each serialised

format. The results of the two experimental runs (Table 5.5 and Table 5.6) shows a very

slight variation, though still insignificant.

The implication of the results from the evaluations of SISDaV suggests a slight change

in terms of effectiveness, particularly in application with a high error rate. In addition,

the result corresponds to the total fraction of the inconsistent data points injected into

each validation cycle during both experiments.

5.6.2 Efficiency Evaluation of SISDaV in Home Automation

The efficiency of SISDaV has been considered in terms of Time-based performance

measure. This is considered an important and relevant metric due to the dynamic

nature of IoT streaming data. At first, the experimental runs computes the estimates of

the average time required by SISDaV to complete the reasoning task for each validation

cycle. Further, the evaluation also computes the estimate for both the average pro-

cessing time and average latency experienced by the framework during the validation
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process.

Figure 5.11: Reasoning Time of RDF Formats at Two Experimental runs with Injection of Incon-
sistent Data Points per Streaming window

The reasoning time, processing time and latency of the semantic validation process

is estimated on each of the RDF serialised formats exclusively. Again, for each of the

performance metrics, a Cumulative Moving Average of the estimates are computed over

successive validation cycles in the separate experimental runs. Figure 5.11 shows the

performance of the reasoner with the validation rules that were fired in each semantic

validation window. The graph provides the estimate of the average time to complete a

semantic reasoning task and provide an inference within a validation cycle.

In figure 5.11, N-Triple and RDF/XML formats require more time in seconds to perform

inference in the first experiment, which is slightly lesser in the second experiment com-

pared to counterpart serialised formats. The estimate from both experiments indicates

the structure of N-Triple and RDF/XML serialised formats has effects on their expressiv-

ity. Most likely due to the resource-constrained feature, which will require more time to

be processed by the semantic reasoner or semantic reasoning engine. Also, the speed

of processing decreases along with the validation cycles for all the serialised format,

thanks to the optimized matching technique embedded in the Jena2 reasoner (Carroll

et al., 2004), in which the reasoning engine was built upon. More specific details of the
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reasoning time across separate intervals of validation cycles are presented in Table in

Appendix C.

Figure 5.12: Latency of RDF Formats at Two Experimental runs with Injection of Inconsistent
Data Points per Streaming window

Figure 5.12 also shows how Turtle serialised format can have a low significant in-

fluence on semantic validation process with a peak latency of 0.0023 seconds across

the validation cycles as seen in both experiments. The values suggest the possibility

of experiencing almost little or no delay between validation cycles in a typical smart

home reactive application as contained in the use case scenario. In contrast, there is a

high increase in peak latency of RDF/XML, N-Triple and N3 serialised formats. Based

on evidence from the two experimental runs, the peak average latency of the three

formats is measured as 9.285 seconds. The result equally confirms the effect of resource

constraints on RDF data formats when it comes to the issue of performing semantic

validation and inference on IoT streaming data in Smart Home automation.

Finally, the processing time estimates the combined duration for performing semantic

query execution and reasoning time on every semantic streaming data within each

cycle. Figure 5.13 shows no significant difference among all the four RDF serialised data

formats. The peak average processing time for the RDF data formats for the two experi-

mental runs is estimated at 9.724 seconds and 9.696 seconds respectively. More specific
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Table 5.7: Average Processing Times of Serialised Formats from Two Experimental Runs

Serialised

Formats

Mean Processing Time for 2000 Cycles

Experiment 1 Experiment 2

RDF/XML 9.733 9.710

N-Triple 9.750 9.714

N3 9.710 9.684

Turtle 9.701 9.675

detail of the average processing time of each serialised formats in the two experiments

is shown in Table 5.7. Experiment 1 and Experiment 2 indicates the mean processing

time of Single and Ten injections of Inconsistent data respectively. Though results of

average processing time in the two experiments show a slight difference, it does suggest

that enhancing semantic streaming data validation with deduplication technique can

slightly reduce processing time. This is because most of the duplicated raw Inconsistent

data points in the second experiment were previously pre-processed with the hashing

technique.

Figure 5.13: Processing Time of RDF Formats at Two Experimental runs with Injection of
Inconsistent Data Points per Streaming window
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5.7 Case Study 2: Smart Cities IoT-based Decision Sup-

port Systems

The case study introduced in this section describes the serious challenges in processing

the quality requirements of heterogeneous sensor streaming data to effectively enhance

data-driven decision support systems in the context of smart city innovations. The

operational decision-making process by the city planner can focus on knowing when to

reduce the Carbon monoxide concentration in the air to sustain a cleaner environment,

and in attempt to realise one of the pillars of the IBM smart city model (Kehoe et al.,

2011). The quality of such decisions is based on the streaming data being reported by

several heterogeneous sensors deployed within the city. Based on the evidence of raw

sensor data collected from a similar air quality monitoring scenario within the Italian

city, it was reported the streaming data are have a number of quality issues. These

quality problems include cross-sensitivities issues that are related to data plausibility

and, missing values related to incomplete sensor readings. The effects of the poor

estimations from sensor readings are seen to have tremendous effects in terms of

poor quality of real-time decisions by the smart city planner. Generally, the real-time

analysis of these heterogeneous sensor streaming data is expected to facilitate the

effective monitoring, reporting, decision support and fault detection systems that

support reactive services within a smart city (D’Aniello et al., 2018). The objective of

the case study evaluation is to demonstrate the feasibility of the validation approach,

and test both effectiveness and efficiency of SISDAV at different query windows with

various streaming interval as produced at the lower granularity level of the data layer in

the IBM smart city model.

5.7.1 Air Quality Data Set

In an attempt to get the view of the feasibility and evaluation of SISDaV within the

context of smart cities domain, the raw data set9 produced from embedded Air Quality

9https://archive.ics.uci.edu/ml/datasets/Air%2Bquality
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Chemical Multi-sensor device has been considered for the experiment. The device

was located on the field in a significantly polluted area, at road level, within an Italian

city. The data set was collected from the Italian city between the period of March 2004

to February 2005. It contains a total of 9358 instances of multi-variate data with a

timestamp. These data instances represent the averaged hourly rate from an array of

5 metal-oxide chemical sensors recordings. Specifically, the dataset consists of hourly

sensor recordings represent readings for Carbon Monoxides (CO), Benzene (C6H6),

Nitrogen oxides (NOx), Nitrogen Dioxides (NO2) and Titania (Non-Metallic hydro-

Carbon). The description of the attributes are as follows:

• Date in DD/MM/YYYY format

• Time measured in HH.MM.SS

• CO(GT) True hourly averaged concentration CO in mg /m3 (reference analyzer)

• PT08.S1 (tin oxide) hourly averaged sensor response (nominally CO targeted)

• NMHC(GT) True hourly averaged overall Non Metanic HydroCarbons concentra-

tion in mi cr og /m3 (reference analyzer)

• C6H6(GT) True hourly averaged Benzene concentration in mi cr og /m3 (reference

analyzer)

• PT08.S2(NMHC) titania hourly averaged sensor response (nominally NMHC tar-

geted)

• NOx True hourly averaged NOx concentration in ppb (reference analyzer)

• PT08.S3(NOx) tungsten oxide hourly averaged sensor response (nominally NOx

targeted)

• NO2 True hourly averaged NO2 concentration in mi cr og /m3 (reference analyzer)

• PT08.S4(NO2) tungsten oxide hourly averaged sensor response (nominally NO2

targeted)
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• PT08.S5(O3) indium oxide hourly averaged sensor response (nominally O3 tar-

geted)

• T Temperature in Â°C

• H Relative Humidity (%)

• AH Absolute Humidity

Some of the data points in the entire data set are reported to contain issues relating to

cross-sensitives/inference (Plausibility) problem, sensor and concept drift, and Missing

data points (Incompleteness problem). Specifically, the missing data points from the

sensor readings are recorded as -200, while cross-sensitivity issues are considered as

sensor readings that interfered with other related phenomena. The subset of raw data

set of interest to the study can be found in Appendix C.

5.7.2 Experiments

The aim of this experiment with the focus case study is to evaluate the effects of raw

data streaming rate and semantic query time on both effectiveness and efficiency of the

approach. The experimentation process has been conducted by re-using the standard

testbed for the smart home case study with similar hardware and software requirements

(refer to 5.5.2). Two separate rounds of experiments were conducted for each duration

of 72 hours and 120 hours respectively. The streaming windows and the query execution

duration were varied to subject the framework to stress and different experimental

conditions. Each round of the experiment concurrently and explicitly performs the

semantic validation process using the serialised RDF formats with the same raw stream-

ing data at run-time. The process is repeated for the different experimental conditions

involving the streaming windows and semantic query duration.

The streaming windows and generation for each sensor data values with timestamps

relating to CO, NOx , NO2 and C6H6 readings were simulated based on the values of

data set from the air quality measurement as discussed in 5.7.1. The run-time simulated
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streaming data values are required for the activation of the real-time streaming data

quality validation process. During the streaming data generation, the poor quality

attributes comprising of incompleteness, inconsistency and plausibility were injected

at specific streaming windows as contained in the actual air quality dataset. Specifically,

missing or incomplete sensor stream values are injected as -200, inconsistent/redund-

ant sensor stream are values outside the range 0.1 and 11.9 (being the actual minimum

and maximum values collected from CO sensors for the period of the project), and

plausible values are CO values that exhibit cross-sensitivity with that of C6H6 values at

the same timestamp. The assumption to base the relationship of false positive (plaus-

ible) values on this combination is because the porosity of hydrogen makes it possible

to interfere with CO sensors thereby interfering with the measurement (Chao et al.,

2005).

To allow better understanding and proper evaluation of the validation framework (SIS-

DaV ), erroneous data points are bound to the raw CO reading, which was maintained

at fixed streaming window interval for a fixed number of cycles in both rounds of ex-

periments. Each cycle contains a total of ten (10) continuous sensor streaming values

which represents the consistent, plausible, incomplete and Inconsistent streaming data.

Specifically, the first five streaming windows (i.e windows 1 to 5) of the CO sensor

produces incomplete (missing data) data, the next three windows (6th to 8th) produces

the inconsistent streaming values, the 9th and 10th streaming windows produces con-

sistent and plausible values respectively. In the first round of the experiment, all the

four types of sensors are allowed to produce streaming data simultaneously at every 1

minute with the query execution time being kept at every 10 minutes with 2 minutes

sleep time between successive query execution. The streaming and query execution

duration was adjusted in the second round of the experiment. This time, the streaming

window for each of the four types of sensors is set to 4 minutes with the query execution

time of 20 minutes at an interval of 20 minutes between successive semantic query.

These raw streaming data produced from the physical sensors deployed within the city
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is converted into appropriate serialised RDF data to allow semantic stream selection to

take place.

5.7.2.1 Semantic Stream Selection

The stream selection technique is similar to the one in the Smart Home Automation

case study, which uses the C-SPARQL query as the semantic stream aggregation or

collection technique. In the current case study, the stream selection duration for the

query execution at two different situations with different intervals was considered. The

first stream query shown in figure 5.14 performs the stream selection for a duration

of 10 minutes with a maximum sleep time of 2 minutes between successive query

execution. This will allow the semantic query to collect all the semantic streaming

data in the previous consecutive windows for 10 minutes with an interval of 2 minutes

between the next query execution. The stream selection duration was adjusted in the

second round of the experiment to reflect 20minutes for query execution or selection

duration with a maximum sleep of 20 minutes between an interval of query execution.

The duration for query execution caters for an extreme case of reduced duration for

sensor and IoT streaming data generation within the Smart City context, which will

normally be configured at an interval of 30 minutes or more. The semantic query is

able to process each of the heterogeneous streaming data concurrently by using the

graph pattern matching readily available within the C-SPARQL library. The output of the

semantic stream selection is pushed to the semantic reasoning engine, which performs

the validation process in a cycle pattern by utilising the validation rules.

5.7.2.2 validation Rules

The previous study (Roberge, 2000) that involves air quality measurements has shown

the relationship that exist between Carbon Monoxide (CO) and Nitrogen Oxides (NOx )/

Nitrogen Dioxides (NO2) are inversely proportional, while the relationship between

(NOx) and (NO2) are directly proportional. Based on the findings from the study, it

means that a reduction in the amount of CO emission will cause an increase in (NOx)

emission. Therefore, it makes sense to establish the validation rules for CO readings
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1 REGISTER QUERY sensorValueOf AS
2. PREFIX smartSpace:<http://localhost:8080/smartSpace#>
3. SELECT *
4. FROM STREAM <http://localhost:8080/smartSpace/streamCO> [RANGE 10m STEP 5m]
5. FROM STREAM <http://localhost:8080/smartSpace/streamNOX> [RANGE 10m STEP 5m]
6. FROM STREAM <http://localhost:8080/smartSpace/streamNO2> [RANGE 10m STEP 5m]
7. FROM STREAM <http://localhost:8080/smartSpace/streamBenzene> [RANGE 10m STEP 5m]
8. WHERE
9. {
11. ?COReadings smartSpace:hasCOValue ?COVal.
12. ?COReadings smartSpace:COHasTimestamp ?COTime.
13. ?NOXReadings smartSpace:hasNOxValue ?NOXVal.
14. ?NOXReadings smartSpace:NOxHasTimestamp ?NOXTime.
15. ?NO2Readings smartSpace:hasNO2Value ?NO2Val.
16. ?NO2Readings smartSpace:NO2HasTimestamp ?NO2Time.
17. ?benzeneReadings smartSpace:hasBenzeneValue ?benzeneVal.
18. ?benzeneReadings smartSpace:benzeneHasTimestamp ?benzeneTime.
19.  }
20. ORDER BY ASC(?COTime)

Figure 5.14: Semantic Stream Query listing

based on these relationships.

Based on the above-established relationships, a sample validation rule in figure 5.15 is

developed for checking the inconsistent semantic streams produced from the carbon

monoxide sensor. The rule specifically compares the current CO reading with a possible

range of consistent values with the timestamp, which must have been pre-determined

by the city planner or certified safe level of exposure. Being a class of heuristics, the

rule also relates CO reading with that of Benzene readings obtained within the same

timestamps to define the Plausibility rule (Figure 5.16). The Incompleteness rule is able

to track CO readings with an exact value of -200 and which corresponds to the same

value of NOx in the previous or current timestamp.

The three rules are processed by the semantic reasoning engine in a sequential manner.

In a more practical sense, each semantic streaming data previously aggregated by the

semantic query is first executed against the stream completeness rule to check if object

value of the semantic stream is complete or not empty, based on the schema matching.
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@prefix rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#
@prefix owl: http://www.w3.org/2002/07/owl#
@prefix rdfs: http://www.w3.org/2000/01/rdf-schema#
@prefix xsd: http://www.w3.org/2001/XMLSchema#
@prefix smartSpace: http://localhost:8080/smartSpace#

[inconsistentCheck:
(?COReadings smartSpace:hasCOValue ?COValue)
(?COReadings smartSpace:COHasTimestamp ?COTime)
greaterThan(?COValue,11.9)
(?NOXReadings smartSpace:hasNOxValue ?NOxValue)
(?NOXReadings smartSpace:NOxHasTimestamp ?NOxTime)
greaterThan(?NOxValue,322)
lessThan(?NOxValue,2683)
(?benzeneReadings smartSpace:hasBenzeneValue ?benzeneValue)
(?benzeneReadings smartSpace:benzeneHasTimestamp ?benzeneTime)
notEqual(?COValue,?benzeneValue)
equal(?COTime,?NOxTime)
equal(?COTime,?benzeneTime)
->
(?COReadings smartSpace:isInconsistent 'Inconsistent value')

]

Figure 5.15: Validation Rule for Inconsistent Carbon Monoxide Readings

The reasoner executes the plausible rule against the semantic streams in the next step

once the triple attributes of the stream are complete. In case the output of plausibility

rule is false, the consistency rule is then executed in the third step of the execution

plan to validate the object value of the triple is still within the true range of values. The

reasoning process immediately terminates on the current stream once a specific rule

condition in the current validation process is satisfied. Inference produced as an output

of the validation process is released for use by IoT-based reactive applications or to

support smart city decision support system through a web-based interface in a near

real-time manner.

5.7.3 Results and Analysis of case Study 2

In order to analyse the outputs from the semantic validation framework, the metrics

described in section 5.2 is used to further estimate the effectiveness of the framework.
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@prefix rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#
@prefix owl: http://www.w3.org/2002/07/owl#
@prefix rdfs: http://www.w3.org/2000/01/rdf-schema#
@prefix xsd: http://www.w3.org/2001/XMLSchema#
@prefix smartSpace: http://localhost:8080/smartSpace#

[plausibilityCheck:
(?COReadings smartSpace:hasCOValue ?COValue)
(?COReadings smartSpace:COHasTimestamp ?COTime)
greaterThan(?COValue,0.1)
(?benzeneReadings smartSpace:benzeneHasTimestamp ?benzeneTime)
(?benzeneReadings smartSpace:hasBenzeneValue ?benzeneValue)
greaterThan(?benzeneValue,0.1)
lessThan(?benzeneValue,63.7)
equal(?COValue,?benzeneValue)
equal(?COTime,?benzeneTime)
->
(?tempReadings smartSpace:isPlausible 'Plausible Value')

]

Figure 5.16: Validation Rule for Plausible Carbon Monoxide Readings

Similarly, the performance is based on a metric that involves reasoning time, latency and

processing time as applied in a smart city case study. The analysis of the semantic valid-

ation process from both experiments produced a total of 57,016 inferred quadruples in

the two experimental runs. For the first round of the experiment, each validation cycle

processed an average of 36 quadruples while the second experiment was only able 20

quadruples per validation cycle.

Furthermore, figure 5.17 and figure 5.18 describes the effectiveness of the approach

based on the different streaming window and stream selection duration. The Relev-

ance score (Figure 5.17) shows no clear difference among all the RDF serialisation

formats. The relevance score for each validation cycle and the streaming window is

stable between 98% and 99% across 350 validation cycles. The variation in the pre-
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Figure 5.17: Relevance Scores from Separate Streaming Windows and Query Execution Interval

ciseness of the validation process between the first 50 cycle is due to the initialisation

of the streamers at the early stage streaming window. Similarly, the validation score

(Figure 5.18) of the RDF serialised formats shows the accuracy of the validation process

to lie between 87% and 88%. The margin of almost 12% in the result of the validation

score shows the region in the validation process where the streaming windows are that

contains traces of missing and plausible data points.

In terms of estimating the reasoning time of the four serialised formats. Figure 5.19

shows that varying the query time with interval sleep time plays a significant role in the

semantic reasoning process. The first experiment shows N-Triple is fairly expensive in

terms of reasoning time with short query duration when compared to other formats.

This is reasonably due to its constrained expressivity during processing by the semantic

reasoner. The performance of N-Triple from the first experiment indicate it will re-

quire more time to complete a reasoning task, relative to the counterpart formats. The

reasoning time of N-Triple initially improved exponentially compared to RDF/XML,

within the first 300 cycles in the second experiment with values between 0.03 seconds

and 0.044 seconds before gradually increasing. In addition, the RDF/XML format is

considered another expensive format based on high streaming and query execution

time in the second experiment. The poor performance of RDF/XML can be trace to the
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Figure 5.18: Validation Scores from Separate Streaming Windows and Query Execution Interval

verbose or wordy format, which will require more read time by the reasoning engine

when performing semantic inference.

The results of the effectiveness and efficiency evaluation of the validation framework

focuses on the detection of inconsistent data points produced from the CO sensor

in each streaming cycle. There is no significant difference among the four serialised

formats in terms of Processing Time as shown in figure 5.20. Despite the different

experimental conditions in which the semantic validation process was conducted, the

total duration required by the framework to perform the semantic query and reasoning

on each validation cycle is stable at 600 secs beginning from the first 20 cycles from

both experimental runs.

Similarly, the Latency estimates maximum delay measured in seconds between

two successive validation cycles experienced by the validation framework. Figure 5.21
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Figure 5.19: Reasoning Time ofTwo Experimental Runs with Different Conditions

indicate there is no significant difference in the latency of RDF/XML. N3 and N-Triple

formats. This is apparent as the three different formats experienced the same duration

of delay across the validation cycles. The streaming time and query execution/sleep

time also has a significant influence on the latency of the validation framework. On the

contrary, both experimental runs with different streaming and query duration show

that the Turtle serialised format does not experience any delay between intervals of

validation windows across the validation windows.

5.8 Discussion of Results

In general, enhancing the IoT streaming data with semantics is a step to revolutionize

the performance of IoT-based reactive services and data-driven decision-making pro-

cesses for relevant web-based applications. The evaluation considered the semantics of

RDF data formats on effectiveness and efficiency. The efficiency evaluation has been
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Figure 5.20: Processing Time of Two Experimental Runs with Different Conditions

estimated in terms of time-based requirement on expressivity and resource consump-

tion (i.e time requirement) during the process of semantic validation of IoT streaming

data.The evaluation with application case study considered the case of sensor stream-

ing data that supports a Smart Home automation and the Smart City decision support

System. The two case studies described how the quality of the streaming data can easily

influence the output or performance of IoT-based reactive applications and data-driven

decision support system respectively.

In an attempt to properly evaluate the effectiveness and efficiency of the proposed

framework, it was subjected to a reasonable level stress test and comparative evalu-

ation. By this, the case study experiments were subjected to experimental conditions

that include varying the error injections rate and streaming rate in the first case study

(section 5.3), and varying the semantic query time with the data streaming rate in
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Figure 5.21: Latency of Two Experimental Runs with Different Conditions

the second case study (5.7). The stress test support an understanding of the strength

of the framework in extreme conditions of faulty IoT/sensor nodes or poor quality

streaming data. In the two application case studies, the evaluation of the framework

follows a comparative method that is based on the comparison of effectiveness and

efficiency among the various RDF serialisation formats. Specifically, the effectiveness

and efficiency evaluation of SISDaV in dealing with the quality requirements of sensor

streaming data with a focus on inconsistency, incompleteness and plausibility of the

sensor readings at run-time. The effectiveness evaluation in both use cases proves that

the validation technique can be sustained in Spatio-temporal software applications.

This is evident from its ability to manage the varying amount of raw streaming data

using window-based processing. Throughout the evaluation of both case studies, the

background knowledge that has been modelled as SmartSUM ontology have facilitated

the effective pre-processing raw IoT streaming data and semantic IoT stream persistent.
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The validation of both experiments from the two case studies was conducted by im-

plementing a program to determine the total no of erroneous data points that are

separately produced by each streaming thread within each streaming window. The

result was compared to the total number of detection points tracked by SISDaV in each

cycle. The distribution of the three categories of IoT stream quality issues are identified

and compared prior and after the semantic validation process for every streaming win-

dows. The results of each experiment from the two case studies were subjected further

analysis to enhance its interpretations by using the Cumulative Moving Average (CMA).

The CMA provides a proper way of smoothing and computing the running average of

the ordered evaluation results (computed based on effectiveness and efficiency metrics)

from each validation cycle. This allows filtering of all possible noise in the pattern and

to present the trend on the graph in a clear manner

The result of performance from the experiments clearly indicates there is no difference

in the pattern of RDF data formats in latency and processing time from experiments in

both case studies. Results from both application case studies show that the semantic

reasoning time within the framework can be contained in the interval between reads

of sensor nodes. Also, the efficiency is able to scale reasonably with an increasing

number of validation cycles in both experiments. This means the framework is able to

properly validate every streaming data points in a big sensor data environment that

permits sufficient semantic query time with reasonable time in delay. The accuracy of

the validation process in both case studies is reasonably stable between eighty-five and

ninety-three percent. This is due to randomisation in the streaming data generation

during run-time validation. In a real-life practical application, it is expected that the

accuracy of the validation will lie between 85 and 100 percent based on the outcome of

the experiment and standard operating condition.

Furthermore, in terms of optimising the performance of the reasoning process for

time efficiency, RDF suggests being slightly expensive compared to the other serial-
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isation formats. In addition, RDF data serialisation is clearly shown to be constrained

by system resources such as CPU time and Operating system job scheduler. Similarly,

estimating the efficiency of the framework from the dimension of latency and pro-

cessing time does not really have any visible difference, except it may be reasonable to

consider the Turtle format in cases where latency has a significant impact on semantic

processing. Hopefully, these preliminary findings can help the understanding of most

suitable semantic data serialization format with RDF data, which has been an issue in

implementing a semantic stream processing system.

In general, the evaluation outcomes shows the feasibility of the semantic validation

framework and also indicate that the semantic validation approach is time-based. The

results from the experiment indicate that the time-based requirement for the comple-

tion of the validation process varies proportionately with the experimental conditions.

This confirms the extent of the effectiveness and efficiency of the framework in related

smart space and IoT-based application scenarios.

5.8.1 Comparison with Similar Semantic IoT Streaming data processing

Approaches

Due to the early and emerging stage of research in the application of semantic approach

in IoT streaming data validation, only few approaches shares similar aspects with this

work. Firstly, the evaluation of SISDaV is performed to determine its feasibility as a

domain-agnostic solution that can serve as complementary to RDF stream processing

systems such as C-SPARQL, CEQLS, ETALIS and EP-SPARQL, which are currently lack-

ing in terms of reasoning capabilities. Secondly, in comparison to the existing smart

city Semantic-Driven framework (D’Aniello et al., 2018) and the C-SWRL IoT stream

approach (Jajaga & Ahmedi, 2017), SISDaV provides effective and efficient IoT streaming

data processing at lower a abstraction level rather than the context level as demon-

strated by the both frameworks.
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Similar to SISDaV, the smart city Semantic-Driven framework uses the C-SPARQL to

aggregate RDF streams that was previously annotated with existing SSN ontology and

domain models. However, their framework is not proven to be capable of handling a

concurrent heterogeneous multi-stream aggregation tasks for real-time data interoper-

ability. Besides, the SSN ontology used for the data stream enrichment and annotation

is incomplete and ambiguous in terms of concept description. It also filters and aggreg-

ate raw streams directly from sensor nodes at higher level abstraction and send them to

the next upper layer. However, SISDaV adopts the modified SSN ontology with hash

function and matching techniques to support multi-stream run-time annotation and

aggregation of IoT streaming data during IoT stream processing and validation. It also

emphasize on implementing the approach at lower level of abstraction before it can be

utilised at higher level of abstraction. In terms of reasoning approach, the smart city

framework adopts implement Trowl reasoner for its reasoning system. The reasoning

system does not support the closed-world assumption whereas, SISDaV was able to

leverage the Jena reasoning subsystem to maintain the closed-world assumptions. In

addition, the overall reasoning time takes significantly longer time when compared to

SISDaV. However, both approach conforms to previous work (Tallevi-Diotallevi et al.,

2013) that confirms smart city applications supports decision-making systems that

utilises time-based window processing.

Furthermore, Compared to C-SWRL, SISDaV have also implemented a layered semantic

framework that adopts C-SPARQL with RDF data model and semantic rule reasoning at

the center of the semantic approach. It provides a feature to evaluate the alternative

serialised RDF data formats to gain the understanding of the expressivity at lower ab-

straction level. Also, SISDaV approach considers missing data as a type of sensor stream

quality issues. In C-SWRL this was treated as Negation-as-Failure using the C-sPARQL

library, which was limited in tracking various forms of incomplete stream and other

types of quality issues in IoT streams. SISDaV have effectively and efficiently supported

all forms of incomplete IoT streams including other types of quality issues associated

with IoT streaming data by providing the generic Time-aware validation rules.
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Finally, the evaluation of SISDaV approach and its framework have demonstrated

both effectiveness and efficiency of the approach in time-critical reactive applications

involving the IoT streaming data. It also provides a window-based processing support

with its continuous rule and reasoning features, which are currently missing in the

smart city Semantic-Driven and C-SWRL approaches.

5.9 Conclusion

In the Chapter, the evaluation of SISDaV have been conducted in two ways: to determ-

ine the effectiveness in terms of the ability to properly identify poor quality run-time

IoT streaming data and, the efficiency by being able to operate in a timely manner. Both

evaluation adequately shows promising results with provision for improvement in the

future.

The RDF serialised data formats have been evaluated for representing and reason-

ing of IoT streaming data. Various types of sensor streaming data have been analysed

and compared using the different RDF serialised formats with a focus on effectiveness

and efficiency in terms of semantic query duration, types of stream quality issues and,

number of validation cycles. It is observed that the expressivity of semantic data format

can play some role in the aspect of semantic reasoning on run-time IoT streaming data

validation. The experiments further confirm that semantic technology including stand-

ards are compatible with IoT streaming data processing. It enhances interoperability

and real-time reasoning in an IoT streaming environment with relatively large data size.

The experimental outcomes demonstrate the feasibility of the proposed semantic IoT

Streaming Data Validation Framework (SISDaV ), as it applies to IoT-based reactive

services/applications and data-driven decision-making systems. The evaluation is able

to show the extent of the effectiveness and efficiency of SISDaV in the context of smart

home automation and smart city data-driven decision-making activity. Furthermore,
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evaluation of SISDaV framework clearly achieves the focus of the fourth objective of

the study. Therefore, it can be considered that SISDaV framework possess some degree

of agility as its components can interact in an iterative and timely manner to deliver the

output of the validation process.
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Conclusions and Future work

The research conducted in this thesis is based on the application and enhancement

of semantic stream reasoning domain, which main focused is on integrating the RDF

stream processing system with reasoning technique for IoT streaming data. The find-

ings from the research has the potential for filling the gap between the IoT paradigm

where streaming data are often generated and processed, but with no standard format

or semantic representation and reasoning abilities.

The primary aim of this research is to develop a semantic-driven approach and its

resultant framework that integrates a set of proposed new models and mechanisms in-

cluding semantic sensor ontology extensions, data transformation model, enhancement

of Jena rule syntax, generic sensor streaming data validation rules and the incremental

IoT data persistent model. Collectively, these models and mechanism serve to provide

effective and efficient IoT streaming data pre-processing, semantic modelling, selection

and reasoning to achieve run-time data stream quality validation tasks. The remain-

ing part of this chapter discusses how the objectives defined in the first chapter are

met. This is followed by research contributions. The future direction of the research is

outlined in the final section.
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6.1 Analysis of Research Objectives

In the thesis, several design requirements were identified that are relevant to the major

aim of this research (as outlined in Chapter one) :

"To Provide an Effective and Efficient Approach for Semantic Validation of IoT stream-

ing data at run-time".

These requirements include Time consideration, data integration, data-driven pro-

cessing, semantic query support, Inference support, Stream quality management, and

Historical stream management. The major objective of the research is to develop SIS-

DaV - a semantic-driven framework for quality validation of RDF-based IoT streaming

data. SISDaV is based on semantic modelling, querying and continuous reasoning

with a set of time-aware validation rules. Table 6.1 shows how SISDaV framework

is able to satisfy the requirements with the design considerations and features. The

framework is able to achieve both Time consideration (R1) and integration (R2) re-

quirements through the feature of data stream selection, continuous Time-aware rules

and semantic reasoning. Data-Driven Processing (R3) is considered to be the essential

aspect of Data Transformation and Stream selection features with C-SPARQL driving

the multiple query aspect (R4). SISDaV achieves stream quality management (R6) with

the support of the RDF stream processing through the injection of semantic rules into

the stream processing pipeline to perform semantic reasoning for inference support

(R5). Incremental persistence feature facilitates newly inferred outputs to be added to

the background knowledge graph through node join operation as part of historical data

processing (R7).

6.1.1 Objective I: Relationship of Sensor and IoT Stream quality Prob-

lem

In the time past, various classifications have been provided for describing the common

data quality issues in sensor readings. The first objective of the thesis was to review

various literature to see the common trends and define a relationship between the
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Table 6.1: SISDaV Features and Design Requirements

Design Decisions

Requirements
R1 R2 R3 R4 R5 R6 R7

Data Transformation *

Multiple Data Selection * * * *

SenTAR * * * *

Continuous Reasoning * * * *

Incremental Persistence *

various sensor data quality problems in relation to IoT streaming data. By accomplishing

this objective, taxonomy of Uncertainty problem in sensor/IoT streaming data have

been provided (described in section 2.2 ). This enabled the development of a foundation

for developing insight into providing a holistic approach to solve the quality issues in

an Internet of Things environment, where data are being produced in high volume with

associated velocity.

6.1.2 Objective II: Evolving and Lightweight Ontology model for IOT

Resource and Sensor Streams Specification and Integration

The second objective was to develop a model that can: (i) homogenize different IoT

nodes to achieve interoperability (ii) assist in the annotation and integration of IoT

streaming data (iii) support the RDF serialised data format for IoT streaming data. The

objective has been accomplished by extending related ontology models and adapting

relevant schema for the successful delivery of the IoT streaming data validation system

requirements. The development and implementation of SmartSUM Ontology achieved

this objective (as described in section 3.3). Being lightweight, SmartSUM consist of

simple unambiguous specification and reusable concepts that can be easily transformed

into RDF graph. Its evolving attribute makes it possible to support the frequent update

of new inferred streams and addition of new IoT node.
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6.1.3 Objective III: Continuous Reasoning Approach with Generic Data

Validation Rules

The third objective is to enable the continuous reasoning technique that facilitates the

run-time inference task for IoT streaming data during the stream validation process.

The objective has been accomplished through the use of modified Jena rule language

with reasoning subsystem (refer to section 4.3.3). The run-time requirement of the

continuous reasoning engine benefits from the temporal component of C-SPARQL

query that was layered with the new time-based Jena rule syntax. Specifically, the

continuous feature of the reasoning engine combines C-SPARQL with the time-aware

rules in the native Jena reasoner to perform the continuous reasoning and inference

task.

6.1.4 Objective IV: Approach Integration and Automation into a Tightly-

Coupled Unified Framework

The fourth object focused on achieving a unified tightly-coupled semantic-driven frame-

work for the processing and validation of IoT streaming data at the semantic layer of

IoT applications. This objective has been well accomplished with SISDaV framework

(refer to section 4.4). SISDaV can combine the task of RDF data serialisation with the

semantic stream processing and continuous reasoning process while relying on the rule

selection algorithm to perform the semantic data stream validation task. Each process is

performed sequentially and exclusively until inference is produced and the incremental

data persistence is completed. The framework is, therefore, able to facilitate run-time

semantic integration and interoperability, stream query with reasoning support, and

maintenance of the background knowledge graph for consistency of concepts during

the validation process of IoT streaming data.
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6.1.5 Objective V: Evaluation using Real world Case Studies with fo-

cus on RDF Serialised Formats

To enable critical evaluation process, the thesis considered different real-life case stud-

ies with several rounds of experiments using different real-life data sets from different

IoT/Sensor streaming domains. Firstly, several sensor stream quality issues were re-

searched and investigated to enable the construction of the prototype architecture

(see Section 5.4). Considering the common quality issues relating to Inconsistency,

plausibility and Incompleteness/Missing problems in sensor/IoT streaming data, high

volume data dataset from smart home automation and air quality measurement in

smart city projects are processed for streaming data quality validation (refer to sections

5.3.1 and 5.7.1). Secondly, experimental runs for a specific case study concerning each

of the quality problems was performed under various experimental conditions (refer

to sections 5.5.2 and 5.7.2). The implementation of the prototype architecture also

demonstrates the feasibility of the approach. Thirdly, the comparative evaluation of the

semantic validation process with the semantic IoT data stream model were performed

in sections 5.6 and 5.7.3. The outcomes show that the proposed approach can achieve

both the effectiveness and efficiency of the approach.

In particular, to evaluate the effectiveness and efficiency of the approach, a comparative

method of the serialised RDF data is performed with four different real-life applica-

tion situations to determine the Relevance and Validation scores, semantic reasoning

time,processing time, and Latency (refer to sections 5.6 and 5.7.3). These suggest that

the proposed semantic-based approach enhance the process semantic IoT streaming

data serialisation, selection, reasoning, and quality validation via a common Application

Programming Interface.
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6.2 Conclusions and Contributions

The processing of raw IoT streaming data has always focused on the application of

semantic process at a higher level of applications. The findings from the investiga-

tions have demonstrated that semantic process is possible at the lower granularity

levels of IoT processing applications, which can include both the physical and logical

representations of the IoT streaming data. In particular, the work demonstrates the se-

mantic serialisations of the raw IoT streaming data using the alternative formats for RDF

data instead of the well known or popular XML-based format used in many applications.

While several reactive IoT applications and event processing systems focused spe-

cifically on semantic modelling of sensor streams and detection of events from these

streams, the continuous validation rules embedded within the SISDaV framework is

concerned with continuous validation of sensor streaming data and invocation of action

in response to specific IoT streaming data quality requirements. This feature is also

able to effectively and efficiently performs IoT streaming data quality detection and

mitigation in a near real-time pattern. The following contributions have been added to

the body of knowledge during the study.

6.2.1 Contribution I: SmartSUM Ontological Model

This thesis has presented a generic, lightweight semantic model named SmartSUM.

It builds on the major existing semantic sensor models, data quality dimensions, IoT

domain resources, Observation and Measurement schema, Time ontology, and SOSA

ontology model. It possesses two main features: 1) it support the evolution of know-

ledge graph based on the incremental data persistence and dynamic nature of the

streaming data and IoT validation process; 2) Knowledge graph embedding feature with

consistency checking among newly added concepts or individuals representing the IoT

streaming data.
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In addition, the model allows easier re-usability in other related domain due to its

unambiguous specification of concepts including its relevance in a similar streaming

environment where data plays a major role in driving processes for reactive services.

6.2.2 Contribution II: SenTAR Rules with Continuous Reasoning Ap-

proach

This thesis proposed a generic Semantic Time-Aware Validation Rules called SenTAR

to enable the definition of the validation rules for Inconsistent, Plausible and Incom-

pleteness IoT streaming data. The rule is developed as an extension of the popular

Jena rule syntax, which is processed as a forward chain production rule. The Addition

of new window constructs enables users to specify the time constraints to be used

by the native validation or processing engine as part of the software project. These

time requirement can be defined at the rule level, which executes globally across all

the streaming windows in the IoT streaming environment, or at a local window that is

restricted to a specific application. SenTAR complements C-SPARQL and existing Jena

reasoning engine or subsystem to achieve continuous reasoning functionality.

6.2.3 Contribution III: SISDaV framework

Based on the aforementioned semantic-based system, SISDaV was implemented. It

incorporates various mechanisms (such as the raw data transformation, selection al-

gorithm and serialisation) with the semantic process (including querying and reasoning)

to form a layered structure. The mechanisms collectively describes the semantic valida-

tion approach and also forms the fundamental building block for SISDaV.

SISDaV is capable of managing IoT streaming data at the granular level of the web

applications, in order to provide data validation operations to reactive services and

related data-driven decision making systems. In addition, owing to its semantic-driven

technique, the validation approach also manages the semantic stream selection and

continuous reasoning with rules as a single unified system. It can provide automated
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services to support the performance of web-based applications in the internet of things

environment.

6.3 Future work

This research is focused on enhancing rule-based reasoning to support typical RDF

stream processing system towards achieving a semantic validation approach for quality

requirements in IoT streaming data. One of the other major areas that contribute to

stream quality problems in sensors is the security violation of IoT in a cyber-physical

environment. This is because recent findings indicate that when IoT components are

attacked, the behaviour of such components can deviate from the expected pattern

which can result in sensor providing false or poor quality readings. In future work,

the validation framework will consider including privacy management as part of the

extended solution to support such a challenging environment.

In addition, for the future development of the semantic reasoning engine, the existing

research will need to be extended to support a distributed reasoning approach. The

option to decentralise the current reasoning approach will considerably improve the

scalability of semantic streaming data validation process, especially in a high com-

puting environment where constraints on resource usage are highly predominant and

inevitable.

In the meantime, the proposed framework is unable to serialise and process the other

categories of serialised RDF data. The inability of the framework is due to the limitation

of Jena reasoning subsystem and the low expressivity to support semantic rules based

on other categories of serialised RDF data formats. The future development on the

semantic reasoning engine will consider a hybrid reasoning system that includes the

processing of other non-XML based RDF data such as Entity Notation, JSON _LD and

HDT for better-optimised performance.
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Glossary

A.1 Glossary

• ActiveMQ : It is an Apache Message Oriented Middleware (MOM) which is often

implemented with Java Mssage Service(JMS) specification.

• Ambient temperature : It describes the temperature of the air around an object

indoor or outdoor

• Event : An event is anything that happens within a specified time and that can be

captured within a system or an enterprise.

• Materialization :This corresponds to the technique of computation and storage

of inferred triples to enhance query performance .

• Stream : A stream is a continuous flow of event object that are produced by

numerous connected devices, IoT and other types of sensors.

• W3C : An international Organisation that promotes standard for web and interop-

erability between web products through provision of specifications and reference

software
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B.1 Prototype Application Screenshots

Figure B.1: Summary page of web Interface
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Figure B.2: Sensor State Screenshot

Figure B.3: Controller Set-Point Screenshot
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Sample Air Quality Data Set

Date Time CO(GT) NMHC(GT) C6H6(GT) Nox

10/03/2004 18:00:00 2.6 150 11.9 166

10/03/2004 19:00:00 2 112 9.4 103

10/03/2004 20:00:00 2.2 88 9 131

10/03/2004 21:00:00 2.2 80 9.2 172

10/03/2004 22:00:00 1.6 51 6.5 131

11/03/2004 16:00:00 2.2 95 8.3 193

11/03/2004 17:00:00 2.9 150 11.2 243

11/03/2004 18:00:00 4.8 307 20.8 281

11/03/2004 19:00:00 6.9 461 27.4 383

11/03/2004 20:00:00 6.1 401 24 351

11/03/2004 21:00:00 3.9 197 12.8 240

11/03/2004 22:00:00 1.5 61 4.7 94

11/03/2004 23:00:00 1 26 2.6 47

12/03/2004 00:00:00 1.7 55 5.9 122

12/03/2004 01:00:00 1.9 53 6.4 133
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12/03/2004 02:00:00 1.4 40 4.1 82

12/03/2004 03:00:00 0.8 21 1.9 -200

12/03/2004 04:00:00 -200 10 1.1 21

12/03/2004 05:00:00 0.6 7 1 30

12/03/2004 06:00:00 0.8 17 1.8 56

12/03/2004 07:00:00 1.4 33 4.4 109

12/03/2004 08:00:00 4.4 202 17.9 307

12/03/2004 09:00:00 -200 -200 22.1 -200

12/03/2004 10:00:00 3.1 208 14 187

12/03/2004 11:00:00 2.7 166 11.6 216

12/03/2004 12:00:00 2.1 114 10.2 143

12/03/2004 13:00:00 2.5 140 11 160

12/03/2004 14:00:00 2.7 169 12.8 163

12/03/2004 15:00:00 2.9 185 14.2 190

12/03/2004 16:00:00 2.8 165 12.7 178

12/03/2004 17:00:00 2.4 133 11.7 150

12/03/2004 18:00:00 3.9 233 19.3 206

12/03/2004 19:00:00 3.7 242 18.2 202

12/03/2004 20:00:00 6.6 488 32.6 340

12/03/2004 21:00:00 4.4 333 20.1 274

12/03/2004 22:00:00 3.5 215 14.3 253

12/03/2004 23:00:00 5.4 367 21.8 300

13/03/2004 00:00:00 2.7 122 9.6 193
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13/03/2004 01:00:00 1.9 67 7.4 139

13/03/2004 02:00:00 1.6 43 5.4 83

13/03/2004 03:00:00 1.7 46 5.4 -200

13/03/2004 04:00:00 -200 56 6.2 109

13/03/2004 05:00:00 1 30 2.6 62

13/03/2004 06:00:00 1.2 27 2.9 53

13/03/2004 07:00:00 1.5 47 5.1 139

13/03/2004 08:00:00 2.7 132 11.8 256

13/03/2004 09:00:00 3.7 239 15.1 295

13/03/2004 10:00:00 3.2 160 12.9 250

13/03/2004 11:00:00 4.1 283 16.1 296

13/03/2004 12:00:00 3.6 210 14 239

13/03/2004 13:00:00 2.8 154 12.3 153

13/03/2004 14:00:00 2 112 8.6 118

13/03/2004 15:00:00 2 108 9.2 119

13/03/2004 16:00:00 2.5 111 10.2 138

13/03/2004 17:00:00 2.3 97 10.6 148

13/03/2004 18:00:00 3.2 191 15.5 227

13/03/2004 19:00:00 4.2 258 19.6 277

13/03/2004 20:00:00 4.2 284 19.2 279

13/03/2004 21:00:00 4.2 269 18.3 283

13/03/2004 22:00:00 3.1 180 13.1 214

13/03/2004 23:00:00 2.6 116 10.9 172
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14/03/2004 00:00:00 2.9 93 11 190

14/03/2004 01:00:00 2.8 131 11.9 174

14/03/2004 02:00:00 2.5 92 8.6 128

14/03/2004 03:00:00 2.4 132 9.7 -200

14/03/2004 04:00:00 -200 56 5.2 70

14/03/2004 05:00:00 1.2 32 3.7 53

14/03/2004 06:00:00 1 29 2.5 44

14/03/2004 07:00:00 0.9 27 2.4 74

14/03/2004 08:00:00 1.4 36 4.2 101

14/03/2004 09:00:00 1.6 57 6.4 118

14/03/2004 10:00:00 2.2 129 8.6 144

14/03/2004 11:00:00 2.8 148 10.9 176

14/03/2004 12:00:00 2.8 145 10.7 161

15/03/2004 02:00:00 1.8 66 7 108

15/03/2004 03:00:00 1.1 44 4.4 -200

15/03/2004 04:00:00 -200 44 4 66

15/03/2004 05:00:00 1 39 3.9 88

15/03/2004 06:00:00 1.4 51 6.4 138

15/03/2004 07:00:00 2.2 107 9.7 228

15/03/2004 08:00:00 5.5 336 25.9 360

15/03/2004 09:00:00 8.1 618 36.7 478

15/03/2004 10:00:00 5.8 438 26.6 394

15/03/2004 11:00:00 4.2 334 20.1 319
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15/03/2004 12:00:00 3.1 221 14.1 201

15/03/2004 13:00:00 2.9 207 14.9 171

15/03/2004 14:00:00 2.9 191 15.4 159

15/03/2004 15:00:00 2.5 185 12.1 153

15/03/2004 16:00:00 2.3 141 11.5 143

15/03/2004 17:00:00 2.8 214 14.8 156

15/03/2004 18:00:00 6.1 471 32.1 314

16/03/2004 15:00:00 2.8 228 14.6 180

16/03/2004 16:00:00 2.9 201 16.6 184

16/03/2004 17:00:00 2.9 199 15.8 190

16/03/2004 18:00:00 3.4 237 17.8 184

16/03/2004 19:00:00 3.9 261 19.1 181

16/03/2004 20:00:00 3.2 230 15.8 166

16/03/2004 21:00:00 5.1 349 24.9 317

16/03/2004 22:00:00 2.6 183 13.5 184

16/03/2004 23:00:00 1.7 88 9.1 130

17/03/2004 00:00:00 1.7 85 8.6 132

17/03/2004 01:00:00 1.2 47 5.4 95

17/03/2004 02:00:00 0.9 34 4.1 70

17/03/2004 03:00:00 0.7 26 2.6 -200

17/03/2004 04:00:00 -200 17 1.9 54

17/03/2004 05:00:00 0.5 11 1.6 28

18/03/2004 04:00:00 -200 28 2.9 60
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18/03/2004 05:00:00 0.6 20 2.5 37

18/03/2004 06:00:00 0.7 26 3 68

18/03/2004 07:00:00 1.5 78 7.7 139

18/03/2004 08:00:00 4.7 319 23.3 339

18/03/2004 09:00:00 6.6 506 35.8 421

18/03/2004 10:00:00 4.5 -200 21.3 349

18/03/2004 11:00:00 2.8 -200 14.3 224

18/03/2004 12:00:00 2.2 -200 12.5 171

18/03/2004 13:00:00 2.2 -200 12.2 149

18/03/2004 14:00:00 2.3 -200 13.1 137

18/03/2004 15:00:00 2.2 -200 14.4 149

18/03/2004 16:00:00 2.8 -200 16.8 172

18/03/2004 17:00:00 2.7 -200 14.5 166

18/03/2004 18:00:00 3.7 -200 21.5 214

18/03/2004 19:00:00 5.1 -200 26.4 280

18/03/2004 20:00:00 5.1 -200 26 276

18/03/2004 21:00:00 3.2 -200 14.1 178

18/03/2004 22:00:00 2.1 -200 10.3 129

18/03/2004 23:00:00 1.7 -200 8.3 95

19/03/2004 00:00:00 2 -200 8.9 126

19/03/2004 01:00:00 1.6 -200 6.6 103

19/03/2004 02:00:00 0.9 -200 3.6 48

19/03/2004 03:00:00 0.7 -200 2.5 -200
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19/03/2004 04:00:00 -200 -200 1.8 20

19/03/2004 05:00:00 0.5 -200 1.3 18

19/03/2004 06:00:00 0.7 -200 2.3 56

19/03/2004 07:00:00 1.5 -200 6.7 115

19/03/2004 08:00:00 4.8 -200 22.8 320

19/03/2004 09:00:00 6.2 -200 31.3 357

19/03/2004 10:00:00 4 -200 19.2 253

19/03/2004 11:00:00 3.3 -200 16.4 218

19/03/2004 12:00:00 2.8 -200 14 192

19/03/2004 13:00:00 3 -200 15.3 176

19/03/2004 14:00:00 3.3 -200 16.7 198

20/03/2004 09:00:00 2.4 -200 10.5 147

20/03/2004 10:00:00 2.6 -200 12.5 166

20/03/2004 11:00:00 2.8 -200 12.3 195

20/03/2004 12:00:00 2.6 -200 11.7 182

20/03/2004 13:00:00 2.6 -200 11.7 168

20/03/2004 14:00:00 2.1 -200 9.3 125

20/03/2004 15:00:00 1.7 -200 7.6 95

20/03/2004 16:00:00 1.6 -200 6.7 79

20/03/2004 17:00:00 2.1 -200 9.7 119

20/03/2004 18:00:00 2.3 -200 12.4 142

20/03/2004 19:00:00 3.5 -200 16.6 215

20/03/2004 20:00:00 3.9 -200 16.4 229
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20/03/2004 21:00:00 3.3 -200 13.7 206

20/03/2004 22:00:00 2.3 -200 9.9 147

20/03/2004 23:00:00 2.1 -200 8.9 122

21/03/2004 00:00:00 2.8 -200 10.6 175

21/03/2004 01:00:00 2.1 -200 7.4 133

21/03/2004 02:00:00 1.6 -200 6.2 89

21/03/2004 03:00:00 1.6 -200 6.5 -200

21/03/2004 04:00:00 -200 -200 5.8 85

21/03/2004 18:00:00 3.8 -200 15.1 173

21/03/2004 19:00:00 3.5 -200 12.6 185

21/03/2004 20:00:00 4.3 -200 15.1 266

21/03/2004 21:00:00 2.8 -200 9.9 188

21/03/2004 22:00:00 1.9 -200 8 122

21/03/2004 23:00:00 1.9 -200 7.9 112

22/03/2004 00:00:00 1.7 -200 6.1 93

22/03/2004 01:00:00 1.5 -200 5.1 74

22/03/2004 02:00:00 0.6 -200 1.7 23

22/03/2004 03:00:00 0.4 -200 0.7 -200

22/03/2004 04:00:00 -200 -200 0.8 17

22/03/2004 05:00:00 0.3 -200 0.7 15

22/03/2004 06:00:00 0.6 -200 2 41

22/03/2004 07:00:00 1.2 -200 5.1 86

22/03/2004 08:00:00 3.6 -200 17.7 226
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22/03/2004 09:00:00 3.7 -200 18.4 214

22/03/2004 10:00:00 1.8 -200 6.9 115

22/03/2004 11:00:00 1.6 -200 7.3 124

22/03/2004 12:00:00 1.9 -200 9.6 122

25/03/2004 03:00:00 0.7 35 1.4 -200

25/03/2004 04:00:00 0.5 29 0.9 18

25/03/2004 05:00:00 0.5 21 0.6 12

25/03/2004 06:00:00 0.6 46 1.4 43

25/03/2004 07:00:00 1.1 55 3.8 84

25/03/2004 08:00:00 2.7 271 11.6 184

25/03/2004 09:00:00 3.5 434 17.8 202

25/03/2004 10:00:00 2.3 300 8.8 133

25/03/2004 11:00:00 1.6 116 6.8 130

25/03/2004 12:00:00 1.3 95 5.9 106

25/03/2004 13:00:00 2 211 8.9 132

25/03/2004 14:00:00 1.9 168 8.2 106

25/03/2004 15:00:00 1.9 154 8.6 125

25/03/2004 16:00:00 2.2 267 10.1 138

25/03/2004 17:00:00 2 143 9.4 120

25/03/2004 18:00:00 2.9 374 14.6 158

25/03/2004 19:00:00 5.2 797 24.6 253

25/03/2004 20:00:00 4.6 698 21.6 231

25/03/2004 21:00:00 2.5 234 10.3 150
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25/03/2004 22:00:00 1.5 104 5.7 99

25/03/2004 23:00:00 1.2 67 4.5 75

26/03/2004 00:00:00 1.7 88 5.5 93

26/03/2004 01:00:00 1.4 79 4.8 79

26/03/2004 02:00:00 1.2 61 3.6 67

26/03/2004 03:00:00 0.6 43 1.7 -200

26/03/2004 04:00:00 0.7 40 2.2 45

26/03/2004 05:00:00 0.8 52 3 72

26/03/2004 06:00:00 0.9 64 4 103

26/03/2004 07:00:00 1.6 88 6.7 132

26/03/2004 08:00:00 3.4 375 16.7 239

26/03/2004 09:00:00 3.8 592 19.3 275

26/03/2004 10:00:00 3.1 357 14.8 232

26/03/2004 11:00:00 2.7 296 13.4 180

26/03/2004 12:00:00 2 181 11 112

26/03/2004 13:00:00 2.3 211 12.5 116

26/03/2004 14:00:00 1.9 199 8.4 103

26/03/2004 15:00:00 1.3 81 5.3 89

26/03/2004 16:00:00 1.9 143 8.8 112

26/03/2004 17:00:00 2.3 247 11.2 127

26/03/2004 18:00:00 2.4 239 11.6 125

26/03/2004 19:00:00 2.7 267 12.4 120

26/03/2004 20:00:00 2.6 261 10.6 120
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26/03/2004 21:00:00 1.5 97 6 99

26/03/2004 22:00:00 1.2 66 4.6 79

26/03/2004 23:00:00 1.1 60 4.1 66

27/03/2004 00:00:00 1.5 77 5.2 94

27/03/2004 01:00:00 1 57 3.2 70

27/03/2004 02:00:00 1.2 65 4.5 75

27/03/2004 03:00:00 1.1 59 3.8 -200

27/03/2004 04:00:00 -200 48 3.8 57

27/03/2004 05:00:00 0.8 27 1.9 32

27/03/2004 06:00:00 0.9 25 2.4 54

27/03/2004 07:00:00 1.1 42 3.3 68

27/03/2004 08:00:00 1.5 78 6.7 98

27/03/2004 09:00:00 1.8 128 8.5 128

27/03/2004 10:00:00 2.1 184 9.7 129

27/03/2004 11:00:00 2.1 156 9.4 130

27/03/2004 12:00:00 1.9 176 9 111

27/03/2004 13:00:00 2.1 232 10 106

27/03/2004 14:00:00 2.5 305 12.6 137

27/03/2004 15:00:00 1.9 150 7.6 113

27/03/2004 16:00:00 2.2 188 11.8 122

27/03/2004 17:00:00 2.3 221 11.2 137

27/03/2004 18:00:00 2.7 219 12.4 165

27/03/2004 19:00:00 3 306 12.9 196
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27/03/2004 20:00:00 2.8 270 12.2 174

27/03/2004 21:00:00 2.2 231 8.8 140

27/03/2004 22:00:00 1.6 125 6.8 102

27/03/2004 23:00:00 2.1 122 8.6 130

28/03/2004 00:00:00 2.3 161 8.9 121

28/03/2004 01:00:00 2.3 101 8.3 111

28/03/2004 02:00:00 1.7 95 6.3 87

28/03/2004 03:00:00 2.2 129 8.3 -200

28/03/2004 04:00:00 1.3 96 5.1 77

28/03/2004 05:00:00 0.8 54 2.6 39

28/03/2004 06:00:00 1.1 63 3.6 77

28/03/2004 07:00:00 1.4 72 3.6 91

28/03/2004 08:00:00 1.3 91 4.7 105

28/03/2004 09:00:00 1.9 127 7.5 133

28/03/2004 10:00:00 2.3 193 9 128

28/03/2004 11:00:00 2.3 188 9.5 126

28/03/2004 12:00:00 1.8 151 7.7 92

28/03/2004 13:00:00 1.4 103 5.7 66

28/03/2004 14:00:00 1 55 3.8 50

28/03/2004 15:00:00 1.4 104 4.8 70

28/03/2004 16:00:00 1.3 116 4.3 73

28/03/2004 17:00:00 1.3 93 4.1 77

28/03/2004 18:00:00 1.4 93 4.7 86
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28/03/2004 19:00:00 1.9 155 6.2 93

28/03/2004 20:00:00 1.8 115 5.5 105

28/03/2004 21:00:00 1.1 75 3.3 67

28/03/2004 22:00:00 1.1 65 3.2 63

28/03/2004 23:00:00 1.1 57 2.9 63

29/03/2004 00:00:00 0.9 40 2.2 46

29/03/2004 01:00:00 0.6 27 1.3 21

29/03/2004 02:00:00 0.5 23 1.1 22

29/03/2004 03:00:00 0.7 28 1.3 -200

29/03/2004 04:00:00 0.6 21 1.2 39

29/03/2004 05:00:00 0.7 33 1.7 55

29/03/2004 06:00:00 0.9 40 2.9 76

29/03/2004 07:00:00 2.9 279 14.3 181

29/03/2004 08:00:00 4.1 743 19.7 259

29/03/2004 09:00:00 1.5 147 5.5 118

29/03/2004 10:00:00 1.5 97 5.6 119

29/03/2004 11:00:00 1.5 118 5.8 123

29/03/2004 12:00:00 1.4 91 5.5 92

29/03/2004 13:00:00 1.6 146 6.5 91

29/03/2004 14:00:00 1.5 139 5.5 103

29/03/2004 15:00:00 1.4 155 5.2 102

29/03/2004 16:00:00 1.5 128 5.8 94

29/03/2004 17:00:00 1.9 166 7.9 98
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29/03/2004 18:00:00 2.5 299 10.2 126

29/03/2004 19:00:00 2.1 163 8.2 108

29/03/2004 20:00:00 1.6 154 5.7 95

29/03/2004 21:00:00 1.2 80 3.8 78

29/03/2004 22:00:00 1.1 58 4 61

29/03/2004 23:00:00 1 55 2.8 55

30/03/2004 00:00:00 1 33 2.6 57

30/03/2004 01:00:00 0.7 33 1.8 41

30/03/2004 02:00:00 0.7 32 1.7 46

30/03/2004 03:00:00 0.8 25 1.4 -200

30/03/2004 04:00:00 -200 29 1.3 41

30/03/2004 05:00:00 0.7 26 2.3 52

30/03/2004 06:00:00 1.1 86 5.3 111

30/03/2004 07:00:00 2.6 294 13.4 191

30/03/2004 08:00:00 4 664 23.8 244

30/03/2004 09:00:00 4.2 695 21.5 283

30/03/2004 10:00:00 4.7 735 21 320

30/03/2004 11:00:00 3.9 649 18.4 249

30/03/2004 12:00:00 3.7 586 18.9 219

30/03/2004 13:00:00 3.4 546 17.1 200

30/03/2004 14:00:00 2.2 245 10.4 138

30/03/2004 15:00:00 1.9 178 8 118

30/03/2004 16:00:00 1.6 130 6.2 99
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30/03/2004 17:00:00 2.1 151 9.7 112

30/03/2004 18:00:00 2.2 272 9.6 117

30/03/2004 19:00:00 2.7 301 11.9 129

30/03/2004 20:00:00 2.4 237 8.7 132

30/03/2004 21:00:00 1.3 95 4.7 73

30/03/2004 22:00:00 1.2 68 3.8 68

30/03/2004 23:00:00 1.5 101 4.7 80

31/03/2004 00:00:00 1.3 81 3.8 68

31/03/2004 01:00:00 1 50 2.7 44

31/03/2004 02:00:00 0.9 66 2.8 47

31/03/2004 03:00:00 0.5 22 1 -200

31/03/2004 04:00:00 0.5 18 0.8 15

31/03/2004 05:00:00 0.6 31 1.5 44

31/03/2004 06:00:00 1 57 3.5 85

31/03/2004 07:00:00 3.1 342 15.6 207

31/03/2004 08:00:00 4.1 644 19.9 230

31/03/2004 09:00:00 2.2 216 8.6 181

31/03/2004 10:00:00 1.7 117 6.5 144

31/03/2004 11:00:00 1.9 156 7.7 140

31/03/2004 12:00:00 2.9 332 11.3 204

31/03/2004 13:00:00 2.2 232 9.1 149

01/04/2004 21:00:00 2.5 254 10.8 154

01/04/2004 22:00:00 2 188 9.9 127
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01/04/2004 23:00:00 2 120 8.5 122

02/04/2004 00:00:00 2 157 8 126

02/04/2004 01:00:00 1.3 88 5.6 84

02/04/2004 02:00:00 1 68 3.2 58

02/04/2004 03:00:00 0.9 57 3.3 -200

02/04/2004 04:00:00 -200 36 2.8 37

02/04/2004 05:00:00 0.7 51 2.6 56

02/04/2004 06:00:00 1.1 93 4.3 91

02/04/2004 07:00:00 2.6 284 13 159

02/04/2004 08:00:00 3.9 486 20.3 190

02/04/2004 09:00:00 5 798 20.7 249

02/04/2004 10:00:00 3.3 524 15.9 196

02/04/2004 11:00:00 2.9 468 14.2 180

02/04/2004 12:00:00 3.1 454 15.9 167

02/04/2004 13:00:00 3 461 16.1 159

02/04/2004 14:00:00 2.7 391 14.7 152

02/04/2004 15:00:00 2.7 337 14 149

02/04/2004 16:00:00 2.6 297 13.6 143

02/04/2004 17:00:00 3.7 588 19.7 185

02/04/2004 18:00:00 4.5 721 23.3 223

02/04/2004 19:00:00 4.7 710 24.1 215

02/04/2004 20:00:00 5.5 787 25.4 271

02/04/2004 21:00:00 3 415 14.1 180
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02/04/2004 22:00:00 1.9 245 10.1 115

02/04/2004 23:00:00 2.3 294 12.1 149

03/04/2004 00:00:00 1.6 139 9 98

03/04/2004 01:00:00 1.3 98 6.3 73

03/04/2004 02:00:00 1.2 88 5.3 69

03/04/2004 03:00:00 0.9 66 3.8 -200

03/04/2004 04:00:00 0.8 57 3 60

03/04/2004 05:00:00 0.8 57 3.3 56

03/04/2004 06:00:00 0.9 60 3.5 73

03/04/2004 07:00:00 2 200 9.5 159

03/04/2004 08:00:00 3 451 15.2 203

03/04/2004 09:00:00 3.1 422 14.3 211

03/04/2004 10:00:00 -200 -200 11.2 -200

03/04/2004 11:00:00 -200 -200 11.4 -200

03/04/2004 12:00:00 -200 -200 13.4 -200

03/04/2004 13:00:00 -200 -200 10.6 -200

03/04/2004 14:00:00 -200 -200 10.8 -200

03/04/2004 15:00:00 -200 -200 11.9 -200

03/04/2004 16:00:00 -200 -200 13.5 -200

03/04/2004 17:00:00 -200 -200 15.2 -200

03/04/2004 18:00:00 -200 -200 17.1 -200

03/04/2004 19:00:00 -200 -200 26.7 -200

03/04/2004 20:00:00 -200 -200 14.2 -200
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03/04/2004 21:00:00 -200 -200 8.5 -200

03/04/2004 22:00:00 -200 -200 14.3 -200

03/04/2004 23:00:00 -200 -200 9.3 -200

04/04/2004 00:00:00 -200 -200 7.8 -200

04/04/2004 01:00:00 -200 -200 6.7 -200

04/04/2004 02:00:00 -200 -200 5.4 -200

04/04/2004 03:00:00 -200 -200 5.6 -200

04/04/2004 04:00:00 -200 -200 3.5 -200

04/04/2004 05:00:00 -200 -200 3 -200

04/04/2004 06:00:00 -200 -200 4.4 -200

04/04/2004 07:00:00 -200 -200 3.5 -200

04/04/2004 08:00:00 -200 -200 4.2 -200

04/04/2004 09:00:00 -200 -200 8 -200

04/04/2004 10:00:00 -200 -200 9 -200

04/04/2004 11:00:00 -200 -200 8.1 -200

04/04/2004 12:00:00 -200 -200 8.6 -200

04/04/2004 13:00:00 -200 -200 7.1 -200

04/04/2004 14:00:00 -200 -200 5.6 -200

04/04/2004 15:00:00 -200 -200 10 -200

04/04/2004 16:00:00 -200 -200 10.5 -200

04/04/2004 17:00:00 -200 -200 10.1 -200

04/04/2004 18:00:00 -200 -200 10 -200

04/04/2004 19:00:00 -200 -200 13 -200
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04/04/2004 20:00:00 -200 -200 10.5 -200

04/04/2004 21:00:00 -200 -200 5.2 -200

04/04/2004 22:00:00 -200 -200 6.9 -200

04/04/2004 23:00:00 -200 -200 6.4 -200

05/04/2004 00:00:00 -200 -200 4.7 -200

05/04/2004 01:00:00 -200 -200 2.4 -200

05/04/2004 02:00:00 -200 -200 2.2 -200

05/04/2004 03:00:00 -200 -200 1.1 -200

05/04/2004 04:00:00 -200 -200 0.9 -200

05/04/2004 05:00:00 -200 -200 3.1 -200

05/04/2004 06:00:00 -200 -200 6.2 -200

07/04/2004 00:00:00 0.9 93 4 56

07/04/2004 01:00:00 0.7 49 2.3 35

07/04/2004 02:00:00 0.4 30 1.4 21

07/04/2004 03:00:00 0.3 30 0.7 -200

07/04/2004 04:00:00 0.3 30 0.7 12

07/04/2004 05:00:00 0.3 32 0.8 22

07/04/2004 06:00:00 0.8 59 3.6 55

07/04/2004 07:00:00 2.8 277 12.9 152

07/04/2004 08:00:00 3.1 454 15.7 153

07/04/2004 09:00:00 2.3 211 8.6 152

07/04/2004 10:00:00 1.6 196 7.4 112

07/04/2004 11:00:00 1.5 110 6.6 119
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07/04/2004 12:00:00 1.6 164 7.8 122

07/04/2004 13:00:00 1.8 151 9.1 115

07/04/2004 14:00:00 1.4 112 6.1 84

07/04/2004 15:00:00 1.9 117 7.5 146

07/04/2004 16:00:00 1.2 120 5.9 65

07/04/2004 17:00:00 2.3 251 12.7 120

07/04/2004 18:00:00 3.3 435 13.5 185

07/04/2004 19:00:00 3.1 345 14.5 157

07/04/2004 20:00:00 3.3 343 11 174

07/04/2004 21:00:00 1.2 62 3.2 62

07/04/2004 22:00:00 1.3 70 4.3 81

07/04/2004 23:00:00 1.9 114 7.1 118

08/04/2004 00:00:00 1.4 88 4.8 95

08/04/2004 01:00:00 1.5 95 5.7 84

08/04/2004 02:00:00 1.1 83 4.1 56

08/04/2004 03:00:00 0.8 63 3.3 -200

08/04/2004 04:00:00 -200 38 1.8 43

08/04/2004 05:00:00 0.8 68 2.8 69

08/04/2004 06:00:00 1.1 59 4.8 74

08/04/2004 07:00:00 2.6 226 13.8 161

08/04/2004 08:00:00 5.1 802 27.1 308

08/04/2004 09:00:00 4.2 585 19.1 300

08/04/2004 10:00:00 2.6 324 11.7 189
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08/04/2004 11:00:00 2.4 308 12.7 164

08/04/2004 12:00:00 2.1 238 11.3 122

08/04/2004 13:00:00 2.6 301 14.2 166

08/04/2004 14:00:00 2.8 294 13.9 181

08/04/2004 15:00:00 2.5 353 13.2 127

08/04/2004 16:00:00 1.9 209 10.7 106

08/04/2004 17:00:00 3.6 538 19.7 192

08/04/2004 18:00:00 4.6 808 24 241

08/04/2004 19:00:00 6.3 974 29.1 326

08/04/2004 20:00:00 4.3 544 15.8 232

08/04/2004 21:00:00 1.6 138 7 92

08/04/2004 22:00:00 1.4 92 6.3 95

08/04/2004 23:00:00 2 137 -200 129

09/04/2004 00:00:00 2.4 189 -200 154

09/04/2004 01:00:00 1.8 159 -200 118

09/04/2004 02:00:00 1 80 -200 69

09/04/2004 03:00:00 1 66 -200 -200

09/04/2004 04:00:00 1 87 -200 97

09/04/2004 05:00:00 0.9 79 -200 145

09/04/2004 06:00:00 1.5 150 -200 169

09/04/2004 07:00:00 2.6 196 -200 250

09/04/2004 08:00:00 2.9 299 -200 215

10/04/2004 06:00:00 1.4 134 6 112
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10/04/2004 07:00:00 1.7 157 8.2 150

10/04/2004 08:00:00 2 167 9.9 138

10/04/2004 09:00:00 2 157 8.8 124

10/04/2004 10:00:00 1.9 172 8.4 124

10/04/2004 11:00:00 2.1 114 7.5 115

10/04/2004 12:00:00 1.8 166 7.8 101

10/04/2004 13:00:00 1.5 94 6.4 90

10/04/2004 14:00:00 1.3 108 5.1 90

10/04/2004 15:00:00 1.4 98 6.9 89

10/04/2004 16:00:00 1.5 132 6.8 92

10/04/2004 17:00:00 1.7 144 7.4 103

10/04/2004 18:00:00 2 165 8.7 122

10/04/2004 19:00:00 2.5 210 11.2 159

10/04/2004 20:00:00 2.4 277 10.5 172

10/04/2004 21:00:00 2 168 8.2 125

10/04/2004 22:00:00 2.9 248 11.6 187

10/04/2004 23:00:00 2.5 235 9.7 174

11/04/2004 00:00:00 1.4 84 5.1 75

11/04/2004 01:00:00 1.2 75 4 48

11/04/2004 02:00:00 1 62 3.7 61

11/04/2004 03:00:00 1 66 4 -200

11/04/2004 04:00:00 -200 49 3 38

11/04/2004 05:00:00 0.7 38 2.9 38
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11/04/2004 06:00:00 0.8 44 2.9 41

11/04/2004 07:00:00 0.9 60 3 51

11/04/2004 08:00:00 1.1 88 3.7 61

11/04/2004 09:00:00 1 70 3.9 47

11/04/2004 10:00:00 1.6 94 6.2 87

11/04/2004 11:00:00 1.8 126 7.3 107

11/04/2004 12:00:00 2.6 181 9.2 161

11/04/2004 13:00:00 1.1 66 4 61

11/04/2004 14:00:00 0.6 54 2.3 26

11/04/2004 15:00:00 0.9 48 3.1 42

11/04/2004 16:00:00 1 66 3.2 55

11/04/2004 17:00:00 1.2 65 3.3 65

11/04/2004 18:00:00 1.4 68 4 75

11/04/2004 19:00:00 2 118 5.7 93

11/04/2004 20:00:00 1.1 65 3.4 63

11/04/2004 21:00:00 1.1 63 3.5 60

11/04/2004 22:00:00 1.1 61 2.9 63

11/04/2004 23:00:00 1.1 63 3.1 66

12/04/2004 00:00:00 0.7 31 1.6 41

12/04/2004 01:00:00 0.6 29 1.1 42

12/04/2004 02:00:00 0.7 34 2 36

12/04/2004 03:00:00 0.6 34 1.7 -200

12/04/2004 04:00:00 0.3 9 0.7 16
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12/04/2004 05:00:00 0.3 14 0.5 16

12/04/2004 06:00:00 0.4 23 0.7 33

12/04/2004 07:00:00 0.5 36 0.9 39

12/04/2004 08:00:00 0.6 39 1.5 45

12/04/2004 09:00:00 0.8 38 2.2 63

12/04/2004 10:00:00 1 55 2.9 71

12/04/2004 11:00:00 1.3 75 3.9 104

12/04/2004 12:00:00 1.1 64 2.8 85

12/04/2004 13:00:00 0.6 39 1.4 53

12/04/2004 14:00:00 0.7 42 1.7 58

12/04/2004 15:00:00 1.2 78 3.6 89

12/04/2004 16:00:00 1.4 69 3.1 96

12/04/2004 17:00:00 1.2 67 3.5 88

12/04/2004 18:00:00 1.3 83 3.9 100

12/04/2004 19:00:00 1.8 79 5.2 127

12/04/2004 20:00:00 1.2 68 3.7 88

12/04/2004 21:00:00 0.8 56 2.7 66

12/04/2004 22:00:00 0.8 49 2.6 61

12/04/2004 23:00:00 0.8 56 2.4 54

13/04/2004 00:00:00 0.7 48 2 46

13/04/2004 01:00:00 0.5 27 1.3 25

13/04/2004 02:00:00 0.3 29 1.2 18

13/04/2004 03:00:00 0.4 32 1.3 -200
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13/04/2004 04:00:00 0.3 47 0.9 21

13/04/2004 05:00:00 0.7 66 3.1 76

13/04/2004 06:00:00 1.6 163 6.9 149

13/04/2004 07:00:00 3.9 524 19.1 328

13/04/2004 08:00:00 4.5 657 22.1 282

13/04/2004 09:00:00 2.7 324 11.8 206

13/04/2004 10:00:00 1.6 144 7.3 133

13/04/2004 11:00:00 1.6 135 8 137

13/04/2004 12:00:00 1.6 140 7.2 116

13/04/2004 13:00:00 1.5 141 7.7 112

13/04/2004 14:00:00 1.8 181 9.7 128

13/04/2004 15:00:00 2.1 227 9.8 145

13/04/2004 16:00:00 1.7 149 7.7 110

13/04/2004 17:00:00 3 425 15.3 184

13/04/2004 18:00:00 4.6 669 21.5 243

13/04/2004 19:00:00 5 680 21.7 259

13/04/2004 20:00:00 3.5 446 14.6 205

13/04/2004 21:00:00 2.1 205 9.3 144

13/04/2004 22:00:00 2.1 194 9.4 152

13/04/2004 23:00:00 1.5 115 6.8 108

14/04/2004 00:00:00 1.1 74 4.9 64

14/04/2004 01:00:00 0.9 85 3.9 73

14/04/2004 02:00:00 0.7 66 2.7 47
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14/04/2004 03:00:00 0.4 60 1.9 -200

14/04/2004 04:00:00 -200 40 1.7 45

14/04/2004 05:00:00 0.9 47 3.3 79

14/04/2004 06:00:00 1.6 116 7.4 113

14/04/2004 07:00:00 3.9 478 18.2 263

14/04/2004 08:00:00 5 836 27.7 275

14/04/2004 09:00:00 4.3 655 18.3 263

14/04/2004 10:00:00 2.7 312 12.3 183

14/04/2004 11:00:00 2.1 195 8.9 147

14/04/2004 12:00:00 2.1 238 10.4 132

14/04/2004 13:00:00 -200 -200 9.7 -200

14/04/2004 14:00:00 -200 -200 12.8 -200

14/04/2004 15:00:00 -200 -200 12.9 -200

14/04/2004 16:00:00 -200 -200 8.9 -200

14/04/2004 17:00:00 -200 -200 11 -200

14/04/2004 18:00:00 -200 -200 12.6 -200

14/04/2004 19:00:00 -200 -200 13.3 -200

14/04/2004 20:00:00 -200 -200 18.1 -200

14/04/2004 21:00:00 -200 -200 13 -200

14/04/2004 22:00:00 -200 -200 7.8 -200

14/04/2004 23:00:00 -200 -200 5.8 -200

15/04/2004 00:00:00 -200 -200 4.7 -200

15/04/2004 01:00:00 -200 -200 3.1 -200
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15/04/2004 02:00:00 -200 -200 2.1 -200

15/04/2004 03:00:00 -200 -200 1.7 -200

15/04/2004 04:00:00 -200 -200 1.3 -200

15/04/2004 05:00:00 -200 -200 2.6 -200

15/04/2004 06:00:00 -200 -200 7.9 -200

15/04/2004 07:00:00 -200 -200 21.4 -200

15/04/2004 08:00:00 -200 -200 22.1 -200

15/04/2004 09:00:00 3.9 536 19.1 309

15/04/2004 10:00:00 3.8 481 17.3 327

Table C.1: Experimetal dataset

Table C.2: Analysis of SISDaV with Single Inconsistent Data Point per Streaming Window

Format
Cumulative Mean Average of Reasoning Time (sec)

400 800 1200 1600 2000

RDF/XML 0.0027 0.0025 0.0019 0.0016 0.0015

Turtle 0.0023 0.0020 0.0016 0.0013 0.0012

NTriple 0.0032 0.0030 0.0023 0.0019 0.0012

N3 0.0022 0.0020 0.0016 0.0013 0.0012

Table C.3: Analysis of SISDaV with Ten (10) Inconsistent Data Point per Streaming Window

Format
Cumulative Mean Average of Reasoning Time (sec)

400 800 1200 1600 2000

RDF/XML 0.0015 0.0012 0.0010 0.0010 0.0009

Turtle 0.0012 0.0010 0.0008 0.0008 0.0007

NTriple 0.0016 0.0013 0.0012 0.0010 0.0010

N3 0.0012 0.0010 0.0009 0.0008 0.0007
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; Appendix D <

Rule Listings for Validation of Indoor

Temperature

D.1 Sensor Interference from Heating system

@prefix rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#
@prefix owl: http://www.w3.org/2002/07/owl#
@prefix rdfs: http://www.w3.org/2000/01/rdf-schema#
@prefix xsd: http://www.w3.org/2001/XMLSchema#
@prefix smartSpace: http://localhost:8080/smartSpace#

[heatRegulator:
(?humidityReadings smartSpace:hasHumidityReading ?humidityValue)
(?humidityReadings smartSpace:humidityHasTimestamp ?humidityTime)
greaterThan(?humidityValue,29)
lessThan(?humidityValue,61)
(?tempReadings smartSpace:tempHasTimestamp ?tempTime)
(?tempReadings smartSpace:hasValue ?tempValue)
greaterThan(?tempValue,22)
lessThan(?tempValue,31)
equal(?humidityTime,?tempTime)
->
(?tempReadings smartSpace:isValidForPlausibilityCheck ’With Heater Activated’)

]
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D.2 Sensor Interference from Cooling system

@prefix rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#
@prefix owl: http://www.w3.org/2002/07/owl#
@prefix rdfs: http://www.w3.org/2000/01/rdf-schema#
@prefix xsd: http://www.w3.org/2001/XMLSchema#
@prefix smartSpace: http://localhost:8080/smartSpace#

[coolantRegulator:
(?humidityReadings smartSpace:hasHumidityReading ?humidityValue)
(?humidityReadings smartSpace:humidityHasTimestamp ?humidityTime)
greaterThan(?humidityValue,29)
lessThan(?humidityValue,61)
(?tempReadings smartSpace:tempHasTimestamp ?tempTime)
(?tempReadings smartSpace:hasValue ?tempValue)
greaterThan(?tempValue,11)
lessThan(?tempValue,29)
equal(?humidityTime,?tempTime)
->
(?tempReadings smartSpace:isValidForPlausibilityCheck ’With Coolant Activated’)

]

D.3 Sensor Interference from Heating and Cooling system

@prefix rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#
@prefix owl: http://www.w3.org/2002/07/owl#
@prefix rdfs: http://www.w3.org/2000/01/rdf-schema#
@prefix xsd: http://www.w3.org/2001/XMLSchema#
@prefix smartSpace: http://localhost:8080/smartSpace#

[heatAndCoolantRegulator:
(?humidityReadings smartSpace:hasHumidityReading ?humidityValue)
(?humidityReadings smartSpace:humidityHasTimestamp ?humidityTime)
greaterThan(?humidityValue,29)
lessThan(?humidityValue,61)
(?tempReadings smartSpace:tempHasTimestamp ?tempTime)
(?tempReadings smartSpace:hasValue ?tempValue)
greaterThan(?tempValue,11)
lessThan(?tempValue,31)
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equal(?humidityTime,?tempTime)
->
(?tempReadings smartSpace:isValidForPlausibilityCheck ’Heater and Coolant Activated’)

]

D.4 Sensor Interference from Outdoor Temp. in Autum

@prefix rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#
@prefix owl: http://www.w3.org/2002/07/owl#
@prefix rdfs: http://www.w3.org/2000/01/rdf-schema#
@prefix xsd: http://www.w3.org/2001/XMLSchema#
@prefix smartSpace: http://localhost:8080/smartSpace#

[seasonAutum:
(?humidityReadings smartSpace:hasHumidityReading ?humidityValue)
(?humidityReadings smartSpace:humidityHasTimestamp ?humidityTime)
greaterThan(?humidityValue,29)
lessThan(?humidityValue,61)
(?tempReadings smartSpace:tempHasTimestamp ?tempTime)
(?tempReadings smartSpace:hasValue ?tempValue)
greaterThan(?tempValue,-15.6)
lessThan(?tempValue,35.7)
equal(?humidityTime,?tempTime)
->
(?tempReadings smartSpace:isValidForPlausibilityCheck ’Season Autum’)
]

D.5 Sensor Interference from Outdoor Temp. in Spring

@prefix rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#
@prefix owl: http://www.w3.org/2002/07/owl#
@prefix rdfs: http://www.w3.org/2000/01/rdf-schema#
@prefix xsd: http://www.w3.org/2001/XMLSchema#
@prefix smartSpace: http://localhost:8080/smartSpace#

[seasonSpring:
(?humidityReadings smartSpace:hasHumidityReading ?humidityValue)
(?humidityReadings smartSpace:humidityHasTimestamp ?humidityTime)
greaterThan(?humidityValue,29)
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lessThan(?humidityValue,61)
(?tempReadings smartSpace:tempHasTimestamp ?tempTime)
(?tempReadings smartSpace:hasValue ?tempValue)
greaterThan(?tempValue,-21.2)
lessThan(?tempValue,32.9)
equal(?humidityTime,?tempTime)
->
(?tempReadings smartSpace:isValidForPlausibilityCheck ’Season Spring’)

]

D.6 Sensor Interference from Outdoor Temp. in Summer

@prefix rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#
@prefix owl: http://www.w3.org/2002/07/owl#
@prefix rdfs: http://www.w3.org/2000/01/rdf-schema#
@prefix xsd: http://www.w3.org/2001/XMLSchema#
@prefix smartSpace: http://localhost:8080/smartSpace#

[seasonSummer:
(?humidityReadings smartSpace:hasHumidityReading ?humidityValue)
(?humidityReadings smartSpace:humidityHasTimestamp ?humidityTime)
greaterThan(?humidityValue,29)
lessThan(?humidityValue,61)
(?tempReadings smartSpace:tempHasTimestamp ?tempTime)
(?tempReadings smartSpace:hasValue ?tempValue)
greaterThan(?tempValue,-5.7)
lessThan(?tempValue,38.6)
equal(?humidityTime,?tempTime)
->
(?tempReadings smartSpace:isValidForPlausibilityCheck ’Season Summer’)

]

D.7 Sensor Interference from Outdoor Temp. in Winter

@prefix rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#
@prefix owl: http://www.w3.org/2002/07/owl#
@prefix rdfs: http://www.w3.org/2000/01/rdf-schema#
@prefix xsd: http://www.w3.org/2001/XMLSchema#
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@prefix smartSpace: http://localhost:8080/smartSpace#

[seasonWinter:
(?humidityReadings smartSpace:hasHumidityReading ?humidityValue)
(?humidityReadings smartSpace:humidityHasTimestamp ?humidityTime)
greaterThan(?humidityValue,29)
lessThan(?humidityValue,61)
(?tempReadings smartSpace:tempHasTimestamp ?tempTime)
(?tempReadings smartSpace:hasValue ?tempValue)
greaterThan(?tempValue,-25.3)
lessThan(?tempValue,19.8)
(?pressureReadings smartSpace:hasPressureReading ?pressureValue)
(?pressureReadings smartSpace:PressureHasTimestamp ?pressureTime)
greaterThan(?pressureValue,750.1)
lessThan(?humidityValue,761.0)
equal(?humidityTime,?tempTime)

equal(?pressureTime,?tempTime)
->
(?tempReadings smartSpace:isValidForPlausibilityCheck ’Season Winter’)

]
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