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Abstract: Recent technological developments pave the path for deep learning-based techniques to be
used in almost every domain of life. The precision of deep learning techniques make it possible for
these to be used in the medical field for the classification and detection of various diseases. Recently,
the coronavirus (COVID-19) pandemic has put a lot of pressure on the health system all around
the world. The diagnosis of COVID-19 is possible by PCR testing and medical imagining. Since
COVID-19 is highly contagious, diagnosis using chest X-ray is considered safe in various situations.
In this study, a deep learning-based technique is proposed to classify COVID-19 infection from
other non-COVID-19 infections. To classify COVID-19, three different pre-trained models named
EfficientNetB1, NasNetMobile and MobileNetV2 are used. The augmented dataset is used for training
deep learning models while two different training strategies have been used for classification. In this
study, not only are the deep learning model fine-tuned but also the hyperparameters are fine-tuned,
which significantly improves the performance of the fine-tuned deep learning models. Moreover, the
classification head is regularized to improve the performance. For the evaluation of the proposed
techniques, several performance parameters are used to gauge the performance. EfficientNetB1 with
regularized classification head outperforms the other models. The proposed technique successfully
classifies four classes that include COVID-19, viral pneumonia, lung opacity, and normal, with an
accuracy of 96.13%. The proposed technique shows superiority in terms of accuracy when compared
with recent techniques present in the literature.

Keywords: COVID-19; deep learning; classification; transfer learning; chest X-rays

1. Introduction

COVID-19 is the most recent viral outbreak, and started in the city of Wuhan, China.
Within the span of a few months, it spread to almost all parts of the world [1]. It is a highly
contagious disease and transmits by exhaling droplets while respiring. The sudden spike
of this highly contagious infection created a global health crisis [2]. According to recorded
data, COVID-19 caused over 0.3 million deaths globally within two months after being
recognized globally as a pandemic by the World Health Organization (WHO) [3,4]. This
infection is commonly known as COVID-19, its scientific name is severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) and it belongs to the coronaviridae family [2]. By
8 December 2021, it had infected over 267 million people around the globe and caused over
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5.2 million deaths [3]. COVID-19 negatively affects every sector of life around the globe
due to restrictions enforced by governments that are aimed at avoiding exposure of people
to this contagious infection [5]. Illnesses that can be classified as being caused by COVID-
19 can vary from mild to severe and critical illnesses. COVID-19 can cause pneumonia.
The name pneumonia originates from the Greek word pneumon, which means the lungs.
Therefore, pneumonia is related to lung disease. Pneumonia causes inflammation in the
lungs, which hinders respiration [6]. Exposure to chemicals and food aspirations are other
causes of pneumonia. As mentioned earlier, pneumonia causes inflammation in the lungs,
which leads to the lungs’ alveoli being filled with fluid or sticky substance (i.e., pus). The
sticky fluid causes hindering in the exchange of carbon dioxide and oxygen between the
blood and lungs. Reduced exchange of carbon dioxide and oxygen hampers the ability to
breathe [7].

Different pathogens, like bacteria, fungi and viruses, cause pneumonia and each of
these pneumonias are treated differently. To treat bacterial pneumonia, antibiotics are
used. Antifungal drugs are used to treat pneumonia that is caused by fungi, while antiviral
drugs are used to treat viral pneumonia [8]. For the diagnosis of pneumonia, a number
of techniques have been adopted, including CT scan, chest X-rays, sputum test, complete
blood picture, blood gas analysis, and others. However, for the detection of COVID-19,
reverse transcription-polymerase chain reaction (RT-PCR) testing is considered reliable,
although it is not 100% accurate. A RT-PCR test is used to detect genetic information
regarding SARS-CoV-2 from the upper respiratory tract [9].

There is a need to develop a technique that can help medical staff in the diagnosis
of COVID-19. Early diagnosis of COVID-19 can save a patient’s life by providing on-
time necessary medical attention. Recently, deep learning has emerged as one of the
techniques to be used for image processing tasks. It has been found that it produces
significant outcomes in different fields, including agriculture [10], medicine [11,12], gesture
recognition [13], and remote sensing [14], etc. In the medical field, it is used for the detection
and classification of different diseases, including skin diseases [15,16], different types of
ulcers, and cancer [17], etc. These deep learning techniques significantly help doctors to
diagnose diseases efficiently. Human errors can also be avoided by using deep learning
techniques for the detection of different diseases. As mentioned earlier, CT scan and chest
X-rays can be used to detect pneumonia. Pneumonia caused by COVID-19 is intense
and affects the lungs significantly very quickly. The major difference between typical
pneumonia and pneumonia caused by COVID-19 is that pneumonia caused by COVID-19
affects the whole lungs while typical pneumonia damages only part of the lungs.

2. Related Work

Mahmud et al. [18] proposed a deep learning-based technique for the classification
of COVID-19 and pneumonia infection. Features are extracted using a deep CNN model
named CovXNet. A public dataset is utilized for training containing 1493 samples of non-
COVID-19 pneumonia and 305 samples of COVID-19 pneumonia. The model successfully
classified non-COVID-19 pneumonia and COVID-19 pneumonia with an accuracy of 96.9%.
Umair et al. [19] presented a technique for the binary classification of COVID-19. A
publicly available dataset is used for training and evaluation of the technique, consisting
of 7232 chest X-ray images. Four deep learning models are being compared in this study.
Various evaluation parameters are utilized for the validation of results. Li et al. [20]
proposed a technique for the detection of COVID-19 infection. The proposed technique
successfully differentiates COVID-19 pneumonia and community-acquired pneumonia
(CAP). The deep learning model that is utilized for training is named COVNet; this is
three-dimensional CNN architecture. A publicly available dataset is used which contains
CT scan samples of COVID-19 and community acquired pneumonia (CAP). The COVNet
model attained a rate of 90% sensitivity and 96% specificity.

Abbas [21] proposes another convolution neural network-based technique for the
classification of COVID-19 infection using chest X-ray images. The CNN model named
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decompose, transfer, and compose, and commonly known as DeTrac, was used. Multiple
datasets from various hospitals throughout the world were used in this research. The
DeTrac model attained an accuracy of 93.1% and a sensitivity of 100%. To classify COVID-
19 and typical pneumonia, Wang et al. [22] presented a technique based on deep learning
which used the inception model [23]. Modifications in fully connected layers of inception
are completed before training the network. In this study, 1053 images were used. The model
gave an accuracy of 73.1% with a sensitivity of 74% and specificity of 67%. Sankar et al. [24]
proposed a deep learning technique for the classification of COVID-19 infected chest X-rays.
A Gaussian filter was used for preprocessing, while the local binary pattern was utilized to
extract texture features. Later, the extracted LBP features are fused with the CNN model
InceptionV3 to improve the performance. The classification is carried out using multi-layer
perceptron. The model was validated on an X-ray dataset and attained an accuracy of
94.08%. Panwar [25] proposes a convolutional neural network-based technique where a
24 layer CNN model has been used for the classification of COVID-19 and normal images.
The author named this model nCOVnet. The X-ray dataset was used for training nCOVnet.
The model attains an accuracy of up to 97%. Zheng [26] presents the segmentation-based
classification technique. The U-Net [27] is trained on CT images to generate lung masks.
Two-dimensional U-Net is used for this purpose. Later, the mask generated by U-Net is fed
to DeCoVNet for the classification of COVID-19. The architecture of DeCoVNet consists of
three parts: (1) the stem network, consisting of 3-D vanilla, along with a batch norm and
pooling layer; (2) two 3D ResBolcks are used in the second stage, where ResBolcks are used
for feature map generation; (3) the third part of DeCoVNet is used for classification that
is based on probabilities. A progressive classifier is used for the binary classification of
COVID-19.

Xu et al. [28] proposed a technique for the detection of COVID-19 infection using the
deep learning-based model. Two ResNet [29] based models were used in this study: (1)
ResNet18; (2) a modified ResNet18 with the mechanism of localization. The CT scan
images were used for training the models. The final evaluation is performed using
noisy-OR Bayesian. The overall accuracy of the proposed technique is cited as 88.7%.
Hussain et al. [30] proposed a system that is called CoroDet and is based on convolutional
neural networks for the detection of COVID-19 infection. The proposed CNN model is
comprised of 22 layers, and is trained on chest X-rays and CT scan images. The model
is able to classify COVID-19 and non-COVID-19, Moreover, it can classify three different
classes, including COVID-19, pneumonia, and normal. The 22 layered model shows good
classification results. Khan et al. [31] presented a technique for the classification of COVID-
19 disease. The proposed technique used CNN for the classification; a known deep learning
model Xception is modified for this purpose. The modified model is named CoroNet by
the authors. The dataset used for training consists of four classes, including COVID-19,
normal, viral pneumonia, and fungal pneumonia. Using the mentioned dataset, the model
is trained using the different combinations of datasets. The model gave 89.6% accuracy.
Choudary et al. [32] adopted a deep learning technique to classify COVID-19 and viral
pneumonia. Various deep learning models have been used for training in this work. In
addition, the transfer learning approach is exploited for training deep learning models.
The public dataset is utilized for the training of models. The dataset contains samples of
COVID-19, typical viral pneumonia, and chest X-rays of healthy and normal people. The
models attained good classification accuracies. Ozturk et al. [33] presented a 17 layered
Darknet model for the detection of COVID-19 infection. Different sizes of filters were
employed at CNN layers. The presented technique classifies binary classes (COVID-19
and no finding) and multiple classes (COVID-19, pneumonia, and no findings). For model
training, raw chest X-ray images were used. The model attained an accuracy of 98.08% for
binary classification, while for multiple classes an accuracy of 87.02% is achieved.

For detection of COVID-19, the majority of research has been performed using chest
X-rays, which show the importance of chest X-rays in diagnosing chest infections and,
specifically, for diagnosing COVID-19. The chest X-rays were found to be the primary tool in
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medical image analysis. Traditional image processing-based feature extraction techniques
are complex compared to deep learning techniques. Recently deep learning techniques
surpass traditional techniques in terms of performance. However, traditional techniques
can be used, along with deep learning techniques, for aid [24]. Moreover, deep learning
techniques require a large amount of data for training and testing. Deep learning models
trained on the limited datasets are not generalized; thus, such models are not reliable. It
has been found through the literature, that data augmentation techniques can be used
to resolve small dataset issues [34]. Furthermore, the already available research is more
focused on the binary classification of COVID-19 [18–22] and limited research has been
conducted for multiclass classification of COVID-19 [28–33]. The performance of multiclass
classification is not yet adequate, and hence their performance needs to be improved.

3. Materials and Methods

In this section, the dataset used for the training and testing are discussed along with
the deep learning models used in this study. The dataset used in this study acquired from
Kaggle is composed of multiple datasets. The dataset is further discussed in Section 3.1.
Likewise, the proposed methodology for the classification of COVID-19 infection is dis-
cussed in Section 3.2.

3.1. Dataset

The dataset used for training and evaluation of the proposed technique is publicly
available on Kaggle [32,35]. This dataset has been revised thrice; the dataset used in this
work is acquired from Kaggle after recent revisions. The mentioned dataset is composed of
multiple sub-datasets, with four different classes, including COVID-19, lung opacity, normal
and viral pneumonia. It is important to discuss the composition of the used dataset in
detail as it is made by merging different datasets. Each class is created by merging different
sub-datasets. The class COVID-19 contains a total of 3616 images, which are gathered
from four different sources. The BIMCV-COVID19+ [36] dataset largely contributes to the
used COVID-19 dataset with 2473 images. It is one of the largest independent datasets
that is publicly available. Other datasets, which contribute to this COVID-19 dataset, are
the German Medical School dataset [37] with 183 chest X-ray images, while 560 chest
X-ray images are gathered from SIRM, GitHub, Kaggle, and Twitter [38–41]. In addition,
another dataset is available on GitHub [42] containing 400 chest X-ray images which have
been merged.

The RSNA pneumonia challenge dataset is one of the known chest X-ray datasets [43].
The RSNA dataset consists of different lung abnormalities and normal lungs (healthy
lungs). The abnormalities range from different lung infections to lung cancer. It contains
26,684 chest X-ray images in the Dicom format; further, the dataset is divided into three
major categories. The largest of these categories contains 11,821 images with different lung
infections and, of these, 6012 images are categorized as non-COVID-19 lung infection (lung
opacity), while 8851 images are normal and healthy lungs. The dataset is examined by
medical experts based on key symptoms, and clinical history is also considered during
inspection, as it is important to know whether or not the patient has ever suffered from
any correlated infections before. The dataset is further extended by adding 1341 normal
chest X-ray images, along with viral pneumonia chest X-ray images, which are 1345 total
in number and are sourced from [44]. The sample images from the used dataset [35] are
shown in Figure 1. The composition of the dataset [35] is also presented in Table 1.



Sensors 2022, 22, 1211 5 of 16

Sensors 2022, 22, x FOR PEER REVIEW 5 of 16 
 

 

Table 1. Composition of COVID-19 dataset [32,35]. 

Data 
Composition 

BIMCV-
COVID19+ [36] 

German Medical 
School [37] 

SIRM, GitHub, 
Kaggle, and 

Twitter [38–41]. 
GitHub [42] RSNA [43] Kaggle 

[44] Total 

COVID-19 2473 183 560 400   3616 
Lung Opacity     6012  6012 

Normal     8851 1341 10192 
Pneumonia       1345 

 
Figure 1. Sample images of original dataset [32,35]. 

3.2. Proposed Methodolgy 
In this proposed work, a multiclass classification technique for chest X-rays is pro-

posed. The main goal is to identify X-rays infected by COVID-19. In the literature, a sig-
nificant amount of research related to the binary classification of COVID-19 is present, but 

Figure 1. Sample images of original dataset [32,35].

Table 1. Composition of COVID-19 dataset [32,35].

Data
Composition BIMCV-COVID19+ [36]

German
Medical

School [37]

SIRM, GitHub,
Kaggle, and Twitter

[38–41].

GitHub
[42] RSNA [43] Kaggle [44] Total

COVID-19 2473 183 560 400 3616

Lung Opacity 6012 6012

Normal 8851 1341 10,192

Pneumonia 1345

3.2. Proposed Methodolgy

In this proposed work, a multiclass classification technique for chest X-rays is proposed.
The main goal is to identify X-rays infected by COVID-19. In the literature, a significant
amount of research related to the binary classification of COVID-19 is present, but it is
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still difficult to find research that is related to the multiclass classification of COVID-19.
Multiclass classification of X-rays is a challenging task as there are inter-class similarities.
In addition, the availability of datasets is one of the major problems. The datasets publicly
available are highly class imbalanced; this is one of the other challenges to deal with while
working on multiclass classification. Different pre-trained models are being used in this
work to evaluate their performance on chest X-ray for the classification of chest infections,
including COVID-19. The proposed workflow of this research is shown in Figure 2. The
details of every step shown in Figure 2 are discussed in the following subsections.
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3.2.1. Data Normalization and Augmentation

Acquiring datasets for training deep learning models is not easy, as datasets are not
always readily available. The deep learning models require quality datasets with a large
number of samples for efficient training [10]. The dataset is normalized within a range of
0 and 1. Every pixel of images present in the dataset are multiplied by a factor of 1/255.
This has been done to make the dataset consistent in terms of pixel intensity. The acquired
dataset is a class imbalance; such a dataset contains the different numbers of images in each
class. The deep learning models cannot be efficiently trained on such datasets, as they are
biased toward one or more classes, which significantly affects the performance of the model.
Moreover, deep learning models require a significant amount of a dataset for training;
otherwise, overfitting can play a role in deteriorating the performance of the model.

To overcome both of these above-mentioned problems, the image augmentation ap-
proached is adopted. Image augmentation not only increases the amount of the dataset
but also helps in making the dataset class balanced. The image augmentation approach
enables the addition of more examples to the classes, which originally have fewer examples,
thus enhancing the quality and size of the original dataset, which significantly affects
the performance of the model. There are a number of image augmentation techniques.
Image augmentation techniques are used according to requirements. In this work, the
image dataset is used for training. Choosing a good image augmentation technique is
critical; otherwise, it can impact the model performance negatively. A good augmentation
technique is meant to preserve all of the information that is present in the original data,
however, it also increases the size of the dataset.

To address the class imbalance challenge, data augmentation is applied to three classes,
which are the COVID-19 class, viral pneumonia, and lung opacity. Augmentation carried
out on images is known as image augmentation and it has various types. The types include
geometric or positional augmentation, random erasing, color space transformation, mixing
images, and kernel filter-based augmentation [45]. Geometric augmentation has been found
suitable for datasets that are similar to the one used in this work. Geometric augmentation
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also has various types, including rotational, translation, scaling, cropping, and flipping.
Depending upon the need and nature of the original dataset these types can be used. As in
this work, the original dataset has inter-class similarities. Keeping this in mind, only two
geometric augmentations have been found to be useful; these are rotational and flipping
augmentation. In rotational augmentation, images can be rotated clockwise and anti-
clockwise with different degrees of angle. Practically, it is possible to rotate images from 1
to 359 degrees, but to preserve augmentation safety, rotation within 20 degrees is suitable.
On the other hand, flipping can be horizontal and vertical around the axis. It has been
found to be useful when applied on datasets, like Cifar [46] and ImageNet [47]. Flipping is
label preserving except for text, but it is important to check the augmentation manually.
The nature of the dataset is important when applying augmentation to preserve labels of
the dataset. Generally, geometric augmentation is suitable and effective where position
bias is present in the dataset. A few examples of augmentation are shown in Figure 3.
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3.2.2. Feature Extraction and Classification of Chest X-rays

Deep learning models extract features from the images using convolutional layers;
based on these features these model also classify images. The initial layers of DL models
extract edges, contours, etc., while later layers extract more detailed attributes of images. In
this study, three different deep learning models have been used for the feature extraction
and classification of chest X-rays. The models used are EfficientNetB1 [48], NasNetMo-
bile [49], and MobileNetV2 [50]. The architecture of the used models are discussed briefly.
The MobileNetV2 is a lightweight model, consisting of 17 bottlenecks. These bottlenecks
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are made of pointwise and depth-wise convolution layers along with Relu6 and batch
normalization layers. The model consists of a total of 53 layers. On the other hand, NasNet-
Mobile is made up of two different cells, called normal and reduction cells. The reduction
cells are followed by four normal cells throughout the architecture. The reduction cells
reduce the dimension of the feature map by a factor of 2. The third model used in this
work is EfficientNetB1, which is a variant of the EfficientNetB0 baseline. The MBConv
block is the core of EfficientNetB1, an inverted residual block used to reduce the number of
trainable parameters. The squeeze and excitation block is the part of the MBConv block
which aids in feature extraction by giving weights to channels of the MBConv block. The
EfficientNetB0 baseline uses compound scaling, which is a combination of width, depth
and resolution scaling. In EfficientNetB1, the swish activation function is used, which is the
combination of linear and sigmoid activation functions. The swish activation function helps
retain the negative values. EfficientNetB1 uses an input size of 240 × 240. The architecture
of the EfficientNetB0 baseline is presented in Table 2.

Table 2. Architecture of EfficientNetB0 Baseline.

Stage Operator Resolution Channel Layers

1 Conv3 × 3 224 × 224 32 1

2 MBConv1, k3 × 3 112 × 112 16 1

3 MBConv6, k3 × 3 112 × 112 24 2

4 MBConv6, k5 × 5 56 × 56 40 2

5 MBConv6, k3 × 3 28 × 28 80 3

6 MBConv6, k5 × 5 14 × 14 112 3

7 MBConv6, k5 × 5 14 × 14 192 4

8 MBConv6, k3 × 3 7 × 7 320 1

9 Conv1 × 1 & Pooling & FC 7 × 7 1280 1

These models are previously trained on the large dataset ImageNet [38]. All three
models have been retrained using the concept of Transfer Learning (TL). TL helps the deep
learning model obtain better outcomes by reusing the deep learning model’s previously
gained information on huge datasets [51]. The TL technique not only improves results but
also reduces the training time significantly. The concept of TL is illustrated in Figure 4,
where there are two domains: the source domain and the target domain. The source domain
transfers the knowledge to the target domain. Both domains have three parts, including
the model, dataset, and labels [52]. The models used in the source domain are trained
from scratch on a large dataset, where the labels are the categories of that dataset, as in the
case of the ImageNet dataset which has 1000 categories. The models are retrained after
performing augmentation on the original dataset.
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Later, the models are fine-tuned according to needs of this study. The classifier head is
removed from all of the three networks, which consists of fully connected layers and global
average pooling layers. Two new fully connected layers are added named the Dense layer1
and Dense layer2 of size 256 and 4, respectively. The last fully connected layer is activated
using the softmax function, while the Adam optimizer is used in this work. The batch
normalization layer is employed before fully connecting the layers in order to normalize the
output of previous layers. Introduction of the batch normalization layer not only reduces
the convergence time but also improves the accuracy. The dropout layer is employed after
the first fully connected layer to make the model generalized and to avoid overfitting. The
cross entropy function is used as a cost function. It is represented mathematically in the
following equation:

H(P, Q) = −
N

∑
c

P(o, l) log Q(o, l), (1)

where N represents total classes, the labels of classes are denoted by l, P(o, l) is the true
probability of observation o over class c while Q(o, l) is the predicted probability of obser-
vation o over class c. The hyperparameter tuning plays an important role while training
the deep learning models. Learning rate is one of the important parameters, instead of
using one learning rate throughout the training; a learning scheduler is used in this work.
It is designed in such a way that whenever the validation loss stops reducing, the learning
rate is divided by a factor of 2. The starting learning rate used in this work is 0.0001. It
has been found during experimentation that small learning rates are better when using
pre-trained models, as this helps to retain much of the information from the previously
trained model. Higher learning rates makes the training faster but can also cause weights
to explode during training, which affects the training process adversely.

3.2.3. Experimental Setup

As mentioned earlier, the chest X-ray dataset with four classes is taken from Kaggle.
The dataset went through the preprocessing stage, which address the problem of class
imbalance. This is an important step, as an imbalanced dataset adversely affects the model
training by showing bias towards one or more classes. Later, the dataset is split into three
subsets—training, validation, and testing—with a ratio of 70:20:10, respectively. The testing
dataset is unseen, and is used for the evaluation of the model after training the models.
The experiments are performed on Intel Core I7, which has 16 gigabytes of RAM. The
system is also supported by NVIDIA GTX 1070 Ti. Three different deep learning models
are used to compute the results using TL. Moreover, two different training strategies have
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been adopted in this work. In Strategy I, all three models have been trained using TL on
the preprocessed datasets (normalization and data augmentation) and classified using the
classification head without batch normalization and the dropout layer, and also without
the L2 regularization technique. In the Strategy II, all three models are trained again and
classification is performed using a classification head with the batch normalization and
dropout layer. Moreover, the Dense layer1 is also regularized using the L2 regularization
technique, which is also known as weight decay. The results are evaluated using various
evaluation parameters to validate the results of the proposed technique. The evaluation
parameters used in this work are accuracy, precision, FPR, sensitivity, and specificity.

4. Results

In this section, the classification performance of the proposed technique on a multiclass
chest X-ray image dataset is discussed in detail. The classification results are presented in
Section 4.1 while Section 4.1.1 presents the findings of experiments along with comparisons
of other techniques.

4.1. Classification Results

The results of the proposed technique are presented in this section. The results obtained
using Strategy I are presented in Table 3. All three models are trained without employing
any regularization technique. Table 3 shows that among these three deep learning models,
EfficentNetB1 outperforms the others with the highest test accuracy of 92%. It attains a
precision of 91.75%, while the sensitivity and F1 scores are 94.5%, and 92.75%, respectively.
On the other hand, NasNetMobile provided an accuracy of 89.30% and a precision of
89.25%. The sensitivity is recorded as 91.75% and NasNetMobile gave an F1 score of 91%.
The third model used in this work is MobilNetV2, which performs relatively better than
NasNetMobile. The MobileNetV2 achieves an accuracy of 90.03%, whereas the precision is
recorded as 92.25%. The sensitivity attained using MobileNetV2 is 92% and the F1 score
is recorded as 91.75%. It is clearly seen in Table 3 that EfficientNetB1 shows superiority
over other models in terms of accuracy, along with other parameters. These results are also
validated using a confusion matrix. The confusion matrix is shown in Figure 5.

Table 3. Classification results using Strategy I.

Deep Learning
Models

Evaluation Parameters

Accuracy Precision Sensitivity F1 Score

EfficientNetB1 92% 91.75% 94.50% 92.75%

NasNetMobile 89.30% 89.25% 91.75% 91%

MobileNetV2 90.03% 92.25% 92% 91.75%

Results of the proposed technique using the Strategy II are presented in Table 4. As
mentioned in Section 3, to improve the performance of the models used in Strategy I, the
classification head is modified by employing a normalization layer along with the dropout
layer. This strategy significantly improves the results of these three models. According
to Table 4, EfficientNetB1 attains the highest test accuracy of 96.13%, while the precision,
sensitivity, and F1 score are 97.25%, 96.50%, and 97.50%, respectively. Among the other
two models, NasNetMobile performs better than MobileNetV2 and attains the accuracy of
94.81%. The value of precision is 95.5%, whereas the sensitivity and F1 score are 95% and
95.25%, respectively. The accuracy and precision attained by the MobileNetV2 are 93.96%
and 94.50%, while the sensitivity and F1 score are 95% and 94.50%, respectively. The results
of Table 4 can also be validated through a confusion matrix. The Figure 6 presents the
confusion matrices of all three models.



Sensors 2022, 22, 1211 11 of 16

Sensors 2022, 22, x FOR PEER REVIEW 10 of 16 
 

 

4.1. Classification Results 
The results of the proposed technique are presented in this section. The results ob-

tained using Strategy I are presented in Table 3. All three models are trained without em-
ploying any regularization technique. Table 3 shows that among these three deep learning 
models, EfficentNetB1 outperforms the others with the highest test accuracy of 92%. It 
attains a precision of 91.75%, while the sensitivity and F1 scores are 94.5%, and 92.75%, 
respectively. On the other hand, NasNetMobile provided an accuracy of 89.30% and a 
precision of 89.25%. The sensitivity is recorded as 91.75% and NasNetMobile gave an F1 
score of 91%. The third model used in this work is MobilNetV2, which performs relatively 
better than NasNetMobile. The MobileNetV2 achieves an accuracy of 90.03%, whereas the 
precision is recorded as 92.25%. The sensitivity attained using MobileNetV2 is 92% and 
the F1 score is recorded as 91.75%. It is clearly seen in Table 3 that EfficientNetB1 shows 
superiority over other models in terms of accuracy, along with other parameters. These 
results are also validated using a confusion matrix. The confusion matrix is shown in Fig-
ure 5. 

 
Figure 5. Confusion matrix using Strategy I. (a) EfficientNetB1 (b) NasNetMobile (c) MobileNetV2. Figure 5. Confusion matrix using Strategy I. (a) EfficientNetB1 (b) NasNetMobile (c) MobileNetV2.

Table 4. Classification results using Strategy II.

Deep learning
Models

Evaluation Parameters

Accuracy Precision Sensitivity F1 Score

EfficientNetB1 96.13% 97.25% 96.50% 97.50%

NasNetMobile 94.81% 95.50% 95% 95.25%

MobileNetV2 93.96% 94.50% 95% 94.50%
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The training plots of the best-performing model, EfficientNetB1, are shown in Figure 7.
Figure 7a represents the training and validation accuracy plot. The validation accuracy
is achieved by the model on the 20th epoch, while Figure 7b represents the training and
validation loss plot. The minimum validation loss is attained on the 18th epoch, while
the training continues until the 21st epoch but after the 18th epoch, the loss did not
reduce further.
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4.1.1. Analysis and Comparison

In this subsection, the observations during training are stated. In this work, three
different models are trained by opting for two different strategies. It has been observed that
the performance of all three models significantly improves after employing regularization
techniques. Though EfficientNetB1 performs well in both scenarios, regularization tech-
niques significantly improve the performance of EfficientNetB1. Moreover, it also has been
observed that the number of the parameters in the model is not related with the perfor-
mance of the model, as in Strategy I, MobileNetV2 has fewer parameter than NasNetMobile,
and attains better accuracy than NasNetMobile. A comparison of the performance of the
models are shown in Figure 8. It is clearly seen that a modified EfficientNetB1 outperforms
in both strategies. In addition, a comparison of performance with the recent work that is
presented in the literature is shown in Table 5.
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Table 5. Comparison with other techniques.

Reference Year # of Classes Accuracy

Khan et al. [31] 2020 4 89.6%

Rahman et al. [53] 2021 3 96.29%

Abbas et al. [21] 2021 3 93.1%

Proposed 2022 4 96.13%

5. Conclusions

A deep learning-based technique is proposed for the classification of different chest
infections. The proposed automated system can differentiate chest infections after the
evaluation of chest X-ray images. Pixel normalization is used as a preprocessing tool to
normalize the pixel intensity of images as the data are gathered from different sources.
Moreover, image augmentation is adopted to resolve the class imbalance problem. Three
pre-trained deep learning models—EfficeintNetB1, NasNetMobile, and MobileNetV2—are
fine-tuned and later retrained to perform the classification of four different chest X-ray
classes. This research shows the performance of all three models is improved after applying
regularizing techniques to the models. The regularized EfficientNetB1 model outperforms
the other models with a classification accuracy of 96.13%, and also when compared with
other techniques, the proposed technique shows its superiority in performance.

In the future, this study can be extended for a larger database with more than four
classes to be classified. In addition, other lightweight deep learning models can be used to
improve the computational time required. Moreover, for the improvement in performance
some optimization techniques, specifically metaheuristic techniques, can be employed to
select optimum features for classification.
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