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Abstract: Road detection technology plays an essential role in a variety of applications, such as
urban planning, map updating, traffic monitoring and automatic vehicle navigation. Recently, there
has been much development in detecting roads in high-resolution (HR) satellite images based on
semantic segmentation. However, the objects being segmented in such images are of small size,
and not all the information in the images is equally important when making a decision. This paper
proposes a novel approach to road detection based on semantic segmentation and edge detection.
Our approach aims to combine these two techniques to improve road detection, and it produces
sharp-pixel segmentation maps, using the segmented masks to generate road edges. In addition,
some well-known architectures, such as SegNet, used multi-scale features without refinement; thus,
using attention blocks in the encoder to predict fine segmentation masks resulted in finer edges.
A combination of weighted cross-entropy loss and the focal Tversky loss as the loss function is
also used to deal with the highly imbalanced dataset. We conducted various experiments on two
datasets describing real-world datasets covering the three largest regions in Saudi Arabia and
Massachusetts. The results demonstrated that the proposed method of encoding HR feature maps
effectively predicts sharp segmentation masks to facilitate accurate edge detection, even against a
harsh and complicated background.

Keywords: deep learning; convolutional neural networks; 2D attention; satellite images; road
segmentation; edge detection

1. Introduction

The rapid advancement of high-resolution (HR) satellite images has increased the
need to process and extract valuable data. This process is extremely slow when performed
manually; therefore, different computer vision techniques that can automatically extract
helpful information from high-resolution satellite images have been developed, one of
which is road segmentation. The goal of segmentation is to label each pixel in the input
image [1,2]. Road segmentation is important to digital mapping automation; it has seen
much attention and has developed considerably over the past few years. However, employ-
ing the road segmentation approach is challenging because of the associated background
complexity, noise, shadows and occlusions. Techniques such as template matching or
predefined features are high speed but offer low levels of accuracy. On the other hand,
deep learning (DL) techniques that use supervised learning to train a convolutional neural
network (CNN) on manually labeled data have shown promising results.
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A few recent studies have led to advanced neural network architectures, while others
have improved previous work remarkably. All of these studies have contributed to better
segmentation performance. Deep convolutional neural networks such as UNet [3] and
SegNet [4] use the famous encoder–decoder structure to segment images. The encoders in
such networks encode the features by down-sampling the image gradually while increasing
the receptive field in the process. The decoder then up-samples the features to recover
their spatial dimensions and make the final predictions in full resolution. Long et al. [5]
proposed fully convolutional networks (FCNs) for semantic segmentation. The authors
used an encoder to extract features at multiple levels to make the segmentation of objects
of different sizes easier. A decoder then combines the encoded features. Both UNet [3] and
FCNs [5] have been the backbone of many developments.

Chen et al. [6] modified the FCN architecture, referred to as DeepLab, by using dilated-
convolution layers in the last few layers to increase the receptive field while maintaining
the spatial dimensions of the last few layers; maintaining spatial resolution in this way has
proven to improve the segmentation of small objects. The DeepLab introduces a spatial
pyramid pooling module, using dilated convolution layers with different dilation rates con-
nected in parallel to capture context information at various ranges. The importance of this
step is that it makes the segmentation of objects with a wide range of sizes more accessible.

Attention mechanisms such as the one used in [7] facilitate the segmentation process
by giving higher priority to those pixels that are of more excellent value. Not all of the
pixels in a feature map need equal attention; therefore, Ref. [8] used hierarchical attention
maps to enable the merging of predictions from multiple scales, allowing the network to
focus on the features that it thinks are more important from each scale.

Along with good network architecture, it is also essential to use a loss function that
can adequately handle the imbalance of classes, especially when dealing with segmentation
data in HR remote sensing images in which only a small proportion of an image is a
road. The multi-scale attention mechanism in [9] generates an attention map for features at
three scales.

Loss functions, such as weighted cross-entropy loss, the Tversky loss [10] and the negative
log-likelihood (NLL) loss, have been used by many techniques to handle unbalanced datasets.

This paper proposes a technique that can simultaneously predict segmentation masks
and the edges of objects in challenging environments, specifically roads in satellite images.
It first generates road segmentation masks and then uses these segmented masks to create
the road’s edges. The main contributions in this research are as follows:

1. This study designs an encoder with a large receptive field, meaning that it can ad-
equately segment large objects and encode features in full resolution. This step is
essential, as a high resolution is needed to produce fine segmentation masks.

2. The study then uses these features to generate fine segmentation masks, which are
then used to create road edges.

3. The study also implements and tests the combination of weighted cross-entropy and
the Tversky loss functions, training the network to handle highly imbalanced data.

The rest of the paper is organized as follows. Section 2 provides a brief discussion on
relevant related works. Section 3 summarizes essential concepts that will be used in this
paper. The proposed research methodology is detailed in Sections 4 and 5. Experimental
results using two different datasets are presented in Section 6. Discussion is provided in
Section 7. Finally, Section 8 concludes the paper.

2. Literature Review

Several research studies have been conducted to improve the literature’s road detec-
tion/extraction efficiency and performance. This section introduces recent state-of-the-art
approaches for road detection and extraction.

Road detection is critical in many applications, including infrastructure planning
and traffic routing software, emergency management and urban planning. Automatic
road network extraction techniques have significantly increased the extraction rate of
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road networks. Over the last few decades, researchers have proposed numerous new or
improved image segmentation methods for road extraction.

Traditional and deep learning-based methods are the two broad categories of these
methods. Traditional road extraction methods are primarily based on the assumption
that the grayscale value inside the road is relatively consistent and contrasts with the
surrounding objects, such as trees and buildings, ensuring road area distinguishability
and severability. In contrast to traditional methods, deep learning-based methods rely
on advances in feature learning and parameter sharing, which can be used to achieve
automatic and efficient road extraction [11,12]. Deep learning techniques have made
significant advancements in image object segmentation. The efficiency of road extraction
can be scaled according to processing power and the size of the training data set [13].

To gather contextual information from different resolutions, the Pyramid Scene Parsing
(PSP) Network [14] introduces a multi-path feature extraction module. This method of
gathering contextual information aids in the segmentation of objects of various sizes.
Henry et al. [15] presented an evaluation of fully convolutional neural networks (FCNNs)
for road segmentation in high-resolution synthetic aperture radar images. To extract
roads, the authors modified FCNNs by including a tolerance rule for spatially small errors.
Deeplabv3+ was modified with a class-weighted mean-squared error loss to achieve a 44%
IoU across the test data.

Xin et al. [16] developed a CNN-based approach, DenseUNet, to extract the road net-
work from RS images with few parameters and robust characteristics. The model combines
dense connection and U-Net to solve the tree and shadow occlusion problems and empha-
size foreground pixels. Experiments were conducted on two datasets of high-resolution
images and compared with three classical semantic segmentation methods. Chen et al. [17]
suggested a DL-based model using a dense feature pyramid network to consider the partic-
ularity and complexity of instance segmentation of roads. In this work, shallow feature
channels are concatenated with deep feature channels to use in-depth features for the
shallow feature maps with high-resolution images. The authors suggested using the focal
loss function to compute mask loss in the DL model better to consider the hard-classified
samples with the less-pixel foreground. The experiments depicted good performances of
the proposed method in improving the instance segmentation of road marking compared to
the state-of-the-art methods. Instead of using pooling layers, which increase the receptive
fields at the cost of reducing the spatial dimensions (see, for example, [18–22]), authors
have maintained the feature maps in full resolution throughout the network to segment
small objects and properly segment fine edges. Boulila et al. [23] used long short-term
memory units to predict urban expansions. The images are first segmented using unsu-
pervised learning to segment different land areas before segmenting them further using a
convolutional LSTM (ConvLSTM) approach. The technique in [24] uses a CNN with a fully
connected layer to classify satellite images into the water, soil, road, vegetation and urban
classes. Alkhelaiwi et al. [25] used a CNN to encode satellite images, thereby reducing the
overall computational costs. To segment the road surface from the remote sensing images,
MRENet [26] used an encoder–decoder architecture similar to UNet [3] and a PSP module
with four subregions between the encoder and the decoder modules. Brewer et al. [27]
adopted a transfer learning approach based on CNN architecture trained on data collected
in the United States and then fine-tuned data collected from Nigeria. Brewer et al. [27]
developed an Android application to collect road data and used it as input to test several
CNN architectures. The proposed approach achieved an accuracy of 80%, with 99.4% of
predictions falling within the actual or adjacent class. The authors demonstrated that by
tailoring the United States model based on the Nigerian data, they could reach an accuracy
of 94% in predicting the quality of Nigerian roads. Li et al. [7] generated attention maps
in each resolution before passing them on to the decoder. They introduce two attention
mechanisms: the kernel attention mechanism (KAM) and the channel attention mechanism
(CAM). The purpose of these two mechanisms is to reduce the overall computational
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complexity. Instead of generating a single 3D attention map, Ref. [28] used a channel
attention module and a spatial attention module separately.

The channel attention module outputs a tensor of shape 1× 1× C, where C represents
the number of channels, while the spatial attention module outputs a 2D attention map
of the shape of the input. HED-UNet [8] uses an encoder–decoder network similar to that
employed by UNet. Their main contribution is combining the coastline’s segmentation and
edge detection. They have used hierarchical attention maps, allowing the network to give
adequate attention to the coast. Edge-FCN [29] combines an FCN with a Holistically Nested
Edge detection method [30] to predict segmentation masks and edges. The segmentation
masks and edges are then used to predict finer segmentation masks.

Generative adversarial network-based approaches also have their fair share of contri-
butions in this field. Post-processing techniques such as conditional receptive fields (CRF)
are normally used to enhance the results after segmentation. Zhaoa et al. [31] changed
this trend by adding CRFs in the end-to-end training with convolution. These convCRF
modules are then used in the discriminator part of their generative adversarial network.

In Refs. [32,33], generative adversarial networks (GANs) are used to segment road
networks in RS images. GANs contain two main components: a generator and a discrimi-
nator. The generator generates segmentation masks to fool the discriminator; on the other
hand, the discriminator tries to determine whether the input segmentation mask is from
the dataset or was generated by the generator. Shamsolmoali et al. [33] incorporates a
spatial pyramid pooling to segment objects at multiple scales. Table 1 portrays a summary
of existing models.

Table 1. Summary of existing models.

Reference DL Method Main Steps Findings

Henry et al. [15] Fully Convolutional Neural
Networks (FCNNs)

Segmentation with FCNNs
Adjusting the FCNNs for

road segmentation.

(1) FCNNs are an effective method
to extract roads from SAR images.

(2) Adding a tolerance rule to
FCNNs can handle mistakes

spatially and enhance
road extraction.

Xin et al. [16] DenseUNet

(1) Encoder–Decoder.
(2) Backpropagation to Train

Multilayer Architectures.
(3) DenseUNet.

(1) Combination of dense
connection mode and U-Net to
solve the problem of tree and

shadow occlusion.
(2) Use of weighted loss function to

emphasize foreground pixels.
(3) Dense and skip connection help
transfer information and accelerate

computation.

Chen et al. [17] Dense Feature Pyramid
Network (DFPN)

(1) Data Preprocessing.
(2) DFPN-Based Deep

Learning Model.
(3) Constructions of Feature

Extraction Framework.
(4) Establishments of FPN,

and DFPN.
(5) Generation of Object Proposals.

(6) Road Marking Instance
Segmentation.

(1) Introduction of the focal loss
function in the calculation of mask

loss to pay more attention to the
hard-classified samples with

less-pixel foreground.
(2) Combining the “MaskIoU”

method into optimizing the
segmentation process to improve

the accuracy of instance
segmentation of road markings.
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Table 1. Cont.

Reference DL Method Main Steps Findings

Brewer et al. [27]

Transfer learning models:
ResNet50, ResNet152V2,

Inceptionv3, VGG16,
DenseNet201,

InceptionResNetV2,
and Xception.

(1) Collect data from the cabin
of vehicles.

(2) Categorize data into groups:
high, mid, and low quality.

(3) Label data.
(4) Classify road segments using

transfer learning models.
(5) Test the networks on a subset of

the Virginia dataset used
for training.

(6) Test the transfer learning model
with Nigerian roads not used in

training.

(1) Capture of variance in road
quality across multiple geographies

exploration of different DL
approaches in a wider range of

geographic contexts.
(2) Need for more tailored

approaches for satellite
imagery analysis.

(3) Fuzzy-class membership for
object qualification using satellite

data and CNNs.
(4) Continuous estimation of road

quality from satellite imagery.
(5) Use of a phone app combined

with ML for road quality prediction.

Heidler et al. [8] HED-UNet

(1) Computation of pyramid feature
maps using Encoder.

(2) Combination of feature maps by
the task-specific merging heads
using the hierarchical attention

mechanism.

(1) Uses hierarchical attention maps
to merge predictions from multiple

scales.
(2) Exploitation of the synergies
between the two tasks to surpass
both edge detection and semantic

segmentation baselines.

Shao et al. [26]
CNN termed multitask

road-related extraction network
(MRENet)

(1) ResBlock operates according to
two steps: extraction of image

features using convolution
operation and enlarging the
receptive field using pooling

operation.
(2) Pyramid scene parsing (PSP)

integrates multilevel features.
(3) Multitask learning.

(1) Two-task and end-to-end CNN
to bridge the extraction of both road

surface and road centerlines by
enabling feature transferring.

(2) Use of a Resblock and a PSP
pooling module to expand the

receptive field and integrate
multilevel features and to acquire

much information.

3. Background Knowledge
3.1. Attention Mechanism

Attention Mechanism is a way to mimic the ability of the human brain to focus on a
specific region more than the rest of the image [34–37]. It gives more importance to the
features of higher significance and fades the ones of lower priority. Attention mechanisms
have been used in various ways throughout the field of deep learning. Originally, attention
was used with sequential data to encode the information from all time-steps. In natural
language processing (NLP) tasks, the self-attention mechanism is famous for establishing a
word with every other word in the sentence, creating a sense of how important each word
is compared to every other word. This technique has been extremely popular in NLP tasks
and has recently been used in computer vision and surpassing traditional convolutional
neural networks.

In encoder–decoder structures, attention has previously been used to quantify the
amount of attention the decoder will place on each encoded feature.

The authors in [9] pass in the input image in three scales, and the attention for each
scale is learned by the network. The attention generated at larger scales focused more
on small details, while the attention at smaller scales focused more on more significant
structures, enabling the network to segment objects of all sizes.

3.2. Receptive Field and Spatial Resolution

The receptive field is one of the essential concepts in CNNs [38–40]. Receptive fields
can be described as the neural network’s ability to see an area in the input image. Large
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objects in an image need a lot of contextual information for a convolutional neural network
to detect or segment them appropriately. In a case where the object occupies most of the
image, a small receptive field will deduce fewer features and thus lead to poor accuracy.
Increasing the depth of the network can effectively increase the receptive field; however,
such huge networks can be impractical, as they require a lot of memory and processing
power. A practical way to solve this issue is to use pooling layers to reduce the spatial
dimensions of the features, thus increasing the receptive field. Doubling the receptive
field of a network will reduce the spatial dimensions of the features by half. A low spatial
resolution can cause small objects to be either over-segmented or missed. The authors
in [41] show how dilated convolution layers can reduce the loss of spatial information while
still managing to gather distant features (increase in spatial resolution). The architecture
D2A U-Net [42] uses dilated convolutions in the model’s decoder to improve the receptive
field and refine the decoding process. Therefore, along with a large receptive field, it is
apparent that a high spatial resolution is also essential to improve segmentation accuracy.

3.3. Dilated Convolution

Before CNNs, image processing was mainly based on filters used to extract useful
information. As an example, consider the horizontal edge filter (HEF) given in Equation (1):

HEF =

 1 1 1
0 0 0
−1 −1 −1

 (1)

To calculate the edges using this filter, it is necessary to calculate the convolutional
product of the image and the filter. In a CNN, however, the values of these filters are
learned through an iterative process. A convolutional layer has several filters, and the
channels belonging to each filter (kernel) must be equal to the number of channels in the
input image. This allows a different filter to be applied to each channel.

The main goal of dilating the convolutional operation is to increase the receptive field
of the network using the same number of parameters, thereby enabling the segmentation
of small and fine edges, as stated in [43]. Dilated convolution can be easily explained
as applying a convolution operation on an image using a dilated filter. For example,
dilating the filter given by Equation (2) will introduce gaps into the filter (as shown by
Equation (3)), thus increasing the receptive field from 3 × 3 to 5 × 5, while still using the
same nine weights.

f ilter =

1 1 1
2 2 2
1 1 1

 (2)

dilated f ilter =


1 0 1 0 1
0 0 0 0 0
2 0 2 0 2
0 0 0 0 0
1 0 1 0 1

 (3)

4. Proposed Method

This section discusses the proposed methodology in detail. Three problems need
to be solved before designing a network to segment a road from very HR images. First,
the network should have a receptive field that is large enough to gather the required
contextual information. Secondly, if we are to predict segmented pixels, along with accurate
edges and segmentation masks, a high spatial resolution is needed, as suggested by [22].
The third problem is how to handle the highly imbalanced dataset effectively.

To address the aforementioned issues, the proposed network has been divided into
three parts as shown in Figure 1:

1. The encoder encodes the features in full resolution with the help of attention maps.
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2. The encoded features are then used to produce segmentation masks.
3. The previously generated segmentation masks, along with the encoded features, are

then used to predict the road edges.

Figure 1. Architecture of the proposed network.

4.1. Encoder

The structure of the encoder shown in Figure 2 contains two spatial and two receptive
blocks. The two spatial blocks use dilated convolutional layers to maintain the feature’s
spatial dimensions while exponentially increasing the receptive field, without increasing
the number of trainable parameters. Each spatial block contains three dilated convolutional
layers with dilation rates of 1, 2 and 4, respectively. Using dilated convolution with dilation
rates in this order increases the receptive field by 15× 15, without losing spatial information.
This enables the system to predict the segmentation masks in much finer detail.

Figure 2. Structure of the proposed encoder.

A large receptive field is required when detecting or segmenting large objects, as more
contextual information is required. To further increase our network’s receptive field,
we decided to use max-pooling layers in our receptive blocks. The first reason why
we chose not to completely rely on dilated convolution to increase the receptive field is
that, although dilated convolutional layers exponentially increase the theoretical receptive
field, the actual receptive field is usually a bit smaller; max-pooling layers, on the other
hand, are good at increasing the effective receptive field of the network. The second
reason is that going deep with high spatial dimensions can introduce latency. Transposed
convolution layers are then used to restore the spatial dimensions of the features from the
receptive blocks.
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Attention Blocks

When segmenting roads, not all of the pixels in an HR satellite image are equally im-
portant; some of the pixels in the image have a higher influence on correct mask prediction
than others. This issue is addressed by the attention blocks that generate a 2D attention
map equal to the input size. The final convolutional layer in the attention block is followed
by a sigmoid activation function shown in Equation (4).

Sigmoid(x) =
1

1 + exp−x
(4)

The sigmoid function maps the input X in the range from 0 to 1, thereby indicating the
importance of each pixel in the input. In this case, the attention maps refine the features
from the spatial and receptive blocks before adding them to each other. Equations (5)–(7)
below show the attention mechanism.

s f ∗ = A(s f )× s f (5)

r f ∗ = A(r f )× r f (6)

Encoded output = s f ∗ + r f ∗, (7)

where s f ∗ and r f ∗ show the refined features of the spatial and receptive blocks, respectively,
and A(.) represents the attention block.

4.2. Segmentation and Edge Detection

The road segmentation network and the edge detection network both operate on full-
resolution encoded features and have the structure shown in Figure 3. A skip connection
has been used to link the features before max pooling and after the transposed convolution.
Skip connections are good at providing the gradient with an alternative way to flow during
backpropagation; they are mainly used to counter vanishing gradients. The encoded
features of the shape B × C × H ×W are fed directly into the segmentation block, where
B denotes the batch size, C denotes the number of channels, H denotes the height and W
denotes the width. The output from the segmentation block is of shape B × 2 × H ×W
and the shape of the encoded features in B × 128 × H ×W. The encoded features and the
segmentation masks are added together; this requires both of them to have the same shape.
This problem is addressed by reducing the number of channels of the encoded features by
two using a 1 × 1 convolution layer. After adding the predicted segmentation mask and
the encoded features with the reduced number of channels, the respective sum is passed
through the edge detection block as shown in Algorithm 1. In this situation, detecting
edges using only the raw satellite images would have been extremely difficult. However,
edge detection gets a lot easier when segmentation information is provided, reducing the
need to use huge neural networks to detect edges.

Figure 3. The structure of segmentation and edge detection blocks.
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Algorithm 1 Algorithm for road segmentation and edge detection
// x: Input image; rx: Features with reduced channels
// S: Segmented output; E: Edge output
// Comb: Combined channels

Input: Satellite image of size 512 × 512

for x do
x ← encoder(x)
S← SegmentationBlock(x)

// RedConv = 2D convolutional layer with a 1x1 kernel
rx ← RedConv(x)
Comb← S + rx
E← EdgeBlock(Comb)

end for

4.3. Loss Function

The ability to properly deal with highly imbalanced data is extremely important when
training a neural network, especially in a situation like this (i.e., where only a small area in
an image is a road). Here, a combination of a focal Tversky loss and weighted cross-entropy
loss has been used as the loss function. The mathematical representation of the Tversky
index (TI) is

TI =
TP

TP + αFN + βFP
, (8)

where α and β are the weights of false negative and false positive values, respectively.
When trained on a highly imbalanced dataset, the network might not predict the road at
all yet still have high accuracy. This problem is dealt with by varying the values for α
and β; namely, setting α as more significant than β will help the network to penalize false
negatives. The focal Tversky loss uses the TI as shown below:

Focal Tversky Loss = (1− TI)γ. (9)

Setting γ as more significant than 1 gives a higher loss gradient for samples where the
TI is less than 0.5, thereby forcing the model to focus on more complex examples, whereas
setting γ as less than one will force the network to focus on those examples where the TI
is more significant than 0.5. The overall loss function used in this work is shown in the
equation below:

Loss function = Tversky weight× Focal tversky loss + Cross entropy weight×Cross entropy loss (10)

5. Materials

Several satellite images representing cities in Saudi Arabia are considered to validate
the proposed approach.

5.1. Understanding Saudi Arabia’s Land Cover

The Middle East and North Africa’s urban centers are undergoing rapid transforma-
tion, including significant growth in the youth population and an urbanization trend that
will result in large numbers of people settling in major cities. There is a growing recognition
that urban spaces in the Middle East, including Saudi Arabia, are in desperate need of
more culturally and socially relevant design solutions [44]. Saudi Arabia is a large country
divided into 13 administrative provinces that include several major cities, such as Riyadh,
Jeddah and Dammam, with varying cultural topography and size of the built environment.
In 1937 Saudi Arabia’s population was estimated to be less than 5 million people, while
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now it is around 31 million people, with a population density of about 15.3 people per
square kilometer. Its population growth rate was 2.55% by 2014 [44].

Saudi Arabia is not only a developing country with a scarcity of relevant scientific
studies, but it is also a one-of-a-kind case study to investigate. Nearly 88.5 percent of the
population is concentrated in urban areas due to industrial, commercial and recreational
activities and scarcity of fresh water and agricultural resources. Coastal cities are home to
more than half of this segment [44].

A societal change has accelerated the country’s transformation into a car-dependent
culture; thus, outdoor pedestrians are gradually disappearing from street space. Such
phenomena are because of a lack of mass transit systems, the rapid growth of shopping
malls, and the failure of urban streets to encourage walking to exist. Moreover, there is
currently no information available in Saudi Arabia about pedestrian requirements in the
design of modern streets [44].

Saudi Arabia has a high rate of urbanization, so the country faces significant urban
challenges today. People have been discouraged from implementing new ’expensive’
sustainable housing due to the high cost of living [45].

5.2. Study Regions and Dataset Description

In this study, three regions in Saudi Arabia—namely, Riyadh, Jeddah and Dammam—
have been considered, as depicted in Figure 4. The main reason for choosing these three
regions is that they are considered the largest cities in Saudi Arabia, which makes the
identification of the road network an ideal case to evaluate the effectiveness of the pro-
posed approach.

• Riyadh, Saudi Arabia’s capital city, has undergone significant change over the years.
Riyadh has been identified as one of Saudi Arabia’s fastest-growing cities. The pop-
ulation has increased from 4 million in 2004 to 7 million in 2019. Because of the
rate of growth observed in Riyadh, the city is now recognized as one of the fastest-
growing in the world by population [46]. Riyadh is located at GPS coordinates of
24°46′27.3540′′ N and 46°44′18.9096′′ E. Since 1932, the size of what is now known as
municipal Riyadh has more than doubled 1000 times, and the population has more
than doubled 200 times [46,47]. Aside from traffic issues and pollution, there is a
significant social cost associated with the high number of car accidents, which result
in one of the world’s highest rates of death and casualties. The city’s over-reliance
on automobiles, combined with a lack of effective street policies aimed at improving
walkability, has contributed to a drop in the livability and sustainability scales in
Riyadh [47].

• Jeddah, Saudi Arabia’s second largest city, has experienced rapid urbanization over
the last four decades. Jeddah is located at GPS coordinates of 21°32′35.9988′′ N and
39°10′22.0044′′ E. Jeddah’s population increased rapidly, from nearly 148,000 in 1964
to nearly 3.4 million in 2010, while its urban area increased dramatically, from nearly
18,300 hectares in 1964 to nearly 54,000 hectares in 2007. Furthermore, transportation
infrastructure expanded rapidly, from 101 km in 1964 to 826 km in 2007. It has been
discovered that approximately 50% of the Jeddah population has limited or no access
to the current public transportation system; daily travel behaviors changed, and the
daily share of car trips has increased. The proportion of daily car trips increased
from 50% in 1970 to 96% in 2012. Jeddah is characterized by deficiency and poor
condition of the infrastructure, including buses. High-need districts are concentrated
and clustered in the city center, whereas single districts are dispersed to the north of
the city center [48].

• Dammam began with a land area of less than 0.7 km2 in 1947 and grew to 15 km2 by
the 1970s. Its population was estimated to be around 1350 people in 1935 and had
grown to 43,000 by 1970, representing a 95.5 percent growth rate during this time
period. Between 1950 and 2000, Dammam was one of the world’s fastest-growing
cities. Dammam has now expanded to over 800 km2 and has a population of over
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1 million people, making it the fifth largest Saudi city in terms of population size.
Dammam is situated on a sandy beach with GPS coordinates of 26°26′3.91′′ N and
50°06′11.74′′ E. Dammam differs greatly from other cities in that it was built almost
entirely from the ground up following the discovery of oil. Its urban environment was
designed from the beginning with modernist architecture and planning principles in
mind, in tandem with rapid advancements in transportation [44].

Experimental results are analyzed using satellite images produced by Spot 7 with
a spatial resolution of 1.5 m. Images have been corrected for radiometric and sensor
distortions and from acquisition effects. In addition, acquired satellite images have been
corrected for viewing angle and ground effects so that they may be superimposed on a map.
Moreover, an orthorectification process has been performed to eliminate the perspective
effect on the ground.

Figure 4. Study regions.

In this paper, experiments are conducted on a dataset composed of 40,488 satellite
images having a size of 512 × 512 pixels each.

Figure 5 shows that the dataset is highly imbalanced, and the road covers only a
small area.

Figure 5. Ratio of road and non-road regions.

5.3. Implementation Details

Practically speaking, it is difficult to train a neural network on an entire satellite
image due to the large size of the image. A single satellite image is divided into several
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512 × 512 blocks to solve this problem. A small set of the images was manually labeled
using VGG Image Annotator. From 900 samples, 800 were for training, 30 for validating,
and 70 for testing. The Adam optimizer as well as a learning rate of 1× 10−5 (0.0067) and a
batch size of 5 were used to train the network.

The training process is shown in Figure 6, where the loss function is the combination
of weighted cross-entropy loss and the focal Tversky loss. Algorithm 2 shows the training
process. The loss between the predicted segmentation mask and the segmentation ground
truth is added to the loss between the predicted edge masks and the actual ground truth
before backpropagation.

Figure 6. Model training process.

Algorithm 2 Algorithm for forward propagation
// B: Batch size; C: Channel number
// H: Height; W: width
// x: Input sample
// img: Input image
//Sgt: Segmentation groundtruth; Egt: Edge groundtruth
Input:

The entire dataset was first divided into batches in such a way that each sample
contained satellite images of shape [B, C, H, W]
Training:

for x do
img, Sgt, Egt ← x
// Setting the gradients to zero.
optimizer.zero_grad
encoded← Encoder(img)
Seg_predictions← Segmentation_block(encoded)
Edge_predictions← Edge_block(encoded + Seg_predictions)
loss← loss_ f unction(Seg_predictions, Edge_predictions, Sgt, Egt)
loss.backward()
//updating weights
optimizer.step()

end for

The accuracy of the road edge detection heavily depends on the accuracy of the
segmentation. We have used mean intersection over union (mIoU) as the evaluation metric
for road segmentation. This metric can help avoid the problem of misleading results
provided by pixel accuracy, mainly because the road class representation is small within
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the image. Therefore, pixel accuracy measures will be biased in reporting how semantic
segmentation will identify the non-road class.

Equation (11) shows how mIoU is calculated, where C is the number of categories,
and TP(x), FP(x) and FN(x) are True Positive, False Positive and False Negative values,
respectively.

mIoU =
1
C

C

∑
x=1

TP(x)
TP(x) + FP(x) + FN(x)

(11)

6. Results
6.1. Data Augmentation

When training neural networks with a large number of trainable parameters, it is
important to have a large dataset to prevent overfitting. Data augmentation is a way to
increase the number of samples in a dataset using existing samples. We have rotated our
input images and segmentation ground truths at 90 degrees in either direction and flipped
the samples on both the x and y axes to increase the size of our dataset by five times.
Figure 7 shows an example of data augmentation operations.

Figure 7. A comparison of the original image with its flipped and rotated counterparts.

6.2. Training the Proposed Model

Weighted cross-entropy loss worked perfectly at the start of the training and is good
at dealing with unbalanced data, while adding it to the focal Tversky loss can help at the
end, as shown in Figure 8.

Using only cross-entropy loss limited the model segmentation accuracy to 70% mIoU.
We added the focal Tversky loss to the weighted cross-entropy loss to overcome it, as ex-
plained in the previous section.
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Figure 8. A comparison of weighted cross-entropy and focal Tversky + weighted cross entropy loss.

In Figure 9a, the blue graph shows the linear nature of the focal Tversky loss when
gamma = 1, while the red graph shows its non-linear nature when gamma = 4/3. Figure 9b
shows the gradient of the focal Tversky loss function while gamma = 4/3. Keeping γ as
greater than 1 will give a higher gradient loss when the Tversky index < 0.5, thus forcing
the model to focus on harder examples.

Figure 9. Graph showing the effect of gamma on the gradient of focal Tversky loss. (a) The red graph
shows the non-linear nature with gamma = 4/3. (b) The green graph shows the gradient of the red
graph when gamma = 4/3.

The network has been trained in two stages. The first stage is in the range 0 < Epoch≤ 75,
while the second stage ranges from epoch 76 to 100. Tables 2 and 3 show the values used
for each of the stages. The experiments indicate that too large or too small values of γ can
cause the model to overfit, depending on the size of the dataset. This is the reason that the
value of γ is chosen to be close to 1.

6.3. Ablation Study

To study the effectiveness of our attention blocks, we trained our model without the
attention blocks and compared its performance against the model trained with the attention
blocks; the encoder without the attention blocks is shown in Figure 10. Both the models,
in this case, are trained using cross-entropy loss only. The results of both the models were
quite similar, with the only difference being a slight 2% improvement in the IOU of the
network with the attention blocks. This shows that refining the features using attention
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blocks before adding them together can cause a minor improvement in the network’s
overall performance.

Table 2. Parameters used to train the network when Epoch ≤ 75.

Parameters Value

α 0.7
β 0.3
γ 4/3
Tversky weight 0.2
Cross-entropy weight 0.8

Table 3. Parameters used to train the network when Epoch > 7.5.

Parameters Value

α 0.5
β 0.5
γ 4/3
Tversky weight 0.5
Cross-entropy weight 0.5

Figure 10. Encoder without the attention blocks.

6.4. Evaluation of the Proposed Approach

Figure 11 shows a comparison of the segmentation performance offered by FCN,
SegNet, UNet and our proposed architecture. All four models have been trained using
combined weighted cross-entropy and the focal Tversky loss. Figure 12 presents a visual
comparison of road segmentation achieved by four models, and Figure 13 shows the road
edges detected by our network using the combination of the encoded features and the
segmentation masks. It is imperative to note that, when using the combined loss functions,
the proposed model does not settle at a 70% mIoU like it previously did in Figure 8.

Table 4 shows that our proposed network has achieved superior performance than
SegNet and FCN. The performance of UNet, on the other hand, is almost the same as our
proposed technique. UNet has an IOU of 77.34%, while our proposed method has an IOU
of 78.3%. It is also worth noting that the size and the learnable parameters of UNet are a
lot more than our proposed network. This research goes against the traditional way using
back-to-back convolutional block and downsampling the features after each step, and it
presents the idea of developing an encoder with separate modules where each module
is specialized for each task. Therefore, we can assume that our technique offers a more
cost-effective way to achieve reasonably good results for segmenting roads in RS images.

In this paper, we are dealing with detecting roads, which are, in general, small objects
with regards to other objects in satellite images such as vegetation, sea and urban areas.
Working with higher spatial resolution can better help deep learning methods identify road
vs. non-road classes. On the other hand, the multispectral data will improve the results
since there is more information provided to deep learning to better identify objects. Working
with low spatial resolution has shown a slight decrease in the accuracy of identifying objects
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in images, especially in the case of small details and sharp edges. However, increasing the
resolution would require a deeper model with a much higher receptive field.

Figure 11. A comparison of the validation accuracy of FCN, SegNet, UNet and our proposed network.

Figure 12. A visual comparison of the segmentation masks offered by FCN, UNet, SegNet and our
proposed architecture.
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Figure 13. A visual representation of a comparison of the predicted edges and the ground truth.

Table 4. Comparison of the segmentation accuracy offered by FCN, SegNet, UNet and our
proposed network.

Network Size Learnable Parameters mIoU Dice Score

Proposed Network 23 Mb 2.93 M 78.3 87.47
UNet 118.5 Mb 31.04 M 77.34 87.97
SegNet 28.2 Mb 7.37 M 75.44 85.23
FCN 71.1 Mb 18.65 M 68.53 79.83

6.5. Massachusetts Dataset

To better evaluate the performance of the proposed approach, the same experiments
conducted for the Saudi Arabia dataset were conducted for the Massachusetts dataset. This
dataset contains 1711 images, with 1108 images belonging to the training set, 14 images
to the validation set, and 49 images to the test set. Figure 14 shows a visual comparison
of the segmentation masks predicted by UNet, SegNet and our proposed architecture.
The features jointly encoded by our special blocks and receptive blocks in our encoder have
helped our network segment small details. Although the mIoU score of UNet is close to
ours, as shown in Table 5, our network is better at segmenting fine details while being
much smaller in size, a feature that is important when those masks are being used to predict
edges. The dataset was accessed on 7 November 2021 and can be found at the following
link: https://www.cs.toronto.edu/~vmnih/data/.

https://www.cs.toronto.edu/~vmnih/data/.
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Table 5. Comparison of the segmentation accuracy offered by SegNet, UNet and our proposed
network on the Massachusetts dataset.

Network Size Learnable Parameters mIoU Dice Score

Proposed Network 23 Mb 2.98 M 80.71 89.82
UNet 118.5 Mb 31.04 M 80.32 90.25
SegNet 28.2 Mb 7.37 M 77.74 88.49

Figure 14. A visual comparison of the segmentation masks predicted by UNet, SegNet and our
proposed architecture.

7. Discussion

This paper proposes a technique to encode features to predict fine segmentation masks
and road edges using the predicted masks.

High-resolution images can generate enormous amounts of raw data; thus, extracting
road information from them is not easy. Manual and traditional approaches to extracting
roads are expensive, time-consuming and prone to errors due to human operators, plus the
difficulties posed by irregular and complex roads structures remain [13]. On the other hand,
automatic road extraction from high-resolution RS images is complicated. Road features
such as vehicles, buildings on the roadside and visible tree shadows have similar spectral
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values to road pixel values. The lack of context of road parts [49] as well as irregular road
segments and complex network structures pose additional challenges [16,50]. In terms of
colors, the reflections, patterns and occlusions are similar to road features [13,51].

Furthermore, the road features can be affected by different sensor types, spectral
and spatial resolutions, volatile weather conditions, diverse road materials and complex
backgrounds. It is critical to analyze the road features and road model in a normal situation
without taking into account noise interference [51]. These are the reasons why traditional
segmentation techniques such as Unet [3] or FCN [5] are not an ideal solution to the
problem. The idea of using high-resolution feature maps is already a well-known solution
for predicting fine segmentation masks. This idea is heavily adopted in the technique used
by Hamaguchi et al. [22], when authors have designed this technique for the segmentation
of small objects such as buildings with low context information to perform the task, entirely
relying on dilated convolution to achieve large enough receptive fields. HED-UNET [8], on
the other hand, has used a UNet-like architecture with aggressive downsampling using
pooling layers to increase the receptive field; this allows their network to have a receptive
field as large as the image. In their case, having a large receptive field is extremely important,
as segmenting the coastline needs a huge amount of context information. MRENet [26] uses
a PSP module after multiple downsampling layers to segment roads of all sizes, but the
downsampling, in this case, can damage the rich spatial information. It can be argued that
the skip connections used by MRENet to connect layers from the encoder to the decoder are
an excellent way to preserve the spatial information from the encoder. However, looking at
it differently can show that each convolutional block in the encoder receives the features
that the previous convolutional block has already downsampled. This approach with
aggressive down and upsampling can result in a bulky model. The same idea can be
applied to Segnet [4].

This study proposes a way to deal with these problems; our two-staged encoder plays a
considerable role in this issue. The first stage is stacked with multiple dilated convolutional
layers encoding the features in full resolution, while the second stage rapidly downsamples
the features using pooling layers to increase the receptive field on the network. However,
this technique has been shown to solve the problem, but full processing resolution can be
memory hungry.

In previous studies, attention maps have been used for various applications. Fu et al. [52]
proposed two types of attention modules, position attention module and channel attention
module, to capture global and local features. The results from both the attention modules
are combined to achieve state-of-the-art segmentation performance. MANet [7] proposes
a technique to refine the multi-scale features before combining them. The goal of our
attention mechanism was to allow a better addition of features from both parts of the
encoder. This enables the network to learn where high-resolution features are helpful and
when they need a large receptive field.

Although weighted cross-entropy loss is a great way to deal with the unbalanced
dataset, adding it with Tversky loss has been shown to perform well at the end of the
training process.

Remote sensing road segmentation labeled data sets are usually small in size, so it is
reasonable to consider using semi-supervised learning to use the unlabeled data. Using our
feature encoding and edge generation techniques in a generative adversarial network and
semi-supervised manner can be an excellent path for future developments. Its applications
can also be differentiated between different types of roads.

8. Conclusions

The development of satellite imaging technology has increased the amount of remote
sensing data available, which, in turn, has led to a considerable increase in the number of
computer vision techniques used to process these images. Methods to process these images
have been rapidly evolving, with road segmentation being one of the most critical tasks.
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Generating road edges from complex remote sensing data is almost impossible in
cases where the shadows from buildings, trees and noise increase the scene’s complexity.
A straightforward way to solve this problem is to generate segmentation masks and then
use the generated segmentation masks to predict the road edges. The effectiveness of this
technique heavily depends on the sharpness of the segmentation masks.

This paper introduces a DL-based technique to segment roads and to predict road
edges from HR remote sensing images.

Our model uses a hybrid encoder divided into two parts: the first part extracts the
features in full resolution, and the second part generates high-resolution feature encoding.
In contrast, the second part uses max-pooling layers to increase the overall receptive field of
our network, providing the network with enough context information to work with it. A 2D
activation map is generated for each part before the features from both parts are added
together, allowing the network to select how much attention to give to the features from
each stage of the encoder. This facilitates the segmentation of large roads and the generation
of fine-edged segmentation masks, which is an essential feature when the performance of
the edge detection module depends heavily on the segmentation performance.

The fine-edged segmentation masks and the encoded features are then used to detect
the road edges. The segmented masks reveal the structure of a road from a highly complex
environment, making it easier to detect the edges.

Good quality data and balanced classes are equally important as the network structure;
in our case, the classes are highly imbalanced.

We have experimented with weighted cross-entropy loss and Tversky loss functions
and have shown that combining the two can enhance the training performance in a highly
imbalanced situation such as this one.

The code is available at the following GitHub link: https://github.com/WadiiBoulila/
Semantic-Segmentation-Edge-Detection.
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