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ABSTRACT Smart contracts are programs that reside within decentralized blockchains and are executed
pursuant to triggered instructions. A smart contract acts in a similar way to a traditional agreement but
negates the necessity for the involvement of a third party. Smart contracts are capable of initiating their
commands automatically, thus eliminating the involvement of a regulatory body. As a consequence of
blockchain’s immutable feature, smart contracts are developed in a manner that is distinct from traditional
software. Once deployed to the blockchain, a smart contract cannot be modified or updated for security
patches, thus encouraging developers to implement strong security strategies before deployment in order to
avoid potential exploitation at a later time. However, the most recent dreadful attacks and the multifarious
existing vulnerabilities which result as a consequence of the absence of security patches have challenged
the sustainability of this technology. Attacks such as the Decentralized Autonomous Organization (DAO)
attack and the Parity Wallet hack have cost millions of dollars simply as a consequence of naïve bugs in the
smart contract code. In this paper, we classify blockchain exploitation techniques into 4 categories based
on the attack rationale; attacking consensus protocols, bugs in the smart contract, malware running in the
operating system, and fraudulent users. We then focus on smart contract vulnerabilities, analyzing the 7 most
important attack techniques to determine the real impact on smart contract technology. We reveal that even
adopting the 10 most widely used tools to detect smart contract vulnerabilities, these still contain known
vulnerabilities, providing a dangerously false sense of security. We conclude the paper with a discussion
about recommendations and future research lines to progress towards a secure smart contract solution.

INDEX TERMS Smart contracts, attack techniques, DApp, Ethereum, vulnerability.

I. INTRODUCTION
A blockchain is a distributed network that is leveraged for
various purposes [1]. It is an immutable ledger technology
where the recorded information is open and can be viewed
by everyone. It does not involve any central authority to
monitor the regular flow of the network, making it less
prone to attacks. Miners’ consent is required to verify the
authenticity of any acts performed in the blockchain platform.
Since its inception, blockchain has primarily been utilized
for crypto transactions. However, blockchain is not all about
cryptocurrencies, rather, it extends far beyond this. Over time,
the remarkable advancement of blockchain has made it pos-
sible to apply it to various other activities. The smart contract
is one of these applications which allows agreement to be
formed and authentic transactions initiated between parties
without the involvement of middlemen. This improves upon
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the traditional approach where users ended up expending an
unreasonable amount of time and effort.

Ethereum is a blockchain platformwhich provides tools for
developers to build decentralized applications which, unlike
Bitcoin, can be utilized for various purposes [2], [3]. Bitcoin
blockchain enhances a peer to peer digital cash system which
allows the participant to perform online transactions [4],
whereas, besides digital transactions, Ethereum is also uti-
lized to execute smart contract code in decentralized applica-
tions which are deployed on the network.

A smart contract functions in a similar way a normal
contract works among two ormore parties. Parties do not need
to rely on lawyers or banks to set up an agreement for them,
rather, the smart contract gets executed automatically to issue
payment once certain conditions are met. For instance, a lease
agreement, insurance contract, or real estate payments can be
in the form of a smart contract.

A smart contract is basically a piece of code that resides
inside the blockchain, ensuring the stated conditions are met
to fulfill the user’s requirement [5]. The written code is pub-
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licly visible in the blockchain, and transparent to anyone who
is connected to the network. Upon fulfilling the conditions
by the desired time, the contract gets triggered to execute
the digital transaction. Since the conditions are encrypted
cryptographically, no party is able to alter the contents of a
contract. The immutable nature of blockchain also ensures
that every single device connected to the network contains a
copy of the contract, thus securing a backup version of the
contact.

Being open-source, the contract code enables the involved
parties to determine what the contract does and how it is
initiated [6]. It also guarantees the execution of the contract
without being affected when certain parts of the network are
down or being attacked by adversaries. Once the contract is
placed within the blockchain, it is nearly impossible to have
it removed or deleted unless the whole blockchain network
is exploited by some significant attack techniques. However,
such attacking efforts may involve a huge amount of capital,
requiring an adversary to re-generate every block that is
chained after the affected block.

Despite all the security enhancements and security
tools [7], [8], blockchain still faces challenges to cope with
various pernicious attacks [9]. A range of attacks are con-
stantly initiated to obstruct the natural flow or even fully
destroy the network [10]. Attacks relating to cryptocurrency
wallets, smart contracts, transaction authentication, mining
pools, and blockchain networks are frequently exploited by
adversaries. DAO attacks, King of the Ether Throne, and
Multi-player Games are some smart contract based attacks
which occur due to the bugs in smart contract code [11].

This paper focuses on examining smart contract based
attacks as well as the consequences of their exploitation.
We do not aim to determine how much effort it takes to
execute particular attacks. Rather, we focus on various attack
types and available security tools to restrict those attacks,
as well as limitations that exist to those security enhance-
ments.

II. BACKGROUND
This section involves reviewing relevant context associated
with Ethereum smart contracts and attacks launched on them.
The investigation of the literature helps to grasp the concepts
of blockchain technology and smart contract frameworks, and
provides an overview of Ethereum, decentralized applica-
tions, and past smart contract-based attacks.

Figure 1 shows a comparison between client-server archi-
tecture and decentralized DApp architecture. TBC.com,
an application, contains front-end and back-end parts [12].
The front-end is developed using HTML and can be viewed
by any clients, whereas the back-end is developed using
Node.js. Both ends communicate with each other via JSON
using HTTP protocol. All the confidential data is saved
to a central server. In the case of a smart contract-based
decentralized application (DApp), the back-end is the smart
contract and the confidential data is saved at Block 45 of the
blockchain. Every node that is connected to the blockchain

has a version of the smart contract code, which is immutable.
Exploiting a single or a few nodes will not significantly affect
the actions of TBC.com, conveying the security aspects of
blockchain over a centralized system.

A. BLOCKCHAIN AND DIGITAL TRUST
The blockchain is one of the creative innovations of the
era, which is able to distribute digital information securely.
It combines three main technologies which ensures its proper
function; private key cryptography, peer-to-peer networking,
and the consensus protocol [13]. An intricate cryptography
approach is implemented to secure transactions and a hashing
method is used to provide a fixed-length output [14]. For
instance, a transaction sent by Alice will be shown as

Hence, securing the user’s identity while only the public
address and the transfer amount is visible to others. Using the
public key it is possible to determine any transactions made
by a participant. Similarly, the immutability of blockchain
makes it a tamper-free system. Once any content is recorded
in the blockchain, it can not be omitted from the ledger.

Moreover, the block validation process involves network
miners to determine whether a particular block is valid. Any-
one can join the network as a miner to participate in the
validation process [15]. The block generation method differs
in different platforms, although Ethereum’s mining process
is very similar to Bitcoin [16]. Ethereum, along with many
other digital currencies, follows the Proof of Work (PoW)
consensus protocol. The PoW protocol utilizes the ’ethash’
algorithm for the mining task. The validation process makes
use of powerful computers to solve a puzzle. A miner with
a valid hash is awarded ether, and the generated block is
then added to that particular blockchain. The block generation
time of Ethereum is roughly 12-15 seconds.

B. SMART CONTRACT FRAMEWORKS
Ethereum is one of the major platforms which is used for
the development of a smart contract. Smart contract devel-
opers are permitted to develop any decentralized application
(DApp) they wish on the Ethereum platform. The decentral-
ized applications trigger exactly as per the code conditions
without having any risk of censorship, deception, or down-
time. However, besides all the advantages, no one can claim
it to be a fully secure platform. For instance, unexpected
bugs in the smart contact code may lead the contract to
trigger unintended tasks it is not set to perform. Hence, parties
involved with the contract may experience huge loss as a
consequence of the unresolved agreement. Besides Ethereum,
there are other smart contract platforms that are utilized for
the development of DApps.

Hawk is another framework for developing privacy-
preserving smart contracts [17]. Hawk does not require
cryptography implementation, so it provides opportunity
for non-programmers to write a Hawk program. A Hawk
compiler is in place to compile Hawk programs. One-chain
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FIGURE 1. A comparison between Client-server architecture and Decentralized DApp architecture.

privacy and contractual security are two security approaches
guaranteed by Hawk to enhance protection. Hawk is the
first smart contract system which establishes a recognized,
academic provision of the blockchain model of cryptography.
It comprises a Universal Composability (UC) model, which
consists of independent interest. The UC model is a formal
model that can be leveraged, simulating security protocols in
the blockchain.

Hawk utilizes zkSNARKs to verify smart contracts. How-
ever, SNARKs involves pre-circuit trusted setup, requiring a
new setup in place for any program which is implemented by
a contract [18]. A multi-party calculation can be adopted to
diminish reliability on the setup, but this is inappropriate to
utilize on the per-circuit basis that is desired by Hawk. More-
over, HAWK suffers from scalability challenges and, in addi-
tion, the privacy aspect is entirely handled by a third-party
manager, making all confidential data insecure. Hawk, and
other frameworks which are focused on achieving privacy-
preserving contracts, suffer from serious flaws [19]. They
cannot be affiliated with digital currencies. As such, all these
frameworks may incur high costs for transaction processing.

EOS and Tron are also smart contract based platforms
which incorporate scalability [20].

C. ETHEREUM SYNOPSIS
The Ethereum blockchain has its own cryptocurrency which
is ether. Ether is the token which powers the Ethereum
blockchain [21]. Ether operates in a slightly different way
from Bitcoin, and is also utilized in smart contracts. A smart
contract is computer code which incorproates an automated
legal agreement [22]. Vyper, Bamboo, Serpent, and Mutan
are a few programming languages that have been used to
write smart contract code. However, currently, Solidity is
the prime language adopted for writing smart contracts.
The implementation of smart contracts within the blockchain

makes it immutable, therefore, a deployed contract can never
be voided or erased.

Gas is a term that is used as a fee in the Ethereum plat-
form [23]. Gas is often estimated by the computational per-
formance of a smart contract. Distinct smart contracts require
different volumes of gas in order to execute a required task.
The gas requirement of a smart contract can be determined
by applying the following rule

Besides gas, the Ethereum Virtual Machine (EVM) is
another significant aspect of the Ethereum blockchain. The
EVMgenerates a degree of abstraction between the executing
code and the machine that executes it [24]. The layer ensures
that the DApps are detached from each other as well as from
hosts. Solidity code needs to be compiled to opcode in order
for the EVM to execute it. The EVM utilizes the opcodes to
carry out various tasks. There are about 140 distinct opcodes
that enhance the EVM to be Turing-complete, allowing it to
evaluate anything. The opcodes are encoded to bytecode to
determine proper security. The EVM dominates the inner part
of the Ethereum blockchain and also consists of a detail list
of the status to initiate a transaction [23].

D. DECENTRALIZED APPLICATION
A decentralized application is also referred to as a DApp [6].
DApps are open-source applications based on the Ethereum
blockchain where a consensus is maintained between the user
and programmer during the development process. The source
code is available for examination and the application is stored
in the blockchain to ensure trust and transparency. Miners
are responsible for securing the application and are rewarded
with tokens for the validation of the DApp. Bitcoin can be
considered as a DApp on the Bitcoin blockchain platform.
Nevertheless, the Ethereum blockchain is recognized as a
bigger platform for decentralized applications.
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FIGURE 2. Total cycle of smart contract execution over Ethereum blockchain.

Likewise, a Decentralized Autonomous Organization
(DAO) aims to categorize the policies of an organization by
limiting the requirement for centralized activities with the
use of a decentralized approach [25]. It may involve a few
participants contributing to thewriting of smart contract code.
Having an initial funding period, participants are allowed
to include funds to purchase tokens, and the DAO begins
its execution after the funding period. Participants have the
option to propose approaches to utilize the funds, and a few
participants can also vote to determine the approval of the
proposals.

Figure 2 shows the sequence of smart contract execution
over Ethereum blockchain. Two parties reach an agreement,
which is then written by a developer using Solidity code. The
code is then compiled to bytecode for the EVM to process.
Miners’ involvement is required for processing the contract
to the blockchain. Once included, the contract gets processed
on the event scheduled date, triggered by the written code.
The execution of the contract releases the payment to the
appropriate party, which can later be verified by anyone.

E. SMART CONTRACT-BASED ATTACKS
There have been a lot of attacks on smart contracts, costing
a large amount of money. However, the DAO attack and the
Parity Wallet hacks are the most often discussed.

In May 2016, a few participants from the Ethereum society
inaugurated the DAO [26]. The inception was known as
genesis DAO. The DAO was an open-source smart contract
that allowed anyone to exchange DAO tokens with ether.
That method of exchange helped to gather around $150M,

providing DAO with a large crowdfund. Participants with
DAO tokens were permitted to cast their vote on propositions
and receive rewards as long as it resulted in profit. However,
the DAO contract contained severe flaws, allowing attackers
to remove funds. A loophole existed which permitted an
attacker to request funds from the smart contract numer-
ous times before the balance was updated. The vulnerability
occurred due to bugs in the code where the developers did not
consider the potential for a recursive call. Hence, it enabled
attackers to steal ether worth millions of dollars within the
first few hours. The DAO attack scenario demonstrates how
destructive a simple smart contract vulnerability can be.

Similarly, the Parity Wallet hack is another vulnerability
which was discovered on the Parity Multisig Wallet with
version 1.5+ [27], [28]. The flaw permitted an attacker to
remove over 150,000 ETH ( 30M USD). In order to execute
the attack, the adversary transmitted two transactions aiming
to acquire ownership ofMultisig so that all the currency could
be drained. Once the attack was accomplished, the Parity
Multisig Wallet Library contract was initiated. However, it
contained a bug which authorized anyone to run initWal-
let [29]. The attack was executed twice; hence, it is referred to
as Parity Wallet hack 1 and 2. In the first attack, the attacker
was able to modify the status of the wallet by initiating a call
to initWallet. As a result, the attacker was believed to be
the owner and drained funds without any hindrance.

III. ATTACK CLASSIFICATION
In this section, we classify blockchain-based exploitations
into 4 categories. Our study indicates that most blockchain
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FIGURE 3. A classification of exploitation based on the fragile methods.

attacks fall under the listed categories. Potential adversaries
utilize specific categories to initiate an attack in accor-
dance with their attacking capability. Although this section
focuses on classifying the exploitation techniques, the rest
of the paper concentrates on a single category which is
application bugs.

Figure 3 shows the classification of exploitation and attack
vectors that fall under each classification. Our analysis does
not determine how much effort is required to perform partic-
ular attacks, rather, it points out the main flaws of particular
exploitations.

A. MALICIOUS ACTS
Malicious acts may comprise the action of spreadingmalware
to deceive users. This type of exploitation is mostly initiated
over the Internet to compromise user identity or conduct
fraud through the use of malware or viruses. Such malicious
activities can seriously impact a victim’s financial circum-
stances [30]. Malicious attacks may arise in any form such
as an email from the wallet asking to sync the account with
a network that has just been hard-forked. Exploitation of
user wallets through malicious attacks may allow an attacker
to drain all the currency. Crypto-jacking, slack, and forums
attacks are a few malicious techniques asking miners to log
in through corrupted links [31]. Glupteba is another malware
that utilizes the Bitcoin blockchain for its update. Thus,
it remains active despite the server connection being termi-
nated by the antivirus. This malware spreads through scripts
to steal confidential information such as user id, passwords,
browsing history, saved cookies, etc. [32].

B. WEAK PROTOCOL
Blockchain comprises a consensus protocol to keep the net-
work flowing. Different blockchain platforms have adopted

different protocols. Exploitations due to weak consensus have
been very common in recent times, although it can often
be very expensive to carry out attacks due to flaws in the
consensus protocols. However, successfully executed attacks
can remove blocks from the chain, destroy a blockchain fully,
or acquire full control over the price of a cryptocurrency.
51% Attack, Selfish mining, and 34% Attack are some attack
techniques that occur due to weak protocols.

The PoW protocol assumes that 50% of network miners
will always to be honest miners. Thus, adversaries compris-
ing more than 50% hashing can gain control of the net-
work [33]. Weak consensus can also lead to numerous attacks
related to the blockchain network. The Sybil attack permits
an attacker to establish several malicious nodes over the
Bitcoin blockchain network. The malicious nodes are then
used to corrupt the network, conduct unprivileged transac-
tions, or alter valid transactions. Similarly, an Eclipse attack
can be executed to manipulate the Peer to Peer (P2P) net-
work in order to gain full control over the information a
node comprises. In addition, Border Gateway Protocol (BGP)
hijacking makes false declarations over the routing system
to divert the traffic. Thus, regardless of the decentralized
feature, the blockchain network can still be compromised by
various attack techniques due to weak consensus.

C. DEFRAUD
This exploitation tricks merchants to take advantage of the
unstable actions of digital transactions. Defraud may influ-
ence themerchant to release goods prior to a transaction being
fully confirmed. In a normal scenario, a Bitcoin transaction
is confirmed after 6 transactions. However, a consumer may
persuade a merchant to release goods without the wait for up
to 6 transactions, so that attack techniques such as 1 confir-
mation or n confirmation could be initiated to double spend.
Similarly, in recent times, various retailers are accepting
cryptocurrencies, allowing consumers to receive their product
instantly [34]. For example, purchasing a coffee from a coffee
shop. Consider a scenario where an adversary manages to
spend the same cryptocurrency within a short span of time,
which will onset a race between both transactions. If the sec-
ond transaction is adopted by the pool miners for processing,
then the first transaction will be discarded, potentially leaving
the merchant unpaid for the provided goods.

D. APPLICATION BUGS
An application bugs exploitation emerges when there is an
error in the smart contract code. This exploitation mainly
occurs in smart contracts. It arises when developers fail to
identify code errors in the decentralized application. Attack-
ers are able to drain all the money from the contract wallet
through simple code bugs. Smart contract applications are
similar to web applications that run over the blockchain.
Like web application bugs, they also comprise errors, how-
ever, these bugs can lead to serious challenges. For example,
the DAO was able to raise $150m, whilst the attacker was
able to steal about $60m due to code bugs. [35]. Rubixi and
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TABLE 1. Classification of attacks based on exploitation.

Listing 1. A vulnerable function that can be exploited by Reentrancy.

GovernMental are some of the smart contract applications
which had flaws due to code bugs [11]. Application bugs may
not only allow attackers to steal money, but also influence an
application to function differently.

IV. ATTACK TECHNIQUES
In this section, we define seven attack techniques which can
have a serious impact on a smart contract application. Suc-
cessful execution of such attacks may lead the smart contract
to perform in an expected manner. Hence, parties associated
with the contract agreement might incur a severe loss.

A. REENTRANCY
Reentrancy is considered to be one of the most catastrophic
attack techniques in the smart contract [36]. This attack tech-
nique is able to fully destroy the contract or steal valuable
information. Reentrancy may occur when a function calls
for another contract through an outer call. Listing 1 below
presents a code snippet which can be exploited to execute
a Reentrancy attack. The exploitation allows an attacker to
execute a recursive callback of the main function, making an
unintended loop which is repeated many times. For instance,
when a vulnerable contract contains a revoke function, the
contract may call the revoke function illicitly numerous
times in order to drain any available balance the contract
comprises. Single function Reentrancy attacks and cross-
function Reentrancy attacks are two different types that can
be exploited by the attackers. The exploitation allows the
attacker to use external calls to execute the desired tasks.

B. SMART CONTRACT OVERFLOW AND UNDERFLOW
This vulnerability is relatively easy to initiate and occurs in
transactions that accept unauthorized input data or value [37].
Smart contract overflow mainly occurs when more value is
provided than the maximum value [38]. The contracts are
mainly written in Solidity which can handle up to 256-bit
numbers, thus, an increment by 1 would cause an overflow.
Conventional testing approaches are inadequate for determin-
ing overflow vulnerability in smart contacts.

Listing 2 shows smart contract code which comprises bugs
at the following line [39],

Listing 2. A vulnerable contract which can be exploited by Smart contract
overflow.

An attacker is able to call this function with parameters to
exploit the vulnerability. For instance, the code below shifts
the check to balances[msg.sender] >= total. An
attacker can input 2 addresses in the receivers function in
order for the token smart contract to transmit ether to both
addresses.

Smart contract underflow occurs in the opposite way to
overflow [40]. However, the underflow attacks are more
simple to perform as achieving the required token to cause
overflow is often challenging for attackers.

C. SHORT ADDRESS ATTACK
This vulnerability occurs due to the weakness of the
Ethereum Virtual Machine (EVM) [41]. The EVM permits
imprecise padded arguments allowing adversaries to dispatch
specially crafted addresses which result in the exploitation.
The Short Address Attack follows a similar attacking strat-
egy as a SQL injection bug [42]. When an underflow is
detected the EVM includes a zero at the end of the address
in order to ensure that it comprises a 256-bit datatype. How-
ever, an adversary can take advantage of this vulnerability
by omitting the very last zero from the ether address. This
vulnerability is an input validation bug and mainly occurs
from the sender’s side due to weak transaction generation
code.

D. DELEGATECALL
Smart code developers leverage the CALL and DELEGATE-
CALL to modularise written code [43]. The DELEGATE
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Listing 3. A vulnerable contract drained by attacker to steal Ether.

opcode comprises a similar function to the message CALL,
however, other than the code executed to call for a contract,
the msg.sender and msg.value does not get altered.
This attribute allows developers to generate re-usable code,
enhancing the chance of abrupt code-execution by the use
of DELEGATECALL. TheDELEGATECALL feature shows
that it is possible to introduce flaws while building custom
libraries and it can also lead to new vulnerabilities. DELE-
GATECALL vulnerabilities can be avoided by observing for
a lapse on both the library contract and calling contract and,
in addition, developing state-less libraries whenever feasible.

E. DEFAULT VISIBILITIES
The visibility specifiers in the Solidity function control the
manner in which a function is to be called [43]. The visi-
bility specifier also takes control when permitting users to
call for external functions by derived contracts. Improper
implementation of the visibility specifiers can cause serious
effects in the smart contract. The default visibility is always
set to public for functions, allowing external contracts to call
for visibility when functions do not explicitly mention it.
This vulnerability arises when developers neglect to set the
visibility specifier to private.

Listing 3 shows a smart contract based on an address
guessing game [43]. A participant can win a reward by pro-
ducing an Ethereum address which must contain zeroes in
its last 8 hex characters. Once the requirements are fulfilled,
the gainEther() function can be executed to receive the
reward. Since the vulnerable code does not specify the vis-
ibility and the _sendEther() function is set as public,
an attacker will be able to steal the reward.

F. TRANSACTION ORDERING DEPENDENCE(TOD)
Transaction Ordering Dependence (TOD) is a vulnerability
that can allow corrupt miners to have a serious effect on smart
contracts [44]. This vulnerability is a very common security
bug in the smart contract, relying on the order of transac-
tion execution [45]. For example, a newly generated block
contains 2 transactions enforcing the same smart contract.
Such plots do not provide enough information to users to
determine the state of the contract or when the individual

invocation is initiated. Therefore, when the output of both
transactions is dependent on the order, the contract results in
a TOD vulnerability.

In Ethereum blockchain, the miners are in charge of con-
trolling the order of transactions, prioritizing transactions
with higher gas. Hence, any miner that closes a block can
influence the order of a transaction. The ability for potential
miners to influence the transaction order for illicit activities
is an outcome of Transaction Ordering Dependence (TOD).

G. TIMESTAMP DEPENDENCE
Timestamp Dependence is another vulnerability that can be
exploited by corrupt miners [44]. In order to gain a benefit,
a miner may re-arrange the timestamp by a few seconds. The
timestamp dependence vulnerability occurs from a flawed
comprehension of timekeeping [46]. It enables the Ethereum
network to be detached from the synchronized global clock.
For example, a smart contract utilizes the current timestamp
to produce random numbers in order to determine the lottery
result. Since the smart contract permits miners to put up a
timestamp within 30 seconds of block validation, this gives a
miner more opportunity for exploitation. Hence, the outcome
of the random number generator can be altered to gain bene-
fits.

V. SECURITY TECHNIQUES
In this section, we discuss 10 major security analysis tools
which are in place to find vulnerabilities in the smart contract.
Most tools are mainly utilized for static and dynamic analysis
of smart contract codes.

A. SLITHER
Slither is a static analysis framework for smart contract
code [47]. Its security detection techniques for potential bugs
are fast and reliable. Slither can be used to performmain tasks
such as automated vulnerablity detection, automated opti-
mization detection, code understanding, and assisted code
review. A multi-stage procedure is initiated for the secu-
rity analysis. The Solidity compiler produces a Solidity
Abstract Syntax Tree (AST) from the contract source code
and the AST is used as an input to Slither. During the initial
stage, Slither obtains significant contract information such as
the inheritance graph, Control-flow graph (CFG) [48], etc.
The next stage includes converting the full code to SlithIR.
In the following stage, the code analysis task is performed by
computing a list of pre-defined analyses.

B. MYTHX
MythX is a security analysis service that scans EVM-based
smart contracts for vulnerabilities [49]. It comprises various
analysis techniques which include static, dynamic, as well
as symbolic execution. The main objective of MythX is to
support DApp developers with the development of smart
contracts to ensure a safer platform. MythX does not serve
the requirements by itself, rather it is integrated with devel-
opment tools such as Truffle and Remix. It is not only
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compatible with the Ethereum platform - developers asso-
ciated with Tron, Vechain, Quorum, Roostock and a few
other EVM-based platforms can also take advantage of these
security tools to find bugs in a smart contract. MythX goes
through three stages to analyze smart contract code. First,
it requires developers to submit their code; second, a complete
suite of analysis techniques needs to be activated; finally,
it generates an analysis report demonstrating if any errors
exist.

C. MYTHRIL
Mythril is a security tool that analyzes smart contracts writ-
ten by Solidity [50]. Mythril, an open-source tool, takes
advantage of the symbolic execution technique in order to
determine the errors in code. The examination of security
flaws involves executing smart contract bytecode in a custom
built EVM. Mythril goes through four major working stages
to accomplish its security analysis. When a flaw in a program
is discovered, the input transactions are analyzed to determine
the possible reasons. This securitymethod helps to deduce the
main cause of the program vulnerability, and also mitigate
exploitation. If a developer produces the source code of the
contract, Mythril is able to locate the bugs within the code.

D. MANTICORE
Manticore is a Solidity audit tool that performs a symbolic
analysis of smart contracts [51]. The main functions of man-
ticore involve tracing inputs that terminate a program, log-
ging instruction-level implementation, and providing access
to its analysis engine through Python API. It has a dynamic
symbolic execution feature which analyzes binaries as well
as Ethereum smart contracts [52]. The primary attributes in
Manticore’s architecture comprise the Core Engine, Native
Execution Modules, and Ethereum Execution Modules. The
Satisfiability Modulo Theories (SMT-LIB) module, Event
System, and API are regarded as secondary attributes.

E. SECURIFY
Securify is a smart contract security analyzer tool [53]. Secu-
rify is an automated tool able to determine whether the con-
tract performs accordingly, based on the provided attributes.
Securify is an open-source product whose security analysis
function goes through two stages to perform the required
task [54]. Up to this point, around 18000 contracts have been
submitted to Securify for security analysis. Securify accepts
EVM bytecode for security analysis. Contracts written in
Solidity are also accepted as an input, however, the code
needs to be compiled to EVM bytecode for the security
process to be effected. When a security violation is triggered,
Securify produces a command which induces the violation
pattern to match. Similarly, when both the violation and
compliance pattern do not match, it generates a warning.
The security analysis technique of Securify is unique when
compared with other tools such as Oyente and Mythril [55].
While Oyente and Mythril symbolically enumerate distinct

paths of a contract, Securify utilizes static analysis to analyze
every path of the smart contract.

F. SMARTCHECK
SmartCheck is an automated extensive vulnerability analysis
tool for Solidity smart contracts [56], [57]. SmartCheck is an
open-source engine which not only points out the vulnerabil-
ities in the smart contract code but also clarifies the cause of
the vulnerabilities with proper description and recommenda-
tion. SmartCheck was implemented by utilizing XPath [xpa]
queries on the intermediate representation (IR) to detect vul-
nerability patterns. SmartCheck protects any analyzed code
that has been converted to IR and elements associated with it
are determined with XPath matching.

A security experiment was initiated by SmartCheck on
over 4600 valid contracts. It was determined that 86.6% of the
contacts comprised zero balance, whereas a single contract
consisted of a balance of only 38.4% of the total balance.
The SmartCheck analysis indicated that 99.9% of analyzed
contracts contained some kind of security flaw, with 63.2%
of contracts being severely vulnerable.

G. ECHIDNA
Echidna is an EVM smart fuzzer that identifies bugs in Solid-
ity code [58]. This tool only requires the Solidity propositions
to conduct deep analysis for bugs and provides a clear user
interface (UI) to simplify its output. Echidna utilizes different
combinations of inputs until it manages to break the provided
property. Echidna contains a few similar attributes to Man-
ticore, which allows it to function at the EVM level [59]. In
addition, it can also be consolidated to continuous integration
(CI) in order to identify code bugs whilst development is in
process. A myriad of tools are supplied by Echidna in order
to compose custom analyses for dealing with complicated
contracts. This tool utilizes stack, therefore, the required
dependency will be based on the solc version that the contract
employs.

H. OYENTE
Oyente is a symbolic execution tool which is used to
find security bugs in smart contracts [60]. Oyente exam-
ines Ethereum smart contracts to identify security loopholes
which can cause potential threats. Oyente not only detects
unsafe bugs but also investigates every practical execution
path. An experiment carried out by Oyente on 19,366 smart
contracts resulted in 8,833 of them being identified as vul-
nerable. The symbolic execution method symbolically rep-
resents the nature of an execution path as a mathematical
formula. OYENTE carries out a comparison between the
new formula and formulas that comprise ordinary bugs to
figure out if both formulas are valid simultaneously.

I. VANDAL
Vandal is another security analysis framework for smart con-
tracts. Vandal comprises an analysis pipeline which trans-
forms EVM bytecode into semantic logic relations [61].
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Vandal is a very fast and efficient security analysis tool that
has examined over 95% of 141000 smart contracts with an
average run-time overhead of only 4.15 seconds. The low
overhead beats the overall performance of major existing
security analysis tools. The security design of Vandal com-
prises a declarative language called Soufflé. Performing secu-
rity analysis in a declarative language helps security analysts
with the prototype of the latest analysis.

J. ZEUS
Zeus is a practical framework to examine the validity of smart
contracts [62]. It takes advantage of abstract interpretation,
and symbolic model checking for analyzing the safety of
smart contracts. The Zeus prototype has tested over 22400
smart contracts, showing that about 94.6% of these contracts
are vulnerable. Zeus accepts the smart contract code and
generates the authentic version in an XACML-styled tem-
plate. The smart contract code and the policy specifications
are translated to LLVM bitcode to enhance the contract’s
behavior. Zeus performs static analysis of the furnished smart
contract code to append the assert statement policy at the right
spot of the program.

VI. SECURITY ANALYSIS AND LIMITATIONS
Having bugs in smart contract code can have serious con-
sequences. Attacks such as DAO or Parity Wallet hacks,
discussed in section II show the effects of such exploita-
tions. In this section, we analyze the 10 security techniques
discussed in section V. Our analysis reveals the limitations
of particular techniques, and also determines their ability to
discover vulnerabilities.

Slither includes a few limitations. It lacks formal seman-
tics, which limits its ability to perform more detailed security
analysis [47]. It also fails to determine low-level information
precisely, for instance, the gas computation. Slither’s vulner-
ability detection process is similar to SmartCheck [63]. It
misses vulnerable codes and terminates the scanning process
when the security regulations do not coincide in a severe
external call. However, besides these limitations, an exper-
iment on detection capability demonstrates that Slither can
detect major vulnerabilities such as Reentrancy, contract sui-
cidal, an abuse of Tx origin, and time manipulation.

MythX is able to detect some critical vulnerabilities such as
access controls, integer overflow, and integer underflow [64].
The Remix Integrated Development Environment (IDE) can
be enhanced by a MythX plugin. The Mythx plugin uses
the trial account credentials. The main limitation of the trial
account is that it is able to examine only a limited number of
vulnerabilities.

Although using a heuristic, Mythril is known for its high
accuracy in security analysis. However, experiments suggest
that Mythril consists of a few limitations [65]. For instance,
Mythril is unable to extend taints over memory fields when
analyzed with taint analysis. Issues can be exacerbated when
the parameters accept pass by reference. Moreover, the defi-
nition of the pattern is complicated in searching for the best

approximation for the behavior. Another experiment indi-
cates that although Mythril is able to defend against vulnera-
bilities such as TOD, Reentrancy, and TX.origin, it was able
to recognize only 12 vulnerabilities out of 18 [66].

Manticore defends against the popular Reentrancy vulner-
ability as well as Abuse of TX origin [63]. However, it is
unable to detect contract suicidal and time manipulation.
It also does not analyze various security issues such as TOD,
Random number, visibility, costly pattern, etc. One of the
major disadvantages of Manticore is that it performs analysis
for different types of attack techniques; hence, the imple-
mentation is quite sluggish [51]. A Solidity compiler and
state-of-the-art theorem prover z3 are the prerequisites for
running Manticore. Although symbolic analysis techniques
are being widely reviewed from a security perspective, they
are not being fully exercised due to the limited flexibility
and user-availability. An experiment on smart contracts from
Ethereum blockchains with a set time out of 90 minutes on
each contract shows that Manticore was able to produce an
average coverage of 65.64%.

Securify is an advanced tool comprising formal guarantees.
A security experiment suggests that Securify only targets
7 issues for security analysis among 18 blockchain based
challenges [66]. Besides some security advantages, Securify
contains severe flaws. Securify does not comprehend numer-
ical analysis [67]. Hence, it is unable to recognize overflows,
allowing for potential bugs in the smart contract code [53].
Similarly, Securify determines that all contract instructions
can be reachable. Moreover, some of the attributes for prop-
erty violations are also vulnerable and can be compromised
by potential adversaries.

SmartCheck is unable to detect some severe program bugs,
which can only be detected by taint analysis or handled
through manual audits [56]. Taint analysis is a way of check-
ing program variables that can be affected by user input [68].
One of the possible reasons for a program to crash can
be illicit user input. Hence, in order for a program to run
effectively, user input must be thoroughly checked. However,
SmartCheck is an effective tool for identifying simple pro-
gram bugs. An experiment among 4 security analysis tools,
namely, Oyente, Securify, Remix, and SmartCheck, indicates
that SmartCheck is not very consistent in terms of perfor-
mance and that additional security features must be included
for accuracy in vulnerability checks [69]. SmartCheck only
identifies vulnerabilities that are low risk to the contract. For
instance, incorrect compiler version, improper style guide,
and redundant functions. Similarly, another experiment based
on the detection capability of various security tools shows that
SmartCheck is unable to detect some serious attacks such as
Reentrancy and contract suicidal [63].

Echidna generates inputs to fuzz smart contract code.
However, one of the major limitations of Echidna is that it
does not offer any direct application program interface (API)
endorsing security checks of smart contracts [70]. Moreover,
Echidna fails to provide satisfactory security results [71]. The
randomness of inputs makes only a portion of the path space
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obtainable, whereas some complicated parts of the program
are secured by branch conditions. Random mutation does
not fulfill the requirements of branch conditions, hence the
program remains exploitable. In addition, Echidna exercises
various generation methods for different data types [72].
While the Haskell is ignored, the address is the only data
type that can produce an impact. When a list of addresses
is determined as a yaml list, those addresses provide more
chances to discover bugs as compared to fully random
addresses.

Oyente is a smart contract auto-auditing security analyzer
tool which is able to detect severe smart contract bugs. How-
ever, there still lie challenges as Oyente is able to detect
only 20.2% of Parity Wallet hacks [53]. An analysis indicates
that Oyente generates false positives and also underesti-
mates some serious bugs. It does not provide full protec-
tion to smart contract code and fails to log 72.9% of TOD
vulnerabilities. Moreover, Oyente also consistently fails to
determine other critical vulnerabilities. An experiment on
Oyente’s vulnerability detection capability suggests that it
is only able to defend against attacks such as Reentrancy
and Time manipulation [63]. However, it is wholly unsuc-
cessful in identifying vulnerabilities such as contract suici-
dal and Abuse of TX origin. Research suggests that Oyente
protects against only 4 out of 18 blockchain-based security
challenges [66]. Hence, this security approach is not fully
protective.

The vandal security design faces challenges while translat-
ing smart contract code into logic relations [61]. An analysis
pipeline is used to transform Ethereum bytecode into logic
relations. The challenge lies when the low-level stack-based
abstract machine executes the EVM bytecode. Moreover, the
Vandal decompiler cannot cope with transforming the EVM’s
stack-based operations into a register-based intermediate rep-
resentation; hence, it crashes when decompiling the major
portion of the smart contract [73]. The implementation of
Vandal also suffers from engineering limitations, thus proper
control of timeout may not be achieved [74]. A security
experiment shows that Vandal is able to detect only 5 out
of 18 critical blockchain-based security issues [66].

ZEUS comprises a few limitations. Attributes involving
mathematical equations cannot be fully validated [62]. For
such operations, ZEUS relies entirely on users to test prac-
tices involving mathematical attributes. Solidity constructs,
such as throw and selfdestruct, are simulated as a
program termination. The run-time behavior of ZEUS does
not consider such parameters. Similarly, it fails to rein-
force virtual functions and examine contracts which con-
tain assembly blocks. The validation of safety properties are
acknowledged by ZEUS. However, verification of liveness
is not endorsed by ZEUS. Static analysis tools may not
be fully able to detect cross-function Reentrancy vulnera-
bilities because every external function is required to be
checked to keep the contracts function safe [75]. In addition,
ZEUS does not involve policies to execute cross-function
analysis.

VII. CONCLUSION
Smart contract technologies enable users to form decentral-
ized digital agreements without the need for a third party. The
smart contract technology attracted sectors such as health,
business management, shareholder agreement and insurance.
However, the more this technology expands, the more it
catches the attention of potential attackers, resulting in several
severe exploitations.

In this paper, we revealed that this technology is not free
from vulnerabilities and attacks. Based on the attack vector,
we proposed an attack categorization to focus on vulnerabili-
ties in the code of smart contracts. After analyzing 10 security
tools to detect vulnerabilities in order to assess their effec-
tiveness, we found that not all vulnerabilities were detected,
providing a dangerous false sense of security that attackers
can abuse.

Our research points out that a proper solution to secure
smart contracts remains a challenge and future work will
involve developing strategies to detect and mitigate the major
security flaws presented in this paper.
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