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Ovarian cancer is the third most common gynecologic cancers worldwide. Advanced ovarian cancer patients bear a significant
mortality rate. Survival estimation is essential for clinicians and patients to understand better and tolerate future outcomes. )e
present study intends to investigate different survival predictors available for cancer prognosis using data mining techniques.
Dataset of 140 advanced ovarian cancer patients containing data from different data profiles (clinical, treatment, and overall life
quality) has been collected and used to foresee cancer patients’ survival. Attributes from each data profile have been processed
accordingly. Clinical data has been prepared corresponding to missing values and outliers. Treatment data including varying time
periods were created using sequence mining techniques to identify the treatments given to the patients. And lastly, different
comorbidities were combined into a single factor by computing Charlson Comorbidity Index for each patient. After appropriate
preprocessing, the integrated dataset is classified using appropriate machine learning algorithms. )e proposed integrated model
approach gave the highest accuracy of 76.4% using ensemble technique with sequential pattern mining including time intervals of
2 months between treatments.)us, the treatment sequences and, most importantly, life quality attributes significantly contribute
to the survival prediction of cancer patients.

1. Introduction

Cancer, along with coronary heart diseases, accounts for
most deaths globally (the top 10 causes of death [1]). )e
incidence rate of cancer has increased over the past few
decades. It has been estimated that 1 in 9 Indians will de-
velop cancer during their lifetime. According to GLOBO-
CAN, India recorded the highest number of deaths globally
in ovarian cancer. Ovarian cancer is the third most common
site of cancer among women in India. It is also the thirdmost
commonly occurring gynecologic cancer worldwide and has
the worst mortality rate. Clinicians and scientists have been
conducting great experiments and research to predict cancer
patients’ survivability [2, 3]. Yet, there are no quality survival

estimation predictors available. Survival estimation pre-
dictors are essential for clinicians to precisely adopt the
treatments and medications for the patients.

Data-driven prediction techniques can assist in a better
cancer prognosis model. Since its origin, data mining
techniques have been efficaciously used in many healthcare
research kinds, especially cancer management [4, 5]. )e
medical models based on data mining techniques can
capture intricate details and patterns in data. Several studies
involve online datasets like UCI machine learning, SEER [6],
and TCGA [7]. However, these datasets only cover datasets
from western countries or only from a limited area. Al-
though the number of instances in online datasets is large,
these might not capture the region-specific analyses. It has
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been proven in past studies that race and region can play a
significant role in the survivability of cancer patients [8].
Conversely, clinical studies having fewer instances can
capture more local aspects of cancer patients and their
management. )e present research focuses on various at-
tributes that can be significant predictors in estimating the
survival of advanced ovarian carcinoma patients that are
mostly unavailable in online datasets.

)e existing literature focuses on including different
clinical attributes like age, CA-125 levels, histology, and
stage to investigate the survivability and mortality of ovarian
cancer patients [9]. Some of the researchers also intended to
explore the outcome for patients treated with neoadjuvant
chemotherapy (NACT) [10] or surgery [11]. Nonetheless,
the current literature lacks proper research that may give
insights into ovarian cancer survival using machine learning
approaches and since its initiation, machine learning
technology has progressed a lot and is proven to provide
good results in almost every area. Some studies performed
statistical analysis to find the correlation of treatments with
survival [10]. But most of these studies are a part of clinical
trials having a controlled environment. A retrospective study
in an uncontrolled setting with a variety of participants can
point out some useful insights that might not be possible
with a clinical trial dataset. Also, to the best of the authors’
knowledge, no existing literature emphasized the different
sequences of treatments for ovarian cancer patients. Fur-
thermore, various comorbidities can play an essential role in
the overall health of patients [12]. )e present study involves
recording and using some relevant predictors for survival
analysis of cancer patients and clinical attributes. )ese
attributes were not available in any online datasets. )e
collected and processed features can be used and extended to
survive any cancer or other serious condition study.

)e present study aims to identify the significance of
different predictors for advanced ovarian carcinoma pa-
tients. An integrated model using attributes from different
data profiles can assist in a robust model for predicting
survival outcome of patients. )e attributes from different
data profiles have been collected from a cancer hospital and
processed accordingly. Cancer patients are given multiple
lines of treatment to prolong their survival. )e present
study is an attempt to identify the different lines of treat-
ments given to ovarian cancer patients using sequence
mining approaches.)ese treatments and the estimated time
elapsed among treatments might contribute some valuable
perceptions to the survival of patients. Previous literature
has also acknowledged the association of time between
treatments with prognosis in patients with ovarian carci-
noma [13]. Life quality attributes like performance status
and comorbidities also have a significant impact on any
person’s survival. )ese attributes have been explored in the
study to examine their effect on survival.

)e remainder of the study is structured as follows:
Section 2 presents a brief background on ovarian cancer and
its prevalence in India. Section 3 provides some of the
existing literature on ovarian cancer survival analysis. Sec-
tion 4 explains in detail the dataset and the proposed
methodology in the study.)e study’s results and discussion

and its comparison to the existing methods are given in
Section 5. Section 6 discusses some of the study’s limitations,
and the conclusion is presented in Section 7.

2. Background

2.1. OvarianCancer. Ovarian cancer has the worst mortality
in all gynecologic cancers. Overweight and obese women
have a higher risk of ovarian cancer [14]. Age is also a
significant factor in cancer incidence. While its incidence
rates have remained constant in some European countries,
Asia has experienced increased incidence rates from the past
few decades [15]. Survival rates are less than 20% in Indian
women. According to a report, 50% of India’s total ovarian
cancer cases occurred at 45–65 years [16]. )ough, most of
the western countries have a median range of more than 60
[17].

Ovarian cancer can have around 90% survival rates if
detected in the early stage. However, reports have shown
that most patients are diagnosed in later stages, with survival
less than 40% (SEER Program). )is is why it is also known
as “silent killer” because more than 60% of the cases are
diagnosed at advanced stages (Stages III and IV). Epithelial
ovarian cancer is the most common, including high-grade
serous, low-grade serous, endometrioid, clear cell, and
mucinous. Patients diagnosed in most advanced ovarian
cancer cases are provided with multiple lines of treatment.
)ese include cytoreductive surgery (CRS) with adjuvant
chemotherapy, or neoadjuvant chemotherapy (NACT) with
Interval debulking surgery (IDS) and adjuvant chemo-
therapy, or hormonal therapy or chemotherapy [18].

2.2. Sequence Mining. A sequence ‘seq’ is a collection of
ordered symbols. |seq| denotes the length of the sequence
[19]. A substring of a sequence is a collection of consecutive
symbols of the sequence. However, in a subsequence, the
symbols need not be consecutive. For example, if PQRS is a
sequence with symbols {P, Q, R, S}, then both PQS and PQR
can be subsequences of the sequence. But PQS is not a
substring of the mentioned sequence. Sequence mining
refers to identifying frequently occurring subsequences from
a database of sequences. )e user determines the term
“frequent” by varying the support of the sequences. Support
of 0.5 suggests that the database should contain a subse-
quence in at least 50% of the sequences.

Researchers have devised several sequence mining al-
gorithms. Generalized Sequential Pattern (GSP) [20] is one
of the first sequence mining algorithms formulated on the
basis of Apriori algorithm [21]. GSP works by identifying the
subsequences by scanning the dataset and computing their
support. Subsequences with support less than the threshold
support are removed from further analysis. For k length
sequences, GSP scans the dataset k times. Once the frequent
sequence at level k (k length sequence) is found, a candidate
for length k+ 1 is generated. Various other researchers also
tried to formulate sequencemining algorithms with less time
and space complexity. SPADE and PrefixSpan are examples
of such algorithms [22, 23].
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3. Related Work

Several researchers tried to analyze advanced ovarian cancer
patients’ survival using statistical and conventional survival
methods concerning different survival estimators. Vincent
et al. [10] used univariate analysis to identify the prognostic
factors for stage 3c or 4a ovarian cancer patients. )e dataset
was collected from 11 French centers and included 483
patients who were treated with NACT followed by surgery.
Univariate analysis showed that the absence of cytoreductive
surgery (CRS) was associated with worse survival. Similarly,
CA-125 value higher or equal to 3000U/ml had decreased
overall survival.

Deng et al. [24] used data from the online dataset SEER
(SEER Program) to analyze the survival based on metastatic
site for stage 4 patients. Due to the publicly available online
dataset, the number of patients is higher than that in other
clinical studies. After various inclusions and exclusions, the
data analyzed consisted of 1481 patients. Univariate and
multivariate analyses showed that the most common sites of
metastasis are liver followed by lymph nodes. For patients
with lung metastases only, patients who received chemo-
therapy had a higher survival than those who did not receive
chemotherapy. Surgery was also associated with higher
survival rates in patients with lymph nodes and liver me-
tastases, but it was not a significant self-determining aspect
in patients having lung metastasis. Akhavan et al. [12] also
conducted statistical chi squared and Student’s test on a
dataset collected from Tehran to investigate the effect of
diabetes on ovarian cancer survival. )e histology consid-
ered in particular was epithelial carcinoma. )e results
suggested that the patients having diabetes had poor overall
and progression free survival than those without diabetes.

In a more recent study [25], the authors collected a
dataset of around 460 patients from a cancer center to
compare white women’s survival with black women. )e
dataset included 365 white patients and 95 black women. It
was observed that more white women received surgery,
chemotherapy, or surgery chemotherapy sequence. It was
also revealed that despite receiving the same treatment se-
quence, black women had higher mortality rates from
ovarian cancer.

Clinicians and researchers from Indian hospitals also
conducted statistical tests for survival analysis of advanced
epithelial ovarian carcinoma patients. Viswanathan et al.
[26] analyzed the data of stage 3 or stage 4 advanced epi-
thelial carcinoma patients diagnosed in years 2015–2018. 111
patients were analyzed by the authors, of which the ma-
jorities were of serous histology. Most of the patients were
given NACTfollowed by CRS. It was observed that CRS had
improved overall survival and progression-free survival.
Also, patients with optimal CRS after NACT had signifi-
cantly lower recurrence rates and better survival than those
suboptimally cytoreduced.

Tseng et al. [27] tried to identify the risk factors in
women with ovarian cancer prominent in terms of cancer
recurrence. Data mining techniques were used separately
using leave one out cross-validation to rank the factors. Since
individual data mining techniques cannot address the

problem efficiently, the authors used an ensemble approach.
)e ensemble approach obtained better results than the pure
classification techniques, with C5.0 achieving 90% accuracy.
Various authors have also used machine learning techniques
to predict ovarian cancer. Lu et al. [28] used a decision tree
model and feature selection measures to predict the oc-
currence of ovarian cancer using different blood routine
tests, chemistry, and tumor markers. Several other studies
also used different classification techniques to predict sur-
vival in various types of cancer [29, 30]. However, most of
the studies involved online datasets confined to only a
specific country or area. While some of those results can be
generalized to other regions, it is a well-known fact that
cancer behaves differently with different environment and
socioeconomic status of the patients [8].

4. Methodology

)e proposed methodology of the study is given in Figure 1.
)is study’s approach is divided into three major steps,
including data collection, data preprocessing, and classifi-
cation. )e main essence of the study is involved in the
dataset used for the analysis. )e proposed approach follows
an integrated methodology that uses data from three dif-
ferent profiles. However, the medical dataset suffers from
many missing and irrelevant data that cannot be directly
used for classification. Hence, the second step of the ap-
proach involves preprocessing of the dataset according to
their data profiles. While clinical data is prepared using
standard imputation techniques, we have employed se-
quence mining techniques to generate treatment sequences
given to the patients. Similarly, attributes measuring life
quality are created to capture the overall well-being of pa-
tients. After all the preprocessing, classification techniques
are applied to the integrated dataset. Each step is explained
in detail in the following subsections.

4.1. Data Collection. )is study is based on a dataset col-
lected from a hospital located in New Delhi, India. )e case
study used for the analysis is of advanced ovarian cancer.)e
data was collected from the hospital manually from the files
digitally stored in the hospital’s repository after obtaining
appropriate approval from the hospital’s Scientific Com-
mittee. )e study got a waiver from the IRB of the hospital
due to anonymity in the use of data. Due to the ethics
policies of the hospital, data cannot be shared publicly. )e
data collected includes three kinds of attributes-clinical
attributes, treatment attributes, and comorbidities data.
Clinical characteristics including CA-125 levels at the time
of diagnosis, presence of ascites, grade, FIGO substage, and
histology were collected and recorded for each patient. CA-
125 levels denote a diagnostic attribute for ovarian cancer.
)e presence of ascites and cancer grade define the overall
extent and aggressiveness of cancer cells in the body. Higher
CA-125 levels, ascites presence, and grade suggest aggressive
cancer. Since the collected dataset included advanced cancer
patients only, the majority of the patients had stage III or
stage IV cancer. Since we have used FIGO substage, stage III
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cancer patients were further divided into stages 3a, 3b, and
3c cancer. Clinical data has proven to have a high association
with the survival and be the most widely used predictors in
the existing studies.

Unlike the online datasets and other clinical studies, the
present study also collected treatments and appropriate time
intervals between each set of treatments given to each pa-
tient. )e correct treatments given to the patients can
prolong their survival. Also, the time elapsed between these
treatments might suggest a better or worse response to the
treatments. )e treatments and the time intervals thus can
aid a better survival model. A total of four lines of treatments
were recorded for each patient. Most of the patients received
less than four treatment lines for three years.

Also, ECOG levels indicating each patient’s performance
levels were recorded along with several comorbidities like
diabetes, heart disease, and hypertension of each patient.)e
significance of ECOG levels and comorbidities has also been
acknowledged in survival analysis of other cancer types [31].
)e inclusion of life quality attributes can suggest the overall

well-being of the patients and thus can better predict the
overall survival of the patients. For a better comparison with
existing studies and to include recent and relevant data,
patients identified in the years after 2011 and before 2015
were used to collect data.)e specified time range also allows
for the proper retrieval of survival information of 3 years.
Survival of 3 years was collected from the hospital’s files or
by directly contacting the patient or patient’s family.

4.2. Data Preprocessing and Analysis

4.2.1. Data Preparation and Preprocessing. All the relevant
details and information collected in the previous step were
recorded and maintained in a spreadsheet. Each attribute
category has been handled accordingly to gain a better per-
spective and improve patients’ overall survival prediction.

Clinical Data Preprocessing. Clinical data has been cleaned to
remove any outliers and handle missing data. Any instance
with missing survival information was removed from the
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Figure 1: Methodology followed in study.
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analysis to create a reliable model. Further, instances with
more than fifty percent missing data were also removed as
larger missing data values can lead to a weak model. )e
dataset after removing these patients’ cases consisted of 149
patients. )e rest of the missing data was handled by using
mean and mode imputation techniques. Since there were only
9 cases with missing data left and mostly categorical attributes
(e.g., presence of ascites), techniques like k-NN imputation did
not perform well. )us, in all the leftover instances, missing
numerical attributes were filled out with the mean value of the
patients’ same class. Similarly, instances with missing nominal
attributes were filled with the mode value of the same class.
)e same has been carried out with MATLAB software using
rmmissing() and fillmissing() in-built methods.

Treatment Data Preprocessing. )e study’s objective was to
process the data based on each attribute’s category and
behavior. Treatment preprocessing performed for this study
is shown in Figure 2.

)e sequences of treatments were processed by creating a
database of treatment sequences for each patient. )e da-
tabase generated was supplied to modified sequence mining
algorithm GSP. GSP was adjusted to obtain frequent
treatment substrings, i.e., treatment sequences with no-gap
constraint. )e sequence mining algorithm has been
implemented in Java [32]. 0.05 value of support has been
used for the study to collect the maximum sequences of
treatments possible. )e no-gap constraint means that in-
termediate therapies would not be considered for frequent
sequences; i.e., if a patient received treatment W in between
treatments X and Y, then X⟶Y is not a valid recurring
sequence. )e no-gap constraint is attained at the time of
counting support of each candidate sequence. )e resultant
treatment sequences are mentioned as follows.

)e time intervals are applied in the resultant frequent
treatment sequences, as shown in Figure 3. )e time in-
tervals chosen belonged to the 6 months range, i.e., <�6,
7–12, 13–18, till 31–36. )e selection of time intervals was
intuitive for 3-year survival and based on the previous lit-
erature [33]. Yet, when the data was analyzed, it was ob-
served that most of the patients received their next
treatments within 6–8 months of the previous treatment.
)is may be attributed to the clinical implications of
treatments for advanced ovarian cancer patients to com-
mence treatments early [13]. )us, varying time intervals
were chosen (e.g., one month, two months, and three
months, till six months) to determine the prognostic value of
different time intervals in ovarian cancer survival. A binary
matrix is then created based on the attributes. If a patient
receives a treatment Y within one month of treatment X,
then {X T1 Y} column will be marked 1. Since time intervals
of 1 month, two months, or three months resulted in 36, 18,
or 12 time ranges, it resulted in a wide array of attributes to
be applied for classification. )us, an attribute selection
measure was used for the binary matrix. Information gain
was computed for each attribute, and attributes having
information gain greater than 0 were used for further
analysis. )e information gain can be calculated using the
formula given by the following equations:

Info(D) � − 
m

i�1
pilog2 pi( , (1)

InfoA(D) � 
v

j�1

Dj

D
× I Dj , (2)

Gain(A) � Info(D) − InfoA(D). (3)

Comorbidity Data Preprocessing. )e comorbidities were
collected for each patient as to whether she has a particular
condition or not. Comorbidities like chronic obstructive
pulmonary disease (COPD), diabetes, hypertension, and
coronary artery disease (CAD) were recorded and corre-
spondingly, a metric-CCI was computed for each patient.
Charlson Comorbidity Index (CCI) [34] calculates a per-
son’s ten-year mortality probability by administering
assigned weights to different comorbidities. )e higher the
computed index, the higher the probability of mortality. For
instance, a person having COPD gains +1 score in his/her
CCI score. Similarly, patients with uncomplicated diabetes
gain an additional +1, while an end organ damaged diabetes
gains +3 score their CCI score. )us, CCI was calculated for
each patient to understand the effect of comorbidities better.
A summary measure such as CCI is as good as comorbidities
used to compute it. Its significance in prognosis has also
been proven in the past [35]. Together with the performance
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Figure 2: Treatment preprocessing.
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status values, CCI constitutes the quality of life part of the
dataset in our study. Healthcare based IoT (IoHT) can be
further utilized in collecting such life quality data in future
studies [36].

4.2.2. Data Summarization and Analysis. )e final set of
different attributes and their description is shown in Table 1.
)e final dataset used for the analysis consists of 140 patients
with a survival rate of 42.14% (59) and the dataset with a low
degree of imbalance does not affect the predictors’ perfor-
mance [37]. )us, no data balancing techniques have been
employed in the study.

)e present study analyzes survival based on some of the
significant attributes and is shown in Figure 4.

Age has always been a controversial factor in the di-
agnosis and survival outcome for patients. In the present
study, it is also revealed that, in younger age groups, patients
have better survival outcomes than the older age group
patients. However, unlike previous studies [38], ascites’
presence has a somewhat opposite effect on advanced
ovarian cancer patients’ survival outcomes. In our dataset,
patients having ascites have slightly better survival than the
ones with no ascites present. Nonetheless, the existing lit-
erature did not consider the effect of ascites specifically in
advanced stage. )is result can be further examined by
recording and assessing the ascites’ volume present in future
studies. CCI and ECOG, on the other hand, give promising
analyses of survival outcomes. It can be seen from Figure 4
that the higher the values of CCI and ECOG, the lower the
survival rate of the patients. ECOG graph shows a sharp
declining trend in the chart except at ECOG performance
status value 4. )is slight change in the graph is that the
number of patients with ECOG status 4 was only five, and
the survival rate was 0%.

Similarly, a slight increase and inconsistency in the
survival rate for patients with CCI score 6 are due to the
small percentage of patients in that group.)us, it is revealed
from this consideration that patients with higher age, more
comorbidities, and lower level of patient’s general func-
tioning are associated with lower survival rate. Other at-
tributes like CA 125, histology, and grade did not show any
relevant assessment and were not included in this study.

4.3. Classification. )e integrated, processed data is supplied
to classify the data into survived/deceased class. Ensemble
techniques have been successfully used in various medical

datasets, and thus their applicability has been tested in the
present study. A statistical method, logistic regression, has
also been used for comparison with the ensemble approaches.

Bagging and boosting are ensemble classifiers. Bagging
or Bootstrap aggregating creates k bootstrap sample datasets
from the input dataset. Each test instance is classified using
various base classifiers, and a combined classifier is created
based on each base classifier’s votes. )e test instance is
predicted with the class having majority votes.)e averaging
factor of voting helps in reducing any kind of variance in the
dataset [19]. If the variance of a prediction is σ2, then the
variance of the average of k independent predictions is
reduced to σ2/k. However, boosting has a weighted average
effect. Boosting boosts the performance by giving more
importance to instances that are difficult to classify. If a
classifier incorrectly classifies an instance, the next classifier
provides more significance. )us, boosting increases that
instance’s weight. Boosting performs better with weak
classifiers as it reduces the bias that could not be removed
with bagging. Nevertheless, we may face overfitting in
boosting having a weighted approach. In the present study,
AdaBoost is a type of boosting algorithm and has been
utilized to classify the dataset. Assuming err (Xj) to be the
misclassification error of tuple Xj, then the classifierMi error
rate is the sum of the weights of the misclassified tuples as
given in equation (4). )e weight of a classifierMi’s vote will
be as given in equation (5):

error Mi(  � 
d

j

wj × err Xj , (4)

log
1 − error Mi( 

error Mi( 
. (5)

It has been confirmed from the previous studies that
ensemble techniques, especially bagging and boosting, can
perform better than most of the base classifiers individually.

When the base classifiers used for bagging are all de-
cision tree classifiers, it is known as random forests. )e
forest denotes the collection of trees into a single unit
(combined classifier). Random forest is called random as the
decision trees are created using a random selection of at-
tributes to decide the split at each node [39]. Each decision
tree votes to determine the class of an instance, and the class
with the majority votes is assigned to the test instance [40].
)e random forest has proven to give better results in
medical datasets. Another popular approach, called
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Figure 3: Time intervals in treatment sequences.
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XGBoost, has been applied to the dataset using scikit-learn
framework. It is a gradient tree boosting approach designed
mainly to boost the speed and performance [41]. XGBoost
can be used for both classification and regression problems.

It is a widely used algorithm by the researchers, specifically
for scalable problems [42].

Logistic regression, being a statistical technique, has
been used in the present study to compare ensemble
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Figure 4: Data analysis with survival.

Table 1: Dataset description.

Attribute Description Range/values

Clinical attributes

Age Age at the time of diagnosis 17–80 (median: 54)
CA-125 CA-125 value at the time of diagnosis 8.7–16301 (median: 929.13)

Ascites Presence of ascites in the body Yes: 114
No: 26

Grade Abnormality level of cancer cells 2–4 (median: 3)
Stage Figo substage 3–4 (median: 4)

Histology Microscopic regularity of cancer cells

Clear cell: 1
Endometrioid: 4

Serous: 111
Small cell:1
Germ cell: 1
Mucinous: 6

Poorly/undifferentiated: 13
Mixed: 3

Treatment
attributes Treatment sequences Frequent treatment sequences obtained after

sequence mining

Surgery⟶ chemotherapy
NACT⟶surgery

NACT⟶ hormonal therapy
Chemotherapy⟶ hormonal

therapy
Surgery⟶ hormonal therapy

Chemotherapy⟶CRS
Surgery⟶NACT

Life quality
attributes

CCI Charlson comorbidity index obtained using
comorbidities 2–9 (median: 3)

ECOG performance
status )e general well-being of a patient 1–5 (median: 2)

Class attribute Outcome Survival outcome after three years of cancer
diagnosis

Yes: 59
No: 81
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techniques with statistical data mining techniques. It models
the class membership probability concerning the different
attributes of the dataset. It divides the dataset into two classes
based on the likelihood of each instance belonging to a
particular class. )e probability is computed with the help of
the attributes’ values and estimated coefficients for each
feature.)e attributes are assumed to be independent to give
better performance results. Logistic regression has been used
by various authors in different healthcare applications to aid
the diagnosis or prediction processes [43, 44].

When some base classifiers like decision trees, SVM, and
k-NN were used for the classification process, decision trees
gave the best performance for the dataset. )e performance
of decision trees is acknowledged in various applications due
to their high results [45, 46]. Decision trees are also preferred
and explored in many medical applications because of their
simple and better clarity to the clinicians [47]. Explainable
AI is yet another domain that can be explored in future
studies. )us, the classifiers used in this study utilized de-
cision trees for creating the ensemble. Since the dataset used
had a small number of instances, 10-fold cross-validation
was used for each technique. It divides the dataset into ten
equal-sized partitions, where onefold acts as the testing
partition, and all the other nine partitions are used for
training the classifier. )us, onefold is treated as a testing
partition, and the method is fit on the remaining 9–1-fold.
)e results on testing partitions of 10-fold cross-validation
are averaged. Classification was performed using Classifi-
cation Learner app on MATLAB software. )e final ex-
perimental details with highest performance of each
classifier used are as illustrated in Table 2.

5. Result Analysis and Discussion

Table 3 shows the results for the time interval sequence
mining approach. Time ranges of two months and six
months achieved the highest accuracy; thus, Table 3 shows
the evaluation measures for only 2 and 6 months. Boosting
achieved the best results for both the cases in terms of
accuracy and AUC. ROC curves are shown in Figure 5. 5-
fold and 15-fold cross-validation techniques were also ap-
plied to the dataset to evaluate the methodologies. However,
10-fold gave better results than the other two validation
techniques, with the highest of 72.9% for 5-fold and 75.4%
for 15-fold. Also, as noted in the previous studies [48],
ensemble techniques performed relatively better than the
statistical method for our current research as well. However,
it can be seen that time intervals of 2months can better
predict the survival of ovarian cancer in almost all the
evaluation measures. Six-month approach gave slightly
better results in specificity when only boosting is considered.

Contrary to the previous study using six months of time
intervals for prostate cancer [33], we have evaluated different
time intervals in our study to assess the appropriate time
interval for advanced ovarian cancer patients. )us, time
intervals may vary according to cancer type as medications
and cancer management differ for each cancer type. An
appropriate model may have to be created according to the
cancer type and possibly nature of cancer.

)e treatment attributes selected for 2 months and 6
months are as given in Table 4. It is further revealed from the
Table that the hypothesis in the present study that 6 months’
interval might not be useful in the ovarian cancer dataset is
true. )e attributes selected in 6 months’ intervals are only
two, with both having T1 (0-6months) intervals. Conversely,
the attributes selected in 2 months’ intervals are four and
having varying intervals from T1 to T5 only. )us, it might
be possible that only a few, if any, patients received the next
line of treatments after say 8–10 months of the previous
treatments and, consecutively, did not have any significant
role in survival prediction.

Further, each data profile’s significance is examined by
applying classification techniques to each category of at-
tributes separately for a 2-month time interval integrated
dataset. Table 5 shows the accuracy (in %) along with the
classification technique for each data profile.

It is revealed from the results that when an individual
category is considered, the life quality dataset performs
better than the other data profiles. Also, the treatment
dataset gave better accuracy than the clinical dataset. )us,
the treatments’ sequences and the time elapsed in the
treatments can give the clinicians and patients better
knowledge of patients’ survival outcomes. )is result con-
tributes to the current understanding that, for advanced
ovarian carcinoma patients, clinical attributes like CA-125,
grade, etc. can indicate selecting the appropriate treatment
for the patient. Still, it might not be a good indicator for
survival prediction of the patient. Nonetheless, treatment
sequences and mostly life quality attributes can be better
used in predicting survival outcome.

5.1. Comparison of Proposed Work with Existing Literature.
To determine the importance of sequence and time between
different therapies given to a patient, we have further
compared the proposed approach without sequence mining.
A binary matrix has been created for the same, based on the
medications received by each patient, irrespective of the
sequence in which she received the therapy. An example of
such a matrix is shown in Figure 6.

)e comparison of various evaluation measures for all
the approaches is shown in Table 6. Here, time interval
approach attained better results than without sequence
approach in all the criteria. However, specificity is the same

Table 2: Experimental details.

Model Parameter settings

Bagging
Method� decision trees

Max number of splits� 139
Learning rate� 0.1

Boosting
Ensemble method�AdaBoost
Max number of splits� 20

Learning rate� 0.1

Random forest Random number seed� 0
Maximum depth� unlimited

XGBoost Maximum number of trees� 100
Logistic regression —
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Figure 5: ROC curves for (a) boosting in 2 months’ time interval; (b) boosting in 6 months’ time interval.

Table 4: Treatment attributes selected.

2 months’ time interval 6 months’ time interval
Attributes Information gain Attributes Information gain
Chemotherapy_T5_CRS 0.0458 Chemotherapy_T1_hormonal therapy 0.0408
Surgery_T5_chemotherapy 0.0272 NACT_T1_hormonal therapy 0.008
Chemotherapy_T4_CRS 0.023
NACT_T1_hormonal therapy 0.01

Table 5: Classification results for each data profile.

Data profile Highest accuracy in % (classifier)
Clinical dataset 61.4 (bagging)
Treatment dataset 65 (boosting)
Life quality dataset 71.4 (boosting)

Table 3: Classification results.

Accuracy (%) True positive rate or sensitivity Specificity Area under curve

6 months

Bagging 71.4 0.79 0.61 0.80
Random forest 70.7 0.64 0.8 0.72

Boosting 73.6 0.69 0.8 0.81
Logistic regression 65.7 0.68 0.63 0.70

XGBoost 71.42 0.71 0.64 0.78

2 months

Bagging 74.3 0.85 0.59 0.82
Random forest 75.7 0.72 0.81 0.82

Boosting 76.4 0.80 0.71 0.85
Logistic regression 67.1 0.64 0.71 0.70

XGBoost 73.8 0.73 0.63 0.79
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for two-month time interval and no-sequence mining ap-
proach. But the overall results improved in the time interval
approach. )e graphical representation of the results is
shown in Figure 7. Also, the random forest gave better
results than bagging and boosting in without sequence
mining approach. Here, also, the parameter settings for
random forest were the same as in the case of proposed
approach (i.e., random number seed� 0 and maximum
depth� unlimited). )us, the results for only random forest
have been presented in the results.)e significance of time in
specific treatments has also been acknowledged in previous
literature on advanced epithelial ovarian cancer [13]. Hof-
stetter et al. [49] also demonstrated the use of intervals
between surgery and chemotherapy in advanced ovarian
cancer patients using statistical techniques. )ey also
revealed that the periods were around 3–6 weeks. )e
present study also gave better results when time intervals of 2
months were used for the survival prediction. )e results
were validated statistically by computing t-score and cor-
responding p-values with a significance level of 0.05. Since
the best results were given by 2-month time interval ap-
proach, it was compared with ‘without sequence mining’
approach. )e results are given in Table 7, and it is evident
that the result is significant at p< 0.05.

We have additionally generated an assessment of some
of the recent studies to compare the data profiles and
techniques used in the present study with existing literature,
given in Table 8. It can be observed from Table 8 that the
majority of the studies used only clinical and treatment data
for survival prediction, where treatment data mostly in-
cludes details of primary treatment only. Malhotra et al. [56]
used treatment sequences along with clinical and genetic
data, though the authors did not consider the time elapsed
between the treatments. Also, it can be seen from Table 5 that
life quality data has a significant contribution to the survival
prediction, which is lacking in [56]. )e collection and
analyses of genetic data, however, can be the future work for
the study. Studies using neural networks and deep learning
are also becoming more common now with genetic and
multimodal data and thus, can be utilized in future studies
[62–64]. )ese have been further explored in various image
based datasets as well for the detection and prediction
purposes [65–67]. Deep learning technology has been
proven in various studies to outperform basic machine
learning techniques [68, 69]. However, the dataset in the

present study has a smaller number of instances than the
existing literature, and deep learning can perform better with
large amounts of training data. Due to lack of significant
training data, deep learning could not be explored in this
study. But this is because the present study involves recent
records and only advanced-stage patients. Since earlier
stages of almost all cancer already have around 90% survival
rates, survival prediction is an easier task. But in the later
stages, the survival rates vary from about 10% to 40%. )us,
the present study creates a model established on the cancer
behavior (for advanced stage only) that will be more useful
for clinicians in examining the survival of cancer patients
[70]. It can be observed from Table 8 that almost all the
studies used dataset of all the stages. Guo et al. [57] con-
sidered earlier cancer patients for the survival prediction and
achieved high results. However, as already discussed, earlier
stages have considerably higher survival rates and is mostly
easier to predict. )us, more research on advanced cancer
patients needs to be conducted to further compare the
results.

)us, it can be concluded from the results that the time
interval approach gave better results than no-sequence
approach. )e time intervals may vary, but the time between

FirstPatient Second �ird Fourth Treatment XPatient Treatment Y Treatment Z Treatment W
A
B

A
B

X
X

Y
Y

Z
W

--
--

11
1 1

1
10
0

Figure 6: Without sequence treatment processing.

Table 6: Comparison of results.

Accuracy Sensitivity or true positive rate Specificity Area under curve
Without sequence mining 0.707 0.78 0.71 0.77
2-month time interval 0.764 0.80 0.71 0.85
6-month time interval 0.736 0.69 0.8 0.81

Accuracy

True Positive Rate

False Positive Rate

Area Under Curve

6 months-time interval
2 months-time interval
Without sequence mining

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90

Figure 7: Comparison of results.

Table 7: Statistical significance.

Approach ‘2-months time interval’with ‘without sequencemining’
t-value 1.90429
p value 0.036491
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Table 8: Comparison of techniques with previous literature.

S.no. Authors Dataset Type of cancer
with stage

Stage of
cancer
patients
used

Type of attributes Classification
technique used Results

1. Matsuo
et al. [50]

Clinical-768
patients

Cervical
cancer All stage

(i) Clinical Deep learning and
cox proportional

model

Mean absolute error of
30.7 (deep learning),
43.6 (cox proportional
hazard regression)

(ii) Treatment

2. Park et al.
[51] SEER dataset Breast cancer All stage (i) Clinical Subgroup mining Effective rules

generated(ii) Treatment

3. Simsek
et al. [29] SEER dataset Breast cancer All stage (i) Clinical ANNs and logistic

regression

83.6% (ANNs)
82.9% (LR)

for 5-year survival

4. Wang et al.
[52]

Clinical-1075
patients Lung cancer All stage

(i) Clinical
Gaussian bayesian

network

R2 of 93.57% (stage-I),
86.83% (stage-II),
67.22% (stage-III),
52.94% (stage-IV)

(ii) Treatment

(iii) Comorbidities

5.
Garćıa-
Laencina
et al. [53]

Clinical-399
patients Breast cancer All stage

(i) Clinical KNN, logistic
regression,

decision trees,
support vector

machine

81% (highest in KNN)(ii) Treatment

6. Toth et al.
[54]

National
health

database-
28817 patients

Colon cancer All stage (i) Treatment Sequence mining —

7. Koo et al.
[30]

Clinical-7267
patients

Prostate
cancer All stage (i) Clinical Artificial neural

networks
84.9% overall 5-year

survival(ii) Treatment

8. Kate and
Nadig [55] SEER dataset Breast cancer All stage

(i) Clinical Logistic
regression, naı̈ve
bayes, decision

tree

84.2% (naı̈ve bayes)(ii) Treatment

9. Malhotra
et al. [56]

Clinical-393
patients

Glioblastoma
cancer All stage

(i) Treatment Sequence mining
with statistical
techniques

85% (logistic
regression)(ii) Genetic

(iii) Clinical

10. Guo et al.
[57]

Clinical-5842
patients

Cervical
cancer

Stage IA1 to
IIB2 (i) Clinical

SVM, decision
tree, random

forest, ANN etc.

0.895 and 0.89 AUC
(light GBM and
random forest)

11. Kalafi et al.
[58]

University
Malaya
medical
cancer

registry-8066
patients

Breast cancer All stage

(i) Clinical SVM, MLP
(multilayer
perceptron),
decision trees,
random forest

88.2% accuracy (MLP)(ii) Treatment

12. Alabi et al.
[59] SEER dataset Oral cancer All stage (i) Clinical

Logistic
regression, SVM,

bayes point,
boosting, decision
forest, decision

jungle

88.7% (boosting)

13. Bos et al.
[60]

Clinical-177
patients Oral cancer All stage (i) Clinical Logistic regression 0.744 AUC(ii) Radiomic (MRI)

14. Hira et al.
[61]

TCGA-579
and 593
samples

Ovarian
cancer All stage (i) Multi-omics data Deep learning 93.2–95.5% and

87.1–95.7% accuracy

15. Proposed
approach

Clinical-140
patients

Ovarian
cancer

Advanced
stage

(i) Clinical
Sequence mining
with ensemble

76.4% accuracy and
0.85 AUC (boosting)

(ii) Treatment
(iii) Life quality

(comorbidities + ECOG)

Computational Intelligence and Neuroscience 11



treatments can also create a better and reliable predictive
model for other cancer patients. )e integrated dataset,
including data from all profiles, is a better prediction model
than the existing models, including only clinical attributes
and treatment attributes with no frequent sequences. )e
clinicians can use this information while deciding the ap-
propriate treatments for advanced ovarian carcinoma pa-
tients and the elapsed time between each treatment. )e
patients’ general well-being can also be useful indicators in
determining the treatments and corresponding overall
survivability of the patients.

6. Conclusion

Advanced ovarian carcinoma patients have a poor prog-
nosis compared to early-stage patients. )e present study
gives some worthwhile comprehensions in advanced
ovarian cancer survival. An integrated predictive model has
been created using three different data profiles from a real-
world clinical dataset. It also focuses on the significance of
treatment sequences with varying time elapsed between
treatments and various life quality attributes in the survival
analysis of patients. Cancer patients are often treated with
multiple lines of therapy. )e present study validates and
ascertains the use of varying time elapsed between treat-
ments in examining the survival of patients using a
modified sequential mining algorithm of GSP, and various
machine learning techniques. It was revealed that life
quality attributes and treatment sequences with the time
intervals could predict survival better than clinical facts.
Also, time intervals of two months between the treatment
sequences performed better than other time intervals with
an accuracy of 76.4% and 0.85 AUC. )e proposed ap-
proach of modified sequential mining algorithm and
classification with 76.4% accuracy performed better than
the existing approach without sequential mining, giving
around 70% accuracy. )e results were also statistically
validated. )us, the clinicians and researchers should
consider patients’ quality of life and line of treatments with
time elapsed between them while creating a predictive
model for cancer patients.

However, there are a few limitations and possible future
aspects worth noting. )is study used data from only five
years of the hospital to record current medications and
other medical technologies. )e dataset thus had a small
number of instances, which could have resulted in over-
fitting in classification. Also, the dataset was collected
manually by the authors. Some recording errors might have
been created in the data. Besides, precise medications and
chemotherapy cycles or dosage were not considered to
avoid confusion. Yet, these might be useful if we had a
larger dataset.
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