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Sensory adaptation is a useful tool to identify the links
between perceptual effects and neural mechanisms.
Even though motion adaptation is one of the earliest
and most documented aftereffects, few studies have
investigated the perception of direction and speed of
the aftereffect at the same time, that is the perceived
velocity. Using a novel experimental paradigm, we
simultaneously recorded the perceived direction and
speed of leftward or rightward moving random dots
before and after adaptation. For the adapting stimulus,
we chose a horizontally-oriented broadband grating
moving upward behind a circular aperture. Because of
the aperture problem, the interpretation of this stimulus
is ambiguous, being consistent with multiple velocities,
and yet it is systematically perceived as moving at a
single direction and speed. Here we ask whether the
visual system adapts to the multiple velocities of the
adaptor or to just the single perceived velocity. Our
results show a strong repulsion aftereffect, away from
the adapting velocity (downward and slower), that
increases gradually for faster test stimuli as long as these
stimuli include some velocities that match some of the
ambiguous ones of the adaptor. In summary, the visual
system seems to adapt to the multiple velocities of an
ambiguous stimulus even though a single velocity is
perceived. Our findings can be well described by a
computational model that assumes a joint encoding of
direction and speed and that includes an extended
adaptation component that can represent all the
possible velocities of the ambiguous stimulus.

Introduction
The motion of a one-dimensional visual

feature seen through a small aperture, such as the
small receptive field of a velocity tuned channel

(Marr & Ullman, 1981), is ambiguous. This is
referred to as the aperture problem (Wallach, 1935;
Würger, Shapley, & Rubin, 1996). For example, the
motion of a horizontal grating moving upward that
is seen through an aperture is compatible with all
the directions that include an upward component,
albeit at faster speeds. Even though humans resolve
the perceptual ambiguity towards a direction that
is perpendicular to the feature (e.g., Montagnini,
Mamassian, Perrinet, Castet, & Masson, 2007),
neurons in the early part of the visual system that are
sensitive to other velocities should still be activated
by the input stimulus. Although it may appear as a
straightforward question, it is not clear how the visual
system responds to prolonged exposure (adaptation)
to such a stimulus. Does the visual system adapt to the
single speed and direction of the way the stimulus is
perceived, or to the multiple speeds and directions that
the stimulus is consistent with because of the aperture
problem?

Visual adaptation produces perceptual aftereffects
that have been extensively documented over the last
decades and provides a glimpse into the properties of
the underlying neural mechanisms of perception. For
example, prolonged exposure to a motion stimulus leads
to strong, illusory perceptual biases in the perceived
velocity (speed and direction) of static (“waterfall
illusion,” Thompson, 1880) and moving stimuli
(Clifford & Wenderoth, 1999; Ledgeway & Smith, 1997;
Schrater & Simoncelli, 1998; Stocker & Simoncelli,
2009; Smith, 1985, Smith & Edgar, 1994, Thompson,
1981). Motion aftereffects (Anstis, Verstraten, &
Mather, 1998) have been studied using various
methods including physiological, psychophysical, and
computational methods. However, explaining the
different adaptation-induced biases under the same
framework is not straightforward.

Citation: Gekas, N., & Mamassian, P. (2021). Adaptation to one perceived motion direction can generate multiple velocity after-
effects. Journal of Vision, 21(5):17, 1–12, https://doi.org/10.1167/jov.21.5.17.

https://doi.org/10.1167/jov.21.5.17 Received January 29, 2021; published May 18, 2021 ISSN 1534-7362 Copyright 2021 The Authors

This work is licensed under a Creative Commons Attribution 4.0 International License.Downloaded from jov.arvojournals.org on 05/19/2021

mailto:nikos.gekas@nottingham.ac.uk
mailto:pascal.mamassian@ens.fr
https://doi.org/10.1167/jov.21.5.17
http://creativecommons.org/licenses/by/4.0/


Journal of Vision (2021) 21(5):17, 1–12 Gekas & Mamassian 2

In this report, we are interested in adaptation effects
for both speed and direction. There are very few studies
that have investigated these two motion components
at the same time (for notable exceptions, see Schrater
& Simoncelli, 1998; Stocker & Simoncelli; 2009).
Whether direction and speed are independently or
jointly processed is still a matter of debate. While there
is evidence that direction and speed can be dissociated
in specific cases (Matthews & Qian, 1999; Matthews,
Luber, Qian, & Lisanby, 2001; Saffell &Matthews, 2003;
Curran & Benton, 2006), a systematic investigation of
speed discrimination judgments at different directions
showed strong interactions between direction and
speed processing (Manning, Thomas, & Braddick,
2018). Stocker and Simoncelli (2009) proposed two
isomorphic adaptation mechanisms that can explain
motion aftereffects at a wide range of post-adaptation
stimulus velocities, including zero velocities. One
of the mechanisms is assumed to be nondirectional
and consistent with mechanistic models of motion
perception (“ratio models,” Perrone & Thiele, 2002;
Hammett, Champion, Morland, & Thompson, 2005).
In ratio models, the relative responses of low- and
high-pass temporal frequency channels are compared to
estimate stimulus speed but not direction. The output
of the first mechanism provides input to a second
mechanism of velocity tuned channels representing
direction-selective neurons in cortical areas V1 or MT.
This second mechanism assumes that direction and
speed are jointly encoded as a vector entity.

In this report, we investigate whether the visual
system adapts to one or multiple velocities of an
ambiguous stimulus. Previous studies that have looked
at simultaneous adaptation to two motion directions
have suggested the possibility of adaptation at a level
where directions are integrated (Riggs & Day, 1980;
Verstraten, Fredericksen, & Van De Grind, 1994) or
that when global visual representations are constructed,
weak and inconsistent local signals are discarded
(Kanai, Paffen, Gerbino, & Verstraten, 2004). On
the other hand, it has been shown that adaptation to
bi-stable (horizontal or vertical) ambiguous motion
produces similar levels of adaptation to perceived as
well as unperceived but possible motion directions
(Hock, Schöner, & Hochstein, 1996). Here, we present
a novel experimental paradigm to simultaneously
measure the perceived direction and speed of stimuli
moving at various velocities before and after adaptation.
For the adapting stimulus, we use a one-dimensional
grating moving upwards. For the test stimuli, we use
a random dot kinematogram that moved either in
a single direction that is parallel to the orientation
of the adapting stimulus, or in multiple directions
around that same direction of motion. In this latter
case, the motion directions are controlled such that
some of them are consistent with the ambiguous
ones of the adapting stimulus. We hypothesized that

adaptation to an ambiguous stimulus should affect
not only the perpendicular velocity, which is the one
that is perceived, but also all possible velocities of the
adaptor’s motion. This should produce an asymmetry
in the adaptation of velocity channels; velocities with
directions away from the perceived adapted direction
should be affected only for speeds faster than the
adapted speed but not for slower speeds. If speed and
direction are encoded jointly by the visual system, we
should be able to measure the differences in the strength
of the motion aftereffect produced by the asymmetrical
adaptation to these directions at faster speeds.

We find that, for stimuli composed of multiple
directions of motion but constant speed, the motion
aftereffect is significantly stronger for speeds that are
faster than the adapting speed, and this effect increases
with stimulus speed. On the other hand, for stimuli that
have a unique direction of motion, we find that the
strength of the motion aftereffect was uniform across
speeds. We then present a computational model inspired
by the proposal of Stocker and Simoncelli (2009) to
incorporate both a nondirectional and a directional
adaptation stage, and we show that both are necessary
to explain our experimental findings. Our work suggests
that observers adapt to the stimulus and not just the
percept and provides further proof that direction and
speed are jointly encoded in the visual cortex.

Methods
Participants

Ten adult human observers (five female) took
part in the experiment, and they all had normal or
corrected-to-normal vision. All participants were naive
with regard to the purpose of the study, and they gave
informed written consent in accordance with the local
ethics committee and the Declaration of Helsinki.

Stimuli

The adapting stimuli were high contrast (80%) spatial
broadband drifting gratings (frequency range from 1/3
cycles/deg to 2 cycles/deg) moving upward at 6°/s with
phases randomized on each trial. The adapting stimuli
were shown inside a circular aperture of 10° in diameter.
The test stimuli consisted of two types, random dot
kinematograms (RDK) that moved coherently in one
direction (unidirectional), and RDK that moved over
a range of directions (multidirectional). The stimuli
moved at eight different speeds (2°/s, 3.4°/s, 4.2°/s,
5.2°/s, 6°/s, 6.9°/s, 8.4°/s, and 10.5°/s) or were stationary
(0°/s) (Figure 1B). The test stimuli were also shown
inside a circular aperture of 10° in diameter. Each RDK
had a contrast of 80%, density of 4 dots/deg2, and dot
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Figure 1. Experimental procedure. (A) After initial adaptation to an upward moving grating, a test RDK was presented to participants.
After presentation, participants were asked to match the velocity of a ring of dots to the velocity of the test stimulus by freely moving
a computer mouse that controlled a bar that extended from the center of the screen. The orientation and length of the bar correlated
with the direction and speed of the stimulus’ motion. (B) The adapting stimuli were spatial broadband drifting gratings moving
upward at 6°/s with phases randomized on each trial. The test stimuli moved rightward or leftward at eight different speeds or could
be stationary. Teal dots indicate the unidirectional stimuli for which all dots moved in the same direction. Red arcs indicate the
multidirectional stimuli for which dots had a fixed set of directions. The horizontal blue dotted line indicates the infinite possible
velocities of the adapting stimulus due to the aperture problem. The red arcs at fast speeds intersect with the blue line, while they do
not for slow speeds.

diameter of 0.1°. For the unidirectional stimuli, each
dot moved at the same speed and direction (leftward
or rightward, teal dots in Figure 1B), whereas for the
multidirectional stimuli, each dot moved at the same
speed but at a direction selected from a fixed set of
directions (red arcs in Figure 1B). This set followed a
normal distribution with mean at the central direction
(leftward or rightward) and standard deviation of 30°
and discretized at values ranging from −60° to 60°
from the central direction in 3° steps. Thus a total of
41 possible directions with probabilities dropping from
4.16% at the center (0°) to 0.56% at the edges (±60°).

Experimental procedure

The experimental procedure is illustrated
in Figure 1A. An adapting stimulus was presented at
fixation for 40 seconds. After the initial adaptation, the
test stimulus was presented at fixation for 600 ms. Then,
participants were presented with a bar extending from
the center of the screen and a field of dots in a ring (the
inner diameter was 10° and the outer 20°) outside the
central area of presentation moving at the same velocity.
Participants were able to manually alter the velocity of
the ring of dots by moving the mouse. The orientation
and length of the bar matched the direction and speed
of the matching dots, respectively. Participants were

asked to match the velocity of the ring stimulus to that
of the test stimulus. When they were satisfied with their
estimate, participants would need to click the mouse
button to finish the trial. If they had not clicked the
button before 2.4 seconds elapsed, their estimate was
not saved, and the same trial was repeated at the end
of the block. At the start of each new trial, there was
a top-up adaptation for 4 seconds. An example trial
showing the procedure along with examples of adaptor,
test, and matching stimuli can be seen in Supplementary
Movie S1. All stimuli were generated using the Matlab
programming language with the psychophysics toolbox
(MathWorks, Inc., Natick, MA, USA; Brainard, 1997)
and displayed on a 21′′ CRT monitor with a resolution
of 1280 × 960 pixels at 100 Hz. Participants viewed the
display in a darkened room at a viewing distance of 60
cm, and a chin rest was used to maintain a constant
head location and viewing distance.

The test stimuli were presented in blocks of 40
trials, two trials per speed condition plus six trials
with random speeds and directions slightly above or
below leftward or rightward. These random trials were
added to introduce ambiguity in the stimulus’ motion
direction. Participants did three blocks for each type
of test stimulus, first without adaptation, and then
with adaptation in a single session. In total, there were
six trials per participant for each of the 68 different
conditions. At the beginning of the session, participants
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did at least 100 practice trials to get familiar with the
task. In those trials, the speed and direction of test
stimuli were randomized across the whole range of
possible velocities and feedback was provided at the
end of the trial in the form of a green Gaussian blob
that indicated the correct speed and direction of the
presented dots along with the participant’s estimation as
a red small dot. No adapting stimuli were shown during
training. During the main part of the experiment, no
feedback was given to participants.

Similar to Stocker and Simoncelli (2009), we
are using a circular representation of speed v′ =
2arctan(v/r0), where v is the original speed in deg/s, v′ is
the transformed speed, and r0 = 10. This closed space
allows us to use a representation that is similar to a
normalized logarithm but with the added benefit that
it includes zero speed. The same space was used during
participants’ estimation of the stimulus’ velocity, that
is, the length of the estimation bar did not have a linear
relation with speed. We run pilot sessions with both
a linear and nonlinear relation, and we found that a
nonlinear relation appears more natural to participants
and better balances motor errors across speeds.

Computational model

We implemented a neural model to simulate the effect
of adapting to an ambiguous moving stimulus. The
model is based on the one proposed by Stocker and
Simoncelli (2009). Conceptually the models are very
similar and any differences apply at the implementation
level. As Stocker and Simoncelli do not describe their
model in full detail, we cannot directly compare the two
models, and we made choices of parameters (e.g., for
the nondirectional and directional gain profiles) that
best described our experimental results.

The network is composed of velocity channels
ϕ, which are represented by bivariate Gaussian
distributions:

ϕi(x, y) ∼ αN(μ, �), (1)

where μ = [x0i, y0i] is the central horizontal (x0i) and
vertical (y0i) velocity of the channel,

� =
[
σ 2

ϕ 0
0 σ 2

ϕ

]

is the spread of the channel, and α is the maximum
activity (“firing rate”) of the channel. Channels are
homogeneously distributed in the horizontal-vertical
closed velocity space, from −3 to 3 in units determined
by the “arctan” transform defined above, in steps of
0.25 units for a total of 625 channels. As an illustration
of the unit used for speed, 3 corresponds to 141°/sec

whereas 1 to 5.46°/sec. A cartoon example of the
network grid is shown in Figure 3A.

Adaptation to a stimulus is simulated in two stages.
First, there is a nondirectional gain reduction that
affects only fast or slow speed channels depending
on the speed of the adapting stimulus. For slow
speed adaptation, the gain reduction is expressed as a
bivariate Gaussian function rslow_speed ∼ wst1N(0, �),
where wst1 is the strength of the gain reduction and

� =
[
σ 2
st1 0
0 σ 2

st1

]
,

and for the fast speed adaptation it is expressed as
r fast_speed = max(rslow_speed ) − rslow_speed . After the
nondirectional stage with fast speed adaptation, each
channel’s new activity profile is calculated as

ϕst1
i = ϕi

(
1 − r fast_speed (x0i, y0i)

)
, (2)

The second stage is a directional gain reduction
centered at the adapted velocity. This is expressed as
rdirectional ∼ wst2N(0, �), where wst2 is the strength of
the gain reduction and

� =
[
βσ 2

st2 0
0 σ 2

st2

]
.

Note the additional β parameter for the horizontal
variance. We will see below that this parameter is
chosen to be very large, thereby creating a directional
adaptation that applies to all potential velocities of the
ambiguous stimulus (blue horizontal line in Figure 1B).
After the directional stage, each channel’s new activity
profile is calculated as

ϕst2
i = ϕst1

i (1 − rdirectional (x0i, y0i)) , (3)

There are two types of input stimuli. The uni-
directional dots are assumed to be a bivariate Gaussian
centered at the stimulus physical velocity and variance

� =
[
σ 2
stimulus 0
0 σ 2

stimulus

]
.

The multidirectional dots are assumed to be a weighted
sum of similar bivariate Gaussians centered at the
different velocities (41 fixed velocities from −60 to 60)
of the physical multidirectional stimulus and the same
standard deviation. The weights are the probabilities of
each direction of the physical stimulus (41 fixed values
following a normal distribution with σ = 30o).

Each channel produces a response n to each stimulus
s with Poisson variability based on the original ϕi or
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Symbol Value Description

α 22 Maximum activity of the velocity channel
β 322 Gain reduction of orthogonal velocity channel
σφ 0.1 Velocity channel tuning standard deviation
wst1 1.586 Strength of the first (nondirectional) gain reduction stage
σst1 0.6209 Standard deviation of the first gain reduction stage
wst2 56.88 Strength of the second (directional) gain reduction stage
σst2 0.5509 Standard deviation of the second gain reduction stage
σ stimulus 0.3162 Standard deviation of the stimulus

Table 1. Parameters of the model. Bolded parameters were allowed to vary to match the experimental data.

altered ϕst2
i activity profile to simulate the perceived

velocity before and after adaptation:

ni (s) ∼ Poisson (ϕi (s)) (4)

The horizontal vx(s) and vertical vy(s) velocities are
calculated from the population average, so that:

vx (s) =
∑

i x0ini (s)∑
i ni (s)

and vy (s) =
∑

i y0ini (s)∑
i ni (s)

(5)

The model is run for 1000 iterations to produce
averaged curves of expected biases at different stimulus
horizontal velocities. A summary of the model’s
parameters is shown in Table 1. Only four parameters
were allowed to vary to fit the experimental data: wst1,
σ st1, wst2, σ st2.

Results
Experimental data

Participants reported the perceived velocity of
leftwards or rightwards moving dots before and after
adapting to an upwards moving grating. Figure 2 shows
these estimated velocities for each stimulus velocity,
before (black) and after (colored) adaptation. Figure 2A
shows the results obtained with the unidirectional test
stimulus (teal color after adaptation), and Figure 2B
the results with the multi-directional test (red color).
The estimates are averaged over all participants’
responses so that each arrow in the figure corresponds
to the average of 60 estimates. The tail of each arrow
indicates the physical velocity of the stimulus and
the head indicates the averaged estimates. For both
types of stimuli and both before and after adaptation,
participants tend to underestimate the speed of fast
stimuli (long arrows pointing inward) and are more
accurate (smaller arrows) for slow speeds. Looking at
the postadaptation estimates (colored arrows), there is
an apparent repulsion away from the adapted direction,

with arrows for unidirectional and multidirectional
pointing downward even for stationary stimuli. From a
casual inspection, it appears that the effect is stronger
for the multidirectional stimuli and the effect increases
for fast speeds. We now analyze these effects more
precisely.

The differences between the two types of stimuli
can be better evaluated in Figures 2C and 2D.
Participant estimates of direction and speed were
decomposed into their horizontal and vertical velocity
components. Figure 2C plots the averaged horizontal
velocity biases between estimates before and after
adaptation (i.e., �hor_vel = hor_velpost − hor_velpre)
for the unidirectional and multidirectional stimuli.
Biases are positive for negative physical velocities
and vice versa. The biases indicate an attraction
towards slower speeds that is maximized around the
adapting speed of 6°/s. We tested the significance of the
differences between the two types of stimuli for each
stimulus speed with a balanced two-way analysis of
variance. We found a significant effect of stimulus type
on estimation biases in only two of the 17 speeds at P <
0.01. These are indicated by the small horizontal lines
above each stimulus speed in Figure 2C. For example,
at 3.4°/sec rightward velocity, there was a significant
effect of stimulus type on estimation biases (F(1100) =
21.11, P < 0.001)). Overall, the biases appear to follow
a similar pattern for both types of stimuli.

Figure 2D plots the averaged vertical velocity
biases between estimates before and after adaptation
(i.e., �ver_vel = ver_velpost − ver_velpre) for the
unidirectional and multidirectional stimuli. The
repulsive effect is present for both types and appears
larger for the multi-directional stimuli. We again tested
the significance of this effect. We found a significance
effect of stimulus type on estimation biases in eight
of the 17 speeds at P < 0.01. In particular, there is
a significant effect for all but one speed faster than
the adapted speed (five of six). For example, at the
highest rightward speed of 10.5°/sec, there was a
significant effect of stimulus type on estimation biases
(F(1100) = 10.29, P = 0.002). For speeds slower than
the adapted speed, only two of nine differences are
significant at P < 0.01. Finally, of interest are the
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Figure 2. Estimated velocities before and after adaptation for the two types of test stimuli. (A and B) Estimated velocities are plotted
as arrows for each stimulus physical velocity before (black) and after (colored) adaptation for unidirectional (A) and multidirectional
(B) stimuli. The tail of each arrow indicates the physical velocity of the stimulus (or the average physical velocity for the
multidirectional stimuli), whereas the head indicates the estimated velocity for that stimulus. Data points are averaged over all
participants. The big blue dots indicate the physical velocity of the adaptor. (C and D) The differences between averaged estimates for
horizontal (C) and vertical (D) velocities before and after adaptation are plotted for each physical stimulus velocity. Error bars indicate
pooled standard error. The horizontal line above particular physical velocities indicates that there is a significant effect of stimulus
type on estimation biases at P < 0.01 for these velocities.

almost identical biases to stationary stimuli for both
types of stimuli. Obviously, the two stimuli are identical
because there is no movement, so the similarity suggests
a quite robust effect. All responses by individual
participants decomposed to their horizontal and
vertical components are plotted in Supplementary
Figures S1 and S2, respectively, where it can be seen that
estimation behavior was consistent across participants.

Model simulations

The experimental results seem to validate our
hypothesis that the upwards velocities of the fast
multidirectional stimuli are strongly affected by the
adapting stimulus even though they are further away in

velocity space. To explain our findings, we implemented
a computational model of velocity channels and
simulated the effect of adaptation to an upward moving
stimulus (see Methods). Figure 3A shows the two stages
of gain reduction to velocity channels. In the first
nondirectional stage, channels that encode high speeds
across the whole velocity space are strongly affected,
whereas channels that encode slow speeds are less
affected or not at all. We show the reduction in response
to the central 125 channels as a change in their color
(light shades indicate smaller response and dark shades
larger response). We also plot the cross-section of the
response profile of channels encoding zero horizontal
velocity (blue and red circled channels in Figure 3A)
to illustrate the change induced by the two stages after
adaptation. The channels’ original tuning profiles are
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Figure 3. Model illustration and model fits. (A) The computational model designed to explain the adaptation effects consists of gain
reduction at two stages. Left panel: Velocity channels are distributed uniformly along the horizontal and vertical velocity axis. The 15
× 15 gird of circles correspond to the sub set of the 125 central channels of the full model (25 × 25, 625 channels). The brightness of
each disc indicates the maximum response of the channel (black is full maximal response). Before adaptation, all channel respond
equally strongly. Top-right panel: Adaptation gain reduction profile for the nondirectional stage. After the first stage of adaptation,
maximum responses are reduced for channels that encode fast speeds. One-dimensional slices along the vertical velocity axis for the
mean response of each channel centered at zero horizontal velocity (blue circled channels). The black dashed and blue solid lines
indicate the mean response of each channel before and after the gain reduction. Bottom-right panel: Adaptation gain reduction
profile for the directional stage along with channel responses after the second stage of adaptation. One-dimensional slices for the
same channels (red circled channels) before (blue dashed) and after (red solid) the second stage. (B and C) Biases for horizontal (B)
and vertical (C) velocity estimates are plotted for each physical stimulus velocity. Open colored dots indicate experimental data and
error bars indicate pooled standard error. The solid colored lines represent fits of the model for each stimulus physical velocity.

plotted in black dashed lines, and the new profiles
after the nondirectional stage are plotted in blue solid
lines. Channels that encode fast speeds are equally
affected by the first stage independent of direction. In
the second directional stage, channels that are close to
the adapting velocity are affected more than channels

that are further away. However, we propose that this
effect applies equally to all possible velocities of the
ambiguous adaptor. So, channels that encode the same
vertical velocity as the adaptor but different horizontal
velocities are equally affected. The channels’ new tuning
profiles after the directional stage are plotted in red
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solid lines. Even a channel that encodes zero vertical
and horizontal velocities is affected in the second stage.

Our goal with the proposed model is not to precisely
predict the absolute speed estimates of participants but
rather to explain the changes in speed estimates between
before and after adaptation. Our preadaptation data
present some biases toward slow speeds that may have
a number of possible origins, including a sensory
prior for slow speeds, a motor bias because of the
reproduction method we used, or a response bias
reflecting a regression to the mean. We assume that
these biases are independent of the adaptation, thereby
allowing us to focus on the differences in estimates
between before and after adaptation. Figure 3B plots
the experimental data along with the predictions
of the model for the horizontal velocity biases. The
model replicates the pattern of attractive biases toward
slower speeds and the increase of the effect around the
adapting speed. This pattern can only be explained
by the nondirectional gain reduction stage because
the directional stage is not affecting channels that
encode fast horizontal velocities. Figures 4A and 4B
show predictions of the model after applying only
one of the two stages. If only the directional stage
is applied (Figure 4B), no biases are predicted for
horizontal velocities. Figure 3C plots the experimental
data along with the predictions of the model for the
vertical velocity biases. For the unidirectional stimuli,
the model predicts a weak uniform bias independent of
the stimulus’ horizontal velocity in strong agreement
with the experimental data. For the multidirectional
stimuli, the model predicts a similarly weak bias at
slow horizontal velocities that increases along with
the stimulus’ horizontal velocity. Again, the model
predictions closely match the experimental data. If
only the nondirectional stage is applied (Figure 4A),
there are no biases predicted for vertical velocities. If a
modified directional stage is applied that assumes that
adaptation is limited to the perceived velocity of the
adaptor (i.e., β = 1), the model fails to correctly predict
the pattern of vertical velocity biases at fast speed
(Figure 4C).

Finally, we tested a version of the model with only
the directional stage but with an “extended” gain profile
where the bandwidth of velocity channels increases with
speed. We used the energy model by Simoncelli and
Heeger (1998) to simulate different adaptation profiles
of a broadband grating drifting upward. An example
profile and the produced fits can be seen in Figure 4D.
The model is able to accurately replicate the vertical
biases found in the data and predict horizontal
biases without the nondirectional stage. However, the
pattern of these horizontal biases differs from the
experimental data in that they monotonically increase
with stimulus speed instead of peaking at the adapted
speed and decreasing for faster speeds. In summary,
we think that the two-stage model provides the most

accurate description of the data from all the models
we tested. Interestingly, the two-stage model predicts
weaker biases at zero velocity than the experimental
biases. This could hint toward an imbalance in the
distribution of velocity channels encoding slower
speeds in comparison to channels encoding faster
speeds. Overall, the modeling work suggests that
both stages of gain reduction are required to explain
participants’ perceptual biases and that the directional
gain reduction profile of the adapting stimulus extends
into faster horizontal velocities, up to at least 10.5°/s,
and potentially infinitely.

Discussion
Because of the aperture problem, a drifting grating

will activate multiple neurons sensitive to different
combinations of directions and speeds. In this report,
we have shown that when such a moving stimulus
is presented, observers adapt to all the velocities
consistent with this ambiguous stimulus. When tested
with stimuli moving in a single direction, participants
exhibited uniformly weak biases towards downward
directions, but when tested with stimuli that contained
multiple directions, they exhibited increasingly stronger
downward biases for increasing speeds. Intuitively,
this can be explained by looking at the expansion of a
multidirectional stimulus in velocity space (Figure 1B).
As the speed of the test stimulus increases, the arc
that represents the velocities of the stimulus expands
into space and eventually goes beyond the horizontal
blue line that represents the possible velocities of the
ambiguous adapting stimulus. Thus a larger part of
the multidirectional stimulus is affected for fast stimuli
than for slow. The fact that this pattern is not present
in the unidirectional stimuli suggests that the effect is
not caused merely by the change in the speed of the
stimulus.

A number of studies have looked at the effects
of motion adaptation at multiple levels of the visual
hierarchy (Curran, Clifford, & Benton, 2006; Lee &
Lu, 2012; Lee & Lu, 2014; Scarfe & Johnston, 2011;
Vidnyánszky, Blaser, & Papathomas, 2002). Scarfe
and Johnston (2011) showed that the direction of a
motion aftereffect produced by ambiguous local motion
signals is modified by global motion. They argue for
an interaction between the coding of local and global
motion through feedforward and feedback connections
between directionally coded cells and cells with large
receptive fields. Such an architecture would allow the
visual system to balance the competing requirements
of retaining local precision but also integrating
information over space to encode global motion. Local
motion signals carried by two-dimensional elements
such as RDKs are presumably integrated over space in
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Figure 4. Model fits for different adaptation profiles. (A) Bias fits after applying only the nondirectional stage of adaptation. The model
predicts horizontal velocity biases but not vertical. (B) Bias fits after applying only the directional stage of adaptation. The model
predicts vertical velocity biases but not horizontal. (C) Bias fits after applying the nondirectional stage of adaptation and a modified

→
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←
directional stage that assumes that adaptation is limited to the perceived velocity of the adaptor. The model fails to predict the
pattern of vertical velocity biases at fast speeds. (D) Bias fits after applying only a directional stage of adaptation with an extended
profile over horizontal velocities. The model predicts vertical velocity biases but only weak horizontal biases that monotonically
increase with stimulus speed.

a vector-average fashion (Amano, Edwards, Badcock,
& Nishida, 2009). Our findings suggest that local one-
dimensional motion ambiguity is solved globally rather
than locally (see also Rider, Nishida, & Johnston, 2016;
Nishida, Kawabe, Sawayama, & Fukiage, 2018). If
this were not the case, we would not have observed the
stronger biases to the perceived motion of the faster
multi-directional stimuli. Our experimental paradigm
could be useful in the investigation of global motion
adaptation. Smith, Scott-Samuel, and Singh (2000)
have shown that even when adaptation at the local
motion level should not produce a net aftereffect, there
is a consistent aftereffect away from the stimulus’ global
motion percept, suggesting that adaptation also occurs
at a level of visual processing where global motion
is represented. To extend our work in this direction,
good candidates of adapting stimuli would be Type II
plaids (Ferrera & Wilson, 1990) because their perceived
motion direction deviates from the sum of the motion
vectors of their components.

The ambiguous adapting stimuli were broadband
drifting gratings, whereas the test stimuli were random
dot kinematograms. Ideally, adapting and test stimuli
should have the same spatiotemporal frequency spectra
in order to minimize the dimensions in which the stimuli
differ. However, it would be very difficult to precisely
control the different velocities of a multi-directional
test stimulus composed of multiple superimposed
drifting gratings. It has been shown that integration
of stimuli of multiple spatiotemporal frequencies can
affect the perceived speed for stimuli that share the same
veridical speed (Jogan & Stocker, 2015) or different
speeds (Gekas, Meso, Masson, & Mamassian, 2017).
Moreover, it has been suggested that adaptation does
not only alter the visual sensitivity for the frequencies
of the adapting stimulus but also for multiple other
frequencies in an orderly pattern of gains and losses
(Gepshtein, Lesmes, & Albright, 2013). In our model,
we did not simulate the differences in sensitivity across
spatiotemporal frequencies and our stimuli were
broadband to encompass multiple frequencies. Future
studies can create a more accurate representation of the
underlying velocity tuned channels by using stimuli with
well-defined spatiotemporal frequency content such
as plaids or frequency-controlled broadband dynamic
noise stimuli called Motion Clouds (Sanz-Leon,
Vanzetta, Masson, & Perrinet, 2012; Gekas et al., 2017).

We implemented a computational model with two
stages of adaptation. First, a nondirectional gain
reduction is applied that affects fast speed channels.

Second, a directional gain reduction is applied that
affects channels close to the adapting velocities but
extends infinitely into faster horizontal velocities at the
same vertical velocity. To find signatures of the two
mechanisms, both must be involved in the experimental
task. In experiments where participants only report the
speed or the direction of a stimulus, it is difficult to
isolate the effects of these two potential mechanisms.
Stocker and Simoncelli (2009) were able to design an
experiment to isolate the nondirectional mechanism
even though participants only reported the speed
of the stimulus. Participants adapted to an upward
moving stimulus and reported the perceived speed
of grating stimuli moving leftward or rightward but
not the perceived direction. With our experimental
design, we were able to not only measure the speed
bias at the orthogonal velocities, like Stocker and
Simoncelli did, but also at the parallel velocities. This
allowed us to identify signatures of both mechanisms
simultaneously and the manipulation of the stimulus’
directional composition allowed us in turn to map the
effect of the directional mechanism across the velocity
space. Simulations showed that both mechanisms are
required to explain the experimental results because
the application of only one of the mechanisms cannot
explain biases to estimated horizontal and vertical
velocities.

Neurophysiological studies have found that neurons
in the visual cortex change their response profiles
after adaptation (Dragoi, Sharma, & Sur, 2000; Kohn
& Movshon, 2003; Kohn & Movshon, 2004). These
changes can include reduction in responsivity (Kohn,
2007), broadening of tuning widths (Dragoi et al.,
2000), and shift of the preferred velocity away from
the adaptor (Dragoi et al, 2000). For simplicity, we
only modeled the reduction in responsivity, thus
implementing a more parsimonious model with fewer
free parameters. Still, we were able to accurately
simulate participants’ biases for the two types of
stimuli. We also found stronger than expected biases
to static stimuli that suggested a potential asymmetry
in the distribution of velocity channels towards
slow speeds. Such asymmetries could potentially
also explain the well-documented preference for
slow speeds (Stocker & Simoncelli, 2006; Vintch &
Gardner, 2014), and more specific direction-depended
speed biases identified by Manning et al. (2018)
and Moscatelli, La Scaleia, Zago, and Lacquaniti
(2019). We believe that identifying the topography of
the joint direction-speed space is a very promising
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direction for future research, and our experimental
paradigm could prove a useful tool in accomplishing
that.

Keywords: motion adaptation, multiple aftereffects,
velocity, aperture problem
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