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B-site doping in potassium sodium niobate (KNN) with Mn2+ (Mn′′′Nb) and Ti4+ (Ti′Nb)
dopants were soluble but prevented KNN from achieving a high relative density, while
Sn4+ (Sn′Nb) was not soluble in the structure as evidenced by second phase peaks in
X-ray diffraction (XRD) traces. However, SnO2 was an effective sintering aid in KNN-
50/50. A-site doping with Sr2+ (Sr·(Na,K)) up to 1 mol% initially improved dielectric
properties but higher sintering temperatures were required for compositions with
>1 mol% Sr. Samples with 5% and 7% of Sr-doping completely shifted the transition
of TO−T to below RT and broadened the TC peaks as the relaxor. All Ti-doped and
Sr-doped compositions showed an increase in conductivity, manifested as high values
of dielectric loss (tanδ). More than 1% of acceptor and donor dopants showed the
ionic-type conduction mechanism, while 1% displayed the electronic mechanism as
attributed from the strongly frequency-dependent tanδ. In conclusion, these samples
have the potential to open up new applications in the field of electroceramics.

Keywords: acceptor doping, donor doping, solubility, KNN, dielectric properties

INTRODUCTION

Different properties and effects of dopants on potassium sodium niobate (KNN)-based ceramics
have been discussed in many publications (Lin et al., 2007; Lee et al., 2008; Wang et al.,
2008; Liu et al., 2009, 2012; Tan et al., 2012; Zhao et al., 2013; Bafandeh et al., 2014; Wu J.
et al., 2014; Zheng et al., 2015; Yang et al., 2016; Hussain et al., 2019, 2020). Some groups
have discussed potassium oxide and sodium oxide both separately and with doping elements,
in terms of electrical properties for KNN-based ceramics (Jaffe et al., 1971; Fluckiger and
Arend, 1978; Kodaira et al., 1982; Jenko et al., 2005; Lee et al., 2008; Wang et al., 2008;
Zhang et al., 2013; Zhao et al., 2013; Zheng et al., 2015). Fewer studies have been done on
acceptor (Akça and Yılmaz, 2015; Rafiq et al., 2015; Chen et al., 2016) and donor (Wu S. et al.,
2014; Hreščak et al., 2017) dopants in KNN to understand its electrical properties. Donor and
acceptor dopants play a vital role in the investigation into the semiconducting properties and
defect chemistry of the well-established systems of Barium Titanate (BT) and Lead Zirconate
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Titanate (PZT; Masó et al., 2006; Da-Wei et al., 2009; Cao
et al., 2010; Erdem et al., 2010; Wang D. W. et al., 2011; Wang
et al., 2012, 2014; Wang D. et al., 2013; Ma et al., 2012; Zhu
et al., 2012; Ali et al., 2013; Freeman et al., 2013; Li et al.,
2013, 2015; Lou et al., 2018). Hreščak et al. (2017) reported
Sr2+ as a donor dopant in KNN that improved its crystal
structure, grain size, and phase composition. Rafiq et al. (2015)

reported that the single acceptor-dopant of Mn2+ in KNN
decreased the leakage current; most authors, however, have
emphasized the importance of co-doping (Guo et al., 2004,
2005; Hollenstein et al., 2005; Hollenstein et al., 2007; Jiang
et al., 2007; Lopez-Juarez et al., 2011; Rubio-Marcos et al., 2011;
Skidmore and Milne, 2011; Wang H. Q. et al., 2011; Wang K.
et al., 2013; Wang et al., 2017; Zhang et al., 2011; Li et al.,

FIGURE 1 | (A) Single phase XRD patterns of Mn- and Ti-doped KNN-50/50, (B) zoomed peaks at 2θ ∼ 45–46.

FIGURE 2 | (A) XRD patterns of Sn-doped KNN-50/50, (B) zoomed peak at 2θ ∼ 45–46.
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FIGURE 3 | (A) X-ray diffraction data of Sr doped KNN-50/50, (B) zoomed peak at 2θ ∼ 45–46.

FIGURE 4 | Zoomed peak at 2θ ∼ 45–46, in comparision with the peak shape
of 1% Sr_air/N2 with KNN_50/50_air.

2012; Du et al., 2012a,b; Gio and Phong, 2015; Liu et al.,
2016, 2017) in achieving optimized functional properties. Chen
et al. (2016) prepared different formulations with trace amounts
of acceptor-dopants into (K0.5Na0.5 Nb0.994A0.006)O3−δ, where
A(Ga3+, Ge4+, Mn2+, Zn2+, Cu2+, and Ni2+) metallic-ions were
incorporated; this consequently improved the high mechanical-
quality-factor (Qm) values in divalent-doped compositions.

The aim of this research was to introduce acceptor-dopants
(Mn2+, Ti4+, and Sn4+) and donor-dopants (Sr2+) into KNN to
see the individual effect of their solubility and structural changes
on the electrical properties of KNN-50/50-based ceramics.

EXPERIMENTAL PROCEDURE

Nb2O5 was obtained from Stanford Materials Corporation with
99.999% purity, whereas K2CO3 and Na2CO3 were obtained
from Fisher Scientific with 99.9% anhydrous used. In addition
to this, TiO2 was obtained from Aldrich Chemistry with 99.99%,
and MnO2, SnO2, and SrCO3 were obtained from Aldrich with
99.9% purity each. Carbonates were dried at 300◦C, whereas
all other oxides were heated at 900◦C for 24 h. Batches of
50 g of doped-KNN formulations (K0.5Na0.5TixNb1−xO3−x/2
where 0.0 ≤ x ≤ 0.05; K0.5Na0.5MnxNb1−xO3−x/2 where
0.0 ≤ x ≤ 0.01; K0.5Na0.5SnxNb1−xO3−x/2 where 0.0 ≤ x ≤ 0.03;
and (K0.5Na0.5)1−xSrxNbO3 where 0.0≤ x≤ 0.07) were prepared
from dried raw powders in a hot condition (∼200◦C) to avoid
the non-stoichiometric conditions caused by moisture, especially
in carbonates. All compositions were attrition milled for 1 h
in a 500 ml jar at 300 rpm in isopropanol using 3 mm Dia.
Y2O3 stabilized zirconia milling media prior to calcination.
After milling, the slurry was washed with further isopropanol,
separated from milling media through a sieve, and volatiles were
removed at 80◦C for 24 h in a drying oven. The dried material was
sieved through a 150-micron mesh and calcined for 6 h at 850◦C
at 3◦C/min and 5◦C/min, heating and cooling rates, respectively.
Reacted powders were re-milled before pressing a pellet. 10 mm
diameter disks of all compounds were pressed uniaxially with 2-
ton force and fired at in a temperature range of 1120–1165◦C
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FIGURE 5 | (A) εr and (B) tanδ versus temperature of Mn-doped KNN; (C) εr and (D) tanδ versus temperature of Ti-doped KNN compositions.

for 2–8 h. Moreover, the details of sintering temperatures of all
formulations are described in Supplementary Figures S1, S2.

Densities of pellets were measured as per the Archimedes
method, which were around 90%-bulk in average. XRD traces
of sintered pellets were obtained using a Siemens D500
diffractometer at the 2θ range of 10o–80o, using CuKα radiation.
The dielectric properties were characterised using an LCR meter
(Model 4284A, Hewlett Packard).

RESULTS AND DISCUSSION

XRD
The XRD traces from KNN-50/50 doped on the B-site with
Mn2+, Ti4+, and Sn4+ are shown in Figures 1, 2. The XRD
traces from KNN-50/50 doped with 1% Mn and 1% Ti both
appear to be similar, but the shape of 2θ ∼ 45◦ {220}, and {002}
peaks shows a slight difference (Figure 1). In both cases, the
intensity of the 2θ = 32◦ {111} is lower than that of the undoped
KNN (Lin et al., 2010). Increasing the concentration of Ti to 5%
Ti emphasized the structural change observed at 1% Ti. There

are a few studies on single Mn acceptor dopant in KNN. Peaks
shifting toward higher 2θ is evidence of shrinkage in the lattice
volume, which took place for Mn2+ (Rafiq et al., 2015) and Ti4+
acceptor dopants as compared to the undoped KNN peak (shown
in Figure 4; 2θ = 45–46◦). Conversely, Lin et al. (2010) reported
that XRD peaks shifted toward lower 2θ (i.e., expansion in the
lattice volume) in the case of Mn4+ doped KNN.

For KNN-50/50 doped with Sn4+, secondary peaks of SnO2
are visible in Figure 2. Moreover, within the resolution limits
of in-house XRD, there was no discernible change in the trace
of the major KNN peaks, confirming that Sn does not enter
into solid solution with KNN. Su et al. (2010) investigated SnO2
and CuO co-doping in KNN and concluded that Sn4+ was not
soluble after 1 mol%. Their XRD traces also depicted secondary
peak positions similar to those in this study. Akça and Yılmaz
(2015) also reported insolubility issues for Sn4+ in KNN with
secondary peaks visible in their XRD data. The reasons behind
the insolubility of Sn4+ issues in KNN is unclear, since Sn4+

(0.69 Å) has a similar ionic radius to Nb5+ (0.68 Å; Shannon,
1976). However, Sn4+ is more covalently bonded to O than Nb5+,
which may influence its solubility (Barret, 1962; IBchem, 2016).
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FIGURE 6 | (A) εr and (B) tanδ verses temperature of Sn-doped KNN; (C) εr and (D) tanδ verses temperature of Sr-doped KNN compositions.

For KNN-50/50 doped with Sr2+ on the A-site, the XRD traces
revealed a broadening of the {111} peaks as a function of x with
respect to undoped KNN-50/50 when fired in both air and N2.
Figures 3, 4 should be evaluated together, indicating that Sr2+

was incorporated within the KNN lattice.

Dielectric Properties
Acceptor Dopants: Mn2+, Ti4+, and Sn4+

The temperature dependence of relative permittivity (εr) and
loss (tanδ) of 1 mol% Mn doped KNN-50/50 are shown in
Figures 5A,B as a function of temperature and frequency.
Two phase transition temperatures, i.e., orthorhombic-tetragonal
(TO−T), and tetragonal-cubic (TT−C) are clearly presented,
though both transitions are shifted toward lower temperatures
compared to undoped KNN-50/50 sintered in air. The εr and
tanδ at room temperature of 1% Mn doped KNN-50/50 was 380
and 0.05 at 100 kHz, respectively. However, at lower frequencies,
the tanδ increased dramatically when increasing the temperature.
The most likely cause of tanδ relates to oxygen vacancy (V··O)
formed according to the defect equation:

Mn′′′Nb ≡ 3/2V••O

At high frequencies (1 MHz), tanδ was suppressed with acceptor
Mn2+ dopant. At these frequencies, the loss mechanism relating
to V··O may clamp out, resulting in a decrease in the overall tanδ.
There are a number of potential loss mechanisms relating to V··O,
such as rotation of defect dipoles and movement of space charge.
It is not known which mechanism dominates in this study.

The dielectric properties of Ti-doped KNN-50/50 are shown
in Figures 5C,D. For low concentrations, (1%) the TT−C
temperature decreased with little change in TO−T. However,
for high concentrations, TT−C phase transition temperatures
increased, and TO−T decreased compared to the undoped and
1% Ti doped compositions and the phase transitions become
broader. The peak in permittivity at around room temperature in
3 and 5% Ti-doped KNN may relate to the observation of minor
changes to the shape of some XRD peaks (at {220} and {002}
planes; Figure 1). Dielectric loss in Ti-doped suppressed from
x = 0.01 to x = 0.05 with respect to the temperature and frequency,
which suggested that the conduction mechanism shifted from
electronic to ionic as the Ti dopant increased. Nevertheless,
electronic species are lighter than ionic ones; that’s why ionic
species need more activation energy and consequently higher
conductions at higher temperatures (see Supplementary Data).
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The dielectric properties of Sn4+ doped KNN are shown
in Figures 6A,B. Unsurprisingly, there was no effect on the
dielectric properties with respect to undoped compositions since
there was no evidence that Sn4+ enters the KNN lattice.

Donor Dopant: Sr2+

Dielectric properties of Sr donor dopant (A-site) in KNN-
50/50 are presented in Figures 6C,D. 1% Sr-doped KNN-50/50
compositions were sintered in both air and N2 to compare
the behavior with undoped in a previous study (Hussain et al.,
2018) and acceptor doped compositions in the previous sections.
However, for undoped KNN sintered in N2, the transition
temperature decreased in agreement with 1% Sr-doped KNN
(N2). N2 sintered Sr2+ KNN becomes more conductive as
compared to undoped KNN, presumably because Sr2+ donates
extra electrons (h·) and low pO2 creates V ··O. It has been
proposed that the increase in conductivity contributes to the
larger permittivity for N2 sintered KNN-1 Sr. TT−C with
acceptor (Mn2+) and donor (Sr2+) in air are 390◦C and 384◦C,
respectively, which suggests that disruption of the ferroelectric
order to reduce TT−C is greater for A-site Sr2+ doping in
comparison to B-site Mn2+. At higher Sr concentrations, x = 0.05
and 0.07, the phase transitions broaden in temperature (inset
of Figure 6C), consistent with the broadening of peaks in the
XRD traces (Figure 3). In addition, the dielectric loss increased
when samples became more conductive at higher than 1% Sr (see
Supplementary Data). Nonetheless, this broadening and higher
dielectric loss phenomenon with donor doping looks similar to
the results reported in the case of W6+ B-site donor doping in
KNN, investigated by Wu S. et al. (2014).

CONCLUSION

Acceptor dopants such as Mn2+ (Mn′′′Nb) and Ti4+ (Ti′Nb) at
the B-site of KNN were incorporated to modify properties, but
they both inhibited densification of KNN. Nonetheless, both
acceptor species were soluble in the lattice, as revealed by XRD.
Dielectric losses increased dramatically at lower frequencies with
increasing temperatures by using acceptors but were moderately
lower at higher frequencies. A further B-site dopant (Sn4+) was
also attempted but was insoluble, as evidenced by the appearance
of secondary phase peaks in XRD data at low concentrations.
Nevertheless, Sn4+ was an effective sintering aid in KNN-50/50

and improved its relative density. Ceramic density improved with
1 mol% Sr2+ but at a higher sintering temperature. Sr2+-doped
formulations showed higher conductivity, which manifested itself
in higher values of tanδ. TC of KNN-1 Sr in N2 decreased with
respect to air-sintered samples.
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