
Evolving Legacy Enterprise Systems

with Microservices-Based Architecture

in Cloud Environments

Safa Habibullah

School of Computing

Edinburgh Napier University

This dissertation is submitted for the degree of

Doctor of Philosophy

December 2020

Abstract

Many legacy enterprise systems suffer from a number of common and critical problems. Such

systems have often been implemented in the past with hardware and software technologies

which are now out of date. Furthermore, they have often been modified in piecemeal so

as to allow them to cope with changed requirements, and the need for new functionalities,

which have come to light since their initial implementation. Thus, they are often ‘messy’ in

their implementations and difficult to use: the modules are no longer well-structured, and

many dependencies exist across module boundaries; also some new functionalities may prove

impossible to incorporate within them. The old-fashioned technologies on which they are

based frequently are unable to deliver the speed and throughput required by the business

environment, and such technologies usually do not offer the ease of modification provided

by modern service oriented and networked systems. Further, new technologies are often

available on a much wider range of platforms and are generally more scalable and flexible –

leading to much greater ease of use.

Therefore, there is a need to migrate legacy systems to the newer technologies and in this

process to construct the more well-structured systems. One path by which this can be done

is to migrate the system to the Cloud-based technology, and in the course of this migration,

to re-structure it into a microservices-based architecture. By doing so, the hope is that the

resultant system will be easier to modify, offer higher performance, and offer other benefits

as well, such as better security. To attain these hoped-for benefits, it is vital that the migration

is performed in an appropriate approach.

The contributions of this thesis are to propose and validate an approach to the migration

of a legacy system to a microservice-oriented architecture and Cloud based system. This

approach is predicated on the creation and use of two sets of rules: a set of feature-driven

microservice transformation rules and a set of feature-driven cloud migration rules. It is

iii

hypothesized that the correct interpretation of, and the appropriate adherence to, these rules

will lead to the implementation of a new microservices-oriented and Cloud based system,

which will replace the functionality of the legacy system, improve the QoS offered by this, in

terms of non-functional requirements, and be far easier to modify in the future in order to

cope with further functional and other requirements which may emerge.

To verify that the proposed approach and its associated rules are fit for the above purpose,

two case studies are embarked upon. One involves the comprehensive conversion of a

legacy system, via the rules, into a Cloud and microservices architecture based system

implemented within a container technology environment – an environment which, according

to the literature, is the one best suited to this purpose. The testing and implementation

involved with that case study is focused on the microservice-oriented system’s compliance

with non-functional requirements such as throughput. The second case study is analysis-

intensive, focusing on how a much more complex and much larger legacy system could be

migrated in the same way. This latter case study is focused on interoperability, testability,

maintainability, availability, and scalability. The results from these case studies verify the

validity and efficacy of the approach and the rules which are developed for it, and lead to

some insightful suggestions for future research.

Acknowledgements

Just a few days and nights ago, all the hours I had were filled with work. Some moments

from that time will never be forgotten; they will remain forever engraved in my heart. The

hard work that this project entailed represents a link between tomorrow and a bright new

future.

This project has been manifested and documented, just as my hopes and wishes have

been manifested by the people who, with their involvement, have made such a difference to

my life. Words cannot express my gratitude to these people: the pen stands respectfully still

in their presence, the ink starts to go dry before we can begin mentioning their favours.

All praise is due to Allah, the giver of all knowledge. Thank you for blessing me with the

strength and knowledge to complete this research work.

I am most indebted to my beloved husband, Abdulkader, who has been beside me at all

times and he has always been a shoulder to rest on; he has supported me throughout this

journey. Indeed, I would not be where I am today without him. I am grateful to my precious

boys, Yousef and Omar. They are the light of my life and being with them encourages me to

cope and to go through all the challenges necessary for providing them with a bright future.

My deepest thanks go to my parents, Hussain and Badreeyah for their endless love and

support. Although they live far away in Saudi Arabia, they have always encouraged me and

given me consistent spiritual support. Special thanks go to my brothers and sisters. Specially

to my sister Afnan who has spent some time with me in Edinburgh looking after my kids.

I would like to express my huge appreciation of my director of study Prof .Xiaodong Liu

and my supervisor Dr.Zhiyuan Tan for their untiring support , assistance, valuable advice

and feedback in the course of my PhD study. My thankfulness also goes to my panel chair,

Prof.Ahmed Aldubai who has shown an understanding of my situation and the difficulties I

have faced during my PhD - and for all the support and help he has provided.

v

I would like to thank university of Jeddah which has given me the opportunity to continue

my studies in the United Kingdom and has helped us to overcome all the difficulties which,

otherwise, might have overcome us during our stay abroad.

Finally, a special thanks goes to my parents in law, my family in Saudi Arabia and also

my friends in the UK who have become like a family.

Publications from the PhD work

Conference papers

1. Habibullah, S., Liu, X., Tan, Z., Zhang, Y., & Liu, Q. (2019). Reviving legacy

enterprise systems with microservice-based architecture within cloud environments.

In Proceedings of the 5th International Conference on Software Engineering (SOFT

2019), Copenhagen, Denmark, June 2019. https://doi.org/10.5121/csit.2019.90713

2. Habibullah, S., Liu, X., & Tan, Z. (2018). An Approach to Evolving Legacy Enterprise

System to Microservice-Based Architecture through Feature-Driven Evolution Rules.

International Journal of Computer Theory and Engineering, 10(5).

Journal paper

1. Habibullah, S., Liu, X., Tan, Z., Jaroucheh, Z., Zhang, Y. and Liu, Q., n.d. An Approach

to Evolving Legacy Enterprise Systems to Cloud-Based Lean Microservice-Oriented

Architecture of the Wiley-Software: evolution and process (under review).

https://doi.org/10.5121/csit.2019.90713

Declaration

I hereby declare that except where specific reference is made to the work of others, the

contents of this dissertation are original and have not been submitted in whole or in part

for consideration for any other degree or qualification in this, or any other university. This

dissertation is my own work and contains nothing which is the outcome of work done in

collaboration with others, except as specified in the text and acknowledgements.

Safa Habibullah

December 2020

Contents

List of Figures xi

List of Tables xiv

1 Introduction 1

1.1 Motivation and Problem Statement . 1

1.2 Aim and Objectives of Proposed Research 2

1.3 Research question and Contribution . 4

1.4 Methodology . 5

1.5 Thesis Structure . 6

2 Literature Review 7

2.1 Introduction . 7

2.2 Software Evolution: Maintenance Development and

Migration . 7

2.2.1 Importance of Evolution, Development and Migration 9

2.3 Legacy System . 11

2.3.1 Software evolution vs legacy system migration 13

2.4 Service-Oriented Architecture . 16

2.5 Microservices . 17

2.6 Microservices architecture vs Monolithic architecture 17

2.7 Bounded Context . 20

2.8 Feature-Driven Evolution . 21

2.9 Cloud Computing . 21

ix

2.10 Container . 23

2.11 Design Pattern . 24

2.12 Conclusion . 26

3 Related Work 29

3.1 Introduction . 29

3.2 A Systematic Study on Microservices . 29

3.3 Microservice-Oriented Architecture and Design 31

3.4 Evolution into Microservice-Oriented Architecture 34

3.5 Conclusion . 35

4 Research Framework 37

4.1 Introduction . 37

4.2 The Conceptual Framework of the Approach 38

4.2.1 The Overview of the Framework System 38

4.2.2 The Legacy System . 40

4.2.3 Middle Layer – Microservice Transformation 41

4.2.4 Target System – Cloud Migration 44

4.3 Summary . 45

5 The Feature-Driven Migration Approach 47

5.1 Introduction . 47

5.2 Feature-driven evolution . 48

5.2.1 Features in enterprise systems . 48

5.2.2 Method to derive the microservice Evolution rules 50

5.2.3 Feature relationships in enterprise systems 53

5.3 Preconditions for feature-driven rules . 55

5.4 Feature driven microservice transformation rules 57

5.5 Feature Driven Cloud Migration Rules 77

5.6 Microservices Transformation Roadmap 87

5.7 Summary . 90

x

6 Case Study and Evaluation 91

6.1 Introduction . 91

6.2 Case Study 1 . 92

6.3 The Current, Monolithic, Architecture of RosarioSIS 92

6.4 New Microservices Architecture of RosarioSIS 96

6.5 Deployment in a Cloud Environment . 107

6.6 Test and Analysis . 109

6.6.1 Performance Test . 110

6.7 Case Study 2 . 116

6.7.1 The Legacy System Transformation to Microservice Architecture . 116

6.7.2 Deployment . 137

6.7.3 Evaluation . 140

6.8 Summary . 144

7 Conclusions 146

7.1 Introduction . 146

7.2 Critical Analysis . 147

7.2.1 Objective I: Understand the theoretical background relating to the

migrating of legacy systems, by proposing a holistic framework

approach for such migration. 147

7.2.2 Objective II: Apply UML diagram in order to specify the migration

rules . 148

7.2.3 Objective IV: Evaluation with Case Studies 149

7.3 Contributions . 149

7.4 Conclusion . 151

7.5 Limitation and Future Work . 152

References 153

Appendix A Performance Test samples 160

List of Figures

1.1 The research methodology phases. 5

2.1 Monolithic architecture vs microservice architecture 18

4.1 Overview of the framework . 39

4.2 The conceptual framework of the approach 40

4.3 Microservices transformation process . 42

4.4 Cloud Migration Guidance . 45

5.1 Typical Features Model in Enterprise Systems 52

5.2 Update Master DB based on Request priority. 82

5.3 The Process to transform RosarioSIS legacy system to a microservice-based

architecture . 87

6.1 Monolithic architecture of RosarioSIS . 93

6.2 RosarioSIS Monolithic ERD . 95

6.3 Grades’ Context . 98

6.4 Students’ Context . 99

6.5 School Context . 99

6.6 Users’ Context . 100

6.7 Microservice Architecture . 101

6.8 Microservice Design . 102

6.9 User API . 103

6.10 School API . 104

6.11 Grade API . 104

xii

6.12 Student API . 105

6.13 SAPI GET operation . 105

6.14 API input Fields . 106

6.15 Example of API Message Response . 106

6.16 The RosarioSIS Legacy System Deployment 108

6.17 The RosarioSIS Microservice-Based Architecture Deployment 109

6.18 Average response times for the RosarioSIS legacy system and the RosarioSIS

microservices architecture . 114

6.19 Average throughput for the RosarioSIS legacy system and the RosarioSIS

microservices architecture . 115

6.20 ERP2 Entity Relationship Diagram. 118

6.21 Core microservices from the ERP2 legacy system 121

6.22 Supply-chain domain . 122

6.23 Human resource management domain . 122

6.24 Financial management domain . 123

6.25 Planning and scheduling domain . 123

6.26 Quality domain . 124

6.27 Product domain . 124

6.28 Customer relationship domain . 125

6.29 Service domain . 125

6.30 Inventory subdomain . 127

6.31 Forecasting and Demanding subdomain 128

6.32 Supplier and Customer subdomain . 128

6.33 Purchase subdomain . 129

6.34 Project subdomain . 129

6.35 Training and recruitment subdomain . 130

6.36 Warehouse subdomain . 132

6.37 Manufacturing subdomain . 132

6.38 Purchase subdomain . 133

6.39 Payroll subdomain . 133

6.40 Enterprise microservices . 138

xiii

6.41 Monolithic Enterprise application. 141

A.1 User Module Summary Report for 40 requests in 0.5sec 160

A.2 User Module Summary Report for 20 requests in 0.5sec 161

A.3 User Module Summary Report for 60 requests in 0.5sec 161

A.4 View User Module Result in Table for 60 requests 162

A.5 View User Module Result in Table for 60 requests 162

A.6 View User Module Result in Table for 80 requests in 4.48 sec (1) 163

A.7 View User Module Result in Table for 80 requests in 4.48 sec (2) 163

A.8 View User Module Result in Table for 80 requests in 4.48 sec (3) 164

A.9 Student Module Summary Report for 45 requests in 0.5 sec 164

A.10 Student Module Summary Report for 150 requests in 3.5 sec 165

List of Tables

5.1 Main concerns for the feature driven rules 56

6.1 Monolithic Instance Details . 109

6.2 Microservice Instance Details . 109

6.3 Requirements for Data Modelling . 135

6.4 Feature-Driven Migration Rules selection. 140

Chapter 1

Introduction

Microservice-oriented architecture represents a modern, alternative way to develop an ap-

plication. This style of development is designed to solve several challenges associated

with monolithic enterprise applications. The idea of microservice-oriented architecture is

Relatively new, and it is rapidly becoming popular in the world of software development

due to its support to the key characteristics of service-oriented architecture and its suitability

for deployment within the cloud. The microservices themselves are small and purpose-built

and have no dependencies outside of themselves; they do not need to know anything about

other microservices’ implementation or structure. Owing to the benefits of these technical

attributes, this thesis will examine them in greater detail, with regard to migrating a legacy

system to the microservice-oriented architecture.

1.1 Motivation and Problem Statement

Over the last decade, the cost and availability of hardware (physical or virtual) has had a

significant impact on system evolution. In the past, systems were developed and designed

for specific hardware at a fixed scale. More scalable technologies, such as virtualisation,

were subsequently introduced, providing greater flexibility in terms of enterprise system

development. Recently, cloud computing has resulted in another wave of innovation. Cloud

computing is becoming ubiquitous, spreading across many different sectors, and has become

a key element that creates valuable benefits for many enterprises. One of the main purposes

Chapter 1: Introduction 2

of adopting cloud technology is its flexibility in terms of cost per use, as well as of its other

features, such as scalability, and efficiency, and so on.

Furthermore, the continuous development of cloud computing, both in academia and

industry, means that new concepts and techniques are frequently being introduced. This

evolution has been achieved via the combination of two basic concepts: the microservice

and the container. This mechanism presents innovative features, such as fast start-up, the

separation of units, etc. The new techniques allow a monolithic application to be broken

down into smaller independent services with respect to their functionality. Microservices can

communicate with other services via an Application Programming Interface (API) gateway

which allows developers to update each service independently without affecting others.

Owing to the aforementioned technical advantages, microservices provide an innovative

solution to migrate legacy systems toward modern day practices. Implementing a microser-

vice in the cloud represents a new method to modernise software applications and has been

adopted by enterprises for next-stage system deployment. However, microservices are not

without their issues and challenges. It is important to understand this new paradigm, as it is

changing how enterprises deal with information, and to resolve its weaknesses to build the

best possible foundation for enterprises.

The present research develops a novel approach to legacy system evolution towards

microservice-based architecture and a Cloud hosted environment. The method used comprises

a set of feature driven rules and a comprehensive illustration of the working process. Also,

the rules are applied in two case studies and in an evaluation of a set of non-functional

attributes.

1.2 Aim and Objectives of Proposed Research

Driven by the above motivations, the vision of this research is to provide a comprehensive

process for a combination of microservice and cloud computing. To a wider extent, this

would consequently enhance system functionality and evaluation. Therefore, the aim of this

thesis is to convey the legacy system features, attributes and modules to the microservice-

oriented architecture through a conceptual framework. In this thesis, the framework is defined

as a layered structure which involves a combination of microservice-oriented architecture,

Chapter 1: Introduction 3

cloud computing technology and relevant techniques. Within the framework, the relevant

components are interrelated and work together to serve a certain part of the aim. More

specifically, the aim is delivered through the following objectives:

1. propose a holistic approach framework based on the theoretical background

relating to the migration of a legacy system

In order to mitigate the migration process, a conceptual framework have been proposed. The

framework is composed of three layers:

The first layer concentrates on understanding the legacy system, through reading the

source code manually, defining the modules and documenting these modules and relationships

among them.

The second layer focuses on how to build a (micro)service by identifying the candidate

service to be transformed into microservices. During this step, based on the feature-driven

transformation rules, a module of the legacy system is selected. From this module, a new

microservice can be implemented to enable the existing microservice to be more conducive

to the continuous change.

The third layer defines the host environment and new architecture requirements to

support the complete delivery of microservice-oriented architecture based on the feature-

driven migration rules.

2. To propose a set of feature-driven rules for transforming a legacy enterprise sys-

tem into a lean architecture populated with microservices.

A set of rules is designed to transform legacy architecture into microservice-oriented archi-

tecture, to assist in the process of extracting and implementing microservices. Each rule

shows a specific scenario to choose from and then apply.

3. To propose a set of feature-driven cloud-oriented migration rules that define the

best principles and practice to migrate an enterprise application to the Cloud,

addressing the various technical challenges, including security, functionality and

performance.

A set of rules is specifically designed for the process of cloud migration. Companies will

benefit from this rule if they have the option to deploy microservices in cloud environments.

Chapter 1: Introduction 4

4. To carry out concrete case studies in order to evaluate the effectiveness of the

proposed approach.

The final objective is the validation and evaluation of the proof of concept through case studies

and two sizes of enterprise system are applied: small and medium. The case studies ought to

provide performance comparison between the legacy system and the new architecture. Also,

how the new architecture enhances functional and non-functional requirements.

1.3 Research question and Contribution

As a result of the findings from the literature review, the following research question has

been formulated, relating to the current state of the art in cloud-based enterprise computing:

how to engage the latest Cloud computing technologies, service-oriented architectures

and software evolution to transform legacy enterprise systems into the best computing so-

lution possible? The proposed research aims to develop a novel approach to the migration

of a legacy enterprise system into a lean system architecture which is supported with mi-

croservices and hosted by cloud platforms. The new system will enjoy the benefits of cloud

computing and the microservice-oriented architecture and the much-improved performance,

maintainability, reusability and security that this can offer.

The present research attempts to overcome the challenges faced by monolithic architec-

tures by offering, as an alternative, a comprehensive microservice architecture deployed on a

cloud service, as informed by the comprehensive literature review. Furthermore, it closes the

research gaps found by providing an approach to the migration of legacy systems towards

microservice-based architectures within cloud environments. Through this research, several

contributions to knowledge are made:

• The definition and implementation of a complete process for the migration of legacy

systems toward microservices architectures hosted by Cloud platforms. This process

considers the three evaluation issues of performance, security, and functionality.

• A set of feature-driven microservices-specific transformation rules. These rules define

the process for modernising an existing legacy system, with a special emphasis on

analysing the implications regarding runtime performance, functionality, security,

Chapter 1: Introduction 5

scalability, maintainability and testability, aiming to provide guidance for the migration

of legacy enterprise systems.

• A set of feature-driven Cloud migration rules, which constitute a plan for migrating a

system toward cloud computing, are defined by proposing rules for specific situations

and activities.

• The case studies and related evaluations for proof-of-concept validation and evaluation,

where two case studies are used to examine the proposed approach. These case studies

involve different sized enterprise systems: small and medium size. The experimental

results intend to provide a comprehensive detailed analysis of how the rules are

followed to move from a legacy to a microservices system which is then deployed in

the Cloud.

1.4 Methodology

This research concerns legacy systems, cloud computing, and microservices. It aims to

develop a highly effective scheme, driven by migration frameworks and patterns, whereby

legacy systems may be modernised. A novel approach is developed to the migration of legacy

enterprise systems toward lean system architectures which are supported by microservices

and cloud computing. This research will be carried out via three phases with respect to its

objectives, as shown in Figure 1.1.

Figure 1.1 The research methodology phases.

Chapter 1: Introduction 6

The methodology includes a systematic literature review, to survey the current state of

the art of cloud computing, service-oriented architectures, enterprise systems, design patterns

and microservices.

Once the framework and the rules were ready for testing, two case studies were then

conducted to justify and evaluate the proposed approach and the functionality and efficiency

of the subsequently developed system.

At the same time, a number of papers were published based on milestones in the present

research. These inform the research community of the exact contribution to the field that this

research makes and, moreover, they allow other researchers to assess the work in terms of

advances in the field.

1.5 Thesis Structure

This thesis is organised as follows:

Chapter 1 Introduces the research along with the problem statement, the aim and the

objectives of the research, the contributions to knowledge and the research methodology.

Chapter 2 Provides an overview of the background and environment of this research

including discussions surrounding software migration, legacy systems, cloud computing,

microservices and major challenges.

Chapter 3 Discusses previous studies related to this research in detail, focusing on:

a systematic study of microservices, microservice-oriented architectures and design, and

migration toward microservice-oriented architectures.

Chapter 4 Defines the proposed framework which enables the migration of legacy

system toward microservice-oriented architectures in cloud environments.

Chapter 5 Presents the feature-driven rules which are split into two groups: feature-

driven transformation to microservices and feature-driven migration rules to the cloud.

Chapter 6Presents the two case studies aimed at validating the feature-driven rules and

evaluating the resultant performance, functionality, and security.

Chapter 7 Summarises the research by presenting the conclusions and suggestions for

future work.

Chapter 2

Literature Review

2.1 Introduction

This chapter discusses software migration and why migration is often essential. A definition

and description of the challenges legacy systems face and how microservices can tackle

these issues are presented. Also, this chapter introduces the concept of service-oriented

architecture, comparing it to the concept of microservices architecture. Cloud computing is

presented as a means of deployment and the bounded context idea is shown as a technique

for defining microservices boundaries. In addition, feature driven migration is presented as

a method for supporting the definition of rules driven by features. Finally, the chapter is

summarised with respect to the main challenges of the research.

2.2 Software Evolution: Maintenance Development and

Migration

With the passage of time, software will evolve; it will incorporate enhancements which may

make it more functional. When it comes to technicalities, software issues can be fixed, or the

application’s features can be expanded. In addition, the software may be made to perform

better or become more available, maintainable, or secure.

Without being able to distinguish between the different types of software evolution,

from software maintenance and software migration, understanding these types of changes

Chapter 2: Literature Review 8

would be difficult. Swanson in [1], considers three foundations upon which modifications

can be made: (1) migration to, for instance, a new architecture; (2) the refinement of existing

services through, for instance, the addition of a new feature, i.e. development/evolution; and

(3) the ‘correction’ of a current system, i.e. maintenance.

Constructing a new but related design out of the current system would be considered

software development rather than software maintenance. Software development is often

associated with migration (to a new architecture and/or new kind of platform) rather than

with software evolution as such. However, migration may also deal with the enhancement of

the interoperability of the system, making the system perform better, and providing support

for new features [2] [3].

The modification of proprietary software is associated with a number of behaviours -

which have been identified by Lehman and his colleagues [4].Many people also refer to their

specification as Lehman’s Laws. These eight laws constitute the Laws of Software Evolution

and discuss the ways in which the process depends on feedback. According to these laws,

it is not possible to escape change and this is not the result of poor programming [4].When

it comes to the safe implementation of new functionalities and updates, changes are often

necessary because the system comes up against limitations, as detailed in Lehma’s Laws:

1. Continuing change: The system may begin to lose its usability if continual modifica-

tions are not made to it in order to satisfy client requirements.

2. Increasing complexity: The complexities of the system will start to increase because

of maintenance-based changes, if no remedial work is undertaken to reduce such

complexities.

3. Self-regulation: The process of evolution creates measures of processes and products

that maintain nearly normal distributions; this shows self-regulation in the evolutionary

process.

4. Conservation of organizational stability: Over the entire system lifespan, an evolving

system has the same average effective global activity rate . Put differently, there is

little difference when it comes to how much effort is required, on average, to produce

a new release.

Chapter 2: Literature Review 9

5. Conservation of familiarity: Satisfactory evolution can only be realised if the system’s

behaviour and content has been clearly understood by every person involved, including

users and developers, in relation to system evolution. Poor understanding may result

if a particular release has too great a change from precious iterations. Considering

this, there should be consistency in the average incremental growth experienced by an

evolving system.

6. Continuing growth: With the passage of time, further customer requirements are

fulfilled by continually increasing a system’s functional content.

7. Declining quality: If new operational environments have not been considered and

the system’s design has not been diligent fine-tuned, it should be considered that the

system features will decline with the passage of time.

8. Feedback system: The various activities that are part of the evolution process relating to

the system include feedback on multiple levels, agents, and loops. For a current system

to continuously undergo evolution by providing better quality attributes and more

functionalities, the recognition of such complicated interactions becomes necessary

for developers.

Large organisations often develop specially tailored and large systems that follow these laws.

However, all processes of system modification are not equally, nor clearly, addressed by them.

Moreover, the type of the organisation (medium, small, or large) has also been excluded from

the specifications above [5]. The laws consider modification of the present components and

addition of new components to be the only actions necessary for implementing changes, i.e.

software evolution.

2.2.1 Importance of Evolution, Development and Migration

Organisations invest a great deal of money into their key business resources, and among the

most important of these are their software systems. It is important to frequently alter and

modernise an enterprise’s software system so that its value can be preserved and maintained.

Rather than the development of new software, maintenance and improvement of the current

software is what consumes most of the company’s software budget.

Chapter 2: Literature Review 10

The software lifecycle involves making key modifications to a software system, some-

times known as software evolution phases. Software evolution also relies heavily on incre-

mental change, which is the piecemeal addition of new features to the software. Incremental

change can be guided with the use of the software evolution concept, which also provides a

framework for an application case study. Moreover, there is great significance in the domain

concept [6].

Software evolution is a term for a software alteration process which responds to design and

requirement changes. Software evolution can be considered an important concept in various

cases that involve carrying out changes to a system in production. Current information

technology is heavily dependent, at every level, on software development. All sectors of eco-

nomic activity rely on software, whether private, manufacturing, commerce, transportation,

industry, or the government sector. In general, the software development process must be

based on change which is focused on mitigating the adverse impact of software aging [2] [5].

Because of the adverse impact of software aging, industries experience major social

and fiscal changes across every sector. Considering this, developments and improvements

in the methods and tools used are necessary to avoid or counteract the main issues which

present themselves in relation to software aging [2] [7]. As a result, the creation of more

methods and tools for the purposes of developing or protecting a software’s positive features,

regardless of its complexity and size, is the research problem which presents itself when it

comes to software evolution. According to the Lehman’s Laws of software evolution, which

take into account the notable fact that this is a software-driven era, changes to a system can

bring about degradation in the quality of a piece of software if no dynamic counter actions

and procedures are used. This is a consequence of the software systems involved becoming

less presentable, accessible and consistent, as well as the loss of other such characteristics

[2]

There are several different factors which dictate the course of software evolution,

including organisational issues, such as an organisation’s software update and maintenance

procedures, and the skillsets of the people available to make the required changes. Evolution

is something which may take place across the entire lifetime of a software system; the

need for change may be identified at any time while the software is in use. Thus, change

identification is the first and most significant step in a software evolutionary process. Once a

Chapter 2: Literature Review 11

necessary or desirable change is identified, proposals may be made with regard to it. At least

one of these proposals will then receive the go-ahead resulting in the next update to the [?].

Once the software has been amended, various handover issues may become apparent;

how these manifest will depend on the approach taken in the course of the development.

Where agile development has been the paradigm, and the team involved with bringing the

system on-line is not particularly cognisant of agile techniques, then documentation at a

detailed level must be requested and provided. This is not something which is within the

purview of agile techniques per-se. Where a pre-planned approach is employed, as opposed

to an agile approach, the development team may be more likely to start from scratch with

modules, and design/plan from first principles [8]. A wholesale planned process of this

kind may dictate the employment of automated tests and so on which would otherwise be

unnecessary. Around 65% of the total costs of a piece of software, over its entire lifespan,

may be attributable to software evolution, and this may reach 75% when a system enjoys a

particularly long lifespan [8]. One of the challenges which leads to large costs being incurred

is having to cope with the migration of large quantities of data (to different formats, etc.).

Once a necessary change has been identified, the subsequent modification, reformatting and

updating of the system’s data can be an enormous task. In addition, high levels of complexity

are often encountered when trying to achieve this task, and the problems caused by coding

errors in the originally implemented system. Thus, it is often the case that the developers

must have a full understanding of the system before they are attempting to change and make

the desired amendments. Further, very often, amendments lead to additional (and perhaps

previously unsuspected) ramifications and the developers must deal with these as well as

make the changes which were their original intent.

In conclusion, this discussion stipulates that the challenges faced by an evolution team

generate a need for better strategies to be adopted by business entities when developing

software, in order to reduce the challenges in the evolutionary stages.

2.3 Legacy System

Because technology progresses, enterprises face the dilemma of legacy systems. Various

definitions of ‘legacy systems’ can be found in the literature, including:

Chapter 2: Literature Review 12

1. Bennett [9] defined a legacy system as a large system that was originally developed over

40 years ago, but, nevertheless, is still used and plays a critical role in an enterprise.

2. Sommerville [5], stated that a legacy system is any older system that is still Runing,

and is important to a business’ operation. Such systems are often built using now

obsolete technologies and languages. Moreover, such systems also include legacy

processes and procedures.

Here, legacy system is defined simply as an outdated system that is in use by an

organisation and has been so for more than 10 years, despite much more recent technology

related to the application being adopted by many other organisations. A further attribute of

such systems is that money must be spent on them to maintain their usefulness.

In the literature, there is some confusion between the terms “legacy system” and “lean

system”, in that if a legacy system is still an important element within an organisation, it

could be considered a lean system to its users. However, lean and legacy systems are two

separate concepts. A lean system means that the system has no redundant components while

a legacy system means an old, out-of-date system. By and large, a legacy system is not lean

but there could be some legacy systems who are monolithic and lean. In this work, the two

concepts are considered distinct and only legacy systems are discussed.

Normally, a legacy system is not same as the original system. This is because the

legacy system has evolved but the evolutionary process has not gone well due to a number

of factors; the system was changed, and many different developers were engaged in these

changes, making it difficult for any single developer to understand the entire system [5]. [7].

Enterprises and organisations are always seeking more modern systems that meet their needs

and requirements but replacing the legacy system with a modern system can incur many

challenges and risks. For example, there may be no complete document that contains all the

specifications of the legacy system. Even if such a document exists, it might not point to

all the detailed changes required. In addition, unexpected problems may appear during a

transformation process [5].

Chapter 2: Literature Review 13

2.3.1 Software evolution vs legacy system migration

System evolutionary processes can be classified into three distinct categories: maintenance,

modernisation and replacement. Different evolutionary activities are applied at different

stages of the software system life cycle. Repeated maintenance can improve a software

system and allow it to meet the growing business requirements, at least temporarily. However,

as the system becomes obsolete and outdated, the effectiveness of mere maintenance falls

behind the business needs. At this point, modernisation becomes crucial, although this

represents a greater effort in terms of time and functionality than maintenance activity. Lastly,

when the system can no longer be upgraded or evolved, it must be replaced [10] [11].

Maintenance, modernisation and replacement are briefly discussed below to give a better

understanding of the various kinds of development that a legacy system can undergo.

1. Maintenance:

Maintenance is a piecewise amendment process which is applied to a software system.

A change to a system’s architecture does not come under the heading of ‘maintenance’,

since that focuses on bug corrections and/or small enhancements. Maintenance is an

on-going procedure and supports the evolution of any system, but it does have many

limitations. One of these limitations arises from the fact that new technologies will

become available. Second, the cost of legacy system maintenance grows over time.

Third, legacy systems must be modified in order to satisfy new business requirements

and this becomes an increasingly difficult process as time goes on [10] [11].

2. Modernisation:

Modernisation, as compared to maintenance, results in more extensive changes to a

software system. These changes will often involve the restructuring of a legacy system,

improving its reliability and enhancing its functionality. ‘Modernisation’ implies the

gradual and partial enhancement of a legacy system, using new technologies, while

retaining a significant portion of the existing system. Such changes often include

system restructuring, significant functional enhancements and/or improved quality

attributes such as maintainability. Modernisation is applied when a legacy system

requires more ubiquitous changes than those possible in the course of maintenance.

However, where the system still has some value, and where this must be preserved, is

Chapter 2: Literature Review 14

considered. Software modernisation attempts to evolve a legacy system, or components

of such a system, when piecemeal evolutionary practices, such as maintenance, can no

longer achieve the desired result [10] [11].

3. Replacement:

Replacement means the building of a new system from scratch. Replacement is at least

one option for a system that has been found to be unable to keep pace with business

requirements. Replacement may have several risks associated with it; these should be

considered before replacement is carried out. First, the replacement process involves

the development of a new system and this is likely to be extremely resource intensive.

Moreover, the IT personnel may not all be familiar with the new technology proposed

for use in the new system. As well as this, the replacement process requires more

testing for validation processes than other approaches. Finally, there is no absolute

guarantee that the new system will be as robust and functional as the old one [10] [11].

On the other hand, legacy system issues, such as the fact that they may run on very

old processors which are much slower than those currently available, affect system

performance and make expansion difficult, if not impossible. To overcome these issues

several solutions have been suggested: wrapping, re-development, and migration.

1. Wrapping

Wrapping is a method whereby a legacy component may be modified and/or improved.

A wrapper does not alter the source code explicitly but nevertheless results in the mod-

ification of the functionality of the legacy features. Wrapping means that the legacy

component is encapsulated within a new software layer that provides new functionality

and hides the complexities of the old component [12].

2. Re-development

Re-development means, essentially, the rewriting of an existing application; building a

new system from scratch using a modern architecture, probably running on a different,

more up-to-date, environment, and applying different tools and database functionalities

[12].

Chapter 2: Literature Review 15

3. Migration

In circumstances where wrapping cannot produce an acceptable result, and re-development

is not reasonable due to significant risks (cost and time), the migration of a legacy

system to a new modern architecture is an alternative solution. If such a migration

process is successful, it will offer long-term advantages: better system awareness,

faster maintenance, lower costs and greater flexibility in relation to meeting future

needs. When purely migrating software, developers will seek to keep as much of

the system the same (as the legacy system) as possible; this can be in terms of fea-

tures, overall design, and so on. Thus, migration is distinct from re-development.

The changes required by the effort to migrate often include programme redesign and

attribute modification. Nevertheless, the main features of the current system will be

maintained [12].

In terms of the development of legacy systems, system migration differs from system

upgrades, such as in those in the evolutionary process. System migration is the process

of replicating one system and integrating it into another system, while system upgrade

is the process of replacing your existing system with a newer version of the same

system. The upgrade process can be straightforward if the new version meets the

requirements and has a similar database structure, files, etc., to the current version of

the legacy system. Upgrades are cheaper than migration to a new environment and

come in different types, such as hardware upgrades, due to the need for more memory

to run the software, or software upgrades, which are desired because of the promise of

new or improved features.

Legacy system migration is a powerful means of developing new systems and/or

enhancing old ones to keep pace with the latest technologies: activities mentioned in

Lehman’s Laws. Based on these goals, to have a successful journey towards them,

the most appropriate migration plan should be provided. The challenges involved in

evolving a legacy system in any way are to understand the functionality, performance,

security and operation of the legacy system to determine what type of change should

be applied [13].

Chapter 2: Literature Review 16

2.4 Service-Oriented Architecture

Service-oriented architecture (SOA) is a method of designing and managing the deployment

of applications and software into business services that are executable and accessible based

on public standards for interoperability [14]. Service orientation is an architectural approach

that promotes the integration of business functions as linked to repeatable services and

tasks. Some of the key technical concepts of SOA include services, interoperability and

loose coupling. In SOA, the application is divided into components that provide the various

necessary services through protocols over networks. The co-operation of these services

creates the functionality of the whole system. The fundamental concept is to have as few

dependencies between the services as possible. The core components of a SOA architecture

are:

• SOA services: A service is an item of self-contained business functionality: that is,

an SOA service is designed to encapsulate some functionality that is meaningful to

the business. The functionality may be simple (as in retrieving a customer address) or

complex (e.g., encapsulating the business process for fulfilling a customer order).

• The Enterprise Service Bus (ESB): The infrastructure that enables high interoperability.

This mediates between service providers and consumers, provides value added services,

and offers a platform of high throughput, reliability, and scalability (dependent on the

infrastructure) catering for both providers and consumers.

• Service monitoring and management: : Service management via a service registry/

repository provides service discovery and lifecycle management essential to efficiently

manage significant numbers of services.

Loose coupling is a crucial concept in SOA; the above components and functionalities

are underpinned by this concept. It is a fundamental principle of SOA by design, minimising

dependencies between components as much as possible. This is achieved via removing the

close connections that exist between service providers and consumers, and this is supported

via the use of service proxies and an ESB. All these uncoupling activities involve abstracting

the service descriptions, and designing the SOA services appropriately [15] [16].

Chapter 2: Literature Review 17

2.5 Microservices

An architecture based on microservices represents a lightweight version of an SOA [17] [18].

Although many consider microservices as distinct architectures [19]. a microservices archi-

tecture implies the use of a collection of small services with independent responsibilities.

There are also a number of other distinguishing characteristics, including the fact that each

microservice can choose its own architecture, technology, programming languages and

platform, and crucially can be managed, deployed and scaled independently [20] [21] [22].

[87]. To make this independence aspect more effective, each microservice should have their

own data within their boundaries [23].The modular and loosely coupled approach that is

based on the microservices architecture eliminates dependencies and promotes quick testing

and deployment of code changes [24]. There is a relationship between microservices and

state-of-the-art technologies which simplifies automated deployment [25]. Self-contained mi-

croservice deployment units can be produced thanks to the concept of containers. In addition,

the elements are heterogenised as a number of teams can experience design autonomy while

all working on the same project, due to the paradigm of microservices. These advantages,

which are enhanced by loose coupling, greater modularity and reduced dependencies, all hold

the promise of simplifying the integration task. Above all, microservices architectures may

provide more flexibility and open up many more choices regarding how to solve migration

and other problems in the future [17] [26].

A microservice is usually created with three layers: an interface layer, a business

logic layer, and a data storage layer, all contained within a much narrower bounded context

than that of the equivalent legacy feature [27]. TThe business logic of each microservice

deals with its (the microservice’s) specific responsibilities or business purpose, these are

independently planned, built and deployed, microservice by microservice [28].

2.6 Microservices architecture vs Monolithic architecture

The detailed examination in Figure 2.1Table 2.1 looks at how microservices were proposed

to cope with the monolithic architecture problems, how it compares with these, and elements

that must be considered before making the switch.

Chapter 2: Literature Review 18

Figure 2.1 Monolithic architecture vs microservice architecture

Monolithic architectures tend to rely on the sharing of the resources which are resident

on the same machine, including memory, files and databases. Monoliths are often single

executable artefacts, whose modules cannot be executed independently because they rely on

shared resources. This makes it difficult for monoliths to distribute naturally without using

specific frameworks or ad hoc solutions [26] [29]. In the context of migration to cloud-based

distributed systems, this represents a critical limitation, as it leaves the synchronisation

responsibilities to the developer. Some of the significant obstacles include:

1. The difficulty of maintaining large-sized monolithic systems.

2. The fact that these suffer from ‘dependencies’ which affect the updating of, and the

adding to, libraries because such libraries can easily become inconsistent - making it

difficult to run and/or compile systems.

Chapter 2: Literature Review 19

3. A change in any of the modules of the monoliths often requires the rebooting of the

entire application.

4. The deployment of monolithic applications is suboptimal due to the conflicting require-

ments of the constituent module resources; some are computational-intensive, others

memory-intensive, and others need specific components such as SQL-based databases.

When it comes to choosing a deployment environment, a developer may have to pick a

one-size-fits-all configuration that is either sub-optimal or expensive with respect to

individual modules.

Monoliths limit scalability, and the usual strategy used to handle the increasing of in-

bound requests is to create a new copy of the application and split the load among the resultant

instances. However, it could be the case that increased traffic stresses a subset of the modules,

which makes the allocation of new resources for other components inconvenient [30].

Thus, microservices were proposed to cope with these problems. But the key here

is the ability to independently deploy [31]. Each microservice is equipped with dedicated

memory persistence tools such as databases, and since all the components of a microservice

architecture are, by definition, small services, it derives its distinguishing behaviour from the

coordination and composition of its parts through messages. The microservice style does

not favour or forbid any particular programming paradigm. However, it provides guidelines

for partitioning the elements of a distributed application into self-regulating entities, each

addressing one of the concerns [32].

Because a microservices architecture consists of small loosely coupled services, it is possible

to change one service without changing anything else. Each service performs its own process

and a suitable programming language can be chosen for each of these [31].

The principles of a microservices architecture help project managers and developers and

provides guidelines for the design and implementation of distributed applications [33].

Following such principles, developers can focus on the execution and testing of several

similar functionalities.

Chapter 2: Literature Review 20

2.7 Bounded Context

The bounded context method is a type of domain-driven design (DDD) that is applicable to

microservices [34]. One of the strictures of DDD s that all the languages to be used in the

development must have context strictness. Bounded contexts is a paradigm which is focused

on collaboration barriers. Using bounded contexts, it is necessary to create a set of variables

in order to optimize, strategically, by using such variables with respect to properties of their

objectives. A bounded context is merely a boundary definition; and so can be used with

any number of widely applicable language. Outside of the boundaries which are specified,

the language in which they are embedded may have multiple and various meanings thus,

results may also vary [35]. Clearly, multiple bounded contexts may be delimited, and each

one may give rise to a separate model. Any developmental objective may be addressed

by such definitions - no limit to their applicability exists, although the features of these

instruments remain the same. In DDD, the selected language is taken to be the structural

model. Further all of the bounded contexts defined via this, taken together, in turn defines

the models’ applicability. This means, of course, that the models’ validity is restricted to

the areas within the defined bounded contexts. Although the features of the concept are

limited in restricted as regards their functions, nevertheless, they can prove very efficacious

for “general developmental objectives” [36] [37].

In relation to microservices, bounded contexts are a kind of opposite . Here, bounded

contexts define to the developer the nature of the largest services that they can possibly

create, or to the users the definitions of services that do not give rise to models that can in

incur any inhibiting conflicts. This is important for developers to ensure correct operation, or

in some cases the continued development of what already happens. Boundaries which are

crossed involve conflicts, and these could have a highly detrimental impact on operations.

Both large and small monoliths, in terms of DDD, are valid bounded contexts so long as

there are no conflicting model components within them. Considering all of this, while all

microservices can be defined as bounded contexts, not all bounded contexts are defined as

microservices [37] [38].

Chapter 2: Literature Review 21

2.8 Feature-Driven Evolution

Feature-Driven Development (FDD) is a gradual, iterative approach to system development,

including both the software design and the coding phases. This methodology began to be

used around the year 2000 and was mostly applies then to Java modelling. FDD defines five

main activities: the development of a comprehensive model, the construction of a feature

list, planning in accordance with the features, designing in accordance with the features, and

building the software in accordance with the features. Constructing the model and features

list involves Boundaries and approaches are established in the course of the effort to construct

the model and the features list. Further. planning in accordance with the features results in

facilities that can then be handed over to the owners of the system. In fact, the final, fourth

and fifth activities, are those which generally consume the majority of the developmental

resources (including time) -n these steps generally take around ¾ of such resources [39] [40].

This is not surprising since a great many activities such as program modelling and design;

quality assessment and QA tests, and various labelling/packaging processes are included in

these steps [36] [38].

As far as its use with FDD is concerned, the paradigm is thought of as one which can

help with both architectural concerns, and the design of clients and features. Features often

involve the whole system: for instance, the calculation of the sum of sales, the validation

of passwords, the processing of sales transactions, and other common business procedures.

The requirements and planning inputs are derived from such features, and so they are of

paramount importance.

2.9 Cloud Computing

Cloud computing is a paradigm which offers to the user universal, on-demand, shared, and

convenient access to configurable computing resources, servers, networks, applications,

services and storage. These resources can be provided quickly and delivered with little effort

or interaction by the service provider.The Cloud model offers five essential attributes, four

models for deployment and three models relating to service [41].The main attributes of the

Cloud are as follows: rapidity, elasticity, resource pooling, on demand working, network

access and regularity of service. The following models are used for deployment: private

Chapter 2: Literature Review 22

Cloud, public Cloud, community Cloud and hybrid Cloud. The three- types of service

currently offered by the Cloud are: Software as a Service (SaaS), Infrastructure as a Service

(IaaS) and Platform as a Service (PaaS) [42]. There are a number of service providers who

have taken the lead in terms of offering cloud computing and, as a result, are motivated

to push forward the most important affordances of the Cloud as they relate to their own

vendor-specific technologies.

• The most basic type of cloud computing services is known as Infrastructure as a Service

(IaaS). Here, a vendor will simply offer storage and some elementary processing on

the Cloud. [43].

• Next, in terms of sophistication, is PaaS, i.e., Platform as a Service, whereby the vendor

will allow access to the application layer of their platform so that customers may build

their own applications to run on the Cloud. The customers are able to make use of the

operating system, databases and development environment of the platform offered by

the vendor [26].

• The third level of service is described as Software as a Service (SaaS). This involves

vendors who have supported specific kinds of service requests for some time. When

the servers hosting the application become virtualised [43].

The Cloud is a scalable concept. Various kinds of services dealing with various volume levels,

in terms of requests, can be offered. A Cloud platform will generally offer a number of such

services rather than just one, and the services it offers will be generic. The implementation

of Cloud infrastructures means that the services which may be obtained via grid computing

and virtualisation are widened. Other empowering technologies are used in conjunction with

the Cloud. A prime example of such would be service-oriented architectures; these are used

specifically to support enterprise systems. Companies can make use of Cloud computing

in their enterprise systems by applying enabling technologies such as service-oriented and

microservices architectures (SOAs). By these means they may choose to emply the Cloud to

support both their new and existing business systems.

The Cloud represents a technical advancement which is closely related to current soft-

ware development paradigms. As opposed to the provision of on-site‘mainframe’computers,

Chapter 2: Literature Review 23

which is very expensive, Cloud technologies, e.g., Software as a Service (SaaS) or Infras-

tructure as a Service (IaaS) are user friendly [44]. The siting of the enterprise system on

the Cloud is cost-effective and frees the companies’ computing staff from the tedious work

of mere system management, which means they can concentrate instead on production and

innovation [45].

On the other hand, moving from reliance on an in-house data centre to the use of the

Cloud is not without difficulties. Often, as far as the end-users are concerned, the system

does not seem to operate as well as it used – immediately after migration to the Cloud, Also,

from the IT staff’s point of view, the process of migration may appear overly complex. In

order to mitigate these problems, the most optimal approach to migration must be deter-

mined beforehand. The new system must answer the concerns which may be raised about

non-functional requirements such as security, integrity, and reliability, as especially related

to the use of an external network. So when it becomes necessary to determine whether the

use of the Cloud is appropriate to the next evolution of an enterprise system, the enterprise’s

management must examine all of the potential issues. A fair and thorough judgement of

whether the use of the Cloud is appropriate must be made.

Here, we look at the challenges which emerge when an attempt is made to apply Cloud

computing to an enterprise system, and the best approach, we believe, is to apply a rule-based

framework to the potential migration.

2.10 Container

There are two, to some extent competing, software paradigms often used for providing Cloud

services: Virtual Machines (VMs), and containers. The former is based on emulating the af-

fordances of an actual, physical computer, and so are a convenient platform for implementing

systems which have been migrated from other environments [46],However, containers are, in

general, more efficient, particularly when used to support data hosting applications: for in-

stance, online databanks, where tight control is necessary. Microservices can be implemented

on a container platform. This is a felicitous combination because containers, as opposed

to VMs, may have many concurrent run-time instances, so enabling users to run a number

Chapter 2: Literature Review 24

of applications (or instances of the same application) at the same time. Thus, for instance,

upload and download operations can be undertaken by the same user concurrently [47] In

contrast to Virtual Machines, containers combined with microservices do not suffer from

online-library access issues. In addition, most container-based systems include anti-malware

software, which clearly will improve the reliability and security of the services offered.

Containers can also manage challenges related to upload and download. Thus, in-

formation loss associated with these issues can be avoided – in particular, losses due to

negligence or hacking. An example of this is that containers are more able to operate in a

way which is abstracted from the operating system used to support them, so that, for example,

no data corruption occurs when files are downloaded onto a client system which uses a

different operating system. Finally, microservices systems supported by containers facilitate

the storage and retrieval of data at more reasonable levels of cost. [48].

The Cloud is often used by both individuals and organisations to store (and retrieve)

data, and so to negate the need to use local servers for this purpose; In fact, microservices,

based on containers, support this kind of service, though they may not be visible at the user

level.

Docker [49] provides an example of a data container which has been in use for many

years. According to that author, data management applications have often been offered

as open source platforms on which to build data storage and retrieval services. Also, the

system described by that author is often looked on as seminal by sysadmins: people who are

charged specifically with the responsibility of maintaining and correctly configuring online

data-related systems – to keep them function-rich and reliable.

2.11 Design Pattern

The initial debugging and testing are probably the most time-consuming phase of software

development: especially where a system has been created from scratch. One methodology

which has often been useful in speeding up this process is that of the use of “design pat-

terns” [50]. To be useful, such must be patterns which have been successful within previous

software designs. “Reusing design patterns helps to prevent issues that can cause major

problems and improves code readability for coders and architects familiar with the pat-

Chapter 2: Literature Review 25

terns” [51]. A system which has been designed using such patterns must still go through the

full testing cycle, including beta-testing; however, the probability that the system will be able

to operate initially at least without critical failure will be greatly improved. In addition, the

use of design patterns means that the developers of a system need not become bogged down

with “re-inventing the wheel” and can concentrate instead on the more unique and central

aspects of the specific development in question, “Design patterns provide general solutions,

documented in a format that doesn’t require specifics tied to a particular problem” [51] [52].

This methodology enables the re-use of work already created by other skilled professionals.

Design patterns have been classified in a number of different ways. An example of

a classification which is commonly used is that of “creational” design patterns, “While

class-creation patterns use inheritance effectively in the instantiation process, object-creation

patterns use delegation effectively to get the job done” [51]. There are many other examples

of categories of design pattern: e.g., structural design patterns “use inheritance to compose

interfaces” and “define ways to compose objects to obtain new functionality” [51] [53].

Another example is behavioural design patterns, these “are all about class’s objects commu-

nication. Behavioural patterns are among those that are most specifically concerned with

communication between objects”. There are design patterns which can be used at every

stage of development, from initial brainstorming and design to the determination of the

structure of the implementation and the protocols via which its various components will

communicate [51].

On the other hand, there are criticisms which can be levelled at the use of design patterns.

The most important of which, perhaps, is that it can restrict innovation: “The idea of a design

pattern is an attempt to standardize what are already accepted best practices. In principle this

might appear to be beneficial, but in practice it often results in the unnecessary duplication of

code”. Therefore, perhaps, the idea of “best practices” can also be criticised [51].

However, it has always been the case that even the most innovative designs can include

elements of previous designs. Without being able to use such elements developers have

to fall back on a “rip-n-replace approach to legacy modernization” [54]. In contrast, it is

possible to make use of design patterns as components of a gradual process of legacy system

replacement, and as [54]argues, “the gist of the above patterns is to slowly build a new system

around the edges of the old system. . . This is done incrementally until we can kill the old

Chapter 2: Literature Review 26

system”. Predictability is an advantage of the use of design patterns; however they do allow

adequate flexibility in terms of creating systems which will cope with future demands - via

replacement and rebuilding, rather than starting from scratch each time a new requirement

emerges: “It’s impossible to predict the future; we can only be prepared for the future by

designing our systems to be modular and highly flexible to change. Build an architecture that

can evolve with time and be future-ready and not try to be future-proof” [54].

Design patterns, like any other paradigm, bring with them their own issues. However,

they do assist in terms of making the task of software development much more straightforward.

Open source patterns exist; these can be useful for free and are accompanied by online

tutorials. Creative sharing and dialogue of this kind will generate innovation by enhancing

the communal aspects of creating designs. Changes to existing, accepted designs remain, of

course, possible, even though these have been used as patterns or include patterns. The use

of design patterns is expected to carry on into the foreseeable future.

2.12 Conclusion

Switching to a microservice-oriented architecture and transposing legacy system into a new

architecture may lead to new challenges in an organisation, especially if the process of the

transformation is not planned very well. Such concerns may be technical, in this case the

developer should differentiate between the strategies of simply substituting each service

in the existing monolithic with a microservice and building a new microservice-oriented

architecture from scratch. In the first case, the biggest challenges are how to extract the

services from the old system, and how this will affect the functional and non-functional

requirements.

Splitting up a monolithic system into microservices can lead to performance issues as

stated in [55]. Particularly, an increase in the communication necessary between services can

occur; if the services are too fine grained, then the fact that each interservice requests add an

extra network latency must be considered. Also, the use of a microservice-based architecture

is expected to require more computational resources, i.e. CPU cycles to communicate used

for each microservice to communicate with another [56].

Chapter 2: Literature Review 27

Another concern is that this technique will raise the issue of the presence of security

challenges that usually do not exist in legacy applications. The use of a microservice-oriented

architecture will break the system up into multiple components. As a result of having multiple

small independent services, the a microservice-oriented architecture often expands the attack

surface presented, as several microservices may communicate remotely. Now there are

hundreds of entry points to worry about instead of there being just one or two entry points.

Dragoni et al. [36] argues that there will be difficulty in monitoring, debugging and auditing

microservices. An attacker, of course, will benefit from this by being able to launch attacks

against each service; Moreover, these different components will often need to communicate

with each other across widespread locations. Later on, this work will describe the various

different techniques used to secure service to service communication and the application of

authentication and authorisation in a microservice-oriented architecture. Later on , this work

considers role-based access control (RBAC) which is used to secure microservice-oriented

architecture authentication and authorisation.RBAC is important in cyber systems because

users and resources change periodically and data and privacy should always be ensured.

The first step to anlyse the cyber securiy is to clarify the exact meaning of confidentiality,

integrity and availability in cybersecurity. Availability, in cybersecurity, does not mean that

the system is always available. It means the system is available to users when they need to

access the system based on their privileges.Availability guarantees that systems, applications

and data are available to authorised users when they need them. Confidentiality means that

unauthorized users do not have access to the data. Integrity is the ability to ensure that

a system and its data have not suffered unauthorized modification. In RBAC, permission

is always associated with roles and access privileges are divided into different levels in

distributed systems with a large number of users. In RBAC, authorisation information is

linked to roles not to individuals by correctly identifying the roles and assigning those

privileges to each role, to allow the user to accomplish their task [57].

The next concern to be examined is the fact that many companies might feel anxious

about the system’s functionality. Enterprises need to ensure that the migration process is

clear in order to overcome any incompatibility that can arise in the course of the migration.

It is important to consider how decoupling the functionality of the legacy system will help to

deal with changes in requirements, and how microservices can take full advantages of this

Chapter 2: Literature Review 28

situation. The transformation process consists of pulling out of all the functions of the legacy

system and separating them into microservices until the microservices set-up, on its own, can

perform all the required functionality. The key to a successful migration is thorough, careful,

documented planning and execution, along with the realization that a complete migration of

a large monolith can take several long years.

A deep investigation has been carried out for existing open source microservices

applications that would be suitable candidates for a microservices benchmark based on

the work requirements. To the authors knowledge, every application is different in their

platform and environments and such benchmark systems are not yet agreed by the community.

Therefore, the effectiveness of these benchmarks is not discussed here.

The purpose of this project is to develop a novel approach to legacy system migration

towards the microservice-based architecture, which can guide an organisation to their best

enterprise-system solution. This chapter has explored the concepts of software evolution

and has highlighted the differences between software maintenance, software evolution,

and software migration. In addition, Lehman’s laws are presented in order show how the

limitations of the various forms of software evolution can be handled. Moreover, a definition

of the legacy concept is introduced, and the differentiation between the development of

software, generally, and migration from a legacy to a more modern system is made.

The goal of this chapter has been to give the reader a big-picture model so that they

may understand microservices systems via the discussion of service-oriented architecture

versus microservice-oriented architectures that was introduced; the key differences between

these architectures are discussed. Also, the main issues relating to legacy systems specifically

and are presented along with how the use of microservices can tackle these obstacles.

Furthermore, we look at bounded contexts as a way to explain how such define service

boundaries. Another approach was also explored – which was feature-driven development

and its relation to the application of microservices.

Within this chapter, also, cloud computing is discussed. A comparison between virtual

machine and containers is made, and the Docker type is given as an example of a container

type. Lastly, we introduced the design and deployment challenges which we will cover in

more detail throughout the rest of this project.

Chapter 3

Related Work

3.1 Introduction

The concept of ‘microservice’ is informed by the latest service-oriented computing paradigm,

as illustrated in the previous chapter, and these ideas have evolved from the creation of

business solutions. The use of microservices has gained popularity in recent years, and a

clear understanding of this concept is critical in order to sensibly transpose an application to

a microservices-based system. Therefore, this chapter presents an in-depth investigation to

identify the characteristics of state-of-the-art microservice architectures, and what strategies

are implemented in practice.; Also, an evaluation of the various approaches used and the

benefits and drawbacks of their implementation is carried out. A study of recent literature

reveals that such research has focused on the scalability, availability and performance of these

architectures. In the following section, these studies are reviewed in relation to three different

categories of research, to provide a fair and comprehensive evaluation of the strengths and

weaknesses of microservice-oriented architectures.

3.2 A Systematic Study on Microservices

Francesco et al. conducted a systematic mapping study in [58] which clearly summarises

the nature of microservices and this work serves as a solid foundational reference for both

Chapter 3: Related Work 30

academia and industry professionals. The study also identified a shortfall in terms of the

system quality attributes, such as security, portability, and testability.

Another systematic mapping study by [59] shows that some of these quality attributes

have not been thoroughly investigated, in particular, security features as related to mi-

croservice architecture. This study also provides a broad overview of the challenges facing

microservices architecture and related technologies. Such an overview is very useful as a

guide for the research community in relation to widening this field of study.

In a systematic mapping study focused on microservices, Hamzehloui et al. [60],

conducts an analysis to identify the areas of research that have been undertaken with respect

to microservices architectures. The researchers concluded that the infrastructure is at the

forefront of current research, although more work is needed in the area of monitoring and

automation. In terms of deployment and management, this study essentially neglects three

key aspects: security, maintenance, and costing.

Taibi et al. conducted a systematic mapping study in [61] on several different architec-

tural styles and patterns to define their significant benefits and drawbacks. They classified

the patterns they found into three categories: the orchestration and coordination pattern, the

deployment strategies pattern, and the data storage pattern. Also, the authors provided a sum-

mary of the advantages and disadvantages of microservices architectures which must be taken

into account. This paper highlighted an important point; the deployment of microservices is

not yet clearly based on a particular type of implementation.

A study by Soldani et al. [62], which was a systematic literature review on the pain and

gain of using microservices, addressed two concerns regarding microservices architectures,

based on industrial practices. The main concern was the technical and operational benefits

and drawbacks of the microservices architecture regarding the design, development, and

operational phases. For instance, an approach to the simplification of the transformation

process (to microservices) and how to handle the data storage issued was discussed. Another

concern was defining the gap and limitations with regard to consensus which exists between

researchers in the academic and industrial fields. More specifically, the security attribute

was considered to be of greater significance by researchers and practitioners working within

industrial environments. This confirms the relevance of the current work which aims to

Chapter 3: Related Work 31

develop a novel approach to migrating legacy enterprise systems into the structures of

microservices architecture.

The systematic review in [63], which defines what the authors label ‘bad smells’. These

‘bad smells’ were identified to assist software developers in recognising when to modify their

designs in order to avoid or evade such identified pitfalls which are labeled as ’refactoring.’.

The paper covers seven of these architectural ‘bad smells’ and 16 architectural refactorings.

One of the solutions mentioned in this review is to apply a circuit breaker to prevent violation

of the isolation of failure principle caused by a wobbly service interaction ‘bad smell’. A

number of different ‘bad smells’ mentioned in [63]are cited as violating the decentralisation

concept, one of which is shared persistence. This ‘bad smell’ occurs when two or more

microservices access the same database. The review presents three solutions to this problem:

merge the services, split the database, or add a data manger. Related considerations are

covered in this research, i.e. the separate-out-database rule and the master data access

microservices. These issues are discussed in relation to designing microservice-oriented

architectures based on feature-driven transformation rules. However, the present research has

quite a different focus on assisting researchers and developers to understand the main issues

and to engage the most applicable rules associated with non-functional requirements. A case

study is presented to allow the evaluation of the rules provided.

3.3 Microservice-Oriented Architecture and Design

The ‘microservices’ approach deals with the issues inherent in updating a large, monolithic

enterprise system by dividing its facilities into small, manageable independent services.

Indeed, the term ‘microservice’ refers mostly to small, well-defined services created for just

such an ‘agility’ centred context [64]. A set of microservices do not all have to be written in

the same language. A variety of languages and data storage techniques may be used even

within the same enterprise system.

Balalaie et al. [65] addressed a number of problems relating to the understanding of

this kind of architecture; ; more specifically, these problems most specifically were those

associated with the process of migrating to a microservices architecture. Regarding these

challenges, Balalaie et al. [65] presented a set of patterns describing the types of introductory

Chapter 3: Related Work 32

repositories that can be employed for such a process. Several different patterns were indicated

as being significant in relation to these issues, and their identification led to considerations

focused on recommended resolutions.

Brown and Woolf [66] attempted to show how microservices ought to be designed,

the ways they can fit into a larger architectural picture, and the ways in which they can be

built so that they operate efficiently. Their study deals particularly with matters relating

to microservices efficiency, systems design, and microservices design. According to Taibi

et al. [61], the microservices architectural pattern can be determined via a catalogue. In

accordance with their systematic mapping study, they showed the drawbacks and benefits of

each pattern, so that developers can select the most appropriate for their purposes. However,

for practitioners, this process of identifying patterns or, indeed, of not being able to identify

a pattern, is unclear since the process has not actually been implemented.

Knoche et al. [67] showed that, according to a survey carried out among German

industry professionals, there were a number of specific major motivations driving companies

and developers to adopt a microservices architecture. The desire for high elasticity and

scalability was identified as one of the more important of these motivations. In contrast, it

was emphasised that the lack of developers having the necessary skills was a major obstacle

to the application of microservices architectures. The survey from which these results were

extracted included only Germany thus it is impossible to generalise these results to rest of

the world.

In [68], a different method was discussed in terms of how to portion functionalities

into microservices. A Domain Driven Design (DDD) method was used for portioning a

microservice into a set of the subdomain. This technique guides the developers in sizing the

microservices, and the way in which each microservice is allocated to a specific function and

a single-purpose-database; these represent what is to be implemented at a later stage.

The 11 microservices bad-practice scenarios provided by Taibi and Lenarduzzi [69]

were determined and examined through interviews with 72 developers who had experience

of working with microservices architectures. In general, they stated that the main issue was

the separation of the service from the monolithic system and linked data usage; this could

lead to possible maintenance challenges where the splitting had not been carried out properly.

Chapter 3: Related Work 33

On the basis of this, one of the objectives in the present work is to find the right approach to

separating out microservices, based on rules.

Other researchers have uncovered various findings concerning the assessment of mi-

croservices that are relevant to ongoing research and developments within the affected areas

of industry. Pahl and Jamshidi [37] assessed microservice systems and explained that they

had been initially developed alongside specific architectural strategies for optimising the

building, management, and development processes using self-contained units. This resulted

in improvements some areas of development, and the general strategy paralleled develop-

ments in cloud technology. Researchers have attempted to contribute to the knowledge base

and fill the research gaps regarding the classification of microservices and their applicability

in association with cloud technologies, focusing on their potential to complement the use

of container technologies in platform as a service (PaaS). Assessing 21 previous research

conclusions for relevant patterns, the analysts concluded that the microservices strategy could

be more useful than other, more conventional, strategies in these regards, and recommended

increasing their more frequent use.

Later, Zimmermann [38] assessed various aspects of microservices„ in particular agile

approach strategies as used in service development processes, and focused on deployment.

They reported that some microservice and bounded context applications result in new struc-

tures and/or implementations relating to service orientation. This creates varying motivations

when considering the usefulness of the microservices model for an application. The analyst

claimed that microservices are a a major development, and that they have the potential to

address the issues raised in prior approaches to service orientation, i.e. their (microser-

vices’) use of both technologies and models. It was recommended that, to create and frame a

database of architectural information to support microservices implementation, microservices

be assumed to constitute a specific implementation approach to service creation and use.

Other researchers have continued to contribute to the knowledge base for other relevant

aspects of microservice operation. For instance, Kratzke and Quint [36] assessed the historical

trends and developmental directions of microservices use. These researchers reported that

citations of this approach to development had become increasingly common in specifications

of best practices and strategies. They also considered a range of practicality issues and

potential methods that could be effective in overcoming various types of developmental

Chapter 3: Related Work 34

barriers. They further argued that attempts to optimise the service-based processes informed

by new approaches can, in themselves, create challenges. This has the potential to be a

deterrent, regardless of specific feature applicability [36].

3.4 Evolution into Microservice-Oriented Architecture

Dragoni et al. [36], described a real-world case study of a mission critical system - the

FX (Foreign eXchange) core system at Danske Bank. This was constructed using a legacy

system architecture, to address major concerns involving the scalability of the system.

It was revealed that, in addition to using a legacy system, a microservices architecture

might be a promising methodology for reducing code complexity. Furthermore, numerous

microservices could be decoupled via the use of service discovery. As pointed out in [36],

switching to a microservices architecture brings about enhanced scalability through the

application of several techniques, e.g. load balancing, horizontal scaling, and cache and

clustering methods [13]. The FX system can be improved through the implementation of the

aforementioned methods for the purpose of supporting additional qualitative characteristics.

A case in point is including additional security with the intention of delivering, to the client,

an innovative user-experience.

Villamizar et al. [64] described an enterprise case study where the application under

examination was established on the Cloud podium. Two versions were constructed, one

using microservices and the other using a monolithic architecture. The authors analysed the

performance of both architectures in terms of response times and they recognized that, so far

as the microsystems architecture was concerned, additional performance provisions should

be considered for the future. [36] highlighted that the performance downgrade which appears

to be involved when moving to a microservices architecture is mostly due to significantly

increased network use and the existence of the container.

Gouigoux and Tamzalit [70] dealt with some feedback after moving the MGDIS SA (a

French software vendor editing application) monolithic software to an independent service.

Among the benefits they encountered was an up-surge in performance, and this is somewhat

contrary to the results from our case study.

Chapter 3: Related Work 35

Bogner et al. [71] interviewed experts from 10 different companies based in Germany;

some of these companies are active Europe-wide or even globally. The discussion covered

three main areas: the technology used to implement the microservices, the popular features

that play a significant role in developers’ decisions regarding adopting a microservices

architecture, and the impact of the microservice on different software quality attributes. The

analysis rated maintainability as the most improved attribute when moving to microservices

architectures.Participant opinion was divided when it came to performance; one group noticed

significant improvements in terms of response time, while the other group believed that

the response time was not affected. In addition, there still exists much debate, among the

interviewees and elsewhere, about the security issues relating to microservices and how to

deal with these challenges.

There appears to be no clear upshot to the performance issues indicated above. There-

fore,it is necessary to continue investigating the differences between the performance of

applications implementing microservices and those that use a monolithic architecture. tThe

performance issues are believed to differ on a number of factors, for instance, the program-

ming languages, the host environment, and the container technology used.

Alwis et al. [72] proposed a technique to be a guide for splitting a monolithic system

into microservices based on structural and behavioural properties. The first type is structural

properties which focuses on the functional splitting of the system by addressing the key

functions and the business objects of the create, read, update- delete (CRUD) operations.

The other a type of functional splitting is based on behavioural properties, focusing on the

operation execution. The approach in this work differs from Alwis et al. [72] in the way in

which the splitting of the legacy enterprise system is approached. The main focus in this

work is the non-functional requirements and the way in which the rules are designed around

enhancing non-functional attributes such as scalability, availability,etc. Both approaches

propose measures for evaluating the quality of the slicing solution that they present.

3.5 Conclusion

In summary, a gap in the academic literature was identified relating to the state of practicse

regarding microservices. The main motivation of this study is to try to fill this gap by using a

Chapter 3: Related Work 36

literature review to obtain an understanding of the current microservices state-of-the-art and

then build an approach to migrate a legacy system to microservices as hosted on the Cloud

computing podium. In terms of the issues presented in this chapter, the following aspects

were observed:

• A narrower focus on the proposed architectural style and onto the emerging patterns to

determine the main research direction and the advantages and disadvantages of these

patterns;

• The architectural issues and how microservices sustain over the long term;

• Referring to the literature review, it seems that the performance attribute needs more

attention in relation to microservice-oriented architectures;

• From the stance of various different studies, it was noticed that the security attribute is

one of the main challenges in industrial environments;

• How to design a service for a single function;

• A plan for building an approach framework to guide developers through the transfor-

mation from functions in a monolith to microservices;

• Through a comprehensive analysis of the literature, the idea of architectural rules to

derive certain architectural structural properties of microservices has emerged.

Chapter 4

Research Framework

4.1 Introduction

A main contribution of this thesis is the development of a novel approach whereby a legacy

system can be migrated to a lean enterprise system architecture, supported by microservices

and hosted by a cloud platform. This research focuses on migrating such legacy systems

using the latest microservices concepts and technology while applying the lean concept in

order to work effectively with various enterprise systems.

A legacy system migration approach has been developed which incorporates both

microservices and container techniques and a framework of its working process and key

components has been defined. Referring to this framework enables the determination of how

effective any new microservices are in terms of functionality, performance, and security. This

framework is supported with a rule repository which must be used bearing in mind how these

rules support the functionality, performance and security.

This approach to evolution consists of:

1. A framework for the evolution and key components in the approach.

2. A rule-repository designed so that any resultant codebase can be organised around

the set of microservices transformation rules it contains. These rules facilitate the

breakup of a legacy system into a set of independent functional services; this must

be achieved prior to any migration away from local hardware. Using a microservices

Chapter 4: Research Framework 38

repository allows new services to be created and tested without affecting any other

(micro) services.

3. A repository of migration rules designed to enable the preservation of all the functional

details of a service (in terms of the processes and activities required as identified by

the above microservice repository) as it is migrated to the cloud.

4. A set of criteria for evaluating the above regarding the improvement of functionality,

performance and security.

4.2 The Conceptual Framework of the Approach

4.2.1 The Overview of the Framework System

This section describes the process of evolving a legacy system via a concise conceptual

framework and clear guidelines for understanding, implementing, and evaluating the methods

used.

The knowledge, and understanding, of such a problem domain and its solution are

achieved by:

• Describing the boundaries of the legacy system to be migrated via a conceptual

framework which enables the understanding of the transformation steps which must be

made towards a resultant microservices artefact.

• Developing a set of rules as a guideline for conducting and evaluating the transforma-

tion process.

These represent concrete prescriptions that enable researchers and practitioners to un-

derstand and address the problems inherent in migrating to, and successfully implementing,

such a microservices-based system.

Chapter 4: Research Framework 39

Figure 4.1 Overview of the framework

Figure 4.1 shows that the original input to this framework is a legacy application (i.e.

the legacy code) and the next element is the set of transformation rules that will be applied to

the legacy system to make decisions about its evolution. The third element is the environment

into which the application can be deployed, based on the migration rules, in an affordable

way. Via the framework, the legacy code is employed as the input to the rules. Subsequently,

an output will be generated based on the applicable rules. The output consists of several

UML-based descriptions relating to the evolution plan which:

• Define the microservices-based architecture and its deployment;

• Define where each service will be located and how these services will interact.

To facilitate the necessary paradigm shifts, a set of features-driven microservice trans-

formation rules and cloud migration rules have been developed.

The proposed evolution process, as shown in Figure 4.2, consists of three major phases:

1. The first phase focuses on understanding and analysing the legacy system in terms of

the module dependencies. The legacy system is analysed with respect to its legacy

software architecture and an entity relationship model.

2. The second phase forms an intermediate layer which focuses on how to determine the

boundaries of each microservice, by applying a set of feature-driven transformation

rules.

3. The third phase is the creation of the target system. In this phase, the ways in which

the microservices are deployed in the cloud podium is determined along with what

the most applicable solutions are to maintain system performance, functionality and

security.

Chapter 4: Research Framework 40

Figure 4.2 The conceptual framework of the approach

4.2.2 The Legacy System

A legacy system is an application which is outdated and incompatible with the new technolo-

gies, and it difficult and costly to replace or modify [9]. It is considered the backbone of an

organisation and handles all the crucial operations within and/or outside the organisation.

However, this type of system often encounters a number of challenges. For example:

• if part of the system stops working, this may cause the failure of the whole system;

• it may be difficult to repair faulty parts of the system without interfering with other

components;

Chapter 4: Research Framework 41

• providing new functionality to the legacy system may require modification to all the

dependent modules; and

• the maintenance costs of old hardware platforms can become excessive.

Owing to these obstacles, many organisations decide that they would like to move their

legacy systems to new environments that facilitate easy replacement of components and

improve system functionality. Thus, to redesign the system with the appropriate function

module would make more efficient use of resources and come at a lower cost. However,

when moving to such new systems, it is important to consider the details of system migration

carefully, particularly with regard to components that are difficult to maintain because they

need to change over time.

These challenges are addressed through, first, a thorough understanding of the legacy

system. To achieve such an understanding, a reverse engineering method has been adopted

here. Reverse engineering is defined as the identification of components of a system and

their interconnections and the subsequent creation of a system representation at a high

level of abstraction. Technical information about the software’s design, architecture, and

internal modules have to be examined to attain a comprehensive understanding of the system

architecture and the system domain, and to identify functionalities, extract modules and map

data flows between them [73].

Secondly, the data model of the legacy system should be analysed. There are various

ways to organise data, such as, hierarchical, relational, object oriented, etc. In general, the

older the data model is, the harder it is to retrieve a clear picture of the data structure.

Finally, the application’s structure, behaviour and business processes, as well as the

data structure and dependencies of these, are presented in a unified modelling language,

entity relationship diagrams, or related notations.

4.2.3 Middle Layer – Microservice Transformation

This subsection defines the transformation from a legacy application to a microservice-based

architecture. Advantages of the microservice-based architecture are better performance,

fewer system errors, and enhanced functionality, security, and scalability. The documentation

Chapter 4: Research Framework 42

generated in phase one enables the division of the legacy application functionality and so

enables extraction to candidate microservices.

The transformation to the microservice-based architecture, including the identification

of the candidate microservices, is shown in Figure 4.3:

4.1.2 Middle Layer – Microservice Transformation

This documentation facilitates migration from a legacy application to a microservice

architecture. The advantages of a microservices architecture are: better performance, fewer

system errors, and enhanced functionality, security, and scalability. The documentation

generated in phase one enables the division of the legacy application functionality and so enables

extraction to candidate microservices.

We identify the candidate microservices as follows:

1) Designing Feature Driven Rules:

At this stage, non-functional features of the new system are defined; the main ones being per

formance, scalability, availability, and security as main features. Then, we build a featured model

of the enterprise system, as presented in chapter 5, to represent the interrelationships between

the non-functional elements. Different non-functional features are represented in different lay-

ers.

In order to design the rules, first, the features necessary for this task must be selected from the

enterprise feature model. After that, a scenario is provided as the basis on which the development

of the microservices architecture is to take place. From these elements transformation rules that

the development of the microservices architecture must follow are derived. The scenario design

will be based on:

- a clear definition of the problems inherent in the legacy system which affect its non-

functional attributes;

Designing Feature Driven
Rules

Decomposing an
application into services by
applying the Feature-
driven microservice
transformation rules

Using domain-driven
design (DDD).

Figure 4.3 Microservices transformation process

1. Designing and selecting feature driven rules:

At this stage, the non-functional features of the new system are defined; among them,

performance, scalability, availability, and security are the main elements. Then, a

featured model of the enterprise system is built, as presented in Chapter 5, to represent

the interrelationships between the non-functional elements. Different non-functional

features are represented in different layers.

To select the rules, the features necessary for this task must first be selected from

the enterprise feature model. After that, a strategic transformation plan is provided

as the basis for the development of the microservice-oriented architecture. From

these elements, transformation rules that the development of the microservice-based

architecture must follow are derived. The scenario design will be based on:

• a clear definition of the problems inherent in the legacy system which affect its

non-functional attributes;

Chapter 4: Research Framework 43

• a consequent definition of what needs to be done in terms of correcting these

problems; and

• the basis upon which the solution must be determined and planned for.

2. Decomposing an application by applying transformation rules:

The strategy for migrating to a microservices architecture is to first deconstruct the

legacy system by applying transformation rules. Each rule constitutes a frame for

constructing and guiding the evolution plan. The rules govern the transformation with

regard to different perspectives, architecture, performance and functional objectives.

Each rule represents a situation and a response to that situation; these rules help to

decide how to extract services from the legacy code. More concretely, a candidate

microservice is extracted from the legacy system by analysing the legacy code, the rule

to guide the implementation of this microservice is then applied, then the data, logic,

and user interface is extracted to form a new service.

During the transformation, it may become clear that some of the services need to be

split further into multiple (micro) services or to combine a number into one service.

This could be due to excessive data access volumes for one (combined) microservice,

or excessive inter-process communication between a number of microservices which

have been extracted from one service; these challenges are covered by specific rules.

3. Using Domain-Driven Design (DDD):

DDD is an approach to building complex software by portioning functionality into

subdomains and bounded contexts. It defines multiple domain models and each has a

different scope, defining separate subdomains for each domain. A bounded context

represents the scope of a domain; its identification ensures information and features

are assigned correctly to solve the design problems related to each domain [35].

The DDD concepts of subdomain and bounded context can be usefully applied to

feature-driven microservice transformation rules to make services deconstruction

efficient and easier to do.

Chapter 4: Research Framework 44

4.2.4 Target System – Cloud Migration

This layer represents the design of the target cloud-based architecture to be used in migration.

Migration to the cloud has become one of the main priorities for many enterprises because of

the effective integration facilitated by public cloud capabilities, simplified IT management,

elastically scalable resources, flexible costs, and the broad accessibility of cloud resources.

Before deciding on the migration process, it is crucial to examine technical requirements,

system goals, and system workloads.

To deliver microservices, a set of feature-driven cloud migration rules have been

proposed in this project. The main focus of the migration rules is to govern the way in which

the microservices can be deployed in the cloud to enhance microservice performance. This

is in terms of workload distribution, specific resources requirements, minimising request

latency, increased availability, and greater agility.

Figure 4.4 shows how the best candidate rules for migrating microservices to the cloud

are selected. This process begins by asking the following questions:

• Will the microservices be deployed in a multi-cloud environment (public, or private)? If

the answer is “No”, it is recommended that an alternative type of cloud (e.g. hybrid) is

found. If the answer is “Yes” then the following, further, questions must be answered:

• Are the microservices containerised?

• Do the microservices need to run in multiple instances?

• Can microservices run in the same region?

Answering the above questions will give a clear picture of how to determine which

rules will have the biggest impact on the microservices deployment. For instance, when

a microservice application is ready to deploy, there is an architectural concern; does

the system depend on high availability and thus need dedicated resources? In such a

scenario, the most suitable migration rules to adopt are the containerised microservices

rule and the deploying and managing extra loads rule. In the cases where the new

architecture must achieve high performance, the geolocation rule is the best candidate.

. These rules are presented in detail in 5).

Chapter 4: Research Framework 45

Figure 4.4 Cloud Migration Guidance

Moving to the cloud is not the endpoint of software development, but rather represents

a starting point in relation to future challenges and opportunities [74].

4.3 Summary

In this chapter, a conceptual framework of the approach for evolving legacy systems to

microservice-based architectures in a cloud-based environment is presented. This framework

provides a solid foundation for extracting microservices.

The framework helps to define an appropriate evolution path across a number of stages.

The first stage is to understand the legacy system and how the components/modules are

Chapter 4: Research Framework 46

interrelated. The next stage is an intermediate layer which highlights the non-functional

considerations and suggests rules based on the system situation. A comprehensive under-

standing of the functional and non-functional interactions which are inherent in the enterprise

system enables the generation of a feature model; this plays an essential role in designing the

necessary feature-driven rules.

Then, the transformation into the targeted architectural paradigm is accomplished

by applying the feature driven rules to extract microservices from the monolithic code.

The microservice technique involves the substitution of each part of the legacy application

functionality with a microservice, thus breaking the entire legacy system into services. Such

services can deploy and scale independently. The last stage of the migration process is the

target layer, which is inherent within microservices running in the cloud. Thus, multiple

services will be deployed in order to provide higher availability and functionality.

Chapter 5

The Feature-Driven Migration Approach

5.1 Introduction

Microservice-oriented architecture is a recent paradigm that focuses on building a system

in the form of a set of distributed interacting microservices. Developing a system based on

this architecture requires specific consideration because the new system will be distributed.

In terms of the microservice architecture, one of the most significant challenges is how to

partition the modules into separated services. Also, each microservice must be responsible

for a precisely definable functionality. Data management, in particular, requires attention

because a poor design can critically affect the performance of the new architecture, becoming

a bottleneck of the system.

This chapter focuses on how to migrate to a microservice based architecture, which

solves most of the legacy issues which have been discussed, by developing and applying a

set of feature-driven rules. The goal of these rules is not just to have a set of small services

but also to address the problems and limitations of large monolithic architectures.

The main challenges in this research lie in attempting to improve understanding sur-

rounding the quality attributes inherent in a microservice architecture that can benefit enter-

prise systems. Additionally, in the attempt to develop the feature-driven rules for transforming

legacy monolithic systems into microservices based architecture which exhibit these quality

attributes.

Chapter 5: The Feature-Driven Migration Approach 48

5.2 Feature-driven evolution

The agile methodology can be applied to several different software development techniques.

Some of the existing agile methods include Adaptive Software Development (ADS), eXtreme

Programming (XP), Feature-Driven Development (FDD), and Scrum. However, FDD is

applied in this work as it focuses primarily on the features that will be implemented. It helps

to explore the relationship between the attribute and sub-attributes in the list of features. It

distinguishes between the requirement that makes sub-attribute more important than others.

Also, it renders the attributes in the feature list should be divided into sub-attributes until the

attributes are small enough to customise the rules.

The FDD goal is to discover the system target and how they may be reached - to prevent

costly reworking activities. For the best results, the set of requirements must be determined

entirely before the system design and implementation begins.

Such system requirements should be concerned with identifying and modeling both

the functional and the Non-Functional Requirements (NFRs) of a system. Having a clear

explanation of these requirements helps create an appropriately focused set of rules and an

understanding of the scope of the target system. In the following subsections, the techniques

that were used to develop the features model, and how the rules were derived from it, will be

discussed.

5.2.1 Features in enterprise systems

FDD method is applied to modernise, or evolve, a system to ensure that new system require-

ments can be met correctly and consistently. The goal here is to explore further how new

plans which have emerged in relation to a system can be met with minimum reworking. For

the best results, in terms of evolution, a set of requirements must be precisely identified ahead

of any changes’ commencement.

These requirements, or features, can be used as a guide for the further development

of the system and thus represent a very important aspect of the business process involved.

Such requirements are widely used and play an important role in system evolution. They

are essential because they limit the list of functional requirements and NFRs that must be

considered to those that are proven to be of value for an enterprise and its users. A feature will

Chapter 5: The Feature-Driven Migration Approach 49

generally reflect a particular business outcome, the attainment of which must be improved or

enhanced: e.g., runtime performance, maintainability, security or functionality , which are

the main focus of this research. A features model will be used to handle the selection of the

rules which are deemed applicable to the evolution of legacy enterprise systems dealt with

here. This model will, for example, describe the additional features, the hierarchy of each

feature, and the relationships between them. Each decision regarding evolution should be

informed by details of the means which will become available to enhance NFRs.

In the examination of the problem, it is assumed that the formulation and use of

the evolution rules are performed per feature. Considering that a complete model which

comprehensively accounts for all features would be difficult to define, the focus here is on

performance, security, availability, functionality and maintainability. The feature model

presented in Figure 5.1 shows, in particular, the relationships between the various different

features which play a role in defining the feature-driven rules. This features model was

designed on the basis of FDD; i.e. defining a hierarchy of features along with the differing

constraints that exist among them. To reduce complexity, all the root features and sub-features

remain constant; they are not modified during the rule development process.

FDD is one of the most widely used agile methods and, as the name suggests, features

are the main focus. Designing using FDD results in the proposal of an optimal design that

exhibits only the required and requested features. FDD focuses on supporting a continuous

process, on integration and on small releases, to reduce the occurrence of conflicting changes

[75] [76].

FDD uses the following five main steps:

• Develop an overall model by addressing the project goal and understanding the system

domain.

• Build a features list based on the knowledge obtained from the initial step, Step 1.

• Plan the development, in accordance with the features.

• Create the design, in accordance with the features.

• Build the design, in accordance with the features..

Chapter 5: The Feature-Driven Migration Approach 50

The final two steps are concerned with actual implementation, in accordance with the design.

As with all agile methodologies, the first step in a development driven by FDD is to gain an

accurate understanding of the system content. Then a clear understanding of the requirements

is needed, as determined by the system’s functional and non-functional characteristics.

Functional features are not usable without the necessary non-functional attributes being

in place. Both functional and non-functional characteristics must be considered in the

development of a system. Once all the necessary goals have been recognised, the FDD model

can then be developed [39] [75].

In state-of-the-art service computing, engaging microservices, containers and FDD is

necessary to transform a legacy system into an architecture populated with containerised

microservices. The proposed approach rearchitects a legacy enterprise system based on

reengineered legacy features in order to realise the proposed evolution’s requirements. Such

system requirements should be concerned with identifying and modelling both the functional

requirements and NFRs of a system. Having a clear explanation of these requirements helps

the engagement of an appropriately focused set of evolution rules and an understanding of

the scope of the target enterprise system. In the next subsection, the methodology used to

develop the features model and the feature-driven rules is discussed. The derived microservice

evolution rules and cloud migration rules are described in the two subsequent subsections.

5.2.2 Method to derive the microservice Evolution rules

In this study, two in-depth investigations are carried out into the evolution of legacy mono-

lithic systems to microservices architectures. In both cases, the migration was motivated by

the need to address some major non-functional concerns of the system. In particular, the

improvement of performance and the enhancement of availability and security. Monolithic

structures are not sufficiently agile to respond to significant increases in workload. The

solution proposed is to deconstruct the application into a set of smaller services. Separating

out components can reduce dependencies, which may lead to several advantages such as

scalability and performance, and agility in response to change.

The main steps by which the rules were designed to govern migration are described as

follows:

Chapter 5: The Feature-Driven Migration Approach 51

To identify main non-functional requirements: the main NFRs of the system, gen-

erally, are performance, functionality scalability, availability and security.

To analyse the quality attributes: each quality attribute is analysed, and each attribute

is categorised into a relevant sub-feature.

To define the relationships among the attributes: based on the impact of each

attribute its dependencies, trade-offs, circumstances of inclusion, and shared relationships

are defined. The result of this analysis is a hierarchy of system NFR based features, as

shown in Figure 5.1, This set of relationships among the NFRs is used as a constraint to

build the feature-driven rules. The identification of NFRs can be challenging to integrate

into the development of a system. This is because it is difficult to manage NFRs during the

development process.

To develop evolution rules: once the requirements have been identified in a granular

enough fashion, designing the rules and implementing according to these can begin. This

is done by looking at several different scenarios in relation to handling the transformation

process and considering (1) the relations between the non-functional features; and (2) the

adjustment to other requirements triggered by the NFRs when certain conditions hold.

The upshot of this process is that a set of feature-driven evolution rules is proposed

to drive the transformation of legacy enterprise systems to a microservice-oriented archi-

tecture, and a set of cloud migration rules is developed to guide the deployment of the new

microservice-oriented system in cloud computing environments. The concept of feature-

driven rules is used to guide and further improve microservice-based legacy system evolution.

Thus, this work sets out to develop a feature-driven microservice evolution rule repository.

Each of these rules define a transformation that can be applied to the software architecture of

the legacy systems to maintain and evolve the system’s goals, requirements and objectives.

The evolution rules are intended to address the issues of the legacy software architecture

during both implementation and operation. Testing the rules in relation to a real-world case

study is accomplished by verifying that the systems facilities—as they have been redefined

using the rules—meet the new NFRs and that the new system performs its functions correctly.

Chapter 5: The Feature-Driven Migration Approach 52

Figure 5.1 Typical Features Model in Enterprise Systems

Chapter 5: The Feature-Driven Migration Approach 53

5.2.3 Feature relationships in enterprise systems

This section defines four types of relationships between features which are based on the

system requirements, namely Trade-off, Dependency, Inclusion, and Shared. These play

important roles in the design of feature-driven rules.

1. Trade-off Relationship:

• Assumption:

– A is a feature; B is another feature.

• Syntax of the Relationship:

– A
T←→B

• Semantics:

– The increase of A will result in the decrease of B

– The increase of B will result in the decrease of A

• Examples:

(a) If the application’s performance needs to be enhanced, then the computa-

tional task’s response time should be minimised by distributing the workload

between services.

(b) If the application’s response time needs to be improved, then the number of

unnecessary input/output (I/O) processing tasks should be reduced.

(c) If the system has insufficient memory and a lack of available space, then the

throughput will be extremely slow.

(d) If the system has fewer computational tasks, then the network latency should

be improved, which means the system can perform more processing.

Chapter 5: The Feature-Driven Migration Approach 54

2. Dependency Relationship:

• Assumption:

– A is a feature; B is another feature.

• Syntax of the Relationship:

– A D−→B

• Semantics:

– To enhance A implies that → B needs to be enhanced

• Examples:

(a) If the system suffers from resource consumption, then consider scaling the

system.

(b) If the user cannot access their data, then the system has to handle and

guarantee the availability of data for create, update, and delete operations.

3. Inclusion Relationship

• Assumption:

– A is a feature; B is another feature.

• Syntax of the Relationship:

– A ←←B

• Semantics:

– To preserve A implies that B needs to be included.

• Example:

(a) If the user interface has provided a trusted path, then the trusted path must

be able to ensure the security of transmitted data.

4. Shared Relationship

• Assumption:

– A is a feature; B is another feature.

Chapter 5: The Feature-Driven Migration Approach 55

• Syntax of the Relationship:

– A ≪B

• Semantics:

– If A and B refer to the same context, then there exists a shared relationship

between A and B.

• Example:

(a) If the system has suffered from repeated failures, then a circuit breaker is an

efficient way of preventing cascading failures and of ensuring the system is

available and returned to the normal working state.

(b) If one of the servers has completely failed in the past, then a backup data

server will be used to ensure data and service availability (this will bring with

it a variety of security issues, as the data is stored in at least two different

locations).

5.3 Preconditions for feature-driven rules

The first step toward the microservice-oriented architecture is to populate a method or rule

repository, which has been designed in the following section as feature-driven rules. It is

important to emphasise that each of these rules have been developed to address five primary

concerns. This step is presented with a proper definition of the issue, determining why it

is needed, what the effects of the issues are, and, for each Precondition, indicating which

rules are used. After this, they are transferred to a rule template, as presented in sections

section 5.4 and section 5.5.

Chapter 5: The Feature-Driven Migration Approach 56

Problem to be solved Why it is needed
What effect the

Precondition can achieve
Refer Rule

Large monolithic

systems are complex

for any developer to

fully understand.

In addition, they are

not easily maintained

and evolved due to

their inherent complexity.

As a result, adding a new

feature becomes a hard and

time-consumingtask and

it is not easy to debug the

system.

To improve system

agility, reliability

and scalability.

Achieving better

performance and

reliability through

increasing the instances

of any services facing

a bottleneck, better

scalability due to full or

partial transformation

to the micro services-oriented

architecture and

reduced maintenance cost.

Rules (1- Decomposition of a

legacy application

into microservice

, 2- Single responsibility

principle)

Swift upgrading is needed

to meet the competitive

environment requirements

or integrate with systems on

different platforms.

To improve system

resilience and enable

effective use of data.

It speeds up data flow and

reduces operational cost.

Rules(1- Decomposition legacy

system , 5- performance

optimisation, 6- reduction of I/O

processing, 12- master data microservice)

Some existing modules

provided by legacy

systems are not the best

alternative to

satisfy requirements.

To build a reliable

system and extend it.

Also, taking an advantage

of applying a diversity of

technology to use during

the implementation

of microservices to suit the

enterprise requirements

and needs.

To make it possible to change

the implementation

of the microservices and gives

you the choice of

the service location.

Rules(5-performance

optimisation

,6- reduction of

I/O processing

,7-improvement of

throughput

,8-resource optimisation

,10-resource complementary

services)

The monolithic system takes

time to diagnose and fix

system failure.

It helps to avoid wasting

time on

handling failures.

The service will be easier

to understand,

change and deploy.

It also enhances the availability

of an application

Rule(4- inclusion

of

circuit breaker)

Rapidly changing

data structures or

large data streams.

To keep schema

separation as it might

be in the future, more

service

the separation will be

necessary.

It will reduce system

complexity

Rules (3-database separation

,9-prioritisation of data

access workload

,11-customised

data management)

Table 5.1 Main concerns for the feature driven rules

Chapter 5: The Feature-Driven Migration Approach 57

5.4 Feature driven microservice transformation rules

A set of feature-driven microservice transformation rules is proposed in this section. These

rules are documented in the form of pseudo-code. Each rule consists of a Precondition, a

transformation and a statement regarding its impacts on one or more features of the enterprise

system.

The Precondition specifies the main system issue that the rule is designed to cope with.

The transformation defines the solution to this issue. Lastly, the impact statement describes

the concerns which might arise when the rule is applied.

Chapter 5: The Feature-Driven Migration Approach 58

Rule1 - Decomposition of a legacy application into microservice-based architec-

ture

Precondition

• A monolithic system needs to scale and improve in its modularity.

• Individual parts of a modular application may be independently deployed.

Transformation

• Decomposing a legacy system to a microservice-based architecture, through building

an application from internal lightweight services, will improve modularity and simplify

the scaling of a particular service to meet new demands and requirements.

• Decomposing may happen in order to meet a number of different NFRs and the size of

the service as a whole depends on the complexity of the problem domain.

Algorithm 5.1: Decomposition of a legacy application into microservice-based

architecture

1 LS = Legacy System;

2 µ= Microservice based architecture;

3 µ_Mo = Microservice Modularity

4 µ_S = Microservice Scalability;

5 µ_M = Microservice Maintainability;

6 if (LS==true) then
• Create a new µ in order to Improve (µ_Mo) ∧ Improve (µ_S) ∧ Improve (µ_M);

7 end

Impact on features

• Enhances system scalability and modularity.

• Separate processes add complexity and new problems, including network latency.

• Increases the complexity in managing dependencies and deployment.

Chapter 5: The Feature-Driven Migration Approach 59

Rule 2 - Single responsibility principle

Precondition

• A monolithic application has suffered from tight coupling and dependencies between

modules.

Transformation

• Deconstructing a system into small services minimises dependencies and leads to loose

coupling, which is assisted by the application of the Single Responsibility Principle

(SRP) concept.

• The scalability of each service can be improved by separating the dependent services

in the legacy system so that they become independent microservices [17].

• This allows the developer to change the implementation or modify the services and/or

replace them without any downstream impact.

Algorithm 5.2: Single responsibility principle

1 LS_D = legacy system dependency;

2 µ_SRP = microservice architecture based on the single responsibility principle;

3 µ_D = dependency;

4 µ_S = scalability;

5 if (LS_D == true) then

• Create a new µ_SRP in order to Reduce (µ_D) ∧ Improve(µ_S);

6 end

Impact on features

• The core complexity of this rule increases memory consumption in the new architecture.

As microservices consumed persisted memory directly during requests instead of using

CPU.

Chapter 5: The Feature-Driven Migration Approach 60

Rule 3 - Separating out databases

Precondition

• A monolithic application has been decomposed into a set of services to ensure that

the services are loosely coupled (i.e. they can be developed, deployed and scaled

independently from each other).

Transformation

• Keeping a separate data store for each service, whereby each such service becomes

responsible for persisting their data [77].

• Manipulating the data of other microservices is prohibited as only one microservice

can access each schema.

Algorithm 5.3: Separating out databases

1 µ_DB = microservice architecture with separate data store;

2 LS_TC = Legacy System _Tightly Coupled;

3 µ_D = Microservice Dependency;

4 µ_A = Microservice Availability;

5 µ_S = Microservice Scalability;

6 µ_M = Microservice Maintainability;

7 if (LS_TC == true) then
• Create a new µ_DB in order to

• Reduce(µ_D) ∧ Improve (µ_A) ∧ Improve (µ_S) ∧ Improve (µ_M);
8 end

Impact on features

• Breaking the data up may make data management more complicated.

• Implementing queries that join data becomes more challenging.

• Having a separate data store improves service scalability. availability, and maintain-

ability.

Chapter 5: The Feature-Driven Migration Approach 61

Rule 4 – Inclusion of circuit breaker

Precondition

• If one or more services are unavailable or suffer from high latency from time to time,

or have coding issues, this can result in cascading failure.

Transformation

• Adding a circuit breaker prevents new requests when detecting a service problem.

• Allowing the microservice to continue to operate without waiting for the fault to be

fixed [78].

Algorithm 5.4: Inclusion of circuit breaker

1 µ_ts = Microservice transient faults;

2 µ_ci = Microservice code issues;

3 µ_b = Microservice very busy;

4 µ_A = Microservice Availability;

5 CB = Circuit Breaker ;

6 D = dependency;

7 if (µ_ts == true) ∨ (µ_ci == true) ∨ (µ_b == true) then
• Add (CB) in order to

• Improve (µ_A)
8 end

Impact on features

• The circuit breaker could be accessed by a large number of concurrent requests which

should not be blocked but could be limited.

• In case the microservice is slow or down, the circuit breaker can cope with this situation

by returning cached data or by reducing load, which allows the microservice to recover.

• This rule ensures stability and availability of the microservice by stopping resources

from being consumed by requests that have no, or little, chance of being processed.

Chapter 5: The Feature-Driven Migration Approach 62

Rule 5- Performance optimisation of computational Tasks

Precondition

• Legacy applications have a serious effect on the response times in relation to single

requests.

Transformation

• Dividing legacy systems into microservices means the computation must divide into

smaller tasks which are distributed out to each microservice, to improve the service’s

computational capabilities.

Algorithm 5.5: Performance optimisation of computational Tasks

1 Response time↔ Computation Task (trade off)

2 µ_t = Microservice response time;

3 µ_ct= Microservice computation task;

4 µ_P= Microservice Performance;

5 LS_t = Legacy System response time;

6 while (µ_t < LS_t) do
• Reduce (µ_ct)

• Improve (µ_P)
7 end

Impact on features

• Decreasing response time in comparison with that of the corresponding monolithic

application. Response time of a request is an essential indicator of the user-perceived

performance of the system.

• Raising the number of microservices could increase latency which may occur due to

more connections.

Chapter 5: The Feature-Driven Migration Approach 63

Rule 6 – Reduction of I/O processing

Precondition

• The legacy system suffers from longer than average response times due to a bottleneck

in one of the components, which should be eliminated to improve the system’s response

time.

Transformation

• Deconstructing the system into a set of microservices.

• Eliminating all unnecessary I/O processing.

Algorithm 5.6: Reduction of I/O processing

1 Response Time↔ I/O Processing (Trade off)

2 µ_t = Microservice response time;

3 µ_P= Microservice Performace;

4 LS_t= Legacy System response time;

5 I/O = I/O processing;

6 while (µ_t< LS_t) do
• Improve (µ_P)

• Reduce (I/O)
7 end

Impact on features

• The response time of a new microservice-based architecture will be influenced by the

I/O intensive processes, which this new architecture dictates.

• Poorly defined of a microservices can lead to a chatty I/O that affects performance.

Chapter 5: The Feature-Driven Migration Approach 64

Rule 7- Improvement of throughput

Precondition

• Legacy systems cannot reduce the latency of the requests they handle.

Transformation

• Using microservices.

• Reducing the quantity/frequency of the memory-intensive functions employed [79].

Algorithm 5.7: Improvement of throughput

1 Throughput↔ Memory Intensive (trade off)

2 µ_l = Microservice latency;

3 LS_l = Leagcy System latency;

4 µ_th= Microservice network throughput;

5 LS_th = Legacy System throughput;

6 Mi = Memory intensive function;

7 µ_P = Microservice Performance;

8 while (µ_l < LS_l) do
• Improve (µ_th)

• Reduce (LS_th)

• Improve (µ_P)

• Reduce (Mi)
9 end

Impact on features

• Improving throughput (i.e. the number of messages processed), as compared to that of

the monolithic application.

• Improved throughput, however, may not lead to decreased latency.

Chapter 5: The Feature-Driven Migration Approach 65

Rule 8 - Resource optimisation

Precondition

• The various modules of a monolithic application have their unique resource require-

ments, e.g. they may be resource-intensive or computation-intensive.

Transformation

• Deconstructing modules in a monolithic application with unique resource requirements

into a set of microservices.

• Prioritising the system resource.

• Allocating each service with its required resources.

Algorithm 5.8: Resource optimisation

1 LS_m= legacy system module;

2 µ= microservice;

3 µ_S= Microservice Scalability;

4 if (LS_m) require unique resources then
• Break (LS_m)

• Create a new (µ) in order to Improve (µ_S)
5 end

Impact on features

• Ensuring sufficient resources are available to each microservice to function and cope

with scalability requirements, with regard to data volumes and throughput.

• Increased costs result from an inefficient placement of resources.

Chapter 5: The Feature-Driven Migration Approach 66

Rule 9 - Prioritisation of data access workload

Precondition

• A module in a legacy application suffers from a heavy database access load.

Transformation

• Monitoring of the legacy system’s database access load.

• Identifying modules that must frequently deal with the heaviest workloads.

• Transforming the module in the legacy system into a microservice to relieve the heavy

database access load.

• Prioritising all operations performed by a system.

• Encapsulating a high prioritised operation in an individual, resource-rich microservice.

Algorithm 5.9: Prioritisation of data access workload

1 LS_m= Legacy System module;

2 µ= Microservice;

3 µ_S = Microservice Scalability;

4 µ_A = Microservice Availability;

5 µ_P = Microservice Performance;

6 if (LS_m) experience heavy access load then
• Break (LS_m)

• Create a new (µ) in order to

• Improve (µ_S)∧

• Improve (µ_A) ∧

• Improve (µ_P)
7 end

Impact on features

• Optimising system performance

• Improving the availability, reliability and scalability of services.

Chapter 5: The Feature-Driven Migration Approach 67

• Implementing systems, where transaction boundaries span multiple microservices, is

challenging in general as implementing distributed data management and distributed

transactions could be daunting tasks.

Chapter 5: The Feature-Driven Migration Approach 68

Rule 10 - Resource-complementary services

Precondition

• The various modules of a monolithic application have their unique resource require-

ments: e.g., they may be resource or computation intensive.

Transformation

• Encapsulating modules with unique resource requirements in separate microservices.

• Platforming complementary containerised microservices that have different resource

profiles on the same virtual machine. (For example, given Service A needs less CPU

but more memory, and Service B needs more CPU but less memory, the two services

are recommended to be hosted on the same VM).

• Limiting the number of containerised microservices running on each VM instance

with respect to the capacity and cost of VM instance, as well as the sizes of the

microservices.

Algorithm 5.10: Resource-complementary services

1 LS_m= legacy system module;

2 µ= microservice;

3 µ_A= Microservice Availability;

4 C = Cloud cost;

5 while (LS_m) require unique resources do
• Break (LS_m)

• Create a new (µ)

• Containerise (µa & µb) in order to

• Improve (µ_A) ∧ Reduce (C)
6 end

Impact on features

• Providing efficient sharing of resources of a host operating system.

• Reducing costs.

Chapter 5: The Feature-Driven Migration Approach 69

• Improving availability.

• Monitoring the resource consumption of each microservice is challenging.

Chapter 5: The Feature-Driven Migration Approach 70

Rule 11 - Customised data management

Precondition

• In a legacy application using a mega-sized database system, some of the modules may

demand a specific type of database to manipulate and store their data optimally.

Transformation

• Transform each of these modules of the legacy system into a microservice with its own

database. One significant advantage of partitioning data management is the ability to

take advantage of polyglot persistence. Different types of data have different storage

requirements, e.g. for some service, a relational database will be the best choice while

other services might require a NoSQL database to handle their complex, unstructured

and query graph data.

• developer has to Choose the most appropriate type of database for managing and

storing the data used in each microservice.

Algorithm 5.11: Customised data management

1 LS_m= Legacy System module;

2 µ_DB = microservice with specific type of database;

3 µ_A = Microservice Availability;

4 µ_S = Microservice Scalability;

5 µ_P = Microservice Performance;

6 µ_Se = Microservice Security;

7 if (LS_m) require specific database then
• Break (LS_m)

• Create a new (µ_DB) in order to

• Improve (µ_A) ∧

• Improve (µ_P) ∧

• Improve (µ_S) ∧

• Improve (µ_Se)
8 end

Chapter 5: The Feature-Driven Migration Approach 71

Impact on features

• Resulting in better system performance, scalability and availability.

• Improving security; data can be separately stored in different databases in accordance

with their level of sensitivity.

• It is challenging for the development team to handle several different types of database.

• The operating costs involved with supporting multiple databases might become rela-

tively high.

Chapter 5: The Feature-Driven Migration Approach 72

Rule 12 - Master data access microservice

Precondition

• Data from the microservice-based system needs to be merged into the existing legacy

system due to the difficulties involved in breaking up some components of the legacy

system into microservices.

Transformation

• Creating a MDAM that manages data access to selected components of the legacy

database and the microservice database; microservices do not need to ‘know’ each

other’s underlying database structure.

• Replicating only a selective portion of the data in the master data system.

• The idea is that each microservice can follow the SRP.

Algorithm 5.12: Master data access microservice

1 LS_DS= Legacy System Data Store;

2 µ_DS = Microservice Data Store;

3 µ_MD =Microservice Master data;

4 µ_A =Microservice Availability;

5 µ_I =Microservice Interoperability;

6 if (LS_DS Join µ_DS) then
• Create (µ_MD) in order to

• Improve (µ_A) ∧

• Improve (µ_I);
7 end

Impact on features

• Maintaiting coordination of the microservices, and between the microservices and the

residual legacy system, within the MDAM reduces the complexity of coordination.

• Ensuring the availability of data at the right time.

• Enhancing interoperability between two systems.

Chapter 5: The Feature-Driven Migration Approach 73

• Bringing in an additional latency problem, especially when the microservices are

hosted in environments which are geographically distributed.

• Forming a potential performance bottleneck at the MDAM, and even resulting in denial

of service in the new architecture and affecting all the depending microservices if the

MDAM runs into a fatal failure.

Chapter 5: The Feature-Driven Migration Approach 74

Rule 13 - Database view

Precondition

• Where there is a need to join or aggregate the data from multi-data sources, the idea of

a virtual database is applicable. For example, one of the databases involved could be

that of the legacy monolithic application, and so the other one could be one or more of

the new microservice. Alternatively, a virtual database could be the means by which

two microservices co-operate.

Transformation

• Create a database view by creating another representation of the model that are suite

the use case . Views represent a subset of the data contained in a table. They can join

and simplify multiple tables into one virtual table.

Algorithm 5.13: Database view

1 LS_Ds= Legacy System Data store;

2 µ_Ds = Microservice Data store;

3 DBV = Database View;

4 µ_P = Microservice Performance;

5 if (LS_DS Join µ_DS) ∨ (µ_DS Join µ_DS) then
• Create DBV in order to

• Reduce (µ_P)
6 end

Impact on features

• The use of this technique might bring performance issues, especially view depends on

frequency of view accesses.

• It provides secure access to the underlying table

• It consumes little memory storage as the database contains the view definition not the

data.

Chapter 5: The Feature-Driven Migration Approach 75

Rule 14 - Security access control roles

Precondition

• The legacy system struggles to deal with a particular, identified, threat such as unau-

thorised access due to the inflexibility of the old system, in terms of it accommodating

fixes, amendments, or updates.

Transformation

• The legacy system modules are ‘broken out’ into separate microservices. This transition

generally results in a system implemented in fewer lines of code than was necessary to

implement the monolith. Such efficiencies may result in there being fewer loopholes

for attackers to exploit, especially in terms of authentication and access control.

• This transformation protects the microservices from unauthorised access and reduces

the risks derived from privileged user credentials being stolen (both in terms of like-

lihood and severity). The functionally different user-roles (involving access control)

are separated out and the traffic and user-roles across all the services become more

segregated.

• One microservice will be responsible for obtaining the permissions pertaining to a

specific user and will administer a set of database tables which are used to maintain

user-roles, responsibilities and permissions. User-roles will be determined during user

login by associating each user-role with a token and storing this in the database.

Algorithm 5.14: Security Roles

1 LS_S= Legacy System Security issue;

2 µ= Microservice Architecture;

3 µ_S = Microservice Security;

4 if (LS_S == true) then
• Create a new (µ) in order to

• Improve (µ_S)
5 end

Chapter 5: The Feature-Driven Migration Approach 76

Impact on features

• This rule leads to a reduction of the latency issue related to the securing of microser-

vices.

Chapter 5: The Feature-Driven Migration Approach 77

5.5 Feature Driven Cloud Migration Rules

The migration mechanism to the cloud is an optional part, but many enterprise systems and

even microservice enterprise systems need it and choose to deploy to the cloud due to the

unique advantages of cloud computing. How new microservices migrate to the cloud is a

question that needs to be tackled due to the practical needs of those who use this approach to

remain within the microservices , or to move further and deploy in the cloud.

Microservices-based applications can be difficult to deploy. There are hundreds or

thousands of different kinds of microservices, each with their own configuration and scaling

requirements. For these reasons, a set of feature-driven cloud migration rules is proposed in

this section to assist in the process of deploying microservices efficiently in the cloud.

Rule 1 - Deployment in multi-cloud environments

Precondition

• An enterprise application consists of a set of microservices with diverse workloads or

unique platforms and databases.

Transformation

• The cloud offers several choices in terms of microservice deployment. However, it is

critical to have an in-depth understanding of microservices application environments

and the unique prerequisites of each microservice to determine which microservices to

deploy into clouds - whether private, public, or hybrid.

Algorithm 5.15: Deployment in multi-cloud environments

1 µ= Microservice Architecture;

2 µ_A = Microservice Availability;

3 µ_P = Microservice Performnce;

4 if (µ) Require specific DB ∨ unique resources ∨ handle intensive workload then
• Deploy (µ) in Cloud environment in order to

• Improve (µ_A) ∧

• Reduce cost ∧

• Improve µ_P
5 end

Chapter 5: The Feature-Driven Migration Approach 78

Impact on features

• Improving service availability.

• Minimizing the cost scaling as needed;

• Appropriate performance;

• providing consistent security protections and policies by keeping sensitive data in a

private cloud;

• Furthermore, there are also the generally available benefits of cloud deployment.Such

as elasticity and pay-as- you-go.

• Managing multi-clouds-based applications may be challenging.

Chapter 5: The Feature-Driven Migration Approach 79

Rule 2 - Deploying and managing extra loads

Precondition

• Microservices may need to handle additional loading while still ensuring high avail-

ability. Some microservices may have to be run in multiple copies to handle additional

loads and offer high availability.

Transformation

• Deploy one or more instances of a microservice, depending on the deployment require-

ments.

• The API gateway manages and controls the distribution of requests between multiple

instances.

• The instances can be added or removed, based on the loading.

• All the instances are completely isolated.

Algorithm 5.16: Deploying and managing extra loads

1 µ= Microservice Architecture;

2 µ_R= Microservice Reliability;

3 µ_A = Microservice Availability;

4 if (µ) Require to handle intensive workload then
• Deploy (µ) in multiple instance in order to

• Improve (µ_A) ∧

• Improve(µ_R);
5 end

Impact on features

• The API gateway ensures that the data associated with the microservice based applica-

tion will persist, thereby providing high reliability;

• One drawback is that many different versions of the microservice must be handled

simultaneously.

• Increased response time due to the network bottleneck at the API gateway.

Chapter 5: The Feature-Driven Migration Approach 80

Rule 3 - Geolocation microservice - master database synchronization

Precondition

• Microservices may need to be deployed across many regions and it must be ensured that

such distributed microservices provide fast, more than adequate, system performance

for the globally distributed users.

Transformation

• Deploy the microservices across different regions.

• Each region will consist of multiple zones; each zone will be comprised of one or more

microservices. Each region is completely independent in terms of power, separate

databases, memory and backbone network connectivity.

• Create master databases and synchronise the data by replicating the necessary data

items from each region in the master database.

• In case any of the microservices in any of the regions becomes unavailable, the user

can access the same data from any other location.

Algorithm 5.17: Geolocation microservice - master database synchronization

1 µ= Microservice Architecture;

2 µ_DI = Microservice Data Integrity;

3 µ_DA = Microservice Data Availability;

4 MDB = Master Database;

5 if (µ) Require to deploy in different region then
• Create MDB in order to

• Improve (µ_DA) ∧

• Improve _DR;
6 end

Impact on features

• This rule ensures data availability and integrity via synchronous replication.

• This replication of data reduces data access latencies to the user.

Chapter 5: The Feature-Driven Migration Approach 81

• There might be temporary delay issues due to network latency or the load on the

replication facility.

• Security and privacy may become an issue with distributed microservices since the

client’s data is stored across multiple regions.

• To increase read throughput, it may be necessary to allow multiple machines to serve

read-only requests.

Chapter 5: The Feature-Driven Migration Approach 82

Rule 4 - Geolocation microservice – prioritised request

Precondition

• Microservices may need to be deployed across many regions and it must be ensured that

such distributed microservices provide fast, more than adequate, system performance

for the globally distributed users.

Transformation

• Deploy separate instances of each microservice in each region, including the data

stores and the services that access them.

• Employ a master database whereby, depending on the request type and the request

priority, the master database will be updated.

• If a transaction does not need to be processed instantly, asynchronous update will be

used; otherwise synchronous updating will be applied, as described in Figure 5.2.

 Receive a request from the user

Does the transaction

need to update the

master database?

Yes No

Reschedule the request and asynchronous

the data to the master database

Synchronous data to the master

database

END

Figure 5.2 Update Master DB based on Request priority.

• In the single queue approach, the number of consumers can be scaled back as necessary.

High priority messages will still be processed first (although possibly more slowly),

and lower priority messages might be delayed for longer.

Chapter 5: The Feature-Driven Migration Approach 83

• If the multiple message queue approach is implemented, with separate pools of con-

sumers for each queue, the pool of consumers allocated to the lower priority queues

can be reduced. Processing can even be suspended for some very low priority queues

by stopping all the consumers that listen for messages on those queues.

Algorithm 5.18: Geolocation microservice - prioritised request

1 µ= Microservice Architecture;

2 µ_P= Microservice Data Performance;

3 MDB = Master Database;

4 if (µ) Require to deploy in different region then
• Deploy µ in separate instance ∧

• Create MDB

if Transaction require to be updated on the MDB then
• Synchronous data to the MDB

else
• Asynchronous data to the MDB in order to

• Reduce opertional costs ∧

• Improve _P;
end

5 end

Impact on features

• The multiple message queue approach can help maximise application performance and

scalability by partitioning messages based on processing requirements. For example,

vital tasks can be prioritised to be handled by receivers that run immediately while less

important background tasks can be handled by receivers that are scheduled to run at

less busy periods.

• It can help to minimise operational costs.

• Security and privacy may become an issue with distributed microservices since the

client’s data is stored across multiple regions.

Chapter 5: The Feature-Driven Migration Approach 84

Rule 5 - Geolocation microservice – local/global master database

Precondition

• Microservices may need to be deployed across many regions and it must be ensured that

such distributed microservices provide fast, more than adequate, system performance

for the globally distributed users.

Transformation

• Deploy microservices across different regions;

• Each region consists of multiple zones. Each zone supports one or more microservices,

each with a separate database. For example, services located in the US or European

zones will all use the power networks, backbone networks, and data-storage available

in the same zone. Create a local master database in each region and a global master

database.

1. Synchronise data to the local master database.

2. Synchronise data from the local master database to the global master database.

• However, if the transaction type is such that its result needs to be available in other

regions instantly, the request will be routed accordingly and synchronised to the global

master database [80].

Chapter 5: The Feature-Driven Migration Approach 85

Algorithm 5.19: Geolocation microservice - local/global master database

1 µ= Microservice Architecture;

2 µ_DA = Microservice Data Availability;

3 µ_P= Microservice Database performnce ;

4 LMDB = Local Master Database;

5 GMDB = Global Master Database;

6 if (µ) Require to deploy in different region then
Create LMDB∧ create GMDB ∧

Synchronise data from LMDB to GMDB in order to

Improve (µ_DA) ∧

Improve (µ_P);
7 end

Impact on features

• There might be temporary delay issues due to network latency or the loading on the

replication process.

• Security and privacy may become an issue with distributed microservices since the

client’s data is stored across multiple regions.

Chapter 5: The Feature-Driven Migration Approach 86

Rule 6 - Containerised microservice

Precondition

• Microservices must be deployed and scaled independently; they also need to be isolated

from one another. When one service misbehaves, other microservices should not be

impacted.

Transformation

• Package the service as a container image; this makes its image portable across the

different operating systems involved and means that it runs in an isolated environment.

It is possible to run several of containers on a single VM without any interference

between them.

• Containers are very lightweight and consume only what is needed from the host

OS,which reduces the possibility of resource conflicts.

Algorithm 5.20: Geolocation microservice - Containerised microservice

1 µ= Microservice Architecture;

2 µ_DA = Microservice Data Availability;

3 if (µ) Require to deploy independently ∧ isolated from other (µ) then
Run µ in container in order to

Reduce overhead processing ∧

Improve µ_DA ;
4 end

Impact on features

• Adopting containers will lower computational overhead and lead to better isolation.

• Containers are not as secure as VMs and to manage this issue the developer must make

the configurations of infrastructure use as secure as possible; the infrastructure should

be monitored at all times.

Chapter 5: The Feature-Driven Migration Approach 87

5.6 Microservices Transformation Roadmap

In this section, candidate features are examined to see how effectively they can be transferred

to microservices. For this, the manual identification of the candidate features was imple-

mented by navigating the code and defining the main reason of each class. The functionality

of the system helps to define the individual’s entities in the legacy system. The migration

process was done by one feature at a time and one function at a time.

The ultimate goal of adopting a microservices architecture is to benefit from the single

responsibility and independent deployment of each service. However, how to design and build

each microservice must be carefully considered, in isolation, and then all the services must be

tested working together in the implementation stage before the final release. It is also critical

to think properly about the scope and size of each microservice. To construct a microservices

architecture, the system had to be analysed in-depth so that the entire architecture was

understood. The process used to transform the system into a microservices-based architecture

is shown in Figure 5.3 and is described below.

Figure 6-3 The Process to transform RosarioSIS legacy system to a microservice-based architecture

a) Analysing the code and define the system’s boundaries

The transposing of the legacy system to a micro-services-based architecture began with an

analysis of the existing system in order to identify, from the legacy code, all service elements

including files, modules, classes and procedures, used within it. To discover the most data

intensive procedure, in other words the one that reads/writes the most data, the procedures were

then reviewed to determine where they were defined, what they did, and where procedure calls

to them were located. This revealed the most often referenced procedures in the code; these tend

to be the most data intensive also. Finally, all the connected modules were explicitly defined in

order to identify the structure of the system and the relations between the modules.

b) Building a UML diagram

Next, a class diagram for the existing system was drawn to abstract the functionality of all the

modules in the system. This assists in the understanding of the relationships between the

system classes, and in addition plays an essential role in determining what the services should

be. Besides all this, such a diagram shows how the existing code can be turned to new uses,

via well targeted modification.

c) Applying Rules

Analysing Code

Building UML
Digram

Applying Rules

Analysing Database

Applying DDD

Figure 5.3 The Process to transform RosarioSIS legacy system to a microservice-based architecture

Chapter 5: The Feature-Driven Migration Approach 88

(a) Analysing the code and define the system’s boundaries

Transposing the legacy system to a microservices-based architecture began with an

analysis of the existing system to identify, from the legacy code, all service elements

used within it, including files, modules, classes and procedures. To discover the most

data intensive procedure, in other words the one that reads/writes the most data, the

procedures were then reviewed to determine where they were defined, what they did,

and where procedure calls to them were located. This revealed the most commonly

referenced procedures in the code; these also tend to be the most data intensive. Finally,

all the connected modules were explicitly defined to identify the structure of the system

and the relations between the modules.

(b) Building a UML diagram

Next, a class diagram for the existing system was drawn to abstract the functionality of

all the modules in the system. This assisted in the understanding of the relationships

between the system classes, and in addition plays an essential role in determining what

the services should be. Besides all this, such a diagram shows how the existing code

can be turned to new uses, via well targeted modification.

(c) Applying Rules

Once an abstracted overview of the existing system was formed, transformation rules

had to be chosen and applied to redesign the system in consideration of the objectives

of involvement. One candidate heuristic is to break up the code so that functions

(mostly) remain local to a service. Each service should have a dedicated function. This

rule creates clear boundaries between each microservice and indicates which piece(s)

of code should be changed for the functionality of each service. The outcome of this

step was identifying main functionalities and responsibilities, the key task was the use

of the feature-driven rules.

(d) Analysing the database schema

This step focuses on building an understanding of the shared database schema. Gener-

ally, the database is broken up and data tables are extracted and redefined in such a way

that each can be placed in an isolated, independent database which may be used later

Chapter 5: The Feature-Driven Migration Approach 89

by only one of the microservices. These activities concern data management, which

is the most essential component of any application. The main challenge presented at

this stage was to identify which data services are closely related. In a microservices

architecture, to achieve the implementation of independent and loosely coupled mi-

croservices, one dedicated database per microservice (Rule 3) is applied. This means

that all the microservices’ databases are independent of each other. A change in one

database should not affect any other databases.

(e) Applying Domain Driven Design

Applying a Domain-Driven Design (DDD) technique, in which a main module is

broken into a set of services, minimises the possibility of data sharing between two or

more microservices. It is possible to use DDD and still end up with quite large services.

To avoid that, the feature-driven rules (Rule 2 – Single Responsibility Principle) ensure

that each service concentrates on one responsibility. Migrating data from a legacy

software system requires careful planning, depending on each case, by identifying

the tables corresponding to each service and creating a new database schema for each

of the corresponding services. Then migrating one service at a time. To perform the

transformation, developers can choose whatever technologies and tools are best suited

for each service. Each case study has different requirements and priorities.

Given the need to deploy these services in different cloud environments, feature-

driven migration rules are applied. There are several options to used based on the

microservices requirements and specifications. Enterprises have the option to deploy a

microservices architecture on public or private cloud. Also, runing microservices on

container improve quality, reliability, and resiliency of the microservice architecture.

Chapter 5: The Feature-Driven Migration Approach 90

5.7 Summary

This chapter addressed how the FDD is used to identify and specify NFRs. Also, it discussed

how this classification can act like a guideline to the introduction of feature-driven rules.

Based on the FDD, a set of system requirements for microservice-based legacy system

transformation and migration were defined. The system requirements, in which NFRs are

included, play a vital role in the success of a software development process. The interpretation

of the NFRs depends on the system that is being implemented. To achieve one NFR may mean

strengthening, or alternatively losing, another NFR. To base the development/migration on a

solid foundation, a set of key features were identified; performance, functionality, availability

and scalability. Then, a list of sub-features were identified along with the relationships that

exist between them. These defined requirements expose the relationships between functional

and non-functional elements which are necessary to be aware of to build a new system. Each

feature is important in terms of defining the scope of the system and in terms of providing a

clear picture of the required result.

Once the above definitions were determined, a set of feature-driven transformation

rules were derived. These rules are like the map that the software architect must navigate;

steer through the rules and analyse the options to determine the suitability of each rule to the

legacy monolithic system’s goals, to reach the final destination of a successful microservices-

based system. Also, these rules represent a realistic approach to the exploration of both

the benefits and the drawbacks of transformation. The microservice-based architecture is

constructed by first decomposing the monolithic system into small independent components,

having specific functions, and isolated databases. This converts a module, possibly using

significant resources, to a separate service based on the rules. Furthermore, rules are provided

to facilitate the analysis of the deployment of the microservice-based architecture to the cloud

and how that affects the quality attributes, such as performance, scalability and availability.

Chapter 6

Case Study and Evaluation

6.1 Introduction

Chapter 5 proposed a set of feature-driven rules that help determine when to migrate and

where migration begins. This chapter introduces two case studies which include the evalua-

tion of these feature-driven rules and presents the results of these evaluations.

In the first case study, migration was implemented using a relevant sub-set of the rules

laid out in Chapter 5 and was tested using the Jmeter tool [1]; this measures how long each

of the systems (monolithic, legacy system and microservices system) takes to process the

user request, in relation to a pre-specified time limit. Additionally, the comparison of the

two system implementations, using the two different architectures, reveals the impact on

performance of the transformation to a microservices architecture.

In the second case study, the microservice system was designed by selecting the most

suitable feature-driven rules with respect to the system’s aims and functionality. The rules

were combined to define the best route to migrate the legacy systems to a microservices

architecture. The usability of the rules was evaluated by analysing the impact of the new

microservices-based architecture on the NFRs. The evaluation highlighted the way in which

this new, microservices, paradigm is becoming crucial as it is changing how enterprises

handle information and resolve legacy system weaknesses such as scaling and maintenance

challenges.

Chapter 6: Case Study and Evaluation 92

6.2 Case Study 1

This section presents a case study based on a monolithic system called ‘RosarioSIS’ [2],

which is an open-source legacy Student Information System (SIS). This system was analysed

and then transposed to a new microservice-based architecture. The new system was fully

implemented and deployed on a cloud platform. This section first introduces the original

monolithic RosarioSIS system and then provides a description of its migration into a mi-

croservices architecture.

RosarioSIS provides services across several schools, helping to manage the schools, their

staff, the students, grades, payment, etc. The new microservices architecture was built using

a Laravel and Swagger API framework [81] [82].However, to ensure the case study remained

relatively simple, the migrated application was designed to support only the four most popular

services. The first service, ‘School’, is for managing the school itself. The second service,

‘Student’, is employed for adding, updating, and deleting student records. The third module

is the ‘User’ microservice, which presents the user-profiles and the teacher programs. Finally,

the ‘Grades’ service manages the GPA and presents the user’s grades to them on request.

6.3 The Current, Monolithic, Architecture of RosarioSIS

RosarioSIS [83] runs as a publicly accessible web application. The prime objective of

RosarioSIS is to provide schools with a platform where they can manage their staff and

students. The system consists of numerous different components via which the school admin

can manage teachers, students, attendance, fees, events, courses, and resources.Furthermore,

there are several roles recognised by the system, such as teacher, staff member, payroll, and

administrator; the latter can only be registered with the system by the current school admin.

Each role has a certain number of duties associated with it and these are determined by the

school admin. Moreover, each student will have their own web panel from which they can

manage their leave, fees, and other important details.

current system has a 3-tiered architecture, as shown in Figure 6.1.

Chapter 6: Case Study and Evaluation 93

Figure 6.1 Monolithic architecture of RosarioSIS

The Presentation Tier is the user interface, which is responsible for translating the

results of the various operations into a readable format for the user and displaying them.

Users can access the system via any web browser they may have. The Hypertext Markup

Language (HTML) components of the presentation tier assemble the data received from the

logic tier, described below, and then display it. The user communicates with the web server

via the Hypertext Transfer Protocol (HTTP), to send and receive requests.

The Logic Tier works as a coordinator, controlling interactions between the presenta-

tion tier and the data tier, described below. User requests are received from the user interface

(i.e. the presentation tier) and then converted into actions to be performed via appropriate

communications with the data tier. Any results are sent back to the logic tier which will

then pass them on to the presentation tier for display. For instance, the logic tier processes a

client’s request to view students’ records, the logic tier receives this request and then passes

it to the data tier to process and extract all the information relating to the students from the

database so that these can be displayed.

The Data Tier Tier holds the application data, such as students, teachers, timetables,

assignments and grades data, etc. This information is stored in a relational database manage-

ment system in order to facilitate data reusability and manageability. All the data needed by

the application are retrieved from this database. In addition, all the computation results from

the logic tier are stored in the data tier.

Chapter 6: Case Study and Evaluation 94

The RosarioSIS legacy system was implemented as a set of web applications. Its

architecture is very monolithic albeit with a modular structure. It may be accessed through

an intranet where there is no Internet access (i.e. offline). The system’s components are:

• The web application developed using PHP 5.3. The relational database employed was

PostgreSQL.

• The front-end application, developed in HTML-5, CSS 3, and jQuery.

The system can be considered as one package containing all the necessary modules.

Such a system structure makes it an excellent candidate for adopting a microservice-based

architecture. Its major functionality can be identified as following as an Entity Relationship

Diagram (ERD), shown in Figure 6.2 and described below.

Chapter 6: Case Study and Evaluation 95

Figure 6.2 RosarioSIS Monolithic ERD

Chapter 6: Case Study and Evaluation 96

• The ‘School’ module is used to add a school, set up marking periods, set up grade levels,

manage a school’s calendar and schedule school events. In addition, this maintains the

publishing notes and allows the system to be configured.

• The ‘Student’ module facilitates student enrolment and allows student information

to be edited. It is also responsible for generating and printing advanced reports and

formatted letters to communicate with students.

• The ‘User’ module manages user profiles by facilitating the addition of the various

user types (administrator, teacher, parent) and the editing of their information. The

permissions under which each user must operate are determined in this module.

• The ‘Scheduling’ module organises school subjects, courses, and student schedules. It

also generates and prints schedules and class lists.

• The ‘Grade’ module is responsible for creating assignments, managing the gradebook

and recording final grades. As well as this, the students can consult it to access their

grades and print transcripts and honour lists.

• The ‘Student billing’ module handles the school’s expenses, staff salaries, and student

fees. It also generates and print statements.

• The ‘Food services’ module tracks the meals served and manages student and staff

accounts.

6.4 New Microservices Architecture of RosarioSIS

To deliver an accessible demonstration and evaluation of the proposed rule set, a legacy,

monolithic application was chosen for migration to micro services and the cloud. To simplify

matters, the microservices architecture was designed to support only the four most popular

services from the legacy application. The first service, ‘School’, is for managing the school

itself. The second service,‘Student’, is employed for adding, updating, and deleting student

records. The third module is the ‘User’ microservice, which maintains the user-profiles and

the teacher programs. Finally, there is the ‘Grades’ service, which manages the GPA and

presents the grades to the user on request.

Chapter 6: Case Study and Evaluation 97

Creating an application based on microservices is not like a monolithic application. For

this reason, functionalities in monolithic systems are divided into different services. To do

this, it is important to follow an adequate design and structure for each of the microservices

according to its requirements.

The implementation stage is responsible of dividing the legacy system into logical

parts and groups them according to their existing relationship. Feature-driven transformation

rules take care of defining which concrete elements support each of the microservices, for

example, where the data is stored, or breaking modules based on specific requirements. A

feature-driven rule is a process solution to a recurrent problem in a real-world application

development. Feature-driven rules will make software more stable and reliable. During

this stage, the main focus is to transform the RosarioSIS legacy system to microservice

architecture and the main goal is to have as stable and reliable a system as possible. Some

of the feature transformation rules will be used, such as the legacy system decomposition

into microservices (Rule 1), SRP rule (Rule 2) and one dedicated database per microservice

(Rule 3).

The transformation process starts by following the understanding that the RosarioSIS

legacy architecture, dependencies and relationships between modules have to be recognised.

There are tools available to help read the source code and generate a visual diagram that has

all the modules with their relationships. However, in this case study, this step has been done

manually by reading all the code, trying to identify the relationships between the modules,

and drawing the ERD by dividing the functionality of the RosarioSIS legacy system. To

understand the architecture at this level, dependencies and communication relationships

between the microservices must be known. However, analysing communication relationships

is difficult. This makes it possible to verify the implemented architecture, adjust it to the

planned architecture, and follow the evolution of the architecture over time.

The process of isolation in this case study was done using DDD, which provided

an idea of how to determine the boundaries of the problems with respect to the various

RosarioSIS legacy sub-systems, such as the user management, educational, and food service

sub-systems. Breaking the larger context into smaller chunks provides a clearer idea of

how data moves from one component to another. As microservices must be isolated, it

is critical that each component remains in its own bounded context and has an obvious

Chapter 6: Case Study and Evaluation 98

responsibility. For instance, there is a student module in RosarioSIS which performs the

student management tasks, and thus the information which relates to each student must be

kept within this subdomain. Also, each student is associated with one or more parents, so

parents’ profiles must also be maintained here. The extraction is not easy, all the modules

that are connected or being used by this module have to be checked. Following this, a new

table in a new database must be created, so the student microservice will use it.

The same kind of process of analysis was applied to the other modules until a clear

structure of domains and subdomains, in relation to the RosarioSIS legacy system, was

identified. The bounded contexts of students, school, users, and grades are presented in

Figures (6.3, 6.4, 6.5, 6.6).

Figure 6.3 Grades’ Context

Chapter 6: Case Study and Evaluation 99

Figure 6.4 Students’ Context

Figure 6.5 School Context

Chapter 6: Case Study and Evaluation 100

Figure 6.6 Users’ Context

After splitting the functions of the monolithic system into different microservices, the

services were prioritised in terms of which needed to be built first to ensure the main services

remained available. As a result, four services, were derived from the legacy PHP code. Each

service addresses a specific business scope and they are fully decoupled from each other.

When adopting a microservices architecture, it is important, early on, to decide on the

number of microservices to be built. For this case study, the above four microservices were

selected as the only ones to be implemented due to the time constraints of the current work.

a) Implementation

Defining the technology stack that will be used to construct the framework is one of the

core aspects of the architecture. Different technologies can be used and defining a standard

technology for all the microservices is not mandatory. However, in this case study, due to the

time limitation, all the microservices are built with the same technology stack . Also, there

are benefits when all the microservices apply the same framework and tools; it will reduce

complexity , and it will be easier for the developer to solve the issues, etc. This section will

Chapter 6: Case Study and Evaluation 101

focus on the tools that were used to implement the RosarioSIS microservice architecture.

Each microservice was developed as an independent Laravel MVC framework. The gateway

was developed as a light web application which receives requests from end-users (browsers)

through the Internet and consumes the private services offered by the microservices through

Representational State Transfer (REST). The message exchange protocol which connects the

browsers to the gateway, and the gateway to each microservice, is JSON. The gateway does

not store any information. The microservices architecture was deployed on the Amazon ECS

cloud platform, as illustrated in Figure 6.7.

Figure 6.7 Microservice Architecture

After the transformation of the system into one framed in a microservice-based archi-

tecture, this microservices architecture was implemented as four independent applications,

supported by the AWS cloud: the ‘School’ microservice (µS1); the ‘User’ microservice

(µS2); the ‘Student’ microservice (µS3); and the ‘Grade’ microservice (µS4). These were

all developed using PHP 7.1 and the MySQL5.0.12 relational database system. The Swagger

API gateway was used for developing the four APIs relating to the four microservices.

A microservice is built in a specific way that incorporates three main components: an

API, a microservices logic unit, and a data store. These are shown in Figure 6.8 and detailed

in the sub-sections below.

Chapter 6: Case Study and Evaluation 102

supported by the AWS cloud: the ‘School’ microservice (μS1); the ‘User’ microservice

(μS2); the ‘Student’ microservice (μS3); and the ‘Grade’ microservice (μS4). These were

all developed using PHP 7.1 and the MySQL5.0.12 relational database system. The Swag-

ger API gateway was used for developing the four APIs relating to the four microservices.

A microservice is built in a specific way that incorporates three main components: an API, a

microservices logic unit, and a data store. These are shown in Figure 6-5 and detailed in the sub-

sections below.

The API gateway and its Design

The APIs have been implemented using the Swagger gateway, an open-source API development

framework [52], and were coded in the JSON format. The gateway defines the API operations

which can be used, including POST, GET, DELETE, and PUT; these are supported at each

endpoint. Swagger is used as an open API specification for identifying the functionality of the

API gateway associated with a microservice. This specification defines how to use the API, how

to enter values, etc.

The API Gateway forms a layer between the user and the microservices that encapsulates the

internal system architecture and provides a tailored API for each client. Requests sent through the

API gateway are routed to the applicable backend microservice. Requests to the backend services

are independent of each other. The API gateway is a way to bridge through to the services; it has

a certain amount of information which it holds to assist it in understanding the overall

microservices system. The Gateway, besides, can have other responsibilities - such as

authentication, input validation, monitoring, and response handling. The APIs are responsible for

direct request and protocol translation - independently of each other. The API gateway

implementation includes the following tools:

1. Swagger

Figure 6-5. Microservice Design

Ms

API

DB

HTTP Method

Figure 6.8 Microservice Design

• The API gateway and its Design

The APIs have been implemented using the Swagger gateway, an open-source API devel-

opment framework [81],and were coded in the JSON format. The gateway defines the

API operations which can be used, including POST, GET, DELETE, and PUT; these are

supported at each endpoint. Swagger is used as an open API specification for identifying the

functionality of the API gateway associated with a microservice. This specification defines

how to use the API, how to enter values, etc. The API gateway forms a layer between the

user and the microservices that encapsulates the internal system architecture and provides

a tailored API for each client. Requests sent through the API gateway are routed to the

applicable backend microservice. Requests to the backend services are independent of each

other. The API gateway is a way to bridge the services; it has a certain amount of information

which it holds to assist it in understanding the overall microservices system.

1. The API gateway can also have other responsibilities, such as authentication, input

validation, monitoring, and response handling. The APIs are responsible for direct request

and protocol translation, independently of each other. The API gateway implementation

includes the following tools, Swagger and Passport:

1. Swagger is a framework for designing an API in different languages. Swagger is a

set of specifications or rules for describing REST APIs. It can be used by different

frameworks or tools. In terms of generating documentation for use with Laravel

Chapter 6: Case Study and Evaluation 103

projects, Swagger-PHP has proven to be the most reliable and problem-free system to

use [81]. Swagger makes sure all the microservices on the system are available and

easy to understand without accessing the code or the service documentation.

The Figure (6.9, 6.10, 6.11, 6.12) below show the format used for the description

of the APIs for the four microservices; this format provides detailed information,

including data inputs and outputs and the authentication method employed. Each API

has different methods (get, put, post, delete) and is expandable. By clicking on each

method, such as in Figure 6.13, a full description of the parameters will be obtained

along with an example, as shown in Figure 6.14. All the values can be tested, and an

API response message appears in JSON based on the result of the value, as shown in

Figure Figure 6.15.

Figure 6.9 User API

Chapter 6: Case Study and Evaluation 104

Figure 6.10 School API

Figure 6.11 Grade API

Chapter 6: Case Study and Evaluation 105

Figure 6.12 Student API

Figure 6-8 Grade API
Figure 6-9 Student API

Figure 44 API input Fields

Figure 43 API GET operation

Figure 6.13 SAPI GET operation

Chapter 6: Case Study and Evaluation 106

Figure 6-8 Grade API
Figure 6-9 Student API

Figure 44 API input Fields

Figure 43 API GET operation

Figure 6.14 API input Fields

2) Passport:

Passport is a user authentication technology. There are several authentication methods included

and these vary between a log in with a username and password the use of an OAuth provider. In

an API based system, a token is used to authenticate users. The Laravel framework uses the

Laravel passport; this employs an OAuth2 technology to issue a token to a user [55].

To understand the microservice security regime implemented here, we must first look at the way

security works in monolithic applications; this will help us to see the differences between the

authentication and authorization mechanisms of the RosarioSIS monolithic system and of the

RosarioSIS microservices system.

In a monolithic application, the purpose of authentication is always to verify the identity of a

user. In addition, authorization manages what a user can or cannot access (in other words,

permissions). Also, the data which is passed between the client and the server can be encrypted

with reference to the user’s identity. Usually, the user enters a username and password through a

web browser. Then, the server verifies these given credentials. A ‘session’ is created, and this is

stored in the database. A cookie and session id will be kept in the web browser (client side). The

session will be removed from both the web browser and the server side once the user logs out.

In contrast, the microservices API authentication, here, has been implemented with the use of

Laravel passports. This represents a form of token-based authentication. The user enters a

username and password. Then the server verifies these user credentials and generates a token. The

token is stored on the client side. The server verifies the token (a JSON web token) and returns

the required data. Once the user logs out the token is destroyed. By applying this technique, we

make sure that the service user is allowed to access each specific service that they require.

Figure 45 Example of API Message Response
Figure 6.15 Example of API Message Response

Chapter 6: Case Study and Evaluation 107

2. Passport is a user authentication technology. There are several authentication methods

included and these vary between a log in, with a username and password, and the use of

an OAuth provider. In an API-based system, a token is used to authenticate users. The

Laravel framework uses the Laravel passport; this employs an OAuth2 technology to issue

a token to a user [84]. To understand the microservice security regime implemented here,

it is important to first look at the way security works in monolithic applications. This will

help to see the differences between the authentication and authorisation mechanisms of the

RosarioSIS monolithic system and the RosarioSIS microservices system. .

In a monolithic application, the purpose of authentication is always to verify the iden-

tity of a user. In addition, authorisation manages what a user can or cannot access (in other

words, permissions). Also, the data which is passed between the client and the server can

be encrypted with reference to the user’s identity. Usually, the user enters a username and

password through a web browser, and the server then verifies these given credentials. A

‘session’ is created, and this is stored in the database. A cookie and session ID will be kept in

the web browser (client side) and the session will be removed from both the web browser

and the server side once the user logs out.

In contrast, here the microservices API authentication has been implemented with the

use of Laravel passports. This represents a form of token-based authentication. The user

enters a username and password, the server then verifies these user credentials and generates

a token. The token is stored on the client side and the server verifies the token (a JSON

web token) and returns the required data. Once the user logs out the token is destroyed. By

applying this technique, it is ensured that the service user is allowed to access each specific

service that they require.

6.5 Deployment in a Cloud Environment

To compare the infrastructures which support each architecture, both the monolithic archi-

tecture and the microservices architecture were first deployed using the Amazon Elastic

Container Service (Amazon ECS) [85]. The deployment process is conducted two stages.

Chapter 6: Case Study and Evaluation 108

1. Server installation on Amazon Web service.

In this step, an Amazon instance was initiated by setting up the software configuration

first, such as the operating system, application server, storage system and the server

(the location which was decided upon was EU West (London) regional server).

2. Creating an ECS Container on the AWS and configuring the cluster

Both the RosarioSIS legacy system and the RosarioSIS microservices-based architec-

ture were deployed on an Amazon cloud testbed. Five EC2 instances (virtual machines)

running the Amazon Linux operating system were allocated to this testbed. The type

of instance employed reflects the level and type of resources which it is expected to

use while running the application. Each instance type has its own configuration of

resources, resources such as CPU, memory, storage and networking.

The RosarioSIS legacy system was run at the t2.micro level with only one virtual

CPU, and a ‘budget’ of six CPU credits per hour. Therefore, it should be noted that,

when a t2 instance runs out of CPU credits at peak usage, it is restricted to its baseline

performance and this results in the application becoming slow. The deployment is

illustrated Figure 6.16.

Figure 6.16 The RosarioSIS Legacy System Deployment

On the other hand, the RosarioSIS microservices were run at t3 (small instance type).

At t3.small, two virtual CPUs and a budget of 24 CPU credits per hour are allocated.

Also, at this level, up to five times more bandwidth can be used when sending or

receiving network traffic between instances within the same or different regions. This

deployment. This deployment is illustrated in Figure 6.17.

Chapter 6: Case Study and Evaluation 109

Figure 6.17 The RosarioSIS Microservice-Based Architecture Deployment

Different deployment instance types were used for each type of architecture; this was

intended to ensure that the same level of performance was attained by both. Both

the legacy RosarioSIS monolithic architecture and the new RosarioSIS microservices-

based architecture were deployed on their VM instance, as shown in Table 6.2, Ta-

ble 6.1.

Table 6.1 Monolithic Instance Details

Instance type vCPU CPU Credits /hour Mem (GiB) Network Performance

T2.micro 1 6 1 Low to Moderate

Table 6.2 Microservice Instance Details

Instance type vCPU CPU Credits /hour Mem (GiB) Network Performance

T3.small 2 24 2 Up to 5

6.6 Test and Analysis

Tests were conducted using the JMeter tool, because it is free and open source [81],

against three performance metrics; error rate, throughput, and average response time.

These metrics help to measure how the systems behave alongside a change in the

number of users in real time. The comparison began by performing a targeted test for

each microservice individually, to identify the maximum number of users that each

Chapter 6: Case Study and Evaluation 110

service could handle simultaneously. Then, a performance test was carried out for the

monolithic architecture to calculate the number of requests it could handle at the same

time, in a specific ramp-up period.

The development/modification of the application undertaken for this case study allowed

the performance of each architecture to be compared by performing stress tests on

each. The stress tests evaluated the systems’ behaviours under heavy load, varying

the expected number of requests. The corresponding results from the experiments are

described below.

6.6.1 Performance Test

To test and compare the performance and infrastructures of the four microservices, the

same scenario was defined for all the microservices and the response time required for

each was configured.

In this test, the response time and throughput were examined via the JMeter tool [86] by

increasing the number of simulated users or requests loading the monolithic system’s

login page, user-detail page, school page, grade page, and student-detail page. The

results of this test were then monitored. The response times yielded by the four

microservices were all evaluated using the JMeter tool. The stress test saved records

in the MYSQL databases of the RosarioSIS microservices applications and in the

PostgreSQL database of the RosarioSIS monolithic application; the number of records

was almost 500 for both architectures.

For the RosarioSIS legacy system and RosarioSIS microservices stress tests, the same

number of requests were run on each system; this was to measure their average response

times and average throughputs appropriately, which are provided below.

Chapter 6: Case Study and Evaluation 111

(a) Response time

To perform the stress test on the microservices architecture, the scenario was

initiated by simulating a small number of requests (n=10) and then increasing

this in increments of 10 until the application began to generate errors or the

time limit defined for responses from S1, S2, S3, or S4 could no longer be met.

The timeframe within which the maximum number of requests the system could

handle before failing was examined and varied between 0.5 and 5 seconds.

The stress tests performed on the RosarioSIS monolithic architecture were based

on the number of requests per second that were found to be supported by the

microservices architecture. The performance tests were executed with the goal

of identifying the maximum number of requests that could be supported by the

monolithic architecture as implemented via Amazon AWS. This number was

found by increasing the number of requests each time until the application began

to generate errors, or the time limits defined for responses from the monolithic

architecture were not being met. The timeframe within which requests were

expected to be dealt with varied between 0.5 to 5 seconds; as before, given that this

timeframe was determined by the results from the stress tests on the microservices

architecture. Both the monolithic and the microservices architectures were

platformed on the Amazon ECS2 cloud.

There is a noticeable difference between the length of the response times for

the two architectures: all the microservices, S1, S2, S3 and S4, as Figure 6.18

indicates, yielded relatively slow response times from the beginning and these

worsened rapidly with the increase in the number of requests per second. The

highest number of requests attempted in one test was 80, which the microservices

architecture completed in a total of 4.5 secs. Attempts to test the system with

more requests than this resulted in errors being generated. On the other hand,

the monolithic application , as shown in Figure 6.18, yielded relatively quick

response times from the outset, but these slowed gradually as the number of

requests increased. When the number of requests attempted reached 80, the

average response time increased to 158 ms (milliseconds). The testing was

discontinued when the number of requests reached 80, in order to easily construct

Chapter 6: Case Study and Evaluation 112

a meaningful comparison. See Appendix A for further information regarding the

tests, including the JMeter tests for both architectures.

(b) Throughput

The stress test was carried out to compare average throughputs between the legacy

and the microservice architecture. The bar chart in Figure 6.19, shows that the

average throughput attained by the microservices S1, S2, S3, and S4 remained

relatively steady while the average throughput of the RosarioSIS legacy system

rose steadily each time the number of requests increased.

These results show that the performance of both architectures will decline as the

number of requests increases. An increase in the number of requests correspond-

ingly increases the response time and this leads to a lower throughput. However,

the monolithic architecture provides better performance overall, in relation to 40,

60, and 80 threads/requests. Based on this test’s scenario and with respect to the

defined time-frame, the monolithic application performs much better than the

microservices architecture. This is due to the move from the monolithic system to

the microservices architecture, which leads to an increase in the amount of com-

puting resources that must be expended across several processes, e.g. network

waits and the number of I/O operations. In contrast, in the monolithic system the

whole computation (for each request) takes place in a single process. Referring to

transformation rules (5&7)focused on computation tasks and throughput respec-

tively, to improve throughput and decrease response time for the microservices

architecture it is essential to reduce memory intensive functions by allocating an

appropriate amount of resources to each microservice. Furthermore, if there is

only one instance type for all the microservices then that instance type becomes

over utilized. This means that the resources available for that EC2 instance, such

as memory and CPU time, are usually at peak consumption all the time. Thus, if

the resources available were to increase by having a unique instance type for each

service, better performance would be achieved. Also, the more types of instance,

and therefore instances, there are, the less failure will be observed.

Chapter 6: Case Study and Evaluation 113

To summarise, there is no way to know in advance precisely how a particular

configuration will impact a specific application and set of requirements; the

proposed set-up must be tested against relevant performance metrics.

Chapter 6: Case Study and Evaluation 114

2
5

0

4
3

9

8
8

0

1
1

3
3

1
5

5
5

1
8

1
7

2
5

9

4
4

4

8
9

4

1
2

8
0

1
6

3
0

1
7

7
6

2
4

8

4
3

8

8
6

0

1
1

5
1

1
7

0
9

1
7

8
6

2
4

3

4
1

5

8
9

2

1
1

6
0

1
6

2
3

1
7

4
8

7
0

8
4

9
7

1
2

0
1

4
3

1
5

8

0

2
00

4
00

6
00

8
00

10
0

0

12
0

0

14
0

0

16
0

0

18
0

0

20
0

0

1
0

2
0

30
40

60
8

0

Response time (ms)

N
o

 o
f

R
eq

u
es

ts

u
se

r
m

ic
ro

se
rv

ic
e

St
u

d
en

t
m

ic
ro

se
rv

ic
e

Sc
h

o
ol

 m
ic

ro
se

rv
ic

e

G
ra

de
 m

ic
ro

se
rv

ic
e

Le
ga

y
Sy

st
em

F
ig

u
re

 6
-1

1
 A

v
er

a
g
e

rR
es

p
o

n
se

 t
im

es
 f

o
r

th
e

R
o

sa
ri

o
S

IS
 l

eg
a
cy

 s
y
st

em
 a

n
d

 t
h

e
R

o
sa

ri
o

S
IS

 M
ic

ro
se

rv
ic

es
 a

rc
h

it
ec

tu
re

Figure 6.18 Average response times for the RosarioSIS legacy system and the RosarioSIS microser-
vices architecture

Chapter 6: Case Study and Evaluation 115

6.
1

8.
8

8.
1

11
.2

15
.4

7.
5

13
.4

11
.3

14
.1

16
.2

9.
9

10
.5

12
.6

11
.5

15
.3

8.
4

9.
8

11
.1

11
.9

1
5

.6

4.
6

11
.8

14
.3

21
.6

2
8.

9

05

1
0

1
5

2
0

2
5

3
0

3
5

4
0

1
0

2
0

4
0

6
0

8
0

Average Throughput (ms)

N
o

 o
f

R
eq

u
es

ts

u
se

r
m

ic
ro

se
rv

ic
e

St
u

d
e

n
t

m
ic

ro
se

rv
ic

e

Sc
h

o
o

l m
ic

ro
se

rv
ic

e

G
ra

d
e

m
ic

ro
se

rv
ic

e

Le
ga

cy
 S

ys
te

m

F
ig

u
re

 6
-1

2

A
v

er
a

g
e

T
h

ro
u

g
h

p
u

t
fo

r
th

e
 R

o
sa

ri
o

S
IS

 l
eg

a
cy

 s
y

st
em

 a
n

d
 t

h
e

R
o

sa
ri

o
S

IS
 m

ic
ro

se
r
v

ic
es

 a
rc

h
it

ec
tu

re

Figure 6.19 Average throughput for the RosarioSIS legacy system and the RosarioSIS microservices
architecture

Chapter 6: Case Study and Evaluation 116

6.7 Case Study 2

This section presents the second case study relating to the use of feature-driven rules.

Here, a monolithic enterprise system ‘ERP2’ [87] is scrutinised and reframed into

a new microservice-oriented architecture. The aim of this case study is to apply

the evolution rules to a more complex and larger legacy enterprise system than that

examined in Case Study 1. As such, the efficiency and scalability of the evolution

framework and feature-driven rules are fairly evaluated. This case study also provides

a comprehensive explanation of the use of feature-driven rules with respect to an

enterprise system. The rules are framed in such a way as to enable developers and

architects to choose the most appropriate ones for planning their transformations and

migrations, combined with enhanced satisfaction of NFRs. The monolithic system

and its core business components, such as supply chain management, human resource

management, finance, and customer relationships, are reviewed and studied in in

Sections section 6.7. An evaluation of the re-architected ‘ERP2’ is undertaken in

Section subsection 6.7.3.

6.7.1 The Legacy System Transformation to Microservice Archi-

tecture

The ERP2 is a complex system and it consists of a set of interconnected modules

with many-to-many relationships between most tables in its database. An overview

of its data infrastructure is illustrated in Figure 6.20. . The ERP2 legacy system is

implemented using out-of-date software and technology. This makes it difficult to

upgrade the system, so that it can address new requirements, or to modify it, generally,

in response to business demands. Besides, the ERP2 inherits a great range of technical

issues as a result of it being a monolith; this challenges system efficiency and code

modifiability and re-usability.

To address these issues, this legacy enterprise system is required to move towards a

microservice-based architecture, which is technically challenging. Firstly, the migra-

Chapter 6: Case Study and Evaluation 117

tion requires a comprehensive understanding of the ERP2 system’s legacy architecture,

boundaries and code, as well as the business and technical requirements that the new

architecture must meet. Then, it is necessary to identify the target components that

must to be restructured in order to transcribe ERP2 into the new architecture smoothly.

The following paragraphs detail how the required understanding has been gained and

how this helped to determine which microservice rules should be applied on the ERP2

System in order to transform it.

Understanding how data are stored and how entities relate to each other within the

legacy system is the first step. This is important so that the optimal solution, in terms

of transformation, could be attained. As the ERP2 is an enterprise system running with

a single database supporting all its modules, the system components and its underlying

database needed to be conceptualised

The feature-driven rules are applied across two stages, as follows, to extract the services

from the legacy system

Chapter 6: Case Study and Evaluation 118

F
ig

u
re

 6
-1

3
 E

R
P

2
 E

n
ti

ty
 R

el
a
ti

o
n

sh
ip

 D
ia

g
ra

m

Figure 6.20 ERP2 Entity Relationship Diagram.

Chapter 6: Case Study and Evaluation 119

Step 1: understand the original system

The aim here is to gain an understanding of the original system, focusing on its sys-

tem domain to determine the functional dependencies and understand the functional

requirements of each module [88]. Guided by this information, the scope of each

module is defined. Then it is important to explicitly understand the code, the database

schema, and how data are exchanged between entities. Some difficulties emerged

in relation to this and appeared to be due to the poor allocation of resources in the

monolithic system architecture; the system experienced enormous challenges in terms

of the relationships among resources and system services and its performance. In

addition, since the monolithic ERP2 system has components of different sizes (which

share libraries, executables and resources), the precise identification of the resource

requirements and bottlenecks of each module is critical to successful transformation.

Step 2: Extract Services:

The objective of this stage is to find an ideal feature-driven rule, which provides a

direction in terms of the migration process – towards a microservices architecture.

The purpose of such a rule is to facilitate the conversion of modules (or combinations

thereof) to microsystems.

Chapter 6: Case Study and Evaluation 120

• Decomposition of a legacy application into microservice-based architecture (Rule

1)

ERP2 is a large, complex monolithic application consisting of tens of modules, all

of which are candidates for extraction and subsequent conversion. Deciding which

modules to convert first is often a challenging process. A good approach is to start

with the modules that are easy to extract. This provides the developer with a level

of familiarity with the general use of microservices, and the extraction process

in particular. The thinking behind this rule is that when a monolithic system

become unmanageable, it may be beneficial to split the system functionality into

standalone microservices.

• Single responsibly principle (Rule 2)

When decomposing a system into small services, the Single Responsibility Prin-

ciple (SRP) is applied. Things that change for the same reasons are grouped

together. A precise service domain is drawn for each microservice following

the bounded context concept of DDD. Every derived service accounts for only a

single responsibility in order to retain its independence.

A bounded context is a boundary delimiting an area within a particular domain

whereby it is subdivided into independent subsystems that host the differing

functions sharing a single domain. Each subdomain is like a linguistic boundary:

within the boundary, everyone speaks the same (local) language.

This (i.e., SRP with DDD) renders an insightful understanding of the system com-

ponents and their relationships to each other, within a visual context. Monolithic

applications, in general, can be deconstructed piece-by-piece and context-by

context. They gradually move into a microservices architecture, where microser-

vice domains and the microservices are open to any future refinements and

changes [89].

At this point, the current methods and modules used in the monolithic code are

identified. After this, the methods that get called in the code within each module

are determined as well as all the methods which depend on each module. For

instance, the supply chain module in the ERP2 legacy system is responsible

for: item information, order initiation, and checking the item’s delivery to the

Chapter 6: Case Study and Evaluation 121

customer. After selecting this module for examination, the methods called by

this module and the other modules which depend on it (and in what ways) are

reviewed: modules such as check invoice, check inventory, etc. This approach

assists in defining a clear perspective on the module. Such information will help

to extract this module from the legacy system and transform it into something

which can fit into a microservices-based architecture. To proceed to the building

of a microservices-based architecture, the rules are applied, using a now more

complete understanding of the domain, applying DDD to form the domain mod-

ell.This domain model represents the functional perception of the system [90],

], and it provides hints for structuring the bounded context by representing the

business process and the interactions between the different components. Follow-

ing the two rules described above, nine microservices were derived, as shown

in Figure 6.21; the domain of each microservice is illustrated from Figure 6.22

to Figure 6.29.

when a monolithic system become unmanageable, then it may pay dividends to split the system

functionality into standalone microservices.

- Second rule: Single responsibly principle (rule 2)

When decomposing a system into small services the Single Responsibility Principle (SRP) should be

applied; this means that the domain of the microservice should not be large and should be limited

and well-defined in scope. Every microservice should have only a single responsibility and this

situation can be achieved by grouping together the things that change for the same reasons.

Also, a microservice domain can be limited by applying the bounded context concept of a

DDD. A bounded context is a boundary within a domain whereby a particular domain is

subdivided into independent subsystems via grouping functions that indicate the sharing of a

single domain. Each subdomain is like a linguistic boundary: within the boundary, everyone

speaks the same (local) language. Taking this approach helps the developer to understand the

system components and their relationships to each other, within a visual context. Thus,

allowing monolithic applications to be deconstructed piece by piece and context by context to

achieve the design of a microservices systems, limiting the microservice domains and opening

the microservices to any future change.

Based on the above two rules, in terms of our case study, we arrived at the following micro-

services - see figure 6-14. Also, figures 6-15-6-23 show the domain for each microservice.

Finanacial
microservice

Supply-chain
microservice

Production
microservice

Planning and
scheduling

microservice

Product
microservice

Service
microservice

Human capital
microservice

Customer
relationship
microservice

Quality
Microservice

Figure 6-14 Core microservices from the ERP2 Legacy System

Figure 6.21 Core microservices from the ERP2 legacy system

Chapter 6: Case Study and Evaluation 122

Figure 6.22 Supply-chain domain

Figure 6.23 Human resource management domain

Chapter 6: Case Study and Evaluation 123

Figure 6.24 Financial management domain

Figure 6.25 Planning and scheduling domain

Chapter 6: Case Study and Evaluation 124

Figure 6.26 Quality domain

Figure 6.27 Product domain

Chapter 6: Case Study and Evaluation 125

Figure 6.28 Customer relationship domain

Figure 6.29 Service domain

Chapter 6: Case Study and Evaluation 126

• Resource optimisation (Rule 8) In the context of this case study, definition of the

resource requirements specifies the hardware needed to guarantee the system will

function correctly and efficiently. As some modules may require unique resources to

accomplish their intensive computational tasks, the resource requirements should be

analysed with respect to the modules individually, so that the resources required for

each service can be determined. Moreover, the following assumption is introduced to

facilitate the analysis:

“The monolithic system can run on a machine with 4GB memory and a 4-core CPU, the

microservices may need 2-4 times those resources - which means about 8GB memory

and an 8-core/10-core CPU.”

TThe first case study demonstrated that the monolithic RosarioSIS system needed 1GB

memory and 1 vCPU to run, while the new microservice architecture needed 2GB

memory and 2 vCPUs. This is because, even though the core executable files were

identical in both architectures, the classes files and controller files were different for

each microservice - which led to this increase in resources related to the running of

these microservices. With thorough consideration of the above, Rule 8 is the best

suited to segregate services from the modules. One way to deal with the separation

of services that need unique resources is to find resource bottlenecks. Combining this

information on resource bottlenecks and their parameters with knowledge concerning

the flow of information through the system assists in establishing a baseline which can

help developers to decide where to split the services from. It would be illustrative to

take the example of the customer-supplier relationship; a vital part of the supply chain

model. The customer can use the system to perform CRUD operations (Create, Read,

Update, and Delete) and to search. The customer can request one or more items and

allocate them for themselves, in accordance with item availability, at a selected date

and time. A backend system then informs the supplier about the order which has been

thus placed. The suppliers keep the system updated regarding the items purchased.

Next, the order is delivered to the customer.

Chapter 6: Case Study and Evaluation 127

Considering the above scenario, there are two subdomain models:

1) The online ordering system

2) The supplier management system

It is predicted that the online ordering system, which is part of the supply chain module

Figure 6.22, will have to deal with around 15,000 new customers, each with orders to

be fulfilled, in the next quarter. Every one of these new customers will be responsible

for a certain number of requests per second being sent to this module. Based on this,

the hardware resource capacity for the online ordering system can be predicted. The

supplier management system needs to manage large numbers of purchase requests

based on the orders issued, which gives a clear picture of the resources needed by

this component as well. Because of the correlation between the two subdomains,

it was decided to locate the online ordering system and the supplier management

system in a single subdomain. This prevents database dependence occurring between

the two subdomains (which could occur via Rule 3, the separating out of databases).

Figure 6.32 illustrates the supplier and customer subdomains.

So, in relation to Rule 8, we extracted the following subdomains from the ERP2 legacy

system shown in Figure 6.21 in order to form the microservices.

• Inventory Figure 6.30

• Forecasting & demanding Figure 6.31

• Purchase Figure 6.33

• Project management Figure 6.34

• Recruitment and training services Figure 6.35

Figure 6.30 Inventory subdomain

Chapter 6: Case Study and Evaluation 128

Figure 6.31 Forecasting and Demanding subdomain

Figure 6.32 Supplier and Customer subdomain

Chapter 6: Case Study and Evaluation 129

Figure 6.33 Purchase subdomain

Figure 6.34 Project subdomain

Chapter 6: Case Study and Evaluation 130

Figure 6.35 Training and recruitment subdomain

3. Resource-complementary service (Rule10)

After identifying the services which have unique resource requirements with reference

to Rule 8, it was easier to determine which services can usefully be within the same

instance. It has been found that combining microservices which have different resource

requirements within the same instance leads to the best usage of resources and so

brings the deployment costs down [56].]. For example, if the account payable and

account receivable subsystems take 1 GB running independently, but 500 MB each

when together, these two services should be run in the same instance to save resources;

the option to deploy them separately will always exist.

4. Prioritisation of data- access workloads (Rule 9).

The ERP2 system has many database connections and this could result in a system

bottleneck when the number of connections exceed the capacity of the database. Thus,

services must be prioritised based on their importance to the key business. For example,

timely processing of orders from the point-of-sale to the point-of-delivery is one of

the main concerns of the supply chain module. When the number of orders increases,

Chapter 6: Case Study and Evaluation 131

traffic load on the supply chain module grows quickly. So, understanding the traffic

patterns, in terms of the number of requests per second, provides a more complete

picture about which services should be extracted as separate microservices. The

candidate rules ‘prioritisation of data-access workloads’ (rule 9) and ‘customised data

management’ (rule 11), are applicable in this context. However, Rule 9 is preferred to

Rule 11 as the principle by which to guide the extraction of the microservices because

the operating costs involved with supporting multiple databases may become relatively

high. The main work relating to this rule is to track the workload of the legacy system

at runtime and classify the module, of the ones under investigation, which is repeatedly

subject to the heaviest workload. To address a heavy workload identified in this way,

the following objectives are identified:

• The response time: how long the system takes to perform a specific request;

• The average resource utilisation: the amount of time for which devices such as

the CPU and disk are occupied;

• The average throughput: the rate at which successful responses to requests are

delivered.

In the supply chain module of ERP2, database access is triggered by an initial order

check and the subsequent scan of the associated bar code. Thus, the average number of

scans occurring in the warehouse per second must be calculated. The average time in

which an order can be transmitted from the point-of-sale to the warehouse is affected

by the length of the software queue in ERP2. Combining the workload information

with information about the flow of data through the supply chain model creates a

clear picture of the warehouse subdomain which must be extracted from the supply

chain domain, as shown in Figure 6-37. Other subdomains extracted based on Rule

9 are purchase, manufacture, and payroll subdomains. The results are shown from

Figure 6.36 to Figure 6.39.

Chapter 6: Case Study and Evaluation 132

Figure 6.36 Warehouse subdomain

Figure 6.37 Manufacturing subdomain

Chapter 6: Case Study and Evaluation 133

Figure 6.38 Purchase subdomain

Figure 6.39 Payroll subdomain

Chapter 6: Case Study and Evaluation 134

5. Separation out of databases (Rule 3)

To support the derived microservices, the legacy database is divided into separate

data stores which are managed and accessed separately based on the service that they

correlate with. Having separate databases for each service helps to:

• Improve scalability: a single database may be scaled-up based on requirements;

• Improve availability: having separate data stores avoids a single point of failure

affecting the whole system. For example, if a server fails, only the data in that

server becomes unavailable;

• Improve security: based on the nature of the data, the data store can be distributed

across servers such that sensitive data will reside, for instance, in a private cloud

server.

• Optimise performance: data access operations on each partition take place over a

smaller volume of data, and this leads to the minimising of latency. This is what

is addressed by Rule 9, prioritisation of data access workload.

6. Customised data management (Rule 11)

To choose the most suitable database structure for the necessary data management,

it is important to understand the type of data to be stored and the functional and

non-functional requirements via answering the questions below.

• Will the database schema be changed frequently?

• Does the database need to scale in the future?

• What types of data are to be stored?

• How many requests must be processed per second/minute?

• How would the database handle an increasing volume of data?

• What level of security does the database have to meet?

In order to answer the above questions, data modelling can be used to identify the

structure of the data; a crucial step. This process promotes project comprehension

through the identification of key features, which must considered to avoid programming

and operating errors s [91]. The data model is used to structure the data and help the

Chapter 6: Case Study and Evaluation 135

developer visualise a useful picture of the nature of the data and what must therefore

be included in the software. A well-constructed data model can be used to convert the

domain model into a database system. Rules 2 and 3 have an impact on the decisions

involved in the database modelling, each microservice must be built around a single

function and have a separate database. To achieve this, each microservice’s data model

should be independent of all the other microservices’ data models. A change to one

data model should not affect another microservice’s data model. The data modelling

needs identified in this case study are listed in Table 6.3 below.

Table 6.3 Requirements for Data Modelling

Microservice Read performance Write performance Latency
Inventory High High Low

Warehouse Moderate to high Moderate to high Low
Purchase High High Low

Forecasting Moderate Moderate Moderate low
Customer & supplier Moderate Moderate Moderate to low

Manufacturing Moderate Moderate Moderate to low
Production High High Low

Project High High Low
Planning Moderate Moderate Moderate to Low

Scheduling Moderate Moderate Moderate to Low
HR Moderate Moderate Moderate to Low

Training High High Low
Payroll High High Low
Product Moderate Moderate Moderate to Low
Quality Moderate Moderate Moderate to Low

Customer relationship Moderate to high Moderate to high Low
Service Moderate Moderate Moderate to Low

General lodger Moderate Moderate Moderate to Low
Account receivable Moderate Moderate Moderate to Low
Account payable Moderate Moderate Moderate to Low

Finance Moderate Moderate Moderate to Low

It is challenging to find a database system which offers all the features that microser-

vices require. Therefore, a combined relational and non-relational database manage-

ment system are adopted. The microservices, including inventory, purchases, and

shipping and receiving, were implemented using a NoSQL database that guarantees

Chapter 6: Case Study and Evaluation 136

good data accessibility and a better than average accessing speed. However, the other

microservices used a SQL database.

To gain more improvements in terms of scalability and reduce the complexity implied

by having each service possess its own database, the following two rules can be used

to combine relevant data from different resources: ‘master data access microservice’

(rule 12) and ‘database view’ (rule 13).

Master data access microservice (Rule 12) and database view (Rule 13)

On the one hand, the master data rule (i.e., Rule 12) that governs data from several

different datastores must be available from the master data source; this allows various

database systems to work autonomously and then merge-update one single master

database. Rule 13 allows the creation of multiple virtual tables all with different

data. Both rules are, effectively, defined to help deal with data originating from

different resources. In some frequently encountered circumstances, data needs to

be integrated between at least two separate systems. One may be the old legacy

system and the other will then be the microservices-based architecture; alternatively,

both systems involved may be within the microservices-based architecture. Database

view (DBV) is generated from a query . Data are stored in the physical databases

persistently (in relation to the changes to the system). In the context of the new Human

Resource Microservice of ERP2, DBV renders detailed views of data in response to the

unique requirements/needs of users. The use of a DBV reduces data replication thus

strengthening data integrity, and such a layer can manage very complicated scenarios

with JOINS operations and by using multiple database technologies.

7. Security role (Rule14)

Securing microservices is an objective which must be achieved during implementa-

tion. Some of the information stored in a database may be highly sensitive, such as

proprietary company data and employees’ personal information. This rule imposes a

default policy that denies any request to access any microservices. For this restriction

to be lifted in relation to a user, a request must be sent to a microservice that manages

permissions for such a user by maintaining a collection of database tables which

represent user obligations and permits. Each process which must handle the user’s

Chapter 6: Case Study and Evaluation 137

authorisations will receive a unique token that expresses the corresponding permissions.

Depending on the microservice access request involved, and the token associated with

the user, access will be either denied or permitted. Assigning different roles to different

users in terms of access control will help to protect access to the data stored on each

microservice.

In this case study, the focus is on security authentication and authorisation. During the

implementation stage, the security role (Rule 14) acted as a guiding principle for the

building of secure microservices. Rule 14 is applied to all the design/implementation

levels, from code to architecture. Also, the use of another technology, i.e. Secure

Sockets Layer (SSL), was found to be essential to secure data transmissions with the

Public Key Infrastructure (PKI). Ultimately, because of the separation and distribution

of roles, the new architecture can achieve an acceptable level of microservice security.

Figure 6.40 illustrates the microservices that were extracted from the ERP2 monolithic

enterprise system based on the rules.

6.7.2 Deployment

This section describes the conceptual deployment of the re-architected ‘ERP2’ sys-

tem.Approximately twenty microservices are defined in this case study, as stated in Fig-

ure 6.40 . Each one is a tiny-application with its own concerns, demands, resources and

profile of varying handling loads. There are several different rules which can be used to pave

deployment steps, as outlined below:

• (Rule 1) deployment in a multi-cloud environment

.Several options are available regarding the cloud facility used, and the choice of which one

should be based on the nature and unique specification of the microservices; the enterprise

can choose between public, private or hybrid clouds.

• (Rule 2) Deploying and managing extra loads

This rule is concerned with providing redundancy by running duplicated copies of the

microservices, as the availability of the microservices is crucial and no microservices in

Chapter 6: Case Study and Evaluation 138

E
n

te
rp

ri
se

 m
ic

ro
se

rv
ic

e
a

rc
h

it
ec

tu
re

Fi
n

an
ac

ia
l

M
ic

ro
se

rv
ie

G
e

n
e

ra
l L

o
d

ge
r

M
ic

ro
se

rv
ic

e

A
cc

o
u

n
t

P
ay

ab
le

M

ic
ro

se
rv

ic
e

A
cc

o
u

n
t

R
e

ce
iv

ab
le

M

ic
ro

se
rv

ic
e

Fi
n

an
ce

M

ic
ro

se
rv

ic
e

Su
p

p
ly

 c
h

ai
n

m

ic
ro

se
rv

ic
e

In
ve

n
to

ry

M
ic

ro
se

rv
ic

e

W
ar

e
h

o
u

se

M
ic

ro
se

rv
ic

e

P
u

rc
h

as
e

M

ic
ro

se
rv

ic
e

C
u

st
o

m
e

r
an

d

su
p

p
lie

r
R

e
gi

st
ry

M

ic
ro

se
rv

ie

Fo
rc

as
ti

n
g

&

d
e

m
an

d
in

g
M

ic
ro

se
rv

ic
e

P
ro

d
u

ct
io

n

M
ic

ro
se

rv
ic

e

M
an

u
fa

ct
u

ri
n

g
M

ic
ro

se
rv

ic
e

P
ro

d
u

ct
io

n

M
ic

ro
se

rv
ic

e
 Q

u
al

it
y

m
ic

ro
se

rv
ic

e
P

la
n

n
in

g
&

sc

h
e

d
u

lin
g

M
ic

ro
se

rv
ic

e

P
ro

je
ct

M

ic
ro

se
rv

ic
e

sc

h
e

d
u

lin
g

M
ic

ro
se

rv
ie

P
la

n
n

in
g

M
ic

ro
se

rv
ic

e

P
ro

d
u

ct
 D

at
a

M
ic

ro
se

rv
ic

e

H
u

m
an

R

e
so

u
rc

e

M
ic

ro
se

rv
ic

e

P
ay

ro
ll

M
ic

ro
se

rv
ic

e

H
R

M

ic
ro

se
rv

ic
e

Tr
ai

n
n

in
g

&

R
e

cu
ri

tm
e

n
t

M
ic

ro
se

rv
ic

e

C
u

st
o

m
e

r
re

la
ti

o
n

sh
ip

M

ic
ro

se
rv

ic
e

Se
rv

ic
e

M

ic
ro

se
rv

ic
e

F
ig

u
re

 6
-3

1
 E

n
te

rp
ri

se
 M

ic
ro

se
rv

ic
es

Figure 6.40 Enterprise microservices

Chapter 6: Case Study and Evaluation 139

this case study should be critically affected by heavy loads or hardware failures. The API

gateway will schedule requests between microservice copies in order to balance the load.

• (Rule 3) geolocation microservice-master database synchronisation, (Rule 4) geoloca-

tion microservice-prioritised requests, and (Rule 5) geolocation microservice-local/global

master database selection. These rules are concerned with the ability to cope with grow-

ing traffic demands from geographically distributed users. This issue can be solved

through deploying several different copies of microservices across several different

regions to mitigate loads.

The first option (related to rules 3, 4 and 5) is to create a master database and synchro-

nise the data from each region using that master database. From this, the microservices

database can then be updated. The second option is to create a master database and

prioritise specific requests, these requests must be processed more swiftly than lower

priority requests because they synchronise data with the master database. Asynchronies

will be used for lower priority requests which leads to the reduction of operational costs.

The third option here is to have a local master database for each geographical region

and synchronise the microservices data to the local master databases, then synchronise

these with a global master database. However, if a transaction needs to be processed

instantly and must then be available in other regions, synchronising to the global master

database is a more widely applicable option. The use of these rules facilitates the meet-

ing of business requirements by enhancing performance and microservice availability.

Moreover, their use ensures that data can remain close to the users, where required, and

allows them (the users) to access their own data from any part of the world.

– (rule 6) containerised microservices

The microservice architecture was designed as several small, independent services.

Each service must be isolated from all others and modifying one service should be a

straightforward matter which does not disturb other services. In short, Rule 6 represents

an appropriate solution here. The container offers an isolated environment for each

service. The idea is to encapsulate each service and its assets in one package. Containers

allow each service to manage its one storage and it is possible to support multiple

running containers within one operating system instance [92]; which reduces overhead

costs.

Chapter 6: Case Study and Evaluation 140

Table 6.4 shows a list of objectives and which feature-driven microservices rules are

the best fit with each. These rules have been used to construct a pathway whereby a

legacy system can be migrated to a microservice architecture. This mapping (Table 6.4)

is used to narrow down the rules for selection.

Table 6.4 Feature-Driven Migration Rules selection.

Objective Rule
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Availability
√ √ √ √ √ √ √ √ √ √ √ √ √ √

Scalability
√ √ √ √ √ √ √ √ √

Reduce
operational cost

√ √ √ √

Maintainability
√ √ √

Interoperability
√ √

Improve
Performance x x

√ √ √ √ √ √
x x

√
x x

√ √

Security
√ √ √

x x x
√

The selected rules can be used to deal with a number of separate issues. For example,

understanding how a legacy system is structured, what the components are, whether

data security is managed well, etc., which are important issues in the development of

the system generally. This approach is not restricted to the use of only the set of rules

specified above; it has greater flexibility. For instance, in both the case studies presented,

the rules are combined with the DDD concept. Hence, it is possible to incorporate the

use of these rules with the latest best solutions to new problems.

6.7.3 Evaluation

The following is a summary of the essential capabilities of a microservice infrastructure

and how they may benefit the future of an enterprise.

Scalability:

This is one of the most significant features in relation to switching to a microservice.

The ability of microservices to run in a range of computational environments such

as virtual machines and containers, increases system efficiency by utilising resources

Chapter 6: Case Study and Evaluation 141

more effectively. Each service is designed as a separate component. This enables each

service to scale quickly in the case of increased demand.

Consider a monolithic enterprise application that has the following modules, shown in

Figure 6.41, as an example:

acceptable performance for the new architecture we have to think about scalability as well as these

attributes are inextricably linked. The trade-offs involved with these kinds of properties need to be

investigated in order to reach an acceptable solution. Such attributes are tangible for the end-user, so it

is best to prioritize these quality attributes in the course of the design stage.

6.2.3 Evaluation

The following is a summary of the essential capabilities of a microservice infrastructure and how they

may benefit the future of an enterprise.

Scalability:

This is one of the most significant features in relation to switching towards a microservice. The ability

of microservices to run in a range of computational environments such as virtual machines and

containers, increases system efficiency by utilizing resources more effectively. Each service is designed

as a separate component. This enables each service to scale quickly in the case of increased demand.

Let us consider a monolithic enterprise application that has the following modules as an example:

Each of these modules has a different utilization, so scaling the entire application to meet increased

system needs will lead to inefficient consumption of resources. For example, if a user logs in to the

system, but then only requests to search for any training workshops available for their specialist area

and then update his record and log off. In this case, the user will only access the human resources

database, searching and updating a few records. By breaking up the monolithic system into

microservices, just the services which have high computational demand will scale according to their

loading, so saving costs. To ensure that microservices are scalable, we need to look at a number of

different angles. First, it is important to identify resource requirements; this is what it is addressed in

(rule 8) - having a full picture of the resource requirements of the service. Also, the resource bottlenecks

of each microservice. Resource bottleneck occur as a result of high usage of the services at peak times.

It is crucial to identify potential bottlenecks by applying load testing. The main aspects of a system

which must be examined in this regard include requests per second, latency, and request duration. Also,

a precise picture of the nature of heavy traffic and large data-volume situations should be analysed. In

Financial Supply Human Production

Planning Sale Quality Customer

Figure 0-235 Monolithic Enterprise application

Figure 6.41 Monolithic Enterprise application.

Each of these modules has a different function, so scaling the entire application to meet

increased system needs will lead to inefficient consumption of resources. For example,

a user logs in to the system, requests to search for training workshops available for their

specialist area and then updates their record and logs off. In this case, the user will only

need to access the human resources database, searching and updating a few records.

By breaking up the monolithic system into microservices, just the services which have

high computational demand will scale according to their loading, thus saving costs.

To ensure that microservices are scalable, a number of different angles should be

considered. First, it is important to identify resource requirements which is addressed

in Rule 8, giving a full picture of the resource requirements of the service. Second, it is

crucial to identify the potential resource bottlenecks of each microservice by applying

load testing. Resource bottlenecks occur as a result of high usage of the services at peak

times. The main aspects of a system which must be examined in this regard include

requests per second, latency, and request duration. Third, a precise picture of the nature

of heavy traffic and large data-volume situations should be analysed. In summary, the

developer can scale each microservice independently from the other microservices of

the system and can react swiftly to changes in the workload, enabling efficient use of

resources [93] [94].

Chapter 6: Case Study and Evaluation 142

Maintainability:

In the first case study, the RosarioSIS monolithic system emerged as complex and

tightly coupled. Indeed, this represents one of the main reasons for breaking up this

particular system in the present work into a number of smaller units, i.e. microservices,

each of which focuses on only one business function and aims to deliver it well, so

as to achieve a perfect loose coupling. Such loosely coupled components are the key

to improving the maintainability of the RosarioSIS services. These smaller (‘micro’)

systems are much easier to understand, change and test. The RosarioSIS microservices

are clearly separated from each other as ‘independent units’, and there is no necessary

sharing of information between one service and another. Loose coupling means that the

RosarioSIS microservices design is more flexible and will more easily facilitate future

changes, error fixes and/or new functionality [95] [96].

In addition, the second case study supports the idea that this new kind of architecture

leads to systems which have been designed in such a way that they can be extended

and can grow in the future (by the addition of new functionality). Also, the second case

study evidenced that microservices systems are easy to change because of their reduced

complexity, both in terms of architecture and components. As the degree of complexity

increases, testing a system becomes more difficult. To reduces complexity, in relation

to both case studies, and increase maintainability, several different methods have been

applied. First, both systems have been divided up into smaller components to reduce

system complexity. A sizeable monolithic system tends to be complex and challenging

to modify. Second, each microservice was built to be totally independent, i.e. so that

they are loosely coupled from each other by applying (1&3). Changing one service

will not affect another. Loose coupling is correlated with high cohesion, representing

consistency between components.

Availability:

It is challenging to design and deploy a microservice system in a way that means it will

keep running and operating correctly as required by the user. The microservices need

to be resilient and able to handle failures adequately. Also, each microservice must

maintain data persistence, data consistency and resistance to data loss. As described in

the previous chapter rules (3, 4&5), together offer a method for deploying microservices

Chapter 6: Case Study and Evaluation 143

across multiple zones, servers and/or data centres to ensure the continued availability

of the system in cases of unplanned downtime. However, in the case of a microservice

failure, a circuit breaker (Rule 4) should be used. The traffic heads to the healthy

microservices instead and this will give the unhealthy microservice a chance to recover,

and restart to the state it was in before the failure occurred.

Interoperability:

Interoperability is an underlying concept, used in many enterprises; it is applied to gain

the benefits of a new architecture without entirely abandoning the existing one. The term

interoperability refers to the ways in which two or more systems can communicate with

each other. For applications to interoperate in a convenient manner, they must be able

to exchange information appropriately. The developers should be aware of any issues

which could interfere with this process. For example, in the case studies, there are two

types of system involved, legacy systems and the system in the process of migration, i.e.

the ‘microservices system’. If interoperability is a requirement, then the two systems

of different types need to communicate with each other. Each system operates in a

different environment to that of the other, and is built using different techniques, tools,

languages, frameworks, etc. To achieve interoperability and ensure efficient working

between two systems forming such a pair, creating an orchestration layer between

the legacy system and microservices is essential. Adding such a layer increases the

overall ability to manage the different data formats used by the two architectures. To

facilitate interoperability between two systems, a common technology should be used

by both architectures. For example, as here, JavaScript Object Notation (JSON) can be

used for the data exchange format and Representational State Transfer (REST) over

the Hyper Transfer Protocol Secure (HTTPS) for communications. Moreover, a data

layer that acts as a means of communication with the legacy data should be designed.

The core concepts are to separate out direct access to the legacy system and to prevent

unexpected behaviour (Rules 12 &13). A master data access microservice and virtual

databases can be used to deal with any data source that is not synchronised with the new

architecture. These rules can be applied to perform the task of exchanging information

between different sources efficiently.

Testability:

Chapter 6: Case Study and Evaluation 144

All the components of the RosarioSIS and ERP2 microservices architectures are separate

and isolated thus testing can be scoped and also isolated. Since the RosarioSIS and

ERP2 microservices are autonomous and loosely coupled, testability is much improved

in relation to the legacy RosarioSIS and ERP2 systems. Moreover, regression testing for

a specific microservice is much easier than it is compared to a particular functionality

of the RosarioSIS or ERP2 monolithic systems. With microservices, it is possible to

change part of the system and then isolate it to test it independently from the rest of the

system; this represents increased isolability [95].Enhanced software testability leads

to the greater efficiency of microservices. Also, it is easier to observe the state of the

microservices that are being tested. Testability allows the developer to analyse the input

and output operations, and this, in turn, makes it easier to detect if a microservice is

working well. Furthermore, performing the required amount of testing in a focused

way and using the most suitable tools ensures that the microservice system will be

able to deal with the challenges it might encounter. However, increasing the number

of microservices will lead to the need for greater collaboration among them and so to

increased testing complexity.

6.8 Summary

In this chapter, a microservices-based development framework has been applied and

evaluated by using the feature-driven microservices migration rules in relation to the

RosarioSIS and ERP2 legacy systems. These case studies aimed to guide the migration

of the legacy systems with an emphasis on analysing the implications regarding runtime

performance, scalability, maintainability, availability, interoperability and testability.

The RosarioSIS case study analysed the differences in the performance test of the

monolithic architecture compared to the microservices-based systems, in relation to

pre-specified time periods, and observed how both of these systems behaved under

heavy loads. The performance decreased as the number of requests increased, which

ultimately meant that user requests were not processed within the given time constraint

and using the fixed amount of vCPU and memory available.

Chapter 6: Case Study and Evaluation 145

In the ERP2 case study, a number of different feature-driven migration rules were

applied, focused on different needs, to evaluate the usability of the rules and determine

whether the approach is scalable and so usable for the transformation of industrial

scaled monolithic systems to microservices-based equivalents while maintaining ac-

ceptable functionality, maintainability, testability, and security. Furthermore, this case

study yielded more details on how each rule fits into a larger architectural picture to

enrich the transformational process within a precise context. The study presented the

database migration rules and where they applied, as well as exposing details of the data

communications issues, including dealing with synchronised and asynchronised data.

It also explored various deployment options, such as deploying in one geolocation or

across several, and the impact of this kind of issue in terms of managing microservices

and their performance.

As a result of these experiments, it is concluded that the microservices architecture has

significant value in terms of solving the problems that may arise in relation to legacy

enterprise applications. The information gained from these experiments will help in

implementing and deploying microservice architectures more efficiently.

Chapter 7

Conclusions

7.1 Introduction

The research undertaken for this thesis has enabled the development of a conceptual

framework which integrates a number of different technologies and methods, including

a microservices architecture, a feature-driven method, and cloud computing. Bring-

ing these together has aimed to provide developers with multi-faceted legacy system

development recommendations and guidance. The research outcomes involve both

conventional techniques and support from the latest theories and are backed by the

latest microservices techniques.

This chapter first addresses the above research results in terms of their achievements

relating to the previously defined research objectives and their compliance with the vari-

ous requirements. Next, the conclusions are presented, demonstrating the contributions

made. Finally, the future directions for study are briefly examined.

Chapter 7: Conclusion and Future Work 147

7.2 Critical Analysis

7.2.1 Objective I: Understand the theoretical background relating

to the migrating of legacy systems, by proposing a holistic frame-

work approach for such migration.

The first objective was to develop an approach which could effectively assist in the

developing/migration of a legacy system. The objective has been accomplished by

successfully delivering the following:

1. The proposing of a set of feature-driven microservice transformation rules:

A literature review was undertaken to identify and analyse what strategies for

migration to microservices have been implemented in practice, what the advantages

and disadvantages of the microservice architecture are, and which non-functional

requirements have been studied. From this, a research questions was derived:

– RQ1: How is it possible to extract microservices from a legacy system?

To answer this question, a review was carried out on the shifting of existing

monolithic structures to microservices architectures. This was motivated by

the need to resolve some of the main non-functional problems associated

with such systems. In general, better performance, enhanced functionality

and system protection are the main concerns guiding the migration of mono-

lithic structures. Monolithic systems are not flexible enough to adapt to major

workload increases. The solution proposed here is to deconstruct the system

into a number of smaller services. Separating components out can minimise

dependencies and migration can bring several advantages to the forefront such

as scalability, efficiency and agility. To extract microservices from a legacy

system, a set of rules was proposed through:

Chapter 7: Conclusion and Future Work 148

* Defining the main non-functional features involved. Generally, these are ef-

ficiency, scalability of functionality, availability and security. Every attribute

is then analysed, and each attribute is grouped into a specific subfunction.

* Describing the dependencies, trade-offs, inclusiveness and specific rela-

tionships, which depend on the influence of each NFR. This resulted in a

hierarchy of NFRs. A collection of relationships between the NFRs were

used to construct the feature-driven rules. The rules were constructed by

analysing a number of situations relating to the process of transformation

and taking into account the interactions between non-functional features.

The goal of the framework is to use the feature-driven concept to steer the

transformation process (from monolith to microservices) via the proposal of

a microservices-based transformation rule repository.

– proposing a set of feature-driven cloud-oriented migration rules:

To gain more benefit from loosely coupled microservice architectures, Cloud

migration rules are proposed. These migration rules are mainly focused on

how deployment in the cloud can be employed to increase microservices

performance in terms of handling workload, individualised use of resources,

minimisation of the latency of requests, increased availability, and increased

agility.

The rules consist of three parts: a precondition, a transformation and the

expected impact on features. The precondition element defines the cases where

the rule can be applied to the microservice; the transformation indicates the

procedure to be followed; and the impact on features reveals the issues that

may emerge once the rule is applied.

7.2.2 Objective II: Apply UML diagram in order to specify the

migration rules

During the migration process, there needs to be an explicit representation of the

system components and the flow of data. Using a UML diagram allows the structure

Chapter 7: Conclusion and Future Work 149

of the system to be analysed after application of the rules, with respect to the

bounded context concept, and thus define the exact domain of each microservice.

7.2.3 Objective IV: Evaluation with Case Studies

For the purposes of critical evaluation, the present research uses two case studies

and some associated experiments using a cloud service. First, comprehensive

research, searching for an open-source enterprise system appropriate to this study,

was undertaken. The target size was small to medium because of the time con-

straints involved with the implementation stage. Secondly, for the cloud service

and evaluation elements of the study, Amazon Web Services (Amazon ECS) was

selected; this was specifically chosen to examine the microservices architecture

performance versus the legacy system performance(refer to section 6.6). Finally,

the ways in which microservices capabilities affect non-functional attributes were

examined (refer to subsection 6.7.3).

7.3 Contributions

Migrating to a microservices architecture includes many processes that need to

be managed carefully. Microservices represent a relatively new architectural style

and, as a result, there is no general migration guide for microservices. This work

provides a method for shifting a monolithic architecture to microservices. A set of

rules is employed to define and implement the migration process.

The contribution consists, in part, of constructing a basis for the effective refac-

toring of monolithic applications towards microservices style applications hosted

in cloud environments. The following work has been undertaken throughout the

course of this study.

– The thesis presents a novel approach to the migration of a legacy system

towards cloud computing through the construction of a microservices sys-

tem:

This novel approach determines how effective the application of the microser-

vices architecture is in terms of three requirements: performance, functionality

Chapter 7: Conclusion and Future Work 150

and security. The approach used a conceptual framework that consists of three

layers:

* Layer one consists of understanding and analysing the legacy system and its

context. To obtain a deeper understanding the notation diagram was used to

visualise the system components and their relationships with each other.

* Layer two focuses on how to decouple the functionalities of the legacy

system to be more flexible in the face of changing requirements. Based on

the transformation rules, the services are extracted from the legacy system

and built as self-contained services.

* Layer three is concerned with defining the desired architecture, describing

the operations that should be implemented and ensuring the quality of

the systems. In general, the architectures of the systems are built based

on a microservices architecture, and the rules guide what can be done to

accommodate the demands of this new architecture.

– The construction of a set of feature-driven microservice transformation

rules:

A set of rules are presented as principles of the microservices-based architec-

tural style. These rules were determined by identifying the most important

quality attributes of such an architecture. Then, the relationships between

the attributes were defined and classified. After this, the brainstorming of

various scenarios and the ways in which the quality attributes can be managed

in relation to these scenarios took place. Finally, each rule was designed in

such a way that it would be the most beneficial in extracting microservices

from legacy systems (refer to section 5.4).

– The construction of a set of feature driven cloud migration rules:

A set of guidelines which enables the exploration of various scenarios was

developed, followed by the determination of which one was the most applicable

based on the requirements (refer to section 5.5).

Each rule consists of three parts: a precondition, which is the main component,

a transformation, which specifies the major changes to the legacy system

Chapter 7: Conclusion and Future Work 151

dependent on the precondition, and the impact on features, which delineates

the consequence of these changes.

– The conducting of the case studies and evaluations:

Two case studies were undertaken to test the suggested framework in terms

of proof-of-concept, validation and evaluation. These case studies involved

differently scaled enterprise systems: small and medium. The experimental

findings provide a detailed description of how to follow the rules in order to

switch from a legacy to a microservices system effectively, and then deploy the

latter in the Cloud. Finally, an analysis of the success of the new architecture

is presented via the evaluation of several different quality attributes.

7.4 Conclusion

This project aimed to develop an approach to evolve legacy systems, through

designing a framework that incorporates a microservice-oriented architecture. This

framework architecture determines how effective is the new architecture in terms of

functionality, performance and security. The framework focuses on the repository

of the microservice and cloud rules and how these rules support the three features.

The framework was evaluated by applying feature-driven evolution rules, which

include transformation and migration rules, to two different case studies; the ‘Rosar-

ioSIS’ and ‘ERP2’ legacy systems. The first case study analysed the differences in

the legacy system performance compared to the microservice-based architecture

over pre-specified time periods and observed how these systems operate under

heavy load. The second case study analysed other qualitative attributes such as

scalability, maintainability, interoperability, testability and availability in relation

to the feature driven of the transformation and migration rules . The experiments

suggested that the microservices design has a major benefit in solving problems

that can occur in legacy enterprise applications.

Chapter 7: Conclusion and Future Work 152

7.5 Limitation and Future Work

The challenges encountered in this project included finding a suitable open source

enterprise system. This was difficult as some such systems are incomplete, do

not have source code for some of their modules, and/or do not have adequate

documentation explaining how the system works and runs. Also, during the

migration process, defining the responsibility for each microservice is sometimes

a challenging task due to the dependencies between components and how the

definition of the responsibilities reflects the communication between microservices.

In addition, sometimes it is necessary to model services based on the business

services that are provided by the enterprise. Moreover, some types of legacy system

are not supported by this rule because the legacy system is a shared business,

meaning the microservices will depend on each other in complex ways which will

make them more difficult to manage.

Regarding research focused on the study of legacy system development, future

work could concentrate on extending the proposed rules to include what happens

when the number of microservices increases (e.g. perhaps to thousands or mil-

lions); will that affect performance and in what ways? Also, the addition of more

non-functional features to indirectly support a more complete application function-

ality. Applying an automation tools to the detaching of the legacy system and to

other elements of the migration process may speed this up, and so this is worthy

of investigation. Also, monitoring microservices would be a means to provide

knowledge sources for services searches and recommendation tasks. Furthermore,

only small and medium sized enterprise systems were studied in this work. A

large enterprise system could be considered in future work, to further evaluate the

framework.

References

[1] E. B. Swanson, “The dimensions of maintenance,” in InProceedings of the
2nd international conference on Software engineering, pp. 492–497, 1976.

[2] T. Mens, M. Wermelinger, S. Ducasse, S. Demeyer, R. Hirschfeld, and
M. Jazayeri, “Challenges in software evolution,” pp. 13–22, 2005.

[3] D. Stéphane, T. Gîrba, M. Lanza, and S. Demeyer Moose, “A collaborative
and extensible reegineering environment,” Tools for Software Maintenance
and Reengineering (RCOST), 2005.

[4] M. W. Godfrey and D. M. German, “On the evolution of lehman’s laws,”
Journal of Software: Evolution and Process, vol. 26, no. 7, pp. 613–619,
2014.

[5] I. Sommerville and S. Engineering, New York. NY: Pearson Education, 2015.

[6] K. H. Bennett, V. T. Rajlich, and N. Wilde, “Software evolution and the staged
model of the software lifecycle,” in Advances in Computers (Vol, pp. 1–54,
Elsevier: 56, 2002.

[7] T. Girba, S. Ducasse, and M. Lanza, “Yesterday’s weather: Guiding early
reverse engineering efforts by summarizing the evolution of changes,” in 20th
IEEE International Conference on Software Maintenance, 2004. Proceedings.,
pp. 40–49, IEEE, 2004.

[8] G. Xie, J. Chen, and I. Neamtiu, “Towards a better understanding of software
evolution: An empirical study on open source software,” in 2009 IEEE
International Conference on Software Maintenance, pp. 51–60, IEEE, 2009.

[9] K. Bennett, “Legacy systems: Coping with success,” IEEE software, vol. 12,
no. 1, pp. 19–23, 1995.

[10] N. H. Weiderman, J. K. Bergey, D. B. Smith, and S. R. Tilley, “Approaches to
legacy system evolution.,” tech. rep., CARNEGIE-MELLON UNIV PITTS-
BURGH PA SOFTWARE ENGINEERING INST, 1997.

[11] R. C. Seacord, D. Plakosh, and G. A. Lewis, Modernizing legacy systems: soft-
ware technologies, engineering processes, and business practices. Addison-
Wesley Professional, 2003.

[12] J. Bisbal, D. Lawless, B. Wu, and J. Grimson, “Legacy information systems:
Issues and directions,” IEEE software, vol. 16, no. 5, pp. 103–111, 1999.

[13] V. Andrikopoulos, T. Binz, F. Leymann, and S. Strauch, “How to adapt
applications for the cloud environment,” Computing, vol. 95, no. 6, pp. 493–
535, 2013.

[14] J. Footen ’Service Oriented Architecture Cloud Computing in Media Indus-
try’, vol. 2011, pp. 1–23, 2011.

[15] Z. Xiao, I. Wijegunaratne, and X. Qiang, “Reflections on soa and microser-
vices,” in 2016 4th International Conference on Enterprise Systems (ES),
pp. 60–67, IEEE, 2016.

[16] R. Welke, R. Hirschheim, and A. Schwarz, “Service-oriented architecture
maturity,” Computer, vol. 44, no. 2, pp. 61–67, 2011.

[17] S. Newman, Monolith To Mircoservices. Inc: O’Reilly Media, 2019.

[18] C. M. MacKenzie, K. Laskey, F. McCabe, P. F. Brown, and R. Metz, “Refer-
ence model for service oriented architecture 1.0–oasis standard,” Saatavilla
oasis-open, vol. 1, 2006.

[19] T. Cerny, M. J. Donahoo, and J. Pechanec, “Disambiguation and comparison
of soa, microservices and self-contained systems,” in Proceedings of the
International Conference on Research in Adaptive and Convergent Systems,
pp. 228–235, IEEE, 2017.

[20] D. Namiot and M. Sneps-Sneppe, “On micro-services architecture,” Interna-
tional Journal of Open Information Technologies, vol. 2, no. 9, pp. 24–27,
2014.

[21] J. Thönes, “Microservices,” IEEE software, vol. 32, no. 1, pp. 116–116, 2015.

[22] O. Al-Debagy and P. Martinek, “A comparative review of microservices and
monolithic architectures,” in 2018 IEEE 18th International Symposium on
Computational Intelligence and Informatics (CINTI) (pp, pp. 149–00015,
0004). IEEE, 2018.

[23] C. Richardson and F. Smith, “Microservices: from design to deployment,”
Nginx Inc, pp, pp. 24–31, 2016.

[24] A. A. Al-Rashedi, “E-government based on cloud computing and service-
oriented architecture,” International Journal of Computer and Electrical
Engineering, vol. 6, no. 3, p. 201, 2014.

[25] N. Kratzke and P. C. Quint, “Understanding cloud-native applications after
10 years of cloud computing-a systematic mapping study,” Journal of Systems
and Software, vol. 126, pp. 1–16, 2017.

[26] D. Gonzalez, Developing Microservices with Node. js. Packt Publishing Ltd,
2016.

[27] Y. Yu, H. Silveira, and M. Sundaram, “A microservice based reference ar-
chitecture model in the context of enterprise architecture,” In, vol. 2016,
pp. 1856–1860, 2016.

[28] K. Indrasiri and P. Siriwardena, “Microservices for the enterprise,” Apress,
Berkeley, 2018.

[29] H. H. S. da Silva, G. D. F. Carneiro, and M. P. Monteiro, “An experience
report from the migration of legacy software systems to microservice based
architecture,” in 16th International Conference on Information Technology-
New Generations (ITNG 2019) . , Cham, pp. 183–189, 2019.

[30] Q. Hu and Y. Y. Du, “Service architecture and service discovery oriented to
service clusters,” Journal of Computer Applications, vol. 33, no. 8, pp. 2163–
2166, 2013.

[31] M. Fowler and J. Lewis, “Microservices a definition of this new architectural
term,” URL: http://martinfowler.com/articles/microservices.html, vol. 22,
2014. http://martinfowler.

[32] M. Bruce and P. Pereira, Microservices In Action. Shelter Island, NY: Man-
ning Publications Co, 2018.

[33] R. Jardim-Goncalves, A. Grilo, and A. Steiger-Garcao, “Challenging the
interoperability between computers in industry with mda and soa,” Computers
in industry, vol. 57, no. 8-9, pp. 679–689, 2006.

[34] V. Vernon, Implementing domain-driven design. Addison-Wesley, 2013.

[35] M. Fowler, “Boundedcontext,” vol. 1, p. 2017, 2014.
https://www.martinfowler.com/bliki/BoundedContext.html.

[36] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi,
R. Mustafin, and L. Safina, “Microservices: yesterday, today, and tomor-
row,” in Present and ulterior software engineering . , Cham, pp. 195–216,
2017.

[37] C. Pahl and P. Jamshidi Microservices: A Systematic Mapping Study, vol. 1,
pp. 137–146, 2016.

[38] O. Zimmermann, Mircroservices tenets: Agile approach to service develop-
ment and deployment. In Proceedings of the Symposium/Summer School on
Service-Oriented Computing, 2016.

[39] J. Hunt, “Feature-driven development,” Agile Software Construction, pp,
pp. 161–182, 2006.

[40] S. Thakur and H. Singh, “Fdrd: Feature driven reuse development process
model,” in 2014 IEEE International Conference on Advanced Communica-
tions, Control and Computing Technologies, pp. 1593–1598, IEEE, 2014.

[41] B. Hayes, Cloud computing. NY, USA: ACM New York, 2008.

[42] J. Lenhard, Portability of Process-Aware and Service-Oriented Software:
Evidence and Metrics (Vol. 23). University of Bamberg Press, 2016.

[43] M. B. Mollah, K. R. Islam, and S. S. Islam, “Next generation of computing
through cloud computing technology,” in 2012 25th IEEE Canadian Con-
ference on Electrical and Computer Engineering (CCECE), pp. 1–6, IEEE,
2012.

[44] B. Furht and A. Escalante, Handbook of cloud computing (Vol. 3). New York:
Springe, 2010.

[45] M. Petrenko, D. Poshyvanyk, V. Rajlich, and J. Buchta, “Teaching software
evolution in open source,” Computer, vol. 40, no. 11, pp. 25–31, 2007.

[46] K. Boeckman, Docker containers vs. virtual machines: What’s the difference?
NetApp Blog, 2017.

[47] B. Golden, “3 reasons why you should always run microservices apps in
containers,” TechBeacon, vol. 3, February 2018. https://techbeacon.com/app-
dev-testing/3-reasons-why-you-should-always-run-microservices-apps-
containers.

[48] M. Amaral, J. Polo, D. Carrera, I. Mohomed, M. Unuvar, and M. Steinder,
“Performance evaluation of microservices architectures using containers,”
in 2015 IEEE 14th International Symposium on Network Computing and
Applications, pp. 27–34, IEEE, 2015.

[49] Docker, “About docker engine,” Accessed 2020 January.
https://docs.docker.com/engine/.

[50] M. Kircher and P. Jain, Pattern-oriented software architecture, patterns for
resource management, vol. 3. John Wiley & Sons, 2013.

[51] TutorialPoints, “Design pattern overview,” November.
https://www.tutorialspoint.com/design_pattern/design_pattern_overview.htm.

[52] N. Noda and T. Kishi, “Design pattern concerns for software evolution,” in
Proceedings of the 4th international workshop on principles of software
evolution, pp. 158–161, 2001.

[53] C. Kramer and L. Prechelt, “Design recovery by automated search for
structural design patterns in object-oriented software,” in Proceedings of
WCRE’96: 4rd Working Conference on Reverse Engineering, pp. 208–215,
IEEE, 1996.

[54] N. Nadiu Design Patterns For Legacy Migration And Digital Modernization,
vol. 3, p. 2020, March 2016.

[55] M. Kalske, N. M"akitalo, and T. Mikkonen, “Challenges when moving from
monolith to microservice architecture,” in International Conference on Web
Engineering . , Cham, pp. 32–47, 2017.

[56] T. Ueda, T. Nakaike, and M. Ohara, “Workload characterization for microser-
vices,” in 2016 IEEE international symposium on workload characterization
(IISWC), pp. 1–10, IEEE, 2016.

[57] V. Muppavarapu and S. M. Chung, “Role-based access control for cyber-
physical systems using shibboleth,” in Proceedings of DHS Workshop on
Future Directions in Cyber-Physical Systems Security, pp. 57–60, Citeseer,
2009.

[58] P. Di Francesco, I. Malavolta, and P. Lago, “Research on architecting mi-
croservices: Trends, focus, and potential for industrial adoption,” in 2017
IEEE International Conference on Software Architecture (ICSA), pp. 21–30,
IEEE, 2017.

[59] N. Alshuqayran, N. Ali, and R. Evans, “A systematic mapping study in
microservice architecture,” in 2016 IEEE 9th International Conference on
Service-Oriented Computing and Applications (SOCA), pp. 44–51, IEEE,
2016.

[60] M. S. Hamzehloui, S. Sahibuddin, and K. Salah, “A systematic mapping
study on microservices,” in International Conference of Reliable Information
and Communication Technology . , Cham, pp. 1079–1090, 2018.

[61] D. Taibi, V. Lenarduzzi, and C. Pahl, Architectural patterns for microservices:
a systematic mapping study. SCITEPRESS, 2018.

[62] J. Soldani, D. A. Tamburri, and W. J. Van Den Heuvel, “The pains and gains
of microservices: A systematic grey literature review,” Journal of Systems
and Software, vol. 146, pp. 215–232, 2018.

[63] D. Neri, J. Soldani, O. Zimmermann, and A. Brogi, “Design principles,
architectural smells and refactorings for microservices: a multivocal review,”
SICS Software-Intensive Cyber-Physical Systems, pp, pp. 1–13, 2019.

[64] M. Villamizar, O. Garcés, H. Castro, M. Verano, L. Salamanca, R. Casallas,
and S. Gil, “Evaluating the monolithic and the microservice architecture
pattern to deploy web applications in the cloud,” In, vol. 2015, no. 10, pp. 583–
590, 2015.

[65] A. Balalaie, A. Heydarnoori, P. Jamshidi, D. A. Tamburri, and T. Lynn, “Mi-
croservices migration patterns,” Software: Practice and Experience, vol. 48,
no. 11, pp. 2019–2042, 2018.

[66] K. Brown and B. Woolf, “Implementation patterns for microservices archi-
tectures,” in Proceedings of the 23rd Conference on Pattern Languages of
Programs, pp. 1–35, 2016.

[67] H. Knoche and W. Hasselbring, “Drivers and barriers for microservice
adoption-a survey among professionals in germany,” Enterprise Modelling
and Information Systems Architectures (EMISAJ)-International Journal of
Conceptual Modeling, vol. 14, no. 1, pp. 1–35, 2019.

[68] I. J. Munezero, D. T. Mukasa, B. Kanagwa, and J. Balikuddembe, “Parti-
tioning microservices: a domain engineering approach,” in 2018 IEEE/ACM
Symposium on Software Engineering in Africa (SEiA), pp. 43–49, IEEE,
2018.

[69] D. Taibi and V. Lenarduzzi, “On the definition of microservice bad smells,”
IEEE software, vol. 35, no. 3, pp. 56–62, 2018.

[70] J.-P. Gouigoux and D. Tamzalit, “From monolith to microservices: Lessons
learned on an industrial migration to a web oriented architecture,” in 2017
IEEE International Conference on Software Architecture Workshops (ICSAW),
pp. 62–65, IEEE, 2017.

[71] J. Bogner, J. Fritzsch, S. Wagner, and A. Zimmermann, “Microservices in
industry: insights into technologies, characteristics, and software quality,” in
2019 IEEE International Conference on Software Architecture Companion
(ICSA-C), pp. 187–195, IEEE, 2019.

[72] A. A. C. De Alwis, A. Barros, A. Polyvyanyy, and C. Fidge in Function-
splitting heuristics for discovery of microservices in enterprise systems. In
International Conference on Service-Oriented Computing . , Cham, pp. 37–53,
2018.

[73] H. A. M"uller, M. A. Orgun, S. R. Tilley, and J. S. Uhl, “A reverse-engineering
approach to subsystem structure identification,” Journal of Software Mainte-
nance: Research and Practice, vol. 5, no. 4, pp. 181–204, 1993.

[74] C. Esposito, A. Castiglione, and K. K. R. Choo, “Challenges in delivering
software in the cloud as microservices,” IEEE Cloud Computing, vol. 3, no. 5,
pp. 10–14, 2016.

[75] S. R. Palmer and M. Felsing, A practical guide to feature-driven development.
Pearson Education, 2001.

[76] F. Anwer, S. Aftab, U. Waheed, and S. S. Muhammad, “Agile software devel-
opment models tdd, fdd, dsdm, and crystal methods: A survey,” International
journal of multidisciplinary sciences and engineering, vol. 8, no. 2, pp. 1–10,
2017.

[77] C. Richardson, Microservice architecture. 2016. http://microservices.io.

[78] P. R. Chelliah, S. Naithani, and S. Singh, Practical Site Reliability Engineer-
ing: Automate the process of designing, developing, and delivering highly
reliable apps and services with SRE. Packt Publishing Ltd, 2018.

[79] J. H. Saltzer and M. F. Kaashoek, Principles of computer system design: an
introduction. Morgan Kaufmann, 2009.

[80] G. Gousios, “Distributed databases. [online] gousios.org,” Available at:
https://gousios.org/courses/bigdata/dist-databases.html, Accessed 2019 De-
cember.

[81] “Swagger,” API Design For Swagger And OpenAPI, vol. 10, p. 2018, March.
https://swagger.io/solutions/api-design/.

[82] ThePhp Framework For Web Artisans, vol. 10, p. 2018, April.
https://laravel.com/docs/8.x.

[83] “Francoisjacquet,” Francoisjacquet/Rosariosis., vol. 25, p. 2019, April.
https://github.com/francoisjacquet/rosariosis/blob/mobile/INSTALL.md.

[84] “Laravel passport,” vol. 10, p. 2018, June.
https://laravel.com/docs/7.x/passportissuing-access-tokens.

[85] Amazon Ecs- Run Containerized Applications In Production, vol. 11, p. 2019,
February. https://aws.amazon.com/ecs/.

[86] ApacheJmeter (Application Designed To Test Functional Behavior And Mea-
sure Performance), vol. 1, p. 2018, November. http://jmeter.

[87] “Codecanyon,” Full ERP, vol. 1, p. 2019, November.
https://codecanyon.net/item/erp-business-solution-c-project-with-source-
code/22449253.

[88] D. Escobar, D. Cárdenas, R. Amarillo, E. Castro, K. Garcés, C. Parra, and
R. Casallas, “Towards the understanding and evolution of monolithic applica-
tions as microservices,” In, vol. 2016, pp. 1–11, 2016.

[89] U. R. Sharma, Practical Microservices. Packt Publishing Ltd, 2017.

[90] E. Eric and F. Martin, “Domain-driven design: Tackling complexity in the
heart of software,” 2013.

[91] R. Elmasri and S. Navathe, Fundamentals of database systems, vol. 7. Pear-
son, 2017.

[92] P. Raj, A. Raman, and H. Subramanian, Architectural Patterns. Packt Pub-
lishing, 2017.

[93] S. J. Fowler, Production-ready Microservices: Building standardized systems
across an engineering organization. " O’Reilly Media. Inc.", 2016.

[94] M. L. Abbott and M. T. Fisher, The art of scalability: Scalable web archi-
tecture, processes, and organizations for the modern enterprise. Pearson
Education, 2009.

[95] N. Dragoni, S. Dustdar, S. T. Larsen, and M. Mazzara, “Microservices:
Migration of a mission critical system,” arXiv preprint arXiv:1704.04173,
2017.

[96] L. Bass, P. Clements, and R. Kazman, Software architecture in practice.
Addison-Wesley Professional, 2003.

Appendix A

Performance Test samples

Figure 1 User Module Summary Report for 40 requests in 0.5sec Figure A.1 User Module Summary Report for 40 requests in 0.5sec

Figure 3 User Module Summary Report for 20 requests in 0.5sec

Figure 2 User Module Summary Report for 60 requests in 0.5sec

Figure A.2 User Module Summary Report for 20 requests in 0.5sec

Figure 3 User Module Summary Report for 20 requests in 0.5sec

Figure 2 User Module Summary Report for 60 requests in 0.5sec

Figure A.3 User Module Summary Report for 60 requests in 0.5sec

Figure 4 User Module Summary Report for 72 requests in 1.7 sec

Figure 3 User Module Summary Report for 60 requests in 0.5sec

Figure A.4 View User Module Result in Table for 60 requests

Figure 5 View User Module Result in Table for 60 requests

Figure 6 View User Module Result in Table for 80 requests in 4.48 sec (1)

Figure A.5 View User Module Result in Table for 60 requests

Figure 5 View User Module Result in Table for 80 requests in 4.48 sec (1)

Figure 6 View User Module Result in Table for 80 requests in 4.48 sec (2)

Figure A.6 View User Module Result in Table for 80 requests in 4.48 sec (1)

Figure 7 View User Module Result in Table for 80 requests in 4.48 sec (2)

Figure 8 View User Module Result in Table for 80 requests in 4.48 sec (3)

Figure A.7 View User Module Result in Table for 80 requests in 4.48 sec (2)

Figure 7 View User Module Result in Table for 80 requests in 4.48 sec (2)

Figure 8 View User Module Result in Table for 80 requests in 4.48 sec (3)

Figure A.8 View User Module Result in Table for 80 requests in 4.48 sec (3)

Figure 9 Student Module Summary Report for 45 requests in 0.5 sec

Figure 10 Student Module Summary Report for 150 requests in 3.5 sec

Figure A.9 Student Module Summary Report for 45 requests in 0.5 sec

Figure 9 Student Module Summary Report for 45 requests in 0.5 sec

Figure 10 Student Module Summary Report for 150 requests in 3.5 sec

Figure A.10 Student Module Summary Report for 150 requests in 3.5 sec

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation and Problem Statement
	1.2 Aim and Objectives of Proposed Research
	1.3 Research question and Contribution
	1.4 Methodology
	1.5 Thesis Structure

	2 Literature Review
	2.1 Introduction
	2.2 Software Evolution: Maintenance Development and Migration
	2.2.1 Importance of Evolution, Development and Migration

	2.3 Legacy System
	2.3.1 Software evolution vs legacy system migration

	2.4 Service-Oriented Architecture
	2.5 Microservices
	2.6 Microservices architecture vs Monolithic architecture
	2.7 Bounded Context
	2.8 Feature-Driven Evolution
	2.9 Cloud Computing
	2.10 Container
	2.11 Design Pattern
	2.12 Conclusion

	3 Related Work
	3.1 Introduction
	3.2 A Systematic Study on Microservices
	3.3 Microservice-Oriented Architecture and Design
	3.4 Evolution into Microservice-Oriented Architecture
	3.5 Conclusion

	4 Research Framework
	4.1 Introduction
	4.2 The Conceptual Framework of the Approach
	4.2.1 The Overview of the Framework System
	4.2.2 The Legacy System
	4.2.3 Middle Layer – Microservice Transformation
	4.2.4 Target System – Cloud Migration

	4.3 Summary

	5 The Feature-Driven Migration Approach
	5.1 Introduction
	5.2 Feature-driven evolution
	5.2.1 Features in enterprise systems
	5.2.2 Method to derive the microservice Evolution rules
	5.2.3 Feature relationships in enterprise systems

	5.3 Preconditions for feature-driven rules
	5.4 Feature driven microservice transformation rules
	5.5 Feature Driven Cloud Migration Rules
	5.6 Microservices Transformation Roadmap
	5.7 Summary

	6 Case Study and Evaluation
	6.1 Introduction
	6.2 Case Study 1
	6.3 The Current, Monolithic, Architecture of RosarioSIS
	6.4 New Microservices Architecture of RosarioSIS
	6.5 Deployment in a Cloud Environment
	6.6 Test and Analysis
	6.6.1 Performance Test

	6.7 Case Study 2
	6.7.1 The Legacy System Transformation to Microservice Architecture
	6.7.2 Deployment
	6.7.3 Evaluation

	6.8 Summary

	7 Conclusions
	7.1 Introduction
	7.2 Critical Analysis
	7.2.1 Objective I: Understand the theoretical background relating to the migrating of legacy systems, by proposing a holistic framework approach for such migration.
	7.2.2 Objective II: Apply UML diagram in order to specify the migration rules
	7.2.3 Objective IV: Evaluation with Case Studies

	7.3 Contributions
	7.4 Conclusion
	7.5 Limitation and Future Work

	References
	Appendix A Performance Test samples

