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Abstract
Parkinson’s disease (PD) is a progressive neurodegenerative disorder that causes abnormal movements and an array of

other symptoms. An accurate PD diagnosis can be a challenging task as the signs and symptoms, particularly at an early

stage, can be similar to other medical conditions or the physiological changes of normal ageing. This work aims to

contribute to the PD diagnosis process by using a convolutional neural network, a type of deep neural network architecture,

to differentiate between healthy controls and PD patients. Our approach focuses on discovering deviations in patient’s

movements with the use of drawing tasks. In addition, this work explores which of two drawing tasks, wire cube or spiral

pentagon, are more effective in the discrimination process. With 93:5% accuracy, our convolutional classifier, trained with

images of the pentagon drawing task and augmentation techniques, can be used as an objective method to discriminate PD

from healthy controls. Our compact model has the potential to be developed into an offline real-time automated single-task

diagnostic tool, which can be easily deployed within a clinical setting.

Keywords Convolutional neural networks � Parkinson’s disease � Drawing tasks � Deep learning classifier �
Diagnosis

1 Introduction

Parkinson’s disease (PD) is a progressive neurodegenera-

tive disorder characterised histologically by the death of

dopaminergic neurons in the substantia nigra pars com-

pacta (SNpc) and the presence of Lewy bodies in various

parts of the brain [17]. The SNpc is a compact structure in

the midbrain that plays a vital role in motor coordination

and movement control by producing a chemical substance

called dopamine, which is integral for controlling the ini-

tiation, velocity, and fluidity of voluntary movement

sequences [83]. The causes of most cases of PD (known as
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‘sporadic’ or ‘idiopathic’ PD) are still unknown, but

involve complex interactions between genetic and envi-

ronmental factors [46].

PD is the second most common neurodegenerative dis-

order after Alzheimer’s disease, affecting 1% of the pop-

ulation over the age of 60 and reaching approximately 5%

at 85 [69]. The prevalence is rising due to ageing popula-

tions. According to the Parkinson Disease Foundation [63],

about 10 million people worldwide have PD, one million of

them in the USA, 1.2 million in Europe [59], and two

million projected in China by 2030 [19]. One out of 500

individuals in the UK is affected, and it is expected that this

number will rise threefold in the next 50 years [61]. There

is currently no proven disease-modifying therapy [24]. The

diagnosis of PD requires the presence of bradykinesia

(slowness of movements) in addition to muscle rigidity or

tremor or postural instability [62]. Approximately 20% of

patients do not develop a tremor [37]. The manifestations

of PD are not limited to motor impairments.

Prompt diagnosis of PD is important in order to provide

patients with appropriate treatment and information on

prognosis. However, an accurate early diagnosis can be

challenging because the movement symptoms can overlap

with other conditions [72]. Doctors make the diagnosis of

PD based on clinical evaluation, interpreting information

gained predominantly through history-taking and exami-

nation of the patient. Sometimes brain imaging may be

requested to help support the clinical diagnosis, but there

are currently no tests that are wholly sensitive or specific

for Parkinson’s. The rate of misdiagnosis of PD is

approximately 10–25% [38], and the average time required

to achieve 90% accuracy is 2.9 years [36]. Autopsy is still

the gold standard for the confirmation of the disease.

There remains a need for quick and non-invasive tests to

provide objective results to support a clinician’s diagnosis.

We address this in our work, with the aim of developing a

medical device that can assist with early diagnosis of PD,

focusing on the primary care context where the rate of

misdiagnosis is particularly high [38]. Patients with sus-

pected PD could then be forwarded for expert assessment

by movement disorder specialists. The approach is based

around a graphics tablet on which a patient traces or copies

a cognitive assessment figure; this has the benefit of col-

lecting a lot of information about the patient’s movements

and cognitive processes in a short period of time using an

inexpensive device. The system then uses a deep learning

model to detect whether the patient’s drawings shows signs

of Parkinson’s disease.

In this paper, we describe the training and selection of

the deep learning model. Unlike earlier work in this area

(see Sect. 2.2), we focus on developing a model that can

diagnose Parkinson’s disease from a single drawing. This is

important, because elderly patients fatigue quickly,

meaning that it is not practical within a primary care

context to ask them to carry out multiple drawing tasks. In

particular, we show that the use of dynamic movement data

(rather than static images) combined with data augmenta-

tion techniques allows us to build a highly predictive model

without having to integrate information from multiple

drawings. Also of importance from a clinical perspective,

we show that PD can be diagnosed using an intentionally

simple CNN model. Simple models are more likely to

generalise beyond their training data and hence are con-

sidered more trustworthy for medical diagnosis.

1.1 Figure-drawing tasks for assessing
Parkinson’s disease

Due to the lack of accepted definitive biomarkers [53] and

specific neuroimaging findings [51], the diagnosis of PD is

typically based on patient history, observations, judge-

ments on clinical examination criteria and specific symp-

tom questionnaires. These test outcomes are highly

examiner-dependent (based on training and experience),

with variability among different groups of observers [68].

The necessity of systematic kinematic tests to aid for

clinical decision making led to the development of inde-

pendent and objective quantitative assessments, more

suitable for statistical analysis and data processing. Some

of these tools, such as the systematic analysis of data from

the finger-tapping test [5], the use of handwriting [20] and

sketching abilities [73], have already been proposed to

evaluate motor and cognitive function in the clinical setting

to assess and diagnose PD.

Kinematic aspects of handwriting movements such as

size, speed, acceleration and stroke length are affected in

PD from its early stages [82]. As PD progresses, changes in

handwriting occur with reductions in writing size (micro-

graphia) [16] and decreased ability to write in general

(dysgraphia) [47]. These deficits can be used to diagnose

and monitor PD. Research to date has investigated signa-

ture writing [67] and the writing of short phrases [41]. The

disadvantage of selecting handwriting abilities for PD

diagnosis is that this skill is correlated with culture and

penmanship, along with the level of literacy and education

of the individual [22]. On the contrary, the execution of

drawing tasks is considered an education-independent

measure and may be more sensitive in detecting early signs

of PD [80]. They are also fast, non-invasive and relatively

easy to perform. There are different graphonometric

methods used as tests, where patients have to draw fig-

ures of different levels of complexity like a spiral [73],

cube [8], pentagon [6], interlocking pentagons [4], meander

[64], star [78], the Bender–Gestalt test [54] and more

complex figures like the clock [9], the Benson or the Rey–

Osterrieth figure copy test [76]. Each test can be applied to
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particular aspects of PD. For instance, the pentagon task

has been used for the analysis of cognitive decline [40], to

assess at the same time both motor and cognitive levels

[85] and to compare PD with other neurodegenerative

diseases [15].

The analysis of drawings provides significant motor

function data as a result of the force, speed, time, tightness

and uniformity generated by the patient for a period of

time. However, it is not straightforward for clinicians to

diagnose PD based on a simple visual inspection and

requires detailed analysis. Although tremor may be visually

apparent, tremor manifestations are not a symptomatology

requirement in PD. Some 30% of patients do not develop

this sign, and it is even less predominant at the early stages

of the disease. However, this information can be used as

the input for a computational model designed to support the

diagnosis of PD. Computational models have been effec-

tively applied to classification problems in the area of

health care for a long time [88]. One successfully and

widely used complex model with a multi-layer structure is

the deep neural network (DNN). The learning methods that

support multi-layer models are generally categorised as

deep learning (DL). DL is a multi-level feature learning

method that can deal with multimodal data and high-di-

mensional search spaces [31, 44]. Its performance and

versatility are two reasons why this technology has been

extended to a variety of different domains, including image

classification [33], speech recognition [34], among many

others.

The goal of this work is to use DL to analyse the

information collected from patients’ drawings in the form

of images as a basis for discriminating PD patients from

healthy controls. The architecture selected for this work is

a convolutional neural network (CNN), a form of DNN that

is known to work well with image data. Specifically, we

aim to develop DNN models to achieve the following

objectives:

• Selecting the most suitable model structure for our

CNN classifier to automatically learn significant fea-

tures from drawing assessments in order to differentiate

between PD and healthy controls.

• Developing a reliable set of tests to investigate which

data representation is the most informative option for

training predictive models.

• Comparing two different drawing tasks (pentagon and

cube drawing) to examine which one is more informa-

tive for discriminating PD as input for a CNN classifier.

• Analysing the effect of applying augmentation tech-

niques on the classification performance and its level of

stability (variance).

The remainder of this paper is organised as follows: Sect. 2

introduces DL as a tool to support learning in DNN models,

presents a general overview of the CNN topology and

illustrates the way in which other studies have applied

these techniques to medical diagnosis. Section 3 outlines

the datasets and the methods employed in this work, the

description of the experiments performed and the proce-

dure used to validate our results. Section 4 shows the set of

experiments conducted and the results obtained from the

analysis of the multiple classification scenarios. Section 5

comments on the experimental results in detail. Finally,

Sect. 6 summarises this paper and lays out directions for

future work.

2 Deep neural networks

DNNs are advanced multi-layer network models that are

able to deal with complex, nonlinear and unstructured data

such as audio, video, image and text by transforming them

into a hierarchical structure of features with multiple levels

of abstraction [44]. A crucial advantage of such models is

that the transformation is performed without the interven-

tion of human expertise and without the need to perform

any feature extraction and data preprocessing. The feature

extraction is, instead, automatic [31].

2.1 Convolutional neural network topology

The way in which the multiple layers of a DNN are linked

and arranged characterises its topology, also called archi-

tecture. A CNN is a deep feed-forward DNN that was

inspired by the structure of the cat’s visual cortex. Using

only the local connectivity of the nodes arranged in adja-

cent layers, the CNN specialises in processing grid-like

data such as images [32] and performs this learning by

extracting features from raw data automatically [12]. The

CNN architecture has shown remarkable performance on

hard classification problems [33]. A typical CNN topology

consists of a combination of several convolution layers that

can extract features from input data based on the local

underlying spatial patterns, allowing for learning features

with a higher level of abstraction [44]. Each layer is

composed of three cardinal stages: (1) convolution, (2)

activation function (nonlinear transformation) and (3)

pooling (nonlinear down-sampling). By stacking these

layers together, the network is able to extract progressively

more abstract patterns, reducing the number of connections

of the network. Afterwards, the extracted features are

transformed to a one-dimensional vector using a flattening

layer, and finally, the CNN combines these convolutional

layers with traditional dense layers to produce the output of

the classifier.
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2.2 Deep learning for medical diagnosis

DL has been successfully applied in the broad area of

medical diagnosis [48], including medical imaging [87].

For image-related problems, CNNs and its variants have

been widely used in this field due to their extraordinary

ability to exploit image data [43].

The use of drawing data and DL techniques was first

proposed by Pereira et al. [64]. The research group inves-

tigated the use of a five-layer CNN to aid PD discrimina-

tion using 264 scanned images of 256 � 256 pixels

showing meanders and spiral tasks gathered from 35

individuals as input. The authors achieved higher recog-

nition ability measured by the accuracy per class metric

processing spiral images (90:38%) than meander fig-

ures (83:11%). Another, more recent work using scanned

data was conducted by Seedat et al. [74]. The most

important contribution of these authors is the size of the

dataset, which is significantly larger than the rest included

in other works, with data from 370 PD subjects and 357

controls. However, paper-based tests imply that only X, Y

coordinates and pressure as changes in terms of shades of

intensity were collected. Despite that, authors reported

accuracies of over 98% using a pretrained hyperparameter

optimised CNN approach with data augmentation.

In [66], the group of Pereira explored the use of different

well-known CNN architectures to analyse a set of 308

images gathered from 35 individuals performing the same

type of tests. The HandPD dataset, gathered initially as a

time series from a biometric pen, was initially transformed

into a set of vectors composed by six signal channels. For

each time step, these vectors were stacked together to form

an image. The approach achieved a performance level of

87:14% for the meander images and 80:19% for the spirals

using a CaffeeNet topology. Pereira et al. [65] extended

their work using the same sensors, a larger dataset, called

NewHandPD, with information from 92 individuals and a

time series-based image pattern representation. The paper

covered the comparison of three different CNN architec-

tures (CaffeNet, CIFAR-10_quick and LeNet), three

baselines and a combination of six different tests that were

linked in a fusion approach to reach an average accuracy of

95:74% for 128 � 128 pixel size images with the CaffeNet

architecture.

Recurrence plots were applied by members of the same

research group led, this time, by Afonso et al. [2], to map

the signals gathered from the NewHandPD dataset onto the

image domain. These images were further used as input of

the previous three CNN topologies. The experiments

compared also the same two image resolutions (64 � 64

and 128 � 128), achieving the best results (88:05%) with

the meander 64 � 64 pixel-size figure and the CaffeNet

architecture.

Two similar unsupervised clustering approaches using a

deep optimum-path forest (OPF) model were then proposed

by Afonso et al. in [1, 3], using the NewHandPD dataset. In

both works, the OPF was used as a feature extractor for

three traditional machine learning algorithms, namely

Bayesian classifier, supervised OPF and support vector

machine (SVM). In [3], accuracies from meander and

spiral tests were rather similar, with values around 81%;

meanwhile in [1], the accuracy from the meander dataset

outperformed the spiral by over 2%, reaching almost 84%.

Linked to this research is the work of De Souza et al. [79],

where a fuzzy OPF is used, merging HandPD and New-

HandPD datasets, and using restricted Boltzmann machines

as feature extractors, reaching 79.57% and 77.94% accu-

racies for meander and spiral, respectively.

Four recent papers approached the diagnosis of PD

using deep recurrent neural networks (RNN). A bidirec-

tional gated recurrent unit network, along with an attention

mechanism, was investigated using the NewHandPD

dataset [70], achieving superior results with the meander

figures (92:24%) compared to the spiral (89:48%) and

outperforming previous works on this dataset. Gallicchio

et al. [27] proposed another type of deep RNN architecture,

a 10-layered deep echo state network (ESN) and a different

significantly imbalanced public dataset called Parkin-

sonHW with 61 PD patients and 15 controls, reaching

accuracies of up to 89:3%. This dataset contains informa-

tion about pen position (x and y components), pressure and

grip angle. Szumilas et al. [81] suggested also the use of an

ESN-ensemble model to quantify kinetic tremor in PD by

drawing circles on a digitising tablet, using, in this case, a

dataset of 64 PD patients. Finally, in [75], the authors

compared an ESN with a long short-term memory model

using our dataset and reaching accuracies of 91% for the

LSTM and 93.7% for the ESN.

Considering the same ParkinsonHW dataset, Canturk

[11] employed a CNN-based approach, selecting the pre-

trained AlexNet and GoogleNet models as feature extrac-

tors to achieve an accuracy of 94%. In this case, the author

applied a fuzzy recurrence plot to convert time-series sig-

nals into greyscale texture images and K-Nearest Neigh-

bour (KNN) and SVM as final classifiers, reporting the

superiority of SVM over KNN by only 1%. In [29], this

accuracy was increased to 96:5% with the same AlexNet

approach, but using spectrum points as input data, since PD

symptomatology is better reflected in the frequency

domain. Another similar, but inferior work in terms of final

accuracy (88%) was also published by Khatamino et al.

[42], inspired by the time-series image representation of

[65].
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Moetesum et al. [55] used a set of eight pre-trained

CNNs (AlexNet) as a feature extractor system to be used

by a SVM classifier. The networks were trained with the

PaHaW dataset [20] that comprises 72 subjects (37 controls

and 38 PD patients) performing eight different tests, one of

them being a spiral drawing. Afterwards, using fusion

techniques, the eight outputs were combined to provide a

final single metric. Information was collected as sequential

data by a digitised pen and transformed into images using

X, Y coordinates and zero-pressure information, achieving

83% in overall accuracy and 62% for the spiral data.

Using the same dataset, Diaz et al. [18] integrated

together the features extracted from three parallel VGG16

CNNs, which shared the same 16-layer architecture, but

trained with different data representations and transfer

learning. As a result, the extracted features were given as

the input to a combination of traditional ML models (SVM,

random forest and AdaBoost). This work reported a max-

imum accuracy of 86:67%, gathered by the ML ensemble,

using a majority voting scheme.

The next work that continues experimenting with the

PaHaW dataset is the study conducted by Naseer et al. [57].

In this case, authors proposed a deep 25-layer CNN clas-

sifier (AlexNet), with transfer learning and data augmen-

tation, achieving an outstanding accuracy of 98:28%.

Authors used the ImageNet and MNIST fine-tuning-based

approach over the spiral data of the PaHaW dataset and

reported that the AlexNet-ImageNet approach outper-

formed the MNIST pre-trained version by over 3%.

In the work of Vasquez et al. [86], data collected from

speech, handwriting and gait were used together as a

multimodal ensemble mechanism to distinguish between

PD patients and healthy controls. Handwriting data con-

sisted of 14 tasks, including circle, cube, rectangle and

spiral drawings gathered from a total of 84 subjects, 44 PD

patients and 40 controls, as a time series data. From that, a

feature extraction step collected the transitions in hand-

writing. A one-dimensional CNN with four layers was

designed to extract spatial features from these transitions

and sent them as input to a SVM model. The approach

achieved high accuracy (97:6%) when information from

speech, handwriting and gait were combined. However,

using the handwriting data as a single classifier was not

very effective, resulting in only a 67:1% accuracy.

Much of the existing work in this area has been done

using a small number of publicly-available datasets, con-

taining relatively few data points. In addition, the focus has

been on using increasingly complex predictive models to

raise accuracy rates, with the best accuracies achieved

using deep architectures and ensemble models. All of these

factors contribute to the likelihood of overfitting. The use

of small datasets to train and test deep neural architectures

is particularly concerning, since this will likely lead to

many model parameters being under-specified. However,

large datasets are very difficult to acquire. Hence, going

against this trend, our work focuses on using shallower

CNNs, where the number of trainable parameters is much

smaller, and hence the generality is likely to be greater

when trained on small datasets. Rather than focusing on

more complex models, we instead investigate the features

within the data that are most significant for accurate clas-

sification, and tailor the representation of the data to

emphasise these.

Another important consideration that has not really been

addressed by the existing literature is the burden placed

upon patients when collecting data within a clinical setting.

The most accurate existing models have been achieved by

forming ensembles from multiple data modalities. This, in

turn, requires patients to undergo a corresponding number

of data collection exercises, something that may be difficult

to achieve in practice with elderly and physically infirm

patients. In our work, we focus on training models that

require only a single drawing as their input, hence min-

imising the burden placed upon patients in the clinic, and

providing a more practical predictive model for use in a

primary care setting.

A summary of the related work introduced in this sec-

tion can be seen in Table 1, in chronological order. An

extended comparison of these studies can be found in the

Sect. 5, in Table 16.

3 Methodology

The methodology used in this paper is illustrated in Fig. 1.

3.1 Data acquisition

For this study, the data were collected by clinicians at

Leeds Teaching Hospitals NHS Trust. The dataset com-

prises information acquired from 87 subjects (58 patients

and 29 aged-matched healthy controls). Patients were

recruited from neurology clinics and had been diagnosed

by PD specialist consultants according to the Queen Square

Brain Bank Criteria [28]. Controls were the spouses or

friends of patients and were included if they had no neu-

rological disorder. The study was conducted in accordance

with the corresponding institutional review board. Every

subject provided written informed consent before the tests.

All the subjects were asked to copy the wire cube from a

sample image and draw the Archimedean spiral pentagon

on top of a template image, using an inking stylus and a

digitising, pressure-sensitive Wacom tablet (Wacom

Technology Corporation) of size 20.3 cm � 32.5 cm. In

the cube task, each subject performed one drawing with the

dominant hand, whilst in the pentagon task, they carried
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out four drawings, two with each hand. The instructions

indicated that the figures should be drawn as accurately and

as fast as possible. Figure 2a shows the spiral pentagon

template that subjects were asked to follow. Figure 2b–d

are examples of pentagon and cube drawings.

The collected data were stored to assess the performed

movements during the drawing process offline in the form

of time series data. The tablet recorded data with a constant

sample ratio of 200 Hz. In each sample, information of the

time starting at zero, coordinates X and Y of each pen

Table 1 List of works included in the literature review

Year Reference Authors Dataset Tests

2016 [64] Pereira et al. Former HandPD (paper), 32 subjects Meander, Spiral

2016 [66] Pereira et al. HandPD (digital pen), 32 subjects Meander, Spiral

2017 [3] Afonso et al. HandPD (digital pen), 32 subjects Meander, Spiral

2018 [65] Pereira et al. HandPD, 92 subjects, time-series image representation Meander, Spiral

2018 [27] Gallicchio et al. ParkinsonHW, 77 subjects Spiral

2018 [42] Khatamino et al. ParkinsonHW, 77 subjects, time-series image representation Spiral

2018 [55] Moetesum et al. PaHaW, 72 subjects Spiral, 7 writing tasks

2018 [86] Vásquez-Correa et al. Custom (speech, handwriting and gait), 84 subjects Spiral, circle, cube... (8 tasks)

2019 [2] Afonso et al. HandPD, 35 subjects Meander, Spiral

2019 [70] Ribeiro et al. HandPD, 35 subjects Meander, Spiral

2019 [29] Gil-Martı́n et al. ParkinsonHW, 77 subjects Spiral

2019 [18] Diaz et al. PaHaW, 72 subjects Spiral, 7 writing tasks

2020 [1] Afonso et al. HandPD, 35 subjects Meander, Spiral

2020 [74] Seedat et al. Custom (paper), 707 subjects Spiral

2020 [81] Szumilas et al. Custom, 64 patients Circles

2020 [11] Canturk ParkinsonHW, 40 subjects Spiral (dynamic and static)

2020 [57] Naseer et al. PaHaW, 75 subjects Spiral, 7 writing tasks

2021 [79] De Souza et al. Merged HandPD and NewHandPD, only final number of samples, Meander, Spiral

2021 [75] Shenoy et al. Same as this paper, 87 subjects Only Spiral pentagon

Fig. 1 Workflow followed in this study
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location, the angles in which the pen is used with respect to

the X and Y plane and the relative pressure exerted against

the tablet were stored as a multivariate time series dataset.

Coordinates X and Y and pressure values are represented

in the range of [0, 1] and pen angles in the range [- 1, 1],

and timestamp entries are monotonic integer values starting

from zero. We can interpret, when zero-pressure values are

collected, that the pen at this location was not in contact

with the tablet.

Along with the time series dataset, other general infor-

mation of the subjects was gathered including whether they

were patient or control, age, gender, hand used in the test

and handedness. Baseline diagnosis and movement severity

were assessed by clinicians using the Movement Disorder

Society Unified Parkinson’s Disease Rating Score (MDS-

UPDRS) part 3 [56] for motor-related skills and the

Montreal Cognitive Assessment (MoCA) score [58] for

measuring cognition levels. All the information was stored

in files for further analysis. A summary of the age, gender,

disease duration, MDS-UPDRS score, MoCA score and

Levodopa Equivalent Daily Dose (LEDD) is shown in

Table 2.

There is a small, yet significant, difference ðp ¼ 0:09Þ
between the mean ages of the control and PD groups. PD is

more common in males and the gender gap has been

exaggerated by the fact that the control subjects were the

spouses or friends of the PD participants. The mean scores

for both UPDRS and MoCA differ significantly (p\0:001

for both) between the control and PD groups.

After a preliminary inspection of the dataset, it was seen

that the complete set of samples was imbalanced, with the

number of patients significantly higher than the number of

control subjects. This factor has significant implications for

the training of the classifier. In addition, for the pentagon

dataset, we only used the collected data of the first and the

second repetition of the subjects’ dominant hand. The

rationale for this decision was that the ability to complete

the non-dominant hand tasks varied greatly between indi-

viduals, presumably related to their degree of ambidex-

terity, and was not felt to reliably reflect motor control.

3.2 Data preprocessing

Following the preliminary inspection of the data, all

incomplete drawings (2 patient and 3 control) were

removed, and the image-based dataset was then created by

representing the time series of each subject as a two-di-

mensional image, connecting the coordinates of the tra-

jectory described by the pen [55]. Other alternatives have

also been investigated. In Camps et al. [10], the data

gathered by an IMU wearable device (accelerometer,

gyroscope and magnetometer sensors) were formatted as a

grid structure using a spectral window stacking procedure

and transformed into images. In Pereira et al. [66], a five-

column dataset gathered by a digitalised pen was trans-

formed into an image to be the input of a CNN. The pen

sensors included a microphone, finger grip, axial pressure

of ink refill, tilt and acceleration in X, Y and Z directions.

In the present work, we investigate different data rep-

resentations for the transformed set of images. Specifically,

we cover three data representations with increasing levels

of complexity. The first and most simple approach extracts

the X and Y coordinate data, discarding zero-pressure val-

ues and angles. Afterwards, it transforms this information

into a two-dimensional black and white image. The next

version adds zero-pressure information (coordinates where

the pen passed without touching the tablet) as grey strokes

to the black and white image. We include this information

Fig. 2 a The spiral pentagon template, b a pentagon drawing from a patient, c a cube without zero-pressure information and d a cube with zero-

pressure information

Table 2 Participants information

Characteristics PD group (n = 58) Controls (n = 29)

Age, years 69.2 (8.4, 44–85) 66.1 (7.6, 50–79)

Gender, M:F 38:20 5:24

Handedness, R:L 51:7 22:7

Disease duration, years 6.2 (4.7, 0.5–20)

MDS-UPDRS Part 3 28.8 (11.5, 3–56) 1.9 (2.3, 0–8)

MoCA score 23.1 (4.1) 26.3 (3.0)

LEDD, mg/day 662.7 (560.9)
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following the findings of Drotár et al. [20], who highlighted

the importance of in-air trajectories in handwriting tasks

for PD patients.

Finally, as our third approach, we are interested in

introducing the whole range of pressure values in the image

since it is known that pressure decreases with the pro-

gression of PD [84]. Here, we extend the black and white

representation to a greyscale image, where the grey infor-

mation has been generated by scaling the pressure values

from [0, 1] to [0–254]. We are also interested in differen-

tiating between areas where the pen did not pass and areas

where the pen passed, but without touching the tablet.

Based on this, we created the new images by using zero

values (black) to represent minimum pressure, 254 values

to draw points with the maximum pressure that the subject

can exert over the tablet and 255 values (white) to depict

non touching points.

After trimming away outer edges around the drawing

(white space) that are not of interest for the classification,

these images were resized and normalised by creating a

zero-mean normalised version with a unit standard devia-

tion. Data were finally formatted appropriately to be used

as input to a CNN. The resize step created three different

versions for each image of sizes 32 � 32, 64 � 64 and

128 � 128 pixels to study how resolution influences the

classification. Afterwards, additional images were pro-

duced using augmentation techniques [12].

When the amount of labelled data is limited, which is

often the case in the medical field, data augmentation is a

critical preprocessing step for training CNNs to teach the

network the desired invariance, provide robustness [71]

and avoid the performance deterioration linked with class

imbalance in the training data [50]. The process of aug-

mentation involves the transformation of the existing

images to create new ones. Choosing a strategy for aug-

mentation is not trivial and could be even more crucial than

the selection of the architecture [31]. Suitability of each

technique can only be tested using trial and error methods

since there is not a single strategy that is superior to the rest

[45]. Advanced techniques require significant expert

knowledge, such as texture transfer, selective blending,

kernel filtering and directional lightning addition, and can

also be computationally expensive like the use of genera-

tive adversarial networks [49]. On the contrary, traditional

geometric transformations are fast, reproducible and easy

to implement [52]. Flipping and rotation have proven

useful on datasets such as CIFAR-10 and ImageNet. For

some datasets, the use of rotation transformation can be

heavily influenced by the rotation degree, e.g. in [77],

where rotations greater than 20 degrees were found to be

problematic.

In this work, new copies were generated by applying

random rotation, random zoom with a certain value and

random horizontal flip. In our case, we did not find that

rotation misclassified drawings and we implemented this

feature with a random rotation degree of up to 40 degrees.

The amount and distribution of the new set of images are

defined as follows: for each control image (cube or pen-

tagon drawing), 23 perturbed copies were created and 11

for each patient (cube or pentagon drawing). Table 3 shows

the initial and final numbers for each type (cube-pentagon

and control-patients).

3.3 Architecture and training

The CNN architecture consists of two convolutional layers

with 32 filters followed by two convolution layers with 64

filters and another two convolutional layers with 128 filters,

three max-pooling layers of size (2 � 2), six dropout layers,

three dense layers and one flattened layer. All the activa-

tion functions are ReLU (rectified linear unit), except for

the last dense layer, where a sigmoid activation function

was selected to map the binary output. ReLU is the most

used activation function for CNN [43]. In each convolu-

tional layer, we used the same padding mechanism to

maintain the size of the layers after applying a series of

convolutional operations. Finally, we use a stride of size

(3 � 3). Figure 3 shows the CNN architecture.

For performing the image classification between sub-

jects, the CNN model was trained using backpropagation

on the images that were produced from the time-series

datasets and through the application of augmentation

techniques. After the training, the model was tested as a

classifier to differentiate between healthy subjects and

patients using a test set of previously unseen images.

DNN models, when training in supervised mode, use

different datasets for the training and testing procedures.

Following that, we employed 90% and 10% of the samples,

extracted from the main datasets, for training and validat-

ing and testing purposes, respectively. The samples con-

tained in each group were randomly selected. This

procedure allows us to evaluate the accuracy of our

framework. We conducted a tenfold cross-validation [23].

The CNN has the layers initialised using the Xavier/

Glorot initialisation schema [30]. Other common hyper-

parameter values are 0.003 as the initial learning rate, 1e�6

Table 3 Images created over the original datasets (number of samples

in brackets) by applying augmentation techniques

Cube images Pentagon images

Control (56) 598 (51) 1173

Patient (26) 616 (112) 1232

Total (82) 1214 (163) 2405
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as a decay function and momentum equal to 0.9. The

training algorithm aims at minimising a binary cross-en-

tropy loss function between the predicted and the real

diagnosis. The optimisation algorithm uses mini-batch

learning with a batch size equal to 16 to speed up the

learning. The training uses an early stopping mechanism as

a regularisation technique to avoid overfitting with a two-

fold stopping condition: a maximum number of epochs

equal to 150 and stopping after 25 epochs without

improvement in the validation set.

3.4 Experimental set-up

In this subsection, we explain the experimental set-up and

how the different test sets were defined and grouped. We

used Python 3 to run our experiments and analyse the

results. We worked under the Keras deep-learning frame-

work [13] to take advantage of the straightforward con-

figuration of DL pipelines. We also used several libraries

specialised in DL such as NumPy and Pandas that help us

to process the datasets and Sklearn to extract the results

from the models. The experiments were grouped based on

four factors:

• Experiments with black and white images with and

without zero-pressure information to investigate

whether keeping zero-pressure information is crucial

in the discrimination process.

• Experiments with greyscale images with zero-pressure

information.

• Experiments with balanced and imbalanced datasets to

investigate the impact of the class distribution on

classification performance and stability.

• Experiments with a variety of image resolutions

including 32 � 32, 64 � 64 and 128 � 128 pixels.

In total, we completed 36 different experiments on both

pentagon and cube datasets.

3.5 CNN assessment

The CNN models were assessed as follows:

1. Phase 1: Evaluating the results of the ten runs

performed for each configuration described in the

previous sections. The topology and configuration that

achieve the best performance are then selected for

further analysis.

2. Phase 2: Using the previous top-performing configu-

ration, we select the best of the ten different models

(set of weights) produced by the application of cross-

validation when training. This model will be further

evaluated and reported as the final performance output

of this paper.

In the first phase, we analysed the results of the experi-

ments using several nonparametric statistical tests includ-

ing Mann–Whitney U test two-tailed, Kruskal–Wallis test

and Tukey’s honest significant difference test as a post hoc

test based on the studentised range distribution. These tests

had a level of statistical significance at p\0:05.

We used Kappa [14] as our primary performance metric.

Kappa is a statistical measurement of the agreement

between two rankers. It is a robust metric, simple to

compute, and with an output range between ½�1; 1�. Kappa

values K are calculated as follows:

K ¼ p0 � pc
1 � pc

ð1Þ

where p0 is the total agreement probability among rankers

and pc is the agreement probability due to chance. In our

case, the rankers are the original class (ground truth) and

the predicted class generated using the trained classifier.

There is no standard method to interpret Kappa values, but

Fleiss et al. [25] considered that a Kappa value [ 0:75 is

excellent, 0.4–0.75 is fair to good, and \0:4 is a poor

agreement. A Kappa value could be negative, but it is

unlikely in practice.

The reason behind the use of Kappa instead of the tra-

ditional accuracy measure of classification performance is

Fig. 3 CNN architecture with a pentagon image as input (left), the convolutional and max-pooling layers (middle) and the schematic

representation of the feature reduction that occurs from the flattened to the output layer (right)
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that for a significant part of the experiments our datasets

are imbalanced. This characteristic implies that using tra-

ditional metrics to calculate the classification accuracy can

be misleading [35]. For example, consider a test set of three

controls and six patients. If the classifier predicts all sam-

ples as patients, then the classification accuracy will be

about 66%. Meanwhile, the Kappa statistic for the same

configuration will be 0. In this case, it can be seen that

Kappa gives a stronger indication than the traditional

accuracy metric for classification.

The comparison procedure of phase one starts by eval-

uating the multiple configurations listed in the previous

section, grouped as tuples. A summary of the process is

illustrated in Figs. 4 and 5. The assessments are done level

by level until reaching a winner. Figure 4 represents the

different configurations tested for the cube and pentagon

datasets, and Fig. 5 summarises the last comparison level

and the network option finally selected as our best

approach. For simplification purposes, notice that each box

includes experiments with and without zero-pressure.

To analyse the results, we used boxplots and descriptive

statistics (five number summary) to illustrate the distribu-

tion differences for our best six balanced configurations

(Fig. 6), the three best balanced against the three best

imbalanced configurations (Fig. 7), and comment on the

stability of their performances.

Once this step concludes, we focus on our best config-

uration to further determine its performance and analyse its

efficiency. The selected traditional assessments include the

accuracy as a measurement to evaluate how well the pre-

dictor classifies both classes, the confusion matrix (actual

vs predicted classification), specificity and sensitivity/recall

(recognition rate per each class, respectively), precision

(positive predictive value), f1-score (harmonic mean

between precision and recall) and the average precision

score.

4 Results and evaluation

This section presents and analyses the results generated by

the two validation phases. Afterwards, the major findings

are discussed. The most accurate results in the tables be-

low, based on the nonparametric statistical tests described

in the previous section, are highlighted in bold.

4.1 Evaluating the experimental results

Using the comparison approach described in Sect. 3.5, we

performed the experiments designed and summarised in

Fig. 4. Results are shown in Tables 4, 5, and 6. Table 4

shows the results for the CNN classifier on the pentagon

and cube datasets, using a black and white representation

without zero-pressure information over the validation set.

The table shows the averaged Kappa values, considering

imbalanced and balanced cases and a variety of image

resolutions.

In the next set of experiments, we continue with the

black and white representation, but including areas where

the pen was not in touch with the tablet. Table 5 shows the

averaged Kappa values over the validation set, considering

imbalanced and balanced cases and a variety of image

resolutions.

Fig. 4 Visual representation of the set of configurations being compared. Green arrows represent the order of the comparisons, blue boxes

inferior configurations, and yellow options are the winning counterparts
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In addition to the inclusion of the in-air information,

Table 6 incorporates the whole range of pressure values in

the representation of the image using a greyscale

representation.

From the results reported in these tables, we can study

and comment on the effects of the different configurations

with respect to the final performance of the classification.

4.1.1 The effect of applying augmentation

In all the configurations, the datasets with augmentation

(balanced) led to better results than the imbalanced options.

If we averaged the results of the balanced datasets on one

side and imbalanced on the other among the different

resolutions and we calculate the difference between them,

it can be observed in Table 7 that applying augmentation

Fig. 5 Final test configurations

(left) and the option selected as

the best approach (right)

Fig. 6 Distribution of the Kappa values of the six best configurations detailed in Fig. 5
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techniques, the CNN classifier is able to outperform the

imbalanced versions.

The improvement in Kappa values among the three data

representations shows that the importance of this technique

increases in function of the complexity of the data repre-

sentation. This tendency is depicted for both datasets,

especially for the cube drawings.

4.1.2 The effect of adding zero-pressure information
on the input data

To analyse the consequences of adding zero-pressure val-

ues on the representation of the images, attention should be

focused on Tables 4 and 5, which correspond to perfor-

mances with and without this particular information. If we

concentrate on the total average performance for each

table, we can see that the non-pressure information affects

positively the overall performance by adding almost

0:08ð0:401 � 0:323Þ over the averaged Kappa values for

each configuration.

Fig. 7 Distribution of the Kappa values of the best three configurations for balanced and imbalanced datasets

Table 4 Summary of the average Kappa values over ten runs using

only the coordinates of the pen when the pressure was bigger than

zero over the validation set

Black and white without zero-pressure

Drawing Distribution 32 � 32 64 � 64 128 � 128 Mean

Pentagon Imbalanced 0.082 0.086 0.055 0.075

Balanced 0.48 0.531 0.461 0.491

Cube Imbalanced 0.227 0.123 0.085 0.145

Balanced 0.642 0.604 0.581 0.609

Mean 0.337 0.336 0.296 0.323

Table 5 Average kappa values for the black-white representation with

zero-pressure over the validation set

Black and white with zero-pressure

Drawing Distribution 32 � 32 64 � 64 128 � 128 Mean

Pentagon Imbalanced 0.084 0.066 0.041 0.064

Balanced 0.552 0.555 0.499 0.535

Cube Imbalanced 0.285 0.27 0.179 0.245

Balanced 0.796 0.792 0.697 0.762

Mean 0.429 0.421 0.354 0.401
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If, instead, we take into account the consequences of this

addition for each dataset, the improvements are sum-

marised in Table 8.

The results suggest that adding zero-pressure informa-

tion increases the averaged Kappa values for both types of

tests. We can see, however, that the cube performance gets

higher benefits from adding this extra information to the

image representation (� 0:13) than the pentagon dataset

(� 0:02).

4.1.3 The effect of adding the range of pressure values

Using the same procedure with Tables 5 and 6, the global

averaged Kappa value over all the configurations for the

black and white representation with zero-pressure infor-

mation is 0.401 and for the greyscale with zero-pressure is

0.54. Then, the general improvement achieved by the

addition is 0.138.

If, instead of analysing the performances globally, we

consider the performances for the pentagon and cube tasks

independently, it can be observed in Table 9 that the

pentagon task highly benefits from incorporating the

greyscale representation (� 0:25) in comparison with the

cube task (� 0:02).

4.1.4 The effect of the image resolution on the CNN
architecture

The image size that generates the best Kappa results differs

between the pentagon and cube datasets, and it is linked

with the use of augmentation techniques, in-air information

and pressure values. Variance values are outlined for bal-

anced and imbalanced datasets in Table 10.

The effect of the image resolution is not homogeneous

from the point of view of the use of balanced and imbal-

anced datasets. For imbalanced images:

• Pentagon images do not improve significantly with the

use of different image sizes, independently of the

representation used. The variance of performance

between image sizes is minimal for the three types of

image representation.

• The best absolute performance of the pentagon task in

each configuration is rather poor (0.086, 0.084, 0.296),

achieving in general higher performance values with

small image sizes ð32 � 32Þ.
• Variance values decrease as the complexity of the data

representation rises. This can be interpreted as the size

Table 6 Summary of the average Kappa values over ten runs using a

greyscale representation with zero-pressure information over the

validation set

Greyscale with zero-pressure

Drawing Distribution 32 � 32 64 � 64 128 � 128 Mean

Pentagon Imbalanced 0.296 0.283 0.291 0.29

Balanced 0.87 0.841 0.75 0.82

Cube Imbalanced 0.195 0.202 0.222 0.206

Balanced 0.844 0.865 0.787 0.832

Mean 0.551 0.555 0.512 0.54

Table 7 Effect of applying

augmentation
Data representation Pentagon Cube

Black and White Imbalanced Balanced Imbalanced Balanced

0.075 0.491 0.145 0.609

Dif: 0.416 Dif: 0.463

Black and white pressure Imbalanced Balanced Imbalanced Balanced

0.064 0.535 0.245 0.762

Dif: 0.471 Dif: 0.517

Grey scale pressure Imbalanced Balanced Imbalanced Balanced

0.29 0.82 0.206 0.832

Dif: 0.53 Dif: 0.625

Each value represents differences in the averaged performance for all the configurations using augmen-

tation or not

Table 8 Improvement achieved by adding zero pressure information

over the black and white representation

Drawing task No pressure Pressure

Pentagon Imbalanced Balanced Imbalanced Balanced

0.075 0.491 0.064 0.535

Mean 0.282 Mean 0.3

Improvement 0.017

Cube Imbalanced Balanced Imbalanced Balanced

0.145 0.609 0.245 0.762

Mean 0.377 Mean 0.503

Improvement 0.126
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of the image is a very important factor for the black and

white representation and insignificant for the greyscale

images.

• For the first two configurations, the cube dataset

achieves better results with a small image size

ð32 � 32Þ. For the greyscale images, the tendency

changes for a larger configuration (even when other two

configurations are rather close), being the only config-

uration where the 128 � 128 pixel-size option achieves

the best performance.

Focusing on the results gathered by applying augmentation

techniques, the use of the three different resolutions shows

the following:

• Performance values for pentagon and cube vary among

resolutions, with also heterogeneous behaviours for

both tests in the different configurations. Variance

values for pentagon show that the performance of the

grey images is more prone to variability across

resolutions. In the case of the cube task, the variance

indicates that the black and white with nonzero pressure

information is the approach that changes more between

resolutions.

• In terms of preferred sizes, pentagon images are more

successful in medium size images ð64 � 64Þ, except for

the grey-image scenario, where it is surpassed by the

32 � 32, but only by � 0:03. Cube images tend to

achieve better performance with smaller images

ð32 � 32Þ, with again the exception of the greyscale

representation, where 64 � 64 achieves slightly higher

performance by only � 0:02.

4.1.5 The effect of the application of augmentation
techniques in the variability of the performance
among runs

It is considered that a classifier is stable if the variance

between multiple trainings is low, which is accepted as a

desired characteristic of any learning algorithm [7]. Sta-

bility is linked with the randomness of the system that

comes from the sampling of the training set. To measure

this, we look at the standard deviation (SD) between cross-

validation folds, focusing our analysis on the best perfor-

mance configurations, listed in Fig. 5. Figure 6 illustrates

the shape of the cross-validation distributions for these six

best configurations. Numerical values are shown in

Table 11.

The boxplots show a limited range of variability for all

the CNN configurations, with an average of 0.056 and a

maximum value of 0.088. The most stable results, which

are also the two best performers, correspond to the grey-

scale representation for the pentagon and cube datasets

with an averaged Kappa SD value of 0.03. We can also

observe that both configurations have similar shapes. The

rest of the approaches achieve values with an SD of

(� 0:06).

It is also interesting to notice similarities in the shape of

the distributions generated from the black and white pen-

tagon with and without zero-pressure information. On the

contrary, the distributions of the cube with and without

zero-pressure information depict very distinctive shapes,

which reinforces the idea that the addition of the zero-

pressure information in the cube task affects its perfor-

mance noticeably.

To study the variability between balanced and imbal-

anced configurations, a similar plot is included. Figure 7

Table 9 Improvement achieved

by adding the full range of

pressure values over the black

and white with zero-pressure

information

Pressure option Pentagon Cube

B&W—zero pressure Imbalanced Balanced Imbalanced Balanced

0.064 0.535 0.245 0.762

Mean 0.3 Mean 0.503

Greyscale Imbalanced Balanced Imbalanced Balanced

0.29 0.82 0.206 0.832

Mean 0.555 Mean 0.555

Improvement 0.255 Improvement 0.015

Table 10 Variance values of the

performances gathered among

image resolutions, grouped into

imbalanced and balanced

datasets for each data

representation

Data representation Pentagon Cube

Imbalanced Balanced Imbalanced Balanced

B&W—no pressure 0.027 0.129 0.535 0.094

B&W—pressure 0.046 0.097 0.331 0.313

Greyscale 0.004 0.393 0.018 0.165
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shows the three best balanced configurations along with the

three best imbalanced options. Numerical values of the

three best imbalanced configurations are shown in

Table 12. From a visual inspection of the Kappa SD val-

ues, we can see that all the balanced configurations provide

more stable results than the best imbalanced counterparts.

In the table, it can be seen that all the balanced con-

figurations have a Kappa SD value lower than 0.07, with an

average of 0.054. On the contrary, the imbalanced models

have SD values no lower than 0.22, with an average of

0.304.

4.2 Evaluating the final model

The best-performing configuration is the CNN architecture

using 32 � 32 pixel-size images of the pentagon drawing

task including zero-pressure information and greyscale

representation. To get a better idea of its generality, we

take the best model trained during cross-validation (as

measured by the validation set), reevaluate it on the test set

and consider various performance metrics. Table 13 shows

Kappa values, classification accuracy, specificity and

average precision for the validation and test sets.

The Kappa value and the accuracy for the best single-

model over the validation set achieve 0.926 and 96:31%

and for the test set these figures drop slightly to 0.9 and

95:02%, respectively. On top of that, Table 14 illustrates

additional metrics gathered from the same model such as

specificity, sensitivity, F1-score and support (number of

samples in the test set).

Finally, Table 15 illustrates the confusion matrix of this

model using the validation and the testing sets. The matrix

shows the number of samples that the system classifies as

true positive (TP), true negative (TN), false positive (FP)

and false negative (FN). We can see that this model suc-

cessfully classified 116 out of 118 of control images and

113 out of 123 of patient images in the test set.

It is notable that the CNN correctly classifies patients

who are in the early stages of the disease, with the mis-

classified patients all having had the disease for more than

three years. This suggests that the model could be useful

for the early detection of PD, something that is particularly

challenging for clinicians. Furthermore, analysis of the

misclassified images suggests that they were misclassified

due to the patient not pressing sufficiently hard against the

tablet; see, for instance, Fig. 8, where parts of the drawing

are not visible due to the low pressure values, obscuring the

movement signal from the CNN. This issue could be mit-

igated against using preprocessing, or potentially by using

a colour gradient rather than greyscale.

5 Discussion

This paper has approached the automated diagnosis of PD

using drawing tasks and DL techniques under multiple

configurations. The factors analysed, such as the effect of

applying augmentation techniques, the resolution of the

images, and the data representation used to create the

images, show a rich and complex performance profile. One

of the most crucial factors is the analysis of the classifiers

trained with balanced and imbalanced data. The augmen-

tation process has a very significant effect, improving

considerably the diagnostic performance of the classifier.

This is especially true for the most complex representations

and when the cube task is used. The equal contribution of

Table 11 Summary of the

average Kappa and accuracy

values and their corresponding

SD for the best six

configurations

CNN experiment Avg Kappa (±SD) Avg Acc (±SD)

Cube 64 � 64 0-pres greyscale 0.865 (± 0.033) 93.30% (± 1.66)

Pentagon 32 � 32 0-pres greyscale 0.87 (± 0.028) 93.53% (± 1.43)

Cube 32 � 32 0-pres B&W 0.796 (± 0.067) 89.83% (± 3.38)

Pentagon 64 � 64 0-pres B&W 0.555 (± 0.055) 77.77% (± 2.76)

Cube 32 � 32 no 0-pres B&W 0.642 (± 0.067) 82.08% (± 3.39)

Pentagon 64 � 64 no 0-pres B&W 0.531 (± 0.088) 76.49% (± 4.45)

Table 12 Average kappa and

accuracy values and their SD for

the best three imbalanced

configurations

Best imbalanced CNNs Avg Kappa (± SD) Avg Acc (± SD)

Pentagon 32 � 32 0-pres greyscale 0.296 (± 0.229) 69:00% ð� 9:38%Þ
Cube 32 � 32 0-pres greyscale 0.285 (± 0.346) 70:18% ð� 15:71%Þ
Cube 32 � 32 no 0-pres B&W 0.227 (± 0.337) 71:43% ð� 14:17%Þ
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both classes in the learning process helps add robustness to

the network. Subsequently, we agree with Pereira [66] that

an imbalanced dataset negatively affects classification

performance.

Augmentation also causes generality gain in DL models.

In this context, numerous works did not report any mech-

anisms to increase the generality, such as augmentation

techniques [57] or transfer learning [11, 18, 55, 57]. Due to

the reduced size of all the datasets reviewed in this paper, if

no hard measures against overfitting are implemented, high

accuracy results can easily be a consequence of overfitting.

Under these circumstances, this risk should be considered

when comparing final reported results.

Regarding the size of the images, we observed that

higher-resolution images (128 � 128) tend to reduce the

performance. However, this could be a direct consequence

of the limited size of our CNN architecture. There is no

dominating size with best results: images with 32 � 32 and

64 � 64 pixels showed approximately similar behaviour

regarding PD discrimination. Their differences depend on

other external factors like the type of drawing task. Pen-

tagon and cube drawings could require different number of

pixels to allocate the features required to perform an ade-

quate PD classification. As a comparison, only two other

papers investigated different resolutions. In [66] and later

in [2], the same research team gathered metric values for

64 � 64 and 128 � 128 pixel-images and reported similar

accuracy values, with slightly higher results for meander

images of 64 � 64 in size and the opposite for the spiral,

where 128 � 128 images outperformed a reduced 64 � 64

version [2]. The opposite behaviour was reported in [66],

using both a 8-layer CNN architecture.

Our results indicate that the subject’s movement signals,

when the pen was in contact with the tablet, were insuffi-

cient to fully differentiate between PD patients and healthy

controls. If we focus on the role of the non-pressure data in

the classification, this information can be very effective to

boost the performance, above all in the case of the cube

task with black and white images. We consider that the

planning and visual-spatial reasoning involved in con-

structing a three-dimensional cube might be significant

factors to identify PD patients, which helps in reaching

higher performance. This mechanism is not present in the

pentagon dataset, which is a two-dimensional figure that is

usually drawn without raising the pen. Adding the full

Table 13 Different metrics applied to the best CNN model

Metric Validation set Test set

Kappa 0.926 0.9

Accuracy (%) 96.31 95.02

Specificity (%) 98.11 98.31

Average precision 100 98

Table 14 Results from multiple performance metrics calculated for

the best single CNN configuration

Specificity Sensitivity F1-score Support

Validation set

Control 0.95 0.98 0.96 106

Patient 0.98 0.95 0.96 111

Avg/total 0.96 0.96 0.96 217

Test set

Control 0.92 0.98 0.95 118

Patient 0.98 0.92 0.95 123

Avg/total 0.95 0.95 0.95 241

Table 15 Confusion matrix resulted from the best CNN model using

images of 32 � 32 pixels of the pentagon task with zero-pressure

information and greyscale representation

Validation set Test set

0 (Control) 1 (Patient) 0 (Control) 1(Patient)

0 (Control) TN = 104 FP = 2 TN = 116 FP = 2

1 (Patient) FN = 6 TP = 105 FN = 10 TP = 113

Fig. 8 Misclassified images: the top two were drawn by patients, and

the bottom two were drawn by controls. Note that the lack of intensity

reflects the absence of pressure when the subjects carried out the

drawings
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range of pressure values was important, especially for the

pentagon task since it did not benefit much from including

in-air information. For the cube task, pressure information

contributes to its performance as much as the in-air infor-

mation. Both characteristics together aid the cube task to

reach a performance that is very close to the best pentagon

configuration.

Previous works give a mixed view of which test is most

discriminative for PD. Pereira et al. [64] attributed differ-

ences in performance between drawing tasks (meanders

and spirals) to their complexity. They claimed that the

hardest test (in their case the spiral) was more discrimi-

native. However, the same authors, in their next work [66],

drew the opposite conclusions, achieving better results with

the meander task. Other authors such as [1, 70], also agreed

on the superiority of the meander drawings using the same

NewHandPD dataset. Regarding the PaHaW dataset,

Moetesum et al. [55] also found the spiral task more

effective than seven other handwritten tasks, the opposite

to Drotár et al. [21] who also considered the same dataset.

These authors also mentioned that results can be influenced

by the features under consideration or how the data is

represented.

From the analysis of our results, we conclude that our

two tests have similar capabilities to distinguish PD

patients from healthy controls. However, each of them

needs different information included in the representation

of the images: the pentagon drawing bases more its accu-

racy on pressure information and the cube on in-air

movements.

Direct comparison of our results against previous studies

poses some problems. The papers of Pereira [64–66] rela-

ted to the use of a CNN for classifying PD, proposed an

alternative accuracy metric to deal with imbalanced data

[60], two drawing tasks (meanders and spiral), that differ

from our selected tests and alternative sensors. In [64, 66],

the images were extracted from scanned tests that include

also the trace of the template and in [65], they used a very

imbalanced dataset (18 controls–74 PD patients) with

samples collected with a biometric pen. Moetesum et al.

[55] applied a similar data acquisition method to the pre-

sent work, creating images using only the X and Y coordi-

nates and in-air information. However, it was not explicitly

mentioned if the in-air information was represented dif-

ferently than the areas where the pen did not pass. Apart

from that, their dataset was balanced, using a traditional

accuracy metric to measure the performance. Overall, the

results from this approach can be more directly compared

with the outcomes reported here. Finally, the ParkinsonHW

dataset [39] used in [11, 27] can also be considered, in the

same way, similar to our dataset but with a significantly

more imbalanced number of samples and reduced size (62

PD patients and 15 healthy subjects) and without in-air

information.

Our best performance result over tenfold cross-valida-

tion, 93:53%, calculated using a traditional accuracy met-

ric, see Table 11, is almost as good as the best performance

reported by Pereira et al. [65] (95:74%), using an ensemble

classifier, and Canturk [11] (94%) with a more complex

CNN architecture. It is significantly better (� 10%
improvement) than the performance included in the work

of Moetesum [55], using both different CNNs and fusion

techniques, and the accuracy reported by Vasquez et al.

[86] if the results for spiral data are only considered

(67:1%). The same is the case for Afonso [1–3] and Diaz

[18], with reported accuracies lower by 5–10%. However,

the accuracy achieved in our work is less than [57], whose

complex fine-tuned-ImageNet and AlexNet approach

reached 98:28% accuracy. A comparative summary can be

seen in Table 16. However, it should be noted that com-

paring approaches based on published accuracies is prob-

lematic, since it does not account for differences in the

datasets, and differences in the ways in which models are

assessed, both of which are likely to dominate over small

numerical differences in the performance metrics.

It is arguable that many of the published methodologies

are already sufficient in terms of accuracy, especially given

the low diagnostic accuracies achieved by many human

raters. Nevertheless, accuracy is only part of the picture

and, for a model to be useful in practice, it must meet the

broader requirements of clinical diagnosis. One of these is

the burden placed on the subject. Many models reported in

the literature require a patient to undergo multiple tests in

order to generate the required data: for instance, works

based on the PaHaW dataset, and other multimodal

approaches, like [86]. Whilst the use of fusion techniques

that integrate data from multiple tests for each patient may

be advantageous in terms of accuracy, sourcing this data

could be very difficult for patients with significant move-

ment impairment. Our approach, by comparison, requires

only a single drawing. A second advantage of our approach

is the simple architecture used in our CNN. We transfer the

complexity to the representation of the data instead of the

DNN architecture, and consequently this requires less data

and computational power to be properly trained. A further

advantage of the relatively small size of our CNN is that it

is more likely to generalise to unseen data than other DL

models found in the literature. We also improve the

robustness and generalisation of our results by imple-

menting augmentation techniques like in [57], comparing

multiple combinations of configurations, and studying the

robustness of the results in terms of variance.
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6 Conclusions and future work

This work investigates the potential for using deep learning

within the clinical assessment of PD. Wire cube and pen-

tagon spiral drawing tasks, both designed to assess the

motor and visuospatial capabilities of patients with neu-

rodegenerative conditions, were performed by subjects

with and without PD. Whilst they performed these tasks,

their movements were digitised on a graphics tablet. The

resulting dataset was used to train a CNN deep learning

architecture, which achieved an accuracy of 93:53% when

discriminating PD subjects from healthy controls on pre-

viously unseen data. Significantly, our method requires less

data than most DL models used elsewhere in the literature,

potentially reducing the burden on patients during the

course of undergoing clinical assessment. It is also con-

siderably simpler, meaning that it is more likely to

generalise to new data and is more amenable to behavioural

analysis. In the course of this work, we have explored the

effect of augmentation techniques, different data repre-

sentations and different image resolutions on the perfor-

mance of trained CNN models, finding all of these to have

significant effects upon the discriminative ability of the

deep learning system.

The limitations of this study include (1) its proof-of-

concept nature; (2) the interpretability of the results typical

of using a black-box optimisation approach; (3) the relative

small size of the dataset and its imbalanced nature.

Although the accuracy of the model is competitive against

other approaches, and at a level that is likely to be clini-

cally useful, there is likely further scope for improvement,

for instance, a broader search for other, perhaps more

innovative, CNN configurations, the use of more complex

data representations that encode more information, the

Table 16 Comparison of the major characteristics or the best results reported in the works reviewed in this paper

Year Reference DL Model DA TL EN Accuracy

2016 [64] CNN (Caffe 5 layer) 90.38% (Spiral)

2016 [66] CNN (ImageNet—5 layers) 87.14% (Meander)

2017 [3] Deep-hierarchical optimum-path forest 83.79 (± 2.51)%

2018 [65] CNN (Imagenet) Yes 73:41ð�3:66Þ% (Spiral, 128 9 128) and

95:74ð�1:6Þ% (Ensemble, 128 9 128)

2018 [27] 10-layered deep ESN 89.3%

2018 [42] CNN inspired by AlexNet (simplified version) 88%

2018 [55] CNN to extract visual features used in a SVM,

ensemble

Yes Yes 83% (ensemble), 62% (Spiral)

2018 [86] CNN (11 layers) for speech and gait, CNN (1

dimension, 4 layers) for handwriting

Yes 97.6% (ensemble), 67.1% (only handwriting—

14 tasks)

2019 [2] CaffeNet (8 layers—1-GPU version of AlexNet),

CIFAR-10 (5 layer), LeNet (5 layers)

88.05% (Meander, 64 � 64)

2019 [70] Bidirectional Gated Recurrent Units with an attention

mechanism

92:24 ð�2:65Þ% (Meander)

2019 [29] CNN inspired by AlexNet (simplified version)—6

layers

96.5%

2019 [18] Three CNNs (VGG16—16 layers) with different data

representation as feature extractor

Yes Yes 86.67% (ensemble, 150 � 150) and Spiral (75%,

SVM)

2020 [1] Deep optimum-path forest classifier 83:79 ð�2:51Þ% (Meander)

2020 [74] CNN—ResNet32 Yes Yes 98.2%

2020 [81] ESN Pearson’s correlations 0.839 to 0.89

2020 [11] CNNs (25 and 144 layers) as a feature extractor for k-

NN and SVM

Yes 94% (SVM)

2020 [57] CNN (AlexNet) Yes Yes 98.28%

2021 [79] A restricted Boltzmann machine for feature extractor

to a fuzzy optimum-path forest

79:57 ð�1:5Þ% (Meander, 128 � 128)

2021 [75] ESN and LSTM Yes 93.7% (ESN) (Pentagon)

2021 This work CNN (19 layers) Yes 93:53 ð�1:43Þ% (Pentagon, 32 � 32)

Column DA shows papers where data augmentation has been reported, column TD where transfer learning (pre-trained networks) was used and

EN where an ensemble classifier was implemented
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implementation of transfer learning, and the use of more

complex augmentation techniques.

In future work, we aim to investigate other DL models.

Notably, deep RNNs are able to work directly on time

series data, and could potentially be used to analyse

dynamical aspects of a patient’s drawing, like in [27].

However, there are certain obstacles that need to be over-

come to use these approaches practically, including the

development of suitable augmentation techniques. We also

intend to examine whether we can extract useful knowl-

edge from trained deep learning models, with the aim of

understanding the basis of their discrimination by inter-

preting the features that the models use to classify PD

patients. Additionally, we aim to investigate whether the

developed models can give more information about disease

staging (as done in [26]) and disease prognosis, for

example whether they can differentiate between patients

with and without cognitive impairment. These new

experiments are expected to be supported by the gathering

of new drawing data in the clinical environment.
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58. Nasreddine Z, Phillips N, Bédirian V, Charbonneau S, Whitehead

V, Collin I, Cummings J, Chertkow H (2005) Montreal cognitive

assessment MoCA brief screening tool for mild cognitive

impairment. J Am Geriatr Soc 53(4):695–699

59. Olesen J, Gustavsson A, Svensson M, Wittchen H, Jönsson B,

Group CS, Council EB (2012) Economic cost of brain disorders

in Europe. Eur J Neurol 19(1):155–162

60. Papa JP, Falcao AX, Suzuki CT (2009) Supervised pattern clas-

sification based on optimum-path forest. Int J Imaging Syst

Technol 19(2):120–131

61. Parkinson Society: Website of the Parkinson’s disease society.

http://www.parkinsons.org.uk (2018). Accessed on 23-07-2021

62. Parkinson Study Group (2004) Levodopa and the progression of

Parkinson’s disease. N Engl J Med 351(24):2498–2508

63. Parkinson’s Foundation: Statistics on Parkinson’s: who has

Parkinson’s? https://www.parkinson.org/Understanding-Parkin

sons/Statistics (2015). Accessed on 23-07-2021

Neural Computing and Applications

123

https://doi.org/10.2495/DATA000481
http://www.parkinsons.org.uk
https://www.parkinson.org/Understanding-Parkinsons/Statistics
https://www.parkinson.org/Understanding-Parkinsons/Statistics


64. Pereira C, Pereira D, Papa J, Rosa G, Yang X (2016) Convolu-

tional neural networks applied for Parkinson’s disease identifi-

cation. In: Machine learning for health informatics. Springer,

pp 377–390

65. Pereira C, Pereira D, Rosa G, Albuquerque V, Weber S, Hook C,

Papa J (2018) Handwritten dynamics assessment through con-

volutional neural networks: an application to Parkinson’s disease

identification. Artif Intell Med 87:67–77

66. Pereira C, Weber S, Hook C, Rosa G, Papa J (2016) Pereira C,

Weber S, Hook C, Rosa G, Papa J (2016) Deep learning-aided

Parkinson’s disease diagnosis from handwritten dynamics. In:

Conference on graphics, patterns and ages. IEEE, pp 340–346

67. Pirlo G, Diaz M, Ferrer M, Impedovo D, Occhionero F, Zurlo U

(2015) Early diagnosis of neurodegenerative diseases by hand-

written signature analysis. In: Conference on image analysis and

processing (ICIAP). Springer, pp 290–297

68. Post B, Merkus MP, de Bie RM, de Haan RJ, Speelman JD

(2005) Unified Parkinson’s disease rating scale motor examina-

tion: are ratings of nurses, residents in neurology, and movement

disorders specialists interchangeable? Move Disord

20(12):1577–1584

69. Reeve A, Simcox E, Turnbull D (2014) Ageing and Parkinson’s

disease: why is advancing age the biggest risk factor? Ageing Res

Rev 14:19–30

70. Ribeiro LC, Afonso LC, Papa JP (2019) Bag of samplings for

computer-assisted Parkinson’s disease diagnosis based on recur-

rent neural networks. Comput Biol Med 115:103477

71. Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional

networks for biomedical image segmentation. In: International

conference on medical image computing and computer-assisted

intervention. Springer, pp 234–241

72. Samii A, Nutt JG, Ransom BR (2004) Parkinson’ disease. Lancet

363(9423):1783–1793

73. Saunders-Pullman R, Derby C, Stanley K, Floyd A, Bressman S,

Lipton RB, Deligtisch A, Severt L, Yu Q, Kurtis M et al (2008)

Validity of spiral analysis in early Parkinson’s disease. Offic J

Move Disord Soc 23(4):531–537

74. Seedat N, Aharonson V, Schlesinger I (2020) Automated

machine vision enabled detection of movement disorders from

hand drawn spirals. In: 2020 IEEE international conference on

healthcare informatics (ICHI). IEEE, pp 1–5

75. Shenoy AA, Lones MA, Smith SL, Vallejo M (2021) Evaluation

of recurrent neural network models for Parkinson’s disease

classification using drawing data. In: 43rd annual international

conference of the IEEE engineering in medicine and biology

society (EMBC). IEEE

76. Shin MS, Park SY, Park SR, Seol SH, Kwon JS (2006) Clinical

and empirical applications of the Rey–Osterrieth complex fig-

ure test. Nat Protoc 1(2):892

77. Shorten C, Khoshgoftaar T (2019) A survey on image data

augmentation for deep learning. J Big Data 6(1):60

78. Smits EJ, Tolonen AJ, Cluitmans L, van Gils M, Conway BA,

Zietsma RC, Leenders KL, Maurits NM (2014) Standardized

handwriting to assess bradykinesia, micrographia and tremor in

Parkinson’s disease. PLoS ONE 9(5):e97614

79. de Souza RW, Silva DS, Passos LA, Roder M, Santana MC,

Pinheiro PR, de Albuquerque VHC (2021) Computer-assisted

Parkinson’s disease diagnosis using fuzzy optimum-path forest

and restricted Boltzmann machines. Comput Biol Med

131:104260
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81. Szumilas M, Lewenstein K, Ślubowska E, Szlufik S, Koziorowski

D (2020) A multimodal approach to the quantification of kinetic

tremor in Parkinson’s disease. Sensors 20(1):184

82. Tucha O, Mecklinger L, Thome J, Reiter A, Alders G, Sartor H,

Naumann M, Lange K (2006) Kinematic analysis of dopamin-

ergic effects on skilled handwriting movements in Parkinson’s

disease. J Neural Transm 113(5):609–623

83. Turner RS, Desmurget M (2010) Basal ganglia contributions to

motor control: a vigorous tutor. Curr Opin Neurobiol

20(6):704–716
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