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Abstract: The COVID-19 outbreak began in December 2019 and has dreadfully affected our lives since
then. More than three million lives have been engulfed by this newest member of the corona virus
family. With the emergence of continuously mutating variants of this virus, it is still indispensable to
successfully diagnose the virus at early stages. Although the primary technique for the diagnosis
is the PCR test, the non-contact methods utilizing the chest radiographs and CT scans are always
preferred. Artificial intelligence, in this regard, plays an essential role in the early and accurate
detection of COVID-19 using pulmonary images. In this research, a transfer learning technique with
fine tuning was utilized for the detection and classification of COVID-19. Four pre-trained models
i.e., VGG16, DenseNet-121, ResNet-50, and MobileNet were used. The aforementioned deep neural
networks were trained using the dataset (available on Kaggle) of 7232 (COVID-19 and normal) chest
X-ray images. An indigenous dataset of 450 chest X-ray images of Pakistani patients was collected
and used for testing and prediction purposes. Various important parameters, e.g., recall, specificity,
F1-score, precision, loss graphs, and confusion matrices were calculated to validate the accuracy
of the models. The achieved accuracies of VGG16, ResNet-50, DenseNet-121, and MobileNet are
83.27%, 92.48%, 96.49%, and 96.48%, respectively. In order to display feature maps that depict the
decomposition process of an input image into various filters, a visualization of the intermediate
activations is performed. Finally, the Grad-CAM technique was applied to create class-specific
heatmap images in order to highlight the features extracted in the X-ray images. Various optimizers
were used for error minimization purposes. DenseNet-121 outperformed the other three models in
terms of both accuracy and prediction.

Keywords: COVID-19; artificial intelligence; transfer learning; CNN; X-ray images

1. Introduction

The world has been going through an existential pandemic of the COVID-19 disease
since December 2019, and it has affected every aspect of our lives [1]. This pandemic has
had an intense social and economic impact on most countries. COVID-19 is characterized
by a high transmissibility and has a significant mortality rate [2]. All countries have been
implementing several precautionary measures to ensure the safety of their citizens. More
than 200 countries and territories have been reported to become infected by this virus. As
of 29 June 2021, nearly 180 million confirmed cases of COVID-19 and four million deaths
have been reported globally [3].
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Coronaviruses actually belong to the family of Coronaviridae, which is a family of
enveloped single-stranded positive-sense RNA viruses [4]. The International Committee
on Taxonomy of Viruses named the current discovered novel coronavirus as ‘SARS-CoV-2′,
and the disease has been termed ‘COVID-19′ [5–7]. SARS-CoV-2 has been listed as one of
the novel Betacoronaviruses that infect human beings. It has been investigated that the
SARS-CoV-2 is 88% identical to the other two coronaviruses, which were also discovered in
China in 2018, i.e., bat-SL-CoVZC45 and bat-SL-CoVZXC21 [8,9]. A study from University
College London (UCL) has identified 198 recurring mutations to the virus [10]. The most
common symptoms of COVID-19 are a fever, sneezing, cough, sore throat, throat swelling,
headache, weakness, malaise, and breathlessness.

The most preferred technique for the diagnosis of COVID-19 is the ‘reverse transcription-
polymerase chain reaction’ (RT-PCR) test. However, other non-contact techniques, such as
pulmonary X-rays, computed tomography (CT) images, and high-resolution computed
tomography (HRCT) images, are also preferred by clinicians [11]. Deep learning and
artificial intelligence (AI), in this respect, play a vital role in the accurate detection of COVID-
19. In the field of medical data analysis, deep neural networks and AI rapidly gained
popularity because they happen to be the most suitable for big data analysis [12]. Deep
learning models, especially convolutional neural networks (CNN), are able to automatically
learn multiple level of features from data in a hierarchical manner [13]. Furthermore, the
interest in the detection of COVID-19 using deep learning and convolutional neural network
(CNN) is rapidly increasing.

Recently, quite a few studies have been conducted on the applications of artificial intel-
ligence for the detection and classification of COVID-19. For example, regarding pre-trained
models, five pre-trained models, i.e., ResNet-50, ResNet-101, ResNet-152, and Inception-
ResNet-v2 were used in [14]. The study uses a dataset of four classes, i.e., ‘COVID’ with
341 images, ‘normal’ with 2800 images, ‘viral pneumonia’ with 1493 images, and ‘bacterial
pneumonia’ with 2772 images. However, the pre-trained models have been tested on only
two classes at a time for each model, i.e., ‘COVID’ vs. ‘normal’, ‘COVID’ vs. ‘viral pneu-
monia’, ‘COVID’ vs. ‘bacterial pneumonia’. Similarly, Ref. [15] presents five pre-trained
models for three classes in total. The used models are VGG19, MobileNetV2, Inception,
Xception, Inception, and ResNet v2. The best performance is achieved on MobileNetV2,
with 96.78% accuracy. Furthermore, a computer-aided detection (CAD) was implemented
on ResNet-50, Inception V3, DenseNet-201, and Xception in [16]. This study focuses on
and presents the division of a highly imbalanced training dataset into a group of small
balanced datasets. The use of pre-trained models was also presented in [17], where VGG16,
Inception ResNetV2, ResNet-50, Densenet-201, VGG19, MobileNetV2, and NasNet Mo-
bile were utilized. This research utilizes 400 CT scan images and 400 X-ray images, each
containing 200 COVID and 200 normal images.

Some of the modified CNN models have also been reported. For example, in [18], a
VGG16 based modified CNN was presented, which is named ‘Corona-Net’. The presented
model utilizes a three-class classification with two phases, i.e., a re-initialization phase
and a classification phase for the detection of COVID-19. Similarly, another modified
CNN is presented in [19], in which several parameters have been optimized for the loss
minimization purpose. In addition to a training dataset, two external datasets for validation
purposes have been utilized. Likewise, VGG16 and VGG19 models have been used in [20]
as backbone networks to evaluate the layer depth of the same CNN architecture. Each
backbone network has been trained and evaluated with different degrees of fine tuning. In
addition to the aforementioned modified CNNs, a modified inception model is presented
in [21], where 1065 CT scan images were used. The presented accuracy is 89.5%. A multi-
view fusion deep learning network based on ResNet-50 is presented in [22]. A total of
368 COVID-19 and 127 pneumonia images were used. The idea is to train the model in
multi-view images of chest CT images, which improves the efficacy of the diagnosis.

Some other methods have also been reported, and one such model is presented in [23].
This study utilized Inception-ResNet-v2 as the based model. The presented model is
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named ‘CoVIR-Net’. They exhibited two approaches: CoVIR-Net with Inception-Resnet-v2
residual blocks and the CoVIR-Net feature extractor with a random forest classifier. The
two approaches presented accuracies of 95.78% and 97.29%, respectively. Another method
named by the authors as ‘COVID-Net’ is presented in [24]. The presented architecture
utilizes a lightweight residual PEPX (projection-expansion-projection-extension) design
pattern. The presented article utilizes an open-source dataset, COVIDx. This dataset has
13,975 X-ray images that have been collected from 13,870 patient cases. The presented
model reports a 93.3% test accuracy. Similarly, a ResNet-50-based model termed ‘DREnet’
is presented in [25]. It was used for the diagnosis of CT images that were divided into
three classes. The achieved accuracy is reported as 89.36%. A modified model named
‘DeCoVNet’ has been presented in [26], which use UNet as the base model. The presented
model was tested on 499 CT scan images, with an accuracy of 95.9%. In addition, a model
called ‘DarkCovidNet’ is presented in [27], in which the DarkNet model has been utilized
as a classifier for the YOLO real time object selection. It exhibited a binary and multiclass
accuracy of 98.08% and 87.02%, respectively. Another model, named ‘Coronet’, is presented
in [28], with the use of Xception as the base model. A total of 203 normal and 660 bacterial
pneumonia images were used. The reported accuracy is 89.6%.

A comparative study was performed in [29] using ResNet-18, ResNet-50, COVID-NET,
and DenseNet-121 on Pytorch 1.4. The collection of a custom dataset was reported (named
as ‘CORDA’), which consists of data of 386 patients from a hospital in Turin, Italy. Six
other publicly available datasets were also utilized. In addition to the implementation of
the aforementioned models, authors have also used a new convolutional neural network
comprising of eight convolution layers and a fully connected layer. This new model
has been named ’Conv8’. The use of this smaller architecture did not perform well in
comparison to large models, such as ResNet-18, but presented acceptable results, with a
BA of 0.61 and DOR of 2.38. The main constraint of the study was the lack of availability of
a large dataset. The authors suggested that these models can perform quite well upon the
availability of a larger dataset. In comparison, the re-search work in this paper focuses on
the use of fine tuning and transfer learning by utilizing the pre-trained weights through
freezing the pre-trained layers. Only the weights of the last two layers have been re-
trained/updated. Furthermore, a large dataset of 7232 images has been used in this
research, which improves the accuracies of the models used in this paper. Moreover, the
testing dataset has been segregated from the training and validation datasets. Apart from
this segregated dataset, a locally collected dataset of 450 images has also been utilized for
the purpose of testing and prediction.

In this research, the transfer learning technique is used to detect COVID-19 from the
pulmonary (chest) X-rays. For this purpose, four pre-trained CNN models, i.e., VGG16,
ResNet50, MobileNet, and DenseNet-121 have been used. In order to utilize both the
transfer learning technique and the fine-tuning on the aforementioned pre-trained models,
batch normalization and dropout layers are added in the FC layer. Details on the imple-
mentation of transfer learning are given in Section 2.3. The models under study have been
compared on the basis of important parameters, such as the number of epochs, batch size,
learning rate, etc. Suggestions have been made on the basis of comparison and critical
analysis. The models have been tested on 450 indigenously collected X-ray images of
Pakistani patients. Finally, the Grad-CAM technique has been applied in order to create
class-specific heatmap images to highlight the features that are extracted from the X-ray
images. Various optimizers, i.e., Adam, the stochastic gradient descent (SGD), Adadelta,
and RMSprop from Keras version 2.6.0 have been used for error minimization purpose. It
is noteworthy to mention here that the pretrained models had originally been trained on
the Imagenet dataset, which consisted of millions of images with multiple classes. Whereas,
in this research, these models have been retrained on 5062 images assessed through the
Kaggle website for two classes only. By utilizing transfer learning and fine tuning, a higher
accuracy is achieved for each model. Tensorflow and Keras API is used for the processing
of these models. This study was performed on a 12 GB NVIDIA Tesla K80 GPU that
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was provided online by Google Colab, a product of Google Research headquartered at
Mountain View, CA, United States.

2. Materials and Methods
2.1. Dataset

In this study, pulmonary (chest) X-ray images were used for the diagnosis of COVID-
19. The dataset was categorized into two main classes, i.e., COVID-19 and normal. A
total of 7232 images (3616 COVID-19 + 3616 normal) were accessed from the ‘COVID-19
Radiography Database (available at Kaggle, https://www.kaggle.com/tawsifurrahman/
covid19-radiography-database, accessed on 4 May 2021) [30]. From the total images, 70%
(5062 images) were used for training + validation, and the remaining 30% (2170 images)
were used for testing purposes. The training + validation dataset of 5062 images was
further split into a 70:30 ratio, i.e., 3544 (70%) images for training purposes and 1518 (30%)
images for validation purposes. The details of the data splitting are given in Table 1. In
addition to the dataset accessed via Kaggle, another locally collected dataset of 450 images
(COVID-19 + normal) was also used for testing and prediction purposes. This indigenous
data of chest X-ray images of Pakistani COVID-19 positive and normal patients have
been collected from a local hospital. The samples of normal and COVID-19 X-ray images
assessed via the Kaggle database are shown in Figure 1, whereas the samples of the locally
collected images are given in Figure 2.

Table 1. Details of data splitting.

Classes Dataset

Training Validation Testing Total

COVID-19 1772 759 1085 3616
Normal 1772 759 1085 3616

Total 3544 1518 2170 7232

2.2. Methodology

The methodology adopted for transfer learning for the detection and classification
of COVID-19 is depicted in Figure 3. The primary objective was to classify a chest X-ray
image into two categories, i.e., normal and COVID-19. The two main stages involved in
the model were the preprocessing stage (which further included normalization and data
augmentation) and the classification stage (which involved the use of transfer learning on
pre-trained models and prediction). A normalization range of 0 to 1 was used. The images
were rescaled by multiplying each pixel with a factor of 1/255. Moreover, the images were
augmented by the following: (1) rotation at 40 degrees, (2) height, width, and zoom range
scaling, and (3) horizontal flipping and vertical flipping. The data augmentation performed
on the training images is shown in Figure 4. A sample of the results obtained after the data
augmentation is depicted in Figure 5.

During the training process in a CNN model, the visualization of intermediate acti-
vations helps to better understand the feature extraction process, especially for an image-
based dataset. The term activation here is referred to as the output of a layer, or, more
specifically, the outputs of the several pooling and convolution layers are termed ‘feature
maps’. Therefore, the purpose of visualizing the intermediate activations was actually to
display these feature maps in order to better understand the process of decomposition
of an input image into various filters learned by the network. The visualization of the
intermediate activations for the CNNs used in this study is given in Figure 6.

https://www.kaggle.com/tawsifurrahman/covid19-radiography-database
https://www.kaggle.com/tawsifurrahman/covid19-radiography-database
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Figure 1. Samples of chest X-ray images assessed via Kaggle database [30–32] for training purposes: 
(a–c) normal chest X-rays; (d–f) COVID-19 chest X-rays. 

Figure 1. Samples of chest X-ray images assessed via Kaggle database [30–32] for training purposes:
(a–c) normal chest X-rays; (d–f) COVID-19 chest X-rays.
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Figure 2. Samples of local Pakistani verified dataset used for the testing of trained models: (a–c) 
COVID-19 chest X-rays; (d–f) normal chest X-rays. 
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Figure 6. Visualization of the feature maps for the CNN models used in this study: (a) DenseNet-121; (b) ResNet-50; (c)
VGG16; (d) MobileNet.

2.3. Architecutral Overview of Pre-Trained Models

The VGG16 contains 13 convolutional layers and 3 fully connected dense layers.
The ResNet-50 contains 50 layers, and skip connection technique is used in this residual
network, which skips convolutional layers that help a lot during backpropagation method.
The original model consists of 16 residual blocks and one dense layer, whereas, in this
study, three dense layers are added and utilized. Regarding MobileNet, it is a lightweight
neural network with lesser parameters and higher image classification accuracy. MobileNet
contains 28 convolutional layers and comprises the depthwise separable convolution. The
depthwise separable convolution further contains two layers, i.e., depthwise convolution,
and pointwise convolution. DenseNet-121, on the other hand, contains 121 layers and has
4 dense blocks. The architectural parameters of the four models under study are given in
Table 2, and the architectural designs of the models utilized for transfer learning are shown
in Figure 7.
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Table 2. Architectural parameters of the four CNN models used in this research.

Models Layers Input Layer Size Output Layer Size

ResNet-50 50 (224, 224, 3) (2, 1)
VGG16 16 (224, 224, 3) (2, 1)

MobileNet 28 (224, 224, 3) (2, 1)
DenseNet-121 121 (224, 224, 3) (2, 1)
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The models used in this research have already been trained on a large scale labeled
dataset, i.e., ImageNet. During the training phase, the pre-trained weights (the weights
obtained when a model was trained on the ImageNet dataset) were utilized. Transfer
learning was applied by freezing the pre-trained layers, except for the last two layers
of each model. The last two layers were unfrozen and were retrained on our dataset.
Moreover, a batch normalization layer was added before the fully connected layer in each
model. After flattening the model in the fully connected layer, dense layer 1 was added,
which contains 4096 units with ReLU activation function. A batch normalization layer was
added again after the dense layer 1. After the batch normalization layer, a dropout layer
was added with a dropout size of 0.5. Then, a dense layer 2 was added, which contains
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1024 units with the activation function ReLU. Another dropout layer was then added after
the dense layer 2, with a dropout size of 0.5, and, finally, a dense layer 3 was added, which
contains 2 units with the Softmax activation function.

Usually, a great number of data are needed to train a neural network from scratch,
but access to data is not always available, e.g., the COVID-19 radiography data. Utilizing
a pretrained model with pretrained weights addresses the issue of large training data
requirement. The learning process becomes faster and more accurate and needs less
training data. Traditional learning, in comparison, starts with randomized weights and
tunes them until they finally converge. Transfer learning, on the other hand, offers a higher
learning rate during training. Therefore, with a better starting point and a higher learning
rate, transfer learning converges the neural networks faster and at a higher performance
level, enabling more accurate outputs.

In this study, fully connected (FC) layers, batch normalization layers, and a dropout
of 0.5 was added to the model for the purpose of fine tuning. Details pertaining to the
trainable and non-trainable parameters are given in Table 3. The FC layer was kept the
same for all of the models. In the FC layer, the dense layer 1 and dense layer 2, an activation
function of ‘ReLU’ with 4096 and 1024 units was used, respectively. Whereas, in the dense
layer 3, two units, along with the ‘softmax’ activation function, was used. This activation
function gave us the output from the 2 classes, i.e., COVID-19 and normal. Even though,
for binary classification, a simple Sigmoid can also work, in comparison, the Softmax as an
output layer works better. The probabilities produced by Sigmoid do not sum up to the
value of 1. Whereas, the output probabilities of Softmax are interrelated and always sum up
to the value 1. In case of Softmax, increasing the output value of one class makes the output
of other class go down. Furthermore, while using ReLU as the activation function, use of
Softmax as the output layer is mostly preferred [34]. In a recent research [34], the authors
evaluated the performance capability of the Softmax output layer with the ReLU activation
layer for several neural networks and validated better performance of Softmax with ReLU
activation layers for classification tasks. Hence, Softmax as an output layer in this research
is primarily preferred in order to obtain prediction in the form of probabilities. As for
the purpose of predicting the final result, it is convenient to know how much our model
is closer to predicting the specific class. In addition, in order to have a high probability
for one class, the probability of the other class has to decrease by an equal amount; thus,
Softmax works better with ReLU activation layers [34].

Table 3. Parameters of the pre-trained models in this study.

Models Total Parameters Trainable Parameters Non-Trainable
Parameters

ResNet-50 439,027,730 415,440,018 23,587,712
VGG16 121,873,362 107,158,674 14,714,688

MobileNet 213,147,986 209,919,122 3,228,864
DenseNet-121 216,956,626 209,921,170 7,035,456

In addition to dense layers, batch normalization layers were used, which help to
converge the model faster and achieve lower error in the training phase. The size of input
images was kept constant to 224 × 224 pixels for all four models. However, for the purpose
of fine tuning, the last two layers of the pre-trained model were unfrozen and trained on
the training dataset used in this study. The final architectures used for transfer learning are
given in Figure 7.

2.4. The Grad-CAM Technique

In CNNs, the gradient class activation map (Grad-CAM) is a technique that is used
to create a class-specific heatmap. This generated class-specific heatmap is based on
a specific input image using a trained CNN model [35]. The Grad-CAM technique is
employed to figure out the COVID-19 detection transparency. This technique actually
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highlights the regions of the input image, which is where the model pays much attention
during the classification process, implying the fact that the feature maps generated in
the final convolution layer hold the spatial information that helps in capturing the visual
pattern. This visual pattern contributes in distinguishing assigned classes. The Grad-CAM
technique is applied by utilizing the layers and extracted features of the trained model.
The architecture explaining the Grad-CAM technique is shown in Figure 8.
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Figure 8. Architecture to describe the Grad-CAM technique [36].

Figure 9 shows an example of a chest X-ray image generated using the Grad-CAM
technique. The original chest X-ray image is shown in Figure 9a, whereas the overlay
heatmap on the input image is shown in Figure 9b. The jet color scheme is used in this
study. In this color scheme, blue tones represent lower values, which means that no features
are extracted for a specific class, whereas the yellow and green tones represent medium
values depicting quite less feature extraction, and the red and dark red tones represent
larger values, i.e., the features in the region represent the specific class.

Sensors 2021, 21, 5813 12 of 23 
 

 

  
(a) (b) 

Figure 9. Grad-CAM technique results on the COVID-19 X-ray image: (a) COVID-19 X-ray image; 
(b) Grad-CAM of the image. 

3. Implementation and Results 
3.1. Implementation Details and Performance Parameters 

The prepared dataset is evaluated using the four pre-trained models, i.e., VGG16, 
ResNet-50, DenseNet-121, and MobileNet. A 70:30 training–validation ratio was utilized, 
and the data splitting details can be found in Table 1. The training of the four models in 
this study was performed on the augmented data. For training, the dataset images were 
resized to 224 × 224 pixels. Besides, a batch size of 32 is kept with the number of epochs, 
which is 80. These values were finalized using the grid search approach. The learning rate 
was fixed to 0.0001 for the training of each model. 

Furthermore, in order to evaluate the performance of each model, the important per-
formance parameters, i.e., precision, recall, specificity, accuracy, and F1-score were calcu-
lated. These parameters were calculated using Equations (1)–(5). The quantities involved 
in the calculation of aforementioned performance parameters, i.e., True Positive (TP), True 
Negative (TN), False Positive (FP), and False Negative (FN) were obtained from confusion 
matrices [37]. = +  (1) 

= +  (2) 

= +  (3) 

= ++ + +  (4) 

1 − = 2 ×  ×   +  (5) 

The normal and COVID-19 are considered as negative and positive cases, respec-
tively. Therefore, TN and TP represent the correctly predicted normal and correctly 
predicted COVID-19 images, respectively, whereas FN and FP represent the falsely pre-
dicted normal and falsely predicted COVID-19 cases, respectively. 

Figure 9. Grad-CAM technique results on the COVID-19 X-ray image: (a) COVID-19 X-ray image;
(b) Grad-CAM of the image.



Sensors 2021, 21, 5813 12 of 22

3. Implementation and Results
3.1. Implementation Details and Performance Parameters

The prepared dataset is evaluated using the four pre-trained models, i.e., VGG16,
ResNet-50, DenseNet-121, and MobileNet. A 70:30 training–validation ratio was utilized,
and the data splitting details can be found in Table 1. The training of the four models in
this study was performed on the augmented data. For training, the dataset images were
resized to 224 × 224 pixels. Besides, a batch size of 32 is kept with the number of epochs,
which is 80. These values were finalized using the grid search approach. The learning rate
was fixed to 0.0001 for the training of each model.

Furthermore, in order to evaluate the performance of each model, the important
performance parameters, i.e., precision, recall, specificity, accuracy, and F1-score were
calculated. These parameters were calculated using Equations (1)–(5). The quantities
involved in the calculation of aforementioned performance parameters, i.e., True Positive
(TP), True Negative (TN), False Positive (FP), and False Negative (FN) were obtained from
confusion matrices [37].

Precision =
nTP

nTP + nFP
(1)

Recall =
nTP

nFN + nTP
(2)

Speci f icity =
nTN

nFP + nTN
(3)

Accuracy =
nTP + nTN

nFP + nTP + nTN + nFN
(4)

F1− score = 2× Precision× Recall
Precision + Recall

(5)

The normal and COVID-19 are considered as negative and positive cases, respectively.
Therefore, nTN and nTP represent the correctly predicted normal and correctly predicted
COVID-19 images, respectively, whereas nFN and nFP represent the falsely predicted
normal and falsely predicted COVID-19 cases, respectively.

3.2. Results and Discussion

The training performance of the models under study were evaluated in terms of im-
portant parameters, i.e., training accuracy, validation accuracy, training loss, and validation
loss at different epochs. The results of these parameters can be found in Table 4. These pa-
rameters are calculated to estimate the over-fitting and under fitting of the trained models.
The graphs of training loss vs. validation loss and training accuracy vs. validation accuracy
of each model are given in Figure 10. The training curves are reported on a population
of 3544 patients from the training dataset, whereas the validation curves are reported
on a population of 1518 patients from the validation dataset. Details of the training and
validation datasets with data splitting ratios are given in Section 2.1 and Table 1. It can
be observed that the Dense-Net-121 has the minimum training and validation loss and
exhibits the best training and validation accuracy.

Table 4. Training performance of the CNN models used in this work.

Models Epochs Training
Loss

Validation
Loss

Training
Accuracy

Validation
Accuracy

MobileNet

1 0.8837 0.7963 51.44% 52.08%
. . . . .
. . . . .

79 0.0721 0.0954 98.92% 95.83%
80 0.0797 0.1171 98.03% 96.88%
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Table 4. Cont.

Models Epochs Training
Loss

Validation
Loss

Training
Accuracy

Validation
Accuracy

VGG16

1 0.7002 0.7041 53.94% 48.96%
. . . .
. . . .

79 0.4453 0.4850 87.40% 84.38%
80 0.4272 0.4723 85.04% 82.29%

DenseNet-
121

1 1.3241 0.8617 39.67% 39.81%
. . . .
. . . .

79 0.0952 0.1587 97.92% 96.73%
80 0.0583 0.0617 98.96% 97.13%

ResNet-50

1 0.7008 1.1915 44.74% 39.58%
. . . .
. . . .

79 0.4974 0.5083 93.75% 90.62%
80 0.4911 0.5123 92.08% 88.54%
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Figure 10. Training accuracies vs. validation accuracies and training loss vs. validation loss: (a) MobileNet; (b) ResNet-50;
(c) DenseNet; (d) VGG16.

Furthermore, confusion matrices for all four models were generated in order to
quantify the performance metrics, i.e., precision, F1-score, recall, specificity, and accuracy.
The results of the aforementioned parameters are given in Table 5. The confusion matrices
were generated using the testing dataset of 2170 images. These images were not included
in the training and validation datasets. The confusion matrices of each model is given
in Figure 11, whereas the true labels and predicted labels from confusion matrices with
accuracies and 95% confidence intervals (CI) are presented in Table 6. In addition to
calculating the confidence intervals, the Cohen’s kappa coefficient was also calculated for
each model, which confirms the reliability of the implemented models. The DenseNet-121
has an accuracy of 96.49% (2094/2170), with a 95% confidence interval of [0.96, 0.97], and
the computed Cohen’s kappa coefficient for Dense-Net-121 is 0.92. The ResNet-50 has
an accuracy of 92.48% (2007/2170), with a 95% confidence interval of [0.91, 0.94], and
the computed Cohen’s kappa coefficient for Res-Net-50 is 0.85. The VGG16, on the other
hand, has an accuracy of 83.27% (1806/2170), with a 95% confidence interval and Cohen’s
kappa coefficient of [0.82, 0.85] and 0.66, respectively. Besides, the MobileNet model has an
accuracy of 96.48% (2094/2170), with a 95% confidence interval of [0.96, 0.97] and a Cohen’s
kappa coefficient of 0.92. The result of the Cohen’s kappa coefficient lying in a range of
0.61–0.80 is considered to be a substantial agreement with the presented results, whereas
the range of 0.81–1.00 is considered as an almost perfect agreement with the presented
results [37,38]. It is evident from the aforementioned results that the Cohen’s kappa
coefficients of the three retrained models, i.e., DenseNet-121, Resnet-50, and MobileNet, lie
in the range of 0.81–1.00, and that the Cohen’s kappa coefficient of the VGG16 model lies
in the range of 0.61–0.80. This confirms the reliability of the implemented models.
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Table 5. Comparison of performance parameters of CNN models.

Model Pre (%) F1-Score Recall (%) Spe (%) Acc (%)

MobileNet 86.93 0.97 100 92.99 96.48
VGG16 76.80 0.85 95.51 70.96 83.27

DenseNet-121 93.45 0.97 100 92.99 96.49
ResNet-50 86.93 0.93 100 84.97 92.48
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Table 6. Confusion matrix of models with accuracies and 95% confidence intervals.

Models True Labels Predicted Labels Accuracy 95% CI

COVID-19 Normal

DenseNet-
121

COVID-19 1085 0
96.49% [0.96, 0.97]Normal 76 1009

ResNet-50
COVID-19 1085 0

92.48% [0.91, 0.94]Normal 163 922

VGG16
COVID-19 1036 49

83.27% [0.82, 0.85]Normal 315 770

MobileNet
COVID-19 1085 0

96.48% [0.96, 0.97]Normal 76 1009
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Using the numbers obtained via the confusion matrices, the performance parameters
for all four models were calculated using Equations (1)–(5). The results of these parameters
are given in Table 5. It can be seen that among the four models under study, the DenseNet-
121 shows an eminent performance with a recall of 100%, specificity of 92.99%, F1-score of
0.97, and accuracy of 96.49%. When benchmarked with the popular convolutional neural
network COVID-Net, which has an accuracy of 93.3%, two of the four retrained models in
this research, i.e., DenseNet-121 and MobileNet exhibit an improved accuracy of 96.49%
and 96.48%, respectively.

3.2.1. Optimizers

Four optimizers, i.e., SGD, Adadelta, RMSprop, and Adam were applied on the two
best trained models in order to compare the performance of the optimizers and to select on
optimizer which can be applied on all four models under study. The parameters obtained
for Densenet-121 and MobileNet after applying the four aforementioned optimizers are
given in Table 7. It can be seen that the RMSprop optimizer exhibited promising results
among all four optimizers. Hence, the RMSprop optimizer was chosen to be applied on
the four trained models. The results previously shown in Table 5 are actually RMSprop-
optimized results.

Table 7. Comparison of classification performance of DenseNet-121 and MobileNet among different
optimizers.

Models Optimizers Pre % Recall % Spe. % F1-Score Acc. %

DenseNet-
121

SGD 86.09 92.99 84.97 0.89 88.98
Adadelta 95.52 88.47 89.27 0.91 93.16

Adam 91.47 94.93 96.7 0.93 93.50
RMSprop 93.45 100 92.9 0.97 96.49

MobileNet

SGD 98.51 91.98 98.61 0.95 95.29
Adadelta 96.98 71.15 97.78 0.82 84.47

Adam 92.38 97.23 91.98 0.95 94.07
RMSprop 93.45 100 92.9 0.97 96.48

3.2.2. Learning Rate

In order to choose an optimum learning rate for all models, the models were evaluated
over a selected range of learning rates, i.e., from 10−2 to 10−6 (0.01, 0.001, 0.0001, 0.00001,
0.000001). The value of the testing loss was calculated for each model using the testing
dataset of 2170 images (dataset details have been provided in Section 2.1 and Table 1).
A value of the learning rate at the minimum loss was considered best for a model. The
graphs between learning rates and values of the testing loss are given in Figure 12. In
Figure 12a, the DenseNet-121 has the minimum testing loss of 0.1 at the learning rate of
0.0001. ResNet-50 has the minimum testing loss of 0.15 at 0.01, as shown in Figure 12b.
MobileNet has the minimum testing loss of 0.129 at a 0.0001 learning rate, as shown in
Figure 12c, and VGG16 has the minimum testing loss of 0.08 at a 0.0001 learning rate, as
well as the same testing loss at a 0.00001 learning rate, as shown in Figure 12d. A learning
rate of 0.0001 was chosen based on these results.
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3.2.3. Optimal Batch Size

In the training of a CNN model, the batch size plays an indispensable role. The role
of the batch size in the improvement of the testing accuracy is studied. The values of test
accuracies based on different batch sizes, i.e., 8, 16, and 32 are given in Table 8. It is evident
that, for a batch size of 32, all of the models demonstrate highest test accuracies. Therefore,
a batch size of 32 was set for this work.

Table 8. Test accuracies based on batch sizes.

Models
Batch Size

8 16 32

VGG16 85.67% 83.67% 83.27%
ResNet-50 89.94% 89.95% 92.48%
MobileNet 94.5% 95.0% 96.48%

DenseNet-121 92.67% 95.83% 96.49%

3.2.4. Prediction

By applying the transfer learning technique on the pre-trained models, we trained
the augmented chest X-ray images, whereas for the testing and validation, local verified
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images of COVID-19-positive and normal patients were used. The prediction of ResNet-50,
MobileNet, and Densenet-121 was accurate in determining whether the X-ray under test
is of a COVID-19 patient or of a normal patient. However, VGG16 displayed the least
accurate prediction and misclassified the test images because of its low testing accuracy
and loss.

The prediction result for a chest X-ray of a local COVID-19-positive patient for each
model is given in Figure 13a–d. The DenseNet-121 had the highest probability percentage
of COVID-19, i.e., 99.9%. In order to highlight the area where the model is paying the most
attention during feature extraction, the Grad-CAM technique was applied. The Grad-CAM
results of all four models under study are given in Figure 14. Moreover, the results of the
predicted normal patients for each model are shown in Figure 15a–d. Considering these
results, the MobileNet has the highest probability of 96.8% for the prediction of a normal
chest X-ray.

Sensors 2021, 21, 5813 19 of 23 
 

 

3.2.4. Prediction 
By applying the transfer learning technique on the pre-trained models, we trained 

the augmented chest X-ray images, whereas for the testing and validation, local verified 
images of COVID-19-positive and normal patients were used. The prediction of ResNet-
50, MobileNet, and Densenet-121 was accurate in determining whether the X-ray under 
test is of a COVID-19 patient or of a normal patient. However, VGG16 displayed the least 
accurate prediction and misclassified the test images because of its low testing accuracy 
and loss. 

The prediction result for a chest X-ray of a local COVID-19-positive patient for each 
model is given in Figure 13a–d. The DenseNet-121 had the highest probability percentage 
of COVID-19, i.e., 99.9%. In order to highlight the area where the model is paying the most 
attention during feature extraction, the Grad-CAM technique was applied. The Grad-
CAM results of all four models under study are given in Figure 14. Moreover, the results 
of the predicted normal patients for each model are shown in Figure 15a–d. Considering 
these results, the MobileNet has the highest probability of 96.8% for the prediction of a 
normal chest X-ray. 

  
(a) (b) 

  
(c) (d) 

Figure 13. Results of prediction on a verified local Pakistani COVID-19 chest X-ray: (a) DenseNet-
121; (b) VGG16; (c) MobileNet; (d) ResNet-50. 

Figure 13. Results of prediction on a verified local Pakistani COVID-19 chest X-ray: (a) DenseNet-121;
(b) VGG16; (c) MobileNet; (d) ResNet-50.



Sensors 2021, 21, 5813 19 of 22
Sensors 2021, 21, 5813 20 of 23 
 

 

  
(a) (b) 

  
(c) (d) 

Figure 14. Grad-CAM results on local Pakistani COVID-19 chest X-ray: (a) DenseNet-121; (b) 
VGG16; (c) MobileNet; (d) ResNet-50. 

  

Figure 14. Grad-CAM results on local Pakistani COVID-19 chest X-ray: (a) DenseNet-121; (b) VGG16;
(c) MobileNet; (d) ResNet-50.

Sensors 2021, 21, 5813 21 of 23 
 

 

  
(a) (b) 

  
(c) (d) 

Figure 15. Results of prediction on a verified local Pakistani normal chest X-ray: (a) DenseNet-121; 
(b) VGG16; (c) MobileNet; (d) ResNet-50. 

4. Conclusions 
In this paper, we applied transfer learning technique with fine tuning on the four pre-

trained models (VGG16, ResNet-50, MobileNet, and DenseNet-121) in order to detect 
COVID-19 using chest X-ray images acquired from a hospital in Pakistan. The models 
under study were trained using the dataset of more than 3600 COVID-19 and normal chest 
X-ray images, whereas an indigenously collected dataset of 450 X-ray images of Pakistani 
patients were used for testing and prediction purposes. Various important parameters, 
e.g., recall, specificity, F1-score, precision, loss graphs, and confusion matrices were used 
to validate the accuracy of the models. The VGG16 model exhibited the least accurate per-
formance in classifying the COVID-19 and normal chest X-ray images; however, the 
DenseNet-121 displayed promising results in the classification of the COVID-19 and nor-
mal images. The achieved accuracies of VGG16, ResNet-50, DenseNet-121, and MobileNet 
are 83.27%, 92.48%, 96.49%, and 96.48%, respectively. Furthermore, in order to highlight 
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4. Conclusions

In this paper, we applied transfer learning technique with fine tuning on the four
pre-trained models (VGG16, ResNet-50, MobileNet, and DenseNet-121) in order to detect
COVID-19 using chest X-ray images acquired from a hospital in Pakistan. The models under
study were trained using the dataset of more than 3600 COVID-19 and normal chest X-ray
images, whereas an indigenously collected dataset of 450 X-ray images of Pakistani patients
were used for testing and prediction purposes. Various important parameters, e.g., recall,
specificity, F1-score, precision, loss graphs, and confusion matrices were used to validate
the accuracy of the models. The VGG16 model exhibited the least accurate performance
in classifying the COVID-19 and normal chest X-ray images; however, the DenseNet-121
displayed promising results in the classification of the COVID-19 and normal images.
The achieved accuracies of VGG16, ResNet-50, DenseNet-121, and MobileNet are 83.27%,
92.48%, 96.49%, and 96.48%, respectively. Furthermore, in order to highlight the area where
the model is paying the most attention during feature extraction, the Grad-CAM technique
was also applied to create class-specific heatmap images. Various optimizers were tested,
and among all of the optimizers under study, the ‘RMSprop’ optimizer exhibited the best
performance and hence was applied for the error minimization and better optimization in
the training procedure.
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