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Abstract

In recent times, malware detection and analysis are becoming key issues. A dangerous
class of malware is metamorphic malware which is capable of modifying its own code and
hiding malicious instructions within normal program code. Current malware detectors are
susceptible to metamorphic malware as they are pre-trained to recognize only predicted
versions of code. However, if detectors could be trained on a larger set of data that included
potential mutant variants, they could be more accurate. The task of finding new evasive
variants is challenging - many variants might exist.

In this research, a two-phase system is proposed. First, a mutation only Evolutionary
Algorithm (EA) is used to search for a diverse set of new, malicious mutants, that evade
detection by existing detection algorithms. While this is shown to be successful, it requires
multiple runs of the algorithm to produce multiple variants without explicit guarantee
of diversity. To address this, a Quality Diversity (QD) algorithm — MAP-Elites, that
traverses a high-dimensional search space in search of the best solution at every point of a
feature space with low dimension, is then developed to return a large and diverse repertoire
of solutions in a single run. This method produces a larger and more diverse archive of
solutions than the mutation only Evolutionary Algorithm (EA) and sheds insight into the
properties of a sample that lead to them being undetectable by a suite of existing detection
engines.

Having created a set of evasive and diverse variants, detectors are then trained using a
set of classical classification methods (feature-based and sequence-based models) with re-
sults showing that classification of metamorphic malware can be improved by augmenting
training data with the diverse set of evolved variant samples. This also includes the use of
a pretrained Natural Language Processing (NLP) model in a transfer learning setting to
show improved classification of metamorphic malware, using the evolved variants as part
of the training data.
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Chapter 1

Introduction

Malicious attacks continue posing serious security threats to most information assets. They
also constitute one of the commonly found attack vectors. The recent 2020 Security Threat
Report by McAfee Labs revealed that there has been an increase in malicious attacks
particularly aimed at employees working from home due to the Covid-19 pandemic, with
approximately 981,887 Covid-19 related malicious file detections affecting about 4,355
organisations. They observed that in the first quarter of 2020 alone, there has been about
375 threats per minute with a 71% increase in mobile malware as compared to the last
quarter of 2019.

To prevent detection and elimination of malicious binaries, obfuscation techniques
are employed by sophisticated malware creators. These techniques often involve either
packing the malware (also known as malware packing), transforming its static binary code
(polymorphism) or transforming the dynamic binary code of the malware (metamorphism).

Amongst these sophisticated malware families, metamorphic malware is particularly
complex and dangerous, presenting security threats to many endpoint devices, including
desktops, servers, laptops, as well as kiosks or mobile devices with Internet connection.
Its danger arises from its ability to transform its program code between generations using
various means, including instruction substitution (substituting a given instruction sequence
with its equivalent); garbage code insertion (inserting junk code to the original program
code); control-flow alteration (distorting the flow of control within the original program
code using loops) and register reordering (reordering the variables in the original program
code).

In a bid to curb the impacts of metamorphic malware, several detection strategies have
been adopted: Alam et al. [8] provided a detailed overview, including Opcode-Based
Analysis (OBA), Control Flow Analysis (CFA) and Information Flow Analysis (IFA)
which differ depending on the type of information being used in the analysis. These
malware analysis approaches often use either signature based, heuristic based or malware



2

normalisation techniques for classification and detection of malware instances. The
challenges with these techniques are that they are mostly reactive and therefore cannot
detect new attacks. Also, for heuristics based detection techniques due to the lack of
sufficient data, training ML models to detect this class of malware is often hard.

Regardless of the detection technique considered, a general challenge is to create better
data representing future variants of metamorphic malware to train better ML models. The
malicious samples that will serve as training data are software, and there are techniques
to generate code in other fields such as Evolutionary Algorithm (EA) which treats it
as a search problem. This perhaps could be applied to the aforementioned issue. The
term EA refers to a class of problem-solving techniques inspired by Darwin’s theory of
evolution [48], in which the quality (fitness) of a population increases over time due to the
pressure caused by natural selection. Given a quality function that needs to be optimised,
a population of randomly generated potential solutions to the problem is first created.
Solutions are selected for reproduction in a manner which is biased by their fitness;
a reproduction operator generates new offspring from selected solutions by applying
processes which mix information from two or more solutions (which is termed ”crossover”
in EA) and/or by a mutation process that makes small, random changes to solutions. As
new fitter solutions replace poorer quality ones in the population, the population as a
whole becomes fitter as the process is iterated.

The flexible nature of EA allows it to be applied to any task that can be expressed as a
function optimisation task. Although a significant amount of literature focuses on its use
in combinatorial or continuous optimisation domains, it has more recently been applied to
malware analysis and detection, such as malware feature extraction [146], classification
problems [156] among others . [47] describes a proof-of-concept that an EA could evolve
a detector to recognise a virus signature represented as a bit-string, although this was only
tested on 8 arbitrary functions designed to show its ability to cope in complex landscapes,
rather than on real viruses. It offers the following advantages:

• exploration of a huge search space, which is one of the challenges to be solved in
searching for code variants;

• provision of operators that enable easy manipulation of code;

• proven ability in transformation, optimisation and improvement of software code.
[37], [90] and [153]

The creation of malicious variants using EA provides training samples that can be
used to improve ML models, such as feature based models - Naive Bayes and sequential
models - Long Short-Term Memory (LSTM) among others. The malicious variants will
take on different structural and behavioural forms hence providing insight as to where
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metamorphic malware will morph to. This will help the classification performance of ML
models.

1.1 Research Questions

After thoroughly reviewing related literature, research gaps were identified. This re-
search work aims to apply Evolutionary Machine Learning to improve Metamorphic
malware analysis and detection. The research objectives include (1) using an Evolutionary
Algorithm (EA) to create new malware mutants that are (a) as evasive as possible (b)
behaviourally and structurally dissimilar to the original malware (c) as diverse as possible,
(2) improving classification with these large and diverse set of mutants, (3) understanding
what types of Machine Learning (ML) models benefit more from these new mutants. To
address the aim and objectives, four research questions are formed and given as follows:

• Q1 - To what extent can evasive and diverse variants of malware be generated, using
an EA whose fitness function evolves for specific characteristics of solutions by
running the EA multiple times to get a repertoire of solutions?

• Q2 - How can a Quality Diversity (QD) algorithm (MAP-Elites) be used to generate
variants of malware which are both diverse, with respect to multiple characteristics
and evasive in a single run?

• Q3 - How does augmenting training data with the novel variants influence classic
classification algorithms in Machine Learning? Which Machine Learning approach
benefits most from augmenting with data from the novel variants?

• Q4 - How can one benefit from the use of a transformer — BERT (that has been
trained on large Natural Language Processing (NLP) datasets), in a transfer learning
setting to improve classification of metamorphic malware using the novel variants?

1.2 Methodology

An EA was employed in this research for creation and analysis of evasive metamorphic
malware. Firstly, a standard EA was employed to generate a new set of malware variants
that evade current detection engines, and are diverse with respect to their behavioural and
structural similarity. Then, a Quality-Diversity (QD) EA — MAP-Elites [111] was used
to generate a set of diverse variants that are optimised with respect to their ability to evade
a large set of well-known detection engines. Afterwards, the evolved sets of malware
from the two EAs were used as training data for ML models to improve classification of



1.3 Thesis Contributions 4

metamorphic malware. There was an exploration of the possibility of transferring learning
from a transformer trained on large NLP datasets, to create even better classification
models for metamorphic malware, using the evolved malware as part of the training data.

A quantitative research methodology was adopted in this thesis. This is due to the in-
vestigation and analysis making use of both computational and statistical tools/techniques.
Experiments were carried out using tools such as Android Emulator, which is used to run
the Android files (malware and benign samples) and has been used severally in literature
for this purpose as seen in the works of [15] and [155]. For reverse engineering the
Android files, tools such as Apktool4, Zipalign5 and Apksigner6 were used. For analysing
the samples, tools like Strace7, Monkeyrunner8, Virustotal9 and Droidbox10 were used.
When experimentation was carried out, some statistical tests were carried out to measure
the significance of the results. It was achieved by carrying out a number of independent
runs of a given experiment as can be seen in Chapters 4, 5 and 6. Experimental work was
done using a number of programming languages which include Python, Bash, C and Perl.

1.3 Thesis Contributions

In this thesis, a number of contributions have been made to the field of metamorphic
malware analysis and detection by studying ways of creating malware mutants that are
evasive, diverse and serve as rich source of dataset for training machine learning models.
The contributions are highlighted below:

• Introduced an extended fitness function into a mutation only EA based on malware
characteristics (its structure, behaviour and ability to evade existing detection en-
gines), that was tested on three malware families — Dougalek, Droidkungfu and
GGtracker. The results showed that using this fitness function, a suite of malicious
and diverse malware mutants was created that evade detection by a significantly
higher proportion of AV detectors than the original malware. It is also shown
that rewarding the EA for generating mutants that are structurally or behaviourally
dissimilar to the original malware, also generates evasive mutants (i.e. it is not
necessary to explicitly evolve for evasiveness, but that this is obtained indirectly).

4APKTOOL - http://ibotpeaches.github.io/Apktool
5ZIPALIGN - https://developer.android.com/studio/command-line/zipalign
6APKSIGNER - https://developer.android.com/studio/command-line/apksigner
7Strace - https://linux.die.net/man/1/strace
8Monkeyrunner - https://developer.android.com/studio/test/monkey
9Virustotal - https://developers.virustotal.com/reference#getting-started

10Droidbox - https://www.honeynet.org/taxonomy/term/191
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• Described the first application of a QD algorithm (MAP-Elites) to evolve a repertoire
of diverse but evasive solutions in a single run, that was tested on the aforementioned
three malware families — Dougalek, Droidkungfu and GGtracker. The results
showed that a QD algorithm is able to generate high performing, larger and more
diverse repertoire of solutions than the previous mutation only EA for the three
families considered. Furthermore, it provides an illumination of the feature space,
illustrating the relationship between the characteristics of a mutant malware solution
and its ability to evade a large set of detectors.

• Demonstrated improved classification of metamorphic malware by augmenting
training data with the novel, diverse variants created using the aforementioned EAs
and applying both feature-based and sequence-based classifiers. The results also
show that the classifiers do not over-fit to the novel mutants as they are still able to
detect existing malware.

• Presented the use of a transformer — BERT (that had been trained on large Natural
Language Processing (NLP) datasets), in a transfer learning setting, to improve
classification of metamorphic malware using the evolved malware as part of the
training data. The result showed that the use of BERT improved the classification
performance in some instances and given that the model had been pretrained on large
NLP datasets, that knowledge was transferred for the classification of metamorphic
malware without the need for large training data.

1.4 Publications

During the course of the PhD research, a number of peer-reviewed publications presenting
results that answer our aforementioned research questions have been made and they
include:

• K. O. Babaagba, Z. Tan, and E. Hart, “Improving Classification of Metamorphic
Malware by Augmenting Training Data with a Diverse Set of Evolved Mutant
Samples,” in 2020 IEEE World Congress on Computational Intelligence, Glasgow,
UK, 2020.

• K. O. Babaagba, Z. Tan, and E. Hart, “Automatic Generation of Adversarial Meta-
morphic Malware Using MAP-Elites,” in 23rd European Conference on the Ap-
plications of Evolutionary and bio-inspired Computation, P.A. Castillo et al, Ed.
Seville: Springer-Verlag New York, Inc., 2020, pp. 117-132.
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• K. O. Babaagba, Z. Tan, and E. Hart, “Nowhere metamorphic malware can hide - a
biological evolution inspired detection scheme,” in Dependability in Sensor, Cloud,
and Big Data Systems and Applications, G. Wang, M. Z. A. Bhuiyan, S. De Capitani
di Vimercati, and Y. Ren, Eds. Singapore: Springer Singapore, 2019, pp. 369–382.

A copy of each publication can be found in the appendix.

1.5 Thesis Organisation

The rest of the thesis is structured as follows:

• Chapter 2 - Literature Review: The second chapter of this thesis introduces
malicious software. It then explains metamorphic malware, its creation process,
mutation techniques as well as its layers of mutation. Then, it discusses previous
detection techniques of metamorphic malware and their challenges. This includes
techniques in machine learning, transfer learning, evolutionary computing, among
others.

• Chapter 3 - Research Framework: This chapter explains the research framework
and all software components, tools as well as other metrics employed in the research.

• Chapter 4 - Using an EA to Evolve New Test Data: The fourth chapter discusses
an adversarial approach to defeating metamorphic malware. This is done by using
an EA to create malware that are evasive, yet as behaviourally and structurally
dissimilar to the original malware as possible. These mutant samples serve as
training data to ML models.

• Chapter 5 - Using MAP-Elites to Evolve a Repertoire of Diverse Solutions: In
the previous chapter of the thesis, evasive mutants were generated. However, the
diversity of the samples could not be guaranteed. Here, a quality diversity algorithm
is used - MAP-Elites to drive diversity in the mutants created.

• Chapter 6 - Improving Classification of Metamorphic Malware: In this chapter,
the classification of metamorphic malware is improved using the previously evolved
mutant samples to augment training data. A comparison is also made between
feature based and sequential classification for classification performance as well as
binary and multi-class classification. Then, learning from a pretrained NLP model is
also done in order to see if there is an improvement in the classification performance
of the previously built ML models.
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• Chapter 7 - Conclusions and Future Work: The final chapter summarises and
concludes the thesis. The limitations encountered while carrying out the studies
are highlighted. Also, areas of future work are brought to the fore to improve the
aforementioned solutions proposed.



Chapter 2

Literature Review

In this chapter of the thesis, a background and thorough review of metamorphic malware
analysis and detection techniques, is provided. This chapter begins with a description
of malicious software, its life cycle, types and characteristics. Then, the platforms in
which malware can be activated are discussed. Metamorphic malware is then introduced
and discussed including its creation process, mutation techniques as well as its layers of
mutation. Furthermore, a brief history of metamorphic malware detection and analysis
techniques, is also provided. This includes signature based, heuristics based, malware
normalisation and similarity-based techniques. The limitations of current solutions to
metamorphic malware detection are also explained. Then, evolutionary based malware
detection is discussed including techniques such as the use of quality diversity algorithms.

2.1 Malware (Malicious Software)

A number of definitions have been given to malware by different researchers at various
points in time. Malware can be described generically as a type of malevolent code which
can also be termed malicious code, malcode, malicious software, to name a few. [107]
defines malware as any alteration to a software system in form of addition or deletion of
code that is done deliberately to distort the purpose of the system or cause any form of
damage.

[145] points out the fact that malware represents a word that basically describes all
forms of malicious code such as viruses, spyware among others. Also, [36] describes
malware from the angle of its purpose. This means that any program purposefully intended
to cause an intrusion can be termed malware. It is noteworthy that these definitions all
agree on the fact that malware aims to violate the confidentiality, accuracy or availability
of computer or network resources.
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2.1.1 Malware Life Cycle

This refers to the stages that are usually followed from the process of creating a malware
to its eradication. According to [115], this usually involves processes such as creation,
replication and propagation, activation, discovery, assimilation , and eradication. This is
illustrated in Fig. 2.1.

Fig. 2.1 Malware Life Cycle

The malware life cycle begins firstly with the creation phase. It is in this phase that
the malware is generated and built. An in-depth understanding of computer networks
and programming was required in time past to create malware; presently, the process of
malware generation has been automated. Without any serious background in computing,
malware can be created. Also, self-help materials are readily available on the Internet as
well as tools that automate the task of creating these malware.

The second phase involves replicating and propagating the malware. Once the malware
has been created, it is now up to the creators to decide how the malware will be spread.
Different malware have different methods of propagation and replication. One common
means of propagation is via a computer system as seen in computer viruses. Another means
is through emails and instant messaging which is often the way worms are propagated.
Once these malware have been propagated, the next phase focuses on their activation. In
the activation phase, the malware launches its attack when it is executed. The activation
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process is carried out via a number of payloads usually installed on the compromised
system. This process might be based on a given condition or could be automatic.

The fourth stage is the discovery stage. This is when the malware analysts detect
the malware and attempts to isolate the malware. This phase can happen at any point in
the malware life cycle. However, it occurs more frequently after the malware has been
activated. In order to keep track of discovered malware they are usually sent to ICSA
(International Computer Security Association), where they are published for all malware
analysts and builders of antivirus engines. There is still a massive need to keep our systems
safe from malicious attacks as the generators of malware will usually ensure that they are
able to release the malware before they are detected.

The fifth stage is the assimilation stage which simply refers to the efforts made by
malware analysts and antivirus engine creators to change their programs so that they can
discover the newly designed malware. This might take quite some time depending on the
nature of the malware as well as the developers involved. The final stage is the eradication
stage. As the name implies, it is the stage where the malware is eradicated. The process
of malware eradication is enhanced when the users install the latest versions of antivirus
software. Like the assimilation stage, this process can take a while, hence the need to
avoid the propagation of the malware in the first instance.

2.1.2 Malware Types and Characteristics

Malicious software often take various forms and possess varying characteristics. The
authors of [115] outline at least seven types of malware which are given below:

Virus: A code that replicates itself is usually termed a computer virus. It does the repli-
cation by inserting itself into other programs after which it is copied and transferred
to other systems. Viruses are activated upon the execution of a compromised file. A
common example of a virus is Michelangelo [142].

Worm: Worms are similar to viruses but carry out replication by executing their own
code independent of any other program. They are able to spread to other systems
usually via emails as well as networks connected to each other. Any loophole
they find in a vulnerable system, they take advantage of, mostly without any need
for human intervention. Typical examples of worms include Code Red [45], SQL
Slammer [110] among others.

Trojan Horse: This is a malware embedded by its authors in an application or system.
The application or system it is embedded in seems to perform some useful task, but
in reality, it is performing some unauthorized action. One thing to note about Trojan
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horses is that unlike viruses and worms, they cannot replicate themselves. However,
they often have a payload and they often result in system as well as data integrity
breaches. Common examples include Hydan [27] and Setiri [137].

Malicious Mobile Code: This refers to a software which can be downloaded and
locally activated remotely with or without little human interaction. They are usually
lightweight and are able to take control of the compromised system to carry out
malicious action. They often serve as transmission media for viruses, Trojan horses
as well as worms. Similar to Trojan horses, they do not replicate themselves; they
rather seek system loopholes and make the best use of the basic privileges that come
with mobile programs. These malicious codes are often written in languages such as
JavaScript, VBScript, ActiveX among others. One popular malicious mobile code
which was written in JavaScript is Nimda [102].

Blended Threat: This refers to a combination of malicious behaviour, all in one attack.
Some of these behaviours are from malware such as viruses, worms, malicious
mobile code and Trojan horses. The entire attack life cycle of blended threats is
dependent on some of the loopholes in servers as well as the Internet. The fact
that blended threat is a blend of malicious behaviours obviously suggests its higher
attack surface and spread of propagation. A blended threat attack transmits several
attacks in a single payload which could be a combination of say a backdoor attack
and a denial of service attack. It often causes multiple levels of harm to the affected
system and so are considered a serious security threat. Lion and Bugbear are two of
the most notable blended threats [41].

Attacker Tools: These are often considered as some of the baggage that come with
being a victim of malicious attacks. They refer to tools which comprise of a number
of malware that an infected system gets by reason of a malware attack. They take
various forms; some of which try to get important data or even get access to a
system. The transfer of the attackers can take place at different times depending on
the malware involved. Some common attacker tools include:

• Backdoor: This refers to malware that allows the attacker access to a computer
by installing itself on the computer. They pay attention to TCP (Transmission
Control Protocol) or UDP (User Datagram Protocol) port instructions, and
once a connection is established, they take over the compromised system.
Examples of backdoors include Zombies [35] often referred to as Bots and
Remote Administration Tool (RAT).

• Rootkit: These are malicious codes designed to hide the existence of other
malicious codes. This tool is often used by cybercriminals when they have
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gained access to an infected system during which they install other malicious
content to it. There are two types of rootkits depending on the type and level
of access required. They are: user-level and kernel-level rootkit.

• Keystroke loggers: These types of attacker tools keep track of how users
make use of the keyboard. They monitor letters typed and so they can gather
confidential user information such as passwords, credit card numbers, among
others. Some common examples are Spyster [13] and KeySnatch [118].

• Tracking Cookies: Several websites often keep user information that relates
to a given website usage. They do this through a file called cookie. They can
either be temporal also known as session cookies or long term also known as
persistent cookies. They are used sometimes by cybercriminals as spyware to
monitor the activities of users on the web.

• Web Browser Plug-Ins: These are used to execute or allow a given action or
content via a web browser. Some cybercriminals build malicious ones to spy
on users.

• Email Generators: These are attacker tools that are capable of transferring
software that can create emails to computers. These computers then are able
to generate as well as send unauthorized bulk emails to other computers.

• Attacker Toolkit: These are programs and utilities that are capable of causing
harm to a system. They include packet sniffers, port scanners, password
crackers, remote login programs to mention a few.

Spyware: These are manipulative malware that attempt to gain unauthorized access to
user data or an entire system. Like the name suggests, they do this by spying on
users’ activities. Some of them seem like legitimate systems such as a security
monitor that might just be a spyware. Others are in form of advertising programs also
called adware. Some are information stealing malware or computer configuration
changing malware. They often take different forms but with the motive of gaining
unauthorized access to the user’s information.

2.1.3 Malware Platforms

Malware platforms refer to the environment in which malware can be activated. Without
an enabling environment, malware cannot be executed. For the purpose of this research
work, two major platforms for the execution of malware are considered and they are
Desktop based platforms and Mobile platforms. They are explained below [46]:
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Table 2.1 Malware Platforms [46]

Malware Platforms Categories

Desktop-based Windows based, Mac based and Linux based
Mobile-based Android OS, iOS, Bada and BlackBerry OS etc.

Desktop based malware platforms: These refer to desktop computers that malware can
be run. These types of platforms are often categorized according to the Operating
System (OS) that run on them. Examples of desktop based malware platforms
include Windows based malware platforms, Mackintosh (Mac) based malware
platforms and Linux based platforms.

Mobile based malware platforms: These refer to mobile devices in which malware can
be executed. Examples include Android OS (Google Inc.), Bada (Samsung Elec-
tronics), BlackBerry OS (Research In Motion), iPhone OS/iOS (Apple), MeeGo OS
(Nokia and Intel), Palm OS (Garnet OS), Symbian OS (Nokia), webOS (Palm/HP),
among others.

2.2 Metamorphic Malware

This refers to malware that changes its entire code between generations. Usually, this
involves the malware mutating itself and hiding its instruction within the normal program
code of the host machine [32]. This malware transforms its code using several obfuscation
techniques. Some of these techniques include; garbage code insertion, variable substitution,
control-flow alteration, among others.

Metamorphic malware pose a lot of threat to computer resources as they usually go
undetected by most traditional signature based detection systems. This is because there
are too many variants of the malware to keep track of and thus, they often go undetected.
These variants are very dissimilar. The difference between metamorphic malware and
polymorphic malware is that metamorphic malware lack a decryptor and have a single
body carrying data as code. Fig. 2.2 shows how its structure changes between generations.

A formal definition of a metamorphic malware is given as follows [159]: A meta-
morphic malware (m, m´) is a combination of two distinct malware namely m and m´.
The difference between a metamorphic malware and any other malware is that a sys-
tem attacked by m is also attacked by m´ and vice versa. The same definition goes for
metamorphic malware m1,m2, . . . ,mn.

Given a function ΦM(d,m) for a program M in a computer system located in an
environment (d,m) where d represents data and m represents computer programs. D(d,m)
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Fig. 2.2 Metamorphic Malware Generations [135]

and S(m) represent two recursive functions, where D(d,m) is the injury function and S(m)
is the selection function. T(d,m) and I(d,m) are two recursive predicates in which a pair of
(d,m) at the very least exists for which I(d,m) holds. Also, no (d,m) exists whereby both
T(d,m) and I(d,m) concurrently hold.

T(d,m) is called trigger which is an injury condition, and I(d,m) is the infection
condition. When the injury condition T(d,m) holds, the malware runs the injury function
D(d,m). However, when the infection condition I(d,m) holds, the malware uses the
selection function S(m) to select a program, and infects it before running the initial
program x. The aforementioned conditions, T(d,m) and I(d,m) as well as the functions
D(d,m) and S(m), define the kernel of a non-resident malware [159].

Then, it can be assumed that two different functions mal and mal′ are metamorphic if
for all x, (mal, mal′) satisfies;

Φmal(χ)(d,m) =





D(d,m), if T (d,m)

Φχ(d,m[mal′(S(m))]), if I(d,m)

Phiχ(d,m), otherwise

(2.1)

and
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Φmal′(χ)(d,m) =





D′(d,m), if T ′(d,m)

Φχ(d,m[mal′(S′(m))]), if I′(d,m)

Phiχ(d,m), otherwise

(2.2)

where T(d,m) (resp., I(d,m), D(d,m), S(m)) is different from T(́d,m) (resp., I(́d,m), D(́d,m),
S(́m)).

2.2.1 Creation Process

The process of creating a metamorphic malware is often considered a complex task by
most malware writers. The metamorphic malware engine makes use of the following
components in the creation process, namely, internal dissembler, opcode shrinker, opcode
expander, opcode swapper, relocator, garbager and cleaner [85]. The function of each of
the aforementioned components are outlined below:

Internal disassembler: This component is responsible for the code disassembly taking
each instruction at a time.

Opcode Shrinker: This component serves as an optimizer and as the name connotes, is
responsible for shrinking two or more instructions into a single instruction.

Opcode Expander: This component does the opposite of the opcode shrinker. It expands
a single instruction into multiple instructions.

Opcode Swapper: This component is responsible for swapping two or multiple instruc-
tions.

Relocator: They are used for relocating every relative reference. Some of which include
calls, jumps and pointers.

Garbager: These are used to insert into the original code one or several junk instructions
often referred to as do-nothing instructions.

Cleaner: They are responsible for the cleaning up of the garbage code the garbager
inserts.

The anatomy of a metamorphic malware is illustrated in Fig. 2.3. The metamorphic
malware engine according to [151] has the following functions:

Firstly, whenever the metamorphic malware engine is invoked, it must be able to find
the code it needs to transform. Those metamorphic malware that change not only their
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Fig. 2.3 Anatomy of Metamorphic Malware[151]

code but those of their host, have to find their own code in the new mutants. Also, in order
for it to be able to carry out the necessary changes, it must be able to decode information.

The metamorphic malware needs some information about its representation in order to
mutate itself. This usually means a process of disassembly is required. Occasionally, the
engine needs to decode several other information in order to analyze or change the code.
This information can either be encoded in the data segments or code of the malware. After
decoding the required information, analysis of these information needs to be carried out.

The analysis stage will require that some pieces of information are readily available.
This is to ensure that code changes are done appropriately. For instance, some changes
only retain the semantics of the original code if a particular register is seen as dead. In
this case, information about the register liveness must be readily available.

The malicious code has to be transformed to an equivalent code after the analysis has
been done. This often involves instruction blocks swapping among other techniques. Some
of the transformation techniques include code substitution, garbage insertion, register
renaming, among others.

Finally, the metamorphic malware attaches its mutated version into a host file. The
way the organs are ordered indicates the direction of the information flow. The malware
uses a feedback loop to determine its input and output, in which case, the input in one
generation might become the output in another generation. This is often necessary in
making design decisions with regards to the metamorphic engine.

2.2.2 Mutation Techniques

Metamorphic malware transform their codes using the following mutation techniques: in-
struction substitution, garbage insertion, variable substitution and control-flow alterations
[32].

Instruction Substitution: This involves the replacement of an instruction set with a
valid and distinct set which serves the same function. An example of this can be
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seen in a malware that substitutes an instruction “xor eax, eax” with an instruction
“sub eax, eax”. In the above example, the two instructions are equivalent, hence no
functional difference is noticed. However, a difference with respect to their opcodes
is noticed.

Garbage Code Insertion: This is a very common mutation technique which involves
making the original code as unidentifiable as possible, while preserving its original
functionality. It is often referred to as dead-code or do-nothing code insertion. It
works by inserting junk instructions in the original program code. This garbage
code has no effect on the functionality of the code, but changes the code’s structure.
This approach can particularly distort opcode based analysis systems. An example
is illustrated below and is taken from an Android malware. The description of an
Android malware is given in Section 3.3 of the thesis. The lines labelled garbage
code in Fig. 2.4, are line numbers added to the Android program that do not affect
the functionality of the program code.

Fig. 2.4 Garbage Code Insertion

Variable Substitution: This is also known as register substitution. This is when the
malware replaces a given memory address known as a variable with a different but
valid variable without altering the code’s function. This can be seen in Fig. 2.5
and is also taken from an Android malware that uses variable substitution mutation
technique. In the example given below, a variable v0 is replaced with another valid
variable without changing the functionality of the code.

Control-flow Alteration: This is another common mutation technique. In this technique,
the flow of instructions and the code’s structure are distorted by the malware. This is
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Fig. 2.5 Variable Substitution

done through the insertion of meaningless loop instructions which do not distort the
order of instruction execution at runtime. The module re-ordering is given below:

Fig. 2.6 Module Re-ordering [76]

The malware also converts function calls as well as direct jumps into indirect ones
through the use of fake destination addresses, so that it is difficult to reconstruct
the control flow. An example showing how jump instructions can be inserted into a
program is seen in the Win95/Zperm virus [135]. The first generation of the virus is
shown below:
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instruction 1 ; entry point
instruction 2
.
.
.
instruction n

A latter generation after some jump instructions have been added to it is shown
below:

instruction 2
jmp instruction 3
instruction 1 ; entry point
jmp instruction 2
instruction 3
jmp instruction n

A sample of the Zperm virus illustrating how it inserts jumps into its own code is
given below:

Fig. 2.7 Zperm Jump Insertion [135]

2.2.3 Layers of Mutation

Metamorphic malware binaries have various layers in which they mutate. According to
[148], some of these layers include:

Network Layer Mutation: The network layer of the OSI model is responsible for
determining paths as well as logical addressing. This layer presents an attack
surface for mutable malware; it keeps posing challenges for intrusion detection
systems as mutations on this layer are difficult to detect. Two major examples of
this network layer mutation are IPv6 and IP Packet Splitting [148].
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• IPv6: IPv6 stands for Internet Protocol version 6 and it is the new age ad-
dressing model. It provides significantly more address space, a simpler header,
automatic configuration, end-to-end connectivity, speedy routing, security of
the protocol, extensibility, no requirement for broadcast, among others. The
IPv6 is the Internet protocol used by most Internet networks. A number of
reasons, ranging from slow deployment, loopholes allowed by most vendors,
make it difficult for lots of network based IDS to deal with packets sent through
IPv6 networks. Hence, attacks sent via IPv6 go undetected.

• IP Packet Splitting: Packet splitting involves delivering network packets in
smaller fragments; this creates a greater attack surface for the delivery of
attacks. Usually, network-based IDS try to discover attacks by going through
the entire packet length. The attackers will attempt to evade detection via IP
packet splitting. Some techniques such as reassembly of IP packets make at-
tacks less likely to go undetected, but the process is computationally expensive,
ergo, are not used by a number of network based IDS.

Application Layer Mutation: Another potential mutation layer is the application layer.
Some of the main techniques employed in this layer include protocol rounds, evasion
of SSL, HTTP, FTP protocols.

• Protocol Rounds: This is a process that enables multi-processing of sessions
in the application layer over one connection in the network. This comes with
several advantages such as improved computational speed, efficiency, and
cost reduction. In protocol rounds however, only the first rounds are often
monitored by network based IDS; subsequent rounds are often not monitored.
The snag with this is that attackers can take advantage of this loophole in
order to introduce malicious protocol rounds. They can trick the IDS by first
introducing normal protocol rounds, followed by series of attacks.

• FTP/HTTP Evasion: In order to go undetected by network based IDS, a
number of attackers try to add malicious control sequences to FTP commands
or attempt to modify HTTP protocol to enable malicious requests to be received
by web servers. Even if some IDS use SideStep to discard irrelevant FTP
control sequences, some attackers still find ways to evade detection. Also, lots
of IDS try to detect intrusive HTTP streams but ignore some invalid character
insertion, carriage returns as well as white spaces.

• SSL NULL Record Evasion: Secure Sockets Layer also known as SSL is a
protocol which has the responsibility of ensuring that network communications
are secure and not subject to interception by any third party. SSL messages
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consist of a body and in some cases, include null records. Attackers attempt
to insert malicious content into these null records. Also, a handshake could
be changed by the attacker to include some illegal values and this can go
undetected by the IDS.

Exploit Layer Mutation: This type of mutation is applied to the attacks rather than the
network session. They range from polymorphic shell-code to alternative encodings,
among others [148].

• Polymorphic Shell-code: A number of polymorphic shell-code engines exist
primarily to create malicious payloads that decrypt themselves. Some of these
engines evade IDS using attributes such as creation of polymorphic payload
decoding schemes, illegal characters support, XOR-encoded payloads among
others. They also allow junk code insertion, code substitution among others.

• Alternate Encodings: In order to ensure that data integrity is not breached
during communication within the network, data is often encoded severally
during network communication. These encodings create an attack surface
which attackers often exploit. URL-encoding Obfuscations are also attacks a
number of IDS fall victim of.

2.3 A brief history of Metamorphic Malware Detection

A number of techniques have been developed over the years to combat the threat of
malicious software. The strategies that have been used can be grouped into three, namely

• Signature based detection,

• Heuristic based detection,

• Malware normalisation and similarity-based detection.

2.3.1 Signature-based Detection

This involves the extraction of unique byte streams which define the malware’s signature.
It involves scanning files in the host machine in order to find a given malicious signature.
The work of [98] was one of the first signature-based malware detection scheme and
has subsequently been referenced by other research works such as [136]. The authors of
[98] proposed a system called Malicious Code Filter (MCF) which was a static analysis
tool used for malware classification. Their scheme looked for tell-tale signs in malicious
code. These signs refer to attributes of a piece of program code that can be used in
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determining if a piece of program code is malicious or not, without the need for expert
coding knowledge. Their system was successful in proving that tell-tale signs are useful
in identifying malicious code.

Several signature-based methods have been used for detecting metamorphic malware
in particular. The authors of [64] used string signatures for metamorphic malware de-
tection and they achieved a false alarm rate of less than 0.1%. The work, presented in
[140], introduces Aho-Corasick (AC), which is a string matching algorithm for detecting
metamorphic malware. [134] employs a static scanner for detecting metamorphic malware
with high detection rate. More signature-based metamorphic malware detection techniques
such as string scanning with special cases like wild-cards or mismatches, bookmarks,
speedup search algorithms [86], are found in other related work.

Signature-based methods of malware detection provide a fast and easy means of
detecting malware. However, they are often not efficient in detecting advanced malware
such as malware that employ obfuscation techniques in masking its code structure. This is
because they are only able to recognise specific code versions. It will therefore be useful
if signature-based systems are fed with new data that represent potential variants.

2.3.2 Heuristic based Detection

A detection technique that involves the analysis of the behaviour, functionality, and
characteristics of a suspicious file without relying on a signature is referred to as heuristic
detection. Unlike signature-based detection, its goal is not to discover a given signature
but to detect malicious functionalities like a malware’s payload or distribution routine.
This method employs data mining and machine learning techniques in detecting malware.
These include supervised learning (learning with a guide), semi-supervised learning
(learning with a partial guide), and unsupervised learning (learning without a guide).
Some of these machine learning techniques include Decision Trees (DT) [21], Hidden
Markov Models (HMM) [139], and Support Vector Machines (SVM) [129].

Machine learning based malware detection is data driven; it discovers relationships
between the underlying structure of data, collected either before or after the execution of
the malware and its classification as malicious or non-malicious. Data collected prior to
the execution of the malware, includes information about the file derived from it without
running. These include its code characteristics and its file format among others. On the
other hand, data collected after the malware executes derives from the artefacts left behind
by the executed malicious code. These include behavioural descriptions of the malicious
code such as process related activities, registry related activities, among others.

In unsupervised machine learning, the aim is to obtain previously unknown structural
descriptions of data without a guide, for instance, pre-existing labels. This can be done in a



2.3 A brief history of Metamorphic Malware Detection 23

number of ways, in which clustering analysis is commonly involved and helps segmenting
a dataset. Unsupervised learning based malware detection does not require the datasets
used to be labelled as either clean or malicious. This makes unsupervised learning useful
to cybersecurity experts as a wide variety of unlabelled datasets are readily available.

In supervised machine learning the data has to be labelled as either malicious or clean.
This helps the model in determining the labels for new instances. Supervised learning
models have to be trained with sufficient data. The trained model is then fed with new
samples for prediction. The model needs to be appropriately trained with enough data for
better predictions. A pioneering work in heuristic based malware detection is that of [132]
which uses Naïve Bayes (NB) in automatically identifying malicious patterns in malware.
Their NB approach, calculated from the program’s feature set, the probability that the
program is malicious. Their heuristic based approach was better than other previously
employed signature-based approaches in terms of detection accuracy. Since then, a number
of research works such as [130], have used heuristic methods for malware detection.

In metamorphic malware detection, heuristic based methods such as DT, HMM, and
SVM have been used. For instance, a combination of statistical chi-squared test and
HMM is used by [139] in detecting metamorphic viruses. [21] also uses a statistical-based
classifier that employs a DT in metamorphic malware detection. A single class SVM is
used by [129] in Android based metamorphic malware classification. These works led to
increased metamorphic malware detection rate.

Generative Adversarial Network (GAN)

A number of the previously described ML techniques are designed as a black box so as
to improve network security. These approaches assume that provided the attackers do
not have access to the underlying ML algorithm, they will struggle in attacking them.
However, this assumption is flawed by the fact that a number of attackers design strategies
to probe the network, and consequently discover the design features that can be identified
as being malicious so as to create evasive software that go undetected by the ML models.

The previously described approach is adversarial in nature and is designed to gen-
erate malware that takes advantage of the loopholes in ML models. This method uses
deep convolutional neural network to collect data employed in the analysis of malicious
software, particularly in the categorization of samples as either clean or malicious. A
different network is designed to generate malicious samples to be identified by the initial
network as benign. At first, the network performs poorly but with more iterations, this
leads to an increased ability of the malware created to go undetected. This is referred to as
gradient based adversarial generation and this approach has proven that with very little
modification to malware, they can evade detection.
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Following from the traditional gradient-based adversarial generation previously ex-
plained, the Generative Adversarial Network (GAN) [61] was introduced by Ian Good-
fellow in 2014. It differs from the gradient-based adversarial generation method in that
rather than training a network to create malicious code against a pre-trained detector, both
networks learn through competition with each other. The GAN framework was designed
to build generative models that use an adversarial approach that trains two distinct mod-
els concurrently. The idea behind it is that deep learning models come in hierarchical
structures characterising varying probability distributions over most conventional data
that have been very successful in the generation of discriminative models [124]. This
is due to the employment of back propagation and dropout algorithms yielding positive
training gradient [11]. The GAN models work by using two networks: one which is
called a generator trained to learn data specific attributes such as malicious code, images,
among others while trying to create a believable sample of this data; the other termed the
discriminator determining the probability that a given sample is a member of the training
set rather than the generative network. It is noteworthy that the generator maximizes
the probability that the discriminator will fall into error [61]. The intrinsic competition
between both networks leads to steady improvement of both networks to the point where
the generator’s samples cannot be distinguished from the testing set of the discriminator
[91].

The general idea behind such adversarial models is to create adversarial samples that
are specially designed to fool detectors and machine learning models through perturbations
that make the ML models misclassify them as benign instead of malicious. The goal of
the attacker according to [26] is one or a combination of three things: security violation,
attacker specificity, and error specificity. If the attack aim is security violation, then the
attack may lead to either an integrity, availability or privacy violation. Depending on
whether or not the attack is targeted at causing a classifier to misclassify either a given
sample set or any sample, the attack specificity might be targeted or indiscriminate. If
the attacker wants a sample misclassified as a particular class then the error is specific.
However, if the attack is aimed at misclassifying a sample to any class other than its
correct class, then the error is generic.

Several examples abound where GANs have been applied. The researchers in [30], for
instance, proposed a model in the domain of spam email filtering that demonstrates how
the learner and the data generator interact as a static game. They analyse the adversarial
setting, strategy, and conditions with which the prediction has a Nash equilibrium and
design algorithms that discover the equilibrial prediction model. The authors in [72]
proposed MalGAN, which comprises of a generator that generates a suite of adversarial
samples against current detectors which also have the ability to go undetected by future
malware detectors. It trains the generator to trick the detector in a hybrid system which
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consists of a stacked generator as well as a substitute detector. The work of [104] also
describes the use of a Least Squares Generative Adversarial Networks (LSGANs). Their
system employs the least squares loss function for the discriminator with experimental
results showing two advantages over usual GANs, the first being its ability to create
improved images than the typical GANs. Also, the learning process of the LSGANs is
more stable than the regular GANs. The use of GANs however, has not been explored in
metamorphic malware detection.

Transfer Learning

Although this has also not been explored in metamorphic malware detection, due to the
fact that metamorphic malware keep changing their code, there is usually insufficient
training data, hence impeding ML model generality. Transfer learning is a good technique
to address this problem as it is a machine learning technique wherein the knowledge
generated from a task is stored and reused in another task, often a related task [117].

Transfer learning as a technique for use in instances of small training set or small
labelled data has received a lot of research attention. It has found application in a number
of domains such as in medical application as seen in the work of [105] that modified the
AlexNet [88] in order to detect Alzheimer’s disease. It has also been used in bionformatics
such as in [120] that used it for the study and prediction of associations in genotype-
phenotype using Label Propagation Algorithm (LPA) [73]. In the transportation domain,
it was applied in [44] to process similar images derived during varying conditions. It has
also gained attention in NLP as seen in the work of [128].

Transfer learning has increasingly been used in malware detection. It has been used
in computer vision for instance as in [34] that introduced a computer vision-based deep
transfer learning for classifying static malware, using knowledge from objects appearing
in nature. Also, [127] used Deep Neural Network (DNN) built from the ResNet-50
architecture in classifying malicious software. The malware were converted to grayscale
images. Then, the DNN that had been trained previously on the ImageNet dataset, is used
in classifying the malicious samples. Similarly, the work of [24] built a deep learning
model pre-trained on a large set of image data to improve the classification of malware.

Transfer learning has also been employed in Generative Adversarial Network (GAN)
settings as seen in the works of [81] and [82]. As in [82], their model comprised of a
generator that created adversarial samples. The detector learns the characteristics of the
malicious samples using a deep autoencoder (DAE). Prior to training the GAN, the DAE
uses the learned features of malware to create data and transfers the learned information
to improve the training of the GAN generator. Their method was shown to outperform
other models designed for the same application.
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2.3.3 Malware Normalisation and Similarity-based Detection

An attempt to transform metamorphic malware to its original form is termed malware
normalisation. The level of code obfuscation determines the effort that will be put into
normalising the metamorphic malware. This technique was first introduced by Periot
[119] whose approach took advantage of various code optimisation strategies in enhancing
the detection of malware. [150] also uses term rewriting as a means of normalising
metamorphic malicious code. The various mutations of the metamorphic malware are
modelled as rewrite rules which are then changed to form a rule set for normalising the
metamorphic malware. This approach was applied to the metamorphic engines’ rule set
and was used in the normalisation of variants produced from the mutation engine. A
comprehensive list of techniques for code normalisation is given in [32].

In addition, similarity-based approaches, for instance, structural entropy and compression-
based techniques, were applied in [22] and [92] to detect metamorphic malware. While
structural entropy involves the examination of the raw bytes of the mutated file, compression-
based detection involves the use of compression ratios of the mutated file in a bid to create
sequences that represent the file. In the work of [22], structural entropy was used for
metamorphic malware detection. Their approach involved segmenting the binaries and
then finding the similarity between their segments. The authors in [92] used a compression
based technique in detecting metamorphic malware. Their approach used compression
ratios in defining the files. Then, they compared the file sequences against one another,
and then used a scoring system to classify the files as either malicious or clean.

2.4 Limitations of Current Solutions to Metamorphic Mal-
ware Detection

Metamorphic malware is a class of highly sophisticated malicious software that commonly
involves complex transformations of its code during each propagation. Metamorphic
malware writers usually attempt to attack the different phases in the malware analysis
life-cycle [89]. These attacks include the following:

• Attacks on disassembly: Disassembly is done in malware analysis in order to
generate a form of representation for the malicious code. The aim is usually to
separate the code and data in a malicious binary. One popular method of disassembly
is termed the linear sweep method. In this method, the initial byte streams or byte
streams from a given start location are assumed to be instructions. The code
sequences in these streams are then disassembled. One disadvantage of this method
is that it is not suited for automated analysis. The recursive traversal method
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overcomes this challenge by carrying out the disassembly process by following
the program’s flow of control. Attack on disassembly works by fooling either of
these methods. The linear sweep method can be fooled by inserting junk code right
after an unconditional jump instruction, and the recursive traversal can likewise be
fooled by introducing a junk code immediately after a conditional jump instruction
while ensuring that the jump condition is always true. The disassembly is thrown
off, provided that the junk code matches a legal instruction code. Consequently, any
heuristic that validates the instruction succeeding the jump instruction is defeated.

• Attacks on procedure abstraction: Procedure abstraction involves grouping the
malware’s instructions into segments called procedures. A procedure forms the core
of most algorithms used for malware analysis. An attack on procedure abstraction
involves increasing the difficulty involved in finding a procedure in the malicious
code. This can be done through several means like hiding the call instruction through
code obfuscation, among others.

• Attacks on control flow graph generation: Each of the program codes’ proce-
dures have Control Flow Graphs (CFGs). CFGs are directed graphs with nodes
representing statements, and edges representing the flow of control between the
statements. The creation of these CFGs can be attacked through deceiving the CFG
generation algorithm into producing edges that are redundant. An attack on the
CFG generation can also be done through the obfuscation of assembly code, making
it difficult to determine for instance, a jump instruction’s target.

• Attacks on data flow analysis: Data flow analysis comprises of several analysis
such as data dependence analysis, analysis done on obfuscation optimization, among
others. Data flow analysis works with the assumption that each program has data
divided into variables each with a unique identifier, type and size. In reality, each
program’s data is just a continuous byte sequence. In a CFG, data usually flows
into a new node from two different preceding nodes, each of the preceding node
combining to form a single set. This combination often leads to information loss
and consequently inaccurate analysis. An attack on data flow analysis can involve
the movement of some parts of a CFG into the nodes it precedes, and obfuscating
the computation along each of the CFG’s path. Another attack can result from the
usage of data outwit the program’s scope.

• Attacks on property verification: Property verification checks if a given property
exists within the malicious code. This process usually involves both a formal
definition of the property deemed suspicious as well as the malicious code’s CFG
and data flow information. Property verification uses theory provers that rely
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on human intervention to prevent them from looping infinitely. Most of these
theory provers, such as model checkers which work on problem abstractions, are
computationally demanding. Theory provers are usually used in antivirus engines
in the determination of suspicious properties of malware. An attack on property
verification can come from malware writers who know how these theory provers
work, and how they transform the suspicious properties into more complex ones.

Due to sophisticated means by which metamorphic malware can change its code, many
existing detection approaches perform poorly. Signature-based detection approaches,
for instance, are not efficient when faced with novel metamorphic malware. They are
not only very time-consuming since they require new signatures to be compared against
large databases of malicious signatures, but are also required to periodically update their
databases. Moreover, signature-based approaches are often reactive and therefore cannot
detect new attacks.

The file scanning process in heuristic based detection is usually only based on the
attack name/label, leading to limited information derived. This method sometimes uses
statistics for its predictive analysis, which is prone to diagnostic errors emanating from
the initial learning process being corrupted. If the algorithm is not trained appropriately,
the resulting predictions may be inaccurate.

Most malware normalisation and similarity-based approaches still cannot detect ad-
vanced metamorphic malware with complex levels of obfuscation. Consequently, low
detection rates are derived when they are used on such malware. In the case of malware
normalisation using control flow graphs, the normalisation process can be hampered by
code streams that cannot be reached, which can lead to control-flow graph fall-through
edges. The complex code streams (such as those that employ opaque predicates and branch
functions) are often difficult to be detected. Similarity based techniques are often prone to
false alarms, and are susceptible to mutations that employ a lot of packing or compression.
The compression ratio is very important in the segmentation phase of compression-based
similarity detection. Consequently, previously compressed code makes this detection
inefficient.

2.5 Evolutionary Computing

Evolutionary Computing (EC) is inspired by Darwinian principles of natural selection
and provides highly time efficient, flexible, adaptive solutions for various problems, such
as optimization, modeling, simulation among others. Significant efforts have been made
over the past decades by research communities towards advancing EC. The simulation of
the evolutionary process on computers can be done seamlessly, speedily and effectively
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[48]. However, one major area of concern in EC is the interpretation of experimental
results, which is heavily dependent on the simulation medium used and the fidelity of the
computing models employed [48]. The following subsections rewind the road map of EC.

2.5.1 Evolutionary Computing Problem Areas

EC has found its real-world applications in various types of problems including opti-
mization, modeling, simulation and search. Based on the black box theory in computing
[31] (which assumes that a computer is a system requiring and processing an input, then
producing an output), these problems are defined formally as follows [48].

• Optimization Problem: In such a case, the model and expected outcome of a
problem are known. EC is tasked with finding the sets of inputs that result in the
expected outcome. The traveling salesman problem [71], is a typical example, in
which the salesman aims to find the shortest journey to visit each city only once.
With the expected output in mind, one needs to figure out the candidate inputs that
satisfy the given requirements. The optimization problem can be formulated as
follows. Given a function p in a set E of real numbers with a member y0. The
problem, p(y0) <= p(y) or p(y0) >= p(y), is optimized for all y in E. In optimization
problems, the terms, objective function and constraints, are often referred in its
description. An objective function is a numeric representation of the weights of
a solution, while constraints refer to conditions that must be met to provide an
optimal solution. As shown in Fig. 2.8, problems that have both constraints and
objective function are called Constrained Optimization Problems (COP); those that
have constraints but no objective function are Constraint Satisfaction Problems
(CSP); and those with no constraints but an object function are referred as Free
Optimization Problems (FOP). The optimisation problem is also illustrated in Fig.
2.9.

Fig. 2.8 Optimization Problem with constraints and Objective Function
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• Modeling Problem: In this type of problem, the inputs and expected outputs are
given, while the process involved in the transformation of the inputs to the outputs
is unknown. This can be seen in Fig. 2.9. A typical example is the modeling of
stock exchange, where the inputs are known metrics (such as the conditions of the
economy and society) and the expected output is the Dow Jones index [10] for
instance. The problem here is to derive a formula that relates the metrics to the Dow
Jones index.

• Simulation Problem: One is required to generate the corresponding output from a
given model and input(s) in this type of problem, in which an output can always
be generated from any set of given input(s) as shown in Fig. 2.9. An example is
a system to predict a user’s behaviour given specific conditions, where the inputs
include a series of actions taken by the user and using a sociological or psychological
model the behaviour (output) can be determined.

• Search Problem: In the aforementioned problems, it is assumed that a computa-
tional model solves a problem from the input to the output and this is not reversible.
However, the solution to a problem can be derived from different outputs. The set
of inputs to a given model forms a search space and these inputs could exist for all
kinds of problems, namely optimization, modeling and simulation problems.

Fig. 2.9 Optimization, modeling and simulation using computing black box model

2.5.2 Components of an Evolutionary Computing Algorithm

A simple illustration of an evolutionary algorithm is given in this subsection. Important
components of evolutionary algorithms are as follows [48].

• Definition of Individuals involves establishing a relationship between the initial
problem setting and the context of the problem to be solved in which evolution
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Algorithm 1 Evolutionary Algorithm [48]
1: Initialize the population
2: while Termination condition is not met do
3: Select parents
4: Vary parents either using crossover, mutation or replacement operators
5: Evaluate the fitness of the parents
6: Based on the evaluation, select new parents
7: end while
8: return The fittest solutions

occurs. In this stage, a definition is made with regards to the link between phenotypes
(predicted solutions that emanate from the initial problem context) and genotypes
(encodings within the evolutionary algorithm). Given an integer optimisation task,
the integers in the problem space represent the phenotypes. If we want to define the
integers in their binary form, the binary representation then becomes the genotype.
The phenotype 10 which is the integer representation then becomes genotype 1010
in its binary form.

• Population is comprised of several sets of genotypes. It contains several definitions
of possible solutions. The population is a fixed constant in evolutionary algorithms,
as it does not change throughout the evolutionary process.

• Fitness Function defines the conditions that must be adapted by the population.
It is used in the selection process. In a problem space, a fitness function takes a
solution as input and produces the optimality of the solution as output. The fitness
of the individuals is calculated before new parents are selected as seen in step 5 of
Algorithm 1.

• Parent Selection Mechanism is the process involved in selecting individuals and
is done based on the quality of the individuals. The individuals that are selected are
called parents. They are recombined using the variation operators discussed below,
to produce children. The selection of parents is probabilistic. Consequently, fitter
individuals are more likely to be selected as parents. This process is essential to
ensure that better quality solutions are produced. This is done in step 3 of Algorithm
1.

• Variation (Recombination and Mutation) Operators are the operators employed
in generating new individuals from old individuals. One example of such an operator
is the mutation operator. The mutation operator is used to trigger a random and
unbiased change in the solution. This allows for a bit of variation in the solutions
produced. Another common variation operator is the crossover operator. This
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operator generates one or two children genotypes by combining information from
two parent genotypes. Crossover aims to produce better quality off springs by
merging parents with highly desired qualities as seen in step 4 of Algorithm 1.

• Survivor Selection Mechanism is similar to selection which aims at separating
individuals on the basis on their quality. It involves replacing bad quality solutions
with better quality solutions. This replacement is usually based on either the fitness
of the offspring or age of the offspring.

The evolutionary process is illustrated in Fig. 2.10. It starts with an initial population
of individuals which have a given representation as explained previously. Then, the
individuals are varied using either mutation, crossover or replacement operators to produce
new ones. Furthermore, the new individuals are evaluated using a fitness function to
determine their quality. Then, the fitter individuals are selected to form a new population,
and the process is repeated until a termination condition is met. This termination condition
can be met for instance, when the best solution is found or when a maximum number of
generations is reached.

Fig. 2.10 Evolutionary Process

2.5.3 Popular Evolutionary Computing Algorithms

This subsection presents a concise introduction to two popular EC algorithms used in
cybersecurity research. They are discussed in detail below.



2.5 Evolutionary Computing 33

Genetic Algorithm (GA)

Genetic algorithms [70] are one of the most commonly used algorithm families in EC. They
are often applied to solve optimization problems. Uniquely, GAs can solve a given problem
without requiring any additional information of the problem itself, which facilitates GAs
outperforming most search algorithms [55] and other optimization techniques [109].

A GA has all the components of EC, including selection, population of chromosomes,
and fitness function among others. In GAs, the population of chromosomes are usually
represented as bit strings. The bit strings take the values of 0s and 1s. A GA uses variation
operators, such as mutation and crossover operators, to cause a level of change in the
current population. For example, assuming that we have a string 10000110, it can be
mutated at its fourth position to give a new string 10010110.

Similarly, applying a crossover operator on two distinct strings, such as 10001111
and 11111000, to swap the sub-strings after the fifth positions of both strings produces
offspring 10001000 and 1111111. In other words, the GA population evolves by replacing
the current population with another population. Then, the GA uses a fitness function to
determine which chromosomes in the present population will survive. The fitness function
provides a score to every chromosome in the population. The score explains how fit the
chromosome is in solving the prevalent problem [109].

The flowchart shown in Fig. 2.11 describes the process undertaken by a GA. As can be
seen in Fig. 2.11, GAs start with a group of candidate solutions which form the population.
Each of the individuals in the population, represent a possible solution to the problem
at hand. The fitness of each individual is then calculated and the population is sorted
according to the fitness of the individuals. The top individuals which are those with better
fitness values are then selected for mutation or crossover, and a new population emerges.
This process is repeated for the new population until a stopping criteria is reached.

Genetic Programming (GP)

Genetic Programming is another family of EC algorithms. They are often considered a
variant of GA [69]. They consist of a population of individuals, that are evolved using
genetic operators such as selection, mutation and crossover operators. Similar to other
EC algorithms, high quality individuals are selected using a fitness function, to ensure
the survival of these individuals in future generations. GP finds its applications in a
number of areas such as feature selection and construction, classification problems among
others, as they can be used to evolve sets of rules, knowledge abstractions, mathematical
expressions among others [49]. GP usually takes different forms to evolve computer
programs. Originally, GPs took the form of trees written in List Processing (LISP)
programming language [87], [116]. More recently, GPs represent the individuals as
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Fig. 2.11 A Genetic Algorithm [113]
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either linear sequences [28] or binary sequences [20] of instructions. Cartesian GPs use a
set of whole numbers to present the genotypes which are mapped to a Cartesian graph
[108]. Parallel distributed GPs are used in computing applications with a high degree of
parallelism [121].

2.5.4 Evolutionary based Malware Detection

The idea of using EA based techniques for malware analysis and detection is not a new
concept. For example, [106] use EAs to improve classifier selection and performance for
malware detection. In [78], the authors use GP to evolve variants of a buffer-overflow
attack with the objective of providing better detectors, showing that GP could effectively
evolve programs that "hid" malicious code, evading detection by Snort in 2011 instances.
Here, the focus was on buffer-overflow attacks rather than metamorphic malware.

Using EAs to generate Test Data (Malware Variants) to improve Malware Detection

EAs like GP have been used by authors like [153] in improving program codes. This
includes how to boost up the non-functional features of software that already exist so that
they work together with the compiler and target platform simulation. Other authors like
[57] have shown how GP can be employed in bug fixing in software. Authors like [90]
and [37] also show how GP can be used to optimize the performance of existing software
or code. All of the aforementioned examples show how EAs have been used in modifying
and improving software code.

There are also examples of research work that use EAs to create test data, which are
also malicious code variants to be used to improve the detection of metamorphic malware.
In [15], the authors used GP to create new mutant samples, applying their approach to
Android based metamorphic malware. New malware samples were created using mutation
techniques, and evaluated on their ability to evade detection by eight antivirus systems.
Similarly, [155] creates metamorphic pdf malware using GP. They also test the instances
of the evolved malware to determine if they evade detection by pdf detectors. The mutants
were generated by employing mutation operators like junk code insertion, code reordering,
to mention a few for [15], and operators like deletion, insertion and replacement for [155].
All of the above approaches generate new malware that can be used to train malware
detectors in order to achieve greater detection rates by the detectors.

As stated above, [155] focus on pdf malware. Although [15] focus on metamorphic
malware, they only consider 8 anti-virus engines (Eset, GData, Ikarus, Kaspersky, Avast,
TrendMicro, BitDefender and Norton) when evaluating whether their evolved malware is
able to evade detection. It is also unclear whether they test whether the new mutants that
are able to evade detection are still malicious. The fitness function that guides evolution
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scores each solution with a discrete value between 0 and 8, depending on how many
engines it evades. This provides very little information to guide the evolutionary algorithm
through the search-space to find evasive solutions.

Quality diversity Algorithms

Quality diversity algorithms are a form of EA. However, while EAs tend to converge to
a single quality solution, quality diversity algorithms attempt to maintain both diversity
and solution quality. They generally provide ways of finding good solutions in a highly
dimensional search space [39]. These algorithms aim to improve both the diversity as well
as the performance of solutions. In some instances, the generation of diverse solutions can
be beneficial as they can guide the search towards high quality solutions in the search space.
Given various features of a solution represented as the behaviour space of the solution, a
quality diversity algorithm seeks to find several diverse behavioural spaces of that solution
while ensuring that each behavioural space has a solution with best performance for the
given behavioural space [122].

Two commonly referenced quality diversity algorithms in literature are Multi- di-
mensional Archive of Phenotypic elites (MAP-Elites) [111] and Novelty Search with
Local Competition (NSLC) [94]. While MAP-Elites discovers high quality instances with
varying behavioural characteristics within separate cells in a behavioural grid, novelty
search with local competition combines local fitness competitions and novelty search for
solutions that have similar features. This results in a wide range of local competitions
happening concurrently in behavioural spaces that are very diverse [122].

MAP-Elites

MAP-Elites discovers high quality instances with varying behavioural characteristics
(defined by the user) within separate cells in a behavioural grid [111]. Given various
features of a solution represented as the behaviour space of the solution, the algorithm
seeks to find several diverse behavioural spaces of that solution while ensuring that each
behavioural space has a solution with best performance for the given behavioural space
[122]. When using MAP-Elites, a single quality objective also referred to as performance
criterion or objective function, used to evaluate the fitness of the solutions, is defined.
Features of interest also known as feature descriptors mapped to a discretized grid, are
also defined. For each descriptor < f1, f2 >, MAP-Elites optimises the quality objective
associated with the descriptor. Then, multiple solutions are generated, one for each pair of
features < f1, f2 >. Finally, the best solution for each cell, is found.

The algorithm begins with the generation of initial solutions at random. The feature
vectors < f1, f2 > of the solutions are calculated and mapped to an archive. Then, only the
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most elite solution, that is, the best solution found so far based on the objective function,
is stored per cell. Then until the algorithm finishes, a random genome is selected. A
variation operator is applied to the random genome which is evaluated and placed in the
grid only if the cell is empty, or if it is better than the current occupant, else it is discarded.
This algorithm taken from [111], is illustrated in Alg. 2.

Algorithm 2 MAP-Elites algorithm [111]
1: procedure MAP-ELITES ALGORITHM (SIMPLE, DEFAULT VER-

SION)(I,G)
2: (P ← φ ,X ← φ ) ▷ Create an empty, N-dimensional map of elites: solutions X

and their performances P

3: for iter = 1→ I do ▷ Repeat for I iterations
4: if iter > G then ▷ Initialize by generating G random solutions
5: x′← random_solution()
6: else ▷ All subsequent solutions are generated from elites in the map
7: x← random_selection(X ) ▷ Randomly select an elite x from the map

X

8: x′← random_variation(x) ▷ Create x, a randomly modified copy of x
(via mutation and/or crossover)

9: end if
10: b′← f eature_descriptor(x′) ▷ Simulate the candidate solution x′ and record

its feature descriptor b′

11: p′← per f ormance(x′) ▷ Record the performance p′ of x′

12: if P(b′) = φ orP(b′)> p′ then ▷ If the appropriate cell is empty or its
occupants’s performance is <= p’, then

13: P(b′)← p′ ▷ store the performance of x′ in the map of elites according
to its feature descriptor b′

14: X (b′)← x′ ▷ store the solution x′ in the map of elites according to its
feature descriptor b′

15: end if
16: end for
17: return feature-performance map (P and X )
18: end procedure

The use of MAP-Elites algorithm as a quality diversity algorithm started with [111],
who first introduced it as an algorithm for the illumination of search spaces. They applied
the algorithm to three different problem spaces namely, the production of modular neural
networks as well as the design of real and simulated soft robots. They showed the
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algorithm’s efficiency in describing the close links between performance and interesting
features in the search space. They also show how MAP-Elites helps in creating diverse
and high quality solutions.

Following their work, the algorithm has found application in other domains such as
video games, with the introduction of MAP-Elites with Sliding Boundaries (MESB) [56],
an extension of the MAP-Elites algorithm which was applied to a card game comprising
of several features of interest all in multiple dimensions. The experimental work done in
[56] shows MAP-Elites ability to discover varying and diverse styles of playing the game.
Other authors like [77] explore ways to improve the quality of solutions produced by MAP-
Elites in noisy settings mainly through adaptive sampling by slowly yet incrementally
choosing the samples employed in the assessment of the performance of solutions.

These quality diversity algorithms have not been used in the area of malware analysis
and it is clear that they hold a lot of promise in providing diverse variants of malware and
giving information as to highly performing areas of the search space, depending on the
features of interest. Unlike a standard EA, they do not converge to a single solution but
maintain an archive of diverse solutions. These diverse solutions i.e. diverse malicious
variants can be used to train machine learning models leading to higher detection rates.

2.6 Summary

Malicious code of varying forms still continue to pose serious security threats to informa-
tion assets particularly malware such as metamorphic malware that stochastically changes
its form between generations. In this chapter of the thesis, an extensive study has been
carried out on this class of malware, their creation process, mutation techniques as well
as their layers of mutation. A review of existing literature in metamorphic malware
analysis and detection including signature based, heuristic and malware normalisation and
similarity based detection approaches, has also been conducted.

Furthermore, some of the challenges to current solutions to metamorphic malware
with one of the main points being the lack of training data for ML models to learn from,
hence impeding model generality, have been highlighted. Also, an analysis of the use
of evolutionary based malware detection, particularly how they have been used to create
training data to improve malware detection, has been made. In addition, a review of
quality diversity algorithms as an EA technique for creating diverse data has been done.

In this thesis, EAs have been used to create data (mutant variants of malware) to aug-
ment data-sets with new training data in order to improve the classification of metamorphic
malware. Specifically, this thesis does this by



2.6 Summary 39

• Using two types of EAs (a standard mutation only EA and a QD algorithm — MAP-
Elites) to create mutant variants of malware that are diverse and are more evasive
than their parent malware.

• Improving ML models by augmenting training data with the diverse set of evolved
mutant samples created using the two EAs.

The highlighted points are discussed in much more detail in the following chapters of
the thesis by answering the research questions raised in Chapter 1 of the thesis.



Chapter 3

Research Framework

3.1 Metamorphic Malware Detection Framework

This section proposes a framework of metamorphic malware detection for mobile malware,
in order to address some of the challenges raised in Chapter 2 of this thesis. Recall that the
challenges involved in the detection of metamorphic malware emanate from the fact that
they continuously change their form between generations and so, it is difficult to know
where these malware will morph to. Hence, in this research work, the aim is to address
this using a framework that utilises an EA to create evasive and diverse mutant variants of
malware, then improves the classification of metamorphic malware using these large and
diverse set of mutants. The framework is comprised of five functional modules, namely, a
data source (i.e., a mobile malware dump), a disassembly tool (i.e., apktool), a mutation
engine, a data store for APK variants, and a malware detector. The conceptual overview
of the proposed framework is shown in Fig. 3.1.

The framework includes a data source where the mobile malware is collected from.
Then, it uses a disassembly tool to disassemble the mobile malware from APK to smali.
The smali files can then be fed to the mutation engine module. This module generates
novel malware mutants, representing potential future variants of existing malware. The
new mutants are then stored in a data store. The data stored in the data store module is then
used to train a detection module that offers improved protection against future mutants. If
the system is used in an adversarial context, then improvements in the detection module
drive the generation of more diverse mutants, hence, driving further improvement in the
detection system.

The malware generation module was implemented using the two EAs introduced in
Chapters 4 and 5, respectively. EA is a well-known technique for its ability to search
vast spaces of potential solutions [58]; it is used to efficiently search for unseen mutants
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that represent potential states that existing malware might morph into, thereby providing
improved training data for a detection module.

The mutation engine module is further described in Fig. 3.2, whose EA component is
where the mutant samples are generated, optimised to minimise detection rate, structural
and behavioural similarity to the original malware (this section only describes the frame-
work and tools involved in a nutshell. The details of the EA are given in Sections 4.2 and
5.2.1). The best APKs generated are stored in a data store after they have undergone a
maliciousness test to see that they retain their maliciousness. Both variants that retain
their maliciousness and those that do not, are saved as they both serve as training data for
machine learning models.

The detector then employs machine-learning using an appropriate learner in detecting
the generated mutants. The machine-learning based detector receives the newly created
mutants from the data store as training data.

3.2 Why Mobile Malware?

Mobile platforms are becoming main targets of malicious attacks. A number of malware
writers are gearing their efforts towards the creation of mobile malware. This is because

Fig. 3.1 A conceptual overview of our detection framework
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there is an increased usage of mobile devices due to their portability, among other reasons.
As most of these mobile devices run an Android Operating System (OS), this mobile
computing platform is more susceptible to be infected by malicious software. Statistical
reports [50] indicate that nearly 100% new malicious programs discovered in recent years
emanate from Android platforms.

Android platforms represent an easy target for malicious attacks partially due to a
reason that Android platforms are open source [103]. Consequently, they are freely acces-
sible and are subject to easy modification. Writers of malicious software can therefore,
extensively study the Android OS and discover an attack surface.

Despite the fact that Google has some defending mechanisms to protect its Android
smartphone users from being compromised by malware, these mechanisms have limited
functionalities. Google Play, for instance, is a well known official Android market. This
market provides a platform in which Android applications can be downloaded. Google
play has a tool for detecting malicious software termed Google Bouncer. However, several
malware are able to go undetected by the detection tool. Google also has an application
signing tool which is a security tool intended to be used in signing applications when

Fig. 3.2 The Mutation Engine module that uses an EA
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they are uploaded or installed. However, because the digital signatures derived need to
be managed effectively, and Google Play Store struggles with the signature management,
this security measure is not really efficient.

Other Android markets are available for downloading applications. Some examples
include the application stores from Amazon, Samsung, among others. Some of these
alternatives are limited because the user does not have as much control when it comes to
the application security. Attackers therefore, leverage on this to detect loopholes in these
alternatives.

3.3 What an Android Malware Looks Like?

The mutant samples of malware created in this research are mobile malware. These
malware are infected Android binaries. Android applications are archived as apk files, and
they consist of the following files as illustrated in Fig. 3.3 [59].

Fig. 3.3 Structure of an APK

• AndroidManifest.xml file - All the essential components of an Android application
are contained in the AndroidManifest.xml file. It consists of all the classes required
to execute the application. The permissions used and actions utilized for activating
every specific Android component, is included in the AndroidManifest.xml file.

The AndroidManifest.xml file is initially accessed at the commencement of an appli-
cation launch because it contains every entry-point class needed by the application.
The file is also used to read all the permissions used to run the application. Without
this file, the application will fail to function as it should.
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• Dalvik bytecode (classes.dex file) - The classes.dex file is a dalvik virtual machine
executable obtained while compiling the .java files which consists of all the classes
used by the application, or used while converting the apk files from java virtual
machine into dalvik byte code. In order to aid the readability of the classes.dex file,
they can be easily converted to smali file using tools such as apktool. This file is
built to optimize mobile apps. The smali file is used for our analysis as they can
be easily modified by the EA. The structure of a smali file is illustrated in Fig.3.4.
It comprises instance fields and methods. The methods in a smali file comprise of
instructions which include direct invocations as seen in Fig.3.4. The classes.dex file

Fig. 3.4 Structure of a Smali file

comprises a header, string IDs, type IDs, proto IDs, field IDs, method IDs, class
definitions, data and debug section. The header is a byte stream with a file checksum
number, 20 bytes SHA-1 hash of the whole .dex file excluding the magic number,
the file checksum, and the hash. The classes.dex also comprises header and file size,
an endian tag, data segments that include specific addresses, the sizes and positions
of the different IDs consecutively.

The data segment (where related strings are ordered and stored) is represented by
the string IDs. References to parallel string types are contained in the type ID. The
proto IDs represent the method prototype. Information about the class’ fields is



3.4 Analysis and Reverse Engineering of Android APK Files 45

given by the field ID. Method information is defined by the method ID. All the
arguments used by a given class are represented by the class definition.

The most important segment of a .dex file is the data section and it has both class
data and code item. The class data item is the foremost part and contains data on
the size of static and instance fields, offsets and the virtual and direct methods’ size
with annotations. The code item consists of the bytecode of all the class methods.
All important information about the name of variables, line numbers and source file
data, is contained in the debug section.

• Signatures (META_INF) - This directory contains the MANIFEST.MF file which
holds the APK metadata. The folder also stores the APK signature.

• Resources folder - All resources are stored in either the "res" directory or the
resources.arsc file. The resources folder consists of all the .xml files required in
designing layouts, menus, dialogs, and lots more. While the res/ directory contains
the uncompiled resources, the resources.arsc file contains the compiled resources.

• Assets folder - Assets refer to external resources, such as audio/video files and
images, which are needed for the execution of an application. These files are stored
in the assets folder that may contain infected binaries too.

• Native libraries (lib) - This folder contains all native libraries that have been com-
piled and are employed by the application. This directory has several sub-directories,
each corresponding to the CPU architecture supported by the application.

3.4 Analysis and Reverse Engineering of Android APK
Files

In order to analyse the Android files, the following tools were employed:

• AV engine: Virustotal [149] which is an online based malware detection service
that contains 63 updated antivirus engines, is used to check the evasiveness of the
mutants. It was selected because it is open source and comprises of a large number
of detection engines that are periodically updated. Virustotal returns the percentage
of the 63 engines that can detect the malicious mutants.

• Collecting the behavioural trace: Strace [95] is used to monitor the behaviour of
the variants by keeping track of their system calls. It is a well known tool for
studying the behaviour of apk files. The variants’ main activity is executed using
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MonkeyRunner [12] in order to simulate user interaction. This allows us to capture
the execution behaviours of the apk variants at runtime. The output of Strace is a file
comprised of the variant’s process ID, along with its system calls and parameters.
Thus, the file is transformed to a fixed sized vector whose elements correspond to
the frequency of the system call used. Since 251 systems calls are considered, the
vector consists of 251 elements.

• Maliciousness and Executability: To assess the executability of a mutated APK file,
tests against its compilation and execution are conducted after mutation. The tools
that are used for the assessment of the executability of the mutated APK files are
listed as follows:

– To check for the compilation of an APK file: apktool [2], apksigner [1] and
zipalign [6]

– To check that the file runs: Android emulator [3].

Android emulator [3] was employed because it allows for the simulation of Android
devices on a computer system for testing applications without the requirement of a
physical device. Android studio [4] is specifically employed for this purpose and
was selected due to its numerous advantages. These include quicker coding with its
intelligent code editor and great emulator. It also provides various templates, testing
tools and frameworks among other benefits [5]. Then apksigner and zipalign tools
are used which are Android studio’s build and alignment tools for apk files [1], [6].
As a result of its documented success in reverse engineering apk files, apktool is
employed in reverse engineering the mutated apk files [14].

The functions that check to see that the APK variants run and compile properly
are wrapped in a bash script. Finally, in order to ensure that the evolved variants
retain their maliciousness, Droidbox [138] is used. Droidbox is a sandbox designed
for Android that can be used in the dynamic analysis of apk files. The dynamic
analysis involves studying the behaviour of the apk while running it. Once an apk is
submitted to Droidbox, it executes the apk and collects information relating to the
files created, deleted and downloaded by the apk, connections opened, traces of API
calls, among others.

The aforementioned analysis tools capture all the software and tools employed in this
research with the machine learning modules explained in Section 3.6 of this chapter. In
terms of hardware employed, all experiments were carried out on a VMware Workstation
running Ubuntu 16.04 LTS on an Intel Xeon CPU. This research work employs PyCharm
Integrated Development Environment (IDE) and uses a number of programming languages
which include Python, Bash, C and Perl.
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3.5 Similarity Measurement

Both text based and behaviour based similarity between the original malware and its
variants, is measured. The text based similarity metrics also include source code similarity
metrics.

3.5.1 Text based Similarity Metrics

In measuring the text based similarity between the original malware families and their
variants, the following metrics are used:

• Cosine similarity: This measures the cosine angle between two non-zero vectors.

• Levenshtein: This similarity metric seeks to find the number of deletions, insertions,
or substitutions needed to transform a file A to a file B [67].

• FuzzyWuzzy: This measure does string matching to find strings that match a specific
pattern approximately [43].

The source-code level similarity between the original malware and the variants, is also
measured using the following similarity metrics:

• Jplag: This measures the similarity between two source codes by first converting
the source codes to tokens, and then applying an algorithm to deduce the matches
between their token lists from the biggest to the least matches [66].

• Sherlock: It sorts two programs based on their similarity by converting the programs
to signatures, and calculating the similarity between them [66].

• Normalized Compression Distance: This measures the distance between two files
based on compression. Given the original malware as m and its variants as v, the
compression distance is given as [125],

NCDz(m,v) =
Z(mv)−minZ(m),Z(v)

maxZ(m),Z(v)
(3.1)

where Z(m) is the compressed file m’s length compressed using a compressor Z.
The compressor used in this work is 7-zip.

Each of the similarity metrics produces a value between 0 and 1 where a score of 1
means the original malware and the variant are identical, and 0 means the original malware
and the variant are completely different. The average of these metrics is computed, and
that represents the structural similarity. These metrics are implemented using various
Python and C libraries and were chosen following previous work by [125].
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3.5.2 Behaviour based Similarity Metrics

As explained in Section 3.4, the behavioural trace of the mutants, is collected and converted
into a fixed sized vector composed of 251 elements. The behavioural based similarity
between the original malware and its mutants is then calculated as the cosine similarity
between their system call vectors. The cosine similarity metric is explained in Section
3.5.1 of this chapter, and it was chosen following previous work in literature [125].

3.6 Machine Learning Modules

In this research, a number of feature based ML models are employed such as Naive Bayes
(NB), among others, implemented using Scikit-learn1 libraries for Python, an easy to use
efficient open source ML tool for predictive data analysis. It is built on NumPy2, SciPy3,
and Matplotlib4. Keras library5 implementation in python is also used for the sequence
based machine learning. Keras is a deep learning library built on TensorFlow 2.06. It is
also an easy-to-use framework that is well developed and scalable to large GPU clusters.
A detailed implementation of the ML modules is explained in Section 6.3 of this thesis.

3.7 Data Description

The malware utilised in this work are from the Contagio Minidump [147] and MalGenome
[158]. Contagio Minidump comprises 237 malware samples collected between December
2011 and March 2013. MalGenome on the other hand, consists of 1,260 Android samples
from 49 different families. The selection of samples from these dumps was done based on
their malicious payload. In categorizing the samples, four groups are used, categorized by
[157], representing the groups most malware fall into. These include privilege escalation,
remote control, financial charges, and personal information stealing. The parent malware
used to initialise the EA were randomly selected from the dump using the aforementioned
malicious payload. The three specific malicious families utilised in this research include
Dougalek (personal information stealer), Droidkungfu (privilege escalator and remote
controller) and GGtracker (financial charger and personal information stealer).

1. Privilege Escalation: The complexity of the Android platform, owing to the fact
that it comprises both Linux kernel and Android framework which have over 90

1Scikit-learn - https://scikit-learn.org/stable/
2Numpy - https://numpy.org/
3SciPy - https://www.scipy.org/
4Matplotlib - https://matplotlib.org/
5Keras - https://keras.io/
6TensorFlow 2.0 - https://www.tensorflow.org/install
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libraries, makes it prone to attacks in the form of privilege escalation. Droidkungfu
[52], an Android malware family first discovered in May 2011, is an example of
a malware family that uses privilege escalation. It is one of the families gotten
from the MalGenome dump. It uses encryption to obfuscate its code in order to go
undetected by detectors. It includes encrypted root exploits and malicious payloads
that are in touch with C&C servers, from which they get instructions to be executed.
This family of malware is considered in our analysis.

2. Remote control: This feature allows mobile malicious attackers gain remote control
of the phone. Malware families that have this functionality are in communication
with remote C&C servers. Droidkungfu is also an example of a malware family that
uses remote control malicious payload and is considered in our analysis.

3. Financial charges: Some malicious attacks are launched to deliberately extort
money from the users infected in form of financial charges. They subscribe users
to premium services without proper authorisation, and in most cases the infected
parties are unaware of such services. GGtracker [51] is an example of such a family
of malware. It is one of the families in the MalGenome dump, and subscribes the
infected users to various US premium services without their consent. It is also one
of the families of malware studied.

4. Personal information stealing: There are also other malware families whose major
goal is to collect information. This information could be on the infected user’s
account, contact list, text messages, among others. Malware families such as
Dougalek [141] from the Contagio minidump and GGtracker, fall into this category
and are analysed in our study.

3.8 Summary and Conclusion

In this chapter, the research methodology has been elucidated. A summary of the frame-
work of the research (i.e. highlighting and explaining the main components of the
framework which include the mobile malware dump, the disassembly module (apktool),
the mutation engine, the data store, and the detector module), has been made. In this
project, the malicious samples employed are mobile malware, and the structure of an
Android malware is described, with its components explained. A case is also made for the
choice of mobile malware as the malicious class studied in this research work.

Furthermore, an explanation is made for the analysis and reverse engineering of the
Android files used in this work. The various tools used including the AV engine, the tools
used in collecting the behavioural trace of the samples as well as the tools for testing the
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maliciousness and executability of samples, are explained. Also, the libraries used for
measuring the similarity between the original malware and its variants, are described. This
includes both text and code level similarity measurement tools.

The final section describes the data source and samples employed in this research.
This includes three families, namely, Dougalek, Droidkungfu and GGtracker, and they fall
into four categories which comprise those that escalate privilege in mobile phones, those
that try to gain remote control of mobile phones, those that incur financial charges to the
mobile phone users, and those that attempt to steal the personal information of the mobile
phone users. All of the information in this chapter provides the software components,
relevant metrics, and analysis details used in all the experimental chapters (i.e. Chapters 4,
5 and 6).



Chapter 4

Using an EA to Evolve New Test Data

The work presented in this chapter of the thesis was published in the proceedings of
Dependability in Sensor, Cloud, and Big Data Systems and Applications (DependSys
2019) [16]. A copy of the publication is given in appendix A.A.1.

Antivirus (AV) engines provide a standard security measure to combat malicious
attacks. However, as has previously been established in Chapter 2 of the thesis, most
engines fail to generalise over metamorphic malware that changes its form over time in
unpredictable ways. To combat this, a proposal of an adversarial solution which generates
a suite of new malicious mutants of existing malware that are undetectable by many
existing AV engines, and can therefore be used to develop new countermeasures, has been
made. Specifically, an Evolutionary Algorithm (EA) which we refer to as MAL_EA, is
utilised to discover undetectable mutants, guided by three different fitness measures that
include the evasiveness of the variants, and their behavioural and structural similarity
to the original malware. The experiments conducted in this chapter are done over three
classes of malware to evaluate the effectiveness of the MAL_EA variants. Results show
that MAL_EA is capable of generating a diverse set of mutants that evade detection by
a significantly higher proportion of AV detectors than the original malware. In addition,
the resulting sets of new mutants are shown to be diverse in terms of their detection,
behavioural and structural signatures.

4.1 Introduction

A number of solutions have been presented over recent years to tackle the problems
posed by malware, for example, in the form of viruses or Trojans as extensively discussed
in Chapter 2 of the thesis. However, malicious attacks continue to wreak havoc in
computer systems and the internet at large. Metamorphic malware in particular, have been
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extensively studied because they represent one of the most complex and dangerous groups
of malware.

Metamorphic viruses as previously explained, transform their code as they propagate,
thus, evading detection by static signature-based virus scanners, and have the potential to
lead to a breed of malicious programs that are virtually undetectable statistically [154].
This dangerous group of malware attacks various computing platforms but particularly
mobile platforms for reasons previously described.

A recent approach to detecting malware on Android platform is through the use of
adversarial learning techniques [99] previously described in Section 2.3.2. This method
is designed to challenge systems by deliberately feeding them with malicious inputs
(adversarial samples) in order to discover loopholes and subsequently improve detection
models to make them more robust to attack. However, a challenge in this approach is to
create the adversarial samples required for training.

It is not enough just to evolve new evasive variants of malware but that they should
also be diverse so that they can represent a wide variety of potential states the malware
can morph to. Diversity of the malicious variants can mean a number of things — for
example, structural diversity (this means that the variants take different code level and
semantic structures as compared to their parent malware) or behavioural diversity (this
means that the behavioural characteristics of the variants are as dissimilar as possible from
those of the parent malware). Both structural and behavioural diversity of variants are
considered in this work. This is because mutant variants of malware can behave similarly
but look different as well as look similar but exhibit different behavioural characteristics.
Our idea is to use these characteristics to evolve diverse variants (either one at a time - or
using all at once).

In this chapter, a method of generating a suite of malicious, novel mutants is introduced,
using an Evolutionary Algorithm [48] — a population-based meta-heuristic search process
inspired by processes occurring in biological evolution that guides a population to adapt
towards a desired goal — in this case, to discover novel malicious variants of existing
malware that evade current detection systems. The approach used in this chapter is a
precursor to a true adversarial system — it generates new samples. However, in this
chapter we do not go on to test whether this actually improves ML models (the testing is
done in Chapter 6 of the thesis). Hence, it is a step towards an adversarial system.

4.1.1 Research Questions

The specific research questions addressed in this chapter are listed below:
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• Does modifying the fitness function of MAL_EA to include solution characteristics
enable us to obtain samples that are evasive but also diverse with respect to the
original malware?

• How do the 63 detection engines vary in their ability to detect the new malware
variants for each family of malware tested?

4.1.2 Contribution

The key contribution explained in this chapter is introduction of a novel Evolutionary
Algorithm, MAL_EA to generate a suite of malware variants that evade existing detection
systems, while remaining malicious and executable. Specifically, this chapter demonstrates
that while a fitness that directly rewards evasiveness is capable of generating sets of new
mutant malware, rewarding behavioural or structural dissimilarity indirectly leads to
evasive variants. In addition, it is showed that the variants produced exhibit diversity
with respect to their detection signatures, their behavioural signatures, and the structural
signatures, when compared to the original malware and to each other. This extends existing
work in

• Developing a suite of new fitness functions to guide the evolutionary search for
adversarial mutants.

• Application of the technique to a broad range of malware families.

• Including a large set of 63 detection algorithms in the evolutionary process to
generate mutants that evade a wide range of detectors.

• Generating a diverse set of mutants that provide rich training data for ML algorithms.

4.2 Evolutionary Algorithm

In this chapter, MAL_EA is used in the generation of mutant variants of malicious
code. An EA is used because it has proven ability in transformation, optimisation, and
improvement of software code [37], [90] and [153]. This work employs a canonical model
of an EA and customises the operators. MAL_EA returns the single best mutant found
(according to the fitness function) at the end, so it is run multiple times to get multiple
variants. MAL_EA is given in Alg.3 below:

MAL_EA begins with an initial population of random malicious mutants. In a repeat-
ing cycle, parents are selected from this population and mutated to create offspring. The
specific operators used within MAL_EA are now described:



4.2 Evolutionary Algorithm 54

Algorithm 3 Evolutionary Algorithm — MAL_EA
1: P ← initalise_random_population() ▷ created by mutating original malware
2: evaluate(P) ▷ score each malware according to chosen fitness metric
3: fw = min(P) ▷ worst member of population
4: while Maximum number of iterations not reached do
5: p← select_parent(P)
6: c← mutate(p)
7: fc← evaluate(c)
8: if fc > fw then
9: P ←P ∪ c ▷ add child to population

10: remove_worst() ▷ remove least fit mutant
11: fw = min(P)
12: end if
13: end while
14: return P

4.2.1 Initialisation

To create an initial population of mutants, a single mutation operator (as described in the
following section) is applied to the original malware. The mutation operator is chosen at
random and applied exactly once. This process is repeated to create p mutants each time,
starting from the original malware. Recall from Chapter 3, that the original malware is an
apk file which is reverse engineered using apktool to obtain a smali file. Also recall the
executability of the mutants is checked using tools like apktool, apksigner, zipalign and an
Android emulator. The maliciousness of the variants is also analysed using Droidbox.

4.2.2 Selection

The selection operator is aimed at biasing the search towards selecting fitter parents to
create offspring from them. In this work, a standard operator, tournament selection [53]
has been employed. This selection operator has been chosen because it can be easily
tuned to vary selection pressure. In tournament selection, the population is sorted and k
potential parents are selected at random. The best parent among the k prospective parents
is selected to be recombined to form children in the next iteration [133].

4.2.3 Mutation Operators

To create a mutant from a malware m, a mutation operator is applied to the smali file
obtained from decompiling m. Three mutation operators are defined; a mutation operator
is selected at uniform random to perform the mutation. The description of the three
mutation operators is as follows:
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• M1: Instruction reordering - this introduces a goto statement that jumps to a label
that does nothing.

• M2: Garbage code insertion - inserts junk codes like line numbers that do not affect
the functionality of the code.

• M3: Variable swapping - this replaces variables with other valid variables in the
program code while ensuring consistency with the variable names.

4.2.4 Fitness Functions

Three different fitness functions are evaluated as methods of guiding the evolutionary
search towards novel variants. The fitness metrics are selected based on the characteristics
of malware that is, their structure, behaviour and ability to evade a large set of detectors.
In order to create adversarial mutants, each of the fitness values is minimised.

• DR (Detection Rate): proportion of detectors within a specific AV engine that detect
the mutant. This returns a value between 0 and 1, with 0 signifying that no detector
recognised the mutant. This uses Virustotal as described in Section 3.4, which is an
online based malware detection service that contains 63 updated antivirus engines
to provide the suite of AV engines.

• BS (Behavioural Similarity): returns a value between 0 and 1 which compares
the behavioural signature of the mutant to the original malware, with 0 indicating
maximum dissimilarity. This uses Strace to monitor the behaviour of the mutants
by keeping track of their system calls. The mutants’ main activity is executed using
MonkeyRunner in order to simulate user interaction. The output of Strace is a file
comprised of the variant’s process ID, along with its system calls and parameters.
Thus, the file is transformed to a fixed sized vector whose elements correspond to
the frequency of the system call used. Since 251 systems calls are considered, the
vector consists of 251 elements. The behavioural similarity between the original
malware and its mutants is then calculated as the cosine similarity between their
system call vectors.

• SS (Structural Similarity): a value between 0 and 1 that measures the semantic
similarity between the mutant and original value by comparing lines of code (where
0 represents the most dissimilarity). This uses several similarity metrics including
text (such as cosine similarity) and source code (such as JPlag - a plagiarism
detector) similarity metrics as described in Section 3.5 of the thesis. Each of the
similarity metrics produces a value between 0 and 1 where a score of 1 means the
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original malware and the variant are identical, and 0 means the original malware
and the variant are completely different. The average of these metrics is computed,
and that represents the structural similarity.

If a mutant is deemed non-executable, then it is assigned a fitness value of 1 (i.e. the
worst possible fitness), regardless of the measured metric or the fitness function used.

Note that only DR directly rewards mutants for evading detection. Functions BS
and SS reward behavioural and structural dissimilarity, which implicitly might lead to
mutants that evade detection. The idea of rewarding novelty rather than objective fitness
has recently received a great deal of attention in the EA community, with a significant
body of work showing that it leads to evolution finding stepping stones that enable very
high-quality solutions to be reached [93], [60].

4.3 Experiments

Experiments are conducted on the three chosen families (Dougalek, Droidkungfu and
GGtracker) explained in Section 3.7. For each family, MAL_EA is run using each of the
three defined fitness functions, resulting in 9 different treatments. Given the stochastic
nature of MAL_EA, each treatment is repeated 10 times. The best fitness obtained in each
run is recorded.

4.3.1 Evolutionary based Parameters

The parameters used in creating the evasive malware are summarised in the Table 4.1 and
they are derived following empirical analysis. The evolutionary program uses uniform
mutation with a mutation rate of 1; this value is chosen to ensure that mutation always
occurs, given that this is the only variation operator used, as crossover is not used in
the experiments. The crossover operator is not used, as it leads to the generation of
non-executable variants. MAL_EA uses tournament selection (described in Section 4.2.2
of this chapter) with a tournament size of 5 for a fair level of selection pressure. As a result
of the computational cost involved in running the experiments, the number of iterations is
limited, and the evolutionary program is run 100 times. The size of the population is then
set proportionally to 20.

Furthermore, to justify the use of an EA, the results derived while using MAL_EA
is compared against a Random Search (RS): 120 random variants are generated and
evaluated. This number represents the total number of points visited in the search space by
MAL_EA. Comparison of these results will indicate whether the evolutionary operators
are useful in locating high-fitness variants.
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Table 4.1 Parameter settings for Evolutionary Algorithm

Parameters Values

Selection Tournament Selection, k=5
Population Size 20

Iterations 100

Table 4.2 Count of malicious variants returned from 10 runs of the EA under each of the
3 fitness functions

Fitness Function Dougalek Droidkungfu GGtracker

DR(x) 7 10 9
BS(x) 7 9 8
SS(x) 10 9 7

4.3.2 Influence of Fitness Function on Evasiveness of Evolved Mu-
tants

In this section, the influence of each of the three fitness functions in terms of their ability
to locate novel evasive mutants, is investigated.

Following 10 runs using each of the fitness functions in Section 4.2.4, a test of each
of the mutants is done, to ensure they are still malicious using Droidbox, as explained
in Section 3.4. Note that each run returns the single solution that minimises the fitness
function. Consequently, 10 solutions are generated from 10 runs. Table 4.2 shows how
many variants retain their maliciousness.

From Table 4.2, it can be observed that a minimum of 7 out of the 10 runs result in
malicious variants, regardless of the fitness function used or malware family. MAL_EA
finds malicious runs for 100% of the runs using the evasiveness metric (DR(x)) with
Droidkungfu, and also in the Dougalek family using the structural similarity metric
(SS(x)).

The percentage of detectors that fail to recognise the novel variants over the x runs
that are malicious, is plotted. This is repeated for each malware family using each of the
fitness functions. In Figs. 4.1, 4.2 and 4.3, the red line shows the percentage detectors that
fail to recognise the original malware. Additionally, the performance of the EA in terms
of its ability to find evasive variants is compared to a random search for evasive variants.

• Dougalek: It can be noted from the boxplot in Fig. 4.1, that for each of the functions
in the fitness function, the resulting variants are more evasive than the original
malware. This means a higher percentage of detectors failed to identify the new
variants, as compared to the original malware. 40.3% of the detection engines failed
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to detect the original malware while for the best evolved variants of Dougalek,
72%, 66.7% and 67.3% of engines failed to detect the new variants created using
functions DR(x), BS(x) and SS(x) respectively. It is particularly interesting to note
that even when evasive variants are not directly evolved (i.e. using fitness function
DR(x)), evasive variants can still be created, as seen from the boxplots of BS(x) and
SS(x). It can also be noted that for the Dougalek family, the plots of evasiveness
of the newly created variants for both DR(x) and SS(x) are similar, as seen in Fig.
4.1. This implies that even when one is evolving for structurally dissimilar variants,
variants are still obtained, that are almost as evasive as when one is evolving for
evasive variants.

Furthermore, from Fig. 4.1, it can be observed that the median percentage of engines
that failed to detect the new mutants for the Dougalek family for the EA ranges
from 62.1% to 69.4% depending on the fitness function employed. However, for
a random search (RS(x)) for evasive variants, the median percentage of engines
that failed to detect the new mutants is 58.5%. Therefore, it can be said that an
improved evasive performance is noticed when MAL_EA is used as compared to
using a random search.

• Droidkungfu: Similarly from Fig. 4.2, it can be observed that for each of the
functions in the fitness function, the resulting variants are also more evasive than
the original malware. It can also be noted that 65% of the detection engines failed
to detect the original malware, while for the best evolved variants, 94%, 82.1% and
83% of engines failed to detect the new variants created using functions DR(x),
BS(x) and SS(x), respectively. This also shows that even when there is no evolving
for evasive variants (DR(x)), evasive variants for functions BS(x) and SS(x) can still
be created.

It can also be seen from Fig. 4.2, that the median percentage of engines that failed to
detect the new mutants for the Droidkungfu family for the EA ranges from 73.2% to
87.3% depending on the fitness function employed. However, for a random search
(RS(x)) for evasive variants, the median percentage of engines that failed to detect
the new mutants is 63.1%. Again, this shows that an improved evasive performance
is noticed when MAL_EA is used as compared to using a random search.

• GGtracker: Also in Fig. 4.3, each of the functions in the fitness function produce
variants that are more evasive than the original malware. From Fig. 4.3, it is apparent
that only 38.3% of the detection engines failed to detect the original malware while
for the best evolved variants, 73.3%, 62.1% and 62.1% of engines failed to detect
the new variants created using functions DR(x), BS(x) and SS(x) respectively. It can
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Fig. 4.1 Percentage detectors that fail to recognise the novel variants over the x runs that
are still malicious, using each of the fitness functions for Dougalek family, with the red
line showing the percentage detectors that fail to recognise the original malware

also be observed from Fig. 4.3, that the plots of evasiveness of the newly created
variants for DR(x), BS(x) and SS(x) are also similar. This means that even when
evolving for behaviourally and structurally dissimilar variants, variants that are
almost as evasive as when we are evolving directly for evasive variants, are still
obtained.

From Fig. 4.3, it can be observed that the median percentage of engines that
failed to detect the new mutants for the GGtracker family for the EA ranges from
61.4% to 66% depending on the fitness function employed. For the random search
(RS(x)) for evasive variants however, the median percentage of engines that failed
to detect the new mutants is 61.4%. RS(x) obtains a similar median to BS(x)
and SS(x), showing that these two metrics using an evolutionary search do not
outperform RS(x). However, Fig. 4.3 indicates that the DR(x) metric used with the
EA outperforms RS(x).
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Fig. 4.2 Percentage detectors that fail to recognise the novel variants over the x runs that
are still malicious, using each of the fitness functions for Droidkungfu family, with the red
line showing the percentage detectors that fail to recognise the original malware

The estimated cost is calculated in terms of time taken for a complete run of 100
iterations, using each of the functions in the fitness function, and this is summarised in
Fig. 4.4. The function SS(x) takes the most time; this is explained by the fact that it uses
more tools in the similarity matching.

4.3.3 Analysis of Evasion Characteristics of New Mutants

In this section, an analysis of which of the detection engines are fooled by the novel
mutants evolved, which were not fooled by the original malware, is conducted. For each
of the m malicious variants produced by 10 runs of MAL_EA for a given fitness function,
the frequency f which a detector d failed to detect the malware (0 < f < 10), is counted.
In Figs. 4.5, 4.6 and 4.7, the blue histograms represent results for function DR(x), the
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Fig. 4.3 Percentage of detectors that fail to recognise the novel variants over the x runs
that are still malicious, using each of the fitness functions for GGtracker family, with the
red line showing the percentage detectors that fail to recognise the original malware

orange ones represent results for function BS(x) and the green histograms represent the
results for function SS(x).

• Dougalek: The plot in Fig. 4.5, shows that for fitness function DR(x), 14 engines
were not fooled by any of the mutants; some of such engines include AVG and
Tencent. 17 engines on the other hand, were fooled by all the mutants with examples
like AVware and McAfee. The number of engines not fooled by any variant when
fitness function BS(x) is used, is 19. Examples include AVG and Fortinet. 11
engines however, were fooled by all the mutants for function BS(x) with examples
like GData and McAfee. Also, 16 engines were not fooled by any variants for
the function SS(x). Examples include Symantec Mobile and Fortinet. 17 engines
however, were fooled 100% of the time for function SS(x). Examples include
McAfee-GW and BitDefender.
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Fig. 4.4 Average time taken for a complete run of 100 iterations, using each of the
functions in the fitness function

Fig. 4.5 Frequency f of detectors d that failed to detect the malware (0 < f < 10) for the
fitness functions (DR(x), BS(x) and SS(x)) for Dougalek family

• Droidkungfu: From Fig. 4.6, it is apparent that 3 engines were not fooled by any
of the mutants for function DR(x). Examples include Avast Mobile and NANO
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Antivirus. 12 engines however, were fooled by all the mutants 100% of the time
for function DR(x) - examples include Fortinet and Kaspersky. For fitness function
BS(x), 6 engines were not fooled by any of the mutants; some of such engines
include Avast Mobile and NANO Antivirus. 7 engines on the other hand, were fooled
by all the mutants with examples like Symantec Mobile and Tencent. Furthermore,
7 engines were not fooled by any mutant for function SS(x), with examples such as
AVG and Cyren. On the other hand, 11 engines were fooled by all the mutants for
function SS(x). Examples include Kaspersky and ZoneAlarm.

Fig. 4.6 Frequency f of detectors d that failed to detect the malware (0 < f < 10) for the
fitness functions (DR(x), BS(x) and SS(x)) for Droidkungfu family

• GGtracker: In Fig. 4.7, the number of engines not fooled by any variant when fitness
function DR(x)is used, is 9. Examples include CAT-QuickHeal and DrWeb. 13
engines however, were fooled by all the mutants for function DR(x), with examples
like Arcabit and BitDefender. Also, 15 engines were not fooled by any variants for
function BS(x). Examples include K7GW and Kaspersky. 16 engines however, were
fooled all the time for function BS(x) - examples include AVware and TrendMicro.
In addition, 16 engines were not fooled by any mutant for function SS(x), with
examples such as Avast and AVG. On the other hand, 18 engines were fooled by all
the mutants for function SS(x). Examples include Cyren and McAfee.

4.3.4 Diversity

Recall from Section 4.1, that diversity of the samples can mean several things such as
behavioural diversity which means the behavioural characteristics of the variants are as
dissimilar as possible to those of the parent malware and to each other. It could also mean
structural diversity that is, the variants take varying code level and semantic structures
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Fig. 4.7 Frequency f of detectors d that failed to detect the malware (0 < f < 10) for the
fitness functions (DR(x), BS(x) and SS(x)) for GGtracker family

as compared to their parent malware as well as themselves. Also, it could mean that the
mutants differ in terms of how they evade detection by existing detection engines.

In the previous section, a fitness function is used that tries to maximise one of three
metrics namely structural dissimilarity, behavioural dissimilarity and evasiveness of the
variants as compared to their parent malware. Each of these also maximise a diversity
measure. Hence, they are used to guide the search towards a variant that is most dissimilar
to the original malware. In this section, the diversity of the set of variants produced from
multiple runs of the algorithm is studied to see whether the EA runs produce different
variants, and to analyse whether they are more or less diverse according to each of the
three metrics.

Diversity of the variants produced for each of the malware classes, is measured with
respect to

• A detection signature

• A behavioural signature

• Structural similarity

The terms are explained below.



4.3 Experiments 65

Diversity with respect to Detection Signature

The first attempt is to understand whether the evolved mutants are diverse with respect to
their "detection" signatures (i.e. the behaviour of the 63 detection engines when presented
with the mutant). A detection vector d is defined for each evolved mutant as a vector of
63 elements, corresponding to each of the 63 detection engines used for testing. The value
of an element di is 1 if the corresponding engine detected the mutant and 0 otherwise. For
each subset of n variants denoted by (m, f ), (i.e. from a malware family m evolved using
fitness function f ), the percentage of unique detection signatures within the set of size
n to obtain an indication of variant diversity, with respect to the ability of the detection
engine to recognise the variant, is noted. Results are shown in Table 4.3.

From Table 4.3, it is evident that in terms of uniqueness of the detection signatures,
the highest percentage of unique variants is seen in the Droidkungfu family when evolving
for evasive (with 90% uniqueness) and behaviourally dissimilar (with 89% uniqueness)
variants. However, when evolving for structurally dissimilar variants, the most unique
variants are found in the Dougalek family (with a 50% uniqueness score).

The 63-dimensional vectors obtained from each of the evolved mutants, are mapped to
a 2-dimensional space using t-SNE (t-Distributed Stochastic Neighbor Embedding) [144];
this is a non-linear dimensionality reduction algorithm commonly used for exploring
high-dimensional data. It seeks to retain both the local and global structure of the data at
the same time, (i.e. mapping nearby points on the manifold to nearby points in the low-
dimensional representation (preserving local structure) while also preserving geometry
at all scales, mapping far away points to far away points (global structure)). 76 new
malicious mutants are evolved in total (considering all classes and fitness functions). After
calculating the 76 detection vectors, any duplicates are removed (i.e. cases where variants
within a subset defined by a malware family and fitness function have identical vectors).
This reduces the total number of vectors to 46.

Figure 4.8 shows a plot obtained from t-SNE of the evolved malicious variants (after
removing duplicates) in order to visualise diversity within the detection signatures. It can
be noted that a distinct cluster is formed by variants of the Droidkungfu class as seen in the
top left region of Fig. 4.8, with the other two malware families forming a separate cluster.
Within each class cluster, further clusters can be identified according to the method used to
generate the mutant. Within each of these sub-clusters, there is also diversity with respect
to the detection signature.

Therefore, it is concluded that although not all the clusters are clearly differentiated by
t-SNE, there is some evidence of clustering as seen in the Droidkungfu class. Consequently
it can be said that the evolutionary approach used, is capable of generating distinct and
diverse malware variants, providing useful data to develop new detection engines.
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Fig. 4.8 Clustering of the detection vector associated with each evolved mutant, shown
according to the fitness function used to evolve the mutant. Dimensionality reduction and
clustering performed using t-SNE
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Table 4.3 Percentage of evolved malicious variants that have a unique detection signature,
shown by fitness function used to evolve

Dougalek Droidkungfu GGtracker

Detection 43 90 78
Behavioural Similarity 71 89 50
Structural Similarity 50 33 29

Table 4.4 Percentage of evolved malicious variants that have a unique behavioural signa-
ture, shown by fitness function used to evolve

Dougalek Droidkungfu GGtracker

Detection 100 70 89
Behavioural Similarity 100 78 78
Structural Similarity 80 75 100

Diversity with respect to Behavioural Signature

The behavioural signature of a variant is defined as the vector b comprising of 251
elements with each element representing the system calls used by the variants. Each
element bi has a value that equals the frequency of the corresponding system call used.
In the same manner as previously described with respect to diversity in the detection
signatures, the number of unique behavioural vectors for each subset of evolved variants
(m, f ), is counted. Results are shown in Table 4.4. In terms of the uniqueness of the
behaviour signature as seen in Table 4.4, Dougalek is the most unique family with 100%
uniqueness when evolving for evasive and behaviourally dissimilar variants. GGtracker on
the other hand, is the most unique family in terms of the evolution for structurally dissimilar
variants. It is also interesting to note that out of the 251 behavioural tests performed (length
of the behaviour vector), only 33 behaviours are actually ever recorded (frequency >= 1).
The remaining behaviours have frequency 0 in all of the tests, regardless of malware class
or fitness function used.

When comparing the diversity obtained in terms of behavioural and detection signa-
tures of the evolved mutants, it is observed that there is more diversity in terms of the
behavioural signatures than detection signatures, but that diversity is apparent with respect
to both signatures.

Diversity with respect to Structural Similarity

An examination of how much diversity is present in a set of evolved mutants, with respect
to their structural similarity, is carried out. While evolving using the fitness function
SS(x) produces mutants that are dissimilar to the original malware, it is advantageous to
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(a) Structural Diversity Dougalek for function
DR(x)

(b) Structural Diversity Dougalek for function
BS(x)

(c) Structural Diversity Dougalek for function
SS(x)

Fig. 4.9 Analysis of Structural Diversity for Dougalek - For each of the M malicious
mutants produced by 10 runs of MAL_EA using each fitness function (DR(x), BS(x) and
SS(x)), a pairwise similarity between each pair of mutants is calculated

also generate mutants that are structurally dissimilar to each other in order to maximise
diversity in a training set.

The pairwise similarity between each pair of mutants produced by a fitness function
for all the malware families, is calculated. This gives a score between 0 and 1, where 0
means the pair is completely different, and 1 means they are exactly the same. A colour
grid is then plotted representing the similarity scores of each pair as seen in Figs. 4.9,
4.10 and 4.11. It can be noted from these figures that the fitness function that produces the
most structurally diverse variants is function SS(x) for GGtracker family, function BS(x)
for Droidkungfu family and function SS(x) for Dougalek family. It is interesting to note
that the least structurally diverse variants are produced by the Dougalek family, and the
most structurally diverse variants are produced by the Droidkungfu family.
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(a) Structural Diversity Droidkungfu for func-
tion DR(x)

(b) Structural Diversity Droidkungfu for func-
tion BS(x)

(c) Structural Diversity Droidkungfu for func-
tion SS(x)

Fig. 4.10 Analysis of Structural Diversity for Droidkungfu - For each of the M malicious
mutants produced by 10 runs of MAL_EA using each fitness function (DR(x), BS(x) and
SS(x)), a pairwise similarity between each pair of mutants is calculated
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(a) Structural Diversity GGtracker for function
DR(x)

(b) Structural Diversity GGtracker for function
BS(x)

(c) Structural Diversity GGtracker for function
SS(x)

Fig. 4.11 Analysis of Structural Diversity for GGtracker - For each of the M malicious
mutants produced by 10 runs of MAL_EA using each fitness function (DR(x), BS(x) and
SS(x)), a pairwise similarity between each pair of mutants is calculated
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4.4 Summary and Conclusion

4.4.1 Summary

The following comments are provided to summarise all the results obtained in this chapter
of the thesis.

• In terms of the influence of fitness function on evasiveness of the evolved mutants,
it is apparent that for each of the functions (DR(x), BS(x) and SS(x)) in the fitness
function, the resulting variants are more evasive than the original malware. This can
be seen for all three malware classes. It was also show that for the majority of cases,

• The analysis of evasion characteristics for the three classes of malware show that for
all malware families, there are a number of engines which are fooled by the mutants,
but not fooled by the original malware. However, some engines like AhnLab-v3
are neither fooled by the mutants nor the original malware for the three malware
families considered.

• Diversity is noticeable for the three classes of malware, with respect to the three
fitness function metrics. In terms of the detection signatures, a level of diversity
within the samples was observed. The same holds true for diversity, with respect to
behavioural signature and structural similarity of the malware classes.

Answering the Research Questions

Recall from Section 4.1.1, that the first research question seeks to find if modifying the
fitness function of MAL_EA to include solution characteristics enable us to obtain samples
that are evasive but also diverse with respect to the original malware. Using three different
fitness functions based on malware characteristics (behaviour, structure and ability to
evade existing detection engines) for three malicious families, the evolutionary search
was guided towards new variants that are more evasive than the original malware with
experiments showing that the EA itself is effective as it outperforms a random search.
Also, there is diversity within the malware mutants for each fitness function metrics. The
diversity within the samples however, could not be guaranteed.

In answering the second research question, “How do the 63 detection engines vary in
their ability to detect the new malware variants for each family of malware tested?”, tests
were done to analyse which detection engines were more susceptible to the new mutants
for the malware families considered. The results show that the mutants are able to fool
detection engines that their parent malware were unable to fool. Engines like AhnLab-v3
however, are neither fooled by the mutants nor the original malware for the three malware
families considered.
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4.4.2 Conclusion

In this chapter, a new method has been proposed, to generate sets of mutant variants from
already existing malware, using an Evolutionary Algorithm — MAL_EA. The goal was to
generate a diverse set of new, malicious, mutants that evade detection by existing detection
algorithms, where diversity is measured with respect to the structural and behavioural
similarity of the mutants to the original malware. Using examples from three different
malware families as a test-bed, selected based on their malicious payload described in
Section 3.7 of the thesis, the new variants generated have been shown to be significantly
more evasive than the original malware they were derived from, and display a diverse
range of behaviours. Interestingly, it is shown that rewarding the evolutionary algorithm
for generating mutants that are structurally or behaviourally dissimilar to the original
malware, also generates evasive mutants (i.e. it is not necessary to explicitly evolve for
evasiveness, but that this is obtained indirectly). Furthermore, the results have shown that
the use of an EA is beneficial in the majority of cases, i.e. it outperforms a random search.

The proposed approach is generic enough to be applied in generating new adversarial
samples from any class of malware. There is scope for improving the EA used, as earlier
mentioned, as the diversity within the samples could not be guaranteed. Diversity is
important because the evolved mutant samples is to be used as training data for ML
models. Hence, diversity improves model generality.

Quality Diversity (QD) algorithms explicitly account for diversity, and also return
a repertoire of solutions in a single run; this might be better than the approach used in
this chapter, as multiple runs might all return the same variant. In the next chapter, a
Quality Diversity (QD) algorithm is used, specifically MAP-Elites to drive diversity. This
algorithm is designed to generate a repertoire that is diverse, with respect to some features,
in a single run.



Chapter 5

Using MAP-Elites to Evolve a
Repertoire of Diverse Solutions

The work presented in this chapter of the thesis was published in the proceedings of
the 23rd European Conference on the Applications of Evolutionary and bio-inspired
Computation (Evostar 2020) [17]. A copy of the publication is given in appendix A.A.2.

In this chapter, a Multi-dimensional Archive of Phenotypic Elites (MAP-Elites) algo-
rithm is utilised to generate a large set of novel, malicious mutants that are diverse with
respect to their behavioural and structural similarity to the original mutant. Using the
previously described classes of malware as a test-bed, it is shown that the MAP-Elites
algorithm produces a large and diverse set of mutants, that evade between 66% to 72%
of the 63 detection engines tested. When compared to results obtained using repeated
runs of an Evolutionary Algorithm — MAL_EA that converges to a single solution result
previously described in Section 4.2, the MAP-Elites approach is shown to produce a
significantly more diverse range of solutions, while providing equal or improved results
in terms of evasiveness, depending on the dataset in question. In addition, the archive
produced by MAP-Elites sheds insight into the properties of a sample that lead to them
being undetectable by a suite of existing detection engines.

5.1 Introduction

As has been previously established in Chapter 4, the search for mutant variants of malware
can be a difficult task as it involves the traversal of a large search space of potential
malicious variants. In addition, in order to drive improvements in detection models, it
is advisable to create as many new samples as possible for a model to learn from, and
furthermore, that the samples are as diverse as possible to improve model generality.
A number of evolutionary algorithms (EA) have been proposed in the past to generate
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variants of malware samples, for example, in the domains of pdf-malware [155] and in
Android malware [15, 16]. However, these algorithms generate only a single new sample
with each run of the algorithm. Given that most machine-learning approaches require large
amounts of training data, not only is it time-consuming to generate multiple samples in
this way, but there is no guarantee that the samples will be diverse. Furthermore, existing
methods do not provide much insight into the properties of the generated samples.

To address this, a solution is proposed in this chapter that generates a set of variants that
are diverse with respect to two features, the Structural Similarity (SS(x)) and Behavioural
Similarity (BS(x)) of the variants, with respect to the original malware. Specifically,
a Quality-Diversity algorithm is applied — MAP-Elites [111] — to generate a set of
diverse variants that are optimised with respect to their ability to evade a large set of
well-known detection engines. Recall from Section 2.5.4, that MAP-Elites algorithm
traverses a high-dimensional search space in search of the best solution at every point
of a feature space with low dimension defined by the user, and is one of a new raft of
Quality-Diversity optimisation algorithms [123] that aim to return an archive of diverse,
high-quality behaviours in a single run. The algorithm has multiple documented successes
in evolutionary robotics [111], but also in design applications, car wing-mirror design
[65].

5.1.1 Research Questions

Two questions are addressed in this chapter:

• How does diversity of samples produced by running MAP-Elites algorithm compare
to repeated executions of the standard Evolutionary algorithm, MAL_EA, described
in [16] (the algorithm described in Section 4.2)?

• How does the evasiveness of samples produced by MAP-Elites algorithm compare
to repeated executions of a standard Evolutionary algorithm, MAL_EA (described
in Section 4.2)?

5.1.2 Contribution

The contributions of the chapter is three-fold. Presumably, this is the first use of an
illumination algorithm to generate a diverse set of mutant variant of malware. The
approach is rigorously evaluated in terms of the number of samples generated, their
evasiveness, and their diversity with respect to two features that measure the behavioural
and structural similarity to the original malware. Secondly, a comparison is provided, to
results obtained by running a single evolutionary algorithm (MAL_EA) multiple times in
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order to generate a set of variants [16] (the algorithm described in Section 4.2), comparing
the same metrics as above. Results show that MAP-Elites generates larger, more diverse
sets of variants than the EA, while retaining approximately the same levels of performance
(in terms of the evasiveness of the samples generated). Finally, novel insights are provided,
into the factors that contribute to evasiveness, based on the results obtained from the
illumination algorithm.

5.2 Methodology

In this section, the malware mutant generator that uses MAP-Elites algorithm to generate
an archive of highly evasive but diverse mutants that can be used as future training data by
a machine-learning model, is described.

5.2.1 Modification of MAP-Elites Algorithm for Malware Mutant
Generation

The modification of MAP-Elites algorithm for malware mutant generation, proposed by
us is given in Alg. 4. The highlighted portions of Alg. 4, show the difference between the
original MAP-Elites algorithm given in [111] (described in Section 2.5.4 of the thesis)
and the modified version presented by us. First, an empty archive is created as a two-
dimensional grid defined by two features: the behavioural similarity and the structural
similarity of a solution to the original malware. The grid is divided in 20x20 equally sized
cells; these are created by equally “binning” the range of each feature (which take values
between 0 and 1), thereby creating a potential archive of 400 solutions. The algorithm is
then initialised with a random population of mutants, each created by applying a single
mutation to the original malware. After calculating the feature descriptor for the mutant
(see Section 5.2.2), the mutant is mapped to the corresponding cell in the archive.

Mutants are generated by applying a single mutation to an existing malware by
selecting a mutation operator at random from the following list:

• Garbage Code Insertion (GCI) - This inserts a piece of junk code, e.g. a line number
into the original program code.

• Instructional Reordering (IR) - This adds a go-to statement in the original program
code which jumps to a label that does nothing.

• Variable Renaming (VR) - This renames a variable with another valid variable name
in the original program code.
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As described in Section 3.3, the original malware is in the form of an executable apk
file. To create mutants, the apk must first be reverse engineered by converting it to a smali
format using apktool. Thereafter, the following steps are executed:

1. Apply a mutation operator to the smali code.

2. Recompile the smali to apk in order to test that the variant created is executable.

3. Sign the recompiled apk using apksigner and align using zipalign.

4. Calculate the feature descriptor of the mutant.

5. Calculate the fitness of the mutant (detection-rate).

Subsequent solutions are created by random selection from the elites in the map.
Upon selecting each random elite, they are also mutated by applying a randomly selected
mutation operator, from the list given above. New mutants are placed in the archive if the
corresponding cell is empty or replace an existing solution in a cell if their fitness is better
than the existing solution.
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Algorithm 4 MAP-Elites algorithm for mutant generation, modified from [111]
1: procedure MAP-ELITES(I,G)
2: (E ← φ ,X ← φ ) ▷ N-dimensional map of elites: mutants X and their

evasiveness E

3: for iter = 1→ I do ▷ Repeat for I iterations
4: if iter > G then ▷ Initialize by generating G random solutions by mutating

original malware
5: x′← random_solution()
6: else ▷ Subsequent solutions are generated from elites in the map
7: x← random_selection(X )▷ Randomly select an elite x from the map X

8: x′← random_mutation(x) ▷ Create a mutant of x
9: end if

10: if executable(x′) then ▷ Confirm that mutated solution compiles and executes
11: b′← f eature_descriptor(x′) ▷ Calculate and record the behavioural and

structural similarity between x’ and the original malware
12: e′← evasiveness(x′) ▷ Record the evasiveness e’ of x’
13: if E (b′) = φ orE (b′)> e′ then ▷ If the appropriate cell is empty or its

occupants’s evasiveness is >= e’, then
14: E (b′)← e′ ▷ store the value for evasiveness of x’ in the map of elites

according to its feature descriptor b’
15: X (b′)← x′▷ store the solution x’ in the map of elites according to its

feature descriptor b’
16: end if
17: else
18: delete x′

19: end if
20: end for
21: return feature-evasiveness map (E and X )
22: end procedure

5.2.2 Feature Descriptor

Two feature descriptors (defining a 2D grid) of the mutants is defined by the behavioural
and structural similarity between the original malware and a mutant. A behavioural
signature of the mutant is derived from monitoring its system calls using Strace, using
Monkeyrunner to simulate user interaction. This creates a behavioural signature repre-
sented as a vector of 251 elements, each corresponding to the frequency of 251 possible
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system calls made by the mutant. The behavioural similarity between the original malware
and the mutant is calculated as the cosine similarity between the two system call vectors,
returning a value between 0 and 1, where the former indicates that the original malware
and the mutant share no behavioural similarity, while 1 means the original malware and
the mutant have equivalent behaviour.

The structural similarity between the mutants and the original malware is measured
using both text based and code level similarity metrics as described in Section 3.5. The
similarity metrics are then averaged, returning a value from 0 to 1 where 0 means the
original malware and the mutant are completely dissimilar and 1 means they are the same.
These metrics are chosen following previous work by [125].

5.2.3 Fitness Evaluation

The fitness of a mutant is measured in terms of its ability to evade a set of well known
detection engines. Mutants are evaluated using Virustotal as described in Section 3.4. The
fitness measures the detection-rate (i.e. the percentage of the antivirus engines that fail to
detect a mutant). A detection-rate of 0 denotes that no engine detected the variant, while a
value of 1 denotes all the engines detected the mutant. The problem is thus treated as a
minimisation problem.

5.3 Experimental Settings

The parent malware chosen belong to Dougalek, Droidkungfu and GGtracker families,
explained in Section 3.7. Experiments are conducted separately on each family.

To assess the quality of the MAP-Elites based mutant generator, its performance is
compared against that of an EA — MAL_EA (the algorithm described in Section 4.2)
designed for the same task. Recall that MAL_EA is a classical EA that uses a single
objective performance-based fitness function to drive evolution, with no regard to features
of the resulting solutions. MAL_EA is a steady-state EA that uses same mutation operators
as the MAP-Elites based mutant generator and no crossover. It uses tournament selection
and replaces the worst solution in the population with the best solution produced in the
tournament, provided that it is better than the worst solution. The parameters used are
given in Table 5.1. The parameters used in MAL_EA were derived following empirical
analysis and are described in Section 4.3.1 of the thesis. For MAP-Elites on the other
hand, it uses random selection for parent selection. Most MAP-Elites algorithms only use
mutation [54] not crossover (although some later ones do use crossover [9]) and therefore
the default mutation rate is 1. The crossover operator is not used in our experimentation,
as it leads to the generation of non-executable variants. Furthermore, as a result of the
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Table 5.1 Evolutionary based Parameter Settings

MAL_EA

Parameter Setting
Selection Tournament

Population size 20
Iterations 120

Mutation rate 1

MAP-Elites

Parameter Setting
Selection Random Selection
Bootstrap 20
Iterations 120

Mutation rate 1

computational cost involved in running the experiments, the number of iterations is limited
to 120. The number of bootstrap iterations is then set proportionally.

To compare between the MAL_EA method and the new MAP-Elites approach pro-
posed here, four standard metrics for measuring algorithm performance are used, which
include global performance, coverage, reliability and precision, taken from [111].

Global performance (Equation 5.1) computes for each run, the fitness of the single
best performing solution s divided by the fitness of the best solution S possible. Following
the approach described in previous literature, as the theoretical optimum is unknown, the
value for the best solution possible is taken to be the single best solution obtained from
any run of either algorithm. This is given as:

Global Performance =
s
S

(5.1)

Coverage (Equation 5.2) measures how many cells of the feature space a run of an
algorithm is able to fill of the total number that are possible to fill. For a single map, it is
defined as number of filled cells n( fc) in the map divided by the total number of cells that
theoretically could be filled. As this number is generally unknown, it is approximated by
counting the total number of unique cells that have been filled considering all runs of all
algorithms n(Fc). Coverage is therefore an indicator of diversity.

Coverage =
n( fc)

n(Fc)
(5.2)

The reliability metric measures for each run, the closeness of the best solution found
for each cell to the best possible performance for that cell, averaged over the whole map.
As above, as the best possible performance is unknown, the value is approximated as the
best solution obtained for the cell from any run of any algorithm, supposing that Mx,y

represents the highest performing solution found from all runs of the algorithm for both
MAP-Elites and MAL_EA at coordinate x, y, and assuming that M = m1...mk is a vector
which contains the final performance map derived from every run of the algorithm for
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both MAP-Elites and MAL_EA. Then,

Mx,y = max
{i∈[1,...,k]}

mi(x,y) (5.3)

The reliability of a performance map m is given as:

Reliability =
1

n(M)∑
x,y

mx,y

Mx,y
(5.4)

where x,y ∈ {[xmin, ...,xmax;ymin, ...,ymax]}, and n(M) is count of unique cells filled by
any run of the algorithm for both MAP-Elites and MAL_EA.

Precision is similar to reliability but for a single run; it averages only the performance
of cells that were filled for that run, and provides an indication of how high-performing a
solution is relative to what is possible for that cell.

The precision of a performance map m is given as:

Precision =
1

n(M)∑
x,y

mx,y

Mx,y
(5.5)

for x,y ∈ {[xmin, ...,xmax;ymin, ...,ymax]}| f illedm(x,y) = 1, where f illedm(x,y) = 1 is a
matrix that takes on either value 1 in an (x,y) cell if the algorithm generated a solution in
that cell or 0 otherwise and where n(M) is count of unique cells filled by any run of the
algorithm for both MAP-Elites and MAL_EA.

Note that the standard definition of these metrics assumes a maximisation problem,
therefore, in order to calculate these values, performance is defined as (1-detection_rate),
using the definition of detection_rate given in Section 5.2.3 (i.e. a solution that was not
detected by any of the antivirus engines has a performance of 1).

To ensure a fair comparison, each algorithm is run for exactly the same number of
fitness evaluations (i.e. 120). In the case of MAP-Elites, this includes bootstrapping with
G = 20 iterations (step 4 of the Alg. 4), and then running for 100 more iterations (step 6
on-wards). 10 repeated runs are performed, each returning an archive of solutions.

For the EA comparison experiments, as in [16], a population size of 20 is used. The
EA was run 10 times with each of the three fitness functions defined in [16], the first
optimising directly for evasiveness, the second optimising for behavioural similarity,
and the third for structural similarity. Each run results in a single solution, giving 30
variants in total, which are then combined into a single archive. The feature descriptor b
is calculated for each of these 30 variants as described above, so that the results can be
directly compared with MAP-Elites.
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Fig. 5.1 Performance map of MAL_EA and MAP-Elites for Dougalek family

5.4 Results and Analysis

Here, a qualitative comparison between the MAP-Elites based mutant generator and
MAL_EA, is provided. Then, using the metrics described in Section 5.3, a quantitative
comparison is carried out. Additional analysis is then provided, to gain insights into which
of the anti-virus engines prove weakest in failing to detect the evolved variants.

5.4.1 Qualitative Comparison of MAP-Elites and MAL_EA

Figs. 5.1, 5.2 and 5.3 show the maps obtained from merging the repeated runs of (a) the
EA and (b) MAP-Elites for Dougalek, Droidkungfu and GGtracker families. The x and
y axes are defined by the selected feature descriptors (i.e. the behavioural (BS(x)) and
structural similarity (SS(x)) between the original malware and the mutants respectively).
A value of 0 for each axis indicates 0% similarity, and 1 represents a 100% similarity
between the original malware and the mutants. The color bar represents the detection rates
(DR(x)) of the mutants, with a value of 0 meaning 0% of detectors detected the variants,
and 1 meaning 100% of detectors detected the variants. For both the x and y axes as well
as the detection rates, the lower the values, the better. Hence, the lighter the shade of the
filled cells in the map, the better.

It is obvious from Fig. 5.1 that MAP-Elites generates a larger archive of solutions than
MAL_EA for the Dougalek family. Although the solutions from both algorithms cover
approximately the same range for each feature, the MAL_EA map is sparsely occupied
with the 30 solutions obtained from the multiple runs, filling only 12 cells; this indicates a
lack of diversity with respect to the two features obtained from multiple runs of the EA.
In contrast, MAP-Elites finds 50 solutions that are evenly distributed along the range of
each feature.
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Fig. 5.2 Performance map of MAL_EA and MAP-Elites for Droidkungfu family

Fig. 5.3 Performance map of MAL_EA and MAP-Elites for GGtracker family

Similar observations apply to the Droidkungfu archives shown in Fig. 5.2. Although
the range of the structural similarity feature extends more widely in the MAL_EA archive
than that observed in the MAP-Elites archive, MAP-Elites finds solutions that are dis-
tributed more consistently across the range, as opposed to the more sparse distribution
found by MAL_EA. For this malware, the 30 solutions obtained by MAL_EA occupy
only 14 cells, again in stark contrast to that of MAP-Elites which finds a diverse set of
solutions occupying 44 cells.

For GGtracker shown in Fig. 5.3, MAP-Elites generates a larger archive of solutions
than MAL_EA for this family. The range of both structural and behavioural similarity
features extends more widely with MAP-Elites than MAL_EA. Also, it can be seen that
the 30 solutions obtained by MAL_EA occupy only 14 cells, which is also in stark contrast
to that of MAP-Elites which finds solutions that are diverse and occupy 38 cells.
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Table 5.2 The table shows the median results obtained for the 4 metrics on each dataset.
Values in bold indicate the best performing algorithm where the difference between the
medians is statistically significant (at a level of 0.05).

Performance Coverage Reliability Precision

Dougalek MAP-Elites 0.94 0.5 0.48 0.96
MAL_EA 0.92 0.06 0.06 0.97

Droidkungfu MAP-Elites 0.85 0.49 0.46 0.94
MAL_EA 0.86 0.07 0.07 0.97

GGtracker MAP-Elites 0.86 0.5 0.47 0.93
MAL_EA 0.7 0.08 0.08 0.95

5.4.2 Quantitative Comparison of MAP-Elites and MAL_EA

In Figs. 5.4, 5.5 and 5.6 the performance of both MAP-Elites and MAL_EA in terms of the
global performance, coverage, reliability and precision metrics for Dougalek, Droidkungfu
and GGtracker families, is shown. Mann-Whitney U tests (a test used for the comparison
of the differences between two independent groups when the dependent variable is either
ordinal or continuous, but not normally distributed [112]) with a 95% confidence interval,
are used to determine statistical significance. Table 5.2 provides a summary of the median
results derived for the 4 metrics on each dataset. Values are given in bold where the
p-value indicates significance at a confidence level of 0.05. Where neither values is shown
in bold, the significance test failed to reject the null hypothesis that the distributions are
different.

It can be seen from Table 5.2 that for Dougalek, MAP-Elites does significantly better
than MAL_EA in terms of global performance, reliability and coverage. For precision
however, the significance test fails to reject the null hypothesis that the distributions are
different.

For Droidkungfu, MAP-Elites performs significantly better than MAL_EA for cover-
age and reliability. In terms of global performance, the significance test failed to reject
the null hypothesis that the distributions are different. In terms of the precision metric,
MAL_EA outperforms MAP-Elites with the statistical test showing this difference is
significant (i.e. when MAL_EA is able to fill a cell, it reliably finds a high-performing
solution for the cell).

For GGTracker, MAP-Elites does significantly better than MAL_EA in terms of global
performance, reliability and coverage. For precision however, the significance test fails to
reject the null hypothesis that the distributions are different.

From Table 5.3, it is observable that both MAL_EA and MAP-Elites produce variants
that are more evasive than the original malware for Dougalek, Droidkungfu and GGtracker
families (i.e their detection rates are lower). For Dougalek, both methods produce a variant
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Fig. 5.4 Boxplots of Global Performance, Coverage, Reliability and Precision for
MAL_EA and MAP-Elites for Dougalek family
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Fig. 5.5 Boxplots of Global Performance, Coverage, Reliability and Precision for
MAL_EA and MAP-Elites for Droidkungfu family
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Fig. 5.6 Boxplots of Global Performance, Coverage, Reliability and Precision for
MAL_EA and MAP-Elites for GGtracker family
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Table 5.3 Fitness of the best, median and worst variants produced by MAP-Elites and
MAL_EA, where fitness is defined by the detection-rate, i.e. the percentage of detectors
that recognise the variant as malicious. Hence, 0 represents a failure of all 63 detectors.

Parameter Dougalek Droidkungfu GGtracker

MAP-Elites MAL_EA MAP-Elites MAL_EA MAP-Elites MAL_EA
Best 0.28 0.28 0.18 0.06 0.29 0.27

Median 0.32 0.34 0.2 0.19 0.31 0.38
Worst 0.33 0.46 0.21 0.33 0.32 0.46

Original Malware 0.6 0.35 0.6

that is only detected by 28% of the detectors (compared to the original malware that was
detected by 60% of the detectors). For Droidkungfu, MAL_EA produces a single variant
that is only detected by 6% of the detection engines, outperforming MAP-Elites in which
the single best variant is detected by 18%. In comparison to the original malware, the
two methods do better as the original malware was detected by 35% of the detectors.
For GGtracker, MAL_EA produces a single variant that is only detected by 27% of the
detection engines, outperforming MAP-Elites in which the single best variant is detected
by 29%. Again, both methods outperform the original malware that was detected by
60% of the detectors. Although the median values are similar for both Dougalek and
Droidkungfu families, it can be observed that for GGtracker, the median value for MAP-
Elites is better than MAL_EA. Also, the worst variant produced by MAP-Elites is more
evasive than the worst variant from MAL_EA for Dougalek, Droidkungfu and GGtracker
families.

In summary, MAP-Elites consistently outperforms MAL_EA in terms of the coverage
and reliability metrics, while finding solutions that are better or comparable in terms
of the performance metric. Although for the Droidkungfu and GGtracker families, the
single most evasive variant is found by MAL_EA; recall that the goal of the study is to
produce a set of diverse, hard to detect variants to provide an improved training set for a
machine-learning algorithm. In this respect, a diverse set of evasive variants is significantly
preferable to a small set of highly evasive variants.

5.4.3 Analysis of the Antivirus Engines

In order to gain more insight into which engines are most susceptible to potential mutated
versions of the original malware, the percentage of new variants evolved using MAP-
Elites that a detector fails to recognise, is determined. The only engines considered are
the engines which recognised the original parent malware in this analysis, in order to
understand which engines are vulnerable to potential mutants, and which remain capable
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of detecting the malware. The results are shown for each malware family in Figs. 5.7, 5.8
and 5.9.

Fig. 5.7 Percentage of the mutants evolved from MAP-Elites that a specific detection
engine failed to recognise for Dougalek family

It can be seen from Fig. 5.7, that 9 of the 37 engines that detected the original Dougalek
parent malware also recognise all of the mutants evolved by MAP-Elites. Examples
include Avast Mobile, Avira and Tencent. At the other extreme, 12 engines failed to detect
100% of the newly generated mutants. Examples include GData, Symantec, BitDefender
and McAfeeGW. For the Droidkungfu malware, 4 of the 21 engines that detected the
original malware also detect all of the evolved mutants. Examples again include the
Avast Mobile and Avira engines that also proved robust to the Dougalek mutants. Three
of the 21 engines failed to recognise all of the evolved mutants — AegisLab, DrWeb
and McAfeeGW. It can be noted that the McAfeeGW engine appears very vulnerable to
Dougalek and Droidkungfu families of metamorphic malware. For GGtracker family, 7 of
the 37 engines that detected the original malware also detect all of the evolved mutants.
Examples include the ZoneAlarm and Avira engines. Fourteen of the 37 engines failed to
recognise all of the evolved mutants. Examples include Arcabit, AVware and Ad-Aware.
It is noteworthy that the Avira engine proved 100% of the time robust to all families of
malware mutants.
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Fig. 5.8 Percentage of the mutants evolved from MAP-Elites that a specific detection
engine failed to recognise for Droidkungfu family

Fig. 5.9 Percentage of the mutants evolved from MAP-Elites that a specific detection
engine failed to recognise for GGtracker family
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5.4.4 Running MAP-Elites over longer periods to increase coverage

In this section, the results obtained from running MAP-Elites over longer periods to
increase coverage, are discussed. Unlike the previous sections where MAP-Elites is run
for 120 iterations, and bootstrapping for 20 iterations, here, MAP-Elites is run for 250 and
500 iterations, and bootstrapping for 50 iterations in both instances. Initial results were
carried out for the Dougalek family as seen in Figs. 5.10 and 5.11. From Figs. 5.10 and
5.11, it can be seen that as compared to the performance map obtained when 120 iterations
which fills between 20 and 32 cells is run, a coverage of 29 and 35 when MAP-Elites is
run for 250 and 500 iterations respectively, is observable. However, since the increased
coverage is not significant and given the computational cost of running MAP-Elites over
longer periods, further experimentation for the other families of malware, was not pursued.

Fig. 5.10 Performance map for running MAP-Elites for 250 iterations for Dougalek family
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Fig. 5.11 Performance map for running MAP-Elites for 500 iterations for Dougalek family

5.5 Summary and Conclusion

5.5.1 Summary

The following comments are provided to summarise all the results obtained in this chapter
of the thesis:

• The qualitative analysis of MAP-Elites and MAL_EA shows that for all malware
families studied, MAP-Elites produces a larger archive of solutions that are evenly
distributed along the range of each feature.

• The results from the quantitative analysis of MAP-Elites and MAL_EA shows that
in all cases observed, MAP-Elites does better than MAL_EA for the coverage and
reliability metrics, finds equally good solutions for the performance metrics, and
the solutions derived are diverse while being evasive.
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• The analysis of the antivirus engines for the mutants created using MAP-Elites
revealed that for the three malware classes, the evolved mutants were able to
evade more engines than their parent malware. It was noticed that engines such
as McAfeeGW were more susceptible to the Dougalek and Droidkungfu families,
while engines like Avira, was robust to all families of malware mutants in all of the
analysis.

• It was also observed that running MAP-Elites for longer does not significantly lead
to increased diversity and evasiveness. Hence, further experiments in this direction
were not carried out due to its computational cost.

Answering the Research Questions

From Section 5.1.1, the first research question, “How does diversity of samples produced
by running MAP-Elites algorithm compare to repeated executions of the standard Evolu-
tionary algorithm, MAL_EA, described in [16] (the algorithm described in Section 4.2)?”
was answered by comparing the diversity of samples generated using both MAP-Elites
and MAL_EA with results showing that MAP-Elites produces solutions that are more
diverse as compared to using a standard EA (MAL_EA).

The second research question, “How does the evasiveness of samples produced by
MAP-Elites algorithm compare to repeated executions of a standard Evolutionary al-
gorithm, MAL_EA (described in Section 4.2)?” was also answered by comparing the
evasiveness of samples generated using both MAP-Elites and MAL_EA. The results
show that MAP-Elites produces solutions that are as evasiveness as those produced by
MAL_EA. Furthermore, like MAL_EA, the mutants created by MAP-Elites are also able
to go undetected by more antivirus engines than their parent malware.

5.5.2 Conclusion

In the previous chapters, the ability of metamorphic malware to change its code over time
with this posing significant challenges for detection models that are trained on static sets
of data, has been highlighted. One approach to tackling this is to train models with data
sets that include potential variants of the malware. It is therefore desirable to create new
data sets that a) contain large numbers of new malicious samples and b) that those samples
are as diverse as possible in order to maximise the performance of the model. In order to
challenge the model and drive improvements, it is also desirable to create new samples
that are highly evasive with respect to current detection methods.

It is proposed in this chapter that Quality-Diversity (QD) algorithms that produce
diverse archives of high-performing solutions offer an obvious solution to this problem.
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Although they have proved effective in a range of domains in recent years, it is gathered
that this is their first use in generating a diverse set of adversarial malware samples within
the metamorphic malware detection domain. It is shown that MAP-Elites — an example
of a QD algorithm — is capable of generating high-performing and diverse samples for
three malware families.

When compared to an EA (MAL_EA), it produces larger sets of data with more
diversity (with 50% (Dougalek), 49% (Droidkungfu) and 50% (GGtracker) coverage for
MAP-Elites, as opposed to MAL_EA’s coverage of 0.06% (Dougalek), 0.07% (Droid-
kungfu) and 0.07% (GGtracker)), while still producing comparable performance in terms
of minimising detection rates.

It could be argued that Quality-Diversity algorithms are a ripe avenue for exploration
in this field, particularly if they can be combined in a setting where the variants generated
can be used to augment existing training data, in order to improve the classification and
detection of metamorphic malware. In the next chapter, classification of metamorphic
malware is improved by augmenting training data with a diverse set of evolved mutant
samples. The evolved samples comprise solutions generated using both MAP-Elites
and MAL_EA algorithms. Both feature based and sequential models were used in the
classification of the mutant variants of malware.



Chapter 6

Improving Classification of
Metamorphic Malware by Augmenting
Training Data with a Diverse Set of
Evolved Mutant Samples

Some of the work presented in this chapter of the thesis was published in the proceedings
of the IEEE World Congress on Computational Intelligence (WCCI) 2020 [18]. A copy of
the publication is given in appendix A.A.3.

Detecting metamorphic malware provides a challenge to machine-learning models
as trained models might not generalise to future mutant variants of the malware. These
malware transform their codes between generations and most machine-learning models
are only trained to recognise specific code variants. To address this, the possibility of
improving machine-learning models by augmenting training data-sets with samples of
potential variants, is explored. These variants are generated using two evolutionary
algorithms — MAL_EA and MAP-Elites that evolve a structurally and behaviourally
diverse set of mutants, optimised to avoid detection by a large set of existing detection-
engines. Using features calculated from the behavioural trace of a sample as input, the
ability of five non-sequential machine-learning methods (Logistic Regression, Support
Vector Machine, Naïve Bayes, Decision Trees, and K-Nearest Neighbour) to detect the
new variants, is evaluated. It is also observed that the detection rate is considerably
improved by including the new samples as training data, and that the classifiers still
generalise over a range of malware. This experiment is then repeated using a sequence-
based deep-learning method (LSTM) as the classifier, which is shown to out-perform
the feature-based classifiers in some test scenarios. Tests are made using both sequential
and non-sequential machine-learning methods as this helps to answer one of our research
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questions, “Which machine learning approach benefits most from augmenting with data
from the novel variants?” Finally, an analysis is done to see if classification performance
can be improved using BERT (a model pretrained on large NLP data sets), in a transfer
learning context, and this is shown to improve performance in some test scenarios.

6.1 Introduction

Machine learning (ML) based methods are now common in malware detection [143],
trained using samples of known malware. However, this leaves an attack surface for
adversaries to explore with newly created malware that is dissimilar from the training
data and designed to avoid detection. For metamorphic malware which can continually
change its form, this is even more of an issue. The adversarial learning method [100],
described in Section 2.5.4, presents a solution to this issue, in which a feedback loop is
created in a system that (1) continually searches for malware samples that are misclassified
by the machine-learning model used for detection, and (2) retrains the model based on
these samples. However, [100] only provides a theoretical framework for the analysis of
adversarial examples and their pilot study applied to spam filtering does not ascertain that
their search for malicious samples result in executable and malicious samples.

An augmentation to this method is, therefore, proposed in this chapter, which in-
corporates Evolutionary Algorithms (EAs) to enhance the evolution of a diverse set of
malware-mutants that are optimised with respect to their ability to evade detection by a
large set of detection engines, while retaining their maliciousness. To achieve that, two
EAs, introduced in Sections 4.2 and 5.2.1, are involved in the evolution of these mutants.
The former EA — MAL_EA uses a classical approach to evolve an optimised mutant,
whereas the latter EA uses a Quality-Diversity algorithm — MAP-Elites to return a set of
mutants which are diverse with respect to their behavioural and structural similarity to the
original malware. Then, this chapter investigates whether these mutants can be used to
train better machine learning models capable of detecting other potential unseen mutants.
This includes the use of a pretrained NLP model in a transfer learning setting to show
improved classification of metamorphic malware using the evolved variants as part of the
training data. The pretrained model is particularly useful in situations where there is lack
of sufficient training data, which is why it is suited to our problem instance.

6.1.1 Research Questions

This chapter seeks to answer the following research questions:

• To what extent are models trained only on existing samples of known malware
capable of detecting potential mutants?
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• Can these models be improved by augmenting the training set with evolved samples,
and if so, what is the most appropriate method of combining the evolved samples
with existing samples?

• Do models trained on evolved data representing future mutants retain their ability to
recognise existing known malware?

• Do multi-class models improve the classification of metamorphic malware than
binary models?

• Can a transformer — BERT (that has been trained on large Natural Language
Processing (NLP) datasets), be used in a transfer learning context to improve
classification of metamorphic malware using the evolved samples?

6.1.2 Contribution

The contributions of this chapter can be summarised as follows. Firstly, evidence is
provided to show that models trained only on existing samples of malicious code are
vulnerable, failing to detect mutant samples. Secondly, it is demonstrated that the sam-
ples evolved using Evolutionary Algorithms provide a rich-source of training data that
improves the ability of classifiers to detect new mutants, while retaining their ability to
generalise across existing samples. Thirdly, it is shown that sequential models yield a
better performance in some instances than non-sequential models. The feature vector data
is also made available [19], so the readers can make use of the data. Finally, it is shown
that using a transformer that has been pretrained on large NLP data sets in a transfer
learning setting, leads to improvements in classification performance in some instances.

6.2 Methodology

The research questions outlined in Section 6.1.1 are answered by conducting a study using
two types of ML models, namely, non-sequential and sequential models. Five classical
ML models are compared with Long-Short-Term-Memory (LSTM) [63], a deep-learning
method. The former methods rely on features describing the frequency of system-calls
made by a malware, while the latter uses the ordered sequence of system calls directly
as input. The aforementioned models are employed to understand if the classification
of metamorphic malware by augmenting training data with evolved samples using both
frequency of system calls or time ordered system calls as features, can be improved. Then,
an analysis is made of which method yields the best performance. Then, the classification
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performance is observed with the use of BERT (a pretrained NLP model), in combination
with the evolved samples to see if this results in an improvement.

In this section, the algorithms employed in the generation of the training samples
are also discussed. Then, the data-collection and pre-processing steps taken to obtain
both normal and malware samples are described. Last but not least, the machine-learning
algorithms (sequence and non-sequence based) employed in the detection process and
justification for using these algorithms, are introduced.

6.2.1 Generation of Mutant Variants of Existing Malware

In this research, the ultimate focus is on metamorphic malware. However, since it is not
easy to collect sufficient samples and their mutants, Android malware from well-known
families are used as a proxy to generate mutant samples which represent potential future
variants. This is done in order to prove the concept that augmenting training data, with a
diverse set of evolved mutant samples, improves classification of metamorphic malware is
a viable method.

The mutant samples of malware used as training data and test data in this work were
created using the two evolutionary algorithms (MAL_EA and MAP-Elites) described in
Sections 4.2 and 5.2.1. Recall that the first algorithm — MAL_EA used a steady state
mutation-only EA to generate variants, which were evaluated according to one of three
fitness functions: minimises the behavioural similarity between a variant and the original
malware, minimises the structural similarity between a variant and the original malware,
and minimises the detection rate with respect to 63 detection-engines. Only evolved
samples that are both evasive and malicious are retained. The aforementioned methods
also ensure that all samples are distinct (more details can be found in Chapters 4 and 5 of
the thesis). In order to test that the evolved mutants retain their malicious nature, Droidbox
is used (described in Section 3.4).

The second EA uses a Quality-Diversity algorithm — MAP-Elites — to produce a set
of adversarial samples that are diverse, with respect to their structural and behavioural
similarity to the parent malware, denoted by s and b respectively. For each descriptor
< s,b >, the algorithm optimises the evasiveness of the variant associated with the
descriptor. This method was shown to produce a larger variety of mutants, and to maximise
the evasiveness.

Evolved mutants produced using both algorithms are used because, though MAP-Elites
produces a more diverse and larger archive of solutions, MAL_EA produces the most
evasive variants in a single run.
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Table 6.1 Data-sets utilised

Samples Data Source Total number
of Samples

Description

Benign Sam-
ples (B)

Google Playstore 50 Composed of games, beauty,
communication and entertain-
ment applications

Malicious Sam-
ples from web
(Mw)

Contagio
Minidump

50 Composed of Dougalek family,
Droidkungfu and other families
of malware

Evolved mal-
ware (EM)

Variants of mal-
ware samples
from Contagio
Minidump and
Malgenome
dump

50 Samples generated using MAP-
Elites and MAL_EA (This set
of samples contains three fam-
ilies; 21 from Dougalek, 15
from GGtracker and 14 from
Droidkungfu)

Evolved mal-
ware - unseen
set for testing
(EMu)

Variants of mal-
ware samples
from Contagio
Minidump and
Malgenome
dump

30 Samples generated using MAP-
Elites and MAL_EA (This set
of samples contains two fami-
lies; 21 from Dougalek, and 9
from Droidkungfu)

6.2.2 Data Collection

The Android samples used are archived as APK files (the structure of an Android sample
is described in Section 3.3 of the thesis). Benign and malicious data are collected from
various sources as shown in Table 6.1. The malicious samples comprise (1) malware
mutants generated by both EAs described in Section 6.2.1 and are mutant variants of
(a) malware samples from Contagio Minidump and Malgenome, (b) malware samples
of Dougalek, GGtracker and Droidkungfu families, (2) Additional malicious samples
Mw collected from the web which are also from the Contagio Minidump and consist
of families such as Dougalek, Droidkungfu, among other malicious software, and (3)
malware samples from the evolved mutants EM generated by the methods previously
described in Section 6.2.1, containing mutants generated from 3 malware families.

The malicious samples are selected from the dump on the basis of their malicious
payload [157]. They fall into one of the four categories, namely, (a) those that escalate
privilege, (b) those that try to gain remote control of phones, (c) those that result in
financial charges and (d) those that steal personal information of users, as described in
Section 3.7 of the thesis.
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The clean samples B on the other hand, are sourced from Google play store and
downloaded using Apkdownloader. The aforementioned data are all used for training the
machine-learning models.

A final dataset EMu consists of an additional 30 generated mutants and is held out as
an unseen set for testing. This dataset only contains mutants from those malware families
present in the dataset collected from the web.

The following tests were conducted to answer the research questions highlighted in
this chapter of the thesis:

• To answer the first research question, the sequential and non-sequential machine-
learning models were trained on a data-set that comprises the benign samples
(dataset B, Table 6.1) and the malicious samples collected from the web (dataset
Mw, Table 6.1). This was done to determine if models trained on existing malware
are capable of detecting potential mutants.

• In order to determine whether adding evolved mutants to the training set results in
better models, two further experiments were conducted:

1. The training set consists of the benign samples B and 50 evolved mutants EM

2. The training set consists of the benign samples B, 25 evolved mutants randomly
selected from EM and 25 samples randomly selected from Mw (the samples
from the web)

• The experiments described above were repeated using the LSTM. That is, three
methods of training a model are considered. (1) using equal amounts of benign data
and malware collected from the web (B and Mw), (2) using equal amounts of benign
data and evolved mutants (B and EM), and (3) 50 samples of benign data, and 25
samples each of malware from the web and evolved mutants (B, Mw and EM). A
comparison is made of the results of the best non sequence based model (Naïve
Bayes) and LSTM on the aforementioned test cases.

• In order to answer the research question that seeks to find if models trained on
evolved data representing future mutants retain their ability to recognise existing
known malware, additional experiments are conducted where the models trained
using evolved samples are tested on a set of unseen malicious samples from Mw (i.e.
the samples collected from the web). The model trained with (B,EM) is tested on
the unseen set Mw. The model trained with (B,EM,Mw) is tested on the 25 samples
from Mw not used in training.

• Furthermore, to answer the research question that seeks to find if multi-class mod-
els improve classification of metamorphic malware than binary models, a further
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training data set is created, named 6020combo, which comprises 60 benign samples
and 60 malicious samples. The 60 benign samples consist of 20 entertainment
applications, 20 security applications and 20 communication application. The 60
malicious samples contain 20 malware from the Dougalek family, 20 malware from
the Droidkungfu family and 20 malware from the GGtracker.

In addition, increasing the malicious samples for training is considered by examining
60 benign samples and 157 malicious samples (including 50 from Dougalek family,
55 from the Droidkungfu family and 52 from the GGtracker family). This increased
data combination will be referred to as 6050combo from here on.

For testing, dataset is used comprising 27 benign samples, 23 malicious samples (10
Dougalek family, 5 Droidkungfu family and 8 GGtracker family) for the 6050combo.
For the 6020combo, a dataset is used that consists of 27 benign samples, 16 mali-
cious samples (10 Dougalek family, 3 Droidkungfu family and 3 GGtracker family).

• Finally, to answer the last research question that seeks to find out if using a pretrained
NLP model (BERT) in a transfer learning context can improve the classification
performance, the aforementioned experiments are repeated using the 6020combo
and 6050combo data sets for the Naïve Bayes, LSTM and BERT models.

6.2.3 Data Processing

Information obtained from the behavioural trace collected from running a sample, is
used as an input to the classifiers. Strace is employed to monitor the behaviour of the
malware. By running the malware’s main activity using MonkeyRunner, user interaction
can be simulated with the malware. Both sequential and non-sequential features are then
generated from this log as follows:

Non-sequential data processing

For the non-sequential data processing, the logs generated from Strace are converted
to a fixed sized vector with each element corresponding to the observed frequency of a
potential system call employed. 251 systems calls are considered. An example of the
vector is given below:

System Call ID 1 2 3 4 .... 251
Frequency 20 74 0 8 .... 150
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Sequential feature generation

The sequential features are also extracted from the Strace log. However, the feature vector
consists of the time-ordered list of system calls extracted from the log. An example of the
vector is given below:

System Call ID 1 2 3 4 .... n
Time-ordered System Call 6 52 7 4 .... 78

6.2.4 Machine Learning

Five non-sequential models are selected to test as predictors, based on their prevalence
in the metamorphic malware detection literature. They are Logistic Regression, Support
Vector Machine, Naïve Bayes, Decision Trees, and K-Nearest Neighbour.

For comparison with the non-sequential models, LSTM is chosen for detection based
on sequences of system calls. Although deep-learning models, such as LSTM network,
have shown their superiority in handling time-ordered information in other problem
domains, they are less explored in malware detection [101], [40], [131].

The algorithms employed as well as the justification for using them is briefly explained
below:

Logistic Regression (LR)

This algorithm is often used for binary data and when the target variable is categorical,
for instance, to predict whether a software code is benign (0) or malicious (1). A logit
transformation is employed to force the Y value to take on varying values between 0 and 1.
The probability P = 1/(1+ e−(c+bX)) is first computed, and then X is linearly associated
to logP/(1−P)

n . The training time complexity of Logistic Regression is O(nd) and the space
complexity is O(d) where n is the number of training examples and d is the number of
dimensions of data.

One major advantage of Logistic Regression and one of the reasons why it was chosen
as one of the considered algorithms, is that it allows the analysis and estimation of different
explanatory variables by extending its basic principles. Hence, given the varying features
of malicious and benign code, LR is a good algorithm for evaluating such features [68].

Support Vector Machine (SVM)

SVM has as its goal, identifying a hyper plane in a feature space of N dimensions that
uniquely classifies data points. The hyper plane discovered is ideally one that maximises
the distance between data points of the classes (i.e. has the maximum margin). This results
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in greater confidence in future classification attempts. SVM requires little computational
power yet produces high accuracies [80]. This algorithm is used because it performs
optimally in cases where there is a distinct margin of separation among classes. Also, it
has been shown to perform well in highly dimensional data particularly when the number
of dimensions exceeds the sample size. It is also memory efficient. The training time
complexity of SVM is O(n2) and its space complexity is O(k), where n is the number of
training examples and k is the number of support vectors [33].

Naïve Bayes (NB)

This is a probability based machine learning model employed in classification tasks. It
follows the Bayesian theorem summarised in (6.1) below:

P(A|B) = P(B|A)P(A)
P(B)

(6.1)

From the theorem, it is noted that provided that B has occurred, the probability of
A occurring can then be computed. This implies that while A is the hypothesis, B is
the evidence. In this work, A and B are the elements (or the occurrence frequency of a
system call) of a feature vector. Naïve Bayes assumes that features are independent and
so, the absence of a feature has no effect on the other [152]. Given n training examples, d
dimensions of data and c classes, the training time complexity for Naïve Bayes is O(ndc)
and its space complexity is O(dc).

It is good to note that provided the assumption of independent predictors is true, this
algorithm outperforms a number of machine-learning models. Also, it is able to learn
from small training samples thus, requiring less training time. It is also easy to implement
[25], [7].

Decision Trees

A Binary Decision Tree results from the split of a node into two child nodes severally,
starting with the root node which comprises the entire learning sample [29]. From Fig. 6.1,
a Decision Tree formed from system calls made by both benign and malicious samples,
can be seen. From the Decision Tree, a system call sequence beginning with system calls
ioctl, epoll_wait and clock_gettime represents a benign sample, and one that begins with
ioctl, ioctl and futex represents a malicious sample. Note that the last node also referred
to as the leaf node represents the answer to the problem which, in this case, is the class.
The training time complexity of a Decision Tree is O(nlog(n)d) where n is the number of
points in the training set and d is the number of dimensions of data. Its space complexity
is O(nodes).
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As compared to other machine-learning models, Decision Trees need reduced data
preparation efforts. There is also no need for data normalization or scaling when using
decision trees. It is a very intuitive model [84].

Fig. 6.1 An example Decision Tree created using system calls made by both benign and
malicious samples

K Nearest Neighbour (KNN)

This algorithm seeks to find K instances in the training data in a feature space of N
dimensions that are closest to the instance to be classified. It assumes that if an instance
is close together in the feature space with the instance to be classified, then it is likely to
be similar and have the same class as the instance to be classified. Given k neighbours,
n training examples and d dimensions of data, the training time complexity for KNN is
O(knd) and its space complexity is O(nd). Although it is one of the simplest ML models
to implement, it is highly sensitive to the occurrence of parameters that are irrelevant
[114]. It was selected as one of the algorithms to be considered because asides from its
simplicity, it is also intuitive. As a non-parametric algorithm, there are no assumptions
to be met. It also does not require a training step and learns from the training data only
at the point of making prediction. Consequently, it is faster than a number of algorithms
that need a training period such as SVM, Logistic Regression, among others. It can also
be used for both classification and regression problems. Furthermore, it easily adapts
to changes in input data in real time scenarios, given that it is an instance based learner
[74][23].
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Recurrent Neural Network (RNN)

This is a type of machine learning algorithm that is built for learning from time series
sequence data. An RNN is a family of deep learning algorithms, which comprise layers
connected in such a way that they go from the output of one layer to the input of the
next layer, and have feedback loops returning to the preceding layer. An RNN learns
from sequences of time series data, particularly, where temporary information is deduced
from the sequences and employed in finding associations that exist between data and the
expected network output [97].

In order to learn from the sequential data obtained from the samples described in
Section 6.2.3 of this chapter, LSTM is used, a neural network specially designed for
learning long-term dependencies from such data. It consists of gates that are able to hold,
recover and forget information over a long time span. Traditional neurons in the hidden
layer are substituted with memory blocks in LSTM, with these blocks accepting inputs
from the network via the input node and outputs from the output gate multiplication as
seen in Fig. 6.2. LSTM has a time and space complexity per weight of O(1) [63].

Fig. 6.2 An example LSTM memory block where the connections with weights pro-
ceeding from the cells to the gates are illustrated using dashes and the black circles are
multiplications [63]
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BERT

BERT [42] is an acronym for Bidirectional Encoder Representations from Transformers.
It was created for the pre-training of deep representations that are bidirectional, from text
that are not labelled by taking into consideration, the contextual information of the text
by working out both the left and right context of the token. Consequently, the pre-trained
BERT models can be easily adjusted and tuned with only an extra output layer to produce
advanced models for a large number of NLP tasks. This model is pre-trained on a massive
unlabelled text corpus which includes the whole of Wikipedia (this has about 2.5 billion
words) and Book Corpus (this comprises about 800 million words). After being tested
on about 11 NLP tasks, it produces novel state-of-the-art results such as improving the
GLUE score by 7.7%, the MultiNLI accuracy by 4.6%, the SQuAD v2.0 Test F1 by 5.1%,
among others

As illustrated in Fig. 6.3, BERT model comprises both pre-training and fine-tuning
steps. The pre-training task occurs with the training of the model on instances that are
unlabelled for various distinct pre-training tasks. The fine-tuning process on the other
hand, begins with the initialization of the model with pre-trained parameters. Then, using
the labelled data derived from the downstream tasks, the parameters are fine-tuned. BERT
uses O(n2) time and space with regard to the length of the sequence.

Fig. 6.3 A BERT model illustrating its pre-training and fine-tuning tasks [42]

6.3 Experiments

All classical non-sequential ML models used the implementation of the ML algorithms
from Scikit-learn libraries for Python, with the Keras library1 implementation of LSTM

1Keras - https://github.com/fchollet/keras
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in python for the sequence based machine learning. 10-fold cross validation was used to
train and validate models. An unseen test-set containing evolved mutant malware was
used in testing.

The LSTM and its hyper-parameters were empirically tuned. As a result of its doc-
umented success in terms of its accuracy and computational power, “Adam” optimiser
[83] was employed. Batch sizes between 10 and 500 were used, and experimented using
either 1 or 2 layers of LSTM. Following this, LSTM was chosen with 2 layers; each layer
has 128 neurons. The binary cross entropy function was used as the loss function for the
binary classification and sparse categorical cross entropy was used as the loss function for
multi-class classification. Moreover, as this problem is a classification problem, a Dense
output layer comprising of one neuron was employed. A sigmoid activation function is
used for the binary classification while a softmax activation function is used for multi-class
classification. A batch size of 50 was made use of so as to space out the updates of weight.
The model was fitted using just three epochs as it speedily over-fitted the problem.

The DecisionTreeClassifier was imported from the tree class of Scikit-learn library.
The linear model class of Scikit-learn was used when implementing the Logistic Re-
gression model. KNN on the other hand, was imported from the neighbors class of
Scikit-learn. The Gaussian Naïve Bayes was used in this work which was imported from
the naïve_bayes class of Scikit-learn. SVM was imported from the svm class of Scikit-
learn. As the performance of the five non-sequence based algorithms was essentially
compared in order to get the best algorithm of the five which was used to compare with
LSTM (sequential algorithm), the default settings of the algorithms was employed.

For the implementation of BERT, ktrain2 - an interface to Keras - is used. In particular,
ktrain’s text module is used. Our dataset is loaded using the texts_from_folder function
in the text module and is preprocessed using the “bert” model. The pretrained BERT
model (based on Google’s multilingual cased pretrained model3) is loaded using the
text_classifier function of the text module and wrapped in ktrain’s learner object. The
multilingual cased pretrained model is employed because it fixes normalisation problems
in several languages and it is the latest model recommended by Google). The model is
then trained using ktrain’s fit_onecycle. As with the LSTM model, a batch size of 50 was
made use of so as to space out the updates of weight. The model was fitted using just three
epochs as it speedily over-fitted the problem.

The experiments then were conducted and results are analysed in the subsections
below to answer the research questions.

2ktrain - https://github.com/amaiya/ktrain
3Google’s Multi-lingual Bert Model - https://github.com/google-

research/bert/blob/master/multilingual.md
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Table 6.2 10-fold cross validation with model that uses samples of B and Mw as training
data

Model 10-fold Mean Accuracy (std) Validation Accuracy

LR 0.889881 (0.115217) 0.9
KNN 0.910317 (0.103585) 0.95

CART 0.912103 (0.080542) 1
NB 0.937103 (0.084450) 0.95

SVM 0.899603 (0.093919) 1

6.3.1 Detection of Potential Mutants using Models trained with Known
Malware Samples

Recall from Section 6.2, that in answering the first research question, the models are
trained using datasets B and Mw, Table 6.1. Table 6.2 shows the results from the cross-
validation experiment, indicating that the trained models perform well on this data-set
which only contains samples of known malware from the web. The least accuracy observed
being 0.89 (≈ 89%) as seen with the Logistic Regression (LR) model.

However, when the best trained model (Naïve Bayes) is tested on the unseen set of
evolved mutants EMu (top line of Table 6.5), the model performs very poorly with an
accuracy of 0.4. This shows that the models trained on existing malware samples are not
capable of detecting potential mutants which answers the first research question.

6.3.2 Improving Detection using Augmented Training Data with Evolved
Mutants

In this section, an attempt is made to answer the second research question, “Can ML
models be improved by augmenting the training set with evolved samples, and if so, what
is the most appropriate method of combining the evolved samples with existing samples?”
The results are shown in Tables 6.3 and 6.4 respectively. It is noted that both approaches
achieved good accuracy on the validation sets , with the least performing algorithm for
both approaches producing an accuracy of 0.87 (≈ 87%) for the cross validation results.
It is noticed as before, the Naïve Bayes method performing well. It can also be observed
from Tables 6.2, 6.3 and 6.4 that from the cross validation results, the LR algorithm
produces its best accuracy of 0.914881 (≈ 92%) in the experiment that uses samples of B,
Mw and EM datasets, the KNN algorithm produces its best accuracy of 0.910317 (≈ 91%)
in the experiment that uses samples of B and Mw datasets, CART’s best performance of
0.922817 (≈ 92%) can be observed when samples of B and EM datasets are used. SVM
produces its best accuracy of 0.905556 (≈ 91%) in the experiment that uses samples of B,
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Table 6.3 10-fold cross validation with model that uses samples of B and EM as training
data

Model 10-fold Mean Accuracy (std) Validation Accuracy

LR 0.903770 (0.102321) 0.9
KNN 0.871032 (0.124375) 0.85

CART 0.922817 (0.084685) 0.95
NB 0.949603 (0.062133) 0.95

SVM 0.899206 (0.071488) 075

Table 6.4 10-fold cross validation with model that uses samples of B, Mw and EM as
training data

Model 10-fold Mean Accuracy (std) Validation Accuracy

LR 0.914881 (0.093706) 0.9
KNN 0.897817 (0.099469) 0.9

CART 0.913492 (0.097603) 0.9
NB 0.949603 (0.062133) 0.95

SVM 0.905556 (0.101645) 0.95

Mw and EM datasets. The best performing algorithm — Naïve Bayes produces the best
accuracy across all experiments and has as its best accuracy a value of 0.949603 (≈ 95%)
obtained in the experiments that use samples of B and EM datasets and samples of B, Mw

and EM datasets. It can be observed for the Naïve Bayes method, that its accuracy is
improved when it is trained using evolved mutants. It is important to note that in Tables
6.2, 6.3 and 6.4, the training and validation data resulted from a repeated split of the
dataset in a process known as cross validation. This was used to calculate the 10 fold
mean accuracy. An independent and unseen test data was created and used to compute the
validation accuracy.

The trained models (trained using (1) 50 samples of B and 50 of EM (2) 50 samples
of B, 25 of EM and 25 of Mw), as explained in Section 6.2.2) were then tested on the
unseen set of evolved mutants EMu, with results shown in the second two lines of Table
6.5, obtained using the Naïve Bayes model. Compared to the results from the same model
trained with the malicious samples from the web, a clear difference is observed, with both
of the trained models resulting in accuracy of over 80%. This clearly indicates that the
evolved mutants provide useful additional data by which to train a model to recognise
future variants of metamorphic malware.
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Table 6.5 Comparison of accuracy obtained on the unseen test set EMu using a Naïve
Bayes model trained on 3 different training sets

Training Data EMu (Accuracy)

B and Mw 0.4
B and EM 0.84

B, Mw and EM 0.82

Table 6.6 Comparison of accuracy obtained on the unseen test set EMu using an LSTM
model trained on 3 different training sets

Training Data EMu (Accuracy)

B and Mw 0.53
B and EM 0.9

B, Mw and EM 0.62

6.3.3 Sequential Model(LSTM) versus Best Classical Model (Naïve
Bayes) in Detection of Potential Mutants

Here, more experiments are conducted to answer the second research question. Particularly,
the research question, “Is a sequential model (LSTM) better in terms of accuracy than the
best classical model (Naïve Bayes) in detecting potential mutants?” is answered. From
Tables 6.5 and 6.6, it can be seen that as in the classical models, the model trained using
only malware collected from the web, performs poorly on the mutant samples, although
the LSTM has slightly higher accuracy than Naïve Bayes with an accuracy of 53% as
opposed to an accuracy of 40% for Naïve Bayes. The LSTM outperforms Naïve Bayes for
the model trained purely on benign and evolved samples ((B and EM), with accuracy of
90%). On the other hand, the model trained with equal proportions of malicious samples
from the web and the evolved mutants performs less well than the Naïve Bayes model,
obtaining accuracy of 62% compared to 82%.

In answering this research question, it is made plain that the sequential model (LSTM)
performs better than the best classical model (Naïve Bayes) in two out of the three test
scenarios (using training data comprising (B and Mw) and (B and EM)). However, the
Naïve Bayes outperforms LSTM when trained with B, Mw and EM.
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Table 6.7 Models that use B and EM as well as B, Mw and EM as training data and Mw as
test data for both Naïve Bayes and LSTM

Training Data Naïve Bayes Accuracy (Mw) LSTM Accuracy (Mw)

B and EM 1 0.73
B, Mw and EM 1 0.91

6.3.4 Training Models with Predicted Future Mutants and Evaluat-
ing whether they retain their ability to recognise Existing Mal-
ware

The previous results show that models trained using evolved mutants are capable of
recognising other evolved mutants. However, it is important to evaluate whether these
models are fitted to the evolved mutants and therefore, fail to recognise existing malware.
This will provide answers to the third research question, “Do models trained on evolved
data representing future mutants retain their ability to recognise existing known malware?”
Recall from Section 6.2.2, that in answering this research question, training takes place
using samples of (B,EM) and (B,EM,Mw) and are tested on unseen malicious samples
from the web, Mw. The training and validation data follow a data split of 80:20 ratio
(following a Pareto split [96]) and an independent test set is used to compute the accuracy
of the models as previously mentioned.

As can be seen from Table 6.7, it is clear that models trained with potential mutants
are also able to detect other malicious samples (unseen malicious samples from the web
taken from dataset Mw, Table 6.1). An accuracy of 100% is obtained for both Naïve Bayes
models, with 73% and 91% respectively for the LSTM model that use (B, EM) and (B,
Mw, EM) as training data. It is therefore conclusive that the models are not over-fitting to
the new mutants, and losing their ability to generalise.

An analysis is also done that investigates when the sequential (LSTM) and non-
sequential (Naïve Bayes) methods agree on which instances are misclassified. For each
method, a comparison is made of overlap between the set of mis-classified instances
produced by each method in order to understand whether both methods fail on the same
instances or not (where overlap refers to the number of instances that are mis-classified by
both methods). The exact instances that are mis-classified are given in [19].

From Table 6.8, it can be seen that using the Mw set during training results in a large
number of mis-classified instances by both methods, and the overlap is high (10 instances,
representing approximately 56% and 71% of mis-classified instances for Naïve Bayes
and LSTM respectively). All the overlapping mis-classified instances come from the
Dougalek family. For the EM training set, the overlap is high, in that it represents 40%
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Table 6.8 Mis-classified instances on the unseen test set EMu using both Naïve Bayes
(NB) and LSTM models trained on 3 different training sets. The final column notes which
families the overlapping instances (samples that are mis-classified by both methods) came
from. The feature vector data is available in [19]

Training Data Detection
Accuracy of
NB

Detection
Accuracy of
LSTM

# Mis-classified Overlap Instances

NB LSTM

B and Mw 0.4 0.53 18 14 10 Dougalek(10)

B and EM 0.84 0.9 5 3 2 Dougalek(1),
Droid-
kungfu(1)

B, Mw and EM 0.82 0.62 6 11 2 Dougalek(1),
Droid-
kungfu(1)

of the instances mis-classified by Naïve Bayes and 66% of those mis-classified by the
LSTM. Of the 2 overlapping instances, one is from the Dougalek family and the other
from Droidkungfu. Finally, for the training set that includes Mw,EM, although the overlap
is also 2 instances, this represents a smaller proportion of the instances mis-classified by
each method (approximately 33% and 18% respectively). Again, the overlapping instances
are from the Dougalek and Droidkungfu families.

It can be noted that the aforementioned overlap shows that using both features describ-
ing the frequency of system-calls made by a sample, and using the ordered sequence of
system calls directly, the ML models (Naïve Bayes and LSTM) seem to agree often on
the mis-classified instances when the Mw and EM data sets are used for training. This
does not hold true for the training set that includes Mw, EM, as a much lower overlap is
observed between the ML models.

6.3.5 Multi-class versus Binary-class models in Metamorphic Mal-
ware Detection

The experiments previously conducted were done using binary classifiers. This means
that there were only two classes considered in the dataset, benign or malicious instances.
It is noticed from the last line of Table 6.6, that when benign samples are combined with
the malware from the web and the evolved mutants, there is a significant drop in the
accuracy of the classifier. This might be as a result of the amount of noise in the data,
given that different sources of data are considered. Hence, experiments are conducted to
see if this can be improved upon by using multi-class classification which comprises data
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Fig. 6.4 Confusion matrices for the 6020combo for both Naïve Bayes and LSTM models
for both binary and multiclass classification

with multiple classes. In answering this research question, the 6020combo and 6050combo
data sets described in Section 6.2.2, are used.

The results are given in Tables 6.9 and 6.10. It can be seen that for the 6020combo and
for the Naïve Bayes model, binary classification outperforms the multi-class classification.
However, for the LSTM model, the multi-class model does better than the binary one. It
can also be seen that the Naïve Bayes model does better than the LSTM model for both
binary and multi-class classification.

From Table 6.10, it can be seen that for the 6050combo and for the Naïve Bayes
model, the binary classification outperforms the multi-class classification. However, for
the LSTM model, again the multi-class model does better than the binary one. It can also
be seen that the Naïve Bayes model does better than the LSTM model for both binary and
multi-class classification. It is noteworthy that the LSTM model’s performance is quite
heavily dependent on the hyper-parameters and this is a common issue with deep learning
models [126]. If the optimal set of hyper-parameters are not found, it impacts more on the
performance of deep learning models like LSTM than for models such as Naïve Bayes
which do not have hyper-parameters and so can be easily optimised.
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Fig. 6.5 Confusion matrices for the 6050combo for both Naïve Bayes and LSTM models
for both binary and multiclass classification
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A look at the confusion matrices of both the 6020combo and 6050combo models
give more insight to the classifiers. It can be seen from Fig. 6.4, the illustration for the
6020combo, that the first set of confusion matrices are for the Naïve Bayes model, for the
binary model it can be seen that it classifies 23 of the benign instances correctly and 4 of
the benign instances incorrectly, However for the malicious instances, it classifies all of the
instances correctly. For the multi-class classification however, 23 of the benign instances
are classified correctly, 1 instance is misclassified as belonging to the Droidkungfu family
while 3 instances are misclassified as belonging to the GGtracker family. It classifies
all the Dougalek family correctly. However, it classifies only one of the Droidkungfu
instances correctly and misclassifies two of the Droidkungfu instance as belonging to the
Dougalek and GGtracker families. Similar observations are seen for the GGtracker family,
it classifies only one of the GGtracker instances correctly and misclassifies two of the
GGtracker instances as belonging to the Dougalek and Droidkungfu families.

For the LSTM model, for the binary classifier, it classifies all the 43 instances as
benign instances (27 instances are classified correctly while 16 malware instances are
misclassified as benign instances). For the multi-class classification, 23 of the benign
instances are classified correctly, 2 instances are misclassified as belonging to the Dougalek
family while 2 instances are misclassified as belonging to the Droidkungfu family. It
classifies 9 of the Dougalek family correctly and misclassifies 1 instance as belonging
to the Droidkungfu family. However, it classifies only one of the Droidkungfu instance
correctly and misclassifies two of the Droidkungfu instance as belonging to the Dougalek
family. For the GGtracker family, it classifies none of the GGtracker instances correctly
and misclassifies 1 of the GGtracker instances as belonging to the benign family, 1 instance
is misclassified as belonging to the Dougalek family while 1 instance is misclassified as
belonging to the Droidkungfu family.

For the 6050combo, it can be observed from Fig. 6.5, that like the confusion matrix for
the 6020combo, the first set of confusion matrices are for the Naïve Bayes model, for the
binary model it can be seen that it classifies 23 of the benign instances correctly and 4 of
the benign instances incorrectly, however for the malicious instances, it classifies all of the
instances correctly. For the multi-class classification however, 23 of the benign instances
are classified correctly, 1 instance is misclassified as belonging to the Droidkungfu family
while 3 instances are misclassified as belonging to the GGtracker family. It classifies all
the Dougalek family correctly. However, it classifies two of the Droidkungfu instances
correctly and misclassifies three of the Droidkungfu instance as belonging to the Dougalek
(2) and GGtracker (1) families. For the GGtracker family, it classifies five of the GGtracker
instances correctly and misclassifies three of the GGtracker instances as belonging to the
Dougalek family.
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For the LSTM model, for the binary classifier, it classifies all the 50 instances as
benign instances (27 instances are classified correctly while 23 malware instances are
misclassified as benign instances). For the multi-class classification, 23 of the benign
instances are classified correctly, 1 instance is misclassified as belonging to the Dougalek
family while 3 instances are misclassified as belonging to the GGtracker family. It
classifies 9 of the Dougalek family correctly and misclassifies only 1 instance as belonging
to the GGtracker family. It classifies two of the Droidkungfu instances correctly and
misclassifies three of the Droidkungfu instances as belonging to the Dougalek (1) and
GGtracker (2) families. For the GGtracker family, it classifies four of the GGtracker
instances correctly and misclassifies 4 of the GGtracker instances as belonging to the
Dougalek family.

It can be observed from Figs. 6.4 and 6.5 that the models are generally good at
classifying the benign samples. Also, for the binary classification, though the Naïve
Bayes model is good at distinguishing between the benign and malicious instances, the
LSTM models struggle to distinguish between the benign and malicious instances (they
misclassify all the malicious instances as being benign for both the 6020 and 6050 data
sets). For the multi-class classification, though the binary classification does better for
the Naïve Bayes model for both the 6020 and 6050 dataset, the multi-class classifiers are
still generally good at classifying the various classes for both data sets. For the LSTM
models on the other hand, the use of multi-class classification improves the classification
accuracy for both the 6020 and 6050 data sets and outperforms the binary classifiers. The
multi-class classifiers are more capable of distinguishing between the various malicious
groups and the benign instances. The misclassified instances for the various malicious
groups by the multi-class classification, emanate from the fact that a number of these
groups have overlapping functions (for instance the Dougalek and GGtracker families
both steal personal information from mobile phone users) as such their system call vectors
are similar making it more difficult for the classifier to distinguish between them.

It can be seen from the parallel coordinates plot (a visualisation tool for highly
dimensional data which shows the relationship between features [75]) in Fig. 6.6, which
is used to explain why the binary classifiers struggle to distinguish between the benign
and malicious instances for both the 6020 and 6050 data sets for the LSTM model (that
is, using the time ordered sequence of system calls), that although it can be seen that the
benign samples are blue and the malicious samples are red for both data sets, there still
seems to be an overlap in the plot between the benign and malicious groups which is
possibly the reason why the LSTM model struggles to distinguish between the benign and
malicious instances. Note that the x-axis of the parallel coordinates plot is the variable
which in this instance is the system call ID. The y-axis of the parallel coordinates plot
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Table 6.9 Comparison of accuracy obtained on the test set for 6020combo using both
Naïve Bayes and LSTM models for both binary and multi-class classification

Models Binary Multiclass

NB 0.91 0.81
LSTM 0.63 0.77

Table 6.10 Comparison of accuracy obtained on the test set for 6050combo using both
Naïve Bayes and LSTM models for both binary and multi-class classification

Models Binary Multiclass

NB 0.92 0.8
LSTM 0.54 0.76

usually represents the coordinate value which in this case is the time ordered sequence of
system calls.

6.3.6 Improving Classification Performance using a Transformer —
BERT (pretrained on large NLP data sets) using the Evolved
Mutants

In this section of the chapter, the research question, “Can a transformer — BERT (that
has been trained on large NLP datasets), be used in a transfer learning context to improve
classification of metamorphic malware using the evolved samples?”, is answered. The
results are given in Tables 6.11 and 6.12. It is observed if the use of a transformer — BERT
can improve the ML model’s classification performance. The performance of the Naïve
Bayes, LSTM and BERT models are compared using the 6020combo and the 6050combo
data sets.

From the results given in Tables 6.11 and 6.12, it is seen that for the 6020combo, BERT
performs the best for the binary classification with an accuracy of 93%, an improvement
to the Naïve Bayes model (91%) and the LSTM model (63%). For the multi-class
classification however, the Naïve Bayes model performs the best with an accuracy of 81%
followed closely by the BERT and LSTM model which have the same accuracy of 77%.

For the 6050combo, the binary classification results show that both BERT model and
the Naïve Bayes model perform really well with the Naïve Bayes model producing an
accuracy of 92% which is higher than the BERT model’s 90% accuracy. The LSTM
model performs the least with a 54% accuracy. The results of the multi-class classification
however, has BERT performing the least with a 50% accuracy as opposed to an 80%
accuracy for the Naïve Bayes model and a 76% accuracy for the LSTM model.
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(a) Parallel Coordinates for the 6020combo for binary classification

(b) Parallel Coordinates for the 6050combo for binary classification

Fig. 6.6 Parallel Coordinates for the 6020combo and 6050combo for binary classification
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Table 6.11 Comparison of accuracy obtained on the test set for 6020combo for the Naïve
Bayes, LSTM and BERT models for both binary and multi-class classification

Models Binary Multiclass

NB 0.91 0.81
LSTM 0.63 0.77
BERT 0.93 0.77

Table 6.12 Comparison of accuracy obtained on the test set for 6050combo for the Naïve
Bayes, LSTM and BERT models for both binary and multi-class classification

Models Binary Multiclass

NB 0.92 0.8
LSTM 0.54 0.76
BERT 0.9 0.5

6.4 Summary and Conclusion

6.4.1 Summary

The following comments are provided to summarise all the results obtained in this chapter
of the thesis:

• It was shown that models trained only on existing samples of malware are vulnerable
to potential mutants.

• The results also provide evidence that show that ML models can be improved by
augmenting training data with evolved mutants.

• It was observed that a sequential model (LSTM) outperforms the best classical
model (Naïve Bayes) in terms of accuracy in some test scenarios.

• The results also show that models trained on evolved data representing future
mutants retain their ability to recognise existing malware and do not over-fit to the
new mutants.

• It was shown that multi-class models do not always improve the classification of
metamorphic malware as compared to binary models.

• It was observed that the use of a pretrained NLP model — BERT in a transfer
learning setting, leads to an improved classification of metamorphic malware in
some test scenarios.
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Answering the Research Questions

In answering the first research question of this chapter, “To what extent are models trained
only on existing samples of known malware capable of detecting potential mutants?”,
experiments were carried out using existing malicious samples from the web. It was shown
that models trained on existing malicious samples are susceptible to potential malware
mutants. This was addressed by augmenting training data with a diverse set of evolved
mutant samples with results showing improved classification performance. This also
answered the second research question, “Can these models be improved by augmenting
the training set with evolved samples, and if so, what is the most appropriate method of
combining the evolved samples with existing samples?”

By carrying out additional experiments where the models trained using evolved sam-
ples were tested on a set of unseen malicious samples from the web, the third research
question, “Do models trained on evolved data representing future mutants retain their
ability to recognise existing known malware?”, was answered. The results showed that
the models do not over-fit to the novel mutants as they were still able to detect existing
malware.

The fourth research question, “Do multi-class models improve the classification of
metamorphic malware than binary models?” was answered by comparing the classification
performance of the multi-class and binary models. It was shown that the binary models
mostly outperform the multi-class models in classifying the evolved mutants. Finally, the
results showed that the use of BERT, an NLP model pretrained on large NLP data sets,
leads to an improved classification of metamorphic malware in some test scenarios. This
answered the last research question, “Can a transformer — BERT (that has been trained on
large Natural Language Processing (NLP) datasets), be used in a transfer learning context
to improve classification of metamorphic malware using the evolved samples?”

6.4.2 Conclusion

In this chapter, an attempt was made to address the problem of metamorphic malware
detection through a method that combines evolutionary computing and machine-learning.
The former evolves a large set of malicious mutant variants of malware; the latter then
uses this data to augment training sets, to develop models that are capable of recognising
both existing malware and its future variants.

It was shown experimentally that machine learning models trained on existing ma-
licious samples are vulnerable to potential mutants, and that training with evolved data
addresses this. In addition to evaluating classical feature-based ML models, an LSTM
using a time-ordered sequence of system calls as input, was applied and it was shown
that this can outperform the classical models in some cases. Also, the results obtained
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display that the models generalise over both existing malware and the evolved variants, and
that binary models mostly outperform the multi-class models in classifying the evolved
mutants. Finally, it was shown that the use of a pretrained NLP model — BERT in a
transfer learning setting results in improved classification performance of the ML model
in some test scenarios.



Chapter 7

Conclusion and Future Work

7.1 Introduction

The work presented in this thesis provides significant contribution within the field of cyber-
security and provides evidence that suggest EAs are effective at searching for malicious
variants of code, outperforming random search. These contributions are summarised in
this chapter. Some of the limitations encountered while carrying out this study are also
highlighted. Finally, prospective areas of future research are suggested.

7.2 Review of Research Questions

In this section, the answers to the research questions presented in Chapter 1 of the thesis
are provided.

RQ 1: To what extent can evasive and diverse variants of malware be generated, using
an EA whose fitness function evolves for specific characteristics of solutions by
running the EA multiple times to get a repertoire of solutions?

It has been established throughout this thesis that metamorphic malware are a
dangerous class of malware that obfuscates their code stochastically. Hence, they
evade detection by a number of machine learning detectors. The major problem
is caused by the inability of these detectors to determine where this malware will
morph to due to insufficient training data. In order to address this problem as well
as answer the first research question, an EA (MAL_EA) guided by three different
fitness measures: the evasiveness of the variants (DR(x)), and their behavioural
(BS(x)) and structural (SS(x)) similarity to the original malware, is employed.
MAL_EA had to be run multiple times to get a repertoire of solutions.
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An analysis of the influence of fitness function on evasiveness of the evolved mutants,
was carried out. It was observed that for each of the fitness measures, the resulting
variants were more evasive than the original malware. This was observed for all
three malware classes (Dougalek, Droidkungfu and GGtracker).

For the Dougalek family for instance, 40.3% of the detection engines failed to detect
the original malware while for the best evolved variants of Dougalek, 72%, 66.7%
and 67.3% of engines failed to detect the new variants created using functions
DR(x), BS(x) and SS(x) respectively. It can also be seen that for the Droidkungfu
family, 65% of the detection engines failed to detect the original malware while
for the best evolved variants, 94%, 82.1% and 83% of engines failed to detect the
new variants created using functions DR(x), BS(x) and SS(x) respectively. For the
GGtracker family, it can be observed that only 38.3% of the detection engines failed
to detect the original malware while for the best evolved variants, 73.3%, 62.1% and
62.1% of engines failed to detect the new variants created using functions DR(x),
BS(x) and SS(x) respectively.

It can also be noted that the fitness function that resulted in the most evasive
variants for the best evolved variants for all malware families considered is the
function DR(x). This is obviously because, this fitness function is optimised to
produce evasive variants. The function SS(x) is the second best at producing evasive
variants for the Dougalek and Droidkungfu families. However for the GGtracker
family, function SS(x) ties with function BS(x) as the second best at producing
evasive variants. The function BS(x) however, is the least of the three functions for
producing evasive variants for all malware families considered.

It is also interesting to note that even when not evolving directly for evasive variants
(i.e. using fitness function DR(x)), evasive variants can still be created using fitness
functions BS(x) and SS(x).

Also, after carrying out an analysis of evasion characteristics for the three fitness
functions for the three classes of malware studied it was discovered that for all
malware families, there were a number of engines which were fooled by the mutants
which were not fooled by the original malware with some engines like AhnLab-v3
which was neither fooled by the mutants nor the original malware for the three
malware families considered. For Dougalek family for instance, for fitness function
DR(x), 14 engines were not fooled by any of the mutants, some of such engines
include AVG and Tencent. 17 engines on the other hand, were fooled by all the
mutants with examples like AVware and McAfee. The number of engines not fooled
by any variant when fitness function BS(x) is used, is 19. Examples include AVG
and Fortinet. 11 engines however, were fooled by all the mutants for function BS(x)
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with examples like GData and McAfee. Also, 16 engines were not fooled by any
variants for the function SS(x). Examples include Symantec Mobile and Fortinet.
17 engines however were fooled 100% of the time for function SS(x) - examples
include McAfee-GW and BitDefender. For Droidkungfu family, 3 engines were not
fooled by any of the mutants for function DR(x). Examples include Avast Mobile
and NANO Antivirus. 12 engines however, were fooled by all the mutants 100%
of the time for function DR(x) - examples include Fortinet and Kaspersky. For
fitness function BS(x), 6 engines were not fooled by any of the mutants, some
of such engines include Avast Mobile and NANO Antivirus. 7 engines on the
other hand, were fooled by all the mutants with examples like Symantec Mobile
and Tencent. Furthermore, 7 engines were not fooled by any mutant for function
SS(x) with examples such as AVG and Cyren. On the other hand, 11 engines were
fooled by all the mutants for function SS(x). Examples include Kaspersky and
ZoneAlarm. Furthermore for the GGtracker family, the number of engines not
fooled by any variant when fitness function DR(x) was used, is 9. Examples include
CAT-QuickHeal and DrWeb. 13 engines however, were fooled by all the mutants
for function DR(x) with examples like Arcabit and BitDefender. Also, 15 engines
were not fooled by any variants for function BS(x). Examples include K7GW
and Kaspersky. 16 engines however were fooled all the time for function BS(x) -
examples include AVware and TrendMicro. In addition, 16 engines were not fooled
by any mutant for function SS(x) with examples such as Avast and AVG. On the
other hand, 18 engines were fooled by all the mutants for function SS(x). Examples
include Cyren and McAfee.

In order to measure the diversity of the variants produced using the three fitness
functions for the three classes of malware, recall that diversity in terms of detection
signature, behavioural signature and structural similarity, was compared. It is evident
that in terms of uniqueness of the detection signatures, the highest percentage of
unique variants were found in the Droidkungfu family when evolving for evasive
(with 90% uniqueness) and behaviourally dissimilar (with 89% uniqueness) variants.
However, when evolving for structurally dissimilar variants, the most unique variants
were found in the Dougalek family (with a 50% uniqueness score). In terms of the
behavioural signature, Dougalek was the most unique family with 100% uniqueness
when evolving for evasive and behaviourally dissimilar variants. GGtracker on the
other hand, was the most unique family in terms of the evolution for structurally
dissimilar variants.

When comparing the diversity obtained in terms of behavioural and detection
signatures of the evolved mutants, it was observed that there was more diversity in
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terms of the behavioural signatures than detection signatures, but that diversity is
apparent with respect to both signatures.

For structural similarity, it can be noted that the fitness function that produced
the most structurally diverse variants was function SS(x) for GGtracker family,
function BS(x) for Droidkungfu family and function SS(x) for Dougalek family. It
is interesting to note that the least structurally diverse variants were produced by
the Dougalek family and the most structurally diverse variants were produced by
the Droidkungfu family.

RQ2: How can a Quality Diversity (QD) algorithm (MAP-Elites) be used to generate
variants of malware which are both diverse, with respect to multiple characteristics
and evasive in a single run?

As mentioned while answering the first research question, MAL_EA used in RQ1,
had to be run multiple times to get a repertoire of solutions. To address the second
research question, an EA - QD algorithm (MAP-Elites) was employed to generate
solutions which were both diverse with respect to multiple characteristics and
evasive in a single run. This was found to be the first use of a QD algorithm in the
cyber security domain. The solutions were diverse with respect to their behavioural
and structural similarity to the original malware.

A qualitative and quantitative comparison of MAL_EA described in RQ1 and MAP-
Elites, was carried out. It was shown experimentally that MAP-Elites produces a
large archive of solutions that are evenly distributed along the range of each feature
(that is, behavioural and structural similarity to the original malware). Also, MAP-
Elites does better than MAL_EA in terms of its coverage of the feature space and
the reliability of the algorithm in terms of its ability to consistently locate solutions
found in the performance map and finds equally good solutions for the performance
metrics, and the solutions derived are diverse while being evasive.

RQ 3: How does augmenting training data with the novel variants influence classic
classification algorithms in Machine Learning? Which Machine Learning approach
benefits most from augmenting with data from the novel variants?

Machine learning models have been shown to perform poorly when classifying
metamorphic malware due to insufficient training data. While answering the first two
research questions two EAs (MAL_EA and MAP-Elites) were used to create mutant
variants of malware that can serve as training data to improve the classification
of metamorphic malware. In answering the third research question, the generated
mutant variants of malware were used to augment existing data-sets so as to see if
this improves the classification of metamorphic malware.
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The experimental results show that models trained only on existing samples of
malware are vulnerable to potential mutants. The results also provide evidence that
show that using our generated mutant variants of malware improves the classification
performance of ML models. It was also discovered that in some instances sequential
model (LSTM) is better in terms of accuracy than the best classical model (Naïve
Bayes) studied. It is also important to note that models trained on evolved data
representing future mutants retained their ability to recognise existing malware
and do not over-fit to the new mutants. Finally, in the problem instance, multi-
class models did not always improve the classification of metamorphic malware as
compared to binary models.

RQ 4: How can one benefit from the use of a transformer — BERT (that has been trained
on large Natural Language Processing (NLP) datasets), in a transfer learning
setting to improve classification of metamorphic malware using the novel variants?

It has been established in the previous chapters of the thesis, that one challenge with
detecting metamorphic malware is the fact that there is insufficient training data and
as such, ML models do not generalise over this class of malware as they can not
predict where these malware will morph to.

To address this, the generation of mutant samples of malware to serve as training
data for ML models was explored in Chapters 4 and 5, which research questions RQ1
and RQ2 sought to answer. The evolved samples were seen to improve classification
of metamorphic malware as demonstrated in Chapter 6, which answered the third
research question (RQ3).

However in answering this research question (RQ4) and to also address the problem
of limited training data for ML models to detect metamorphic malware, the use of
a model — BERT, that requires limited training samples as it has been pretrained
on large NLP data sets, was explored, with this knowledge transferred to observe if
this results in an improved classification of metamorphic malware using the evolved
samples as part of the training data. The results showed that the use of BERT
led to an improved classification of metamorphic malware in some test scenarios
particularly performing well for binary classification.

7.3 Generalisability of the Research Work

The research work provides a framework and methodology for the generation of evasive
and diverse mutants of malware which serve as rich sources of training data for ML
models. Recall from Chapter 3 of thesis that the framework is comprised of five functional
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modules, namely, a data source (i.e., a mobile malware dump), a disassembly tool (i.e.,
apktool), a mutation engine, a data store for APK variants, and a malware detector. The
framework can be generalised and its various components can be adapted for various
applications. The data source for instance comprised of a mobile malware dump i.e.
Android malware source. This could be generalised to other kinds of malware depending
on the platform (such as desktop based malware) or operating system (such as iOS
malware) in which the malware are executed. This also applies to the disassembly tool
i.e. apktool. Apktool was used as the disassembly tool because Android samples i.e. apk
files were used in this research. Other disassembly tools could be used depending on the
platform the malware is run such as the use of Portable Executable (PE) Viewers (such
as CFF Explorer1) or Network Analysers (e.g. Wireshark2) for desktop based malware.
The mutation engine module uses an EA to generate novel malware mutants. This module
treats the disassembled malware as a piece of code and creates/uses mutation operators to
transform the code in order to create mutants. In other words, as far as the disassembled
malware can be represented as a code it can be generalised but the EA operators need to
be tailored/customised depending on the kind of code being studied. The transformation
of the malicious binaries to create diverse mutants was done based on characteristics of
malware such as its structure, behaviour and ability to evade existing detection engines.
Other characteristics of malware could also be used to guide the EA towards finding
malicious and diverse mutants. The malware detector module uses the mutants created by
the mutation engine module to train ML models in order to provide improved protection
against future mutants. This module does not develop new ML models but uses standard
ML models whose complexities are known and referenced in Section 6.2.4 of the thesis.
The detector module uses some feature based and sequence based ML models. Again,
other ML models could be used by the detector module.

It is important to note that due to the complex fitness function used by the EAs to
create the mutant variants of malware, this required a lot of computational time. For a
complete experimental run of 100 iterations (with each iteration potentially producing one
mutant depending on the executability of the mutant created), it took between 150 and 350
minutes depending of the fitness function used. For some other applications requiring the
generation of more data, this will mean more computational time. This could be solved
by parallelisation [79] wherein multiple applications are run on several cores to speed up
computational performance. It is noteworthy that EAs are very amenable to parallelisation
[38]. In addition, cloud computing solutions could be used to scale up and speed up the
computational performance of applications requiring the generation of large dataset.

1CFF Explorer - https://ntcore.com/?pageid = 388
2Wireshark - https://www.wireshark.org/
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7.4 Summary of Contribution and Limitation of Studies

The following are the main contributions of this thesis. In this thesis, two methods of
generating mutant variants of malware that serve as training data to improve detection
by ML models, using EAs, are proposed. In the first, the fitness mechanism is used to
control diversity by evolving for specific characteristics of solutions (that is solutions
that are as behaviourally and structurally dissimilar to the original malware as possible
while being as evasive or more evasive than the original malware) and the first EA needed
to be run multiple times to get a repertoire of solutions. In the second instance, the EA
uses a QD algorithm to generate solutions which are both diverse with respect to multiple
characteristics (structural and behaviour similarity to the original malware) and evasive in
a single run. In both instances, solutions which were evasive and diverse were created.
Previous approaches suffered from lack of diverse training data which ML models could
learn from. The two EAs previously described were tested on three malware families,
namely, Dougalek, Droidkungfu and GGtracker.

The second EA (that is the one that uses a QD algorithm) produces larger sets of data
with more diversity for all three malware families as compared to the first EA while still
producing comparable performance in terms of minimising detection rates. It can be noted
that upon analysing the evasion characteristics for the three classes of malware, it can be
observed that for the first EA for all malware families, there were a number of engines that
were fooled by the mutants that were not fooled by the original malware. However, some
engines like AhnLab-v3 were neither fooled by the mutants nor the original malware for
the three malware families considered. For the second EA however, it can be noticed that
for the three malware classes, the evolved mutants were also able to evade more engines
than their parent malware. It can also be seen that engines such as McAfeeGW were more
susceptible to the Dougalek and Droidkungfu families while engines like Avira was robust
to all families of malware mutants in all of the analysis.

It was also shown that machine learning models trained on existing malicious samples
are vulnerable to potential mutants, and that training with evolved data addresses this.
Furthermore, it was shown that the models generalise over both existing malware and
the evolved variants, and that binary models mostly outperform the multi-class models in
classifying the evolved mutants. It was also noted that by using BERT model (an NLP
language model pretrained on large NLP data sets) in a transfer learning context, the
classification of metamorphic malware was improved in some instances.

In this work, the major drawback encountered was the computational time used in
generating the mutant samples given the complex fitness function used. This was partly
solved by using the BERT model (a model that is suited for problem instances with small
or limited data-set) which meant that a smaller data-set could be used without having to
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generate large dataset which would have been computationally demanding. A GPU or
TPU could have been used to run our experiments to speed up this process, however this
was not used because for most of the experiment the focus was on the solution quality and
not computational cost.

7.5 Possible Future Work

There is still scope for improving the EAs used in this research work, for example, in
developing further mutation operators or methods of crossover that will result in runnable
APKs; further tuning of the algorithm parameters is also likely to yield improvements.

In this thesis, it was shown, using two types of EAs, how mutant variants of malware
could be created. This will potentially yield more interesting results, particularly if they
can be combined in a setting typical in Generative Adversarial Networks (GAN [62]) in
which improvements in the generated samples drive improvements in the detection method
and vice versa. This may further improve the classification performance of metamorphic
malware.

Also, MAP-Elites algorithm, a QD algorithm, was used in this work to generate
an archive of diverse and evasive mutant variants of malware. There remains room for
exploring other QD algorithms such as Novelty Search with Local Competition (NSLC)
as well as multi-objective MAP-Elites to see if they outperform the standard MAP-Elites
algorithm.

7.6 General Conclusions

The areas presented in this thesis span across several areas in the application of EC in
Metamorphic malware analysis and detection. The results presented with the use of EC
methods in metamorphic malware analysis show the promise EC has in this field and the
cybersecurity domain. Although the contributions of the research are more beneficial
to the cybersecurity community given that the work uses “standard” EA methods to
create a rich source of training data which was shown to improve the classification of
metamorphic malware, nevertheless, it is also beneficial to the EC community in that it
provides evidence that the operators in EC are useful in cybersecurity applications.

This work presents the first ever use of a QD algorithm in metamorphic malware
analysis and detection as well as in the cyber security domain at large. It shows that EAs
can be used in generating diverse yet evasive solutions to serve as training data to improve
metamorphic malware analysis and detection.
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Also, it was shown that current ML models are not capable of detecting novel malware
mutants, and training these models with mutant variants of malware addresses this. It was
recognised that there is still room for future work such as in the use of the two methods
of generating mutant samples in combination with a Generative Adversarial Networks
(GAN), and the exploration of other QD algorithms, genetic operators, among others.
However, it is believed that creating novel mutant samples of malware and using them as
training data both in typical ML models or in a transfer learning context, presents steps in
the right direction towards addressing challenges currently faced in metamorphic malware
analysis and detection.
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