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With the advancement of social media networks, there are lots of unlabeled reviews
available online, therefore it is necessarily to develop automatic tools to classify these types
of reviews. To utilize these reviews for user perception, there is a need for automated tools
that can process online user data. In this paper, a sentiment analysis framework has been
proposed to identify people’s perception towards mobile networks. The proposed
framework consists of three basic steps: preprocessing, feature selection, and
applying different machine learning algorithms. The performance of the framework has
taken into account different feature combinations. The simulation results show that the
best performance is by integrating unigram, bigram, and trigram features.
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1 INTRODUCTION

The fifth generation (5G)mobile network is the newest global wireless standard after 1G, 2G, 3G, and 4G.
The 5G network is a new type of network which is designed and developed to connect virtually everyone
and everything together and consists of different machines, objectives, and devices. In addition, 5G is
required to be more efficient and economical in terms of key performance indicators (KPIs). KPIs are of
interest to stakeholders and different applications. These KPIs from an operator perspective, consist of
capacity, reliability, and quality of service. From the user perspective, the KPIs include uninterrupted
connection, infinite capacity, and zero latency. However, no technology can offer infinite capacity or zero
latency. In the past few years, there has been lots of research carried out on the next generation mobile
network, which consists of different opportunities and challenges. The challenges of 5G have been
discussed in different literature. The most significant of these are ultra-dense networks and millimeter
waves, however, there are other technologies which are significant for the next generation network such as
two-layer architecture and cognitive radio-based architectures which have great performance. In the 5G
network, network data analytic and machine learning systems can perform a key role. The technique to
understand people’s behavior towards the 5G network is vital and it helps to improve the performance of
network communication OPINCARIU et al. (2019), Sharma et al. (2020).

With the advent of social media and e-commerce, websites allow users to share opinions and
feedback about different products and services. Customers can make important decisions by reading
other people’s experiences. In addition, customer feedback can be classified in order to make
improvements on the service or product. For example, if a person wants to buy a mobile phone and
the reviews provide negative information related to the battery, operation speed, or camera, this can
influence the consumer’s decision. In addition, this can assist in providing better mobile quality by
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taking into account the complaints made by past customers and
making informed improvements to products. As another
example, if someone wants to book a hotel, the buyer can look
over the online reviews to understand previous customer
experiences such as cleanliness and services for the hotel.
However, there are billions of bytes of data generated per day
consisting of user feedback which cannot be manually labeled and
analyzed for individual organizations and companies Yadav and
Vishwakarma (2020). Sentiment analysis is the process of
automatically understanding and classifying the data into
positive and negative information from the source material
such as reviews and comments. The main task of sentiment
analysis is to assign polarity into sentences (positive or negative).
However, the online review is a mixture of positive and negative
comments about different aspects of the products or services
instead of expressing positive or negative opinions. For example,
“the 5G mobile network is extremely fast, however I do not feel
secure while I am using it.” The sentence expresses positive
sentiment towards the speed of the network and negative
sentiment towards the security of the network Kumar and
Jaiswal (2020), Dashtipour et al. (2020).

Most of the current sentiment analysis approaches focus on
analyzing products andmovie reviews, and there is less work been
carried out in different fields such as people’s perception towards
5G. However, most of the current approaches consider a small
corpus, which makes the task difficult for machine learning
approaches to identify the overall polarity of a sentence.
Furthermore, current review sentences consist of lots of
sarcastic and ironic words which make it difficult to determine
the overall polarity for these types of sentences. For example, “tell
me something I don’t know.”Most of the current approaches for
sentiment analysis fail to understand that real noisy text consists
of sarcasm, idioms, informal words, and sentences with spelling
mistakes. In addition, there is scarce availability of tools and
resources. Lexicon and labeled corpus are some of the tools which
are available for sentiment analysis. This limited range of
available tools is the main bottleneck in the design of
sentiment analysis approaches Kaity and Balakrishnan (2019).
One of the main issues for sentiment analysis approaches is the
lack of a labeled dataset. However, it is worth mentioning that,
there are lots of unlabeled datasets available online, but it is time
consuming for users to manually label these datasets.

In order to address the aforementioned issues and limitations,
a framework that exploits n-gram features has been proposed to
identify the polarity of sentences. This proposed approach
demonstrated the overall performance and effectiveness of
polarity detection in real noisy data. The n-gram features are
based on the linguistic text rules that allow researchers to extract
text features from sentences. As a result, the n-gram features take
into account the relation between keywords and the word order
and individual word polarity to determine the underlying polarity
of the sentence. We perform an extensive and comprehensive set
of experiments using novel corpus and compare the performance
of the approach with different selected features. The support
vector machine (SVM), logistic regression, naive Bayes, and
multilayer perceptron (MLP) algorithms were used to evaluate
the performance of the approach. The comparative simulation

results show that the proposed approach achieved better
performance as compared to the state-of-the-art approach.

The rest of the paper is organized as follows: In Related Work,
related work is presented, Methodology presents the proposed
framework, Experimental Results presents the experimental
results, Discussion presents the discussion, and finally
Conclusion concludes the work and presents the future work.

2 RELATED WORK

Extensive research in the current literature shows that machine
learning has been used in different fields such as sentiment
analysis Dashtipour et al. (2016a), Dashtipour et al. (2016b),
Dashtipour et al. (2017a), Dashtipour et al. (2017b), Gogate et al.
(2017b), Dashtipour et al. (2017c), Shiva et al. (2017), Gogate
et al. (2017a), Gogate et al. (2018), Dashtipour et al. (2018),
Dashtipour et al. (2019), cyber-security Adeel et al. (2019a); Jiang
et al. (2019), Gogate et al. (2019b), Gogate et al. (2019a), Adeel
et al. (2019b), Ozturk et al. (2019), Jiang et al. (2020), Dashtipour
et al. (2020); speech enhancement Gogate et al. (2020a), Gogate
et al. (2020b), Liaqat et al. (2020), Taylor et al. (2020), Liaqat et al.
(2020), Adeel et al. (2020), Guellil et al. (2021), Hussain et al.
(2021), Dashtipour et al. (2021), hand-written recognition
Ahmed et al. (2021), and posture detection; Liaqat et al.
(2021), etc., However, research has not been carried out to
detect sentiment polarity for tweets related to 5G.

In the literature, extensive research has been undertaken to
implement different sentiment analysis approaches.
Microblogging websites are the biggest platform that allows
users to share their thoughts and opinions in the public
domain. Twitter is the most well-known microblogging
website that allows people to express their feelings and
emotions in the form of “tweets” with a character range of
280. There are over 250 million tweets expressing the feelings
and emotions of people with different opinions and situations
Duong et al. (2019), Mamgain et al. (2016).

Twitter users vary from politicians to everyday people that
provide different types of reviews from different points of views.
This is the main reason a dataset collected from Twitter is used in
this paper. There is lots of research carried out in this domain to
determine people’s perception towards different products such as
Sony mobiles. For example, Sharma et al. (2016) attempted to find
the most well-known smartphones in India, tweets were collected
and then machine learning was applied to determine a brand
reputation score. This was done to help customers find the most
branded smartphones in India. Somula et al. (2020) proposed an
approach to perform a sentiment analysis to determine the winner
of the US election in 2016, the tweets were collected if they
mentioned Donald Trump and Hillary Clinton, the analysis of
the tweets revealed that Donald Trump received more positive
scores as compared toHillary Clinton.Mehta et al. (2020) proposed
a sentiment analysis approach to identify the best Indian airlines
through Twitter, the analysis of results revealed that the customers
were happier with Air India services compared to SpiceJet.

Kumari and Haider (2020) proposed an approach using the
Twitter API to collect corpus. After pre-processing and use of
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natural language processing, the hybrid classifier utilized
machine learning and long short-term memory to improve
the performance of the approach. The experimental results
revealed that the proposed model achieved better
performance as compared with state-of-the-art approaches.
Usama et al. (2019) introduced a novel model multilevel
feature extraction and feature combination by using a
convolutional neural network (CNN) and recurrent neural
network (RNN) to identify the sentiment in movie reviews.
The CNN and RNN received sentiment text as input and learnt
different features to network architecture. The word embedding
fed into the CNN and learnt multilevel contextual features from
every layer of the CNN and performed multilevel features
fusion. Finally, the multilevel and multitype features were
combined and a softmax classifier was used to identify the
final polarity of the sentences. Most of the aforementioned
studies implement a lexicon to determine the polarity of the
text. However, the use of a lexicon fails to identify the polarity of
word order in the sentence. In addition, most of the current
studies use rules to detect negation in a sentence which cannot
be directly applied to the English language. However, we need a
framework to identify the polarity of the sentence without
developing a lexicon which is time consuming. Therefore, we
implemented a framework for Twitter sentiment analysis that
integrates feature engineering and machine learning to improve
the performance and robustness of polarity detection in real
noisy data.

3 METHODOLOGY

Figure 1This section describes our proposed novel context-aware
framework for 5G sentiment analysis. The proposed framework
more accurately exploits the polarity of sentences when compared
to traditional word occurrence frequency-based approaches.

Data Collection: In order to collect data, we use the Twitter API
to collect data related to 5G in the United Kingdom. The data were
collected from January 2018 until August 2020. Table 1 shows the
related keywords for the fifth generation of cellular networks (5G).

FIGURE 1 | Proposed framework for sentiment analysis for people’s perception of the fifth generation of cellular networks (5G).

TABLE 1 | Next generation mobile network (5G).

Keywords

5G
Next generation mobile network
Fifth generation of technology
5G devices

TABLE 2 | Parameters of ML algorithms.

Algorithm Parameter Time

SVM RBF kernel 4 min and 21 s
Naive Bayes Sample weight � none 2 min and 12 s
MLP Activation � relu 3 min and 31 s
Logistic regression Penalty � l2 3 min and 42 s

TABLE 3 | Results of N-gram features.

Feature Classifier Accuracy Precision Recall F-score

Uni MLP 85.92 0.86 0.86 0.86
Uni LR 86.14 0.86 0.86 0.86
Uni Linear SVM 84.79 0.84 0.84 0.84
Uni RBF SVM 62.61 0.72 0.63 0.54
Uni NB 86.48 0.87 0.86 0.87
Bi MLP 79.16 0.80 0.79 0.78
Bi LR 78.37 0.79 0.78 0.78
Bi Linear SVM 73.98 0.78 0.74 0.72
Bi RBF SVM 62.61 0.72 0.63 0.54
Bi NB 78.82 0.80 0.79 0.78
Tri MLP 73.42 0.77 0.73 0.71
Tri LR 72.52 0.77 0.73 0.70
Tri Linear SVM 69.48 0.77 0.69 0.65
Tri RBF SVM 62.61 0.72 0.63 0.54
Tri NB 71.39 0.77 0.71 0.68

TABLE 4 | Comparison of combination of N-gram features.

Feature Classifier Accuracy Precision Recall F-score

Uni + Bi MLP 86.71 0.87 0.87 0.87
Uni + Bi LR 86.14 0.86 0.86 0.86
Uni + Bi Linear SVM 85.92 0.86 0.86 0.86
Uni + Bi RBF SVM 62.61 0.72 0.63 0.54
Uni + Bi NB 85.81 0.86 0.86 0.86
Uni + Tri MLP 85.13 0.85 0.85 0.85
Uni + Tri LR 86.59 0.87 0.87 0.87
Uni + Tri Linear SVM 86.48 0.87 0.86 0.87
Uni + Tri RBF SVM 62.61 0.72 0.63 0.54
Uni + Tri NB 85.47 0.85 0.85 0.85
Bi + Tri MLP 76.91 0.79 0.77 0.76
Bi + Tri LR 77.02 0.79 0.77 0.76
Bi + Tri Linear SVM 77.02 0.80 0.77 0.76
Bi + Tri RBF SVM 62.01 0.60 0.59 0.6
Bi + Tri NB 71.28 0.70 0.69 0.70
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Pre-processing: The tweets corpus is collected using the
Twitter API and labeled as positive and negative using
SentiWordNet. The corpus is divided into a training set (60%),
test set (30%), and validation set (10%) to apply machine learning
algorithms including SVM, naive Bayes, and MLP. The corpus is
tokenized and normalized. The tokenization technique is used to
break sentences into words. For example, “I really like mobile”
will be converted into words such as “I,” “really,” “like,” and
“mobile.” Afterwards, the normalization technique is used to
normalize the tweets. For example, “The speed for 5G mobile is
gr8” will be converted into “The speed for 5G mobile is great.”

N-gram: N-gram features are widely used in the different
approaches of sentiment analysis. When one term is taken the
feature is called unigram, for two terms it is called bigram, and

three terms are called trigram. In our proposed approach we use
unigram, bigram, trigram, and a combination of n-gram features.

SentiWordNet: We use SentiWordNet, which is a widely
available online lexicon, to assign sentiment polarity (−1, 0, 1)
to sentences.

Machine learning classifiers: In order to evaluate the
performance of the approach, the machine learning classifier is
used to evaluate the performance of the approach. The scikit-
learn python package is used to develop the multilayer perceptron
(MLP), logistic regression, linear SVM, RBF SVM algorithms, and
naive Bayes is used to train the model. The MLP consists of one
hidden layer which can be applied to supervised problems, the
MLP is a set of inputs and outputs and it learns to model the
correlation between input and output. However, the main issue

FIGURE 2 | Positive trends towards the fifth generation of cellular networks (5G).
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with MLP is that it consists of many parameters which are fully
connected and each node is connected to another node which can
result in redundancy and inefficiency. The main advantage of
naïve Bayes is that it performs quickly and save lots of time;
however, the prediction can be wrong. In addition, the main
advantage of logistic regression is how easy it is to implement and
train; however, the number of observations is less than number of
features. Finally, the main advantages of SVM is that it works
work well with unstructured data such as text, as the tweets are
unstructured, therefore, the SVM performs well with tweets data.

However, the main issue with SVM is that choosing the correct
kernel is not easy.

4 EXPERIMENTAL RESULTS

In order to calculate the sentiment polarity of the sentence,
SentiWordNet has been used to calculate the overall polarity
of the tweets. The tweets are extracted using different keywords
such as “5G,” “next generation mobile network,” “fifth generation

FIGURE 3 | Negative trends towards the fifth generation of cellular networks (5G).
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of technology,” and “5G devices.” The tweets are collected. After
tweet collection, the punctation and stop words are removed and
sentence are normalized, and then they are converted into bag of
words (BOWs) and finally machine learning classifiers are
trained. In the pre-processing stage, the sentences are
normalized, for example, the word “fishing” is converted
into “fish.”

In order to evaluate the performance of the proposed
approach, the tweets are converted into BOWs. These BOWs
are sent to machine learning algorithms including linear and RBF
SVM, naive Bayes, logistic regression, and MLP to evaluate the
performance of the approach. The initial experimental results
demonstrate that the combination of unigram and bigram
achieved accuracy of 86.71%.

Dataset: In order to evaluate the performance of the approach,
the 5G hashtag is used to collect more than 50,000 tweets, and the
positive and negative polarity is assigned to the tweets using the
SentiWordNet lexicon. Neural tweets are eliminated. The
experimental results show that the combination of unigram
and bigram achieved a better performance when compared to
other approaches. In order to evaluate the performance of the
proposed approach, different evaluation metrics including
accuracy, precision, recall, and f-measure are used:

Precision � TP
TP + FP

(1)

Recall � TP
TP + FN

(2)

F measure � 2 *
Precision*Recall
Precision + Recall

(3)

Accuracy � TP + TN
TP + TN + FP + FN

(4)

where TP denotes true positive, TN presents true negative, FP is
false positive, and FN represents false negative. In addition,
Table 2 shows the parameters that are used to trained the

machine learning methods. The scikit-learn package is used to
train the machine learning classifiers. In addition, the training
time for each model is presented in Table 2.

Table 3 shows the results of different N-gram features. The
unigram (Uni), bigram (Bi), and trigram (Tri) is extracted from
the sentence, as the comparative experimental result shows the
unigram (Uni) achieved a better performance when compared to
other features.

Table 4 shows the comparison of different N-gram features.
The empirical results show that the combination of unigram
(Uni) and bigram (Bi) achieved a better performance when
compared to other features.

Figure 2 displays the positive sentiment towards fifth
generation of cellular networks (5G) technology, and the speed,
security, and performance of 5G. For example, the user has a
positive opinion of speed, security and performance. In order to
find the most positive keywords towards 5G, the frequency of
positive words in a sentence is calculated. The word frequency
shows that the most discussed keywords are speed, security, and
performance. As shown in Figure 2 1), most positive tweets about
speed are from Scotland and England. For example, 45% of tweets
in Scotland and 30% in England have a positive opinion about the
speed of 5G. Comparatively, Figure 2 2) demonstrates that most
positive tweets about security are also from England and Scotland.
A total of 41% of tweets in England and 36% in Scotland include a
positive opinion about the security of 5G. Figure 2 3) shows that
the most positive tweets about performance come from Scotland
and England; 39% of tweets in Scotland and 28% in England
include a positive opinion about the performance of 5G.

Figure 3 displays the negative sentiment towards fifth
generation of cellular networks (5G) technology, including the
radiation, price, and poor performance of 5G. For example, most
users are concerned that the 5G signal might cause cancer, that the
price of a 5Gmobile is very expensive, and that the performance of
5G mobiles may be poor. In order to find the most negative
keywords associated with 5G, the frequency of the negative words
in a sentence is calculated. The word frequency shows that themost
discussed keywords are radiation, price, and performance. As
Figure 3 1) shows most Twitter users who are located in
England and Scotland believe that 5G can cause cancer. It is to
be noted that 31% of tweets in Scotland and 31% in England
include negative concerns about the cause of radiation using 5G. In
addition,Figure 3 2) shows thatmost Twitter users who are located
in Scotland believe that the price of a 5Gmobile is very expensive. It
is worth mentioning that 32% of tweets in Scotland and 27% of
tweets in Wales include negative concerns about the expensive
price of 5G technology. Additionally, Figure 3 3) shows that most
Twitter users in Northern Ireland are less satisfied with the current
performance of 5G mobiles. It is to be noted that 27% of tweets in
Northern Ireland and 25% of tweets in England include negative
concerns about the current performance of 5G devices.

In contrast, Figure 4 displays the overall trends for Twitter
users. The most discussed trends include agriculture (29%),
healthcare (28%), and smarthome (26%).

Figure 5 displays the most discussed trends pertaining to 5G
technology, including the radiation, price, and poor performance
of 5G. For example, most users are concerned that the 5G signal

FIGURE 4 | Trend of United Kingdom towards the fifth generation of
cellular networks (5G).
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might cause cancer, the price of the 5G mobile which is very
expensive, and also the low performance of 5Gmobiles. As shown
in Figure 5, in England 1) the most discussed trends are
agriculture (31%), healthcare (28%), and smarthome (16%). In
addition, in Scotland 2) the most discussed trends are agriculture
(41%), healthcare (32%), and transport (12%). Additionally, in
Wales the most discussed trends are agriculture (29%), healthcare
(28%), and transport (18%). Finally, in Northern Ireland, the
most discussed trends are agriculture (29%), healthcare (28%),
and transport (18%).

Figure 6 displays the occupation of the Twitter users who had
the most positive comments aboutthe fifth generation of cellular
networks (5G).

Figure 7 displays the occupation of the Twitter users who had
the most negative comments about the fifth generation of cellular
networks (5G).

As shown in Table 5, the top 10 positive and negative bigram
keywords related to 5G are presented. Tweets concerning the
price of 5G network generation are positive and concerning EU
countries are negative.

As shown in Table 6, the top 10 positive and negative trigram
keywords related to 5G are presented. Tweets concerning the
price of 5G network generation are positive and concerning EU
countries are negative.

5. DISCUSSION

In this study, the tweets related to the next generation mobile
network (5G) were analyzed and their sentiment polarity was
identified. The sentiment analysis of 5G keywords in tweets
were considered because these tweets carried lots of

FIGURE 5 | Most discussed trends for the fifth generation of cellular networks (5G).
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information related to 5G. Only English tweets were
considered because it that language has a large coverage
and is the most widely used common language in the world.
In the current study, more than 10,000 tweets were retrieved.
There were many duplicate tweets in the retrieved data which
were removed from the database. However, we did not limit
our dataset to the tweet discussion of online users, we used
news feeds related to 5G network communication for analysis
because the news consisted of valuable information related to
incidents.

Moreover, as part of the data pre-processing we removed the
emoji characters from the tweets. However, it is worth
mentioning that emoji characters are commonly used in
tweets and they are useful for identifying the overall polarity
of the tweets. In future work, we intend to consider emoji
characters as part of the process to identify the overall polarity

of tweets as emoji characters can provide more accurate
sentiment scores. In contrast, the time frame to analyze the
specific tweets related to 5G might be associated with events
which increased the number of tweets on certain dates, weeks, or
months. It is worth mentioning that there were lots of tweets
related to conspiracy theories, for example some of tweets
believed that 5G could cause COVID-19 in people.

Herein we explain the most popular topics discussed which
can change the overall sentiment polarity of the tweets into
positive:

Speed: The most discussed topic related to 5G was speed of the
current network. Most of the tweets were positive towards the
speed of 5G. However, it is to be noted that a large number of
tweets were still negative about the bandwidth and speed of the
5G mobile network.

Security: In addition, another highly discussed topic related to
5G was the security of 5G services. Most of the Twitter users were
positive towards the current security of the services for 5G. For
example, “5G is more secure than 4G.”

Performance: Additionally, the performance of the 5G mobile
network was discussed in most of the tweets. Most of the tweets
were positive towards the performance of 5G network
communication. For example, “I am really excited [about the]
current performance of [the] 5G mobile.”

Herein we explain the most popular topics discussed which
can change the overall sentiment polarity of the tweets into
negative:

FIGURE 6 | Occupation of Twitter users most positive towards the fifth
generation of cellular networks (5G).

FIGURE 7 |Occupation for Twitter users most negative towards the fifth
generation of cellular networks (5G).

TABLE 5 | Most frequent positive bigrams for next generation mobile
network (5G).

Positive bigram Negative bigram

5G cheap Low performance
Good coverage Awful services
Good supply Blow Huawei
Great performance Hate 5G
High security Low speed
Fast speed Low coverage
Great system Low frequency
Communication networks 5G crap
Nokia performs Slow 5G
Creat satisfaction Expensive technology

TABLE 6 | Most frequent positive trigrams for next generation mobile
network (5G).

Positive trigram Negative trigram

Cheap 5G phones Slow coverage 5G
Good coverage phone Low suppliers services
Cest 5G phones Blow Huawei China
Good Supply 5G 5G slow connection
Great areas coverage 5G low frequency
Good test zones About 5G dangers
5G fast speed Low frequency 5G
5G good communication New 5G crap
Great 5G signal Expect 5G slow
Nokia performs well Expensive new technology

Frontiers in Big Data | www.frontiersin.org June 2021 | Volume 4 | Article 6408688

Dashtipour et al. Public Perception of 5G

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


5G expose users to cancer: Our findings show that most of the
tweets were worried that the next generation mobile network
can cause cancer. For example, “I won’t buy [a] 5G mobile,
because it can cause cancer.” There were strong negative
comments towards the health issues of 5G network
communication. Most of the Twitter users believed that 5G
could cause damage to their health.

5G price: Our analysis shows that most of the Twitter users felt
negatively towards the price of 5G mobiles. For example, one
tweet was particularly clear: “How can I afford to buy such
expensive mobiles.”

Speed: Furthermore, one of the most discussed topics
concerning Twitter users was the speed of the 5G mobile
network. For example, “I recently bought [a] 5G mobile but I
do not like the speed.”

Table 7 shows examples of positive and negative tweets
towards the fifth generation of cellular networks (5G).

6 CONCLUSION

In this study, we performed a series of sentiment analyses on
data retrieved from Twitter. The Twitter data under
investigation were related to the fifth generation of cellular
networks (5G). We collected relevant tweets in the English
language. Therefore, we proposed a framework for mobile
networks (such as 5G) based on different feature
combinations. The performance of the proposed framework
was evaluated using different feature combination in terms of

different evaluation metrics such as accuracy, precision, recall,
and f-measure. In addition, we compared the proposed method
with different machine learning algorithms such as naïve Bayes,
MLP, and SVM, etc., In addition, we analyzed the tweets to
understand user perception of 5G. As part of our future work,
we intend to extend the current framework for multilingual
sentiment analysis and integration of a closed loop self
organizing network algorithm with the proposed user
sentiment analysis framework.
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